WorldWideScience

Sample records for carbon fiber reinforced

  1. Friction and wear behavior of carbon fiber reinforced brake materials

    Institute of Scientific and Technical Information of China (English)

    Du-qing CHENG; Xue-tao WANG; Jian ZHU; Dong-bua QIU; Xiu-wei CHENG; Qing-feng GUAN

    2009-01-01

    A new composite brake material was fabri-cated with metallic powders, barium sulphate and modified phenolic resin as the matrix and carbon fiber as the reinforced material. The friction, wear and fade character-istics of this composite were determined using a D-MS friction material testing machine. The surface structure of carbon fiber reinforced friction materials was analyzed by scanning electronic microscopy (SEM). Glass fiber-reinforced and asbestos fiber-reinforced composites with the same matrix were also fabricated for comparison. The carbon fiber-reinforced friction materials (CFRFM) shows lower wear rate than those of glass fiber- and asbestos fiber-reinforced composites in the temperature range of 100℃-300℃. It is interesting that the frictional coefficient of the carbon fiber-reinforced friction materials increases as frictional temperature increases from 100℃ to 300℃, while the frictional coefficients of the other two composites decrease during the increasing temperatures. Based on the SEM observation, the wear mechanism of CFRFM at low temperatures included fiber thinning and pull-out. At high temperature, the phenolic matrix was degraded and more pull-out enhanced fiber was demonstrated. The properties of carbon fiber may be the main reason that the CFRFM possess excellent tribological performances.

  2. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Directory of Open Access Journals (Sweden)

    Mehran Tehrani

    2014-05-01

    Full Text Available Carbon nanofilament and nanotubes (CNTs have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD, in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD technique was also utilized to grow multiwall CNTs (MWCNTs on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  3. Carbon Fiber Reinforced, Zero CME Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technical Abstract: This project proposes to develop moisture insensitive, high performance, carbon fiber laminates for future missions. Current space-qualified...

  4. Experimental Study on Electric Properties of Carbon Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the phenomenon that the physical properties have a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area,location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility.

  5. Carbon fiber reinforced thermoplastic composites for future automotive applications

    Science.gov (United States)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  6. [Carbon fiber-reinforced plastics as implant materials].

    Science.gov (United States)

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  7. Carbon fiber-reinforced carbon as a potential implant material.

    Science.gov (United States)

    Adams, D; Williams, D F; Hill, J

    1978-01-01

    A carbon fiber-reinforced carbon is being evaluated as a promising implant material. In a unidirectional composite, high strengths (1200 MN/m2 longitudinal flexural strength) and high modulus (140 GN/m2 flexural modulus) may be obtained with an interlaminar shear strength of 18 MN/m2. Alternatively, layers of fibers may be laid in two directions to give more isotopic properties. The compatibility of the material with bone has been studied by implanting specimens in holes drilled in rat femora. For a period of up to 8 weeks, a thin layer of fibrous tissue bridged the gap between bone and implant; but this tissue mineralizes and by 10 weeks, bone can be observed adjacent to the implant, giving firm fixation. Potential applications include endosseous dental implants where a greater strength in the neck than that provided by unreinforced carbon would be advantageous.

  8. Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers

    Science.gov (United States)

    Jain, Rahul

    The graphitic nature, continuous structure, and high mechanical properties of carbon nanotubes (CNTs) make them good candidate for reinforcing polymer fiber. The different types of CNTs including single-wall carbon nanotubes (SWNTs), few-wall carbon nanotubes (FWNTs), and multi-wall carbon nanotubes (MWNTs), and carbon nanofibers (CNFs) differ in terms of their diameter and number of graphitic walls. The desire has been to increase the concentration of CNTs as much as possible to make next generation multi-functional materials. The work in this thesis is mainly focused on MWNT and CNF reinforced polyacrylonitrile (PAN) composite fibers, and SWNT, FWNT, and MWNT reinforced poly(etherketone) (PEK) composite fibers. To the best of our knowledge, this is the first study to report the spinning of 20% MWNT or 30% CNF reinforced polymer fiber spun using conventional fiber spinning. Also, this is the first study to report the PEK/CNT composite fibers. The fibers were characterized for their thermal, tensile, mechanical, and dynamic mechanical properties. The fiber structure and morphology was studied using WAXD and SEM. The effect of two-stage heat drawing, sonication time for CNF dispersion, fiber drying temperature, and molecular weight of PAN was also studied. Other challenges associated with processing high concentrations of solutions for making composite fibers have been identified and reported. The effect of CNT diameter and concentration on fiber spinnability and electrical conductivity of composite fiber have also been studied. This work suggests that CNT diameter controls the maximum possible concentration of CNTs in a composite fiber. The results show that by properly choosing the type of CNT, length of CNTs, dispersion of CNTs, fiber spinning method, fiber draw ratio, and type of polymer, one can get electrically conducting fibers with wide range of conductivities for different applications. The PEK based control and composite fibers possess high thermal

  9. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  10. Reinforcement of timber beams with carbon fibers reinforced plastics

    Science.gov (United States)

    Gugutsidze, G.; Draškovič, F.

    2010-06-01

    Wood is a polymeric material with many valuable features and which also lacks some negative features. In order to keep up with high construction rates and the minimization of negative effects, wood has become one of the most valuable materials in modern engineering. But the use of timber material economically is also an actual problem in order to protect the environment and improve natural surroundings. A panel of scientists is interested in solving these problems and in creating rational structures, where timber can be used efficiently. These constructions are as follows: glue-laminated (gluelam), composed and reinforced wooden constructions. Composed and reinforced wooden constructions are examined less, but according to researches already carried out, it is clear that significant work can be accomplished in creating rational, highly effective and economic timber constructions. The paper deals with research on the formation of composed fiber-reinforced beams (CFRP) made of timber and provide evidence of their effectiveness. The aim of the paper is to investigate cross-bending of CFRP-reinforced gluelaminated timber beams. According to the results we were able to determine the additional effectiveness of reinforcement with CFRP (which depends on the CFRP material's quality, quantity and module of elasticity) on the mechanical features of timber and a whole beam.

  11. Characteristics of Resistivity-temperature for Carbon Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The resistance response to temperature change of carbon fiber reinforced cement-based composites (CFRC) is reported, which shows some outstanding phenomena of positive temperature coefficient (PTC) of resistance and negative temperature coefficient (NTC) of resistance during the temperature rising.The influences of carbon fiber, cement-based matrix and thermal cycles on the characteristics of temperature-resistivity for the system were also discussed.Because of the special characteristics for temperature resistivity, carbon fiber cement based composites can be useful in structure with the function of alarm for fire.

  12. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m2/g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  13. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  14. Mechanical testing of unidirectional carbon fiber reinforced plastics

    OpenAIRE

    Näreikkö, Aleksi

    2015-01-01

    The area of composites testing has been a major topic of research since the early adoption of composites in the aerospace industry, nearly 50 years ago. Today, the mechanical characterization of different material systems is of even greater importance, since most modelling software require material data to produce accurate results. This thesis studied a component consisting of 4 pultruded carbon fiber reinforced epoxy elements coated with a thermoplastic polyurethane coating. The obje...

  15. Smart Behavior of Carbon Fiber Reinforced Cement-based Composite

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers.Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress andstrain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relationof thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to theincrease in the material volume resistivity during crack generation or propagation and the decrease in the resistivity duringcrack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect inthe cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage andtemperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in theconcrete structures.

  16. Polyacrylonitrile/carbon nanotube composite fibers: Reinforcement efficiency and carbonization studies

    Science.gov (United States)

    Chae, Han Gi

    Polyacrylonitrile (PAN)/carbon nanotube (CNT) composite fibers were made using various processing methods such as conventional solution spinning, gel spinning, and bi-component gel spinning. The detailed characterization exhibited that the smaller and longer CNT will reinforce polymer matrix mostly in tensile strength and modulus, respectively. Gel spinning combined with CNT also showed the promising potential of PAN/CNT composite fiber as precursor fiber of the next generation carbon fiber. High resolution transmission electron microscopy showed the highly ordered PAN crystal layer on the CNT, which attributed to the enhanced physical properties. The subsequent carbonization study revealed that carbonized PAN/CNT fibers have at least 50% higher tensile strength and modulus as compared to those of carbonized PAN fibers. Electrical conductivity of CNT containing carbon fiber was also 50% higher than that of carbonized PAN fiber. In order to have carbon fiber with high tensile strength, the smaller diameter precursor fiber is preferable. Bi-component gel spinning produced 1-2 mum precursor fiber, resulting in ˜1 mum carbon fiber. The tensile strength of the carbonized bi-component fiber (islands fibers) is as high as 6 GPa with tensile modulus of ˜500 GPa. Further processing optimization may lead to the next generation carbon fiber.

  17. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.;

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...

  18. Carbon and glass hierarchical fibers: Influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites

    International Nuclear Information System (INIS)

    Highlights: ► Dense CNT were grown on carbon fiber and glass fiber by use of floating catalyst CVD method. ► CNT showed different growing mechanism on carbon and glass fiber. ► Short fiber-CNT-composites showed enhanced mechanical properties. ► CNT coating enhanced fiber–matrix interaction and acted as additional reinforcement. -- Abstract: Dense carbon nanotubes (CNTs) were grown uniformly on the surface of carbon fibers and glass fibers to create hierarchical fibers by use of floating catalyst chemical vapor deposition. Morphologies of the CNTs were investigated using scanning electronic microscope (SEM) and transmission electron microscope (TEM). Larger diameter dimension and distinct growing mechanism of nanotubes on glass fiber were revealed. Short carbon and glass fiber reinforced polypropylene composites were fabricated using the hierarchical fibers and compared with composites made using neat fibers. Tensile, flexural and impact properties of the composites were measured, which showed evident enhancement in all mechanical properties compared to neat short fiber composites. SEM micrographs of composite fracture surface demonstrated improved adhesion between CNT-coated fiber and the matrix. The enhanced mechanical properties of short fiber composites was attributed to the synergistic effects of CNTs in improving fiber–matrix interfacial properties as well as the CNTs acting as supplemental reinforcement in short fiber-composites.

  19. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  20. Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers

    OpenAIRE

    Marioli-Riga Z.; Bartholome C.; Alexopoulos N.; Poulin P.

    2010-01-01

    Polyvinyl alcohol - carbon nanotube (PVA-CNT) fibers had been embedded to glass fiber reinforced polymers (GFRP) for the structural health monitoring of the composite material. The addition of the conductive PVA-CNT fiber to the nonconductive GFRP material aimed to enhance its sensing ability by means of the electrical resistance measurement method. The test specimen’s response to mechanical load and the in situ PVA-CNT fiber’s electrical resistance measurements were correlated for sens...

  1. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2003-06-01

    Full Text Available An experimental analysis of pinewood beams (Pinus caribea var hondurensis reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results, while the efficiency of the fiber reinforcement is corroborated by the increased strength and stiffness of the reinforced timber beams.

  2. Defect depth measurement of carbon fiber reinforced polymers by thermography

    Science.gov (United States)

    Chen, Terry Y.; Chen, Jian-Lun

    2016-01-01

    Carbon fiber reinforced polymers has been widely used in all kind of the industries. However the internal defects can result in the change of material or mechanical properties, and cause safety problem. In this study, step-heating thermography is employed to measure the time series temperature distribution of composite plate. The principle of heat conduction in a flat plate with defect inside is introduced. A temperature separation criterion to determine the depth of defect inside the specimen is obtained experimentally. Applying this criterion to CFRP specimens with embedded defects, the depth of embedded defect in CFRP can be determined quite well from the time series thermograms obtained experimentally.

  3. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    Science.gov (United States)

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity. PMID:17326671

  4. Carbon Fiber Reinforced Polymer for Cable Structures—A Review

    Directory of Open Access Journals (Sweden)

    Yue Liu

    2015-10-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRP is an advanced composite material with the advantages of high strength, lightweight, no corrosion and excellent fatigue resistance. Therefore, unidirectional CFRP has great potential for cables and to replace steel cables in cable structures. However, CFRP is a typical orthotropic material and its strength and modulus perpendicular to the fiber direction are much lower than those in the fiber direction, which brings a challenge for anchoring CFRP cables. This paper presents an overview of application of CFRP cables in cable structures, including historical review, state of the art and prospects for the future. After introducing properties of carbon fibers, mechanical characteristics and structural forms of CFRP cables, existing CFRP cable structures in the world (all of them are cable bridges are reviewed. Especially, their CFRP cable anchorages are presented in detail. New applications for CFRP cables, i.e., cable roofs and cable facades, are also presented, including the introduction of a prototype CFRP cable roof and the conceptual design of a novel structure—CFRP Continuous Band Winding System. In addition, other challenges that impede widespread application of CFRP cable structures are briefly introduced.

  5. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  6. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    Science.gov (United States)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  7. Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer

    Institute of Scientific and Technical Information of China (English)

    HU Kexu; HE Guisheng; LU Fan

    2007-01-01

    In this paper,two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP)and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures.The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h.It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing.

  8. Processing of thermo-structural carbon-fiber reinforced carbon composites

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Pardini

    2009-06-01

    Full Text Available The present work describes the processes used to obtain thermostructural Carbon/Carbon composites. The processing of these materials begins with the definition of the architecture of the carbon fiber reinforcement, in the form of stacked plies or in the form of fabrics or multidirectional reinforcement. Incorporating fiber reinforcement into the carbon matrix, by filling the voids and interstices, leads to the densification of the material and a continuous increase in density. There are two principal processing routes for obtaining these materials: liquid phase processing and gas phase processing. In both cases, thermal processes lead to the formation of a carbon matrix with specific properties related to their precursor. These processes also differ in terms of yield. With liquid phase impregnation the yield is around 45 per cent, while gas phase processing yields around 15 per cent.

  9. Fracture morphology of carbon fiber reinforced plastic composite laminates

    Directory of Open Access Journals (Sweden)

    Vinod Srinivasa

    2010-09-01

    Full Text Available Carbon fiber reinforced plastic (CFRP composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compression and flexural loadings; and microscopic study with the aid of Scanning Electron Microscope (SEM has been performed on failed (fractured composite surfaces to identify the principle features of failure. Efforts have been made in correlating the fracture surface characteristics to the failure mode. The micro-mechanics analysis of failure serves as a useful guide in selecting constituent materials and designing composites from the failure behavior point of view. Also, the local failure initiation results obtained here has been reliably extended to global failure prediction.

  10. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  11. Shear strengthening of pre-damaged reinforced concrete beams with carbon fiber reinforced polymer sheet strips

    Institute of Scientific and Technical Information of China (English)

    Feras ALZOUBI; ZHANG Qi; LI Zheng-liang

    2007-01-01

    This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with side-bonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in ACI-440 and fib European code were compared with the experimental results.

  12. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers

    International Nuclear Information System (INIS)

    Highlights: • Multiscale composite was prepared by incorporation of carbon nanotubes and fibers. • Carbon nanotubes were also grown on short carbon fibers to enhance stress transfer. • Significant improvements were achieved in mechanical properties of composites. • Synergic effect of carbon nanotubes and fibers was demonstrated. - Abstract: Carbon nanotubes (CNT) and short carbon fibers were incorporated into an epoxy matrix to fabricate a high performance multiscale composite. To improve the stress transfer between epoxy and carbon fibers, CNT were also grown on fibers through chemical vapor deposition (CVD) method to produce CNT grown short carbon fibers (CSCF). Mechanical characterization of composites was performed to investigate the synergy effects of CNT and CSCF in the epoxy matrix. The multiscale composites revealed significant improvement in elastic and storage modulus, strength as well as impact resistance in comparison to CNT–epoxy or CSCF–epoxy composites. An optimum content of CNT was found which provided the maximum stiffness and strength. The synergic reinforcing effects of combined fillers were analyzed on the fracture surface of composites through optical and scanning electron microscopy (SEM)

  13. Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers

    Directory of Open Access Journals (Sweden)

    Marioli-Riga Z.

    2010-06-01

    Full Text Available Polyvinyl alcohol - carbon nanotube (PVA-CNT fibers had been embedded to glass fiber reinforced polymers (GFRP for the structural health monitoring of the composite material. The addition of the conductive PVA-CNT fiber to the nonconductive GFRP material aimed to enhance its sensing ability by means of the electrical resistance measurement method. The test specimen’s response to mechanical load and the in situ PVA-CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. The embedded PVA-CNT fiber worked as a sensor in GFRP coupons in tensile loadings. Sensing ability of the PVA-CNT fibers was also demonstrated on an integral composite structure. PVA-CNT fiber near the fracture area of the structure recorded very high values when essential damage occurred to the structure. A finite element model of the same structure was developed to predict axial strains at locations of the integral composite structure where the fibers were embedded. The predicted FEA strains were correlated with the experimental measurements from the PVA-CNT fibers. Calculated and experimental values were in good agreement, thus enabling PVA-CNT fibers to be used as strain sensors.

  14. Effects of EB irradiation on stress-strain curves for carbon fiber reinforced composite materials

    Science.gov (United States)

    Kobayashi, H.; Yamada, K.; Mizutani, A.; Uchida, N.; Tanaka, K.; Nishi, Yoshitake

    2004-02-01

    In order to evaluate influence of electron beam (EB) irradiation on elasticity and stress- strain curve of composite materials reinforced by carbon fiber (CF), carbon fiber reinforced polymer (CFRP) and carbon fiber reinforced graphite (C/C) were treated by EB irradiation of 0.3 MGy. Since the EB strengthening was mainly dominated by the ductility enhancements of carbon fiber and matrix of epoxy resin, EB irradiation enlarged fracture stress and enhanced fracture strain of CFRP. Furthermore, EB irradiation slightly enhanced bending elasticity of CFRP and largely enhanced the initial spring constant related to elasticity of C/C coil. Although the elasticity enhancement of carbon fibers did not largely contribute that of CFRP, that of treated graphite matrix in C/C mainly caused the C/C coil elasticity enhancement by EB irradiation. Such a new treatment is a dream-worthy technology for structural materials to be applied in the fields of future engineering.

  15. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    Science.gov (United States)

    Sugama, Toshifumi

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  16. Evaluation of Tensile Strength of Unresin Continuous Carbon Fiber Cables as Tensile Reinforcement for Concrete Structures

    OpenAIRE

    Ohta, Toshiaki; Djamaluddin, Rudy; Seo, SungTag; Sajima, Takao; Harada, Koji

    2002-01-01

    As a tensile reinforcement of a concrete structure member, tensile strength of Unresin Continuous Carbon Fiber (UCCF) cables should be stated clearly. It has been reported that, through direct tensile test, tensile capacity of UCCF cables ranged from 30%

  17. Piezoresistivity in Carbon Fiber Reinforced Cement Based Composites

    Institute of Scientific and Technical Information of China (English)

    Bing CHEN; Keru WU; Wu YAO

    2004-01-01

    The resu lts of some i nteresti ng investigation on the piezoresistivity of ca rbon fi ber reinforced cement based com posites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity.

  18. Enhancement of Charpy impact value by electron beam irradiation of carbon fiber reinforced polymer

    International Nuclear Information System (INIS)

    Influences of electron beam irradiation on Charpy impact value of carbon fiber reinforced polymer (CFRP) have been investigated. The irradiation, which is one of short-time treatments, enhanced the Charpy impact value of CFRP. Furthermore, strengthening of carbon fiber, ductility enhancement of polymer and interface effects on impact test explains the impact value enhancement of CFRP. (author)

  19. Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting

    Science.gov (United States)

    Kachold, Franziska; Singer, Robert

    2016-03-01

    Carbon fiber reinforced aluminum was produced by a specially adapted high-pressure die casting process. The MMC has a fiber volume fraction of 27%. Complete infiltration was achieved by preheating the bidirectional, PAN-based carbon fiber body with IR-emitters to temperatures of around 750 °C. The degradation of the fibers, due to attack of atmospheric oxygen at temperatures above 600 °C, was limited by heating them in argon-rich atmosphere. Additionally, the optimization of heating time and temperature prevented fiber degradation. Only the strength of the outer fibers is reduced by 40% at the most. The fibers in core of fiber body are nearly undamaged. In spite of successful manufacturing, the tensile strength of the MMC is below strength of the matrix material. Also unidirectional MMCs with a fiber volume fraction of 8% produced under the same conditions, lack of the reinforcing effect. Two main reasons for the unsatisfactory mechanical properties were identified: First, the fiber-free matrix, which covers the reinforced core, prevents effective load transfer from the matrix to the fibers. And second, the residual stresses in the fiber-free zones are as high as 100 MPa. This causes premature failure in the matrix. From this, it follows that the local reinforcement of an actual part is limited. The stress distribution caused by residual stresses and by loading needs to be known. In this way, the reinforcing phase can be placed and aligned accordingly. Otherwise delamination and premature failure might occur.

  20. Performance of carbon fiber reinforced rubber composite armour against shaped charge jet penetration

    Directory of Open Access Journals (Sweden)

    Yue Lian-yong

    2016-01-01

    Full Text Available Natural rubber is reinforced with carbon fiber; the protective performances of the carbonfiber reinforced rubber composite armour to shaped charge jet have been studied based on the depth of penetration experiments. The craters on the witness blocks, the nature rubber based composite plates’ deformation and the Scanning Electron Microscopy for the hybrid fiber reinforced rubber plate also is analyzed. The results showed that the composite armour can affect the stability of the jet and made part of the jet fracture. The carbon fiber reinforced rubber composite armour has good defence ablity especially when the nature rubber plate hybrid 15% volume percentage carbonfiber and the obliquity angle is 68°. The hybrid fiber reinforced rubber composite armour can be used as a new kind of light protective armour.

  1. Model for the Effect of Fiber Bridging on the Fracture Resistance of Reinforced-Carbon-Carbon

    Science.gov (United States)

    Chan, Kwai S.; Lee, Yi-Der; Hudak, Stephen J., Jr.

    2009-01-01

    A micromechanical methodology has been developed for analyzing fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (RCC) panels with a three-dimensional (3D) composite architecture and a silicon carbide (SiC) surface coating. The methodology involves treating fiber bridging traction on the crack surfaces in terms of a weight function approach and a bridging law that relates the bridging stress to the crack opening displacement. A procedure has been developed to deduce material constants in the bridging law from the linear portion of the K-resistance curve. This report contains information on the application of procedures and outcomes.

  2. Properties of glass/carbon fiber reinforced epoxy hybrid polymer composites

    Science.gov (United States)

    Patel, R. H.; Sevkani, V. R.; Patel, B. R.; Patel, V. B.

    2016-05-01

    Composite Materials are well known for their tailor-made properties. For the fabrication of composites different types of reinforcements are used for different applications. Sometimes for a particular application, one type of reinforcement may not fulfill the requirements. Therefore, more than one type of reinforcements may be used. Thus, the idea of hybrid composites arises. Hybrid composites are made by joining two or more different reinforcements with suitable matrix system. It helps to improve the properties of composite materials. In the present work glass/carbon fiber reinforcement have been used with a matrix triglycidyl ether of tris(m-hydroxy phenyl) phosphate epoxy resin using amine curing agent. Different physical and mechanical properties of the glass, carbon and glass/carbon fiber reinforced polymeric systems have been found out.

  3. Reinforced concrete beams strengthened with carbon fiber reinforced polymer by friction hybrid bond technique: Experimental investigation

    International Nuclear Information System (INIS)

    Highlights: • Friction Hybrid Bonded FRP Technique is conducted to strengthen RC beams. • Six specimens with different reinforced methods were tested. • The strengthened effects of different strengthening methods were discussed. • The results obtained from the FEA and experiments are agreed very well. - Abstract: Carbon fiber reinforced polymer (CFRP) can be used to strengthen the reinforced concrete (RC) beams. But premature debonding is the main failure model in ordinary bond technique, and the strengthening effect is limited. In order to improve bonding and restricting sliding displacement, Friction Hybrid Bonded FRP Technique (FHB-FRP) is developed. Six simple-span RC specimen beams with different strengthened methods were tested in four-point bending. The experiment results indicate that FRP debonding can be effectively prevented by the FHB-FRP strengthened beam. The ultimate load-carrying capacity of the specimen strengthened by FHB-FRP technique is able to increase by a factor of 2.13 times compared with the beam strengthened with ordinary bond technique (U-jacketing technique). In addition, the cracking and yielding loads are improved more significantly by FHB-FRP technique than U-jacketing technique. Specimens strengthened with FHB-FRP technique have cracks with a more limited distribution and width. Finally, the finite element method (FEM) is conducted to simulate the behavior of the test specimens. The results obtained from the finite element method are compared with experiment. Excellent agreements have been achieved in the comparison of results

  4. Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets

    Science.gov (United States)

    Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.

    2005-06-01

    The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.

  5. Compression Molding of Chemical/Thermal Resistant Composite Materials Using Wastes of Glass Fiber Reinforced PTFE and Carbon Fiber

    OpenAIRE

    Kimura, Teruo||木村, 照夫||キムラ, テルオ

    2013-01-01

    This report proposed the compression molding method of chemical/thermal resistant composite materials reinforced by the carbon fiber extracted from CFRP waste and the waste of glass fiber coated by PTFE. The FEP resin was used for the matrix material. The contents of carbon fiber and FEP resin were varied in the experiments, and the machanical properties of composite materials were discussed in detail. As a result, the bending strength and modulus increased with increasing the content of carb...

  6. Ply Orientation of Carbon Fiber Reinforced Aircraft Wing - A Parametric Study

    Directory of Open Access Journals (Sweden)

    Dr. Alice Mathai

    2014-05-01

    Full Text Available In the present day scenario, use of carbon fiber composites has been extended to a large number of aircraft components which includes structural and non-structural components. Carbon fiber reinforced polymer (CFRP is a composite material which consists of laminates having reinforcing fibers (carbon of significant strength embedded in a matrix material. Each lamina can have distinct fiber orientations which may vary from the adjoining lamina. The present study focuses on the effect of the ply orientation on the strength of the panels. The wing of a subsonic aircraft was modeled in the ANSYS software. The performance of wing under the application of loads was studied by varying the orientation of fiber layers. From the study, it was observed that the variation in stress occurs with variation in orientation of fiber layers of CFRP composites.

  7. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  8. Research on the melt impregnation of continuous carbon fiber reinforced nylon 66 composites

    Science.gov (United States)

    Jia, M. Y.; Li, C. X.; Xue, P.; Chen, K.; Chen, T. H.

    2016-07-01

    Impregnation mold of continuous carbon fiber reinforced thermoplastic composites was designed and built in the article. Based on the theory of fluid mechanics and Darcy's law, a model of the melt impregnation was also established. The influences of fiber bundle width and impregnation pins’ diameter on the impregnation degree were studied by numerical simulation. Continuous carbon fiber reinforced nylon 66 composites were prepared. The effects of coated angle and impregnation mold temperature on the mechanical properties of the composites were also described.The agreement between the experimental data and prediction by the model was found to be satisfactory.

  9. Electromagnetic Interference Shielding Properties of Electroless Nickel-coated Carbon Fiber Paper Reinforced Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; WANG Jun; WANG Tao; WANG Junpeng; XU Renxin; YANG Xiaoli

    2014-01-01

    Carbon fibers (CFs) were coated with a nickel-phosphorus (Ni-P) film using an electroless plating process. The morphology, elemental composition and phases in the coating layer of the CFs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. Wet paper-making method was used to prepare nickle coated carbon fiber paper (NCFP). Vacuum assisted infusion molding process (VAIMP) was employed to manufacture the NCFP reinforced epoxy composites, and carbon fiber paper (CFP) reinforced epoxy composites were also produced as a comparison. Electromagnetic interference (EMI) shielding properties of the composites were measured in the 3.22-4.9 GHz frequency range using waveguide method. Both NCFP and CFP reinforced epoxy composites of 0.5 mm thickness exhibited high EMI shielding effectiveness (SE) at 8wt%fiber content, 35 dB and 30 dB, respectively, and reflection was the dominant shielding mechanism.

  10. Determination of Water Diffusion Coefficients and Dynamics in Adhesive/ Carbon Fiber Reinforced Epoxy Resin Composite Joints

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; WANG Zhi; WANG Jing; SU Tao

    2007-01-01

    To determinate the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxygen in the adhesive in adhesive/carbon fiber reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analysis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of both energy dispersive X-ray spectroscopy and elemental analysis. The determined results with EDX analysis are almost the same as those determined with elemental analysis and the results also show that the durability of the adhesive/carbon fiber reinforced epoxy resin composite joints subjected to silane coupling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treatment.

  11. A New Fiber Preform with Nanocarbon Binder for Manufacturing Carbon Fiber Reinforced Composite by Liquid Molding Process.

    Science.gov (United States)

    Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun

    2015-11-01

    Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing. PMID:26726642

  12. A New Fiber Preform with Nanocarbon Binder for Manufacturing Carbon Fiber Reinforced Composite by Liquid Molding Process.

    Science.gov (United States)

    Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun

    2015-11-01

    Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing.

  13. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong;

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...... from the calibrated force applied by the pulling machine and from a conventional resistive strain gauge mounted on the rod itself is obtained. Calculations from strain to shear stress show a relatively uniform stress distribution along the bar anchor used. The results give confidence to results from...

  14. Fabrication and Testing of Carbon Fiber Reinforced Truss Core Sandwich Panels

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Linzhi Wu; Li Ma; Qiang Wang; Shanyi Du

    2009-01-01

    Truss core sandwich panels reinforced by carbon fibers were assembled with bonded laminate facesheets and carbon fiber reinforced truss cores. The top and bottom facesheets were interconnected with truss cores. Both ends of the truss cores were embedded into four layers of top and bottom facesheets. The mechanical properties of truss core sandwich panels were then investigated under out-of-plane and in-plane compression loadings to reveal the failure mechanisms of sandwich panels. Experimental results indicated that the mechanical behavior of sandwich structure under in-plane loading is dominated by the buckling and debonding of facesheets.

  15. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  16. Surface and sub-surface degradation of unidirectional carbon fiber reinforced epoxy composites under dry and wet reciprocating sliding

    OpenAIRE

    Dhieb, H.; Buijnsters, J.G.; Eddoumy, F.; Vázquez, Luis; Celis, J. P.

    2013-01-01

    The role of water on the sub-surface degradation of unidirectional carbon fiber reinforced epoxy composite is examined. The correlation between the debonding of carbon fibers at the fiber-epoxy interface, and the wear behavior of the carbon fiber composite are discussed based on an in-depth analysis of the worn surfaces. We demonstrate that a reciprocating sliding performed along an anti-parallel direction to the fiber orientation under dry conditions results in a large degradation by debondi...

  17. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  18. Clinical evaluation of carbon fiber reinforced carbon endodontic post, glass fiber reinforced post with cast post and core: A one year comparative clinical study

    Directory of Open Access Journals (Sweden)

    Preethi G

    2008-01-01

    Full Text Available Aim: Restoring endodontically treated teeth is one of the major treatments provided by the dental practitioner. Selection and proper use of restorative materials continues to be a source of frustration for many clinicians. There is controversy surrounding the most suitable choice of restorative material and the placement method that will result in the highest probability of successful treatment. This clinical study compares two different varieties of fiber posts and one cast post and core in terms of mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology requiring crown removal over the period of 12months as evaluated by clinical and radiographical examination. Materials and Methods: 30 root canal treated, single rooted maxillary anterior teeth of 25 patients in the age range of 18-60 years where a post retained crown was indicated were selected for the study between January 2007 and August 2007; and prepared in a standard clinical manner. It was divided into 3 groups of 10 teeth in each group. After post space preparation, the Carbon fiber and Glass fiber reinforced posts were cemented with Scotch bond multipurpose plus bonding agent and RelyX adhesive resin cement in the first and second groups respectively. The Cast post and cores were cemented with Zinc Phosphate cement in the third group. Following post- cementation, the preparation was further refined and a rubber base impression was taken for metal-ceramic crowns which was cemented with Zinc Phosphate cement. A baseline periapical radiograph was taken once each crown was cemented. All patients were evaluated after one week (baseline, 3 months, 6 months and one year for following characteristics mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and

  19. [Carbon fiber reinforced polysulfone--a new implant material].

    Science.gov (United States)

    Claes, L

    1989-12-01

    Carbon fibre reinforced polysulfone is a composite material which contains two materials of well known biocompatibility. In comparison to metals this composite material has some advantages which makes it favourable particularly for implants in tumor surgery. The custom made arrangement of fibres in the composite allows the development of implants with special mechanical properties. The radiolucency of the material avoids problems caused by the reflection of x-rays, using metal implants. This special property allows the exact calculation of postoperative radiation doses of tumor patients. Simultaneously the structures behind the implants are not hidden. All implants can be machined during the operation to adapt them to the individual anatomical situation. Animal experimental and clinical applications of plates, screws and spinal segmental replacement implants made of this composite material have shown good results so far.

  20. Complementary methods for nondestructive testing of composite materials reinforced with carbon woven fibers

    Science.gov (United States)

    Steigmann, R.; Iftimie, N.; Sturm, R.; Vizureanu, P.; Savin, A.

    2015-11-01

    This paper presents complementary methods used in nondestructive evaluation (NDE) of composite materials reinforced with carbon woven fibers as two electromagnetic methods using sensor with orthogonal coils and sensor with metamaterials lens as well as ultrasound phased array method and Fiber Bragg gratings embedded instead of a carbon fiber for better health monitoring. The samples were impacted with low energy in order to study delamination influence. The electromagnetic behavior of composite was simulated by finite- difference time-domain (FDTD) software, showing a very good concordance with electromagnetic nondestructive evaluation tests.

  1. Rate dependent response and failure of a ductile epoxy and carbon fiber reinforced epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric N [Los Alamos National Laboratory; Rae, Philip J [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory

    2010-01-01

    An extensive characterization suite has been performed on the response and failure of a ductile epoxy 55A and uniaxial carbon fiber reinforced epoxy composite of IM7 fibers in 55A resin from the quasistatic to shock regime. The quasistatic and intermediate strain rate response, including elastic modulus, yield and failure have are characterized by quasistatic, SHPB, and DMA measurements as a function of fiber orientation and temperature. The high strain rate shock effect of fiber orientation in the composite and response of the pure resin are presented for plate impact experiments. It has previously been shown that at lower impact velocities the shock velocity is strongly dependent on fiber orientation but at higher impact velocity the in-plane and through thickness Hugoniots converge. The current results are compared with previous studies of the shock response of carbon fiber composites with more conventional brittle epoxy matrices. The spall response of the composite is measured and compared with quasistatic fracture toughness measurements.

  2. Mechanical properties of short carbon/glass fiber reinforced high mechanical performance epoxy resins

    Institute of Scientific and Technical Information of China (English)

    张竞; 黄培

    2009-01-01

    To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq...

  3. Influence of Carbon & Glass Fiber Reinforcements on Flexural Strength of Epoxy Matrix Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    T.D. Jagannatha

    2015-04-01

    Full Text Available Hybrid composite materials are more attracted by the engineers because of their properties like stiffness and high specific strength which leads to the potential application in the area of aerospace, marine and automobile sectors. In the present investigation, the flexural strength and flexural modulus of carbon and glass fibers reinforced epoxy hybrid composites were studied. The vacuum bagging technique was adopted for the fabrication of polymer hybrid composite materials. The hardness, flexural strength and flexural modulus of the hybrid composites were determined as per ASTM standards. The hardness, flexural strength and flexural modulus were improved as the fiber reinforcement contents increased in the epoxy matrix material.

  4. Advanced in situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic

    Science.gov (United States)

    Wang, Hongxin; Masuda, Hideki; Kitazawa, Hideaki; Onishi, Keiko; Kawai, Masamichi; Fujita, Daisuke

    2016-10-01

    In situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic (CFRP) is demonstrated by a traditional hardness tester, instrumented indentation tester and atomic-force-microscope (AFM)-based nanoindentation. In particular, due to the large residual indentation and nonuniform distribution of the microscale carbon fibers, the Vickers hardness could not be calculated by the traditional hardness tester. In addition, the clear residual microindentation could not be formed on the CFRP by instrumented indentation tester because of the large tip half angle of the Berkovich indenter. Therefore, an efficient technique for characterizing the true nanoscale hardness of CFRP was proposed and evaluated. The local hardness of the carbon fibers or plastic matrix on the nanoscale did not vary with nanoindentation location. The Vickers hardnesses of the carbon fiber and plastic matrix determined by AFM-based nanoindentation were 340 ± 30 and 40 ± 2 kgf/mm2, respectively.

  5. Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS Composites Reinforced with Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Pedro Garcés

    2013-10-01

    Full Text Available In recent years, several researchers have shown the good performance of alkali activated slag cement and concretes. Besides their good mechanical properties and durability, this type of cement is a good alternative to Portland cements if sustainability is considered. Moreover, multifunctional cement composites have been developed in the last decades for their functional applications (self-sensing, EMI shielding, self-heating, etc.. In this study, the strain and damage sensing possible application of carbon fiber reinforced alkali activated slag pastes has been evaluated. Cement pastes with 0, 0.29 and 0.58 vol % carbon fiber addition were prepared. Both carbon fiber dosages showed sensing properties. For strain sensing, function gage factors of up to 661 were calculated for compressive cycles. Furthermore, all composites with carbon fibers suffered a sudden increase in their resistivity when internal damages began, prior to any external signal of damage. Hence, this material may be suitable as strain or damage sensor.

  6. 碳纤维布加固施工技术%Carbon Fiber Reinforcement Construction Technology

    Institute of Scientific and Technical Information of China (English)

    刘家宽

    2013-01-01

    Carbon fiber reinforcement technology not only can improve the shear and bending capability of the structure, and also its construction is simple and convenient. This paper, combined with engineering examples, describes construction process of reinforcing concrete beams by carbon fiber reinforcement technology and quality control technology.%碳纤维布加固技术,不但能提高结构的抗剪、抗弯能力,而且施工简单、方便。本文结合工程实例,叙述碳纤维布加固混凝土梁柱的施工工艺流程和质量控制等方面的施工技术。

  7. Fabrication and tribological properties of Al reinforced with carbon fibers

    Directory of Open Access Journals (Sweden)

    Estrems Amestoy, Manuel

    2000-10-01

    Full Text Available The present work studies the manufacturing process of Al reinforced with Carbon Fibres (CF by "Squeeze Casting", establishing the variables for obtaining an acceptable product with little Al4C3 at the interface. Friction and wear tests are performed and the necessary conditions for the formation of a tribofilm are established. The tests show an increasing resistance to abrasion due to their own wear mechanism. Certain design criteria for those components subjected to friction are recommended in order to maximise the mechanical performance of the tribological system.

    Este trabajo estudia el proceso de fabricación de composites Al reforzado con fibras de carbono mediante la técnica ''Squeeze Casting'', estableciendo las variables para obtener un producto aceptable que tenga poca cantidad de Al4C3 en la interfase. Se han realizado ensayos de fricción y desgaste y se han establecido las condiciones necesarias para la formación de la tribocapa. Se muestra la alta capacidad de resistencia a la abrasión de las piezas producidas debido a su propio mecanismo de desgaste y se recomiendan ciertos criterios de diseño para componentes mecánicos con el fin de optimizar las prestaciones mecánicas en un sistema tribológico.

  8. Deformation behavior of FRP-metal composites locally reinforced with carbon fibers

    Science.gov (United States)

    Scholze, M.; Kolonko, A.; Lindner, T.; Lampke, T.; Helbig, F.

    2016-03-01

    This study investigates variations of hybrid laminates, consisting of one aluminum sheet and a unidirectional glass fiber (GF) reinforced polyamide 6 (PA6) basic structure with partial carbon fiber (CF) reinforcement. To create these heterogeneous FRP laminates, it is necessary to design and produce semi-finished textile-based products. Moreover, a warp knitting machine in conjunction with a warp thread offset unit was used to generate bionic inspired compounds. By the variation of stacking prior to the consolidation process of the hybrid laminate, an oriented CF reinforcement at the top and middle layer of the FRP is realized. In both cases the GFRP layer prevents contact between the aluminum and carbon fibers. In so doing, the high strength of carbon fibers can be transferred to the hybrid laminate in load directions with an active prevention of contact corrosion. The interface strength between thermoplastic and metal component was improved by a thermal spray coating on the aluminum sheet. Because of the high surface roughness and porosity, mechanical interlock was used to provide high interface strength without bonding agents between both components. The resulting mechanical properties of the hybrid laminates are evaluated by three point bending tests in different load directions. The effect of local fiber orientation and layer positioning on failure and deformation mechanism is additionally investigated by digital image correlation (DIC).

  9. Electrospun carbon nanofibers for improved electrical conductivity of fiber reinforced composites

    Science.gov (United States)

    Alarifi, Ibrahim M.; Alharbi, Abdulaziz; Khan, Waseem S.; Asmatulu, Ramazan

    2015-04-01

    Polyacrylonitrile (PAN) was dissolved in dimethylformamide (DMF), and then electrospun to generate nanofibers using various electrospinning conditions, such as pump speeds, DC voltages and tip-to-collector distances. The produced nanofibers were oxidized at 270 °C for 1 hr, and then carbonized at 850 °C in an argon gas for additional 1 hr. The resultant carbonized PAN nanofibers were placed on top of the pre-preg carbon fiber composites as top layers prior to the vacuum oven curing following the pre-preg composite curing procedures. The major purpose of this study is to determine if the carbonized nanofibers on the fiber reinforced composites can detect the structural defects on the composite, which may be useful for the structural health monitoring (SHM) of the composites. Scanning electron microscopy images showed that the electrospun PAN fibers were well integrated on the pre-preg composites. Electrical conductivity studies under various tensile loads revealed that nanoscale carbon fibers on the fiber reinforced composites detected small changes of loads by changing the resistance values. Electrically conductive composite manufacturing can have huge benefits over the conventional composites primarily used for the military and civilian aircraft and wind turbine blades.

  10. Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers

    Science.gov (United States)

    Chatterjee, S.; Nüesch, F. A.; Chu, B. T. T.

    2013-02-01

    The influence of carbon nanotubes (CNTs) and graphene nanoplatelets (GnPs) on the structure and mechanical properties of polyamide 12 (PA12) fibers was investigated. As seen from wide-angle X-ray diffraction analysis the crystallinity index increases with incorporation of nanofillers due to nucleation effects. Marked improvement was noted for mechanical properties of the composites with increase in elastic modulus, yield stress and strength of the fibers. The most significant improvement of a factor of 4 could be observed for elastic modulus with the inclusion of 0.5 wt.% GnP. A comparative study was made between the fibers reinforced with CNTs and GnPs.

  11. Mechanism of Functional Responses to Loading of Carbon Fiber Reinforced Cement-based Composites

    Institute of Scientific and Technical Information of China (English)

    JIANG Cuixiang; LI Zhuoqiu; SONG Xianhui; LU Yong

    2008-01-01

    Single fiber pull-out testing was conducted to study the origin of the functional responses to loading of carbon fiber reinforced cement-based composites.The variation of electrical resistance with the bonding force on the fiber-matrix interface was measured.Single fiber electromechanical testing was also conducted by measuring the electrical resistance under static tension.Comparison of the results shows that the resistance increasing during single fiber pull-out is mainly due to the changes at the interface.The conduction mechanism of the composite can be explained by the tunneling model.The interfacial stress causes the deformation of interfacial structure and the interfacial debonding.which have influences on the tunneling effect and result in the change of resistance.

  12. Experiment-Based Sensitivity Analysis of Scaled Carbon-Fiber-Reinforced Elastomeric Isolators in Bonded Applications

    Directory of Open Access Journals (Sweden)

    Farshad Hedayati Dezfuli

    2016-01-01

    Full Text Available Fiber-reinforced elastomeric isolators (FREIs are a new type of elastomeric base isolation systems. Producing FREIs in the form of long laminated pads and cutting them to the required size significantly reduces the time and cost of the manufacturing process. Due to the lack of adequate information on the performance of FREIs in bonded applications, the goal of this study is to assess the performance sensitivity of 1/4-scale carbon-FREIs based on the experimental tests. The scaled carbon-FREIs are manufactured using a fast cold-vulcanization process. The effect of several factors including the vertical pressure, the lateral cyclic rate, the number of rubber layers, and the thickness of carbon fiber-reinforced layers are explored on the cyclic behavior of rubber bearings. Results show that the effect of vertical pressure on the lateral response of base isolators is negligible. However, decreasing the cyclic loading rate increases the lateral flexibility and the damping capacity. Additionally, carbon fiber-reinforced layers can be considered as a minor source of energy dissipation.

  13. Aspects regarding wearing behaviour in case of aluminium composite materials reinforced with carbon fibers

    Science.gov (United States)

    Caliman, R.

    2016-08-01

    This paper presents a study regarding wear comportment of sintered composite materials obtained by mixture of aluminium with short carbon fibers. The necessity to satisfying more and more the specific functions during design of high performance structures leads to perform multi-materials such as reinforced composite parts. The wear tests were made on three different orientations of fibers on a standard machine of tribology, pin disk type. Counter-disk was made of cast iron with a superficial hardness of 92 HB. The wear rate and friction coefficient decreased exponentially with time of friction and reached a stationary value. This behaviour was attributed to the development of a lubricating film on the friction surface. To conduct this work was performed measurements on samples from the Al matrix composites and carbon fiber 43%, wear mechanism was investigated by scanning electron microscopy. In addition to fiber orientation, the tribological behaviour of metal matrix composites reinforced with fiber is influenced by the interfacial reaction of fiber-matrix. The characteristics and the dimensions of the interface depend on the cycle of temperature and time at which the material has been subjected during the manufacturing process and thereafter.

  14. Effect of Rare Earths on Tribological Properties of Carbon Fibers Reinforced PTFE Composites

    Institute of Scientific and Technical Information of China (English)

    Shangguan Qianqian; Cheng Xianhua

    2007-01-01

    Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was investigated. Experimental results revealed that RE was superior to air oxidation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.

  15. Experimental Study on Deicing Performance of Carbon Fiber Reinforced Conductive Concrete

    Institute of Scientific and Technical Information of China (English)

    Zuquan TANG; Zhuoqiu LI; Jueshi QIAN; Kejin WANG

    2005-01-01

    Carbon fiber reinforced concrete (CFRC) is a kind of good electrothermal material. When connected to an external power supply, stable and uniform heat suitable for deicing application is generated in the CFRC slab. Electric heating and deicing experiments of carbon fiber reinforced concrete slab were carried out in laboratory, and the effect of the temperature and thickness of ice, the thermal conductivity of CFRC, and power output on deicing performance and energy consumption were investigated. The experimental results indicate that it is an effective method to utilize the thermal energy produced by CFRC slab to deice. The time to melt the ice completely decreases with increasing power output and ice temperature, and increases with increasing thickness of the ice. The energy consumption to ranges from -3℃ to -18℃. CFRC with good thermal conduction can reduce temperature difference in CFRC slab effectively.

  16. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  17. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, we made prototype sliding bearings from functionally-graded, diamond-coated carbon-fiber reinforced composite. In dry-sliding experiments, the friction...

  18. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop low cost diamond composite bearings utilizing our new high pressure technology for carbon fiber reinforced 3-D C/C composites and mixtures of...

  19. Strength Analysis of the Carbon-Fiber Reinforced Polymer Impeller Based on Fluid Solid Coupling Method

    OpenAIRE

    Jinbao Lin; Yanjuan Jin; Zhu Zhang; Xiaochao Cui

    2014-01-01

    Carbon-fiber reinforced polymer material impeller is designed for the centrifugal pump to deliver corrosive, toxic, and abrasive media in the chemical and pharmaceutical industries. The pressure-velocity coupling fields in the pump are obtained from the CFD simulation. The stress distribution of the impeller couple caused by the flow water pressure and rotation centrifugal force of the blade is analyzed using one-way fluid-solid coupling method. Results show that the strength of the impeller ...

  20. PREDICTION OF MODE Ⅰ CRACK PROPAGATION DIRECTION IN CARBON-FIBER REINFORCED COMPOSITE PLATE

    Institute of Scientific and Technical Information of China (English)

    张少琴; 杨维阳

    2004-01-01

    A newly developed Z fracture criterion for the composite materials was introduced,the new concepts of in-plane average strain,in-plane dilatational strain energy density factor and reciprocal characteristic function were presented.Many experimental results show that the Z fracture criterion can be well used to predict the crack propagating direction for mode Ⅰ crack in carbon-fiber reinforced composite laminates.

  1. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe

    Science.gov (United States)

    Li, Weijie; Ho, Siu Chun Michael; Song, Gangbing

    2016-04-01

    Steel reinforcement corrosion is one of the dominant causes for structural deterioration for reinforced concrete structures. This paper presents a novel corrosion detection technique using an active thermal probe. The technique takes advantage of the fact that corrosion products have poor thermal conductivity, which will impede heat propagation generated from the active thermal probe. At the same time, the active thermal probe records the temperature response. The presence of corrosion products can thus be detected by analyzing the temperature response after the injection of heat at the reinforcement-concrete interface. The feasibility of the proposed technique was firstly analyzed through analytical modeling and finite element simulation. The active thermal probe consisted of carbon fiber strands to generate heat and a fiber optic Bragg grating (FBG) temperature sensor. Carbon fiber strands are used due to their corrosion resistance. Wet-dry cycle accelerated corrosion experiments were performed to study the effect of corrosion products on the temperature response of the reinforced concrete sample. Results suggest a high correlation between corrosion severity and magnitude of the temperature response. The technique has the merits of high accuracy, high efficiency in measurement and excellent embeddability.

  2. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone

    Directory of Open Access Journals (Sweden)

    Eduardo Aloisio Fleck NEUMANN

    2014-08-01

    Full Text Available Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1, polyetheretherketone (PEEK screws (Group 2, and 30% carbon fiber-reinforced PEEK screws (Group 3. The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey’s range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p 0.05. Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  3. Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites

    OpenAIRE

    Jalili, Mohammad Mehdi; Mousavi, Seyyed Yahya; Pirayeshfar, Amir Soheil

    2015-01-01

    Wood is one of the main materials used for making musical instruments due to its outstanding acoustical properties. Despite such unique properties, its inferior mechanical properties, moisture sensitivity, and time- and cost-consuming procedure for making instruments in comparison with other materials (e.g., composites) are always considered as its disadvantages in making musical instruments. In this study, the acoustic parameters of three different polyester composites separately reinforced ...

  4. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers

    International Nuclear Information System (INIS)

    Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5 wt% F-CNTs and 1.0 wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix

  5. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers.

    Science.gov (United States)

    Rangari, Vijaya K; Yousuf, Mohammed; Jeelani, Shaik; Pulikkathara, Merlyn X; Khabashesku, Valery N

    2008-06-18

    Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5 wt% F-CNTs and 1.0 wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix. PMID:21825828

  6. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    Science.gov (United States)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  7. Electrical resistance stability of high content carbon fiber reinforced cement composite

    Institute of Scientific and Technical Information of China (English)

    YANG Zai-fu; TANG Zu-quan; LI Zhuo-qiu; QIAN Jue-shi

    2005-01-01

    The influences of curing time, the content of free evaporable water in cement paste, environmental temperature, and alternative heating and cooling on the electrical resistance of high content carbon fiber reinforced cement (CFRC) paste are studied by experiments with specimens of Portland cement 42.5 with 10 mm PAN-based carbon fiber and methylcellulose. Experimental results indicate that the electrical resistance of CFRC increases relatively by 24% within a hydration time of 90 d and almost keeps constant after 14 d, changes hardly with the mass loss of free evaporable water in the concrete dried at 50℃C, increases relatively by 4% when ambient temperature decreases from 15℃ to-20℃, and decreases relatively by 13% with temperature increasing by 88℃. It is suggested that the electric resistance of the CFRC is stable, which is testified by the stable power output obtained by electrifying the CFRC slab with a given voltage. This implies that such kind of high content carbon fiber reinforced cement composite is potentially a desirable electrothermal material for airfield runways and road surfaces deicing.

  8. Lateral Response Comparison of Unbonded Elastomeric Bearings Reinforced with Carbon Fiber Mesh and Steel

    Directory of Open Access Journals (Sweden)

    Ali Karimzadeh Naghshineh

    2015-01-01

    Full Text Available The vertical and horizontal stiffness used in design of bearings have been established in the last few decades. At the meantime, applicability of the theoretical approach developed to estimate vertical stiffness of the fiber-reinforced bearings has been verified in different academic studies. The suitability of conventional horizontal stiffness equation developed for elastomeric material, mainly for steel-reinforced elastomeric bearings, has not been tested in detail for use of fiber-reinforced elastomeric bearings. In this research, lateral response of fiber mesh-reinforced elastomeric bearings has been determined through experimental tests and the results have been compared by corresponding values pertaining to the steel-reinforced bearings. Within the test program, eight pairs of fiber mesh-reinforced bearings and eight pairs of steel-reinforced bearings are subjected to different levels of compressive stress and cyclic shear strains. Fiber-reinforced elastomeric bearings may be more favorable to be used in seismic regions due to lower horizontal stiffness that can result in mitigation of seismic forces for levels of 100% shear strain. Damping properties of these types of fiber mesh-reinforced bearings depend mostly on the selection of elastomeric material compounds. Suggestions have been made for the lateral response of fiber-reinforced elastomeric bearings. It has also been determined that the classical equation for lateral stiffness based on linear elastic behavior assumptions developed for elastomeric bearings does not always apply to the fiber-reinforced ones.

  9. Validation of the numerical model of single-layer composites reinforced with carbon fiber and aramid

    Science.gov (United States)

    Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius

    2016-06-01

    In this work we studied the experimental validation of the model and finite element analysis for a single layer of composite materials reinforced with carbon (denoted as C), aramid (K) and carbon-aramid (C-K) fibers. In the literature there are not many details about the differences that arise between transversal and longitudinal characteristics of composite materials reinforced with fabric, compared to those with unidirectional fibers. In order to achieve carbon and aramid composites we used twill fabric and for carbon-aramid plain fabric, as shown in Figure 1. In order to observe the static behavior of the considered specimens, numerical simulations were carried out in addition to the experimental determination of the characteristics of these materials. Layered composites are obviously the most widespread formula for getting advanced composite structures. It allows a unique variety of material and structural combinations leading to optimal design in a wide range of applications [1,2]. To design and verify the material composites it is necessary to know the basic mechanical constants of the materials. Almost all the layered composites consider that the every layer is an orthotropic material, so there are nine independent constants of material corresponding to the three principal directions: Young modulus E1, E2 and E3, shear modulus G12, G23 and G13, and major poison ratios ν12, ν23, ν13. Experimental determinations were performed using traction tests and strain gauges. For each of the three above mentioned materials, five samples were manufactured.

  10. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    OpenAIRE

    Singh, B. P.; Veena Choudhary; Parveen Saini; Mathur, R.B.

    2012-01-01

    In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs) carbon fiber (CF) fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz). The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE) from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale comp...

  11. Anomalous enhancement of drilling rate in carbon fiber reinforced plastic using azimuthally polarized CO2 laser

    Science.gov (United States)

    Endo, Masamori; Araya, Naohiro; Kurokawa, Yuki; Uno, Kazuyuki

    2016-09-01

    We developed an azimuthally polarized pulse-periodic CO2 laser for high-performance drilling applications. We discovered an anomalous enhancement in the drilling rate with the azimuthally polarized beam compared to that with radially or randomly polarized beams. We drilled 0.45 mm-thick carbon fiber reinforced plastic (CFRP) using a focusing lens with a focal length of 50 mm and a numerical aperture (NA) of 0.09. The conditions other than polarization states were identical for all the experiments. The azimuthally polarized beam exhibited a drilling rate more than 10 times greater on average than those of the other two polarizations.

  12. Passive vibration damping of carbon fiber reinforced plastic with PZT particles and SMA powder

    Science.gov (United States)

    Jung, Jaemin; Lee, Woo Il; Lee, Dasom; Park, Sungho; Moon, Sungnam

    2016-04-01

    Carbon fiber reinforced plastic (CFRP) has been used various industrial fields, because of high strength, light weight, corrosion resistance and other properties. In this study, lead zirconate titanate (PZT) ceramic particles which is one of typical piezoelectric material and shape memory alloy powder dispersed in CFRP laminate in order to improve the vibration damping by dissipating vibration energy quickly. The loss factor (tanδ) is measured in Dynamic mechanical analyzer (DMA) which is used to measure the viscoelastic behavior of a material to verify the change in vibration damping. The results show that there exists difference on vibration damping ability between CFRP with PZT ceramic particles and CFRP with SMA powder.

  13. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2014-12-01

    Full Text Available The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo

  14. [Recent development of research on the biotribology of carbon fiber reinforced poly ether ether ketone composites].

    Science.gov (United States)

    Chen, Yan; Pan, Yusong

    2014-12-01

    Carbon fiber reinforced poly ether ether ketone (CF/PEEK) composite possesses excellent biocompatible, biomechanical and bioribological properties. It is one of the most promising implant materials for artificial joint. Many factors influence the bioribological properties of CF/PEEK composites. In this paper, the authors reviewed on the biotribology research progress of CF/PEEK composites. The influences of various factors such as lubricant, reinforcement surface modification, functional particles, friction counterpart and friction motion modes on the bio-tribological properties of CF/PEEK composites are discussed. Based on the recent research, the authors suggest that the further research should be focused on the synergistic effect of multiple factors on the wear and lubrication mechanism of CF/PEEK. PMID:25868268

  15. Application of carbon fiber (CF)-cloth reinforcement to upper complete denture base.

    Science.gov (United States)

    Miyairi, H; Nagai, M; Takayama, Y

    1983-12-01

    The acrylic resin denture base is used more than the usual metal denture base because of the low cost, simple process to make and easy rebasing. But, as the strength of the resin is weaker, the upper resin denture base is three to four times as thick as the metal denture base. So, a study was made to make the upper complete resin denture base thinner while maintaining the strength of the resin denture bases currently in use now. To make the palatal area of the denture base thinner was made possible by the application of carbon fiber (CF)-cloth reinforcement. The resin denture base reinforced by the CF-cloth was of a thickness of 0.7 mm and was evaluated for the mechanical properties of bending. As a result, it was found that both the stiffness and strength were improved by 10% or more as compared with those of the ordinary resin denture bases. PMID:6589087

  16. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    OpenAIRE

    Agarwal, G; A. Patnaik; Sharma, R. K.

    2014-01-01

    This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to re...

  17. Optics of carbon fiber-reinforced plastics - A theoretical and an experimental study

    Science.gov (United States)

    Hohmann, Ansgar; ElMaklizi, Ahmed; Foschum, Florian; Voit, Florian; Bergmann, Florian; Simon, Emanuel; Reitzle, Dominik; Kienle, Alwin

    2016-09-01

    Laser processing of carbon fiber-reinforced plastics (CFRP) as well as their design optimization are strongly emerging fields. As the optics of CFRP is still rather unknown, the optical behavior of CFRP was investigated in this study. Different simulation models were implemented to simulate reflectance from CFRP samples as well as distribution and absorption of light within these samples. The methods include an analytical solution of Maxwell's equations and Monte Carlo solutions of the radiative transfer theory. We show that strong inaccurracies occur, if light propagation in CFRP is modeled using the radiative transfer theory. Therefore, the solution of Maxwell's equations is the method of choice for calculation of light propagation in CFRP. Furthermore, measurements of the reflectance of light from CFRP were performed and compared to the simulations for investigation of the optical behavior. Information on the refractive index of carbon fibers was obtained via goniometric measurements. The amount of reflected light was determined as 6.05±0.38% for light polarized parallel to the fiber direction, while it was 3.65±0.41% for light polarized perpendicular to the fiber direction in case of laser-processed CFRP.

  18. Effect of rare earths surface treatment on tribological properties of carbon fibers reinforced PTFE composite under oil-lubricated condition

    Institute of Scientific and Technical Information of China (English)

    SHANGGUAN Qianqian; CHENG Xianhua

    2008-01-01

    The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers;carbon fibers were strongly bonded with PTFE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.

  19. Dynamic tensile response of a carbon-fiber-reinforced LCP composite and its temperature sensitivity

    Science.gov (United States)

    Shim, Victor P. W.; Yuan, J.; Lim, C. T.

    2001-06-01

    The tensile mechanical behavior of a short carbon fiber filled liquid crystalline polymer (LCP) composite, Vectra A230, was examined under static extension and dynamic loading at three temperatures. Dynamic tension was applied using a pendulum-type tensile spilt Hopkinson bar device. Specimens fabricated according to both the mould flow and transverse directions were tested. The stress-strain curves at various strain rates and temperatures were determined and found to be sensitive to strain rate as well as temperature for both types of specimens. With reference to the properties of pure LCP, mechanical anisotropy and fiber reinforcement effects were characterized and are discussed. Failed specimens were observed suing an optical microscope. Deformation and failure mechanisms in the microstructure of the LCP composite were studied to understand the effects of strain rate and temperature on material strength and failure strain.

  20. In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites

    International Nuclear Information System (INIS)

    The crack initiation and propagation of short carbon fiber reinforced geopolymer matrix composites (Cf/geopolymer composites) during bending test were observed in situ by environmental scanning electron microscope (ESEM). Lots of micro cracks initiate, and then propagate on the side of the beam sample with the increase of the bending load. A nearly elastic response of load-displacement curve and significant deformation of the composites are observed at the initial stages. The propagation of the micro cracks ceases, and these cracks tend to close to some extent while the main crack forms. The fiber bridging effect in the micro and main cracks effectively keeps the composites integrity and makes the composites exhibit a non-catastrophic fracture behavior. A simple mode for the damage behavior of the composites during the bending test is discussed.

  1. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography

    Science.gov (United States)

    Li, Yin; Zhang, Wei; Yang, Zheng-wei; Zhang, Jin-yu; Tao, Sheng-jie

    2016-05-01

    Carbon fiber reinforced polymer (CFRP) after low-velocity impact is detected using infrared thermography, and different damages in the impacted composites are analyzed in the thermal maps. The thermal conductivity under pulse stimulation, frictional heating and thermal conductivity under ultrasonic stimulation of CFRP containing low-velocity impact damage are simulated using numerical simulation method. Then, the specimens successively exposed to the low-velocity impact are respectively detected using the pulse infrared thermography and ultrasonic infrared thermography. Through the numerical simulation and experimental investigation, the results obtained show that the combination of the above two detection methods can greatly improve the capability for detecting and evaluating the impact damage in CFRP. Different damages correspond to different infrared thermal images. The delamination damage, matrix cracking and fiber breakage are characterized as the block-shape hot spot, line-shape hot spot,

  2. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    International Nuclear Information System (INIS)

    Highlights: • Plasma treatment was used to improve the adhesion property between the recycled CF and polymer matrix. • In order to evaluate the adhesion between plasma treated recycled CF and polymer, micro droplet test was conducted. • The interfacial shear strength and the interfacial adhesion of recycled carbon fiber increased. - Abstract: We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated

  3. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hooseok, E-mail: hooseok.lee@gmail.com; Ohsawa, Isamu; Takahashi, Jun

    2015-02-15

    Highlights: • Plasma treatment was used to improve the adhesion property between the recycled CF and polymer matrix. • In order to evaluate the adhesion between plasma treated recycled CF and polymer, micro droplet test was conducted. • The interfacial shear strength and the interfacial adhesion of recycled carbon fiber increased. - Abstract: We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  4. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite biocomposite

    International Nuclear Information System (INIS)

    As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications. The combined modification of oxygen plasma and sand-blasting could improve the hydrophily and generate micro/nano-topographical structures on the surface of the CFRPEEK-based ternary biocomposite. The results clearly showcased that the micro-/nano-topographical PEEK/n-HA/CF ternary biocomposite demonstrated the outstanding ability to promote the proliferation and differentiation of MG-63 cells in vitro as well as to boost the osseointegration between implant and bone in vivo, thereby boding well application to bone tissue engineering. - Highlights: • A novel micro/nano-topographical PEEK/n-HA/CF ternary biocomposite was developed. • The modified PEEK biocomposite promotes proliferation and differentiation of cells. • In vivo osseointegration of the micro/nano-topographical PEEK/n-HA/CF was enhanced

  5. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Anxiu [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China); Liu, Xiaochen [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Gao, Xiang; Deng, Feng [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China); Deng, Yi, E-mail: 18210357357@163.com [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China); Wei, Shicheng, E-mail: weishicheng99@163.com [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China)

    2015-03-01

    As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications. The combined modification of oxygen plasma and sand-blasting could improve the hydrophily and generate micro/nano-topographical structures on the surface of the CFRPEEK-based ternary biocomposite. The results clearly showcased that the micro-/nano-topographical PEEK/n-HA/CF ternary biocomposite demonstrated the outstanding ability to promote the proliferation and differentiation of MG-63 cells in vitro as well as to boost the osseointegration between implant and bone in vivo, thereby boding well application to bone tissue engineering. - Highlights: • A novel micro/nano-topographical PEEK/n-HA/CF ternary biocomposite was developed. • The modified PEEK biocomposite promotes proliferation and differentiation of cells. • In vivo osseointegration of the micro/nano-topographical PEEK/n-HA/CF was enhanced.

  6. Interface property improvement of the composite reinforced by radiation grafted carbon fibers

    International Nuclear Information System (INIS)

    Radiation processing is a high efficient, energy-saving and environment-friendly technology, and has been widely used to modify material interfaces. In this paper, simultaneous γ-ray radiation graft copolymerization was used to improve surface property of carbon fibers (CF) with phenolic aldehyde/ethyl alcohol solutions of different concentrations. The CF samples treated with the solutions were irradiated by 60Co γ-rays to 30 kGy at a dose rate of 4.8 kGy/h. The grafted samples were characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). And interlaminar shear strength (ILSS) of the composite reinforced by the grafted CFs was compared to the control (composites reinforced by the virgin CFs). The AFM measurement revealed obvious morphology changes of the grafted CF. The XPS spectra showed that the oxygen/carbon ratio and quantity of oxygen functional groups were enhanced efficiently by the radiation graft copolymerization. And interfacial performance of the composite reinforced by the grafted CFs was enhanced significantly. (authors)

  7. Development of Rapid Pipe Moulding Process for Carbon Fiber Reinforced Thermoplastics by Direct Resistance Heating

    Science.gov (United States)

    Tanaka, Kazuto; Harada, Ryuki; Uemura, Toshiki; Katayama, Tsutao; Kuwahara, Hideyuki

    To deal with environmental issues, the gasoline mileage of passenger cars can be improved by reduction of the car weight. The use of car components made of Carbon Fiber Reinforced Plastics (CFRP) is increasing because of its superior mechanical properties and relatively low density. Many vehicle structural parts are pipe-shaped, such as suspension arms, torsion beams, door guard bars and impact beams. A reduction of the car weight is expected by using CFRP for these parts. Especially, when considering the recyclability and ease of production, Carbon Fiber Reinforced Thermoplastics are a prime candidate. On the other hand, the moulding process of CFRTP pipes for mass production has not been well established yet. For this pipe moulding process an induction heating method has been investigated already, however, this method requires a complicated coil system. To reduce the production cost, another system without such complicated equipment is to be developed. In this study, the pipe moulding process of CFRTP using direct resistance heating was developed. This heating method heats up the mould by Joule heating using skin effect of high-frequency current. The direct resistance heating method is desirable from a cost perspective, because this method can heat the mould directly without using any coils. Formerly developed Non-woven Stitched Multi-axial Cloth (NSMC) was used as semi-product material. NSMC is very suitable for the lamination process due to the fact that non-crimp stitched carbon fiber of [0°/+45°/90°/-45°] and polyamide 6 non-woven fabric are stitched to one sheet, resulting in a short production cycle time. The use of the pipe moulding process with the direct resistance heating method in combination with the NSMC, has resulted in the successful moulding of a CFRTP pipe of 300 mm in length, 40 mm in diameter and 2 mm in thickness.

  8. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    Directory of Open Access Journals (Sweden)

    Jialong Wu

    2014-01-01

    Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.

  9. Strength Evaluation and Failure Prediction of Short Carbon Fiber Reinforced Nylon Spur Gears by Finite Element Modeling

    Science.gov (United States)

    Hu, Zhong; Hossan, Mohammad Robiul

    2013-06-01

    In this paper, short carbon fiber reinforced nylon spur gear pairs, and steel and unreinforced nylon spur gear pairs have been selected for study and comparison. A 3D finite element model was developed to simulate the multi-axial stress-strain behaviors of the gear tooth. Failure prediction has been conducted based on the different failure criteria, including Tsai-Wu criterion. The tooth roots, where has stress concentration and the potential for failure, have been carefully investigated. The modeling results show that the short carbon fiber reinforced nylon gear fabricated by properly controlled injection molding processes can provide higher strength and better performance.

  10. The concept of a novel hybrid smart composite reinforced with radially aligned zigzag carbon nanotubes on piezoelectric fibers

    Science.gov (United States)

    Ray, M. C.

    2010-03-01

    A new hybrid piezoelectric composite (HPZC) reinforced with zigzag single-walled carbon nanotubes (CNTs) and piezoelectric fibers is proposed. The novel constructional feature of this composite is that the uniformly aligned CNTs are radially grown on the surface of piezoelectric fibers. A micromechanics model is derived to estimate the effective piezoelectric and elastic properties. It is found that the effective piezoelectric coefficient e31 of the proposed HPZC, which accounts for the in-plane actuation, is significantly higher than that of the existing 1-3 piezoelectric composite without reinforcement with carbon nanotubes and the previously reported hybrid piezoelectric composite (Ray and Batra 2009 ASME J. Appl. Mech. 76 034503).

  11. Mechanical characterization of fiber reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2005-09-01

    Full Text Available A comparative study between epoxy Polymer Concrete plain, reinforced with carbon and glass fibers and commercial concrete mixes was made. The fibers are 6 mm long and the fiber content was 2% and 1%, respectively, in mass. Compressive tests were performed at room temperature and load vs. displacement curves were plotted up to failure. The carbon and glass fibers reinforcement were randomly dispersed into the matrix of polymer concrete. An increase in compressive properties was observed as function of reinforcement. The comparison also showed that Polymer Concrete, plain and reinforced, has a better performance than regular market concrete, suggesting that PC is a reliable alternative for construction industry.

  12. Flexural rigidity evolvement laws of reinforced concrete beams strengthened with carbon fiber laminates

    Institute of Scientific and Technical Information of China (English)

    NIU Peng-zhi; HUANG Pei-yan; DENG Jun; HAN Qiang

    2007-01-01

    Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper presents the research on flexural rigidity evolvement laws by testing 14 simple-supported RC beams strengthened with carbon fiber laminates (CFL) under cyclic load, and 2 under monotone load as a reference. The cyclic load tests revealed the peak load applied onto the surface of a supported RC beam strengthened with CFL is linear to the logarithm of its fatigue life, and the flexural rigidity evolvement undergoes three distinct phases: a rapid decrease from the start to about 5% of the fatigue life; an even development from 5% to about 99% of the fatigue life; and a succedent rapid decrease to failure. When the ratio of fatigue cycles to the fatigue life is within 0.05 to 0.99, the flexural rigidity varies linearly with the ratio. The peak load does not affect the flexural rigidity evolvement if it is not high enough to make the main reinforcements yield. The dependences of the flexural rigidity of specimens formed in the same group upon their fatigue cycles normalized by fatigue life are almost coincident. This implies the flexural rigidity may be a material parameter independent of the stress level. These relationships of flexural rigidity to fatigue cycles, and fatigue life may be able to provide some hints for fatigue design and fatigue life evaluation of RC member strengthened with CFL; nevertheless the findings still need verifying by more experiments.

  13. Thermo-physical Properties of Continuous Carbon Fiber Reinforced Copper Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    曹金华; 黄俊波; 陈先有

    2007-01-01

    Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction)of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE)and thermal conductivity.Thermo-physical properties have been measured in both, longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K)in longitudinal orientation and(14.98×10-6/K)in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K)in longitudinal orientation and(58.2 W/m·K)in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.

  14. Flexural Properties of E Glass and TR50S Carbon Fiber Reinforced Epoxy Hybrid Composites

    Science.gov (United States)

    Dong, Chensong; Sudarisman; Davies, Ian J.

    2013-01-01

    A study on the flexural properties of E glass and TR50S carbon fiber reinforced hybrid composites is presented in this paper. Specimens were made by the hand lay-up process in an intra-ply configuration with varying degrees of glass fibers added to the surface of a carbon laminate. These specimens were then tested in the three-point bend configuration in accordance with ASTM D790-07 at three span-to-depth ratios: 16, 32, and 64. The failure modes were examined under an optical microscope. The flexural behavior was also simulated by finite element analysis, and the flexural modulus, flexural strength, and strain to failure were calculated. It is shown that although span-to-depth ratio shows an influence on the stress-strain relationship, it has no effect on the failure mode. The majority of specimens failed by either in-plane or out-of-plane local buckling followed by kinking and splitting at the compressive GFRP side and matrix cracking combined with fiber breakage at the CFRP tensile face. It is shown that positive hybrid effects exist for the flexural strengths of most of the hybrid configurations. The hybrid effect is noted to be more obvious when the hybrid ratio is small, which may be attributed to the relative position of the GFRP layer(s) with respect to the neutral plane. In contrast to this, flexural modulus seems to obey the rule of mixtures equation.

  15. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    Science.gov (United States)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  16. ANALYTIC INVESTIGATIONS OF CARBON FIBER REINFORCED POLYMER STIFFENED CYLINDRICAL SUBMARINE HULL

    Directory of Open Access Journals (Sweden)

    ALICE MATHAI

    2013-07-01

    Full Text Available A submarine is any naval vessel that is capable of propelling itself beneath the water as well as on the water surface. Submersibles are capable of operating for extended period of time underwater and are subjected to heavy hydrostatic pressure. The conventional submarines made up of high strength steel and concrete prevents them from going to greater depth owing to its large dead weight. In the present work, the pressure hull of submarine is considered both in isotropic and composite material. Materials that have high strength to weight ratio include carbon fibre composites. Carbon-fibre reinforced polymer (CFRP is a very strong and light weight fibre reinforced polymer containing carbon fibers on various orientations. It has many applications in aerospace and automotive fields. A parametric study is conducted to find the optimum ply orientation by employing FiniteElement Analysis Software package, ANSYS. Also linear and nonlinear buckling analysis is used to predict the feasibility of CFRP submarine at the deep waters. From the studies conducted regarding the weight reduction, it is estimated that by replacing steel by CFRP results in saving of 67% in the structural weight.

  17. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    Science.gov (United States)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  18. Thermoplastics Reinforced with Self-Welded Short Carbon Fibers: Nanoparticle-Promoted Structural Evolution.

    Science.gov (United States)

    Zhang, Dongge; Liu, Yaohua; Lin, Yu; Wu, Guozhang

    2016-07-27

    The large volume of currently available fiber-reinforced polymer composites critically limits the intrinsic versatility of fibers such as high mechanical strength, heat resistance, and excellent thermal/electrical conductivity. We proposed a facile and widely applicable strategy to promote self-organization of randomly dispersed short carbon fibers (CFs) into a three-dimensionally continuous scaffold. The morphological evolution and structural reinforcement of the self-welded CF-polyamide 6 (PA6) scaffold in polystyrene (PS) matrix were investigated, with carbon black (CB) or titanium dioxide (TiO2) nanoparticles (NPs) selectively localized in the PA6 domains. Surprisingly, all of the PA6 droplets once dispersed in the PS matrix can migrate and evenly encapsulate onto the CF surface when 5.8 wt % CB is incorporated, whereas in the TiO2-filled system, the PA6 droplets preferentially segregate at the junction point of CFs to fasten the self-welded CF structure. In addition, a remarkable increase in the interfacial adhesive work between PA6 and CF was observed only when TiO2 is added, and a loading of even less than 0.8 wt % can effectively abruptly strengthen the self-welded CF scaffold. We clarified that the structural evolution is promoted by the nature of self-agglomeration of NPs. CB is highly capable of self-networking in the PA6 domain, resulting in high encapsulation of PA6, although the capillary force for preferential segregation of PA6 at the junction point of CFs is reduced. By contrast, the TiO2 particles tend to form compact aggregates. Such an agglomeration pattern, together with enhanced interfacial affinity, must contribute to a strong capillary force for the preferential segregation of PA6.

  19. Thermoplastics Reinforced with Self-Welded Short Carbon Fibers: Nanoparticle-Promoted Structural Evolution.

    Science.gov (United States)

    Zhang, Dongge; Liu, Yaohua; Lin, Yu; Wu, Guozhang

    2016-07-27

    The large volume of currently available fiber-reinforced polymer composites critically limits the intrinsic versatility of fibers such as high mechanical strength, heat resistance, and excellent thermal/electrical conductivity. We proposed a facile and widely applicable strategy to promote self-organization of randomly dispersed short carbon fibers (CFs) into a three-dimensionally continuous scaffold. The morphological evolution and structural reinforcement of the self-welded CF-polyamide 6 (PA6) scaffold in polystyrene (PS) matrix were investigated, with carbon black (CB) or titanium dioxide (TiO2) nanoparticles (NPs) selectively localized in the PA6 domains. Surprisingly, all of the PA6 droplets once dispersed in the PS matrix can migrate and evenly encapsulate onto the CF surface when 5.8 wt % CB is incorporated, whereas in the TiO2-filled system, the PA6 droplets preferentially segregate at the junction point of CFs to fasten the self-welded CF structure. In addition, a remarkable increase in the interfacial adhesive work between PA6 and CF was observed only when TiO2 is added, and a loading of even less than 0.8 wt % can effectively abruptly strengthen the self-welded CF scaffold. We clarified that the structural evolution is promoted by the nature of self-agglomeration of NPs. CB is highly capable of self-networking in the PA6 domain, resulting in high encapsulation of PA6, although the capillary force for preferential segregation of PA6 at the junction point of CFs is reduced. By contrast, the TiO2 particles tend to form compact aggregates. Such an agglomeration pattern, together with enhanced interfacial affinity, must contribute to a strong capillary force for the preferential segregation of PA6. PMID:27391703

  20. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers

    International Nuclear Information System (INIS)

    A simple and facile method for depositing multiwall carbon nanotubes (MWCNTs) onto the surface of naturally occurring short jute fibers (JFs) is reported. Hierarchical multi-scale structures were formed with CNT-networks uniformly distributed and fully covering the JFs (JF–CNT), as depicted by the scanning electron microscopy (SEM) micrographs. The impact of these hybrid fillers on the mechanical properties of a natural rubber (NR) matrix was systematically investigated. Pristine JFs were cut initially to an average length of 2.0 mm and exposed to an alkali treatment (a-JFs) to remove impurities existing in the raw jute. MWCNTs were treated under mild acidic conditions to generate carboxylic acid moieties. Afterward, MWCNTs were dispersed in an aqueous media and short a-JFs were allowed to react with them. Raman spectroscopy confirmed the chemical interaction between CNTs and JFs. The JF–CNT exposed quite hydrophobic behavior as revealed by the water contact angle measurements, improving the wettability of the non-polar NR. Consequently, the composite interfacial adhesion strength was significantly enhanced while a micro-scale “mechanical interlocking” mechanism was observed from the interphase-section transmission electron microscopy (TEM) images. SEM analysis of the composite fracture surfaces demonstrated the interfacial strength of NR/a-JF and NR/JF–CNT composites, at different fiber loadings. It can be presumed that the CNT-coating effectively compatibillized the composite structure acting as a macromolecular coupling agent. A detailed analysis of stress-strain and dynamic mechanical spectra confirmed the high mechanical performance of the hierarchical composites, consisting mainly of materials arising from natural resources. - Highlights: • Natural rubber (NR) composites reinforced with CNT-modified short jute fibers. • MWCNTs deposited to the surface of jute fibers via non-covalent interactions. • Hierarchical reinforcement structure with

  1. Carbon-Coated-Nylon-Fiber-Reinforced Cement Composites as an Intrinsically Smart Concrete for Damage Assessment during Dynamic Loading

    Institute of Scientific and Technical Information of China (English)

    Zhenjun ZHOU; Zhiguo XIAO; Wei PAN; Zhipeng XIE; Xixian LUO; Lei JIN

    2003-01-01

    Concrete containing short carbon-coated-nylon fibers (0.4~2.0 vol. pct) exhibited quasi-ductile response by developing a large damage zone prior to fracture localization. In the damage zone, the material was microcracked but continued to local strain-harden. The carbon-coated-nylon-fiber-reinforced concrete composites (NFRC) were found to be an intrinsically smart concrete that could sense elastic and inelastic deformation, as well as fracture. The fibers served to bridge the cracks and the carbon coating gave the conduction path. The signal provided came from the change in electrical resistance, which was reversible for elastic deformation and irreversible for inelastic deformation and fracture. The resistance decrease was due to the reduction of surface touch resistance between fiber and matrix and the crack closure. The resistance irreversible increase resulted from the crack opening and breakage of the carbon coating on nylon fiber.

  2. Numerical Analysis of Slab-Column Connections Strengthened with Carbon Fiber Reinforced Polymers

    Science.gov (United States)

    Kheyroddin, A.; Hoseini Vaez, S. R.; Naderpour, H.

    This study presents nonlinear finite element analysis of slab-column connection in order to investigate the effect of using CFRP (Carbon Fiber Reinforced Polymer) sheets on their structural behavior. Verification of study needs to calibrate the un-strengthened analytical models by available experimental data. In this case two groups of models with three layers of Solid 65 elements throughout the depth of the slabs were analyzed. One of them was consisted of the smeared reinforcement throughout the entire slab which indicated a reasonably accurate simulation of the load-deflection curves with a steel volume ratio of 0.028 and also gives a good indication of the cracking behavior of the slabs. In the other group, smeared reinforcement located at bottom layer was used. In both groups the pre-cracking branch of the different curves follows the experimental results very closely. Beyond cracking, the models of last group defined appear stiffer. The punching truncated pyramid of control model is in a very close agreement with the experiment. Slab model by using CFRP plates introducing to program by Solid 46 elements, have been analyzed. Results indicated that final deflection of slab has been increased of 36% while strength of the slab has been increased slightly. Also, strengthening of slab with increasing steel volume ratio in the central zone affects on behavior of the slabs with an increase in both, the final load and deflection.

  3. Lateral Response Comparison of Unbonded Elastomeric Bearings Reinforced with Carbon Fiber Mesh and Steel

    OpenAIRE

    Ali Karimzadeh Naghshineh; Ugurhan Akyuz; Alp Caner

    2015-01-01

    The vertical and horizontal stiffness used in design of bearings have been established in the last few decades. At the meantime, applicability of the theoretical approach developed to estimate vertical stiffness of the fiber-reinforced bearings has been verified in different academic studies. The suitability of conventional horizontal stiffness equation developed for elastomeric material, mainly for steel-reinforced elastomeric bearings, has not been tested in detail for use of fiber-reinf...

  4. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    Science.gov (United States)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  5. Mechanical properties of a carbon fiber reinforced self-healing multilayered matrix composite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chengyu, E-mail: cyzhang@nwpu.edu.cn [National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Qiao Shengru; Yan Kefei; Liu Yongsheng; Wu Qi; Han Dong; Li Mei [National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-03-25

    Research highlights: {yields} The tensile, interlaminar shear and in-plane shear strengths exhibited a significant dependency on the temperature. {yields} The debonding of the interface between the different layers in the matrix can arrest and deflect the cracks in the multilayered matrix. {yields} The thermal residual stress and the volume shrinkage caused by the crystallization of the boron-containing phase can contribute to the variation of strength with temperature. - Abstract: The mechanical properties of a two dimensional carbon fiber reinforced multilayered ceramic matrix composite (C/Si-B-C) were investigated at elevated temperatures. The fracture surfaces were examined by a scanning electron microscope. The results show that the tensile strength and failure strain of the C/Si-B-C increase with increase in temperatures up to 1273 K, then decrease at temperature of above 1273 K. However, the tensile modulus keeps constant in the investigated temperature range. The reduced nonlinear region and short pullout length of fibers suggest a strong interfacial strength between the fibers and the matrix. The interlaminar shear strength (ILSS) and the in-plane shear strength (IPSS) present the similar tendency to the tensile strength. IPSS is about three times of ILSS regardless of temperature. The variation of strength with temperature can be explained by thermal residual stress and crystallization of B{sub 4}C in the multilayered matrix.

  6. Liquid composite molding-processing and characterization of fiber-reinforced composites modified with carbon nanotubes

    Science.gov (United States)

    Zeiler, R.; Khalid, U.; Kuttner, C.; Kothmann, M.; Dijkstra, D. J.; Fery, A.; Altstädt, V.

    2014-05-01

    The increasing demand in fiber-reinforced plastics (FRPs) necessitates economic processing of high quality, like the vacuum-assisted resin transfer molding (VARTM) process. FRPs exhibit excellent in-plane properties but weaknesses in off-plane direction. The addition of nanofillers into the resinous matrix phase embodies a promising approach due to benefits of the nano-scaled size of the filler, especially its high surface and interface areas. Carbon nanotubes (CNTs) are preferable candidates for resin modification in regard of their excellent mechanical properties and high aspect ratios. However, especially the high aspect ratios give rise to withholding or filtering by fibrous fabrics during the impregnation process, i.e. length dependent withholding of tubes (short tubes pass through the fabric, while long tubes are restrained) and a decrease in the local CNT content in the laminate along the flow path can occur. In this study, hybrid composites containing endless glass fiber reinforcement and surface functionalized CNTs dispersed in the matrix phase were produced by VARTM. New methodologies for the quantification of the filtering of CNTs were developed and applied to test laminates. As a first step, a method to analyze the CNT length distribution before and after injection was established for thermosetting composites to characterize length dependent withholding of nanotubes. The used glass fiber fabric showed no perceptible length dependent retaining of CNTs. Afterward, the resulting test laminates were examined by Raman spectroscopy and compared to reference samples of known CNT content. This Raman based technique was developed further to assess the quality of the impregnation process and to quantitatively follow the local CNT content along the injection flow in cured composites. A local decline in CNT content of approx. 20% was observed. These methodologies allow for the quality control of the filler content and size-distribution in CNT based hybrid

  7. Electrical Resistance and Microstructure of Latex Modified Carbon Fiber Reinforced Cement Composites

    Institute of Scientific and Technical Information of China (English)

    WEI Jian; CHENG Feng; YUAN Hudie

    2012-01-01

    The electrical resistance,flexural strength,and microstructure of carbon fiber reinforced cement composites (CFRC) were improved greatly by adding water-redispersible latex powder.The electrical resistance of CFRC was investigated by two-probe method.The input range of CFRC based strain sensors was therefore increased,whereas electrical resistance was increased and remained in the perfect range of CFRC sensors.The analysis of scanning electron microscopy indicated that elastic latex bridges and a latex layer existed among the interspaces of the adjacent cement hydration products which were responsible for the enhancement of the flexural strength and electrical resistance.The formation mechanism of the elastic latex bridges was also discussed in detail.The continuous moving of two opposite interfaces of the latex solution-air along the interspaces of the adjacent hydrated crystals or colloids was attributed to the formation of the elastic latex bridges.

  8. Segmenting delaminations in carbon fiber reinforced polymer composite CT using convolutional neural networks

    Science.gov (United States)

    Sammons, Daniel; Winfree, William P.; Burke, Eric; Ji, Shuiwang

    2016-02-01

    Nondestructive evaluation (NDE) utilizes a variety of techniques to inspect various materials for defects without causing changes to the material. X-ray computed tomography (CT) produces large volumes of three dimensional image data. Using the task of identifying delaminations in carbon fiber reinforced polymer (CFRP) composite CT, this work shows that it is possible to automate the analysis of these large volumes of CT data using a machine learning model known as a convolutional neural network (CNN). Further, tests on simulated data sets show that with a robust set of experimental data, it may be possible to go beyond just identification and instead accurately characterize the size and shape of the delaminations with CNNs.

  9. Mechanical properties of carbon fiber reinforced plastics and their response to a radiation environment

    Science.gov (United States)

    Spieβberger, S. M.; Humer, K.; Tschegg, E. K.; Weber, H. W.; Noma, K.; Iwasaki, Y.

    "TORAYCA T300 3K" is a two and a half dimensional woven carbon fiber reinforced epoxy which was developed for various applications including cryogenics. "Scaling" experiments in tension, in the shear-mode (mode II) and in the crack-opening-mode (mode I) were made at room and low temperature, in order to establish suitable sample geometries for irradiation experiments. Moreover, the interlaminar and the intralaminar shear strength as well as the ultimate tensile strength were investigated after irradiation at 340 K with a reactor spectrum up to a fast neutron fluence of 5 × 10 22 m -2 ( E > 0.1 MeV). The irradiated material was measured at 77 K and acoustic emission (AE) investigations were made for the tensile and the mode II samples.

  10. Consumption of carbon fiber plates in the reinforced concrete beams strengthened with CFPs

    Institute of Scientific and Technical Information of China (English)

    BU Liangtao; SONG Li; SHI Chuxian

    2007-01-01

    Four-point bending flexural tests were conducted to one full-size reinforced concrete (RC) beam and three full-size RC beams strengthened with carbon fiber plates (CFPs).The experimental results showed that the consumption of CFP had significant effects on failure modes and the flexural capacity.An analytical procedure,based on the limit failure ode and ductility,was presented to predict the applied area of CFP.An analytical program,based on Smith-Teng model and Cheng-Teng model,was provided to calculate the bonding length of CFP.The test results are used to validate the proposed procedure.The results are also applied to the design and construction of RC beam strengthened with CFP.

  11. Mid IR pulsed light source for laser ultrasonic testing of carbon-fiber-reinforced plastic

    Science.gov (United States)

    Hatano, H.; Watanabe, M.; Kitamura, K.; Naito, M.; Yamawaki, H.; Slater, R.

    2015-09-01

    A quasi-phase-matched (QPM) optical parametric oscillator (OPO) was developed using a periodically poled Mg-doped stoichiometric LiTaO3 crystal to generate mid-IR light for excitation of laser ultrasound in carbon fiber reinforced plastic (CFRP). The ultrasound generation efficiency was measured at the three different wavelengths that emanate from the OPO: 1.064 μm, 1.59/1.57 μm, and 3.23/3.30 μm. The measurements indicate that mid-IR 3.2-3.3 μm light generates the most efficient ultrasonic waves in CFRP with the least laser damage. We used mid-IR light in conjunction with a laser interferometer to demonstrate the detection of flaws/defects in CFRP such as the existence of air gaps that mimic delamination and voids in CFRP, and the inhomogeneous adhesion of CFRP material to a metal plate was also clearly detected.

  12. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing

    Directory of Open Access Journals (Sweden)

    Oscar Galao

    2016-04-01

    Full Text Available This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at −15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e., −15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention and deicing (curing, which could turn into an environmentally friendly and cost-effective deicing method.

  13. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging.

    Science.gov (United States)

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  14. Finite element analysis of drilling in carbon fiber reinforced polymer composites

    International Nuclear Information System (INIS)

    Carbon fiber reinforced polymer composite (CFRP) laminates are attractive for many applications in the aerospace industry especially as aircraft structural components due to their superior properties. Usually drilling is an important final machining process for components made of composite laminates. In drilling of CFRP, it is an imperative task to determine the maximum critical thrust forces that trigger inter-laminar and intra-laminar damage modes owing to highly anisotropic fibrous media; and negotiate integrity of composite structures. In this paper, a 3D finite element (FE) model of drilling in CFRP composite laminate is developed, which accurately takes into account the dynamic characteristics involved in the process along with the accurate geometrical considerations. A user defined material model is developed to account for accurate though thickness response of composite laminates. The average critical thrust forces and torques obtained using FE analysis, for a set of machining parameters are found to be in good agreement with the experimental results from literature.

  15. Comparison and Analysis on Mechanical Property and Machinability about Polyetheretherketone and Carbon-Fibers Reinforced Polyetheretherketone

    Directory of Open Access Journals (Sweden)

    Shijun Ji

    2015-07-01

    Full Text Available The aim of this paper is to compare the mechanical property and machinability of Polyetheretherketone (PEEK and 30 wt% carbon-fibers reinforced Polyetheretherketone (PEEK CF 30. The method of nano-indentation is used to investigate the microscopic mechanical property. The evolution of load with displacement, Young’s modulus curves and hardness curves are analyzed. The results illustrate that the load-displacement curves of PEEK present better uniformity, and the variation of Young’s modulus and hardness of PEEK both change smaller at the experimental depth. The machinability between PEEK and PEEK CF 30 are also compared by the method of single-point diamond turning (SPDT, and the peak-to-valley value (PV and surface roughness (Ra are obtained to evaluate machinability of the materials after machining. The machining results show that PEEK has smaller PV and Ra, which means PEEK has superior machinability.

  16. Laser Cutting of Carbon Fiber Reinforced Plastics - Investigation of Hazardous Process Emissions

    Science.gov (United States)

    Walter, Juergen; Hustedt, Michael; Staehr, Richard; Kaierle, Stefan; Jaeschke, Peter; Suttmann, Oliver; Overmeyer, Ludger

    Carbon fiber reinforced plastics (CFRP) show high potential for use in lightweight applications not only in aircraft design, but also in the automotive or wind energy industry. However, processing of CFRP is complex and expensive due to their outstanding mechanical properties. One possibility to manufacture CFRP structures flexibly at acceptable process speeds is high-power laser cutting. Though showing various advantages such as contactless energy transfer, this process is connected to potentially hazardous emission of respirable dust and organic gases. Moreover, the emitted particles may be fibrous, thus requiring particular attention. Here, a systematic analysis of the hazardous substances emitted during laser cutting of CFRP with thermoplastic and thermosetting matrix is presented. The objective is to evaluate emission rates for the total particulate and gaseous fractions as well as for different organic key components. Furthermore, the influence of the laser process conditions shall be assessed, and first proposals to handle the emissions adequately are made.

  17. Strength Analysis of the Carbon-Fiber Reinforced Polymer Impeller Based on Fluid Solid Coupling Method

    Directory of Open Access Journals (Sweden)

    Jinbao Lin

    2014-01-01

    Full Text Available Carbon-fiber reinforced polymer material impeller is designed for the centrifugal pump to deliver corrosive, toxic, and abrasive media in the chemical and pharmaceutical industries. The pressure-velocity coupling fields in the pump are obtained from the CFD simulation. The stress distribution of the impeller couple caused by the flow water pressure and rotation centrifugal force of the blade is analyzed using one-way fluid-solid coupling method. Results show that the strength of the impeller can meet the requirement of the centrifugal pumps, and the largest stress occurred around the blades root on a pressure side of blade surface. Due to the existence of stress concentration at the blades root, the fatigue limit of the impeller would be reduced greatly. In the further structure optimal design, the blade root should be strengthened.

  18. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-06-01

    Full Text Available Terahertz (THz time-domain spectroscopy (TDS imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  19. First light with a carbon fiber reinforced polymer 0.4 meter telescope

    Science.gov (United States)

    Wilcox, Christopher C.; Santiago, Freddie; Jungwirth, Matthew E.; Martinez, Ty; Restaino, Sergio R.; Bagwell, Brett; Romeo, Robert

    2014-03-01

    For the passed several years, the Naval Research Laboratory (NRL) has been investigating the use of Carbon Fiber Reinforced Polymer (CFRP) material in the construction of a telescope assembly including the optical components. The NRL, Sandia National Laboratories (SNL), and Composite Mirror Applications, Inc. (CMA) have jointly assembled a prototype telescope and achieved "first light" images with a CFRP 0.4 m aperture telescope. CFRP offers several advantages over traditional materials such as creating structures that are lightweight and low coefficient of thermal expansion and conductivity. The telescope's primary and secondary mirrors are not made from glass, but CFRP, as well. The entire telescope weighs approximately 10 kg while a typical telescope of this size would weigh quite a bit more. We present the achievement of "first light" with this telescope demonstrating the imaging capabilities of this prototype and the optical surface quality of the mirrors with images taken during a day's quiescent periods.

  20. Square concrete columns strengthened with carbon fiber reinforced plastics sheets at low temperatures

    Institute of Scientific and Technical Information of China (English)

    MA Qin-yong; LU Xiao-yu

    2009-01-01

    Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics (CFRP) sheets can be used to increase the strength and improve the serviceability of damaged concrete columns at low temperatures. The failure of the specimens, in most cases, takes place within the middle half of the columns. And the failure of strengthened columns is sudden and explosive. The CFRP sheets increase both the axial load capacity and the ultimate concrete compressive strain of the columns. The ultimate loads of strengthened columns at -10, 0 and 10℃ increase averagely by 9.09%, 6.63% and 17.83%, respectively, as compared with those of the control specimens. The axial compressive strength of strengthened columns is related to the curing temperatures. The improvement of axial compressive strength decreases with reducing temperature, and when the temperature drops to a certain value, the improvement increases with falling temperature.

  1. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

    CERN Document Server

    Burri, F; Feusi, P; Henneck, R; Kirch, K; Lauss, B; Ruettimann, P; Schmidt-Wellenburg, P; Schnabel, A; Voigt, J; Zenner, J; Zsigmond, G

    2013-01-01

    We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

  2. Fracture analysis for pressure pipe wrapped with carbon-fiber reinforced composites

    International Nuclear Information System (INIS)

    A coupled FEM/EFG numerical method is introduced to calculate the stress intensity factors (SIF) along the crack front of a cracked pressure pipe line wrapped with carbon-fiber reinforced composite material (CFRC). Two types of crack shape, traverse through-wall crack and surface ellipse crack are considered respectively, based on which the effect of the CFRC sleeve length to the Stress Intensity Factors is numerically investigated. It shows that using the algorithm presented in this paper, the stress intensity factors of 3D component can be calculated effectively, and the SIF of the cracked pressure pipe line repaired with CFRC decrease obviously, compared to the original cracked pipe without any repair. Better repair efficiency is obtained with the increase of the sleeve length, but when the length is increased to a certain value, the length increasing of the sleeve contributes little to the decrease of the SIF, therefore to the repair efficiency. (authors)

  3. Damage threshold study of sonic IR imaging on carbon-fiber reinforced laminated composite materials

    Science.gov (United States)

    Han, Xiaoyan; He, Qi; Zhang, Ding; Ashbaugh, Mike; Favro, Lawrence D.; Newaz, Golam; Thomas, Robert L.

    2013-01-01

    Sonic Infrared Imaging, as a young NDE technology, has drawn a lot of attentions due to it's fast, wide-area evaluation capability, and due to its broad applications in different materials such as metal/metal alloy, composites and detection of various types of defects: surface, subsurface, cracks, delaminations/disbonds. Sonic IR Imaging combines pulsed ultrasound excitation and infrared imaging to detect defects in materials. The sound pulse causes rubbing due to non-unison motion between faces of defects, and infrared sensors image the temperature map over the target to identify defects. However, concerns have also been brought up about possible damages which might occur at the contact spots between the ultrasound transducer from the external excitation source and the target materials. In this paper, we present our results from a series of systematically designed experiments on carbon-fiber reinforced laminated composite panels to address the concerns.

  4. Finite element analysis of drilling in carbon fiber reinforced polymer composites

    Science.gov (United States)

    Phadnis, V. A.; Roy, A.; Silberschmidt, V. V.

    2012-08-01

    Carbon fiber reinforced polymer composite (CFRP) laminates are attractive for many applications in the aerospace industry especially as aircraft structural components due to their superior properties. Usually drilling is an important final machining process for components made of composite laminates. In drilling of CFRP, it is an imperative task to determine the maximum critical thrust forces that trigger inter-laminar and intra-laminar damage modes owing to highly anisotropic fibrous media; and negotiate integrity of composite structures. In this paper, a 3D finite element (FE) model of drilling in CFRP composite laminate is developed, which accurately takes into account the dynamic characteristics involved in the process along with the accurate geometrical considerations. A user defined material model is developed to account for accurate though thickness response of composite laminates. The average critical thrust forces and torques obtained using FE analysis, for a set of machining parameters are found to be in good agreement with the experimental results from literature.

  5. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.

    Science.gov (United States)

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur

    2015-05-01

    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals.

  6. Mechanical properties of neat polymer matrix materials and their unidirectional carbon fiber-reinforced composites

    Science.gov (United States)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions.

  7. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Science.gov (United States)

    Singh, B. P.; Choudhary, Veena; Saini, Parveen; Mathur, R. B.

    2012-06-01

    In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs) carbon fiber (CF) fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz). The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE) from -29.4 dB for CF/epoxy-composite to -51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  8. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  9. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2014-07-01

    Full Text Available An investigation was performed by using carbon fiber-reinforced polymer (CFRP as the anode material in the impressed current cathodic protection (ICCP system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  10. Hybrid use of steel and carbon-fiber reinforced concrete for monitoring of crack behavior

    OpenAIRE

    Ding, Yining; Han, Z; Zhang, Y.; Azevedo, Cecília Maria

    2012-01-01

    In order to study the damage after concrete cracking, the influence of the combined use of steel fiber and carbon fiber on the conductivity and crack resistance of concrete beam under flexural loading were investigated. Carbon fiber and steel fiber were added as diphasic conductive materials to produce the electric conductive and ductile concrete. This paper reports the experimental and analytical work associated with establishing the crack width in relation to the fractional c...

  11. Damage Tolerance Enhancement of Carbon Fiber Reinforced Polymer Composites by Nanoreinforcement of Matrix

    Science.gov (United States)

    Fenner, Joel Stewart

    Nanocomposites are a relatively new class of materials which incorporate exotic, engineered nanoparticles to achieve superior material properties. Because of their extremely small size and well-ordered structure, many nanoparticles possess properties that exceed those offered by a wide range of other known materials, making them attractive candidates for novel materials engineering development. Their small size is also an impediment to their practical use, as they typically cannot be employed by themselves to realize those properties in large structures. Furthermore, nanoparticles typically possess strong self-affinity, rendering them difficult to disperse uniformly into a composite. However, contemporary research has shown that, if well-dispersed, nanoparticles have great capacity to improve the mechanical properties of composites, especially damage tolerance, in the form of fracture toughness, fatigue life, and impact damage mitigation. This research focuses on the development, manufacturing, and testing of hybrid micro/nanocomposites comprised of woven carbon fibers with a carbon nanotube reinforced epoxy matrix. Material processing consisted of dispersant-and-sonication based methods to disperse nanotubes into the matrix, and a vacuum-assisted wet lay-up process to prepare the hybrid composite laminates. Various damage tolerance properties of the hybrid composite were examined, including static strength, fracture toughness, fatigue life, fatigue crack growth rate, and impact damage behavior, and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (15%), Mode-I fracture toughness (180%), shear fatigue life (order of magnitude), Mode-I fatigue crack growth rate (factor of 2), and effective impact damage toughness (40%). Observations by optical microscopy, scanning electron microscopy, and ultrasonic imaging showed significant differences in failure behavior

  12. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-02-01

    Full Text Available The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.

  13. The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Carbon fiber reinforced aluminum matrix composites are used as advanced materials in aerospace and electronic industries. In order to investigate role of aspect ratio of carbon fiber on fracture toughness of aluminum matrix composite, the composite was produced using stir casting. Al-8.5%Si-5%Mg selected as a matrix. The samples were prepared with three volume fractions (1, 2 and 3) and three aspect ratios (300, 500 and 800). Three-point bending test was performed on the specimens to evaluate the fracture toughness of the materials. The results showed that the fracture toughness of composites depends on both fiber volume fraction and aspect ratio. Scanning electron microscopy (SEM) was employed to elucidate the fracture behavior and crack deflection of composites. The study also, showed that the toughening mechanism depends strongly on fiber volume fraction, aspect ratio and the degree of wetting between fiber and matrix

  14. Eddy current pulsed phase thermography considering volumetric induction heating for delamination evaluation in carbon fiber reinforced polymers

    Science.gov (United States)

    Yang, Ruizhen; He, Yunze

    2015-06-01

    Anisotropy and inhomogeneity of carbon fiber reinforced polymers (CFRPs) result in that many traditional non-destructive inspection techniques are inapplicable on the delamination evaluation. This letter introduces eddy current pulsed phase thermography (ECPPT) for CFRPs evaluation considering volumetric induction heating due to small electrical conductivity, abnormal thermal wave propagation, and Fourier analysis. The proposed methods were verified through experimental studies under transmission and reflection modes. Using ECPPT, the influence of the non-uniform heating effect and carbon fiber structures can be suppressed, and then delamination detectability can be improved dramatically over eddy current pulsed thermography.

  15. Short fiber reinforced thermoplastic blends

    NARCIS (Netherlands)

    Malchev, P.G.

    2008-01-01

    The present thesis investigates the potential of short fiber reinforced thermoplastic blends, a combination of an immiscible polymer blend and a short fiber reinforced composite, to integrate the easy processing solutions available for short fiber reinforced composites with the high mechanical perfo

  16. Design and Manufacturing of a Composite Lattice Structure Reinforced by Continuous Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    FAN Hualin; YANG Wei; WANG Bin; YAN Yong; FU Qiang; FANG Daining; ZHUANG Zhuo

    2006-01-01

    New techniques have been developed to make materials with a periodic three-dimensional lattice structure. The high stiffness per unit weight and multifunction of such lattice structures make them attractive for use in aeronautic and astronautic structures. In this paper, epoxy-soaked continuous carbon fibres were first introduced to make lattice composite structures, which maximize the specific load carrying capacity. A micromechanical analysis of several designs, each corresponding to a different manufacturing route, was carried out, in order to find the optimized lattice structure with maximum specific stiffness. An intertwining method was chosen and developed as the best route to make lattice composite materials reinforced by carbon fibers. A sandwich-weaved sample with a three-dimensional intertwined lattice structure core was found to be best. The manufacturing of such a composite lattice material was outlined. In addition to a high shear strength of the core and the integral manufacturing method, the lattice sandwich structure is expected to possess better mechanical capability.

  17. Durability of carbon fiber reinforced shape memory polymer composites in space

    Science.gov (United States)

    Jang, Joon Hyeok; Hong, Seok Bin; Ahn, Yong San; Kim, Jin-Gyun; Nam, Yong-Youn; Lee, Geun Ho; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Recently, shape memory polymer composites (SMPCs) have been considered for space structure instead of shape memory alloys due to their deformability, lightweight and large recovery ratio, requiring characterization of their mechanical properties against harsh space environment and further prediction of the durability of SMPCs in space. As such, the durability of carbon fiber reinforced shape memory polymer composites (CF-SMPCs) was investigated using accelerated testing method based on short-term testing of CF-SMPCs in harsh condition. CF-SMPCs were prepared using woven carbon fabrics and a thermoset SMP via vacuum assisted resin transfer molding process. Bending tests with constant strain rate of CF-SMPCs were conducted using universal tensile machine (UTM) and Storage modulus test were conducted using dynamic mechanical thermal analysis (DMTA). Using the results, a master curve based on time-temperature superposition principle was then constructed, through which the mechanical properties of CF-SMPCs at harsh temperature were predicted. CF-SMPCs would be exposed to simulated space environments under ultra-violet radiations at various temperatures. The mechanical properties including flexural and tensile strength and shape memory properties of SMPCs would be measured using UTM before and after such exposures for comparison. Finally, the durability of SMPCs in space would be assessed by developing a degradation model of SMPC.

  18. High-performance fiber reinforced polymers

    International Nuclear Information System (INIS)

    New fibers which are stiffer than fiberglas have resulted in advanced reinforced plastics. A review is presented of matrix and fiber materials; the latter includes glass, boron, carbon, and organic (PRD-49) fibers. Fabrication (both primary and secondary) and properties of these composites are next reviewed. Environmental degradation is also considered. (15 tables, 12 fig, 43 references.) (U.S.)

  19. Material optimization of fiber reinforced composites applying a damage formulation

    OpenAIRE

    Kato, Junji

    2010-01-01

    The present thesis proposes material optimization schemes for fiber reinforced composites, specifically for a new composite material, denoted as Fiber Reinforced Concrete (FRC) or Textile Reinforced Concrete (TRC); here a reinforcement mesh of long carbon or glass fibers is embedded in a fine grained concrete (mortar) matrix. Unlike conventional steel reinforcement, these textile fibers are corrosion free; this holds also for AR-glass due to its high alkali-proof. This favorable property allo...

  20. CN force predication model in milling of carbon fiber reinforced polymers

    Science.gov (United States)

    Kalla, Devi; Lodhia, Prashant; Bajracharya, Bijay; Twomey, Janet; Sheikh-Ahmad, Jamal

    2005-11-01

    Fiber reinforced polymers are widely used in the transportation, aerospace and chemical industries. In rare instances these materials are produced net-shape, and secondary processing such as machining and assembly may be required to produce a finished product. Because fiber reinforced polymers are heterogeneous materials, they do not machine in a similar way to metals. Thus, the theory of metal machining is not valid for the analysis of machining of fiber- reinforced composites. Previous attempts in modeling this problem have adopted Merchant's theory from metal cutting by assuming that chip formation takes place in a shear plane which inclination angle is determined by the minimum energy principle. This class of models showed that model predictions are valid only for fiber orientations less than 60°. The work presented here focuses on providing predictive models for the cutting forces in unidirectional composites. The models are based on the specific cutting energy principle and account for a wide range of fiber orientations and chip thickness. Results from two forms of non-linear modeling methods, non-linear regression and committee neural networks, were compared. It was found that committee neural networks provide better prediction capability by smoothing and capturing the inherent non-linearity in the data. The model predictions were found to be in good agreement with experimental results over the entire range of fiber orientations from 0 to 180°.

  1. Carbon fiber-reinforced cyanate ester/nano-ZrW2O8 composites with tailored thermal expansion.

    Science.gov (United States)

    Badrinarayanan, Prashanth; Rogalski, Mark K; Kessler, Michael R

    2012-02-01

    Fiber-reinforced composites are widely used in the design and fabrication of a variety of high performance aerospace components. The mismatch in coefficient of thermal expansion (CTE) between the high CTE polymer matrix and low CTE fiber reinforcements in such composite systems can lead to dimensional instability and deterioration of material lifetimes due to development of residual thermal stresses. The magnitude of thermally induced residual stresses in fiber-reinforced composite systems can be minimized by replacement of conventional polymer matrices with a low CTE, polymer nanocomposite matrix. Zirconium tungstate (ZrW(2)O(8)) is a unique ceramic material that exhibits isotropic negative thermal expansion and has excellent potential as a filler for development of low CTE polymer nanocomposites. In this paper, we report the fabrication and thermal characterization of novel, multiscale, macro-nano hybrid composite laminates comprising bisphenol E cyanate ester (BECy)/ZrW(2)O(8) nanocomposite matrices reinforced with unidirectional carbon fibers. The results reveal that incorporation of nanoparticles facilitates a reduction in CTE of the composite systems, which in turn results in a reduction in panel warpage and curvature after the cure because of mitigation of thermally induced residual stresses.

  2. Fatigue Hysteresis of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures

    Science.gov (United States)

    Li, Longbiao

    2016-02-01

    When the fiber-reinforced ceramic-matrix composites (CMCs) are first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. Under fatigue loading, the stress-strain hysteresis loops appear as fiber slipping relative to matrix in the interface debonded region upon unloading/reloading. Due to interface wear at room temperature or interface oxidation at elevated temperature, the interface shear stress degredes with increase of the number of applied cycles, leading to the evolution of the shape, location and area of stress-strain hysteresis loops. The evolution characteristics of fatigue hysteresis loss energy in different types of fiber-reinforced CMCs, i.e., unidirectional, cross-ply, 2D and 2.5D woven, have been investigated. The relationships between the fatigue hysteresis loss energy, stress-strain hysteresis loops, interface frictional slip, interface shear stress and interface radial thermal residual stress, matrix stochastic cracking and fatigue peak stress of fiber-reinforced CMCs have been established.

  3. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    OpenAIRE

    Ploeckl Marina; Kuhn Peter; Koerber Hannes

    2015-01-01

    In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s−1 a modified version...

  4. Wear and transfer characteristics of carbon fiber reinforced polymer composites under water lubrication

    Institute of Scientific and Technical Information of China (English)

    JIA Jun-hong; CHEN Jian-min; ZHOU Hui-di; CHEN Lei

    2004-01-01

    The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron microscopy (SEM) was utilized to examine composite microstructures and modes of failure. The typical chemical states of elements of the transfer film on the stainless steel were examined with X-ray photoelectron spectroscopy (XPS). Wear testing and SEM analysis show that all the composites hold the lowered friction coefficient and show much better wear resistance under water lubricated sliding against stainless steel than those under dry sliding. The wear of composites is characterized by plastic deformation, scuffing, micro cracking, and spalling under both dry-sliding and water lubricated conditions. Plastic deformation, scuffing, micro cracking, and spalling, however, are significantly abated under water-lubricated condition. XPS analysis conforms that none of the materials produces transfer films on the stainless steel counterface with the type familiar from dry sliding, and the transfer of composites onto the counterpart ring surface is significantly hindered while the oxidation of the stainless steel is speeded under water lubrication. The composites hinder transfer onto the steel surface and the boundary lubricating action of water accounts for the much smaller wear rate under water lubrication compared with that under dry sliding. The easier transfer of the composite onto the counterpart steel surface accounts for the larger wear rate of the polymer composite under dry sliding.

  5. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Song Wei [College of Chemistry, Chemical Engineering and Materials Science, Department of Materials Science and Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Gu Aijuan, E-mail: ajgu@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Department of Materials Science and Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Liang Guozheng, E-mail: lgzheng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Department of Materials Science and Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Yuan Li [College of Chemistry, Chemical Engineering and Materials Science, Department of Materials Science and Engineering, Soochow University, Suzhou, Jiangsu 215123 (China)

    2011-02-15

    The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.

  6. Parameters of static response of carbon fiber reinforced polymer (CFRP) suspension cables

    Institute of Scientific and Technical Information of China (English)

    王立彬; 吴勇

    2015-01-01

    The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer (CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement byλ2 and load ratiop′are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.

  7. Numerical simulation of combustion effects during laser processing of carbon fiber reinforced plastics

    Science.gov (United States)

    Ohkubo, Tomomasa; Tsukamoto, Masahiro; Sato, Yuji

    2016-03-01

    We applied the finite difference method to a numerical simulation of material removal in the laser ablation of a carbon fiber reinforced plastic (CFRP). Although a few theoretical and numerical studies of heat-affected zone (HAZ) formation have been reported, there has been no report describing heat generation due to oxidization of the materials. It is important to consider combustion effects when discussing the generation of a HAZ in order to improve the quality of CFRP cutting by laser. To develop a new calculation model that includes the effects of the combustion of each element of the CFRP, thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were performed for CFRP in air. We succeeded in qualitatively simulating the generation of a HAZ, including the effects of combustion, using data obtained by TGA and DTA. Therefore, not only thermal conductivity, but also combustion effects, should be considered when discussing how a HAZ is generated and in order to improve the cutting quality of CFRPs in laser processing.

  8. Mid IR pulsed light source for laser ultrasonic testing of carbon-fiber-reinforced plastic

    International Nuclear Information System (INIS)

    A quasi-phase-matched (QPM) optical parametric oscillator (OPO) was developed using a periodically poled Mg-doped stoichiometric LiTaO3 crystal to generate mid-IR light for excitation of laser ultrasound in carbon fiber reinforced plastic (CFRP). The ultrasound generation efficiency was measured at the three different wavelengths that emanate from the OPO: 1.064 μm, 1.59/1.57 μm, and 3.23/3.30 μm. The measurements indicate that mid-IR 3.2–3.3 μm light generates the most efficient ultrasonic waves in CFRP with the least laser damage. We used mid-IR light in conjunction with a laser interferometer to demonstrate the detection of flaws/defects in CFRP such as the existence of air gaps that mimic delamination and voids in CFRP, and the inhomogeneous adhesion of CFRP material to a metal plate was also clearly detected. (paper)

  9. Microstructure and Mechanical Properties of Warm-Sprayed Titanium Coating on Carbon Fiber-Reinforced Plastic

    Science.gov (United States)

    Ganesan, Amirthan; Takuma, Okada; Yamada, Motohiro; Fukumoto, Masahiro

    2016-04-01

    Polymer materials are increasingly dominating various engineering fields. Recently, polymer-based composite materials' surface performances—in particular, surface in relative motion—have been improved markedly by thermal spray coating. Despite this recent progress, the deposition of high-strength materials—producing a coating thickness of the order of more than 500 μm—remains highly challenging. In the present work, a highly dense and thick titanium coating was successfully deposited onto the carbon fiber-reinforced plastic (CFRP) substrate using a newly developed high-pressure warm spray (WS) system. The coating properties, such as hardness (300 ± 20 HV) and adhesion strength (8.1 ± 0.5 MPa), were evaluated and correlated with the microstructures of the coating. In addition, a wipe-test and in situ particle velocity and temperature measurement were performed to validate the particle deposition behavior as a function of the nitrogen flow rate in the WS system. It was found that the microstructures, deposition efficiency, and mechanical properties of the coatings were highly sensitive to nitrogen flow rates. The coating porosity increased with increasing nitrogen flow rates; however, the highest density was observed for nitrogen flow rate of 1000 standard liters per minute (SLM) samples due to the high fraction of semi-molten particles in the spray stream.

  10. Properties Variation of Carbon Fiber Reinforced Composite for Marine Current Turbine in Seawater

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available Turbine blade which are generally made of composite is a core device among components of tidal current power generator that converts the flow of tidal current into a turning force. Recent years, damages of composite turbine blades have been reported due to reasons like seawater degradation, lake of strength, manufacture etc. In this paper, water absorption, tensile, bending, longitudinal transverse shearing properties of carbon fiber reinforced plastic (CRP composite which would be applied to fabricate the marine current turbine blade has been investigated. Furthermore, the variations of properties with seawater immersion period were studied. The results indicated that the water absorption increased almost linearly at the beginning of immersion and then became stable. Tensile strength of specimen tended to decrease firstly and then recovered slightly. However, the longitudinal transverse shearing strength showed reverse variation trend comparing to tensile strength. And the bending property of specimens was depressed significantly. The properties variations in seawater shall be referenced to design and fabrication of composite marine current turbine blade.

  11. Detecting the Resistivity Distribution of Carbon Fiber Reinforced Concrete by Electrical Resistance Tomography Method

    Institute of Scientific and Technical Information of China (English)

    Xu Dongliang; Li Zhuoqiu; Song Xianhui; Lü Yong

    2006-01-01

    According to the principle of electrical resistance tomography (ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current and measuring the voltage on the sensor electrode arrays installed on the surface of the object Therefore, measurement of the resistivity distribution of CFRC is divided into first measuring the boundary conditions and then inversely computing the resistivity distribution. To reach this goal, an ERT system was constructed, which is composed of a sensor array unit, a data acquisition unit and an image reconstruction unit. Simulations of static ERT was performed on set-ups with many objects spread in a homogeneous background, and a simulation of dynamic ERT was also done on a rectangular board, the resistivity of which was changed within a small domain of it. Then, the resistivity distribution of a CFRC sample with a circlar hole as the target was detected by the ERT system. Simulation and experimental results show that the reconstructed ERT image reflects the resistivity distribution or the resistivity change of CFRC structure well. Especially, a small change in resistivity can be identified from the reconstructed images in the simulation of dynamic ERT images.

  12. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  13. Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites

    Science.gov (United States)

    Singh, B. P.; Bharadwaj, Preetam; Choudhary, Veena; Mathur, R. B.

    2014-04-01

    Multi-walled carbon nanotubes (MWCNTs) were grown on carbon fiber (CF) felt by chemical vapor deposition that resulted into strongly anchored carbon nanotubes (CNTs) on the CF surface. These multiscale preforms were used as the reinforcement in epoxy resin to develop multi scale CF felt-MWCNT/epoxy composites. The flexural strength (FS) and the flexural modulus (FM) of the composites were found to increase with increasing amount of CNTs grown on CF felt surface. FS improved by 37 %, i.e. 119 MPa compared to 87 MPa for CF felt/epoxy composites prepared under identical conditions. The FM also improved by 153 %, i.e. 15.7 GPa compared to 6.2 GPa for the CF/epoxy composites. The incorporation of MWCNTs on the CF felt produced a significant change in the electromagnetic interference shielding of these composites which improved from -21 to -27 dB for CF felt-MWCNT/epoxy multiscale composites in the Ku band (12.4-18 GHz) and indicates the usefulness of these strong composites for microwave shielding.

  14. Characterization of a carbon fiber reinforced polymer repair system for structurally deficient steel piping

    Science.gov (United States)

    Wilson, Jeffrey M.

    This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results

  15. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

    2006-04-01

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  16. Study on the laser irradiation effects on carbon fiber reinforced resin composite subjected to tangential gas flow loading

    Science.gov (United States)

    Chen, Minsun; Jiang, Houman; Jiao, Luguang; Li, Junshen; Liu, Zejin

    2013-05-01

    The irradiation effects of 976nm continuous-wave laser on carbon fiber reinforced E-51 resin composite is studied experimentally, with a 0.4Ma tangential airflow or 0.4Ma tangential nitrogen gas flow on the target surface. In order to simulate the thermal response of fiber reinforced resin composite materials subjected to combined laser and tangential gas flow loading, a three-dimensional thermal response model of resin composite materials is developed. In the model, the thermal decomposition of resin is described by a multi-step model. The motion of the decomposition gas is assumed to be one-dimensional, for the case that the laser spot is significantly larger than the thickness of the sample. According the above assumption, the flow of the decomposition gas is considered in the three-dimensional model without introducing any mechanical quantities. The influences of the tangential gas flow, the outflow of the thermal decomposition gas and the ablation-including phase change ablation or oxidative ablation-of the surface material on the laser irradiation effects are included in the surface boundary conditions. The three-dimensional thermal response model is calculated numerically by use of the modified smooth particle hydrodynamics (MSPH) method which is coded with FORTRAN. The model is tested by experimentally measuring the temperature profiles during carbon fiber reinforced E-51 resin composite subjected to combined laser and tangential gas flow. The predicted temperature profiles are in good agreement with experimental temperatures obtained using thermocouples.

  17. Modeling the Effect of Oxidation on Tensile Strength of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical method has been developed to investigate the effect of oxidation on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs). The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The fiber strength degradation model and oxidation region propagation model have been adopted to analyze the oxidation effect on tensile strength of the composite, which is controlled by diffusion of oxygen gas through matrix cracks. Under tensile loading, the fibers failure probabilities were determined by combining oxidation model and fiber statistical failure model based on the assumption that fiber strength is subjected to two-parameter Weibull distribution and the loads carried by broken and intact fibers statisfy the global load sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength considering oxidation time and temperature have been analyzed.

  18. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model.

    Science.gov (United States)

    Nakahara, Ichiro; Takao, Masaki; Bandoh, Shunichi; Bertollo, Nicky; Walsh, William R; Sugano, Nobuhiko

    2013-03-01

    Carbon fiber-reinforced polyetheretherketone (CFR/PEEK) is theoretically suitable as a material for use in hip prostheses, offering excellent biocompatibility, mechanical properties, and the absence of metal ions. To evaluate in vivo fixation methods of CFR/PEEK hip prostheses in bone, we examined radiographic and histological results for cementless or cemented CFR/PEEK hip prostheses in an ovine model with implantation up to 52 weeks. CFR/PEEK cups and stems with rough-textured surfaces plus hydroxyapatite (HA) coatings for cementless fixation and CFR/PEEK cups and stems without HA coating for cement fixation were manufactured based on ovine computed tomography (CT) data. Unilateral total hip arthroplasty was performed using cementless or cemented CFR/PEEK hip prostheses. Five cementless cups and stems and six cemented cups and stems were evaluated. On the femoral side, all cementless stems demonstrated bony ongrowth fixation and all cemented stems demonstrated stable fixation without any gaps at both the bone-cement and cement-stem interfaces. All cementless cases and four of the six cemented cases showed minimal stress shielding. On the acetabular side, two of the five cementless cups demonstrated bony ongrowth fixation. Our results suggest that both cementless and cemented CFR/PEEK stems work well for fixation. Cup fixation may be difficult for both cementless and cemented types in this ovine model, but bone ongrowth fixation on the cup was first seen in two cementless cases. Cementless fixation can be achieved using HA-coated CFR/PEEK implants, even under load-bearing conditions.

  19. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    Directory of Open Access Journals (Sweden)

    Marta Invernizzi

    2016-07-01

    Full Text Available Glass (GFR and carbon fiber-reinforced (CFR dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride as hardener and (2,4,6,-tris(dimethylaminomethylphenol as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  20. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Dongxian Zhuo

    2013-01-01

    Full Text Available Carbon nanotube/graphene nanoplatelet (MWCNT/GNP hybrid membranes with lower liquid permeability and better barrier effect compared to MWCNT membranes were successfully synthesized by vacuum filtering. Their morphologies, water permeability, and pore structures were characterized by a scanning electron microscope (SEM and nitrogen adsorption isotherms. Furthermore, MWCNT/GNP membranes were used to improve the flame retardancy of carbon fiber reinforced polymer (CFRP composites, and the influence of weight percentage of GNPs on the permeability and flame retardancy of MWCNT/GNP membranes was systematically investigated. Results show that incorporation of MWCNT/GNP membranes on CFRP composite plates can remarkably improve the flame retardancy of CFRP composites. Specifically, the incorporation of hierarchical MWCNT/GNP membrane with 7.5 wt% of GNP displays a 35% reduction in the peak heat release rate (PHRR for a CFRP composite plate with the epoxy as matrix and a 11% reduction in PHRR compared with the incorporation of MWCNT membrane only. A synergistic flame retarding mechanism is suggested to be attributed to these results, which includes controlling the pore size and penetrative network structure.

  1. Dynamic tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Graphical abstract: The dynamic tensile behavior of 2D C/SiC composites was experimentally investigated by means of SHTB. Both the fracture surface and bundle fracture surfaces of composites were observed. The strain rate sensitivity of in-bundle interface was concluded as the dominant contributor to the strain rate sensitivity of the tensile strength. Highlights: → The tensile strength increases with strain rate. → The tensile failure strain remains independent of strain rate. → Macro-structural morphology reveals rough fracture surface under dynamic loading. → SEM morphology reveals integrated bundle pull-out under dynamic loading. → Strain rate sensitivity of in-bundle interface leads to that of the tensile strength. - Abstract: An investigation has been undertaken to determine the dynamic and quasi-static tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix (2D-C/SiC) composites by means of the split Hopkinson tension bar and an electronic universal test machine respectively. The results indicate that the tensile strength of 2D C/SiC composites is increased at high strain rate. Furthermore, coated specimens show not only a 15% improvement in tensile strength but heightened strain rate sensitivity compared with uncoated ones. It is also shown that the tensile failure strain is strain rate insensitive and remains around 0.4%. Optical macrograph of failed specimens under dynamic loading revealed jagged fracture surfaces characterized by delamination and crack deviation, together with obvious fiber pull-out/splitting, in contrast with the smooth fracture surfaces under quasi-static loading. Scanning electron microscopy micrograph of fracture surface under dynamic loading clearly displayed integrated bundle pull-out which implies suppressed in-bundle debonding and enhanced in-bundle interfacial strengthening, in contrast with extensive in-bundle debonding under quasi-static loading. Thus we conclude that, with 2D C

  2. Experimental Research on Reinforcing Damaged Reinforced Concrete Beams with Carbon Fiber Reinforced Plastics%碳纤维加固二次受力梁斜截面抗剪的试验研究

    Institute of Scientific and Technical Information of China (English)

    张国栋; 朱暾; 丁红瑞

    2001-01-01

    通过4根损伤的钢筋混凝土矩形简支梁的抗剪试验,对用CFRP(CarbonFiberReinforcedPlastics)补强二次受力钢筋混凝土梁斜截面强度的力学性能进行了试验研究.研究表明,用CFRP补强钢筋混凝土梁斜截面强度效果良好.%Through shear tests of four damaged rectangular cross-sectionbeams with simple supports,the strength of the inclined section of the beams reinforced with carbon fiber reinforced plastics(CFRP)is studied experimentally.The experimental results show that the effect of CFRP on beams' strengths is farourable.

  3. Interfacial toughening and consequent improvement in fracture toughness of carbon fiber reinforced epoxy resin composites: induced by diblock copolymers

    Directory of Open Access Journals (Sweden)

    X. D. Zhou

    2013-11-01

    Full Text Available Carbon fibers chemically grafted with hydroxyl-terminated diblock copolymer poly (n-butylacrylate-b-poly (glycidyl methacrylate (OH-PnBA-b-PGMA, were used as the reinforcement for epoxy composites. The multi-filament composite specimens were prepared and measured by dynamic mechanical analysis (DMA, to study the interfacial toughness of carbon fiber reinforced epoxy composites with the diblock copolymers. The loss modulus and loss factor peaks of β-relaxation indicated that composites with diblock copolymers could dissipate more energy at small strain and possess better interfacial toughness, whereas composites without the ductile block PnBA having the worse interfacial toughness. The glass transition temperature and the apparent activation energy calculated from the glass transition showed that the strong interfacial adhesion existed in the composites with diblock copolymers, corresponding with the value of interfacial shear strength. Therefore, a strengthening and toughening interfacial structure in carbon fiber/epoxy composites was achieved by introducing the diblock copolymer OH-PnBA-b-PGMA. The resulting impact toughness, characterized with an Izod impact tester, was better than that of composite without the ductile block PnBA.

  4. Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing Data

    Directory of Open Access Journals (Sweden)

    Ma Xiaobing

    2015-01-01

    Full Text Available An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life test due to the time limitation. Therefore, most of the data presented to be high censored in high stress level and zero-failure data in low stress level. When using the traditional method for rupture life prediction, the results showed to be of lower confidence. In this study, the consistency of failure mechanism for carbon fiber and cylinder was analyzed firstly. According to the analysis result, the statistical test information of carbon fiber could be utilized for the accelerated model constitution. Then, rupture life prediction method for cylinder was proposed based on the accelerated life test data and carbon fiber test data. In this way, the life prediction accuracy of cylinder could be improved obviously, and the results showed that the accuracy of this method increased by 35%.

  5. Laser drilling of carbon fiber reinforced plastics (CFRP) by picosecond laser pulses: comparative study of different drilling tools

    Science.gov (United States)

    Herrmann, T.; Stolze, M.; L'huillier, J.

    2014-03-01

    Carbon fiber reinforced plastic (CFRP) as a lightweight material with superior properties is increasingly being used in industrial manufacturing. Using ultrashort laser pulses can improve the quality in cutting or drilling applications, but at high power levels it is more complicated to maintain the accuracy and precision in CFRP drilling. According to the application requirements for the extent of the heat affected zone, the geometric precision and the productivity different drilling tools can be used. Therefore we report on the application of three different beam delivery systems to drilling processes of CFRP: Galvanometer scanner, trepanning head and diffractive optical elements.

  6. Manufacture of and environmental effects on carbon fiber-reinforced phenylethynyl-terminated poly(etherimide)

    Science.gov (United States)

    Bullions, Todd Aaron

    The initial objective of this research project was to determine the feasibility of manufacturing carbon fiber-reinforced (CFR) composites with a matrix consisting of a phenylethynyl-terminated version of a thermoplastic poly(etherimide) termed PETU. Successful composite manufacture with 3,000 g/mol (3k) PETU led to a survey of CFR 3kPETU mechanical properties for comparison with other high-performance composites. Encouraging results led to a study of moisture sorption effects on CFR 3kPETU properties. The success of these initial studies spawned the large scale production of 2,500 g/mol (2.5k) PETU. Thermal characterization of neat and CFR 2.5kPETU via differential scanning calorimetry, dynamic mechanical thermal analysis, and parallel plate rheometry resulted in an understanding of the influence of cure time and temperature on reaction progress via both reaction kinetics and monitoring of the glass transition temperature. From the rheological characterization, a two-stage, dual-Arrhenius model was developed to successfully model isothermal complex viscosity over the range of processing temperatures. Neat 2.5kPETU and CFR 2.5kPETU specimens were exposed separately to elevated temperature environments of different moisture and different oxygen concentrations to evaluate the effects of moisture absorption, moisture desorption, and thermal oxidation on material properties. Moisture absorption took place in a 90°C/85% relative humidity environment followed by moisture desorption in a 90°C/10% relative humidity environment. Thermal-oxidative aging for up to 5000 hours took place at 204°C in environments of four different oxygen partial pressures: 0.0 kPa, 2.84 kPa, 20.2 kPa, and 40.4 kPa. Following exposure to the different aging environments, the specimens were tested for retention of mechanical properties. In addition, moisture sorption properties were measured. Results from the moisture sorption studies on CFR 3kPETU and CFR 2.5kPETU suggest that fully cured

  7. The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbonate.

    Science.gov (United States)

    Sambudi, Nonni Soraya; Kim, Minjeong G; Park, Seung Bin

    2016-03-01

    The electrospun fibers consist of backbone fibers and nano-branch network are synthesized by loading of ellipsoidal calcium carbonate in the mixture of chitosan/poly(vinyl alcohol) (PVA) followed by electrospinning. The synthesized ellipsoidal calcium carbonate is in submicron size (730.7±152.4 nm for long axis and 212.6±51.3 nm for short axis). The electrospun backbone fibers experience an increasing in diameter by loading of calcium carbonate from 71.5±23.4 nm to 281.9±51.2 nm. The diameters of branch fibers in the web-network range from 15 nm to 65 nm with most distributions of fibers are in 30-35 nm. Calcium carbonate acts as reinforcing agent to improve the mechanical properties of fibers. The optimum value of Young's modulus is found at the incorporation of 3 wt.% of calcium carbonate in chitosan/PVA fibers, which is enhanced from 15.7±3 MPa to 432.4±94.3 MPa. On the other hand, the ultimate stress of fibers experiences a decrease. This result shows that the fiber network undergoes changes from flexible to more stiff by the inclusion of calcium carbonate. The thermal analysis results show that the crystallinity of polymer is changed by the existence of calcium carbonate in the fiber network. The immersion of fibers in simulated body fluid (SBF) results in the formation of apatite on the surface of fibers. PMID:26706559

  8. Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation

    OpenAIRE

    Zuzana Sedláková; Gabriele Clarizia; Paola Bernardo; Johannes Carolus Jansen; Petr Slobodian; Petr Svoboda; Magda Kárászová; Karel Friess; Pavel Izak

    2014-01-01

    Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane), aromatic compound (toluene), al...

  9. Effect of the interfacial adhesion on the tensile and impact properties of carbon fiber reinforced polypropylene matrices

    Directory of Open Access Journals (Sweden)

    Clara Leal Nogueira

    2005-03-01

    Full Text Available Thermoplastic composites have been applied in a wide variety of industrial products, showing recently a great potential to be used in aeronautical field. The objectives of this work were to evaluate the fiber/matrix interface of carbon fiber reinforced polypropylene-based matrices after tensile and impact tests and also to compare the mechanical test results of the manufactured laminates. The laminates were prepared by stacking carbon fiber fabric style Plain Weave (CF and films of four different polypropylene matrices, described as (a polypropylene-PP, (b polypropylene-polyethylene copolymer-PP-PE, (c PP-PE with an interfacial compatibilizer-AM1 and (d PP-PE containing an elastomeric modifier-AM2. The composites were processed using hot compression molding. The mechanical testing results showed that the CF-AM1 laminate family presented the lowest impact strength and the highest tensile strength values when compared to the other laminates. SEM analysis observations of both tensile and impact fractured specimens of the CF-PP/PE-AM1 specimens revealed a stronger fiber/matrix interface. The CF-PP/PE-AM2 laminate showed a lower tensile strength and higher impact strength values when compared to the CF-PP/PE-AM1 one. PP-PE and PP laminates presented the lowest impact strength values.

  10. Experimental Study of Concrete-filled Carbon Fiber Reinforced Polymer Tube with Internal Reinforcement under Axially Loading

    Directory of Open Access Journals (Sweden)

    Wenbin SUN

    2014-12-01

    Full Text Available Comparing with the circular concrete columns confined with fiber reinforced polymer (FRP wrap or tube, the rectilinear confined columns were reported much less. Due to the non-uniform distribution of confining pressure in the rectilinear confined columns, the FRP confinement effectiveness was significant reduced. This paper presents findings of an experimental program where nine prefabricated rectangular cross-section CFRP tubes with CFRP integrated crossties filled concrete to form concrete-filled FRP tube (CFFT short columns and three plain concrete control specimens were tested. All specimens were axially loaded until failure. The rest results showed that the stress-strain curves of CFFTs consisted of two distinct branches, an ascending branch before the concrete peak stress was reaches and a second branch that terminated when the tube ruptured, and that the CFFTs with integrated crossties experienced most uniform confinement pressure distribution. Test research also found that the stress-strain curves of CFFTs indicated an increase in ductility. These demonstrate that this confinement system can produce higher lateral confinement stiffness. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6035

  11. Measurement of Three-Dimensional Anisotropic Thermal Diffusivities for Carbon Fiber-Reinforced Plastics Using Lock-In Thermography

    Science.gov (United States)

    Ishizaki, Takuya; Nagano, Hosei

    2015-11-01

    A new measurement technique to measure the in-plane thermal diffusivity, the distribution of in-plane anisotropy, and the out-of-plane thermal diffusivity has been developed to evaluate the thermal conductivity of anisotropic materials such as carbon fiber-reinforced plastics (CFRPs). The measurements were conducted by using a laser-spot-periodic-heating method. The temperature of the sample is detected by using lock-in thermography. Thermography can analyze the phase difference between the periodic heat input and the temperature response of the sample. Two kinds of samples, unidirectional (UD) and cross-ply (CP) pitch-based CFRPs, were fabricated and tested in an atmospheric condition. All carbon fibers of the UD sample run in one direction [90°]. The carbon fibers of the CP sample run in two directions [0°/90°]. It is found that, by using lock-in thermography, it is able to visualize the thermal anisotropy and calculate the angular dependence of the in-plane thermal diffusivity of the CFRPs. The out-of-plane thermal diffusivity of CFRPs was also measured by analyzing the frequency dependence of the phase difference.

  12. Mechanical analysis of carbon fiber reinforced shape memory polymer composite for self-deployable structure in space environment

    Science.gov (United States)

    Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.

  13. Recent advances in electron-beam curing of carbon fiber-reinforced composites

    Science.gov (United States)

    Coqueret, Xavier; Krzeminski, Mickael; Ponsaud, Philippe; Defoort, Brigitte

    2009-07-01

    Cross-linking polymerization initiated by high-energy radiation is a very attractive technique for the fabrication of high-performance composite materials. The method offers many advantages compared to conventional energy- and time-consuming thermal curing processes. Free radical and cationic poly-addition chemistries have been investigated in some details by various research groups along the previous years. A high degree of control over curing kinetics and material properties can be exerted by adjusting the composition of matrix precursors as well as by acting on process parameters. However, the comparison with state-of-the-art thermally cured composites revealed the lower transverse mechanical properties of radiation-cured composites and the higher brittleness of the radiation-cured matrix. Improving fiber-matrix adhesion and upgrading polymer network toughness are thus two major challenges in this area. We have investigated several points related to these issues, and particularly the reduction of the matrix shrinkage on curing, the wettability of carbon fibers, the design of fiber-matrix interface and the use of thermoplastic toughening agents. Significant improvements were achieved on transverse strain at break by applying original surface treatments on the fibers so as to induce covalent coupling with the matrix. A drastic enhancement of the K IC value exceeding 2 MPa m 1/2 was also obtained for acrylate-based matrices toughened with high T g thermoplastics.

  14. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    Science.gov (United States)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-05-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ɛ-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ɛ-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  15. Fabrication and characterization of Polymer laminate composites reinforced with bi-woven carbon fibers

    Directory of Open Access Journals (Sweden)

    P.V.Sanjeev Kumar

    2015-04-01

    Full Text Available The present paper evaluate slaminatedcarbonbi-wove fibers Reinforced with vinyl ester composites. Vinyl ester was used as a matrix to prepare composites by in situ polymerization technique. Four planar layers were made simultaneously by keeping one over the other and each layer made sure to be weighed off by 15% which was maintained in all layers with different orientations. Pre-assumed Layer-1 is (50/5050%,0º; Layer-2 is (35/35/30 35% 0º, 35% +45º,30%,0;Layer-3is (25/50/25 25% 0º, 50%+45º,25-45º; and Layer-4is (25/25/25/25 (25% 0º, 25% +45º,25% -45º,25% 90º.The composite was prepared with the help of hand layup technique. Test ready specimens were tested with the help of shearing machine in accordance with ASTM Standards .It was observed that vinyl ester made good interface with parent fiber material. Flexural strength and Tensile strength have improved up to 3rd layer and decreased afterwards whereas Flexural modulus and Tensile modulus have linearly increased up to 4th layer. Thermal stability and Glass transition temperature have also been found to be satisfactory for all the laminated layers. Chemical resistance was good for the entire chemicals except sodium hydroxide.

  16. Residual stress analysis in carbon fiber-reinforced SiC ceramics

    International Nuclear Information System (INIS)

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated Cfiber/SiCmatrix specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface (μm) have been measured using characteristic X-radiation and applying the sin 2ψ method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250μm) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB)

  17. Fiber-reinforced tough hydrogels

    OpenAIRE

    Illeperuma, Widusha Ruwangi Kaushalya; Sun, Jeong-Yun; Suo, Zhigang; Vlassak, Joost J.

    2014-01-01

    Using strong fibers to reinforce a hydrogel is highly desirable but difficult. Such a composite would combine the attributes of a solid that provides strength and a liquid that transports matter. Most hydrogels, however, are brittle, allowing the fibers to cut through the hydrogel when the composite is loaded. Here we circumvent this problem by using a recently developed tough hydrogel. We fabricate a composite using an alginate-polyacrylamide hydrogel reinforced with a random network of stai...

  18. RESEARCH IN THE PERFORMANCE OF LFT-D CARBON FIBER REINFORCED NYLON%LFT-D碳纤维增强尼龙性能研究

    Institute of Scientific and Technical Information of China (English)

    王婧; 祝海峰; 高红梅; 高国强; 张小燕

    2013-01-01

    Through the LFT-D-CM (long fiber reinforced thermoplastic direct composite molding) process to produce CFRP (carbon fiber reinforced engineering plastics) , the process greatest reserves the length of the carbon fiber of products, compare with the GFRP ( glass fiber reinforced engineering plastics) , and CFRP mechanics performance is better than that of GFRP, the material mechanical properties increased by the fiber content increased, online recycling waste can solve the recycling problem of carbon fiber reinforced thermosetting composite material, reduce energy consumption and pollution.%通过LFT-D-CM(长纤维增强热塑性塑料直接在线模压成型)工艺,生产碳纤维增强工程塑料,最大程度地保留了碳纤维在产品中的长度,与玻璃纤维增强材料相比,碳纤维增强工程塑料力学性能优于玻璃纤维增强工程塑料,并且随着纤维含量的增加,材料力学性能提高并可在线回收利用废料,解决了碳纤维增强热固性树脂基复合材料的回收再利用问题,减少能耗及污染.

  19. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications.

    Science.gov (United States)

    Godara, A; Raabe, D; Green, S

    2007-03-01

    The effect of sterilization on the structural integrity of the thermoplastic matrix composite polyetheretherketone (PEEK) reinforced with carbon fibers (CF) is investigated by nanoindentation and nanoscratch tests. The use of the material as a medical implant grade requires a detailed understanding of the micromechanical properties which primarily define its in vivo behavior. Sterilization is a mandatory process for such materials used in medical applications like bone implants. The steam and gamma radiation sterilization processes employed in this study are at sufficient levels to affect the micromechanical properties of some polymer materials, particularly in the interphase region between the polymer matrix and the reinforcing fibers. Nanoindentation and nanoscratch tests are used in this work to reveal local gradients in the hardness and the elastic properties of the interphase regions. Both methods help to explore microscopic changes in the hardness, reduced stiffness and scratch resistance in the interphase region and in the bulk polymer matrix due to the different sterilization processes employed. The results reveal that neither steam nor gamma radiation sterilization entails significant changes of the reduced elastic modulus, hardness or coefficient of friction in the bulk polymer matrix. However, minor material changes of the PEEK matrix were observed in the interphase region. Of the two sterilization methods used, the steam treatment has a more significant influence on these small changes in this region and appears to increase slightly the thickness of the interphase zone.

  20. Computational modeling of the electromagnetic characteristics of carbon fiber-reinforced polymer composites with different weave structures

    Science.gov (United States)

    Hassan, A. M.; Douglas, J. F.; Garboczi, E. J.

    2014-02-01

    Carbon fiber reinforced polymer composites (CFRPC) are of great interest in the aerospace and automotive industries due to their exceptional mechanical properties. Carbon fibers are typically woven and inter-laced perpendicularly in warps and wefts to form a carbon fabric that can be embedded in a binding matrix. The warps and wefts can be interlaced in different patterns called weaving structures. The primary weaving structures are the plain, twill, and satin weaves, which give different mechanical composite properties. The goal of this work is to computationally investigate the dependence of CFRPC microwave and terahertz electromagnetic characteristics on weave structure. These bands are good candidates for the Nondestructive Evaluation (NDE) of CFRPC since their wavelengths are comparable to the main weave features. 3D full wave electromagnetic simulations of several different weave models have been performed using a finite element (FEM) simulator, which is able to accurately model the complex weave structure. The computational experiments demonstrate that the reflection of electromagnetic waves from CFRPC depend sensitively on weave structure. The reflection spectra calculated in this work can be used to identify the optimal frequencies for the NDE of each weave structure.

  1. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    OpenAIRE

    Patcharat Wongsriraksa; Kohsuke Togashi; Asami Nakai; Hiroyuki Hamada

    2013-01-01

    Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fib...

  2. Multimetallic Electrodeposition on Carbon Fibers

    Science.gov (United States)

    Böttger-Hiller, F.; Kleiber, J.; Böttger, T.; Lampke, T.

    2016-03-01

    Efficient lightweight design requires intelligent materials that meet versatile functions. One approach is to extend the range of properties of carbon fiber reinforced plastics (CFRP) by plating the fiber component. Electroplating leads to metalized layers on carbon fibers. Herein only cyanide-free electrolytes where used. Until now dendrite-free layers were only obtained using current densities below 1.0 A dm-2. In this work, dendrite-free tin and copper coatings were achieved by pre-metalizing the carbon fiber substrates. Furthermore, applying a combination of two metals with different sized thermal expansion coefficient lead to a bimetallic coating on carbon fiber rovings, which show an actuatory effect.

  3. Cryogenic optical measurements of 12-segment-bonded carbon-fiber-reinforced silicon carbide composite mirror with support mechanism

    Science.gov (United States)

    Kaneda, Hidehiro; Nakagawa, Takao; Onaka, Takashi; Enya, Keigo; Makiuti, Sin'itirou; Takaki, Junji; Haruna, Masaki; Kume, Masami; Ozaki, Tsuyoshi

    2008-03-01

    A 720 mm diameter 12-segment-bonded carbon-fiber-reinforced silicon carbide (C/SiC) composite mirror has been fabricated and tested at cryogenic temperatures. Interferometric measurements show significant cryogenic deformation of the C/SiC composite mirror, which is well reproduced by a model analysis with measured properties of the bonded segments. It is concluded that the deformation is due mostly to variation in coefficients of thermal expansion among segments. In parallel, a 4-degree-of-freedom ball-bearing support mechanism has been developed for cryogenic applications. The C/SiC composite mirror was mounted on an aluminum base plate with the support mechanism and tested again. Cryogenic deformation of the mirror attributed to thermal contraction of the aluminum base plate via the support mechanism is highly reduced by the support, confirming that the newly developed support mechanism is promising for its future application to large-aperture cooled space telescopes.

  4. Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Li; Linzhi Wu∗; Li Ma; Xiangqiao Yan

    2016-01-01

    This paper focuses on the effect of temperature on the out-of-plane compressive properties and failure mechanism of carbon fiber/epoxy composite pyramidal truss cores sandwich panels (CF/CPTSP). CF/CPTSP with novel reinforced frames are manufactured by the water jet cutting and interlocking assembly method in this paper. The theoretical analysis is presented to predict the out-of-plane compressive stiffness and strength of CF/CPTSP at different ambient temperatures. The tests of composite sandwich panels are per-formed throughout the temperature range from−90◦C to 180◦C. Good agreement is found between theo-retical predictions and experimental measurements. Experimental results indicate that the low tempera-ture increases the compressive stiffness and strength of CF/CPTSP. However, the high temperature causes the degradation of the compressive stiffness and strength. Meanwhile, the effects of temperature on the failure mode of composite sandwich panels are also observed.

  5. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    Science.gov (United States)

    Ploeckl, Marina; Kuhn, Peter; Koerber, Hannes

    2015-09-01

    In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s-1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462-470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10-4 s-1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.

  6. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    Directory of Open Access Journals (Sweden)

    Ploeckl Marina

    2015-01-01

    Full Text Available In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s−1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462–470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10−4 s−1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.

  7. Electromagnetic Shielding and Absorption Properties of Fiber Reinforced Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiuzhi; SUN Wei

    2012-01-01

    In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete,steel fiber,carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced concrete were researched.The results show that with the increase of fiber volume fraction,the SE and trend of frequency change of corresponding fiber reinforced concrete are enhanced.When the volume content of steel fiber is 3%,the SE of concrete is above 50 dB and its frequency is above 1.8 GHz.Moreover,in the range of 8-18 GHz,steel fiber,carbon fiber and PVA fiber all can improve the microwave absorption properties of concrete.The concrete with 0.5% carbon fiber can achieve the best absorbing property,the minimum reflectivity is about -7 dB; while steel fiber optimal volume fraction is 2%.The reflectivity curve of PVA fiber reinforced concrete fluctuates with the frequency,and the minimum value of the reflectivity is below -10 dB.The results show that fiber reinforced concrete could be used as EMI(electromagnetic interference) prevention buildings by attenuating and reflecting electromagnetic wave energy.

  8. Mechanical properties of several neat polymer matrix materials and unidirectional carbon fiber-reinforced composites

    Science.gov (United States)

    Coguill, Scott L.; Adams, Donald F.

    1989-01-01

    The mechanical and physical properties of three neat matrix materials, i.e., PEEK (polyetheretherketone) thermoplastic, Hexcel F155 rubber-toughened epoxy and Hercules 8551-7 rubber-toughened epoxy, were experimentally determined. Twelve unidirectional carbon fiber composites, incorporating matrix materials characterized in this or earlier studies (with one exception; the PISO(sub 2)-TPI matrix itself was not characterized), were also tested. These composite systems included AS4/2220-1, AS4/2220-3, T500/R914, IM6/HX1504, T300/4901A (MDA), T700/4901A (MDA), T300/4901B (MPDA), T700/4901B (MPDA), APC2 (AS4/PEEK, ICI), APC2 (AS4/PEEK, Langley Research Center), AS4/8551-7, and AS4/PISO(sub 2)-TPI. For the neat matrix materials, the tensile, shear, fracture toughness, coefficient of thermal expansion, and coefficient of moisture expansion properties were measured as a function of both temperature and moisture content. For the unidirectional composites, axial and transverse tensile, longitudinal shear, coefficient of thermal expansion, and coefficient of moisture expansion properties were determined, at room temperature and 100 C.

  9. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves

    International Nuclear Information System (INIS)

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates. (papers)

  10. Reusing recycled fibers in high-value fiber-reinforced polymer composites: Improving bending strength by surface cleaning

    OpenAIRE

    SHI, JIAN; Bao, Limin; Kobayashi, Ryouhei; Kato, Jun; Kemmochi, Kiyoshi

    2012-01-01

    Glass fiber-reinforced polymer (GFRP) composites and carbon fiber-reinforced polymer (CFRP) composites were recycled using superheated steam. Recycled glass fibers (R-GFs) and recycled carbon fibers (R-CFs) were surface treated for reuse as fiber-reinforced polymer (FRP) composites. Treated R-GFs (TR-GFs) and treated R-CFs (TR-CFs) were characterized by scanning electron microscopy (SEM) and remanufactured by vacuum-assisted resin transfer molding (VARTM). Most residual resin impurities were ...

  11. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  12. Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation.

    Science.gov (United States)

    Sedláková, Zuzana; Clarizia, Gabriele; Bernardo, Paola; Jansen, Johannes Carolus; Slobodian, Petr; Svoboda, Petr; Kárászová, Magda; Friess, Karel; Izak, Pavel

    2014-01-01

    Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane), aromatic compound (toluene), alcohol (ethanol), as well as water for the representative samples. The mechanical properties and homogeneity of samples was checked by stress-strain tests. The addition of virgin CNTs and CFs improve mechanical properties. Gas permeability of EOC lies between that of the more permeable PDMS and the less permeable semi-crystalline polyethylene and polypropylene. Organic vapors are more permeable than permanent gases in the composite membranes, with toluene and hexane permeabilities being about two orders of magnitude higher than permanent gas permeability. The results of the carbon-filled membranes offer perspectives for application in gas/vapor separation with improved mechanical resistance. PMID:24957119

  13. Carbon Nanotube- and Carbon Fiber-Reinforcement of Ethylene-Octene Copolymer Membranes for Gas and Vapor Separation

    Directory of Open Access Journals (Sweden)

    Zuzana Sedláková

    2014-01-01

    Full Text Available Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs and carbon fibers (CFs. Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane, aromatic compound (toluene, alcohol (ethanol, as well as water for the representative samples. The mechanical properties and homogeneity of samples was checked by stress-strain tests. The addition of virgin CNTs and CFs improve mechanical properties. Gas permeability of EOC lies between that of the more permeable PDMS and the less permeable semi-crystalline polyethylene and polypropylene. Organic vapors are more permeable than permanent gases in the composite membranes, with toluene and hexane permeabilities being about two orders of magnitude higher than permanent gas permeability. The results of the carbon-filled membranes offer perspectives for application in gas/vapor separation with improved mechanical resistance.

  14. Transitions in Wear and Friction of Carbon Fiber Reinforced Copper Matrix Composite Sliding Against AISI-1045 Steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The friction and wear properties of carbon fiber reinforced copper matrix composite in dry sliding against AISI-1045 steel was evaluated by a block-on-ring test machine. It was shown that the low frictional factor and wear rate of the composite block could be maintained when pressure or velocity was below a certain value. But when the pressure or velocity exceeded the critical value, the friction factor and wear rate tended to increase rapidly with pressure and sliding velocity. The morphologies, elemental compositions, and surface profile of worn composite surfaces at different wear stages were analyzed by means of scanning electron microscopy, energy dispersive spectrometry, and profile-meter. It was found that low values of friction and wear were due to a thin solid film forming on the surface of the composite block which includes carbon and copper at a mild wear stage. The film could impede adhesion and provide some degree of self-lubrication. When the film included more metal elements and were damaged, severe wear happened, and the wear rate increased sharply. As a result, a transition diagram in friction and wear was constructed, which provided pressure and velocity conditions of change from mild wear and low friction to severe wear and high friction for the wear-resisting design.

  15. Carbon Nanomaterials as Reinforcements for Composites

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.

  16. Fiber reinforced hybrid phenolic foam

    Science.gov (United States)

    Desai, Amit

    Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of the chosen filler and matrix and also facilitating the design of materials with specific properties matched to end use. However, the studies for hybrid foams have been very limited because of problems related to fiber dispersion in matrix, non uniform mixing due to presence of more than one filler and partially cured foams. An effective approach to synthesize hybrid phenolic foam has been proposed and investigated here. Hybrid composite phenolic foams were reinforced with chopped glass and aramid fibers in varied proportions. On assessing mechanical properties in compression and shear several interesting facts surfaced but overall hybrid phenolic foams exhibited a more graceful failure, greater resistance to cracking and were significantly stiffer and stronger than foams with only glass and aramid fibers. The optimum fiber ratio for the reinforced hybrid phenolic foam system was found to be 1:1 ratio of glass to aramid fibers. Also, the properties of hybrid foam were found to deviate from rule of mixture (ROM) and thus the existing theories of fiber reinforcement fell short in explaining their complex behavior. In an attempt to describe and predict mechanical behavior of hybrid foams a statistical design tool using analysis of variance technique was employed. The utilization of a statistical model for predicting foam properties was found to be an appropriate tool that affords a global perspective of the influence of process variables such as fiber weight fraction, fiber length etc. on foam properties (elastic modulus and strength). Similar approach could be extended to study other fiber composite foam systems such as polyurethane, epoxy etc. and doing so will reduce the number of experimental iterations needed to optimize foam properties and identify critical process variables. Diffusivity, accelerated aging and flammability

  17. Kevlar and Carbon Fiber Sheet Reinforced Soil Reinforced Concrete Beam Flexural Performance Test Inquiry%碳纤维布及芳纶布加固钢筋混土梁受弯性能试验探究

    Institute of Scientific and Technical Information of China (English)

    邝美玲

    2016-01-01

    在土木工程建设中,碳纤维布及芳纶布为钢筋混土构件带来了新的加固机遇,已成为工程施工中的实质性保障,占据着综合比例的重要地位。基于此,从钢筋混土梁入手,结合相关试验案例,重点分析碳纤维布及芳纶布加固钢筋混土梁受弯性能的优化举措,以供相关研究参考。%In the civil engineering construction,carbon fiber and Kevlar fiber cloth cloth reinforced concrete soil reinforcement member has brought new opportunities,construction has become a substantive guarantee,occupies an important position integrated scale.Based on this,the soil from reinforced concrete beams,combining relevant test case focuses on Kevlar Reinforced with carbon fiber sheet reinforced concrete and soil beam flexural performance optimization initiatives for research reference.

  18. Experimental Investigations into Abrasive Waterjet Machining of Carbon Fiber Reinforced Plastic

    Directory of Open Access Journals (Sweden)

    Prasad D. Unde

    2015-01-01

    Full Text Available Abrasive waterjet machining (AWJM is an emerging machining process in which the material removal takes place due to abrasion. A stream of abrasive particles mixed with filtered water is subjected to the work surface with high velocity. The present study is focused on the experimental research and evaluation of the abrasive waterjet machining process in order to evaluate the technological factors affecting the machining quality of CFRP laminate using response surface methodology. The standoff distance, feed rate, and jet pressure were found to affect kerf taper, delamination, material removal rate, and surface roughness. The material related parameter, orientation of fiber, has been also found to affect the machining performance. The kerf taper was found to be 0.029 for 45° fiber orientation whereas it was 0.036 and 0.038 for 60° and 90°, respectively. The material removal rate is 18.95 mm3/sec for 45° fiber orientation compared to 18.26 mm3/sec for 60° and 17.4 mm3/sec for 90° fiber orientation. The Ra value for 45° fiber orientation is 4.911 µm and for 60° and 90° fiber orientation it is 4.927 µm and 4.974 µm, respectively. Delamination factor is found to be more for 45° fiber orientation, that is, 2.238, but for 60° and 90° it is 2.029 and 2.196, respectively.

  19. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    Science.gov (United States)

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  20. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    Science.gov (United States)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  1. Design and performance of new type carbon fiber reinforced polyimide-based composites for X/γ photon shielding

    International Nuclear Information System (INIS)

    Background: With the rapid development of radiation technology, demands of functional and structural integration have been put forward for the photon shielding material. Purpose: To meet this need, a new type of carbon fiber reinforced polyimide composite has been designed and tested. Methods: Shielding properties of composite materials of different PbO contents are modeled based on MCNP. According to the simulation results, shielding material is designed and prepared. And its shielding properties, mechanical properties as well as radiation-resistant properties are tested. Results: Through photon shield experiment and mechanical performance experiment, the composite material has good shielding performance for photons. Its photon transmission rate at thickness of 4.80-mm is 54.13% for 137Cs (662 keV) gamma-ray, bend strength and stretch strength at l.2-mm thickness can reach 263 MPa and 369 MPa, respectively. After 90-kGy irradiation, the stretch strength can retain 83.47% of its performance. Conclusion: Therefore, the material possesses great application potential in medicine and industry such as gamma ray flaw detection. (authors)

  2. Studies of print-through and reflectivity of x-ray mirrors using thin carbon-fiber-reinforced plastic

    Science.gov (United States)

    Sugita, Satoshi; Awaki, Hisamitsu; Yoshioka, Kenya; Ogi, Keiji; Kunieda, Hideyo; Matsumoto, Hironori; Miyazawa, Takuya; Mitsuishi, Ikuyuki; Iwase, Toshihiro; Saji, Shigetaka; Tachibana, Sasagu; Maejima, Masato; Yoshikawa, Shun; Shima, Naoki; Ishikawa, Takashi; Hamada, Takayoshi; Ishida, Naoki; Akiyama, Hiromichi; Kishimoto, Kazuaki; Utsunomiya, Shin; Kamiya, Tomohiro; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    We fabricated x-ray mirrors from carbon-fiber-reinforced plastic with a tightly nested design for x-ray satellites, using a replication method for the surfaces. We studied the effects of print-through on the mirror surface as a function of curing temperature. With room temperature curing, the root-mean-square value of the surface error was 0.8 nm. The reflectivity was measured using 8-keV x-rays, and the roughness was calculated as 0.5 nm by model fitting-comparable to that of the ASTRO-H/HXT mirror. We verified the long-term stability of the mirror surface over 6 months. We fabricated Wolter type-I quadrant-shell mirrors with a diameter of 200 mm and performed x-ray measurements at BL20B2 in the SPring-8 synchrotron radiation facility. We obtained reflection images of the mirrors using a 20-keV x-ray spot beam with a slit size of 10×1 mm in the radial and circumferential directions, respectively. The averaged half-power diameter (HPD) of the images in one mirror was 1.2 arc min in the circumferential center of the mirror and 3.0 arc min at the edge. In the spot images with a smaller slit size of 10×0.2 mm, we achieved an HPD of 0.38 arc min in the best case.

  3. Quick Preparation of Moisture-Saturated Carbon Fiber-Reinforced Plastics and Their Accelerated Ageing Tests Using Heat and Moisture

    Directory of Open Access Journals (Sweden)

    Masao Kunioka

    2016-06-01

    Full Text Available A quick method involving the control of heat and water vapor pressure for preparing moisture-saturated carbon fiber-reinforced plastics (CFRP, 8 unidirectional prepreg layers, 1.5 mm thickness, epoxy resin has been developed. The moisture-saturated CFRP sample was obtained at 120 °C and 0.2 MPa water vapor in 72 h by this method using a sterilizer (autoclave. The bending strength and viscoelastic properties measured by a dynamic mechanical analysis (DMA remained unchanged during repetitive saturation and drying steps. No degradation and molecular structural change occurred. Furthermore an accelerated ageing test with two ageing factors, i.e., heat and moisture was developed and performed at 140–160 °C and 0.36–0.62 MPa water vapor pressure by using a sealed pressure-proof stainless steel vessel (autoclave. The bending strength of the sample decreased from 1107 to 319 MPa at 160 °C and 0.63 MPa water vapor pressure in 9 days. Degraded samples were analyzed by DMA. The degree of degradation for samples was analyzed by DMA. CFRP and degraded CFRP samples were analyzed by using a surface and interfacial cutting analysis system (SAICAS and an electron probe micro-analyzer (EPMA equipped in a scanning electron microscope.

  4. Fixation strength of taper connection at head-neck junction in retrieved carbon fiber-reinforced PEEK hip stems.

    Science.gov (United States)

    Nakahara, Ichiro; Takao, Masaki; Bandoh, Shunichi; Sugano, Nobuhiko

    2014-12-01

    Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) hip prostheses possess numerous advantages over metal prostheses; however, the security of the taper connection between the CFR-PEEK stem and the modular femoral head in vivo has not been verified. Therefore, we mechanically examined the taper connection of retrieved in vivo loaded CFR-PEEK stems in comparison with in vivo loaded titanium alloy stems. CFR-PEEK and titanium alloy femoral stems with a 12/14 taper trunnion were implanted in ovine hips. A 22-mm ceramic head was intraoperatively impacted to the stem. Retrieved specimens were obtained following weight-bearing conditions for up to 39 postoperative weeks and taper junction pull-off tests were conducted. Postoperative retrieved CFR-PEEK stem pull-off strength was significantly greater than that at time zero. Postoperative retrieved CFR-PEEK stem pull-off strength was also significantly higher than that of postoperative retrieved titanium alloy stem. Microscopic findings of the taper surface revealed no obvious damage in the retrieved CFR-PEEK stems, whereas fretting and corrosion were observed in the retrieved titanium alloy stems. The present findings suggest that the taper connection between the ceramic head and the 12/14 CFR-PEEK stem trunnion is more secure than that between the ceramic head and the titanium alloy trunnion. PMID:25190272

  5. Studies of the moisture absorption of thin carbon fiber reinforced plastic substrates for x-ray mirrors

    Science.gov (United States)

    Sugita, Satoshi; Awaki, Hisamitsu; Kurihara, Daichi; Yoshioka, Kenya; Nomura, Mizuki; Ogi, Keiji; Tomita, Yuuki; Mita, Tomoki; Kunieda, Hideyo; Matsumoto, Hironori; Miyazawa, Takuya; Mitsuishi, Ikuyuki; Iwase, Toshihiro; Maejima, Masato; Shima, Naoki; Ishikawa, Takashi; Hamada, Takayoshi; Ishida, Naoki; Akiyama, Hiromichi; Kishimoto, Kazuaki; Utsunomiya, Shin; Kamiya, Tomohiro

    2015-07-01

    We study a lightweight x-ray mirror with a carbon fiber reinforced plastic (CFRP) substrate for next-generation x-ray satellites. For tightly nested x-ray mirrors, such as those on the Suzaku and ASTRO-H telescopes, CFRP is the suitable substrate material because it has a higher strength-to-weight ratio and forming flexibility than those of metals. In flat CFRP substrate fabrication, the surface waviness has a root mean square (RMS) of ˜1 μm in the best products. The RMS approximately reaches a value consistent with the RMS of the mold used for the forming. We study the effect of moisture absorption using accelerated aging tests in three environments. The diffusivity of the CFRP substrate at 60°C and at relative humidity of 100% is ˜9.7×10-4 mm2.h-1, and the acceleration rate to the laboratory environment was 180 times higher. We also develop co-curing functional sheets with low water-vapor transmissivity on the CFRP substrate. Co-curing the sheets successfully reduced the moisture absorption rate by 440 times compared to the un-co-cured substrate. Details of the CFRP substrate fabrication and moisture absorption tests are also reported.

  6. A Study of Bond of Structural Timber and Carbon Fiber Reinforced Polymer Plate

    Directory of Open Access Journals (Sweden)

    Yongtaeg LEE

    2015-11-01

    Full Text Available The increase of well-being culture of problem related to environmental depletion of resource is not the growing interest in timber the natural material of construction markets. Also, the perception for historic preservation has been increased in respond to heightened interest. However, it is fairly difficult for architectural properties to maintain their durability because it was made by timber construction. Preventing traditional structure from damage and structural performance reduction is paramount in maintenance problem. A number of studies of reinforced method have been conducted in order to solve such a problem. In this paper, external bonded reinforcement and near-surface mounted was used as a way to reinforce timber structure’s durability. Bond strength for specimens with different bond length was investigated. As a result showed, maximum bond strength in bond length 300 mm from all method, was found to be not increased of bond strength over the certain bond length.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9702

  7. Carbon fiber-reinforced polymer strengthening and monitoring of the grondals bridge in Sweden

    DEFF Research Database (Denmark)

    Täljsten, Björn; Hejll, Arvid; James, Gerard

    2007-01-01

    strengthened. The strengthening methods used were CFRP plates at the serviceability limit state and prestressed dywidag stays at the ultimate limit state. The strengthening was carried out during 2002. At the same time monitoring of the bridge commenced, using LVDT crack gauges as well as optical fiber sensors....

  8. Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon

    OpenAIRE

    Changlei Xia; Shifeng Zhang; Han Ren; Sheldon Q. Shi; Hualiang Zhang; Liping Cai; Jianzhang Li

    2015-01-01

    Kenaf fiber—polyester composites incorporated with powdered activated carbon (PAC) were prepared using the vacuum-assisted resin transfer molding (VARTM) process. The product demonstrates the electromagnetic interference (EMI) shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET) spe...

  9. Enhancement of the Durability Characteristics of Concrete Reinforcement with Carbon Fibers%碳纤维增强混凝土的耐久性研究

    Institute of Scientific and Technical Information of China (English)

    龙春明

    2015-01-01

    对碳纤维增强混凝土的抗渗透性与抗酸侵蚀性进行了实验性研究。水胶比为0.40,碳纤维的掺量分别为0.2、0.5和1.0 vol.%。试验测试结果表明,碳纤维的掺入能够有效的提高混凝土的抗渗透性和抗酸侵蚀性。碳纤维在混凝土基体中起到桥联的作用,保证了负载转移能力。%In this paper, the permeability and acid resistance properties of prepared concrete with different proportions rein-forcement carbon fibers were investigated.The water to binder ratio was 0.40 and the proportions of carbon fibers in matrix were 0.2, 0.5 and 1.0 vol.%of concrete, respectively.The results showed that with the introduction of carbon fibers, the permeability and acid resistance properties of concrete/carbon fibers composites were improved significantly.The added car-bon fibers acted as bridges across the pores and voids, which guaranteed the load-transfer in case of tension.

  10. Analysis on temperature stress of carbon fiber reinforcing steel reinforced concrete beam%碳纤维加固钢筋混凝土梁的温度应力分析

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    利用有限元软件ANSYS研究分析了温度变化对于外贴碳纤维材料加固的钢筋混凝土梁的应力影响,具体讨论了碳纤维布的弹性模量、粘贴厚度、热膨胀系数等参数的影响,得出了一些有实用价值的结论。%Applying finite element software ANSYS,the paper analyzes the stress impact of temperature change upon external carbon fiber reinfor-cing steel reinforced concrete,specifically discusses the influence of carbon fiber elastic modulus,cohesive thickness,heat expanding coefficient and other parameters,and finally draws some practical valuable conclusions.

  11. Effect of Carbon Fiber Content on Mechanical Properties of Short Carbon Fiber Reinforced PE Composites%碳纤维含量对碳纤维增强PE复合材料力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    李力; 曹昌林

    2012-01-01

    以短切碳纤维为增强体,以聚乙烯树脂为基体,运用螺杆注射成型的方法制备碳纤维增强热塑性复合材料.研究了碳纤维含量对复合材料硬度、拉伸、疲劳等性能的影响.结果表明,随着碳纤维含量的增加,复合材料的维氏硬度呈S形增加,拉伸强度、弹性模量、条件疲劳极限值都有提高;当碳纤维含量为4.021%时,相对纯聚乙烯,硬度、拉伸强度、弹性模量、条件疲劳极限值分别增加了35.489%、18.421%、208.024%、213.240%%Taking chopped carbon fiber as reinforce element and the polyethylene resin as matrix, the carbon fiber reinforced thermoplastic composites were prepared by the way of screw injection molding method. The effects of carbon fiber content on mechanical properties were investigated by measuring the hardness, tensile and fatigue. The results show that: with the increase of carbon fiber content, the hardness increase tendency in S-shape. The tensile strength and elastic modulus and the fatigue cycle and the fatigue limit were increased by 35.489%, 18.421%, 208.024%, 213.240%, respectively.

  12. Hygrothermal effects on fiber reinforced polyphenylene sulphide composites : humidity uptake and temperature influence on mechanical properties of glass and carbon fiber reinforced polyphenylene sulphide composites

    OpenAIRE

    Suárez Cabrera, Emmanuel

    2011-01-01

    In the ever-continuing quest for greener and cheaper aerospace materials, the Durability Group, part of the Design and Production of Composite Structures Department at the faculty of Aerospace Engineering of the Delft University of Technology is focusing on the use of new thermoplastic composites for aerospace structures. Currently the introduction of Nylon composites in the aerospace industry is being investigated. Nylon as a thermoplastic matrix for fibre reinforced composites can be bought...

  13. Fundamental study of a refractory-based carbon fiber reinforced composite made by reactive melt infiltration for hypersonic applications

    Science.gov (United States)

    Wali, Natalie Alice

    Ceramic matrix composites are excellent candidates for ultrahigh temperature applications due their good physical properties, which are a combination of a chemically stable matrix and tough fiber reinforcement. This work is a fundamental study of a carbon fiber reinforced zirconium carbide composite (Cf/ZrC). The background chapter reviews reactive melt infiltration, which is the processing method used to make the Cf/ZrC composite. The first chapter discusses the microstructural characterization and development of Cf/ZrC. A formation mechanism of the unique matrix microstructure is proposed based on the characterization results. In the second chapter the mechanical properties of Cf/ZrC were determined. The fracture toughness at room temperature is obtained with a standard four point bend test, while flexural strength of Cf/ZrC is obtained to the ultra high temperature regime. For high temperatures a testing rig was modified to operate in inert atmosphere and tests were conducted at 1100 °C, 1350 °C and 1650 °C. Correlation is made between the flexural strength and fiber coatings of two different composite types. In situ compression tests were performed a modified SEM. Digital image correlation was used to monitor strains during compression. The stress-strain information is correlated to surface deformation. The environmental durability and oxidation behavior of Cf/ZrC and ZrC is detailed in the third and fourth chapters. The oxidation and shock behavior of Cf/ZrC were observed under both slow and rapid heating rates to ultra high temperatures. For rapid heating rates a panel was subjected to heating at steady-state and non-steady state heat flux. For slow heating rates specimen coupons were heated at 2000 °C in a bottom-loading furnace. Specimens were characterized post-test by x-ray diffraction, electron microscopy, electron probe microanalysis, and optical microscopy. The oxidation kinetics of Cf/ZrC composites and ZrC powders (45 micron and 60 nanometer

  14. [Survey of carbon fiber reinforced plastic orthoses and occupational and medical problems based on a questionnaire administered to companies involved in the manufacture of prosthetics and orthotics].

    Science.gov (United States)

    Kaneshiro, Yuko; Furuta, Nami; Makino, Kenichiro; Wada, Futoshi; Hachisuka, Kenji

    2011-09-01

    We surveyed carbon fiber reinforced plastic orthoses (carbon orthoses) and their associated occupational and medical problems based on a questionnaire sent to 310 companies which were members of the Japan Orthotics and Prosthetics Association. Of all the companies, 232 responded: 77 of the 232 companies dealt with ready-made carbon orthoses, 52 dealt with fabricated custom-made orthoses, and 155 did not dealt with carbon orthoses. Although the total number of custom-made carbon ortheses in Japan was 829/ 5 years, there was a difference by region, and one company fabricated only 12 (per 5 years) custom-made carbon orthoses on average. The advantages of the carbon orthosis were the fact that it was "light weight", "well-fitted", had a "good appearance", and "excellent durability", while the disadvantages were that it was "expensive", "high cost of production", of "black color", and required a "longer time for completion", and "higher fabrication techniques". From the standpoint of industrial medicine, "scattering of fine fragments of carbon fibers", "itching on the skin" and "health hazards" were indicated in companies that manufacture the orthosis. In order to make the carbon orthosis more popular, it is necessary to develop a new carbon material that is easier to fabricate at a lower cost, to improve the fabrication technique, and to resolve the occupational and medical problems.

  15. Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation: A sensitivity analysis

    Science.gov (United States)

    Kashfuddoja, Mohammad; Prasath, R. G. R.; Ramji, M.

    2014-11-01

    In this work, the experimental characterization of polymer-matrix and polymer based carbon fiber reinforced composite laminate by employing a whole field non-contact digital image correlation (DIC) technique is presented. The properties are evaluated based on full field data obtained from DIC measurements by performing a series of tests as per ASTM standards. The evaluated properties are compared with the results obtained from conventional testing and analytical models and they are found to closely match. Further, sensitivity of DIC parameters on material properties is investigated and their optimum value is identified. It is found that the subset size has more influence on material properties as compared to step size and their predicted optimum value for the case of both matrix and composite material is found consistent with each other. The aspect ratio of region of interest (ROI) chosen for correlation should be the same as that of camera resolution aspect ratio for better correlation. Also, an open cutout panel made of the same composite laminate is taken into consideration to demonstrate the sensitivity of DIC parameters on predicting complex strain field surrounding the hole. It is observed that the strain field surrounding the hole is much more sensitive to step size rather than subset size. Lower step size produced highly pixilated strain field, showing sensitivity of local strain at the expense of computational time in addition with random scattered noisy pattern whereas higher step size mitigates the noisy pattern at the expense of losing the details present in data and even alters the natural trend of strain field leading to erroneous maximum strain locations. The subset size variation mainly presents a smoothing effect, eliminating noise from strain field while maintaining the details in the data without altering their natural trend. However, the increase in subset size significantly reduces the strain data at hole edge due to discontinuity in

  16. A 1-3 Piezoelectric Fiber Reinforced Carbon Nanotube Composite Sensor for Crack Monitoring

    Science.gov (United States)

    Makireddi, Sai; Balasubramaniam, Krishnan

    2016-07-01

    A method for the detection of location and size of a crack in simple structures using a nanocomposite sensor is discussed. In the present study, a piezoelectric/single walled carbon nanotube composite sensor is modeled on piezoelectric principle. The effective piezoelectric and dielectric properties of the composite at 0.2 volume fraction loading of single walled carbon nanotubes is determined by micromechanical analysis. By means of these effective properties a piezoelectric sensor has been modeled. The transfer function and bode response of this sensor is investigated. The sensor is fixed at a location on a cantilever beam and the response of the sensor with respect to the size and location of the crack is modeled. The analytical values are compared with ANSYS. It is assumed that there is no slippage between the sensor and the beam surface. The sensor behavior with respect to dynamic loading conditions is also studied. It is ascertained that the relative position of the sensor with respect to crack is crucial and determines the sensitivity of the sensor to detect a crack. Results are presented in the form of voltage output from the sensor at different crack locations and at varying lengths of the crack.

  17. Enhancement of high-speed flywheel energy storage via carbon-fiber composite reinforcement

    Science.gov (United States)

    Conteh, Michael Abu

    life of the brakes can be prolonged. The total additional weight to the aircraft was found to be less than 0.2% of the maximum take-off weight. This additional weight can be offset by reducing the design payload while ensuring that the structural efficiency of the aircraft is not altered. It was also found that, applying this method of flywheel energy recovery to active commercial Boeing-777 aircraft will result in savings equivalent to the annual carbon emission of a 6 MW fossil fuel power plant. This will also contribute to the aviation industry climate change mitigation.

  18. Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.

  19. Role of interfacial carbon layer in the thermal diffusivity/conductivity of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites

    Science.gov (United States)

    Bhatt, Hemanshu; Donaldson, Kimberly Y.; Hasselman, D. P. H.; Bhatt, Ramakrishna T.

    1992-01-01

    Experiments were carried out on samples of reaction-bonded silicon nitride uniaxially reinforced by SiC monofilaments with and without a 3-micron-thick carbon-rich coating. It is found that a combination of a carbon coatings on the fibers and an interfacial gap due to the thermal expansion mismatch in the composite can significantly (by a factor of 2) lower the effective thermal diffusivity in the direction transverse to the fiber. At atmospheric pressure, gaseous conduction across the interfacial gap makes a significant contribution to the heat transfer across the interface, indicated by significantly lower values of the effective thermal diffusivity under vacuum than in nitrogen or helium at atmospheric pressure.

  20. Effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coating deposited onto carbon fiber reinforced epoxy composites

    International Nuclear Information System (INIS)

    This paper investigates the effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coatings deposited on carbon fiber reinforced epoxy composites (CFRE composites). The bond strength between the Zn-Al coatings and the substrates was tested on a RGD-5 tensile testing machine. The microstructures and phase composition of the as-sprayed coatings were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results showed that both the melting extent of Zn-Al particles and the bond strength of the coatings were evidently improved by increasing the spraying power. Moreover, the content of crystalline Zn-Al coatings was slightly changed. Observation of fracture surfaces showed that the Zn-Al coatings could bond well with the carbon fiber bundles using 40 kW spraying power.

  1. Estudio Experimental de Piezas Lineales de Hormigón Reforzadas con Fibras de Carbono Experimental Study of Reinforced Concrete Beams Strengthened with Carbon Fibers

    Directory of Open Access Journals (Sweden)

    M. Valcuende

    2004-01-01

    Full Text Available Se ha estudiado el comportamiento de seis vigas reforzadas simultáneamente con láminas y tejidos de fibra de carbono. Se analiza, para este tipo de refuerzos, la validez de dos de los métodos de cálculo posiblemente más utilizados. En ambos métodos se plantean las ecuaciones de equilibrio de fuerzas y momentos, pero se introducen suposiciones diferentes: i el acero tiene suficiente capacidad plástica para no romperse y ii el agotamiento se produce siempre por rotura de la lámina. Los resultados obtenidos ponen de manifiesto que refuerzos de láminas y tejidos de fibra de carbono influyen notablemente sobre las piezas, mejorando su capacidad portante y modificando su comportamiento estructural en cuanto a rigidez y ductilidadA study on the behaviour of six beams reinforced with carbon fiber laminates and fabrics was done. The validity of the two most commonly used methods of evaluating the effects of these reinforcements was analyzed. Both methods propose equilibrium equations based on forces and moments, although introducing two different suppositions: i that the steel posesses enough elasticity to avoid breakage, and ii failure is always produced by the breakage of the laminate. The results obtained demonstrate that carbon fiber laminates and fabric reinforcements have notable influence on the pieces, improving their loading capacities and modifying their structural behavior regarding stiffness and ductility

  2. Numerical Predictions of Damage and Failure in Carbon Fiber Reinforced Laminates Using a Thermodynamically-Based Work Potential Theory

    Science.gov (United States)

    Pineda, Evan Jorge; Waas, Anthony M.

    2013-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.

  3. Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant

    OpenAIRE

    Yoo-Jae Kim; Jiong Hu; Soon-Jae Lee; Byung-Hee You

    2010-01-01

    Fiber reinforced aerated lightweight concrete (FALC) was developed to reduce concrete's density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of...

  4. Time dependence of mesoscopic strain distribution for triaxial woven carbon-fiber-reinforced polymer under creep loading measured by digital image correlation

    Science.gov (United States)

    Koyanagi, Jun; Nagayama, Hideo; Yoneyama, Satoru; Aoki, Takahira

    2016-06-01

    This paper presents the time dependence of the mesoscopic strain of a triaxial woven carbon-fiber-reinforced polymer under creep loading measured using digital image correlation (DIC). Two types of DIC techniques were employed for the measurement: conventional subset DIC and mesh DIC. Static tensile and creep tests were carried out, and the time dependence of the mesoscopic strain distribution was investigated by applying these techniques. The ultimate failure of this material is dominated by inter-bundle decohesion caused by relative rigid rotation and relating shear stress. Therefore, these were focused on in the present study. During the creep tests, the fiber directional strain, shear strain, and rotation were monitored using the DIC, and the mechanism for the increase in the specimen's macro-strain over time was investigated based on the results obtained by the DIC measurement.

  5. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  6. Thermoelectric behavior of carbon fiber reinforced lightweight concrete with mineral admixtures%炭纤维增强轻质矿粉混凝土的热电行为

    Institute of Scientific and Technical Information of China (English)

    Bahar Demirel; Salih Yazicioglu

    2008-01-01

    Carbon fiber reinforced concrete can be used to sense temperature owing to the Seebeck effect caused by the p-type conductivity of short carbon fibers. Both the temperature sensing ability of the carbon fiber reinforced lightweight concrete and the influence of mineral admixtures on the Seebeck effect were investigated by measuring the thermo electric power of six Portland cement-based concretes with or without carbon fibers or mineral admixtures (fly ash, silica fume). It was found that the carbon fiber reinforced lightweight concretes had a Seebeck effect similar to the carbon fiber reinforced normal concrete, but their Seebeck coefficients were decreased by mineral admixtures. Carbon fiber reinforced lightweight concrete with mineral admixtures can be used as a thermal sensor in buildings.%炭纤维增强混凝土能用来感知温度,其因在于短炭纤维的P-型传导性引起的塞贝克(Seebeck)效应所致.通过测量添加炭纤维或矿质掺和物(飞灰、硅土粉)前后六种波特兰水泥基混凝土的热电功率,研究了炭纤维增强轻质混凝土热敏的能力及其矿质掺合物对Seebeck效应的影响.结果表明: 炭纤维增强轻质混凝土具有类似于炭纤维增强标准混凝土的Seebeck效应,只是Seebeck系数因掺合了矿粉而减低.掺有矿粉的炭纤维增强轻质混凝土可用作建筑物的热传感器.

  7. Automatic Fiber Orientation Detection for Sewed Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Automatic production and precise positioning of carbon fiber reinforced plastics (FRP) require precise detection of the fiber orientations. This paper presents an automatic method for detecting fiber orientations of sewed carbon fibers in the production of FRP. Detection was achieved by appropriate use of regional filling, edge detection operators, autocorrelation methods, and the Hough transformation. Regional filling was used to reduce the influence of the sewed regions, autocorrelation was used to clarify the fiber directions, edge detection operators were used to extract the edge features for the fiber orientations, and the Hough transformation was used to calculate the angles. Results for two kinds of carbon fiber materials show that the method is relatively quick and precise for detecting carbon fiber orientations.

  8. Numerical simulating and experimental study on the woven carbon fiber-reinforced composite laminates under low-velocity impact

    Science.gov (United States)

    Liu, Hanyang; Tang, Zhanwen; Pan, Lingying; Zhao, Weidong; Sun, Baogang; Jiang, Wenge

    2016-05-01

    Impact damage has been identified as a critical form of the defects that constantly threatened the reliability of composite structures, such as those used in the aerospace structures and systems. Low energy impacts can introduce barely visible damage and cause the degradation of structural stiffness, furthermore, the flaws caused by low-velocity impact are so dangerous that they can give rise to the further extended delaminations. In order to improve the reliability and load carrying capacity of composite laminates under low-velocity impact, in this paper, the numerical simulatings and experimental studies on the woven fiber-reinforced composite laminates under low-velocity impact with impact energy 16.7J were discussed. The low velocity impact experiment was carried out through drop-weight system as the reason of inertia effect. A numerical progressive damage model was provided, in which the damages of fiber, matrix and interlamina were considered by VUMT subroutine in ABAQUS, to determine the damage modes. The Hashin failure criteria were improved to cover the failure modes of fiber failure in the directions of warp/weft and delaminations. The results of Finite Element Analysis (FEA) were compared with the experimental results of nondestructive examination including the results of ultrasonic C-scan, cross-section stereomicroscope and contact force - time history curves. It is found that the response of laminates under low-velocity impact could be divided into stages with different damage. Before the max-deformation of the laminates occurring, the matrix cracking, fiber breakage and delaminations were simulated during the impactor dropping. During the releasing and rebounding period, matrix cracking and delaminations areas kept increasing in the laminates because of the stress releasing of laminates. Finally, the simulating results showed the good agreements with the results of experiment.

  9. Polypropylene matrix composites reinforced with coconut fibers

    OpenAIRE

    Maria Virginia Gelfuso; Pedro Vieira Gurgel da Silva; Daniel Thomazini

    2011-01-01

    Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples) or mechanically treated (ultrasonic shockwave-CMUV samples) were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (%) of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanic...

  10. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes inter

  11. Numerical and experimental investigation of the structural behavior of a carbon fiber reinforced ankle-foot orthosis.

    Science.gov (United States)

    Stier, Bertram; Simon, Jaan-Willem; Reese, Stefanie

    2015-05-01

    Ankle-foot orthoses (AFOs) are designed to enhance the gait function of individuals with motor impairments. Recent AFOs are often made of laminated composites due to their high stiffness and low density. Since the performance of AFO is primarily influenced by their structural stiffness, the investigation of the mechanical response is very important for the design. The aim of this paper is to present a three dimensional multi-scale structural analysis methodology to speed up the design process of AFO. The multi-scale modeling procedure was applied such that the intrinsic micro-structure of the fiber reinforced laminates could be taken into account. In particular, representative volume elements were used on the micro-scale, where fiber and matrix were treated separately, and on the textile scale of the woven structure. For the validation of this methodology, experimental data were generated using digital image correlation (DIC) measurements. Finally, the structural behavior of the whole AFO was predicted numerically for a specific loading scenario and compared with experimental results. It was shown that the proposed numerical multi-scale scheme is well suited for the prediction of the structural behavior of AFOs, validated by the comparison of local strain fields as well as the global force-displacement curves. PMID:25765189

  12. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites.

    Science.gov (United States)

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2016-01-01

    Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP.

  13. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites.

    Science.gov (United States)

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2016-01-01

    Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP. PMID:26447230

  14. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...

  15. Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon

    Directory of Open Access Journals (Sweden)

    Changlei Xia

    2015-12-01

    Full Text Available Kenaf fiber—polyester composites incorporated with powdered activated carbon (PAC were prepared using the vacuum-assisted resin transfer molding (VARTM process. The product demonstrates the electromagnetic interference (EMI shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution.

  16. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... assessment of the contribution of each type of fiber to the overall tensile response. Possible synergistic effects resulting from particular combinations of fibers need to be clearly identified. In the present study, the evaluation of the response of different fiber reinforced cementitious composite...

  17. Research progress on Domestic Carbon Fiber Reinforced Thermoplastic Composite%国内碳纤维增强热塑性复合材料研究进展

    Institute of Scientific and Technical Information of China (English)

    徐秋红; 谭臻; 闫烨; 刘丽慧; 耿志; 李云英

    2014-01-01

    综述了近几年国内碳纤维(CF)增强热塑性复合材料的研究进展,主要概述了CF不同预处理方式、CF含量、制备工艺、试验条件等对CF增强热塑性复合材料力学、摩擦磨损等性能的影响。%The research progresses on domestic carbon fiber (CF) reinforced thermoplastic composites in recent years were summarized. The influences of different pretreatment methods about CF,CF content,preparation technology and test conditions on mechanical,friction and wear properties of the composites were reviewed mainly.

  18. Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    Cheng-Peng Yang; Gui-Qiong Jiao; Bo Wang

    2011-01-01

    For fiber reinforced ceramic matrix composites (CMCs), oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process, the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon, causing strength degradation. But, the reason for SiC fiber degradation is the flaw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced, respectively. Meanwhile, the interphase recession and fiber strength degradation were considered. And then, the model was validated by application to a C/SiC composite.

  19. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  20. Homogenization of long fiber reinforced composites including fiber bending effects

    Science.gov (United States)

    Poulios, Konstantinos; Niordson, Christian F.

    2016-09-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.

  1. High-strength fiber-reinforced plastic reinforcement of wood and wood composite

    Energy Technology Data Exchange (ETDEWEB)

    Tingley, D.A.; Eng, P. [Oregon State Univ., Corvallis, OR (United States)

    1996-12-31

    Research and development underway since 1982 has led to the development of a method of reinforcing wood and wood composite structural products (WWC) using high-strength fiber-reinforced plastic. This method allows the use of less wood fiber and lower grade wood fiber for a given load capacity. The first WWC in which reinforcement has been marketed is glulam beams. Marketed under the trade name FiRP{trademark} Reinforced glulam, the product has gained code approval and is now being used in the construction of buildings and bridges in the United States, Japan and other countries. The high-strength fiber-reinforced plastic (FiRP{trademark} Reinforced panel (RP)) has specific characteristics that are required to provide for proper use in WWC`s. This paper discusses these characteristics and the testing requirements to develop code approved allowable design values for carbon, aramid and fiberglass RP`s for such uses. Specific issues such as in-service characteristics, i.e. long term creep tests and tension-tension fatigue tests, are discussed.

  2. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness......This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the matrix and the fibers....

  3. Flexural retrofitting of reinforced concrete structures using Green Natural Fiber Reinforced Polymer plates

    Science.gov (United States)

    Cervantes, Ignacio

    An experimental study will be carried out to determine the suitability of Green Natural Fiber Reinforced Polymer plates (GNFRP) manufactured with hemp fibers, with the purpose of using them as structural materials for the flexural strengthening of reinforced concrete (RC) beams. Four identical RC beams, 96 inches long, are tested for the investigation, three control beams and one test beam. The first three beams are used as references; one unreinforced, one with one layer of Carbon Fiber Reinforced Polymer (CFRP), one with two layers of CFRP, and one with n layers of the proposed, environmental-friendly, GNFRP plates. The goal is to determine the number of GNFRP layers needed to match the strength reached with one layer of CFRP and once matched, assess if the system is less expensive than CFRP strengthening, if this is the case, this strengthening system could be an alternative to the currently used, expensive CFRP systems.

  4. Research Progress of Carbon Fiber-Reinforced Polylactic Acid Composites%碳纤维增强聚乳酸复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    李健; 杨柳; 杨建忠

    2012-01-01

    The carbon fiber-reinforced polylactide(C/PLA) composites made of the carbon fiber as reinfoced fiber and polylactide as matrix are introduced. Compared with polylactied material, mechanical properties and shock resistance performance of the composites are improved, and they have some degradability. They also have favorable biocompatibility, and are suitable for development of internal fixation for bone fracture, bone repair material, etc. The main problems existing in the industrial production and application are summarized and the future application research are prospected.%介绍了以碳纤维为增强纤维、聚乳酸为基体,采取相应的加工工艺制备出碳纤维增强聚乳酸复合材料的种类与制备工艺,研究了该复合材料的相关性能,发现该材料与聚乳酸材料相比力学性能、抗冲击性能得到了明显改善,有一定的降解性,并且生物相容性良好,适合于开发骨折内固定材料、骨修复材料等.概述了碳纤维增强聚乳酸复合材料在工业化生产及应用中存在的主要问题,并对今后的应用研究进行了展望.

  5. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Razaq, Aamir; Sjoedin, Martin; Stroemme, Maria; Mihranyan, Albert [Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala (Sweden); Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden); Nyholm, Leif [Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden)

    2012-04-15

    Composites of polypyrrole (PPy) and Cladophora nanocellulose, reinforced with 8 {mu}m-thick chopped carbon filaments, can be used as electrode materials to obtain paper-based energy-storage devices with unprecedented performance at high charge and discharge rates. Charge capacities of more than 200 C g{sup -1} (PPy) are obtained for paper-based electrodes at potential scan rates as high as 500 mV s{sup -1}, whereas cell capacitances of {proportional_to}60-70 F g{sup -1} (PPy) are reached for symmetric supercapacitor cells with capacitances up to 3.0 F (i.e.,0.48 F cm{sup -2}) when charged to 0.6 V using current densities as high as 31 A g{sup -1} based on the PPy weight (i.e., 99 mA cm{sup -2}). Energy and power densities of 1.75 Wh kg{sup -1} and 2.7 kW kg{sup -1}, respectively, are obtained when normalized with respect to twice the PPy weight of the smaller electrode. No loss in cell capacitance is seen during charging/discharging at 7.7 A g{sup -1} (PPy) over 1500 cycles. It is proposed that the nonelectroactive carbon filaments decrease the contact resistances and the resistance of the reduced PPy composite. The present straightforward approach represents significant progress in the development of low-cost and environmentally friendly paper-based energy-storage devices for high-power applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    Science.gov (United States)

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan

    2014-02-01

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.

  7. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    Energy Technology Data Exchange (ETDEWEB)

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan [Centre for Nondestructive Evaluation, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-02-18

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.

  8. ANSYS simulation study on displacement of carbon fiber reinforced concrete beam%碳纤维加固混凝土梁位移ANSYS模拟研究

    Institute of Scientific and Technical Information of China (English)

    王良超; 杨治华; 刘敏

    2012-01-01

    For beam mid-span displacement, theoretical calculation and ANSYS modeling computational analysis have been done to quantitative analysis of the effect of carbon fiber reinforcement beam, and improve the further relevant reinforcement theory, to provide a theoretical and com- putational support for real-strengthening works. The analysis shows that the values and trends of finite element analysis and theoretical calculations are very similar, which indicates that the finite element analysis is capable to simulate the beam actual stress state, the displacement of FRP rein- forced beam decreases 14.08%.%针对梁体跨中位移,通过理论计算以及ANSYS建模分析计算分析比较,定量分析碳纤维加固梁体的效果,进一步完善相关加固理论,为现实加固工程提供理论和计算支持,分析表明,有限元分析计算值和理论计算值在数值和发展趋势上都有很大的相似性,说明有限元分析能较好的模拟梁体实际受力状态,FRP加固后梁体位移减小14.08%。

  9. Comparative study on submillimeter flaws in stitched T-joint carbon fiber reinforced polymer by infrared thermography, microcomputed tomography, ultrasonic c-scan and microscopic inspection

    Science.gov (United States)

    Zhang, Hai; Hassler, Ulf; Genest, Marc; Fernandes, Henrique; Robitaille, Francois; Ibarra-Castanedo, Clemente; Joncas, Simon; Maldague, Xavier

    2015-10-01

    Stitching is used to reduce dry-core (incomplete infusion of T-joint core) and reinforce T-joint structure. However, it may cause new types of flaws, especially submillimeter flaws. Microscopic inspection, ultrasonic c-scan, pulsed thermography, vibrothermography, and laser spot thermography are used to investigate the internal flaws in a stitched T-joint carbon fiber-reinforced polymer (CFRP) matrix composites. Then, a new microlaser line thermography is proposed. Microcomputed tomography (microCT) is used to validate the infrared results. A comparison between microlaser line thermography and microCT is performed. It was concluded that microlaser line thermography can detect the internal submillimeter defects. However, the depth and size of the defects can affect the detection results. The microporosities with a diameter of less than 54 μm are not detected in the microlaser line thermography results. Microlaser line thermography can detect the microporosity (a diameter of 0.162 mm) from a depth of 90 μm. However, it cannot detect the internal microporosity (a diameter of 0.216 mm) from a depth of 0.18 mm. The potential causes are given. Finally, a comparative study is conducted.

  10. Improvement of carbon fiber surface properties using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for struetural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface.

  11. Mix design of steel fiber reinforced concrete

    OpenAIRE

    Moreno, E.; Fernández Cánovas, M.

    1997-01-01

    Mix design of steel fiber reinforced concrete (SFRC) is concerned with achieving a workability, homogeneity, durability and strength suitable for its use. Variables defining any mix design of SFRC are commented below, as well as their influence on some properties of fresh and hardened SFRC. A special attention is paid to concrete, since it's the main use of steel fibers in Spain now, followed by paving construction.

    El objetivo de una correcta dosificación de horm...

  12. Polypropylene matrix composites reinforced with coconut fibers

    Directory of Open Access Journals (Sweden)

    Maria Virginia Gelfuso

    2011-09-01

    Full Text Available Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples or mechanically treated (ultrasonic shockwave-CMUV samples were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (% of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanical properties were investigated according to ASTM D570-98 and ASTM D638-03, respectively. Electrical characterizations were carried out to identify applications of these composites in the electrical sector. NBR 10296-Electrical Tracking Standard (specific to industry applications and conductivity measurements were obtained applying 5 kV DC to the samples. CMUV samples containing 5 vol. (% fiber presented superior tensile strength values (σ~28 MPa compared to the untreated fibers composite (σ~22 MPa or alkali treatment (σ~24 MPa. However, CMUV composites containing 10 vol. (% fiber presented best results for the electrical tracking test and electrical resistivity (3 × 10(7 Ω.m. The results suggest that composites reinforced with mechanically treated coconut fibers are suitable for electrical applications.

  13. Nano polypeptide particles reinforced polymer composite fibers.

    Science.gov (United States)

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  14. Fatigue of continuous fiber reinforced metallic materials

    Science.gov (United States)

    Johnson, W. S.; Mirdamadi, M.; Bakuckas, J. G., Jr.

    1993-01-01

    The complex damage mechanisms that occur in fiber reinforced advanced metallic materials are discussed. As examples, results for several layups of SCS-6/Ti-15-3 composites are presented. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room and elevated temperatures. Test conditions included isothermal, non-isothermal, and simulated mission profile thermomechanical fatigue. Test results indicated that the stress in the 0 degree fibers is the controlling factor for fatigue life for a given test condition. An effective strain approach is presented for predicting crack initiation at notches. Fiber bridging models were applied to crack growth behavior.

  15. Machinability study of Carbon Fiber Reinforced Polymer in the longitudinal and transverse direction and optimization of process parameters using PSO–GSA

    Directory of Open Access Journals (Sweden)

    K. Shunmugesh

    2016-09-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRP composites are widely used in aerospace industry in lieu of its high strength to weight ratio. This study is an attempt to evaluate the machinability of Bi-Directional Carbon Fiber–Epoxy composite and optimize the process parameters of cutting speed, feed rate and drill tool material. Machining trials were carried using drill bits made of high speed steel, TiN and TiAlN at different cutting speeds and feed rates. Output parameters of thrust force and torque were monitored using Kistler multicomponent dynamometer 9257B and vibrations occurring during machining normal to the work surface were measured by a vibration sensor (Dytran 3055B. Linear regression analysis was carried out by using Response Surface Methodology (RSM, to correlate the input and output parameters in drilling of the composite in the longitudinal and transverse directions. The optimization of process parameters were attempted using Genetic Algorithm (GA and Particle Swarm Optimization–Gravitational Search Algorithm (PSO–GSA techniques.

  16. FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Costa, Franco; Jin, Xiaoshi; Tucker III, Charles L.; Fifield, Leonard S.

    2015-03-23

    A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.

  17. Leaf spring made of fiber-reinforced resin

    Science.gov (United States)

    Hori, J.

    1986-01-01

    A leaf spring made of a matrix reinforced by at least two types of reinforcing fibers with different Young's modulus is described in this Japanese patent. At least two layers of reinforcing fibers are formed by partially arranging the reinforcing fibers toward the direction of the thickness of the leaf spring. A mixture of different types of reinforced fibers is used at the area of boundary between the two layers of reinforced fibers. The ratio of blending of each type of reinforced fiber is frequently changed to eliminate the parts where discontinuous stress may be applied to the leaf spring. The objective of this invention is to prevent the rapid change in Young's modulus at the boundary area between each layer of reinforced fibers in the leaf spring.

  18. Fiber reinforced titanium alloy composites

    International Nuclear Information System (INIS)

    The more important titanium matrix composites studied to date are composed of titanium alloy matrices, such as Ti 6Al--4V, reinforced with filaments of boron, silicon carbide, or sapphire, as well as with wires of beryllium or refractory metal alloys. The primary fabrication techniques for these materials involve vacuum hot pressing at 1300 to 16000F, alternate layers of titanium alloy matrix foils, and suitably aligned filament mats. The more ductile reinforcements such as beryllium, have been incorporated into titanium matrix composites by coextrusion. Fabrication of composite gas turbine engine fan blades from both boron (SiC coated) and beryllium reinforced Ti 6Al--4V alloy is described. Feasibility studies have been made in the fabrication of Boron/Ti 6Al--4V composite rings for possible gas turbine engine disc applications. Mechanical properties of various titanium matrix composite systems are presented and demonstrate the attractive elevated temperature properties of some systems to 10000F. (35 fig, 6 tables) (U.S.)

  19. ELECTRODEPOSITION OF POLYMERS ON CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    HE Jiasong; WU Renjie

    1983-01-01

    Styrene-co-maleic anhydride, vinyl acetate-co-maleic anhydride, methyl methacrylate-co-maleic anhydride copolymers were deposited on the surface of carbon fibers by an electrodeposition technique.The anion-free radical mechanism of this process and the physical adhesion to the surface were preliminarily confirmed. The adhesion at fiber-resin matrix interface in carbon fiber reinforced plastics was improved by the electrodeposited polymer interlayer and the shear failure occurred mainly in the matrix.Interlaminar shear strength of the unidirectional carbon fiber reinforced epoxy composite is increased from about 600 kg/cm2 to 1000 kg/cm2 by electrodeposition of polymers and the strength loss of the composite which has been immersed in boiling water for 100 hrs is decreased.

  20. Surface analysis of plasma grafted carbon fiber

    International Nuclear Information System (INIS)

    The surface characteristics of carbon fibers were studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and wetting measurements. The surface of carbon fiber was modified by means of plasma graft silsesquioxane. The oxygen/carbon and silicon/carbon ratio increased rapidly after treatments. Fitting the C 1s, O 1s, and Si 2p spectra demonstrated that new photopeaks were emerged, which were indicated C-Si, Si-O groups, respectively. The degree of surface roughness and the wettability of carbon fiber surface were both increased by plasma graft silsesquioxane. The results may shed some light on the design of the appropriate surface structure, which could react with resin, and the manufacture of the carbon fiber reinforced composites

  1. Modeling of short fiber reinforced injection moulded composite

    Science.gov (United States)

    Kulkarni, A.; Aswini, N.; Dandekar, C. R.; Makhe, S.

    2012-09-01

    A micromechanics based finite element model (FEM) is developed to facilitate the design of a new production quality fiber reinforced plastic injection molded part. The composite part under study is composed of a polyetheretherketone (PEEK) matrix reinforced with 30% by volume fraction of short carbon fibers. The constitutive material models are obtained by using micromechanics based homogenization theories. The analysis is carried out by successfully coupling two commercial codes, Moldflow and ANSYS. Moldflow software is used to predict the fiber orientation by considering the flow kinetics and molding parameters. Material models are inputted into the commercial software ANSYS as per the predicted fiber orientation and the structural analysis is carried out. Thus in the present approach a coupling between two commercial codes namely Moldflow and ANSYS has been established to enable the analysis of the short fiber reinforced injection moulded composite parts. The load-deflection curve is obtained based on three constitutive material model namely an isotropy, transversely isotropy and orthotropy. Average values of the predicted quantities are compared to experimental results, obtaining a good correlation. In this manner, the coupled Moldflow-ANSYS model successfully predicts the load deflection curve of a composite injection molded part.

  2. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  3. Fiber glass reinforced structural materials for aerospace application

    Science.gov (United States)

    Bartlett, D. H.

    1968-01-01

    Evaluation of fiber glass reinforced plastic materials concludes that fiber glass construction is lighter than aluminum alloy construction. Low thermal conductivity and strength makes the fiber glass material useful in cryogenic tank supports.

  4. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  5. Lignocellulosic Fibers and Nanocellulose as Reinforcing Filler in Thermoplastic Composites

    OpenAIRE

    Ayrilmis, Nadir; Ashori, Alireza

    2014-01-01

    Natural fibers have received considerable attention as a substitute for synthetic fiber reinforcements in thermoplastics. As replacements for conventional synthetic fibers like aramid and glass fibers, natural fibers are increasingly used for reinforcement in thermoplastics due to their low density, good thermal insulation and mechanical properties, reduced tool wear, unlimited availability, low price, and problem-free disposal. Natural fibers also offer economical and environmental advantage...

  6. Artifacts in spine magnetic resonance imaging due to different intervertebral test spacers: an in vitro evaluation of magnesium versus titanium and carbon-fiber-reinforced polymers as biomaterials

    International Nuclear Information System (INIS)

    Intervertebral spacers are made of different materials, which can affect the postfusion magnetic imaging (MRI) scans. Susceptibility artifacts especially for metallic implants can decrease the image quality. This study aimed to determine whether magnesium as a lightweight and biocompatible metal is suitable as a biomaterial for spinal implants based on its MRI artifacting behavior. To compare artifacting behaviors, we implanted into one porcine cadaveric spine different test spacers made of magnesium, titanium, and carbon-fiber-reinforced polymers (CFRP). All test spacers were scanned using two T1-TSE MRI sequences. The artifact dimensions were traced on all scans and statistically analyzed. The total artifact volume and median artifact area of the titanium spacers were statistically significantly larger than magnesium spacers (p 0.05). Our results suggest that spinal implants made with magnesium alloys will behave more like CFRP devices in MRI scans. Given its osseoconductive potential as a metal, implant alloys made with magnesium would combine the advantages to the two principal spacer materials currently used but without their limitations, at least in terms of MRI artifacting. (orig.)

  7. Quantitative Damage Detection and Sparse Sensor Array Optimization of Carbon Fiber Reinforced Resin Composite Laminates for Wind Turbine Blade Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2014-04-01

    Full Text Available The active structural health monitoring (SHM approach for the complex composite laminate structures of wind turbine blades (WTBs, addresses the important and complicated problem of signal noise. After illustrating the wind energy industry’s development perspectives and its crucial requirement for SHM, an improved redundant second generation wavelet transform (IRSGWT pre-processing algorithm based on neighboring coefficients is introduced for feeble signal denoising. The method can avoid the drawbacks of conventional wavelet methods that lose information in transforms and the shortcomings of redundant second generation wavelet (RSGWT denoising that can lead to error propagation. For large scale WTB composites, how to minimize the number of sensors while ensuring accuracy is also a key issue. A sparse sensor array optimization of composites for WTB applications is proposed that can reduce the number of transducers that must be used. Compared to a full sixteen transducer array, the optimized eight transducer configuration displays better accuracy in identifying the correct position of simulated damage (mass of load on composite laminates with anisotropic characteristics than a non-optimized array. It can help to guarantee more flexible and qualified monitoring of the areas that more frequently suffer damage. The proposed methods are verified experimentally on specimens of carbon fiber reinforced resin composite laminates.

  8. Quantitative Damage Detection and Sparse Sensor Array Optimization of Carbon Fiber Reinforced Resin Composite Laminates for Wind Turbine Blade Structural Health Monitoring

    Science.gov (United States)

    Li, Xiang; Yang, Zhibo; Chen, Xuefeng

    2014-01-01

    The active structural health monitoring (SHM) approach for the complex composite laminate structures of wind turbine blades (WTBs), addresses the important and complicated problem of signal noise. After illustrating the wind energy industry's development perspectives and its crucial requirement for SHM, an improved redundant second generation wavelet transform (IRSGWT) pre-processing algorithm based on neighboring coefficients is introduced for feeble signal denoising. The method can avoid the drawbacks of conventional wavelet methods that lose information in transforms and the shortcomings of redundant second generation wavelet (RSGWT) denoising that can lead to error propagation. For large scale WTB composites, how to minimize the number of sensors while ensuring accuracy is also a key issue. A sparse sensor array optimization of composites for WTB applications is proposed that can reduce the number of transducers that must be used. Compared to a full sixteen transducer array, the optimized eight transducer configuration displays better accuracy in identifying the correct position of simulated damage (mass of load) on composite laminates with anisotropic characteristics than a non-optimized array. It can help to guarantee more flexible and qualified monitoring of the areas that more frequently suffer damage. The proposed methods are verified experimentally on specimens of carbon fiber reinforced resin composite laminates. PMID:24763210

  9. 碳纤维/氰酸酯复合材料尺寸稳定性能%Stability of Carbon Fiber Reinforced Cyanate Ester Composite

    Institute of Scientific and Technical Information of China (English)

    诸静; 郝旭峰; 叶周军

    2013-01-01

    对碳纤维/氰酸酯复合材料的吸湿、空间放气、吸湿变形性能进行了研究,并与传统碳纤维/环氧复合材料的性能进行对比.研究表明:氰酸酯基复合材料的吸湿性能优于碳纤维/环氧树脂复合材料,且其各项空间环境性能均与环氧树脂基复合材料相当.%In this paper,moisture absorption,outgas capacity in vacuum and deformation after moisture absorption of carbon fiber reinforced cyanate ester composite were studied,and were compared with corresponding capacity of epoxy resin composites.Result show that the moisture absorption of cyanate ester composite is lower than epoxy resin composites,and capacity in simulated space environment is compatible with epoxy resin composites.

  10. Impact resistances of carbon fiber-reinforced aluminum laminates%碳纤维增强铝合金板的抗冲击性能

    Institute of Scientific and Technical Information of China (English)

    蔺晓红; 张涛; 张小波; 刘土光

    2013-01-01

    The damage in the carbon fiber-reinforced aluminum laminates (CARALs) under low-velocity impact was numerically analyzed by using the three-dimensional dynamic finite element software,ABAQUS.Particular attention was paid on the dynamic response of the CARALs to low-velocity impact.And case analyses were conducted and compared with the existent results to verify the correctness of the above method.The impact resistances of the CARALs were discussed from the matrix damage,debonding and energy absorption and compared with those of the tradition aluminum sheets.The results display that the CARALs have better impact resistances.%采用ABAQUS/Explicit有限元分析软件对碳纤维增强铝合金层合板(CARAL)受低速冲击进行数值模拟,研究其在承载过程中的动力响应及损伤.首先通过具体算例与文献中的结果相比较,验证了方法的有效性;其次从试件的脱层和吸能等抗冲击角度对CARAL进行分析,并与传统的纯碳/环氧树脂胶片(CFRP)进行抗冲击对比分析,结果表明,CARAL具有较好的抗冲击性能.

  11. Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

  12. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  13. STUDY THE CREEP OF TUBULAR SHAPED FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Najat J. Saleh

    2013-05-01

    Full Text Available Inpresent work tubular –shaped fiber reinforced composites were manufactured byusing two types of resins ( Epoxy and unsaturated polyester and separatelyreinforced with glass, carbon and kevlar-49 fibers (filament and woven roving,hybrid reinforcement composites of these fibers were also prepared. The fiberswere wet wound on a mandrel using a purposely designed winding machine,developed by modifying an ordinary lathe, in winding angle of 55° for filament. A creep test was made of either the fulltube or specimens taken from it. Creep was found to increase upon reinforcementin accordance to the rule of mixture and mainly decided by the type of singleor hybridized fibers. The creep behavior, showed that the observed strain tendsto appear much faster at higher temperature as compared with that exhibited atroom temperate. The creep rate also found to be depending on fiber type, matrixtype, and the fiber /matrix bonding. The creep energy calculated fromexperimental observations was found to exhibit highest value for hybridizedreinforcement.

  14. Carbon fiber content measurement in composite

    Science.gov (United States)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  15. Micromechanical failure in fiber-reinforced composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    Micromechanical failure mechanisms occurring in unidirectional fiber-reinforced composites are studied by means of the finite element method as well as experimental testing. This study highlights the effect of micro-scale features such as fiber/matrix interfacial debonding, matrix cracking......, the failure locus of the composite lamina under different loading conditions is obtained by means of computational micromechanics and compared with the predictions of Puck’s model. The results are in very good agreement with the predictions of Puck’s model under different interfiber failure modes. In order...

  16. Chemical Analysis of Emu Feather Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    V.Chandra sekhar

    2015-07-01

    Full Text Available A composite is usually made up of at least two materials out of which one is binding material called as matrix and other is a reinforcement material known as fiber. For the past ten years research is going on to explore possible composites with natural fiber like plant fibers and animal fibers. The important characteristics of composites are their strength, hardness light in weight. It is also necessary to study about the resistance of the composites for deferent chemicals. In the present work, composites prepared with epoxy (Araldite LY-556 as resin and „emu‟ bird feathers as fiber have been tested for chemical resistance. The composites were prepared by varying fiber loading (P of „emu‟ feathers ranging from 1 to 5 and length (L of feather fibers from 1 to 5 cm. The composites thus prepared were subjected to various chemicals (Acids, Alkalis, solvents etc.. Observations were plotted and studied. The results reveal that there will be weight gain for the composite samples after three days, when treated with Hydrochloric acid, Sodium carbonate, Acetic acid, Sodium hydroxide, Nitric acid and Ammonium hydroxide. Weight loss was observed for all the samples including pure epoxy when treated with Benzene, Carbon tetra chloride and Toluene.

  17. Φ10mm 碳纤维复合材料管成型工艺及性能研究%Forming Process and Properties of Φ10 mm Carbon Fiber Reinforced Composite Pipe

    Institute of Scientific and Technical Information of China (English)

    赵锐霞; 尹亮; 潘玲英; 董波

    2012-01-01

    The forming process and properties of carbon fiber reinforced composite pipe with the diameter of 10mm were investigated. The results show that the carbon fiber reinforced composite pipe fabricated by the thermal shrinkage process has the advantages of simple forming process and better quality reliability. Compared to the stainless steel pipe with the diamemer of 10 mm, the carbon fiber reinforced composite pipe with the same diameter has the e-quivalent flexural stiffness. While the flexural strength of composite pipe is more than three times of the stainless steel with the same diameter, and its weight is only half of the stainless steel pipe. In addition, the composite has good dimension precision which can meet the design requirements.%对外径为Φ10 mm 碳纤维复合材料管成型工艺及性能进行了研究.结果表明,采用热缩工艺成型的碳纤维复合材料管工艺简单、质量可靠,Φ10 mm 碳纤维复合材料管件弯曲刚度与不锈钢管相当,弯曲强度为不锈钢的3倍以上,质量仅为不锈钢的50%,尺寸精度满足设计要求.

  18. CO2-Laser Cutting Fiber Reinforced Polymers

    Science.gov (United States)

    Mueller, R.; Nuss, Rudolf; Geiger, Manfred

    1989-10-01

    Guided by experimental investigations laser cutting of glass fiber reinforced reactive injection moulded (RRIM)-polyurethanes which are used e.g. in car industry for bumpers, spoilers, and further components is described. A Comparison with other cutting techniques as there are water jet cutting, milling, punching, sawing, cutting with conventional knife and with ultrasonic excited knife is given. Parameters which mainly influence cutting results e.g. laser power, cutting speed, gas nature and pressure will be discussed. The problematic nature in characterising micro and macro geometry of laser cut edges of fiber reinforced plastic (FRP) is explained. The topography of cut edges is described and several characteristic values are introduced to specify the obtained working quality. The surface roughness of laser cut edges is measured by both, an optical and a mechanical sensor and their reliabilities are compared.

  19. Modelling of the fracture toughness anisotropy in fiber reinforced concrete

    OpenAIRE

    Tarasovs, S.; J. Krūmiņš; V. Tamužs

    2016-01-01

    Steel fiber reinforced concrete is potentially very promising material with unique properties, which currently is widely used in some applications, such as floors and concrete pavements. However, lack of robust and reliable models of fiber reinforced concrete fracture limits its application as structural material. In this work a numerical model is proposed for predicting the crack growth in fiber reinforced concrete. The mixing of the steel fibers with the concrete usually creates...

  20. Design and analysis of reinforced fiber composites

    CERN Document Server

    Yamagata, Nobuki

    2016-01-01

    The papers in this volume present a broad range of applications for reinforced fiber composites - from thin shell structures to tires. Linear and nonlinear structural behavior (from linear buckling to nonlinear yelding and fracture) are discussed as well as different materials are presented. Latest developments in computational methods for constructíons are presented which will help to save money and time. This is an edited collection of papers presented at a symposium at the WCCM, Barcelona, 2014.

  1. Influence of Carbon Fiber Contents on the Temperature Sensibility of CFRC Road Material

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence greatly on the temperature sensibility of CFRC road material.Only with a certain amount of carbon fiber can CFRC show a sensitive and stable temperature sensibility.

  2. Fiber reinforced polymer composites for bridge structures

    Directory of Open Access Journals (Sweden)

    Alexandra CANTORIU

    2013-12-01

    Full Text Available Rapid advances in construction materials technology have led to the emergence of new materials with special properties, aiming at safety, economy and functionality of bridges structures. A class of structural materials which was originally developed many years ago, but recently caught the attention of engineers involved in the construction of bridges is fiber reinforced polymer composites. This paper provides an overview of fiber reinforced polymer composites used in bridge structures including types, properties, applications and future trends. The results of this study have revealed that this class of materials presents outstanding properties such as high specific strength, high fatigue and environmental resistance, lightweight, stiffness, magnetic transparency, highly cost-effective, and quick assembly, but in the same time high initial costs, lack of data on long-term field performance, low fire resistance. Fiber reinforced polymer composites were widely used in construction of different bridge structures such as: deck and tower, I-beams, tendons, cable stands and proved to be materials for future in this field.

  3. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    OpenAIRE

    Wei Wang(College of William and Mary); Yuhe Zhu; Susan Liao; Jiajia Li

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matr...

  4. Experimental study about laser cutting of carbon fiber reinforced polymer%激光切割碳纤维复合材料的实验研究

    Institute of Scientific and Technical Information of China (English)

    花银群; 肖淘; 薛青; 刘海霞; 叶云霞; 陈瑞芳

    2013-01-01

    In order to obtain the influence rule of laser cutting parameters on carbon fiber reinforced polymer (CFRP), CFRPs were cut with a 500W millisecond pulsed Nd∶YAG laser in air and under the water respectively .The relationships of pulse energy , frequency, cutting speed, gas pressure with the cutting quality were investigated by means of the one-factor experimental design .The influence of the laser cutting parameters on kerf width , fiber pull out at the beam entrance , fiber pull out at the beam exit and taper angle were obtained .The laser cutting mechanism was also analyzed and studied .The research shows that the laser cutting under the water can greatly reduce the heat affected zone generated by the laser cutting, which provides some reference for the further research of the laser cutting CFRP under the water .%  为了获得激光切割参量对碳纤维复合材料的影响规律,利用额定功率为500W的毫秒脉冲Nd∶YAG激光器,分别进行了在空气中和水下切割碳纤维复合材料( CFRP )的实验研究。采用单因素实验法,考察了脉冲能量、频率、切割速度与气体压力等激光参量对切割质量的影响,获得了激光参量对切割CFRP材料切口的切缝宽度、正面纤维拔出长度、背面纤维拔出长度与锥角的影响规律,并对激光切割机理进行了分析研究。结果表明,水下切割能有效地减小激光切割产生的热影响区。这为继续开展激光水下切割CFRP的研究提供了参考。

  5. Continuous fiber-reinforced titanium aluminide composites

    Science.gov (United States)

    Mackay, R. A.; Brindley, P. K.; Froes, F. H.

    1991-01-01

    An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.

  6. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  7. On the Simulation of Kink Bands in Fiber Reinforced Composites

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Mikkelsen, Lars P.; Jensen, Henrik Myhre

    2007-01-01

    Simulations of kink band formation in fiber reinforced composites are carried out using the commercial finite element program ABAQUS. A smeared-out, plane constitutive model for fiber reinforced materials is implemented as a user subroutine, and effects of fiber misalignment on elastic and plastic...

  8. Research and Application Development of Carbon Fiber Reinforced Structural Microwave- absorbing Composite Materials%结构型碳纤维吸波复合材料的研究及应用

    Institute of Scientific and Technical Information of China (English)

    李晶晶; 田启祥; 邹南智; 殷德飞

    2012-01-01

    The carbon fiber reinforced structural microwave - absorbing composite materials are multi - functional ma- terials which have the characteristic of radar - absorbing as well as high strength and light weight. This kind of materials has become an important development direction of radar stealthy materials. Several kind of microwave - absorbing carbon fiber such as irregular cross - section carbon fiber, chiral carbon fiber and carbon nanotubes as well as new type structures were introduced in this paper. Fina|ly,the development tendency was predicted.%结构型碳纤维吸波复合材料结合了复合材料轻质高强的结构优势和吸波特性,是雷达隐身材料的重要发展方向。本文主要从异型截面碳纤维、手性碳纤维和碳纳米管等新型吸波碳纤维增强体以及夹芯结构、点阵结构形式等方面总结了结构型碳纤维吸波复合材料国内外的最新研究和应用进展,并指出了未来发展方向。

  9. Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations

    International Nuclear Information System (INIS)

    This paper focuses on the effect of fiber orientation and stacking sequence on the progressive mixed mode delamination failure in composite laminates using fracture experiments and finite element (FE) simulations. Every laminate is modelled numerically combining damageable layers with defined fiber orientations and cohesive zone interface elements, subjected to mixed mode bending. The numerical simulations are then calibrated and validated through experiments, conducted following standardized mixed mode delamination tests. The numerical model is able to successfully capture the experimentally observed effects of fiber angle orientations and variable stacking sequences on the global load-displacement response and mixed mode inter-laminar fracture toughness of the various laminates. For better understanding of the failure mechanism, fracture surfaces of laminates with different stacking sequences are also studied using scanning electron microscopy (SEM).

  10. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite.

    Science.gov (United States)

    Deng, Yi; Liu, Xiaochen; Xu, Anxiu; Wang, Lixin; Luo, Zuyuan; Zheng, Yunfei; Deng, Feng; Wei, Jie; Tang, Zhihui; Wei, Shicheng

    2015-01-01

    As United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. In this study, CFRPEEK-nanohydroxyapatite ternary composites (PEEK/n-HA/CF) with variable surface roughness have been successfully fabricated. The effect of surface roughness on their in vitro cellular responses of osteoblast-like MG-63 cells (attachment, proliferation, apoptosis, and differentiation) and in vivo osseointegration is evaluated. The results show that the hydrophilicity and the amount of Ca ions on the surface are significantly improved as the surface roughness of composite increases. In cell culture tests, the results reveal that the cell proliferation rate and the extent of osteogenic differentiation of cells are a function of the size of surface roughness. The composite with moderate surface roughness significantly increases cell attachment/proliferation and promotes the production of alkaline phosphatase (ALP) activity and calcium nodule formation compared with the other groups. More importantly, the PEEK/n-HA/CF implant with appropriate surface roughness exhibits remarkably enhanced bioactivity and osseointegration in vivo in the animal experiment. These findings will provide critical guidance for the design of CFRPEEK-based implants with optimal roughness to regulate cellular behaviors, and to enhance biocompability and osseointegration. Meanwhile, the PEEK/n-HA/CF ternary composite with optimal surface roughness might hold great potential as bioactive biomaterial for bone grafting and tissue engineering applications.

  11. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  12. Carbon Fiber Composites

    Science.gov (United States)

    1997-01-01

    HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.

  13. The stress-strain relationships in wood and fiber-reinforced plastic laminae of reinforced glued-laminated wood beams

    Science.gov (United States)

    Tingley, Daniel Arthur

    The reinforcement of wood and wood composite structural products to improve their mechanical properties has been in practice for many years. Recently, the use of high-strength fiber-reinforced plastic (FRP) as a reinforcement in such applications has been commercialized. The reinforcement is manufactured using a standard pultrusion process or alternatively a sheet-forming process commonly referred to as "pulforming". The high-modulus fibers are predominately unidirectional, although off-axis fibers are often used to enhance off-axis properties. The fibers used are either of a single type or multiple types, which are called "hybrids". Unidirectional, single, and hybrid fiber FRP physical properties and characteristics were compared to wood. Full-scale reinforced glulams were tested. Aramid-reinforced plastics (ARP) used as tensile reinforcements were found to be superior in strength applications to other types of FRP made with fiber, such as carbon and fiberglass. Carbon/aramid-reinforced plastic (CARP) was shown to be superior in both modulus and strength design situations. Fiberglass was shown to be suitable only in hybrid situations with another fiber such as aramid or carbon and only in limited use situations where modulus was a design criteria. The testing and analysis showed that the global response of reinforced glulam beams is controlled by localized strength variations in the wood such as slope of grain, knots, finger joints, etc. in the tensile zone. The elemental tensile strains in the extreme wood tensile laminae, due to global applied loads, were found to be well below the strain at failure in clear wood samples recovered from the failure area. Two areas affecting the relationship between the wood and the FRP were investigated: compatibility of the wood and FRP materials and interface characteristics between the wood and FRP. The optimum strain value at yield point for an FRP was assessed to be slightly higher than the clear wood value in tension for a

  14. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.

  15. Piezoresistivity of carbon fiber reinforced cement-matrix composites%碳纤维增强水泥基复合材料的压阻效应

    Institute of Scientific and Technical Information of China (English)

    赵晓华; 李国宝; 王玉林; 李庚英

    2011-01-01

    The piezoresistivity of short carbon fiber reinforced cement-matrix composites(CFRC) was experimentally studied.The whole process of transition from positive to negative piezoresistivity was observed.The results show that under continuously drying and uniaxially cyclic loading,both positive and negative piezoresistivity occur in CFRC due to the variation of moisture content in the composites.For most cases the electrical resistivity of the composites decreases monotonically upon longitudinal compression,and piezoresistivity tends to be positive.However,its magnitude varies.Lower moisture content leads to stronger piezoresistivity.When moisture content reduces to about 3.19%~4.04%,the electrical resistivity of the composites increases monotonically upon compressive strain,and piezoresistivity tends to be negative.This effect is much stronger than that of positive piezoresistivity.It is proposed that the occurrence of these phenomena is attributable to both the tunneling effect between fibers and decreasing in pore network connectivity during compression.%试验研究了短切碳纤维增强水泥基复合材料(CFRC)的压阻效应,获得了正、负两种压阻效应相互转换的全过程。从隧道效应和孔隙的连通性角度对该现象的产生机理进行了探讨。结果表明,在连续烘干和单向循环加载条件下,CFRC的压阻效应会随含水量变化而发生改变。多数情况下,CFRC的体积电阻率随压应变单调减少,压阻效应为正。含水量越少,正压阻效应越明显。当含水量减少到约3.19%~4.04%的范围时,CFRC的体积电阻率随压应变单调增加,压阻效应为负。与正压阻效应相比,负压阻效应表现更强。CFRC的正、负压阻效应及其相互转换是隧道效应和孔隙连通性两方面相互影响的必然结果。

  16. The surface properties of carbon fibers and their adhesion to organic polymers

    Science.gov (United States)

    Bascom, W. D.; Drzal, L. T.

    1987-01-01

    The state of knowledge of the surface properties of carbon fibers is reviewed, with emphasis on fiber/matrix adhesion in carbon fiber reinforced plastics. Subjects treated include carbon fiber structure and chemistry, techniques for the study of the fiber surface, polymer/fiber bond strength and its measurement, variations in polymer properties in the interphase, and the influence of fiber matrix adhesion on composite mechanical properties. Critical issues are summarized and search recommendations are made.

  17. The Preparation and Performance of Carbon Fiber Reinforced Friction Material%碳纤维增强型摩擦材料的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    华少杰

    2014-01-01

    The research selects the best ratio of chopped carbon fiber as the reinforcing material, and adopts such key processes as precise preform process and curing process to prepare carbon fiber reinforced friction material which is then tested using MM1000-II friction and wear testing machine in terms of its friction rates, decline rates and wear rates in different conditions. The results indicate that the friction ma-terial shows stable friction coefficient and low wear rate. Also it is friendly to the steel plate. When car-bon fiber content is 15%, the friction and wear properties of the material are in the best condition.%选取最佳含量的短切碳纤维作为增强材料,采用精密预成型工艺、固化工艺等关键技术制备的碳纤维增强型摩擦材料,使用MM1000-II摩擦磨损试验机模拟不同工况对其进行摩擦性能、抗衰性能及磨损率试验。实验表明该摩擦材料摩擦系数受外界工况条件影响小,磨损率小、不损伤对偶。碳纤维含量为15%时,材料的摩擦磨损性能最佳。

  18. 碳纤维增强型摩擦材料的制备及性能研究%The Preparation and Performance of Carbon Fiber Reinforced Friction Material

    Institute of Scientific and Technical Information of China (English)

    华少杰

    2014-01-01

    The research selects the best ratio of chopped carbon fiber as the reinforcing material, and adopts such key processes as precise preform process and curing process to prepare carbon fiber reinforced friction material which is then tested using MM1000-II friction and wear testing machine in terms of its friction rates, decline rates and wear rates in different conditions. The results indicate that the friction ma-terial shows stable friction coefficient and low wear rate. Also it is friendly to the steel plate. When car-bon fiber content is 15%, the friction and wear properties of the material are in the best condition.%选取最佳含量的短切碳纤维作为增强材料,采用精密预成型工艺、固化工艺等关键技术制备的碳纤维增强型摩擦材料,使用MM1000-II摩擦磨损试验机模拟不同工况对其进行摩擦性能、抗衰性能及磨损率试验。实验表明该摩擦材料摩擦系数受外界工况条件影响小,磨损率小、不损伤对偶。碳纤维含量为15%时,材料的摩擦磨损性能最佳。

  19. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution

    Directory of Open Access Journals (Sweden)

    Wenzhi Wang

    2016-07-01

    Full Text Available Modeling the random fiber distribution of a fiber-reinforced composite is of great importance for studying the progressive failure behavior of the material on the micro scale. In this paper, we develop a new algorithm for generating random representative volume elements (RVEs with statistical equivalent fiber distribution against the actual material microstructure. The realistic statistical data is utilized as inputs of the new method, which is archived through implementation of the probability equations. Extensive statistical analysis is conducted to examine the capability of the proposed method and to compare it with existing methods. It is found that the proposed method presents a good match with experimental results in all aspects including the nearest neighbor distance, nearest neighbor orientation, Ripley’s K function, and the radial distribution function. Finite element analysis is presented to predict the effective elastic properties of a carbon/epoxy composite, to validate the generated random representative volume elements, and to provide insights of the effect of fiber distribution on the elastic properties. The present algorithm is shown to be highly accurate and can be used to generate statistically equivalent RVEs for not only fiber-reinforced composites but also other materials such as foam materials and particle-reinforced composites.

  20. Bending Test of a Variable-Stiffness Fiber-Reinforced Composite Cylinder

    NARCIS (Netherlands)

    Blom, A.W.; Rassaian, M.; Stickler, P.B.; Gürdal, Z.

    2010-01-01

    Two carbon-fiber-reinforced composite cylinders were tested in bending. One cylinder, the baseline cylinder, consisted of 0º, 90º and ±45º plies, whereas the other cylinder, called the variable-stiffness cylinder, contained plies with fiber orientations that varied in the circumferential direction,

  1. Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant

    Directory of Open Access Journals (Sweden)

    Yoo-Jae Kim

    2010-01-01

    Full Text Available Fiber reinforced aerated lightweight concrete (FALC was developed to reduce concrete's density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of expanded clay. A self-compaction agent was used to reduce the water-cement ratio and keep good workability. A surfactant was also added to introduce air into the concrete. This study provides basic information regarding the mechanical properties of FALC and compares FALC with fiber reinforced lightweight concrete. The properties investigated include the unit weight, uniaxial compressive strength, modulus of elasticity, and toughness index. Based on the properties, a stress-strain prediction model was proposed. It was demonstrated that the proposed model accurately predicts the stress-strain behavior of FALC.

  2. Coating for gasifiable carbon-graphite fibers

    Science.gov (United States)

    Harper-Tervet, Jan (Inventor); Dowler, Warren L. (Inventor); Yen, Shiao-Ping S. (Inventor); Mueller, William A. (Inventor)

    1982-01-01

    A thin, uniform, firmly adherent coating of metal gasification catalyst is applied to a carbon-graphite fiber by first coating the fiber with a film-forming polymer containing functional moieties capable of reaction with the catalytic metal ions. Multivalent metal cations such as calcium cross-link the polymer such as a polyacrylic acid to insolubilize the film by forming catalytic metal macro-salt links between adjacent polymer chains. The coated fibers are used as reinforcement for resin composites and will gasify upon combustion without evolving conductive airborne fragments.

  3. Field Strain Measurement on the Fiber Scale in Carbon Fiber Reinforced Polymers Using Global Finite-Element Based Digital Image Correlation

    KAUST Repository

    Tao, Ran

    2015-05-01

    Laminated composites are materials with complex architecture made of continuous fibers embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. This thesis is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in-situ secondary electron tensile images obtained by scanning electron microscopy (SEM) are post-processed by both DIC techniques. Finally, it is shown that when global DIC is applied with a conformal mesh, it can capture more accurately sharp local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset-based local DIC, finite-element based global DIC is better suited for capturing gradients across the fiber-matrix interfaces.

  4. The Effect of Two Different E Glass Fiber Reinforcements on Mechanical Properties of Polymethyl Metacrylate Denture Base Resins

    OpenAIRE

    Sinmazisik, G.; Ozyegin, LS.; Akesi, S.

    2002-01-01

    Denture base polymers were reinforced with various types of fibers, such as glass, carbon/graphite and ultrahigh-modulus polyethylene fibers. These procedures were performed to take advantage of the good esthetic qualities of glass fibers and good bonding of glass fibers to polymers via silane coupling agents. The most common type of glass used in fiber production is the so-called E glass (electrical glass). This study investigated the effect of chopped fibers with two different silane coupli...

  5. Pultrusion moldings for continuous natural fiber reinforced thermoplastic composites

    OpenAIRE

    Memon, Anin

    2014-01-01

    The use of natural fibers from which derived annually renewable resource as reinforcement in composite is provides the positive benefit with respect to environment, ecological advantage and the attractive mechanical properties. Jute fibers are the natural fibers superior on light weight, good mechanical properties with low specific mass, low cost and environmental friendly. Silk fiber is a high tensile strength fiber, good elasticity and excellent toughness. Both natural fibers are commercial...

  6. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  7. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    Science.gov (United States)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  8. Nanographene reinforced carbon/carbon composites

    Science.gov (United States)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic

  9. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  10. 正交碳/玻璃纤维织物增强混凝土薄板力学性能试验研究%Experimental research on mechanical performance of orthogonal carbon/glass fiber textile reinforced concrete sheet

    Institute of Scientific and Technical Information of China (English)

    潘永灿

    2012-01-01

    结合课题,研究了正交碳/玻璃纤维织物增强混凝土薄板的三点抗折受力性能.试验表明,用纤维织物增强混凝土薄板,具有较高的极限承载力,薄板的裂缝宽度减小,挠度增大,且具有良好的变形性能.对纤维织物浸胶后,会明显改善纤维织物与混凝土之间的界面粘结性能.并根据试验结果,分析了纤维织物增强混凝土的弹性性能.%Combining the subject,this article carries out three point resistance flexure performance research on orthogonal carbon/glass fiber textile reinforced concrete sheet. The results of the experiments indicate that the fiber textile reinforced concrete sheet has higher resistance flexure performance and better deformation performance. The sheet has smaller crack width and larger deflection. Impregnated the fiber textile will improve bond behavior. Based on the experiment results, analyses the theory of elastic properties between fiber textile and concrete.

  11. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Science.gov (United States)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  12. Improvement of cement concrete strength properties by carbon fiber additives

    Science.gov (United States)

    Nevsky, Andrey; Kudyakov, Konstantin; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The paper presents the results of studies of fiber-reinforced concrete with carbon fibers. The effectiveness of carbon fibers uniform distribution in the concrete was obtained as a result of its preliminary mechanical mixing in water solution with chemical additives. Additives are to be used in the concrete technology as modifiers at initial stage of concrete mix preparing. The technology of preparing of fiber-reinforced concrete mix with carbon fibers is developed. The superplasticizer is based on ether carboxylates as a separator for carbon fibers. The technology allows increasing of concrete compressive strength up to 43.4% and tensile strength up to 17.5% as well as improving stability of mechanical properties.

  13. Fiber-reinforced dental composites in beam testing.

    NARCIS (Netherlands)

    Heumen, C.C.M. van; Kreulen, C.M.; Bronkhorst, E.M.; Lesaffre, E.; Creugers, N.H.J.

    2008-01-01

    OBJECTIVES: The purpose of this study was to systematically review current literature on in vitro tests of fiber-reinforced composite (FRC) beams, with regard to studies that followed criteria described in an International Standard. The reported reinforcing effects of various fibers on the flexural

  14. Property and Shape Modulation of Carbon Fibers Using Lasers.

    Science.gov (United States)

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes. PMID:27227575

  15. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite

    Directory of Open Access Journals (Sweden)

    Deng Y

    2015-02-01

    Full Text Available Yi Deng,1,2 Xiaochen Liu,2 Anxiu Xu,3 Lixin Wang,4 Zuyuan Luo,2 Yunfei Zheng,1 Feng Deng,3 Jie Wei,5 Zhihui Tang,1 Shicheng Wei1–3 12nd Dental Center, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, 2Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 3Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, 4Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 5Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China Abstract: As United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. In this study, CFRPEEK–nanohydroxyapatite ternary composites (PEEK/n-HA/CF with variable surface roughness have been successfully fabricated. The effect of surface roughness on their in vitro cellular responses of osteoblast-like MG-63 cells (attachment, proliferation, apoptosis, and differentiation and in vivo osseointegration is evaluated. The results show that the hydrophilicity and the amount of Ca ions on the surface are significantly improved as the surface roughness of composite increases. In cell culture tests, the results reveal that the cell proliferation rate and the extent of osteogenic differentiation of cells are a function of the size of surface roughness. The composite with moderate surface roughness significantly increases cell attachment

  16. Study on Mechanical Behavior of Bio-Fiber Reinforced Polymer Matrix Composite

    OpenAIRE

    V.N.Loganathan*; M.Palanisamy; K.Sathish Kumar

    2014-01-01

    Presently polymer matrix composites reinforced with fibers such as glass, carbon, aramid, etc. are being used more because of their favorable mechanical properties in spite of they being more expensive materials. Nowadays natural fibers such as sisal, flax, hemp, jute, coir, bamboo, banana, etc. are widely used for environmental concern on synthetic fibers. This coming generation of engineered bio-composites must provide construction materials and building products that exceed cur...

  17. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  18. LYOCELL AND COTTON FIBERS AS REINFORCEMENTS FOR A THERMOSET POLYMER

    Directory of Open Access Journals (Sweden)

    Elisabete Frollini

    2011-11-01

    Full Text Available Cellulose fibers obtained from the textile industry (lyocell were investigated as a potential reinforcement for thermoset phenolic matrices, to improve their mechanical properties. Textile cotton fibers were also considered. The fibers were characterized in terms of their chemical composition and analyzed using TGA, SEM, and X-ray. The thermoset (non-reinforced and composites (phenolic matrices reinforced with randomly dispersed fibers were characterized using TG, DSC, SEM, DMTA, the Izod impact strength test, and water absorption capacity analysis. The composites that were reinforced with lyocell fibers exhibited impact strengths of nearly 240 Jm-1, whereas those reinforced with cotton fibers exhibited impact strengths of up to 773 Jm-1. In addition to the aspect ratio, the higher crystallinity of cotton fibers compared to lyocell likely plays a role in the impact strength of the composite reinforced by the fibers. The SEM images showed that the porosity of the textile fibers allowed good bulk diffusion of the phenolic resin, which, in turn, led to both good adhesion of fiber to matrix and fewer microvoids at the interface.

  19. Effects of Fiber Reinforcement on Clay Aerogel Composites

    Directory of Open Access Journals (Sweden)

    Katherine A. Finlay

    2015-08-01

    Full Text Available Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression.

  20. Mechanical and Chemical Properties of Bamboo/Glass Fibers Reinforced Polyester Composites

    OpenAIRE

    K.Sudha Madhuri,; H.Raghavendra Rao

    2016-01-01

    The chemical resistance of Bamboo/Glass reinforced Polyester hybrid composites to acetic acid, Nitric acid, Hydrochloric acid, Sodium hydroxide, Sodium carbonate, Benzene, Toluene, Carbon tetrachloride and Water was studied. The tensile and impact properties of these composites were also studied. The effect of alkali treatment of bamboo fibers on these properties was studied. It was observed that the tensile and impact properties of the hybrid composites increase with glass fiber ...

  1. Dynamic Properties of Fiber Reinforced Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    唐志平; 徐松林; 胡晓军; 廖香丽; 蔡建

    2004-01-01

    Based on the shear wave tracing(SWT) technique proposed by Tang Z P, particle velocity gauge and the dual internal measurement for pressure and shear waves (IMPS) system are applied to investigate the responses of fiber reinforced cement subjected to impact loading. Series of experiments are conducted. The results show that there exist four critical points, A, B, C, D, in p-V Hugoniot curves. They correspond to the Hugoniot elastic limit (HEL) of the material, the critical point for shear strength limit and transition from damage state to failure state, void collapse, and solid compression, respectively. The critical point B is difficult to be aware of and never reported. However, it can be clearly disclosed with SWT method. Based on the analyses of shear strength, it can be concluded that the transversal wave, especially the unloading transversal wave, is especially important for the dynamic damage investigation of brittle materials.

  2. E-Glass Fiber Reinforced Composites in Dental Applications

    OpenAIRE

    Zhang, M.; Matinlinna, JP

    2012-01-01

    Fiber reinforced composites (FRCs) are more and more widely applied in dentistry to substitute for metallic restorations: periodontal splints, fixed partial dentures, endodontic posts, orthodontic appliances, and some other indirect restorations. In general in FRCs, the fiber reinforcement provides the composite structure with better biomechanical performance due to their superior properties in tension and flexure. Nowadays, the E-glass fiber is most frequently used because of its chemical re...

  3. The Development and Molding Process of Carbon Fiber Reinforced Polymer in Large Wind Turbine Blades%大型碳纤维复合材料风机叶片成型工艺与发展

    Institute of Scientific and Technical Information of China (English)

    马祥林; 任婷; 徐卫平

    2011-01-01

    本文介绍了风电叶片的纤维增强材料、基体、结构芯材、胶粘剂及辅助材料,同时重点总结了树脂转移模塑(RTM)成型工艺、模压成型工艺和最新的Flex成型工艺在碳纤维复合材料(CFRP)风电叶片的应用进展。通过结合国内外风电的研究现状,分析了CFRP在风电领域的应用与发展。%This paper discussed the material of wind turbine blades, included fiber reinforced material, matrix, the structure of core material, adhesive and auxiliary materials. Meanwhile, RTM( ResinTransferMolding), moulding technology and the new Reinforced Flex molding process are reviewed, which is researched in the carbon fiber reinforced polymer (CFRP) of wind turbine blades. Application and development of CFRP in wind turbine blades is discussed combined with the research status of wind power at home and abroad.

  4. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...

  5. The Young's moduli prediction of random distributed short-fiber-reinforced polypropylene foams using finite element method

    Institute of Scientific and Technical Information of China (English)

    WANG Bo; WANG RongXiu; WU Yong

    2009-01-01

    The elastic moduli of short-fiber-reinforced foams depend critically on the fiber content and fiber length, as well as on the fiber orientation distribution. Based on periodic tetrakaidecahedrons, the finite ele-ment models with short-fiber reinforcement were proposed in this paper to examine the effects of the fiber content and fiber length on Young's modulus. The fiber length distribution and fiber orientation distribution were also considered. The proposed models featured in a three-dimensional diorama with random short-fiber distribution within or on the surfaces of the walls and edges of the closed-cells of polypropylene (PP) foams. The fiber length/orientation distributions were modeled by Gaussian prob-ability density functions. Different fiber volume fractions, different lengths, and different distributions were investigated. The predicted Young's moduli of the PP foams with short-glass-fiber or short-carbon-fiber reinforcement were compared with other theoretic and experimental results, and the agreement was found to be satisfactory. The proposed finite element models were proved to be ac-ceptable to predict the Young's moduli of the grafted closed-cell PP foams with short-fiber reinforce-ment.

  6. Plasma electrolytic polishing of metalized carbon fibers

    OpenAIRE

    Falko Böttger-Hiller; Klaus Nestler; Henning Zeidler; Gunther Glowa; Thomas Lampke

    2016-01-01

    Efficient lightweight structures require intelligent materials that meet versatile functions. Especially, carbon-fiber-reinforced polymers (CFRPs) are gaining relevance. Their increasing use aims at reducing energy consumption in many applications. CFRPs are generally very light in weight, while at the same time being extremely stiff and strong (specific strength: CFRPs: 1.3 Nm kg–1, steel: 0.27 Nm kg–1; specific stiffness: CFRPs: 100 Nm kg–1, steel: 25 Nm kg–1). To increase performance and e...

  7. Fire test method for graphite fiber reinforced plastics

    Science.gov (United States)

    Bowles, K. J.

    1980-01-01

    A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidential fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified rate of heat release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.

  8. Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part II: Experimental Comparisons

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    This paper follows on from the earlier study (Part I) which investigated the fatigue behavior of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures. In this paper, a micromechanics approach to predict the fatigue life S-N curves of fiber-reinforced CMCs has been developed considering the fatigue damage mechanism of interface wear or interface oxidation. Upon first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. The two-parameter Weibull model is used to describe fibers strength distribution. The stress carried by broken and intact fibres on the matrix crack plane under fatigue loading is determined based on the Global Load Sharing (GLS) criterion. The fibres failure probabilities under fatigue loading considering the degradation of interface shear stress and fibres strength have been obtained. When the broken fibres fraction approaches critical value, the composite would fatigue fail. The fatigue life S-N curves of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures have been predicted. The predicted results agreed with experimental data.

  9. An experimental investigation of the effect of shear-induced diffuse damage on transverse cracking in carbon-fiber reinforced laminates

    KAUST Repository

    Nouri, Hedi

    2013-12-01

    When subjected to in-plane loading, carbon-fiber laminates experience diffuse damage and transverse cracking, two major mechanisms of degradation. Here, we investigate the effect of pre-existing diffuse damage on the evolution of transverse cracking. We shear-loaded carbon fiber-epoxy pre-preg samples at various load levels to generate controlled configurations of diffuse damage. We then transversely loaded these samples while monitoring the multiplication of cracking by X-ray radiography. We found that diffuse damage has a great effect on the transverse cracking process. We derived a modified effective transverse cracking toughness measure, which enabled a better definition of coupled transverse cracking/diffuse damage in advanced computational models for damage prediction. © 2013 Elsevier Ltd.

  10. Interface study of fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Pacios, A.

    1997-12-01

    Full Text Available In a composite material that uses fibers as reinforcement, the breakage of the matrix is produced jointly with the separation of the fiber from the matrix. The mechanical behavior of the interface describes how fibers can work stabilizing the cracking process. The interface is the medium that puts the fiber on load, being the mechanical behavior of the interface and the strength of the fiber two important parameters to consider to characterize the general behavior of the composite. The present work studies the effect of several parameters on the behavior of the interface. Those parameters are the type of fiber, its geometry and dimension and the modified matrix and loading rate. An experimental technique was designed to allow testing the same set-up for pull-out tests in a quasistatic machine and Charpy pendulum. Modifications of the matrix by adding a mineral admixture improve the behavior of the interface as much as a 100%. It has been observed that combining the two actions, an improved matrix with crimped fibers, the type of failure can be modified. In this new type of failure, the fiber breaks consequently toughness decreases. Other parameters, as the loading rate and inclination of the fiber also affect the behavior of the interface.

    En un material compuesto que utiliza fibras como refuerzo, la rotura de la matriz se produce conjuntamente con la separación de la fibra de la matriz, por lo que el comportamiento mecánico de la interfase describe hasta que punto las fibras pueden trabajar como estabilizadores en el proceso defisuración. La interfase es el medio que pone en carga a la fibra y, por ello, la resistencia mecánica de la interfase y de la fibra son dos parámetros importantes a considerar para caracterizar el comportamiento general del composite. Este trabajo investiga el efecto de la variación del tipo de fibra, geometría y dimensión de las mismas y las modificaciones de la matriz y la velocidad de desplazamiento

  11. Single Fibre Pullout from Hybrid Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes inter

  12. Mix design of steel fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Moreno, E.

    1997-12-01

    Full Text Available Mix design of steel fiber reinforced concrete (SFRC is concerned with achieving a workability, homogeneity, durability and strength suitable for its use. Variables defining any mix design of SFRC are commented below, as well as their influence on some properties of fresh and hardened SFRC. A special attention is paid to concrete, since it's the main use of steel fibers in Spain now, followed by paving construction.

    El objetivo de una correcta dosificación de hormigón reforzado con fibras metálicas (HRFA es conseguir una mezcla que mantenga una docilidad, homogeneidad, durabilidad y resistencia adecuadas a su uso. A continuación se estudian las variables que definen una dosificación de HRFA, así como su influencia en las propiedades del HRFA fresco y endurecido. Se presta una especial atención al hormigón proyectado ya que es la principal aplicación de las fibras metálicas en España, seguido por la construcción de pavimentos.

  13. Effect of short fiber reinforcement on the properties of recycled poly(ethylene terephthalate)/poly(ethylene naphthalate) blends

    International Nuclear Information System (INIS)

    Highlights: ► Short fiber reinforcement to the r-PET/PEN blend improved to the tensile strength. ► Fiber reinforcement increased the storage modulus of r-PET/PEN blend. ► CF reinforced composite has the highest storage modulus value. - Abstract: In this study, short carbon (CF), glass (GF) and hybrid carbon/glass fiber reinforced recycled poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) (r-PET/PEN) blends were prepared by melt mixing method. The mechanical, thermal and morphological properties of composites were investigated by using tensile tests, differential scanning calorimeter, dynamic mechanical analyzer and scanning electron microscopy. The microscopic analysis showed that there is a better interfacial interaction between fiber and polymer matrix for CF reinforced composite. It was found that addition of short fiber reinforcement to the r-PET/PEN blend improved the tensile strength and Young’s modulus values more than the addition of PEN into r-PET. According to DMA analysis, fiber reinforcement increased the storage modulus of composites when compared with r-PET/PEN blend and among them storage modulus of CF reinforced composite was the highest. It was concluded that mechanical properties of r-PET can be enhanced with addition of PEN and more efficiently with short fiber reinforcement

  14. Modeling of properties of fiber reinforced cement composites

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica

    2008-01-01

    Full Text Available This paper presents the results of authors' laboratory testing of the influence of steel fibers as fiber reinforcement on the change of properties of cement composite mortar and concrete type materials. Mixtures adopted - compositions of mortars had identical amounts of components: cement, sand and silica fume. The second type of mortar contained 60 kg/m3 of fiber reinforcement, as well as the addition of the latest generation of superplasticizer. Physical and mechanical properties of fiber reinforced mortars and etalon mixtures (density, flexural strength, compressive strength were compared. Tests on concrete type cement composites included: density, mechanical strengths and the deformation properties. The tests showed an improvement in the properties of fiber reinforced composites.

  15. Shear strength of steel fiber-reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    Daniel de Lima Araújo

    2014-02-01

    Full Text Available This study analyzed the mechanical behavior of shear strength of steel fiber-reinforced concrete beams. Six beams subjected to shear loading were tested until failure. Additionally, prisms were tested to evaluate fiber contribution to the concrete shear strength. Steel fibers were straight, hook-ended,35 mmlong and aspect ratio equal to 65. Volumetric fractions used were 1.0 and 2.0%. The results demonstrated a great contribution from steel fibers to shear strength of reinforced concrete beams and to reduce crack width, which can reduce the amount of stirrups in reinforced concrete structures. Beam capacity was also evaluated by empirical equations, and it was found that these equations provided a high variability, while some of them have not properly predicted the ultimate shear strength of the steel fiber-reinforced concrete beams.

  16. 亚临界水介质回收酸酐固化环氧树脂/碳纤维复合材料%Recycling of Carbon Fiber Reinforced Epoxy Resin Cured with Anhydride in Subcritical Water

    Institute of Scientific and Technical Information of China (English)

    王一明; 刘杰; 吴广峰; 唐涛

    2013-01-01

    研究了不同添加剂对碳纤维增强酸酐固化环氧树脂复合材料在亚临界水中降解的影响,通过IR、GC-MS等分析,确定了环氧树脂的分解机理主要为酯键的断裂.结果表明,KOH与苯酚对酸酐固化环氧树脂的分解没有协同效应,碱性物质更有利于酯键的断裂.甲基四氢邻苯二甲酸酐固化的环氧树脂增强碳纤维复合材料在反应温度为250℃、反应时间为60 min、KOH浓度为0.2 mol/L时可完全分解,回收碳纤维的拉伸强度和表面形貌未受影响.%Effect of additives on the decomposition behavior of the carbon fiber reinforced epoxy resin cured with anhydride in subcritical water was investigated.IR and GC-MS results show that the decomposition is ascribed to cleavage of ester bond.KOH and phenol does not exhibit the synergetic effect on the decomposition of anhydride cured epoxy resin.Alkaline conditions are found to be favorable to the cleavage of ester linkages.The carbon fiber reinforced methyl-tetrabydrophalic anhydride (MeTHPA) cured epoxy resin composite was totally decomposed with the addition of 0.2 mol/L KOH at 250 ℃ for 60 min.The tensile strength and morphology of the recycled carbon fibers are not influenced.

  17. Modelling of the fracture toughness anisotropy in fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    S. Tarasovs

    2016-01-01

    Full Text Available Steel fiber reinforced concrete is potentially very promising material with unique properties, which currently is widely used in some applications, such as floors and concrete pavements. However, lack of robust and reliable models of fiber reinforced concrete fracture limits its application as structural material. In this work a numerical model is proposed for predicting the crack growth in fiber reinforced concrete. The mixing of the steel fibers with the concrete usually creates nonuniform fibers distribution with more fibers oriented in horizontal direction, than in vertical. Simple numerical models of fiber reinforced concrete require a priori knowledge of the crack growth direction in order to take into account bridging action of the fibers, which depends on the fibers orientation. In proposed model user defined elements are used to calculate the bridging force during the course of the analysis when the crack starts to grow. Cohesive elements were used to model the crack propagation in the concrete matrix. In cohesive zone model the cohesive elements are embedded between all solid elements to simulate the arbitrary crack path. The bridging effect of the fibers are modeled as nonlinear springs, where the stiffness of the springs is defined from experimentally measured pull-out force and the angle between the fiber and crack opening direction.

  18. Graphite fiber reinforced glass matrix composites for aerospace applications

    Science.gov (United States)

    Prewo, K. M.; Bacon, J. F.; Dicus, D. L.

    1979-01-01

    The graphite fiber reinforced glass matrix composite system is described. Although this composite is not yet a mature material, it possesses low density, attractive mechanical properties at elevated temperatures, and good environmental stability. Properties are reported for a borosilicate glass matrix unidirectionally reinforced with 60 volume percent HMS graphite fiber. The flexural strength and fatigue characteristics at room and elevated temperature, resistance to thermal cycling and continuous high temperature oxidation, and thermal expansion characteristics of the composite are reported. The properties of this new composite are compared to those of advanced resin and metal matrix composites showing that graphite fiber reinforced glass matrix composites are attractive for aerospace applications.

  19. Effect of Fiber Reinforcement on the Response of Structural Members

    DEFF Research Database (Denmark)

    Fischer, Gregor; Li, Victor

    2007-01-01

    This paper describes a series of investigations on the effect of fiber reinforcement on the response of structural members in direct tension and flexure under reversed cyclic loading conditions. The design approach of the fiber reinforced cementitious composite is based on fracture mechanics...... and an ultimate tensile strain capacity on the order of several percent. Subsequently, the synergistic effects of composite deformation mechanisms in the ECC and structural members subjected to large shear reversals are identified. Beneficial effects observed in the reinforced ECC structural members as compared...... to conventional reinforced concrete include improved composite integrity, energy dissipation, ductility, and damage tolerance....

  20. Studies on copper coating on carbon fibers

    Institute of Scientific and Technical Information of China (English)

    CAO; Zhuo-kun; LIU; Yi-han; YAO; Guang-chun

    2005-01-01

    The weak interface bonding of metal matrix reinforced by carbon fibers is the central problem of fabricating such composites. Depositing copper coating on carbon fibers is regarded as a feasible method to solve the problem. In this paper, copper coating has been deposited on the fibers through both electroless deposition and electroplating methods. Two kinds of complexing agents and two stabilizing agents are taken during the electroless plating process. The solution is stable, and little extraneous component is absorbed on the surface. After adding additive agents and increasing the concentration of H2SO4 to the acid cupric sulfate electrolyte, the "black core" during usual electroplating process is avoided. The quality of copper coating is analyzed using SEM and XRD, etc.

  1. Microwave axial dielectric properties of carbon fiber

    Science.gov (United States)

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-10-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity.

  2. The Mechanical Properties of Polypropylene Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    LI Bei-xing; CHEN Ming-xiang; CHENG Fang; LIU Lu-ping

    2004-01-01

    The compressive, shear strengths and abrasion-erosion resistance as well as flexural properties of two polypropylene fiber reinforced concretes and the comparison with a steel fiber reinforced concrete were reported.The exprimental results show that a low content of polypropylene fiber (0.91kg/m3 of concrete) slightly decreases the compressive and shear strengths, and appreciably increased the flexural strength, but obviously enhances the toughness index and fracture energy for the concrete with the same mix proportion, consequently it plays a role of anti-cracking and improving toughness in concrete. Moreover, the polypropylene mesh fiber is better than the polypropylene monofilament fiber in improving flexural strength and toughness of concrete, but the two types of polypropylene fibers are inferior to steel fiber. All the polypropylene and steel fibers have no great beneficial effect on the abrasion-erosion resistance of concrete.

  3. Novel method for carbon nanofilament growth on carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Johathan [Los Alamos National Laboratory; Luhrs, Claudia [UNM MECH.ENG.; Terani, Mehran [UNM MECH.ENG.; Al - Haik, Marwan [UNM MECH.ENG.; Garcia, Daniel [UNM MECH.ENG.; Taha, Mahmoud R [UNM MECH.ENG.

    2009-01-01

    Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs

  4. Increasing the Tensile Property of Unidirectional Carbon/Carbon Composites by Grafting Carbon Nanotubes onto Carbon Fibers by Electrophoretic Deposition

    Institute of Scientific and Technical Information of China (English)

    Qiang Song; Kezhi Li; Hejun Li; Qiangang Fu

    2013-01-01

    Although in-situ growing carbon nanotubes (CNTs) on carbon fibers could greatly increase the matrix-dominated mechanical properties of carbon/carbon composites (C/Cs),it always decreased the tensile strength of carbon fibers.In this work,CNTs were introduced into unidirectional carbon fiber (CF) preforms by electrophoretic deposition (EPD) and they were used to reinforce C/Cs.Effects of the content of CNTs introduced by EPD on tensile property of unidirectional C/Cs were investigated.Results demonstrated that EPD could be used as a simple and efficient method to fabricate carbon nanotube reinforced C/Cs (CNT-C/Cs) with excellent tensile strength,which pays a meaningful way to maximize the global performance of CNT-C/Cs.

  5. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets

    Science.gov (United States)

    Moritzer, Elmar; Heiderich, Gilmar

    2016-03-01

    This contribution examines possible material recycling of offcuts generated during the production of continuous-fiber-reinforced composite sheets. These sheets consist of a polyamide 6 matrix and glass fiber fabric. In the initial step, the offcut is shredded to obtain particles; following that, the particles are processed in a twin-screw process to produce fiber-reinforced plastic pellets with varying fiber contents. These pellets are intended for use in injection molding processes as a substitution for new raw materials. This investigation centers on the mechanical properties which can be achieved with the recycled material after both the twin-screw process and injection molding.

  6. The Young’s moduli prediction of random distributed short-fiber-reinforced polypropylene foams using finite element method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The elastic moduli of short-fiber-reinforced foams depend critically on the fiber content and fiber length, as well as on the fiber orientation distribution. Based on periodic tetrakaidecahedrons, the finite element models with short-fiber reinforcement were proposed in this paper to examine the effects of the fiber content and fiber length on Young’s modulus. The fiber length distribution and fiber orientation distribution were also considered. The proposed models featured in a three-dimensional diorama with random short-fiber distribution within or on the surfaces of the walls and edges of the closed-cells of polypropylene (PP) foams. The fiber length/orientation distributions were modeled by Gaussian prob-ability density functions. Different fiber volume fractions, different lengths, and different distributions were investigated. The predicted Young’s moduli of the PP foams with short-glass-fiber or short-carbon-fiber reinforcement were compared with other theoretic and experimental results, and the agreement was found to be satisfactory. The proposed finite element models were proved to be acceptable to predict the Young’s moduli of the grafted closed-cell PP foams with short-fiber reinforcement.

  7. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (τ (app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  8. Mussel-inspired catecholamine polymers as new sizing agents for fiber-reinforced composites

    Science.gov (United States)

    Lee, Wonoh; Lee, Jea Uk; Byun, Joon-Hyung

    2015-04-01

    Mussel-inspired catecholamine polymers (polydopamine and polynorepinephrine) were coated on the surface of carbon and glass fibers in order to increase the interfacial shear strength between fibers and polymer matrix, and consequently the interlaminar shear strength of fiber-reinforced composites. By utilizing adhesive characteristic of the catecholamine polymer, fiber-reinforced composites can become mechanically stronger than conventional composites. Since the catecholamine polymer is easily constructed on the surface by the simultaneous polymerization of its monomer under a weak basic circumstance, it can be readily coated on micro-fibers by a simple dipping process without any complex chemical treatments. Also, catecholamines can increase the surface free energy of micro-fibers and therefore, can give better wettability to epoxy resin. Therefore, catecholamine polymers can be used as versatile and effective surface modifiers for both carbon and glass fibers. Here, catecholamine-coated carbon and glass fibers exhibited higher interfacial shear strength (37 and 27% increases, respectively) and their plain woven composites showed improved interlaminar shear strength (13 and 9% increases, respectively) compared to non-coated fibers and composites.

  9. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  10. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the adhesive and composite/adhesive interfaces of existing fiber reinforced composite material joints and...

  11. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the composite/adhesive interfaces of existing fiber reinforced polymer (FRP) composite material joints...

  12. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  13. Interfacial Microstructure and Enhanced Mechanical Properties of Carbon Fiber Composites Caused by Growing Generation 1-4 Dendritic Poly(amidoamine) on a Fiber Surface.

    Science.gov (United States)

    Gao, Bo; Zhang, Ruliang; Gao, Fucheng; He, Maoshuai; Wang, Chengguo; Liu, Lei; Zhao, Lifen; Cui, Hongzhi

    2016-08-23

    In an attempt to improve the mechanical properties of carbon fiber composites, propagation of poly(amidoamine) (PAMAM) dendrimers by in situ polymerization on a carbon fiber surface was performed. During polymerization processes, PAMAM was grafted on carbon fiber by repeated Michael addition and amidation reactions. The changes in surface microstructure and the chemical composition of carbon fibers before and after modification were investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the results indicated that PAMAM was successfully grown on the carbon fiber surface. Such propagation could significantly increase the surface roughness and introduce sufficient polar groups onto the carbon fiber surface, enhancing the surface wettability of carbon fiber. The fractured surface of carbon fiber-reinforced composites showed a great enhancement of interfacial adhesion. Compared with those of desized fiber composites, the interlaminar shear strength and interfacial shear strength of PAMAM/fiber-reinforced composites showed increases of 55.49 and 110.94%, respectively.

  14. Machining of glass fiber reinforced polyamide

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The machinability of a 30 wt% glass fiber reinforced polyamide (PA was investigated by means of drilling tests. A disk was cut from an extruded rod and drilled on the flat surface: thrust was acquired during drilling at different drilling speed, feed rate and drill diameter. Differential scanning calorimetry (DSC and indentation were used to characterize PA so as to evaluate the intrinsic lack of homogeneity of the extruded material. In conclusion, it was observed that the chip formation mechanism affects the thrust dependence on the machining parameters. A traditional modeling approach is able to predict thrust only in presence of a continuous chip. In some conditions, thrust increases as drilling speed increases and feed rate decreases; this evidence suggests not to consider the general scientific approach which deals the machining of plastics in analogy with metals. Moreover, the thrust can be significantly affected by the workpiece fabrication effect, as well as by the machining parameters; therefore, the fabrication effect is not negligible in the definition of an optimum for the machining process.

  15. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  16. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  17. Load deformation characteristics of normal and fiber reinforced concrete columns

    OpenAIRE

    Mazhari, Soheil

    2013-01-01

    ABSTRACT: Although a lot of works has been done in the field of steel fiber reinforced concrete beam-column joints, slab-column connections, etc. under lateral cyclic loading which represents earthquake and wind forces, a few studies exist that peruse monotonic lateral loading. It is important to determine deformation characteristics of structural elements under monotonic lateral loads in building; meanwhile they are reinforced with both steel bars and hooked end steel fibers. This thesis...

  18. Crack Width Analysis of Steel Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Darius Ulbinas

    2011-04-01

    Full Text Available The article investigates the effectiveness of steel fiber reinforcement in RC concrete members in regard to ordinary reinforcement. The advantages and disadvantages of different shapes of steel fibers are discussed. The algorithm for calculating crack width based on EC2 and Rilem methodologies is presented. A comparison of theoretical and experimental crack widths has been performed. The relative errors of crack width predictions at different load levels were defined.Article in Lithuanian

  19. Crack Width Analysis of Steel Fiber Reinforced Concrete Elements

    OpenAIRE

    Darius Ulbinas; Gintaris Kaklauskas

    2011-01-01

    The article investigates the effectiveness of steel fiber reinforcement in RC concrete members in regard to ordinary reinforcement. The advantages and disadvantages of different shapes of steel fibers are discussed. The algorithm for calculating crack width based on EC2 and Rilem methodologies is presented. A comparison of theoretical and experimental crack widths has been performed. The relative errors of crack width predictions at different load levels were defined.Article in Lithuanian

  20. Nanoscaled boehmites' modes of action in a polymer and its carbon fiber reinforced plastic under compression load; Wirkungsweisen nanoskaliger Boehmite in einem Polymer und seinem Kohlenstofffaserverbund unter Druckbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Arlt, Christine

    2011-07-01

    Increasing ecological awareness as well as quality and safety demands, which are present, for instance, in the aerospace and automotive sectors, lead to the need to use more sophisticated and more effective materials. For that purpose, laminates of carbon fiber reinforced plastic (CFRP), which are manufactured by injection technology, are reinforced with boehmite particles. This doping strengthens the laminates, whose original properties are weaker than prepregs. Besides the shear strength, compression strength and the damage tolerance, the mode of action of the nanoparticles in resin and in CRFP is also analyzed. It thereby reveals that the hydroxyl groups and even more a taurine modification of the boehmites' surface after the elementary polymer morphology. Consequently a new flow and reaction comportment, lower glass transition temperatures and shrinkage, as well as a changed mechanical behavior occur. Due to a structural upgrading of the matrix (higher shear stiffness, reduced residual stress), a better fiber-matrix adhesion, and differing crack paths, the boehmite nanoparticles move the degradation barrier of the material to higher loadings, thus resulting in considerably upgraded new CFRP. (orig.)

  1. Fiber-reinforced composites in fixed partial dentures

    Directory of Open Access Journals (Sweden)

    Vallittu P

    2006-08-01

    Full Text Available Fiber-reinforced composite resin (FRC prostheses offer the advantages of good esthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinforcement in the fabrication of laboratory or chairside-made composite-fixed partial dentures of conventional preparation. Other applications of FRC in dentistry are briefly mentioned. The possibilities fiber reinforcement technology offers must be emphasized to the dental community. Rather than limiting discussion to whether FRC prostheses will replace metal-ceramic or full-ceramic prostheses, attention should be focused on the additional treatment options brought by the use of fibers. However, more clinical experience is needed.

  2. Plasma electrolytic polishing of metalized carbon fibers

    Directory of Open Access Journals (Sweden)

    Falko Böttger-Hiller

    2016-02-01

    Full Text Available Efficient lightweight structures require intelligent materials that meet versatile functions. Especially, carbon-fiber-reinforced polymers (CFRPs are gaining relevance. Their increasing use aims at reducing energy consumption in many applications. CFRPs are generally very light in weight, while at the same time being extremely stiff and strong (specific strength: CFRPs: 1.3 Nm kg–1, steel: 0.27 Nm kg–1; specific stiffness: CFRPs: 100 Nm kg–1, steel: 25 Nm kg–1. To increase performance and especially functionality of CFRPs, the integration of microelectronic components into CFRP parts is aspired. The functionalization by sensors, actuators and electronics can enable a high lightweight factor and a new level of failure-safety. The integration of microelectronic components for this purpose requires a working procedure to provide electrical contacts for a reliable connection to energy supply and data interfaces. To overcome this challenge, metalized carbon fibers are used. Metalized fibers are, similar to the usual reinforcing fibers, able to be soldered and therefore easy to incorporate into CFRPs. Unfortunately, metalized fibers have to be pre-treated by flux-agents. Until now, there is no flux which is suitable for mass production without destroying the polymer of the CFRP. The process of plasma electrolytic polishing (PeP could be an option, but is so far not available for copper. Thus, in this study, plasma electrolytic polishing is transferred to copper and its alloys. To achieve this, electrolytic parameters as well as the electrical setup are adapted. It can be observed that the gloss and roughness can be adjusted by means of this procedure. Finally, plasma electrolytic polishing is used to treat thin copper layers on carbon fibers.

  3. Carbon nanotube core graphitic shell hybrid fibers.

    Science.gov (United States)

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  4. Carbon storage potential in natural fiber composites

    International Nuclear Information System (INIS)

    The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO2 emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84-154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO2 emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO2 emissions (4.3% of total USA industrial emissions) and 1.19 million m3 crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing, interfacial bonding and

  5. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer

    International Nuclear Information System (INIS)

    Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment-curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress-strain curves of concrete, steel and FRP were considered as integrity model. Stress-strain model of concrete is extended from Oztekin et al.'s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.

  6. Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites

    Institute of Scientific and Technical Information of China (English)

    曹勇; 吴义强

    2008-01-01

    Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of bamboo fiber were analyzed,and the tensile strength of green composites was also investigated.The result confirms that the tensile statistical strength of fiber fits well with two-parameter Weibull distribution.In addition,the tensile strength of bamboo fiber reinforced composites is about 330 MPa with the fiber volume fraction of 70%.This value is close to or higher than that of other natural fiber reinforced green composites.

  7. 碳纤维布改善钢筋混凝土短柱延性的试验研究%Experimental study on the application of continuous carbon fiber sheet to improve the ductility of reinforced concrete short columns

    Institute of Scientific and Technical Information of China (English)

    赵彤; 张景明; 谢剑; 刘明国

    2001-01-01

    Based on the experiments of four reinforced concrete short columns under cyclic loading, the effectiveness of the new method of using continuous carbon fiber sheet(CFS) on strengthening the reinforced concrete short columns for increasing their ductility is studied. Through the test data analysis, it is found that the ductility of the reinforced concrete short columns is significantly improved. And the reason, why the ductility of the hybrid columns is improved, is also analyzed.%通过横向包裹碳纤维布的钢筋混凝土短柱在低周反复荷载作用下受力性能的试验研究,验证了碳纤维布对钢筋混凝土短柱延性的改善作用。经碳纤维布包裹的钢筋混凝土短柱,其延性得到了显著改善,但承载能力却变化不大。试验还发现,碳纤维布在使用中存在一个作用效率的问题,碳纤维布包裹层数愈多,其作用效率愈低。

  8. 应用碳纤维布增强钢筋混凝土柱抗震能力的研究%Investigation on application of continuous carbon fiber sheet to improve ductility of reinforced concrete columns

    Institute of Scientific and Technical Information of China (English)

    赵彤; 刘明国; 谢剑; 张景明

    2000-01-01

    本文通过8根钢筋混凝土柱在周期反复荷载作用下受力性能的试验研究,验证了使用碳纤维布包裹钢筋混凝土柱来提高其延性这种补强加固方法的有效性。本文分析了轴压比、混凝土强度、碳纤维布强度以及碳纤维布的包裹范围、包裹层数等因素对抗震加固效果的影响。最后,还对碳纤维布加固钢筋混凝土柱使其延性提高的机理进行了分析。%Based on the experiment of eight reinforced concrete columns under cyclic loading, the effectiveness of the new method of using the continuous carbon fiber sheet (CFS) for strengthening the reinforced concrete columns and increasing their ductilities is examined. The factors such as axial compression ratio, concrete strength grade, the number of CFS layers, tensile strength of CFS and wrapping area are analyzed. And the reason, why the ductility of reinforced concrete columns using CFS is improved, is also analyzed.

  9. Mechanical and Chemical Properties of Bamboo/Glass Fibers Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    K.Sudha Madhuri,

    2016-01-01

    Full Text Available The chemical resistance of Bamboo/Glass reinforced Polyester hybrid composites to acetic acid, Nitric acid, Hydrochloric acid, Sodium hydroxide, Sodium carbonate, Benzene, Toluene, Carbon tetrachloride and Water was studied. The tensile and impact properties of these composites were also studied. The effect of alkali treatment of bamboo fibers on these properties was studied. It was observed that the tensile and impact properties of the hybrid composites increase with glass fiber content. The author investigated the interfacial bonding between Glsss/Bamboo fiber composites by SEM. These properties found to be higher when alkali treated bamboo fibers were used in hybrid composites. The hybrid fiber composites showed better resistance to the chemicals mentioned above. The elimination of amorphous hemi-cellulose with alkali treatment leading to higher crystallinity of the bamboo fibers with alkali treatment may be responsible for these observations.

  10. 碳纤维增强复合材料层合板 Lamb 波衰减特性研究%Attenuation characteristics of Lamb wave in carbon fiber reinforced composite laminated plate

    Institute of Scientific and Technical Information of China (English)

    唐军君; 卢文秀; 李峥; 褚福磊

    2016-01-01

    In order to acquire the modal signal suitable for acoustic emission fault diagnosis on carbon fiber reinforced composite laminated plates,the 3D elastic theory and transfer matrix method were introduced to get Lamb wave dispersion curves.An experimental platform was setup to test the Lamb wave propagation property of carbon fiber reinforced composite laminated plate,and different acoustic emission signals were motivated by changing the location of pencil breakpoints.The wavelet scale spectrum and dispersion curves were used to separate different Lamb wave modes, and then the amplitude and energy attenuation characteristic were investigated respectively under different frequency.The experimental results show that,compared with other modal signals,the amplitude signal of S0 mode with low frequency has great advantage in the aspect of acoustic emission fault diagnosis on carbon fiber reinforced composite laminated plates because of its slower attenuation speed.%为提取适用于碳纤维增强复合材料层合板声发射故障诊断的模态信号,利用三维弹性理论及传递矩阵法获得 Lamb 波的频散曲线。以碳纤维增强复合材料层合板为研究对象搭建实验平台,改变断铅激励位置从而获得不同声发射信号。对采集的声发射信号进行小波尺度谱分析,结合频散曲线分离出不同模式的 Lamb 波,分别研究其不同频率的幅度及能量衰减特性。实验结果表明,较其它信号,低频率 S0波幅度信号衰减速度较低,对碳纤维增强复合材料层合板的声发射故障诊断研究具有较大优势。

  11. Tailoring of fiber-reinforced cementitious composites (FRCC) for flexural strength and reliability

    Science.gov (United States)

    Obla, Karthikeyan Hariya

    Bending is the most common form of loading for many construction elements. The bending strength or Modulus of Rupture (MOR) and flexural ductility are therefore critical properties particularly for those elements which are not reinforced by rebars. Such elements include highway barriers, certain wall panels, thin sheet elements and small diameter pipes. The tensile and bending strengths of concrete are very low. In addition, as a brittle material, concrete also demonstrates a large variability in bending strength. A large variability in MOR leads to inefficient use of the material since the design strength has to be close to the lower bound of the material's strength distribution. The potential of fiber in improving MOR is well recognized in fiber reinforced concrete. The use of fiber to enhance material reliability is much less studied. This thesis addresses both aspects employing a combination of theoretical and experimental treatments. Research findings are reported as Part I and Part II of this thesis. Carbon fibers are increasingly attractive for reinforcing cementitious composites. They can be manufactured to yield a wide range in modulus and strength. Carbon fibers are non-corrosive, and fire and alkali. In addition, the price of pitch based carbon fibers are dropping rapidly to make them economically viable for the building and construction industries. In Part I of the thesis, a study on the optimization of the bending strength of carbon FRCC using a fracture based flexural model that links the fiber, interface, and matrix micro-parameters to composite bending strength is presented. Carbon fiber, interface and matrix parameters were tailored to yield optimal properties such as high MOR and ductility. Four point bend tests were conducted on CFRCCs to confirm the findings. Some problems specially affecting carbon FRCCs such as fiber breakage during mixing were also studied and its effects on composite uniaxial tensile properties analyzed by developing new

  12. Crack-arresting and Strengthening Mechanism of Hybrid Fiber Reinforced Polymer Sheets in Strengthening of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    X. B. He

    2013-07-01

    Full Text Available The failure process of reinforced concrete (RC beams is exactly the emergence and propagation process of cracks. According to the principles of Fracture Mechanics, if the cracks were retarded in RC beams, the structure performance would be improved. In this paper, hybrid fiber reinforced polymer (HFRP sheets are proposed to retard crack propagation in RC beams, and the crack-arresting and strengthening mechanism of the HFRP composite in the strengthening of RC beams is revealed, which is substantiated by the finite-element-modelling (FEM analysis and bending improvement of RC beams with externally-bonded hybrid glass/carbon FRP (Hybrid G/C FRP sheets.

  13. Carbon nanofibre reinforcement of soft materials

    International Nuclear Information System (INIS)

    In elastomeric matrices carbon nanofibres are found to be twenty times more effective than carbon black as a reinforcing filler. In hard matrices, by contrast, reinforcement is minimal. Tensile and dynamic mechanical tests were performed to elucidate the mechanism of reinforcement in order to explain the superior performance in soft matrices. Small-angle neutron scattering and ultra-small-angle X-ray scattering were used to quantify filler morphology, which turns out to be the key factor that limits reinforcement potential. The presence of fractal cluster formed by agglomeration of the nanofibres reduces the effective aspect ratio of the nanotubes. Clustering, however, introduces a new reinforcement mechanism based on elastic deformation of the fibre clusters. This mechanism is operative in soft matrices but not in hard matrices, thus explaining the enhanced performance in soft matrices.

  14. Voltammetric detection of biological molecules using chopped carbon fiber.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules.

  15. Voltammetric detection of biological molecules using chopped carbon fiber.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules. PMID:20953048

  16. Characterizing glass fiber reinforced composites for cryogenic applications

    International Nuclear Information System (INIS)

    The cryogenic applications of glass fiber reinforced composites are reviewed with particular reference to the areas of superconductivity and liquified gas containment. The special functional requirements within these applications are identified, and it is shown how glass reinforced composites can fulfil these criteria. In particular, the need for introducing the closed molding techniques, long established in the appliance, electrical, and transportation markets is emphasized. Data on the mechanical performance at low temperatures for glass fiber reinforced composite systems currently being used or considered for cryogenic applications are discussed

  17. Micro-Mechanical Modeling of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1999-01-01

    of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also...

  18. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    Science.gov (United States)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  19. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    The use of different types of fibers simultaneously for reinforcing cementitious matrices is motivated by the concept of a multi-scale nature of the crack propagation process. Fibers with different geometrical and mechanical properties are used to bridge cracks of different sizes from the micro- ...

  20. 碳/芳纶纤维增强混凝土温度变形自约束作用的研究%Research on Self-restraint for Temperature Deformation of Carbon/Aramid Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    姚立宁; 张妃二; 郭仁俊; 谢灵

    2002-01-01

    用具有温度负膨胀特性参数的碳/芳纶纤维增强水泥及混凝土可以增加其强度及机械性能,同时还可以控制其温度变形以防止开裂.文章根据各向异性材料分析方法,对碳/芳纶纤维增强水泥及混凝土的温度变形自约束作用进行了研究和试验.%Cement and concrete reinforced by carbon and aramid fibers which have negative thermal expansion coefficients can improve strength and mechanical properties. And they can also control temperature deformation in the concrete in order to protect from cracks. This paper investigated on analysis and experiment for self-restraint of temperature deformation in carbon/aramid reinforced concrete according to analysis method in anisotropic materials.

  1. Use of fiber-reinforced composites to improve the durability of bridge elements

    Science.gov (United States)

    Garon, Ronald; Balaguru, P. N.; Cao, Yong; Lee, K. Wayne

    2000-04-01

    Fiber composites made of carbon fibers and organic polymers are being used to strengthen plain, reinforced, and prestressed concrete structures. The composites are becoming more popular as compared to traditional strengthening with steel plates and jackets because they do not corrode and also have a very high strength to weight ratio. Organic polymers have been used as protective coatings for more than thirty years. The impermeable membrane of the polymer seals the concrete surface of the structures preventing the ingress of salts. Their main drawback is their inability to release vapor pressure buildup that causes damage in the concrete and delamination of the bonded fiber reinforced plastic. As a result of this and other weaknesses in the organic polymers, a new generation of breathable coating materials is being developed. These compositions range from epoxy modified portland cement coatings to completely inorganic silicate systems. The durability of five of the most promising compositions was evaluated under freeze-thaw, wet-dry, and scaling conditions. The silicate matrix was also used to bond carbon tows and fabrics to unreinforced concrete members. These beams were tested after exposure to wet-dry and scaling conditions. The results indicate that the inorganic matrix can be effectively used for repairs. The carbon tows can be used to replace the existing corroded reinforcing bars. The possibility of embedding optical fibers with the carbon fibers to monitor the field performance is being studied.

  2. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  3. Performance experiments of carbon fiber-reinforced conductive SBS modified asphalt mixture%碳纤维导电SBS改性沥青混合料性能试验

    Institute of Scientific and Technical Information of China (English)

    查旭东; 蔡良; 曹艳霞

    2014-01-01

    In order to analyze pavement performances and ice-melting effects of conductive asphalt concrete,the chopped polyacrylonitrile-based carbon fibers were incorporated into SBS modified asphalt mixture AC-13C to prepare the carbon fiber-reinforced conductive modified asphalt mixtures.Five kinds of carbon fiber contents were selected respectively to conduct the laboratory experiments such as mix ratio design,pavement performances and simulated ice-melting etc.The results show,with the increase of carbon fiber content,the optimum asphalt-aggregate ratios of SBS modified asphalt mixture increase linearly;the dy-namic stability,the immersion residual Marshall stability and the freeze-thaw split strength ratios change in parabolic relationship;the low-temperature flexural-tensile strengths and the failure strains increase in"S"curve,but the stiffness moduli decrease in"Z"curve.It il-lustrates when the proper carbon fibers were incorporated into the SBS modified asphalt mixture,the pavement performances such as high-temperature anti-rutting,low-tempera-ture anti-cracking and moisture damage resistance etc can be improved because of the bridg-ing,reinforced and toughening effects of carbon fiber.However,the excessive carbon fibers can cause the decrease of enhancement effect because of poor dispersion and easy cluster. Simultaneously,when the carbon fiber contents are more than 0.3%,the carbon fibers in-side mixtures are lapped each other to form the good conductive network with the fine ice-melting results.On the whole,when the carbon fiber content is 0.4%,the pavement per-formances,the electrical conductivity and the ice-melting efficiency of carbon fiber-rein-forced SBS modified asphalt mixture are the best.%为了分析导电沥青混凝土的路用性能和融冰效果,将短切聚丙烯腈基碳纤维掺入 SBS改性沥青混合料 AC-13 C中,制备成碳纤维导电改性沥青混合料。选取5种碳纤维掺量分别进行了配合比设计、路用性能和模拟

  4. Global Carbon Fiber Composites. Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Joshua A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    The objective of this study is to identify key opportunities in the carbon fiber (CF) supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas—wind energy, aerospace, automotive, and pressure vessels—that top the list of industries using CF and carbon fiber reinforced polymers (CFRP) and are particularly relevant to the mission of U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE). For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  5. Glass fiber reinforced polymer bars as top mat reinforcement for bridge decks

    OpenAIRE

    J.M. DeFreese; Roberts-Wollmann, Carin L.

    2002-01-01

    The objectives of this research were to characterize the material and bond properties of three commercially available GFRP (glass fiber reinforced polymer) reinforcing bars, and evaluate the effects of the material properties and the current ACI design recommendations (ACI 2001) on the design of a bridge deck with GFRP as top mat reinforcement. The tensile properties evaluated were ultimate tensile strength, tensile modulus of elasticity and ultimate rupture strain. Ultimate bond stress and l...

  6. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    Science.gov (United States)

    Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.

    2013-06-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  7. Cellulose fiber reinforced thermoplastic composites: Processing and Product Charateristics

    OpenAIRE

    Razaina Mat TAIB

    1998-01-01

    Cellulose Fiber-Reinforced Thermoplastic Composites: Process and Product Characterization Razaina Mat Taib ( Abstract ) Steam exploded fibers from Yellow Poplar (Liriodendron tulipifera) wood were assessed in terms of (a) their impact on torque during melt processing of a thermoplastic cellulose ester (plasticized CAB); (b) their fiber incorporation and dispersion characteristics in a CAB-based composite by SEM and image analysis, respectively; and (c) their impact on the me...

  8. Flexural behavior of steel fiber reinforced concrete : testing and modelling

    OpenAIRE

    Barros, Joaquim A. O.; Figueiras, Joaquim A.

    1999-01-01

    In this paper the results of tests performed on specimens and structural elements made of steel fiber reinforced concrete are presented. Fiber content ranged from 0 to 60 kg/m3 of concrete. Using the results of the uniaxial compression tests performed under displacement control condition, a stress strain relationship for fiber concrete in compression was derived. Three point bending tests on notched beams were carried out in order to simulate the post cracking behavior and to evaluate the fra...

  9. Electron Microscopy Observations on Glass Fiber Reinforced Concrete (GFRC) Materials

    OpenAIRE

    YURDAKUL, Arife; Göktuğ GÜNKAYA; KAVAS, Taner; Emrah DÖLEKÇEKİÇ; Bekir KARASU

    2014-01-01

    Doping concrete structure with glass fibers gives rise to superior mechanical and chemical properties in macro-scale constructional applications. This type of materials is also currently called a generic name: Glass Fiber Reinforced Concrete (GFRC). Despite the fact that numerous studies have been conducted to shed light on the structure-property relationship in GFRC materials, focusing on the microscopic features to gain a better understanding of fibers role in the concrete matrix is still a...

  10. Fiber-reinforced composites in fixed partial dentures

    OpenAIRE

    Garoushi, Sufyan; Vallittu, Pekka

    2006-01-01

    Fiber-reinforced composite resin (FRC) prostheses offer the advantages of good esthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinfo...

  11. A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids

    Science.gov (United States)

    Horgan, Cornelius O.; Saccomandi, Giuseppe

    2005-09-01

    We consider an incompressible nonlinearly elastic material in which a matrix is reinforced by strong fibers, for example fibers of nylon or carbon aligned in one family of curves in a rubber matrix. Rather than adopting the constraint of fiber inextensibility as has been previously assumed in the literature, here we develop a theory of fiber-reinforced materials based on the less restrictive idea of limiting fiber extensibility. The motivation for such an approach is provided by recent research on limiting chain extensibility models for rubber. Thus the basic idea of the present paper is simple: we adapt the limiting chain extensibility concept to limiting fiber extensibility so that the usual inextensibility constraint traditionally used is replaced by a unilateral constraint. We use a strain-energy density composed with two terms, the first being associated with the isotropic matrix or base material and the second reflecting the transversely isotropic character of the material due to the uniaxial reinforcement introduced by the fibers. We consider a base neo-Hookean model plus a special term that takes into account the limiting extensibility in the fiber direction. Thus our model introduces an additional parameter, namely that associated with limiting extensibility in the fiber direction, over previously investigated models. The aim of this paper is to investigate the mathematical and mechanical feasibility of this new model and to examine the role played by the extensibility parameter. We examine the response of the proposed models in some basic homogeneous deformations and compare this response to those of standard models for fiber reinforced rubber materials. The role of the strain-stiffening of the fibers in the new models is examined. The enhanced stability of the new models is then illustrated by investigation of cavitation instabilities. One of the motivations for the work is to apply the model to the biomechanics of soft tissues and the potential merits

  12. RESEARCH DEVELOPMENT OF CARBON FIBER REINFORCED BENZOXAZINE RESIN COMPOSITES%碳纤维增强苯并噁嗪树脂基复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    王智; 顾宜

    2011-01-01

    苯并噁嗪是近年来发展起来的一种新型的高性能复合材料基体树脂.本文较系统地综述了国内外碳纤维增强苯并噁嗪复合材料的研究进展,介绍了苯并噁嗪树脂及其复合材料的性能特点,指出了进一步的发展趋势.%Benzoxazine is a kind of high performance matrix resin of composites developed in recent years. The research development of carbon fiber reinforced benzoxazine resin composites was reviewed systematically in this paper. The property features of benzoxazine and composites were introduced, and the development tendency was pointed out.

  13. Coating Carbon Fibers With Platinum

    Science.gov (United States)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  14. 碳纤维增强热塑性树脂基复合材料的研究现状%Advance of the Research in Carbon Fiber Reinforced Thermoplastic Resin Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    尹翔宇; 朱波; 刘洪正; 郑连勇; 张春雷

    2011-01-01

    综述了国内碳纤维增强聚酰胺(PA6)、聚醚砜(PES)、聚碳酸酯(PC)、聚苯硫醚(PPS)、聚醚砜酮(PPESK),聚醚醚酮(PEEK)、热塑性聚酰亚胺(PI)等热塑性树脂基复合材料研究现状,对比了热固性树脂基复合材料与热塑性树脂基复合材料性能及成型工艺方面的差异,并对碳纤维增强热塑性树脂基复合材料的成型方法,碳纤维质量分数、长度和表面处理方法对复合材料性能影响的一般规律作了总结。%The domestic situation of carbon fiber reinforced thermoplastic (PA, PES, PC, PPS, PPESK, PEEK, PI and so on) composites were synthetically discussed in the paper, meanwhile, the differences of molding process and properties between thermosetting and thermoplastic matrix composite materials were contrasted. In addition we summarized the regular influences of molding method and carbon fiber including their content, length, surface treatment on the performance of composite materials.

  15. Electrospun Carbon Nanotube-Reinforced Nanofiber.

    Science.gov (United States)

    Kim, Sung Mm; Hee Kim, Sung; Choi, Myong Soo; Lee, Jun Young

    2016-03-01

    We fabricated multi-walled carbon nanotube (MWNT) reinforced polyurethane (PU) nanofiber (MWNT-PU) web via electrospinning. In order to optimize the electrospinning conditions, we investigated the effects of various parameters including kind of solvent, viscosity of the spinning solution, and flow rate on the spinnability and properties of nanofiber. N,N-dimethylformamide (DMF), tetrahydrofuran (THF) and their mixture with various volume ratio were used as the spinning solvent. Morphology of the nanofiber was studied using scanning electron microscope (SEM) and transmission electron microscope (TEM), confirming successful fabrication of MWNT-PU nanofiber web with uniform dispersion of MWNT in longitudinal direction of the fiber. The MWNT-PU nanofiber web exhibited two times higher tensile strength than PU nanofiber web. We also fabricated electrically conducting MWNT-PU nanofiber web by coating poly(3,4-ehtylenedioxythiophene) (PEDOT) on the surface of MWNT-PU nanofiber web for electromagnetic interference (EMI) shielding application. The electromagnetic interference shielding effectiveness (EMI SE) was quite high as 25 dB in the frequency range from 50 MHz to 10 GHz. PMID:27455732

  16. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  17. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  18. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites

    Directory of Open Access Journals (Sweden)

    Zhaoqian Li

    2011-01-01

    Full Text Available Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA. The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.

  19. INFLUENCE OF FIBER LENGTH IN THE WEAR BEHAVIOUR OF BORASSUS FRUIT FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    L. BOOPATHI

    2012-09-01

    Full Text Available In this paper, the wear behavior of Borassus fruit fiber reinforced epoxy composites has been explored. The composites were prepared with raw and 5% alkali treated Borassus fruit fibers of three different fiber lengths 3 mm, 5 mm and 7 mm respectively. The wear tests were made on a pin-on-disc machine when sliding against stainless steel disc by varying loads from 15N – 30 N under dry conditions and the speed of the disc from 300 – 500 rpm. It was observed that the alkali treatment to the fibers improved the wear properties. The influence of fiber length is a key factor in the reinforcement of composites and the results revealed that the 5 mm length alkali treated fiber reinforced composites exhibited superior wear properties than that of others. The Scanning Electron Microscopy image revealed that the 5 mm length alkali treated fiber had better bonding with the epoxy matrix.

  20. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  1. Latest progress of carbon-fiber-reinforced polymer energy-storing transtibial prostheses%碳纤维增强复合材料储能小腿假肢的最新进展

    Institute of Scientific and Technical Information of China (English)

    丁国华

    2013-01-01

    BACKGROUND:Carbon-fiber-reinforced polymer energy-storing transtibial prostheses are mature and ideal substitutes for professional disable athletes to increase performance. OBJECTIVE:By discussing the update application and study of the carbon-fiber-reinforced polymer energy-storing transtibial prosthesis and understanding the characteristics of applying transtibial prostheses in different sports program, to provide a useful reference for the design of athletes prostheses. METHODS:A computer-based search of PubMed and VIP databases was performed for articles related to carbon-fiber-reinforced polymer energy-storing transtibial prostheses published from January 1985 to December 2012. The keywords were“CFRP, energy-storing prosthesis, between-knee (transtibial) prosthesis, disable athletes”in English and Chinese, respectively. RESULTS AND CONCLUSION:Currently, we focus on the gait analysis, energy cost and stiffness analysis of athletes who wear carbon-fiber-reinforced polymer energy-storing transtibial prostheses. Studies have demonstrated that carbon-fiber-reinforced polymer energy-storing transtibial prostheses have more advantages over traditional prostheses, but have predominantly disadvantages over able-bodied persons. Thus, there are many difficulties in the clinical application of building carbon-fiber-reinforced polymer energy-storing transtibial prostheses based on the characteristics of athletes’ body status and sports programs.%背景:碳纤维增强复合材料小腿假肢是由碳纤维复合材料设计制作而成,其强度高、质量轻,使假肢功能更完善,尤其是残疾竞技运动员发挥运动能力的理想截肢替代物。  目的:通过探讨由碳纤维复合材料制成的碳纤维增强复合材料小腿假肢在竞技运动小腿假肢的应用和研究进展,了解不同运动项目小腿假肢的应用特点,为设计运动员假肢提供有益借鉴。  方法:以“碳纤维增强复合材料、

  2. Effect of Fiber Layers on the Fracture Resistance of Fiber Reinforced Composite Bridges

    Directory of Open Access Journals (Sweden)

    A Fazel

    2011-08-01

    Full Text Available Introduction: The purpose of this in vitro study was to introduce the fiber reinforced composite bridges and evaluate the most suitable site and position for placement of fibers in order to get maximum strength. Methods: The study included 20 second premolars and 20 second molars selected for fabricating twenty fiber reinforced composite bridges. Twenty specimens were selected for one fiber layer and the remaining teeth for two fiber layers. In the first group, fibers were placed in the inferior third and in the second group, fibers were placed in both the middle and inferior third region. After tooth preparation, the restorations were fabricated, thermocycled and then loaded with universal testing machine in the middle of the pontics with crosshead speed of 1mm/min. Data was analyzed by Kolmogorov-Smirnov test, Independent sample t test and Kaplan-Meier test. Mode of failure was evaluated using stereomicroscope. Results: Mean fracture resistance for the first and second groups was 1416±467N and 1349±397N, respectively. No significant differences were observed between the groups (P>0.05.In the first group, 5 specimens had delamintation and 5 specimens had detachment between fibers and resin composite. In the second group, there were 4 and 6 delaminations and detachments, respectively. There was no fracture within the fiber. Conclusion: In the fiber reinforced fixed partial dentures, fibers reinforce the tensile side of the connectors but placement of additional fibers at other sites does not increase the fracture resistance of the restoration.

  3. Properties of Fiber Reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Marinela Bărbuţă

    2008-01-01

    Full Text Available Polymer concrete is a composite material realized with resin and aggregates. In the present study the epoxy resin was used for binding the aggregates. In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated. The fiber percentage was constant, the epoxy resin and the filler dosages were varied. The cellulose fiber had not improved the mechanical characteristics of the polymer concrete in comparison to that of polymer concrete without cellulose fibers.

  4. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    Directory of Open Access Journals (Sweden)

    André Navarro de Miranda

    2011-12-01

    Full Text Available Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/epoxy composites were molded and electrical conductivity was measured. Also, the CF/CNF/epoxy composites were tested under flexure and interlaminar shear. The results showed an overall reduction in mechanical properties as a function of added nanofiber, although electrical conductivity increased up to 74% with the addition of nanofibers. Thus CF/CNF/epoxy composites can be used as electrical dissipation discharge materials.

  5. Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2015-01-01

    The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... automatically using the Python based code. 3D computational studies of environment and fatigue analyses of multiscale composites with secondary nano-scale reinforcement in different material phases and different CNTs arrangements are carried out systematically in this paper. It was demonstrated that composites...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....

  6. Aligning carbon fibers in micro-extruded composite ink

    Science.gov (United States)

    Mahajan, Chaitanya G.

    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus.

  7. Jilin Chemical Fiber Group Launches Its Largest Carbon Fiber Preject

    Institute of Scientific and Technical Information of China (English)

    Flora

    2011-01-01

    China's carbon fiber precursor production line with 5,000 tons of annual output was put into operation in Jilin Chemical Fiber Group on November 18th this year, creating the maximum production capacity currently in China, for which Jilin Chemical Fiber Group become China's largest carbon fiber precursor production base, The smooth operation of the project has laid a solid foundation for promoting China's carbon fiber industry steady, rapid, and healthy development,

  8. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  9. Laser Cutting of Carbon Fiber Fabrics

    Science.gov (United States)

    Fuchs, A. N.; Schoeberl, M.; Tremmer, J.; Zaeh, M. F.

    Due to their high weight-specific mechanical stiffness and strength, parts made from carbon fiber reinforced polymers (CFRP) are increasingly used as structural components in the aircraft and automotive industry. However, the cutting of preforms, as with most automated manufacturing processes for CFRP components, has not yet been fully optimized. This paper discusses laser cutting, an alternative method to the mechanical cutting of preforms. Experiments with remote laser cutting and gas assisted laser cutting were carried out in order to identify achievable machining speeds. The advantages of the two different processes as well as their fitness for use in mass production are discussed.

  10. Buckling of Fiber Reinforced Composite Plates with Nanofiber Reinforced Matrices

    Science.gov (United States)

    Chamis, Christos C.; Murthy, Pappu L. N.

    2010-01-01

    Anisotropic composite plates were evaluated with nanofiber reinforced matrices (NFRM). The nanofiber reinforcement volumes ratio in the matrix was 0.01. The plate dimensions were 20 by 10 by 1.0 in. (508 by 254 by 25.4 mm). Seven different loading condition cases were evaluated: three for uniaxial loading, three for pairs of combined loading, and one with three combined loadings. The anisotropy arose from the unidirectional plates having been at 30 from the structural axis. The anisotropy had a full 6 by 6 rigidities matrix which were satisfied and solved by a Galerkin buckling algorithm. The buckling results showed that the NFRM plates buckled at about twice those with conventional matrix.

  11. Surface State of Carbon Fibers Modified by Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yunxia GUO; Jie LIU; Jieying LIANG

    2005-01-01

    Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5%which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.

  12. Micromechanisms of damage in unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber reinforced composites are presented. A program code for the automatic generation of 3D micromechanical unit cell models of composites with damageable elements is developed, and used in the...... strength of a composite at the pre-critical load, while the fibers with randomly distributed strengths lead to the higher strength of the composite at post-critical loads. In the case of randomly distributed fiber strengths, the damage growth in fibers seems to be almost independent from the crack length...

  13. Crack widths in concrete with fibers and main reinforcement

    DEFF Research Database (Denmark)

    Christensen, Frede; Ulfkjær, Jens Peder; Brincker, Rune

    The main object of the research work presented in this paper is to establish design tools for concrete structures where main reinforcement is combined with addition of short discrete steel fibers. The work is concerned with calculating and measuring crack widths in structural elements subjected...... to bending load. Thus, the aim of the work is to enable engineers to calculate crack widths for flexural concrete members and analyze how different combinations of amounts of fibers and amounts of main reinforcement can meet a given maximum crack width requirement. A mathematical model including...... the ductility of the fiber reinforced concrete (FRC) is set up and experimental work is conducted in order to verify the crack width model. The ductility of the FRC is taken into account by using the stress crack width relation. The constitutive model for the FRC is based on the idea that the initial part...

  14. Chairside prefabricated fiber-reinforced resin composite fixed partial dentures.

    Science.gov (United States)

    Meiers, J C; Freilich, M A

    2001-02-01

    The introduction of pre-impregnated fiber-reinforced resin composites has provided the dental profession with the opportunity to fabricate and deliver adhesive, esthetic, and metal-free tooth replacements. Utilizing this technology, a prefabricated fiber-reinforced resin composite fixed partial denture prototype that allows rapid, cost-effective, and noninvasive fixed tooth replacement for single anterior teeth has been developed. Ideal situations for this type of service include: a fixed replacement following tooth loss from trauma; a fixed tooth replacement in medically compromised patients who cannot sit for extended periods of time or have local anesthesia; periodontally compromised abutments; a fixed space maintainer following orthodontic movement; and a fixed provisional during the post implant healing phase prior to loading. This article describes the framework construction and placement protocol for the prefabricated fiber-reinforced resin composite fixed partial denture. PMID:12066682

  15. Laser transmission welding of long glass fiber reinforced thermoplastics

    Science.gov (United States)

    van der Straeten, Kira; Engelmann, Christoph; Olowinsky, Alexander; Gillner, Arnold

    2015-03-01

    Joining fiber reinforced polymers is an important topic for lightweight construction. Since classical laser transmission welding techniques for polymers have been studied and established in industry for many years joint-strengths within the range of the base material can be achieved. Until now these processes are only used for unfilled and short glass fiber-reinforced thermoplastics using laser absorbing and laser transparent matrices. This knowledge is now transferred to joining long glass fiber reinforced PA6 with high fiber contents without any adhesive additives. As the polymer matrix and glass fibers increase the scattering of the laser beam inside the material, their optical properties, changing with material thickness and fiber content, influence the welding process and require high power lasers. In this article the influence of these material properties (fiber content, material thickness) and the welding parameters like joining speed, laser power and clamping pressure are researched and discussed in detail. The process is also investigated regarding its limitations. Additionally the gap bridging ability of the process is shown in relation to material properties and joining speed.

  16. Study on the Dynamic Performance of Polypropylene Fiber Reinforced Concrete

    OpenAIRE

    Zhang Ying; Zheng Chunhang; Wu Rujun; Chen Xi; Guoping Jiang

    2013-01-01

    The dynamic performance of polypropylene fiber reinforced concrete is studied with the SHPB experiment. The relationship of the strain-stress curves are all obtained in the experiment. The crack characteristics of polypropylene reinforced concrete and plain concrete are also investigated. Analyzed the relation between the character on the crack surface of concrete and material properties and the impact pressure. Also the multi-fractal characteristics are given on the crack surface of concrete...

  17. Correlations Between Mechanical Properties of Steel Fiber Reinforced Concrete

    OpenAIRE

    Carrillo Julián; Aperador William; González Giovanni

    2013-01-01

    Tension strength and post-cracking deformation capacities that exhibits steel fiber reinforced concrete (SFRC) stimulate its use in elements governed by shear deformations. Aimed at developing design aids that promote the use of SFRC as web shear reinforcement of concrete walls for low-rise economic housing (LEH), an experimental study for describing the mechanical properties of SFRC was carried out. The experimental program included testing of 128 cylinder- and beam-type specimens. According...

  18. Strain measurements on concrete beam and carbon fiber cable with distributed optical fiber Bragg grating sensors

    Science.gov (United States)

    Nellen, Philipp M.; Bronnimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1996-09-01

    We report on civil engineering applications of wavelength multiplexed optical fiber Bragg grating arrays directly produced on the draw tower for testing and surveying advanced structures and materials such as carbon fiber reinforced concrete elements and prestressing cables. We equipped a 6 by 0.9 by 0.5 m concrete beam, which was reinforced with carbon fiber reinforced epoxy laminates, and a 7-m long prestressing carbon fiber cable made of seven twisted strands, with optical fiber Bragg grating sensors. Static strains up to 8000 micrometers/m and dynamic strains up to 1200 micrometers/m were measured with a Michelson interferometer used as Fourier spectrometer with a resolution of about 10 micrometers/m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optical results. We installed the fiber sensors in two different arrangements: some Bragg grating array elements measured local strain while others were applied in an extensometric configuration to measure moderate strain over a base length of 0.1 to 1 m.

  19. Comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics and short fiber reinforced thermoplastic

    Institute of Scientific and Technical Information of China (English)

    Fang Kun; Yang Jie; Wu Sizhu; Li Mei; Ma Mingtu

    2012-01-01

    This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experiment and theory results showed that the mechanical properties of long glass fiber reinforced thermoplastics pellets (LGFRT) have been enhanced better than that of short glass fiber reinforced thermoplastics pellets (SGFRT) manufactured by molding procession. After regulation of the relative humidity by 50 % , the mechanical properties of 30 % ( weight percent) short glass fiber content in SFT ( SFT-PA6-SGF30 ) are similar to that of 40 % long glass fiber content in LFT. Howev- er, the density of the latter is about 17 % lower than that of the former. Thus, the corresponding weight of products is reduced by 13 % ;output rate is increased by 21% , and the cost is therefore significantly lowered. And it has the fol- lowing advantages: impact strength is increased by 87 % ; the proportion is reduced by 20 % ; molding cycle is short- ened by 10 % ;materials cost is saved by 20 % -30 % and the final total cost is saved by 30 % -40 %. So LFT (LFT-PP-LGF40) can replace SFT (SFT-PA6-SGF30) with the similar basic mechanical properties under normal tem- perature or 160 ℃ lower.

  20. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  1. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  2. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  3. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  4. Fiber-reinforced technology in multidisciplinary chairside approaches

    Directory of Open Access Journals (Sweden)

    Arhun Neslihan

    2008-01-01

    Full Text Available There is an increasing demand to improve dentofacial esthetics in the adult population. This demand usually requires a close collaboration within the various disciplines of dentistry and the patient at every stage of the therapy. The materials and techniques used by these interdisciplinary clinicians must be conservative and minimally invasive. Fiber-reinforced composite technology offers such solutions for chairside applications. This case report presents two cases where fiber-reinforced ribbon and composite complex was used in a multidisciplinary approach to improve esthetics.

  5. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    Science.gov (United States)

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (pcomposite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process.

  6. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  7. Evaluation of fiber reinforced cement using digital image correlation.

    Directory of Open Access Journals (Sweden)

    Garrett W Melenka

    Full Text Available The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile - digital image correlation (DIC measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure.

  8. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    Science.gov (United States)

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (pcomposite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process. PMID:25904176

  9. Dynamic Mechanical Analysis and High Strain-Rate Energy Absorption Characteristics of Vertically Aligned Carbon Nanotube Reinforced Woven Fiber-Glass Composites

    Directory of Open Access Journals (Sweden)

    Kiyun Kim

    2015-01-01

    Full Text Available The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT forests grown on woven fiber-glass (FG layer and embedded within 10 layers of woven FG, with polyester (PE and polyurethane (PU resin systems (FG/PE/VACNT and FG/PU/VACNT are investigated and compared with the baseline materials, FG/PE and FG/PU (i.e., without VACNT. A Dynamic Mechanical Analyzer (DMA was used for obtaining the mechanical properties. It was found that FG/PE/VACNT exhibited a significantly lower flexural stiffness at ambient temperature along with higher damping loss factor over the investigated temperature range compared to the baseline material FG/PE. For FG/PU/VACNT, a significant increase in flexural stiffness at ambient temperature along with a lower damping loss factor was observed with respect to the baseline material FG/PU. A Split Hopkinson Pressure Bar (SHPB was used to evaluate the energy absorption and strength of specimens under high strain-rate compression loading. It was found that the specific energy absorption increased with VACNT layers embedded in both FG/PE and FG/PU. The compressive strength also increased with the addition of VACNT forest layers in FG/PU; however, it did not show an improvement for FG/PE.

  10. Behaviour of fiber reinforced concrete slabs under impact loading

    International Nuclear Information System (INIS)

    The behaviour of steel fiber reinforced concrete slabs under impact loads has been investigated. The results obtained show that fracturing and spallation effects are reduced to a large extend due to the high energy absorption and the increased yield strength of this material. Crater depths are comparable to those obtained using normal concrete targets. Systematic tests using different fiber types and dimensions show that the terminal ballistic behaviour is strongly dependent on these parameters. (orig.)

  11. Meso-mechanical analysis of steel fiber reinforced cementitious composites

    OpenAIRE

    Caggiano, Antonio

    2013-01-01

    2010 - 2011 The mechanical behavior of cement-based materials is greatly affected by crack propagation under general stress states. The presence of one or more dominant cracks in structural members modifies its response, possibly leading to brittle failure modes. The random dispersion of short steel fibers in cement materials is a new methodology used for enhancing the response in the post-cracking regime. The behavior of Fiber-Reinforced Cementitious Composite (FRCC), compared...

  12. Tensile behavior of steel fiber reinforced self-compacting concrete

    OpenAIRE

    Cunha, Vitor M. C. F.; Barros, Joaquim A. O.; Sena-Cruz, José

    2010-01-01

    In the present work the tensile behavior of a self-compacting concrete reinforced with two hooked ends steel fiber contents was assessed performing stable displacement control tension tests. Based on the stressdisplacement curves obtained, the stress-crack width relationships were derived, as well as the energy dissipated up to distinct crack width limits and residual strengths. The number of effective fibers bridging the fracture surface was determined and was compared with the t...

  13. Tensile Properties Characterization of Okra Woven Fiber Reinforced Polyester Composites

    OpenAIRE

    Srinivasababu; K. Murali Mohan Rao; J.Suresh Kumar

    2009-01-01

    The present research exploits a new natural fiber namely okra for the preparationof okra fiber reinforced polyester composites. Chemically treated (chemicaltreatment-2) okra woven FRP composites showed the highest tensile strengthand modulus of 64.41 MPa and 946.44 MPa respectively than all othercomposites investigated in the present research. Specific tensile strength andmodulus of untreated and treated okra FRP composites is 34.31% and 39.84%higher than pure polyester specimen respectively.

  14. Some Properties of Fiber Reinforced Self Compacting Concrete

    OpenAIRE

    Eren, Özgür; Alyousif, Ashraf

    2010-01-01

    Today many countries are producing self-compacting concrete (SCC) and it is known that SCC has many advantages compared to conventional concrete. On the other hand, it is very well known that tensile strength of concrete can be improved by adding steel fibers in concrete. Although fiber reinforced concrete (FRC) is being produced in Cyprus for a long time, SCC is a new product for construction industry. Therefore, combination of SCC & FRC would bring many benefits. This study was split in...

  15. Tensile Properties Characterization of Okra Woven Fiber Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    Srinivasababu

    2009-10-01

    Full Text Available The present research exploits a new natural fiber namely okra for the preparationof okra fiber reinforced polyester composites. Chemically treated (chemicaltreatment-2 okra woven FRP composites showed the highest tensile strengthand modulus of 64.41 MPa and 946.44 MPa respectively than all othercomposites investigated in the present research. Specific tensile strength andmodulus of untreated and treated okra FRP composites is 34.31% and 39.84%higher than pure polyester specimen respectively.

  16. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    Directory of Open Access Journals (Sweden)

    A.E. Ismail

    2015-12-01

    Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.

  17. Initial evaluation of continuous fiber reinforced NiAl composites

    Science.gov (United States)

    Noebe, R. D.; Bowman, R. R.; Eldridge, J. I.

    1990-01-01

    NiAl is being evaluated as a potential matrix material as part of an overall program to develop and understand high-temperature structural composites. Currently, continuous fiber composites have been fabricated by the powder cloth technique incorporating either W(218) or single crystal Al2O3 fibers as reinforcements in both binary NiAl and a solute strengthened NiAl(.05 at. pct Zr) matrix. Initial evaluation of these composite systems have included: fiber push-out testing to measure matrix/fiber bond strengths, bend testing to determine strength as a function of temperature and composite structure, and thermal cycling to establish the effect of matrix and fiber properties on composite life. The effect of matrix/fiber bond strength and matrix strength on several composite properties will be discussed.

  18. Natural Fiber or Glass Reinforced Polypropylene Composites?

    Science.gov (United States)

    Lorenzi, W.; Di Landro, L.; Casiraghi, A.; Pagano, M. R.

    2008-08-01

    Problems related to the recycle of conventional composite materials are becoming always more relevant for many industrial fields. Natural fiber composites (NFC) have recently gained much attention due to their low cost, environmental gains (eco-compatibility), easy disposal, reduction in volatile organic emissions, and their potential to compete with glass fiber composites (GFC). Interest in natural fibers is not only based over ecological aspects. NFC have good mechanical performances in relation to their low specific weight and low price. A characterization of mechanical properties, dynamic behavior, and moisture absorption is presented.

  19. Fabrication of novel fiber reinforced aluminum composites by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Seyyed Mohammad; Karimi, Saeed; Jahromi, Seyyed Ahmad Jenabali, E-mail: jahromi@shirazu.ac.ir; Javadpour, Sirus; Zebarjad, Seyyed Mojtaba

    2015-04-24

    In this study, chopped and attrition milled high strength carbon, E-glass, and S-glass fibers have been used as the reinforcing agents in an aluminum alloy (Al1100) considered as the matrix. The Surface Metal Matrix Composites (SMMCs) then are produced by Friction Stir Processing (FSP). Tensile and micro-hardness examinations represent a magnificent improvement in the hardness, strength, ductility and toughness for all of the processed samples. Scanning Electron Micrographs reveal a proper distribution of the reinforcements in the matrix and a change in the fracture behavior of the FSPed specimens. The synergetic effects of reinforcing by fibers and Severe Plastic Deformation (SPD) lead to an extra ordinary improvement in the mechanical properties.

  20. In Vitro Study of Transverse Strength of Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Z. Hashemi

    2011-09-01

    Full Text Available Objective: Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitrostudy was to compare the transverse strength of composite resin bars reinforced with preimpregnated and non-impregnated fibers.Materials and Methods: Thirty six bar type composite resin specimens (3×2×25 mmwere constructed in three groups. The first group was the control group (C without any fiber reinforcement. The specimens in the second group (P were reinforced with preimpregnatedfibers and the third group (N with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength.Data were statistically analyzed with one way ANOVA and Tukey's tests.Results: There was a significant difference among the mean primary transverse strength in the three groups (P<0.001. The post-hoc (Tukey test showed that there was a significant difference between the pre-impregnated and control groups in their primary transversestrength (P<0.001. Regarding deflection, there was also a significant difference among the three groups (P=0.001. There were significant differences among the mean deflection of the control group and two other groups (PC&N<.001 and PC&P=.004, but there was no significant difference between the non- and pre-impregnated groups (PN&P=.813.Conclusion: Within the limitations of this study, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnationof the fiber used implemented no significant difference in the transverse strength of composite resin samples.

  1. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  2. Glass Fiber Reinforced Polymer Bars as the Top Mat Reinforcement for Bridge Decks

    OpenAIRE

    DeFreese, James Michael

    2001-01-01

    The primary objective of this research was to experimentally investigate material and bond properties of three different types of fiber reinforced polymer (FRP) bars, and determine their effect on the design of a bridge deck using FRP bars as the top mat of reinforcement. The properties evaluated include the tensile strength, modulus of elasticity, bond behavior, and maximum bond stress. The experimental program included 47 tensile tests and 42 beam end bond tests performed with FRP bars. ...

  3. Effect of random/aligned nylon-6/MWCNT fibers on dental resin composite reinforcement.

    Science.gov (United States)

    Borges, Alexandre L S; Münchow, Eliseu A; de Oliveira Souza, Ana Carolina; Yoshida, Takamitsu; Vallittu, Pekka K; Bottino, Marco C

    2015-08-01

    The aims of this study were (1) to synthesize and characterize random and aligned nanocomposite fibers of multi-walled carbon nanotubes (MWCNT)/nylon-6 and (2) to determine their reinforcing effects on the flexural strength of a dental resin composite. Nylon-6 was dissolved in hexafluoropropanol (10 wt%), followed by the addition of MWCNT (hereafter referred to as nanotubes) at two distinct concentrations (i.e., 0.5 or 1.5 wt%). Neat nylon-6 fibers (without nanotubes) were also prepared. The solutions were electrospun using parameters under low- (120 rpm) or high-speed (6000 rpm) mandrel rotation to collect random and aligned fibers, respectively. The processed fiber mats were characterized by scanning (SEM) and transmission (TEM) electron microscopies, as well as by uni-axial tensile testing. To determine the reinforcing effects on the flexural strength of a dental resin composite, bar-shaped (20×2×2 mm(3)) resin composite specimens were prepared by first placing one increment of the composite, followed by one strip of the mat, and one last increment of composite. Non-reinforced composite specimens were used as the control. The specimens were then evaluated using flexural strength testing. SEM was done on the fractured surfaces. The data were analyzed using ANOVA and the Tukey׳s test (α=5%). Nanotubes were successfully incorporated into the nylon-6 fibers. Aligned and random fibers were obtained using high- and low-speed electrospinning, respectively, where the former were significantly (pdental resin composite tested was significantly reinforced when combined with nylon-6 fibrous mats composed of aligned fibers (with or without nanotubes) or random fibers incorporated with nanotubes at 0.5 wt%.

  4. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das. Sujit; Warren, Josh; West, Devin; Schexnayder, Susan M.

    2016-05-11

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  5. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  6. Flexural Behavior of Steel Fiber Reinforced High-Strength Concrete Beams

    OpenAIRE

    Qiaoyan Guan; Peng Zhang; Xiaopeng Xie

    2013-01-01

    In order to investigate the effect of longitudinal reinforcement ratio, volume dosage of steel fiber and the beam height on flexural behavior of steel fiber reinforced high-strength concrete beams, a parametric experimental study has been conducted. Four longitudinal reinforcement ratios, 4 steel fiber volume dosages and 4 different beam heights were used. Results reveal that the bearing capacity and the measured deflection of the steel fiber reinforced high-strength beams are much larger and...

  7. PROGRESS ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  8. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    Science.gov (United States)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  9. Mechanical Properties of Layered Hybrid Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    YUAN Hai-qing; CHEN Jing-tao; ZHU Ji-dong

    2003-01-01

    To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly.

  10. A Survey on Key Technologies for Carbon Fiber-reinforced Plastics with Applications to Automobile Lightening%面向汽车轻量化应用的碳纤维复合材料关键技术

    Institute of Scientific and Technical Information of China (English)

    宋燕利; 杨龙; 郭巍; 华林

    2016-01-01

    轻量化技术已成为汽车实现节能、减排的重要途径,碳纤维复合材料为汽车轻量化提供了重要材料基础。由于材料特性与制造工艺的特殊性与复杂性,采用碳纤维复合材料实现汽车轻量化时需要克服多项关键技术。结合汽车产品特点,从低成本碳纤维技术、材料-结构-性能一体化技术、高效成型技术、多材料连接技术、循环利用技术几个方面阐述了碳纤维复合材料在汽车轻量化应用中的关键技术,展望了未来汽车用碳纤维复合材料的发展趋势。%Lightweight has become an important way to achieve energy saving and emission reduction for auto-mobile and carbon fiber-reinforced plastics (CFRP)has provided a significant material foundation for automobile ligh-tening.Due to particularity and complexity of material properties and manufacturing processes,the application of CFRP to vehicle lightening still faces several crucial technological challenges.In this paper,the key technologies aimed at these issues,including low cost carbon fiber,structure-function integration,highly efficient molding,multi-mate-rial connection,and recycling,are analyzed and summarized combining with the automobile features.The future de-velopment prospect of CFRP for automobile application is also put forward.

  11. Design and realization a skiff racing boat hull made of natural fibers reinforced composite

    Science.gov (United States)

    Collotta, M.; Solazzi, L.; Pandini, S.; Tomasoni, G.; Alberti, M.; Donzella, G.

    2016-05-01

    This paper discusses the development of a racing boat with an hull made of a composite material reinforced by natural fibers. In particular, we report here the design and realization of the boat hull, the assessment of its mechanical performance by means of a computer assisted simulation, and the cost analysis to assess the economic sustainability of the new composite developed. The results have shown that the new composite has a performance comparable with conventional glass fiber reinforced composites employed for the realization of this type of boat, accordingly to the technology employed and the lamination sequence adopted. Moreover, the FEM analysis performed over the skiff of the designed and constructed boat has demonstrated a successful choice of the material for real application, as it was later confirmed by the good performance of the boat in water. Finally, the cost analysis highlighted the economic sustainability of the new composite, allowing a cost saving of over 28% with respect to carbon fiber composites.

  12. Crushing characteristics of continuous fiber-reinforced composite tubes

    Science.gov (United States)

    Farley, Gary L.; Jones, Robert M.

    1992-01-01

    Composite tubes can be reinforced with continuous fibers. When such tubes are subjected to crushing loads, the response is complex and depends on interaction between the different mechanisms that control the crushing process. The modes of crushing and their controlling mechanisms are described. Also, the resulting crushing process and its efficiency are addressed.

  13. Fatigue life prediction of fiber reinforced concrete under flexural load

    DEFF Research Database (Denmark)

    Zhang, Jun; Stang, Henrik; Li, Victor

    1999-01-01

    This paper presents a semi-analytical method to predict fatigue behavior in flexure of fiber reinforced concrete (FRC) based on the equilibrium of force in the critical cracked section. The model relies on the cyclic bridging law, the so-called stress-crack width relationship under cyclic tensile...

  14. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall...

  15. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  16. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    2016-05-01

    Full Text Available Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production.

  17. STRAIN REGULARITY IN REINFORCERS OF SHORT-FIBER/ WHISKER REINFORCED COMPOSITE AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the study of strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root-mean-square strain of reinforcers to the macro-linear strain along the same direction. Quantitative relation between λ and microstructure parameters of the composite is obtained. As an example of applying and verifying λ, the stress-strain curve of [AlBO]w/Al composite under tensile loading is predicted and favorably compared with experiments. By using λ, the stiffness modulus of the composite with arbitrary reinforcer orientation under any loading condition is predicted from the microstructure parameters of material.

  18. Banana fiber-reinforced biodegradable soy protein composites

    Institute of Scientific and Technical Information of China (English)

    Rakesh Kumar; Veena Choudhary; Saroj Mishra; Ik Varma

    2008-01-01

    Banana fiber,a waste product of banana cultivation,has been used to prepare banana fiber reinforced soy protein composites. Alkali modified banana fibers were characterized in terms of density,denier and crystallinity index. Fourier transformed infrared spectroscopy (FTIR),scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were also performed on the fibers. Soy protein composites were prepared by incorporating different volume fractions of alkali,treated and untreated fibers into soy protein isolate (SPI) with different amounts of glycerol (25%,50%) as plasticizer.Composites thus prepared were characterized in terms of mechanical properties,SEM and water resistance.The results indicate that at 0.3 volume fraction,tensile strength and modulus of alkali treated fiber reinforced soy protein composites increased to 82% and 963%,respectively,compared to soy protein film without fibers.Water resistance of the composites increased significantly with the addition of glutaraldehyde which acts as crosslinking agent. Biodegradability of the composites has also been tested in the contaminated environment and the composites were found to be 100% biodegradable.

  19. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    Directory of Open Access Journals (Sweden)

    Mariana Etcheverry

    2012-06-01

    Full Text Available Glass fibers (GF are the reinforcement agent most used in polypropylene (PP based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers.

  20. Preparation of SiC Fiber Reinforced Nickel Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Nanlin Shi; Jun Gong; Chao Sunt

    2012-01-01

    A method of preparing continuous(Al+Al2O3)-coated SiC fiber reinforced nickel matrix composite was presented,in which the diffusion between SiC fiber and nickel matrix could be prevented.Magnetron sputtering is used to deposit Ni coating on the surface of the(Al+Al2O3)-coated SiC fiber in preparation of the precursor wires.It is shown that the deposited Ni coating combines well with the(Al+Al2O3) coating and has little negative effect on the tensile strength of(Al+Al2O3)-coated SiC fiber.Solid-state diffusion bonding process is employed to prepare the(Al+Al2O3)-coated SiC fiber reinforced nickel matrix with 37% fibers in volume.The solid-state diffusion bonding process is optimized and the optimum parameters are temperature of 870,pressure of 50 MPa and holding time of 2 h.Under this condition,the precursor wires can diffuse well,composite of full density can be formed and the(Al+Al2O3) coating is effective to restrict the reaction between SiC fiber and nickel matrix.

  1. 预拉碳纤维布加固持荷混凝土梁受力性能分析%Mechanical Behavior of Pre-loaded Reinforced Concrete Beams Strengthened by Pre-tensioned Carbon Fiber Composite Sheets

    Institute of Scientific and Technical Information of China (English)

    高鹏; 顾祥林

    2009-01-01

    According to the characteristic of pre-loaded reinforced concrete beams strengthened by pre-tensioned carbon fiber composite sheets, a suitable finite element model and corresponding calculation steps were proposed. The method was verified by the testing results of two groups of strengthened beam specimens. Comparison between simulation and testing results shows that the proposed method is a precise numerical tool. Further parameter analysis using the proposed method shows that the bearing capacity of a strengthened beam might be notably reduced if the pre-load applied on the beam is larger than 40% of the initial bearing capacity of the beam, the strength of carbon fiber composite sheets can be fully used by using pre-tensioning technique,and the negative influence of the pre-load on the bending behavior of a strengthened beam can be made up when the pre-strain of carbon fiber composite sheets is between 0.003~0.004.%根据预张拉碳纤维布加固持荷钢筋混凝土梁受力特点,采用商业软件建立有限元模型对梁加固和受荷全过程进行模拟和分析.对两组试验梁的模拟计算结果显示,有限元方法有较好的精度.试验和进一步的有限元数值模拟分析结果表明,当构件上的持荷水平超过未加固构件承载力的40%时,持荷会降低加固构件的承载力;采用预张拉加固方法可充分发挥碳纤维布的强度,当碳纤维布中的有效预拉应变达0.003~0.004时,可消除持荷对加固梁受力性能的影响.

  2. Advanced Carbon Fiber Nears Broad Automotive Use

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    General Motors and Teijin Limited, a leader in the carbon fiber and composites industry, will co-develop advanced carbon fiber composite technologies for potential high-volume use globally in GM cars, trucks and crossovers.

  3. Microstructure of Steel Fiber Reinforced Polymer-cement-based Composites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mercury intrusion porosimetry was used to measure the pore structure of steel fiber reinforced polymer-cement-based composite.The results indicate that the large pore volume decreases by 57.8%-51.2% and by 87.1%-88% with the addition of steel fibers and polymers respectively.When both steel fibers and polymers are simultaneously added,the large pore volume decreases by 88.3%-90.1%.As a surface active material,polymer has a favorable water-reduced and forming-film effect,which is contributed to the decrease of the thickness of water film and the improvement of the conglutination between the fibers and the matrix.Polymers could form a microstructure network.This network structure and the bone structure of cement hydration products penetrate each other and thus the interpenetrating network with sticky aggregate and steel fiber inside forms.

  4. A small-scale test for fiber release from carbon composites. [pyrolysis and impact

    Science.gov (United States)

    Gilwee, W. J., Jr.; Fish, R. H.

    1980-01-01

    A test method was developed to determine relative fiber loss from pyrolyzed composites with different resins and fiber construction. Eleven composites consisting of woven and unwoven carbon fiber reinforcement and different resins were subjected to the burn and impact test device. The composites made with undirectional tape had higher fiber loss than those with woven fabric. Also, the fiber loss was inversely proportional to the char yield of the resin.

  5. TPS/LDPE blends reinforced with lignocellulose fibers

    International Nuclear Information System (INIS)

    Because of their abundance, availability, low abrasiveness and mechanical properties, cellulose fibers have been frequently chosen as reinforcing fillers in composites. Castor bean cake, the residue from biodiesel production, is rich in lignocellulose fibers and proteins. One of these proteins is ricin, a toxin protein. In this work, ricin was denatured by heat treatment in water at 90 deg C for 4 h. Thermoplastic starch (TPS), low density polyethylene (LDPE), maleated polyethylene (used as the compatibilizing agent), and an organophilic clay were processed in the presence of different contents of heat treated castor bean cake. Processing was carried out in a single-screw extruder, at 400 rpm, with heat zones at 130 deg C, 135 deg C, 135 deg C and 130 deg C (from feed zone to die end). The structural and mechanical properties of the resulting polymeric composites were investigated, and revealed the reinforcing effect of the partially purified cellulose fibers. (author)

  6. Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems

    International Nuclear Information System (INIS)

    Highlights: • RC beams strengthened with hybrid FRP sheets. • Carbon and Glass are the used FRP sheets. • Four point bending tests were conducted. • Both strength and ductility had been enhanced. - Abstract: This paper presents an experimental and an analytical investigation of the behavior of Reinforced Concrete (RC) beams strengthened in flexure by means of different combinations of externally bonded hybrid Glass and Carbon Fiber Reinforced Polymer (GFRP/CFRP) sheets. In order to obtain the mechanical properties of the hybrid sheets, multiple tensile coupon tests were conducted. In addition, an experimental program consisting of a control beam and four beams strengthened in flexure with GFRP, CFRP and hybrid FRP sheets was conducted. The series of the RC beams were tested under four point bending to study the flexural effectiveness of the proposed hybrid FRP sheets. The load–deflection response, strain readings at certain locations and associated failure modes of the tested specimens had been recorded. It is observed that the increase in the load capacity of the strengthened beams ranged from 30% to 98% of the un-strengthened control RC beam depending on the combination of the Carbon/Glass sheets. It was also observed that the ductility at failure loads of the beams strengthened with glass and hybrid sheets is higher than that with a single carbon sheet. Hence, the selection of the optimum combination of hybrid sheets can lead to a strengthening material which provides an improved ductility and strength in beam behavior. The load carrying capacity of the tested specimens was then predicted by the ACI 440.2R-08 guidelines. The predicted and measured results were in good agreement, within 5% for the control beam and for beams with one layer of strengthening sheet and between 13% and 17% for beams with two or more layers of hybrid strengthening sheets. Furthermore, an analytical model was developed to predict the load–deflection response of the tested

  7. Reinforced Sisal Fiber with Ferric Nitrate Composites

    Directory of Open Access Journals (Sweden)

    Asif Jehan

    2015-06-01

    Full Text Available Ferric oxide synthesized through annealing route. The present research work deals with ferrite composite prepared using chemical reactions. Ferric nitrates and ammonium chloride doped with sisal fiber has been prepared. The structural behavior of aluminum oxide was studied in XRD, SEM, TEM, FTIR & dielectric measurement. This behavior showed ferrite nature of the sample.

  8. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites

    OpenAIRE

    Zhaoqian Li; Xiaodong Zhou; Chonghua Pei

    2011-01-01

    Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA) composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA). The results from mec...

  9. Micromechanical effective elastic moduli of continuous fiber-reinforced composites with near-field fiber interactions

    OpenAIRE

    Ju, J. W.; Yanase, K

    2011-01-01

    A higher-order micromechanical framework is presented to predict the overall elastic deformation behavior of continuous fiber-reinforced composites with high-volume fractions and random-fiber distributions. By taking advantage of the probabilistic pair-wise near-field interaction solution, the interacting eigenstrain is analytically derived. Subsequently, by making use of the Eshelby equivalence principle, the perturbed strain within a continuous circular fiber is accounted for. Further, base...

  10. The Tensile Behavior of High-Strength Carbon Fibers.

    Science.gov (United States)

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths.

  11. The Tensile Behavior of High-Strength Carbon Fibers.

    Science.gov (United States)

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths. PMID:27278219

  12. Analysing the Mechanical Properties of Natural Fiber Reinforced Polymer Composites Using FEA

    OpenAIRE

    A.Dyson Bruno; Baskaran, M

    2014-01-01

    Over the last thirty years composite materials such as polymer, alloys and ceramics have been the dominant emerging materials. The volume and number of applications of Composite materials have grown steadily, penetrating and conquering new markets relentlessly. Polymeric Materials Reinforced with Synthetic Fibers such as glass, carbon, and aramid provide advantages of high stiffness and high strength to weight ratio as compared to conventional materials, i.e. wood, concrete, a...

  13. Research on Flax Fiber Reinforced Polylactide Environmental Friendly Composite

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-hong; WANG Rui; LIU Ming; SHEN Lu; BIAN Dong-cai

    2006-01-01

    Biodegradable polylactide acid (PLA) resin can be combined with flax fibers to produce biodegradable composite materials. In our study, commercial PLA fibers were mixed with flax fibers by a non-woven method so as to make nonwoven pre-forms, which can be generated into flax fiber reinforced PLA environmental friendly composites by heat pressing technology. The tensile, flexural and impact properties are tested in order to evaluate the basic physical properties of the composites, and the influenced factors listed as making technology of the pre-forms, weight ratio of flax fibers and heat pressing technology are discussed and optimized, which can be described as weight ratio of flax fibers and PLA fibers is 50/50, heating temperature, time and pressure are respectively 195℃, 20 min and 12.5 Mpa.Preliminary results show that mechanical properties of the flax/PLA composites are quite promising compared with flax/PP composites in common commercial automotive use.Scanning electron microscope (SEM) is used to analyze the tensile specimen fracture surfaces, which shows voids and gaps occurring between flax fibers and PLA matrix and sign of fiber pull-out, the strength of flax/PLA interface can be further improved.

  14. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  15. Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant

    DEFF Research Database (Denmark)

    Li, Haisheng; Zou, Xuenong; Woo, Charlotte;

    2007-01-01

    Implants of carbon fiber composite have been widely used in orthopedic and spinal surgeries. However, studies using carbon fiber-reinforced cages demonstrate frequent appearance of fibrous layer interposed between the implant and the surrounding bone. The aim of the present study was to test the ...

  16. A micromorphic model for steel fiber reinforced concrete.

    Science.gov (United States)

    Oliver, J; Mora, D F; Huespe, A E; Weyler, R

    2012-10-15

    A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber-matrix interface bond/slip process. This phenomenon is contemplated by including, in the macroscopic description, a micromorphic field representing the relative fiber-cement displacement. Then, the theoretical framework, from which the governing equations of the problem are derived, can be assimilated to a specific case of the material multifield theory. The balance equation derived for this model, connecting the micro stresses with the micromorphic forces, has a physical meaning related with the fiber-matrix bond slip mechanism. Differently to previous procedures in the literature, addressed to model fiber reinforced composites, where this equation has been added as an additional independent ingredient of the methodology, in the present approach it arises as a natural result derived from the multifield theory. Every component of the composite is defined with a specific free energy and constitutive relation. The mixture theory is adopted to define the overall free energy of the composite, which is assumed to be homogeneously constituted, in the sense that every infinitesimal volume is occupied by all the components in a proportion given by the corresponding volume fraction. The numerical model is assessed by means of a selected set of experiments that prove the viability of the present approach. PMID:24049211

  17. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    Science.gov (United States)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  18. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    Science.gov (United States)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-12-01

    To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed after the carbon fibers were coated with CNTs.

  19. Fiber Length and Orientation in Long Carbon Fiber Thermoplastic Composites

    OpenAIRE

    Hanhan, Imad; Sullivan, Connor; Sharma, Bhisham; Sangid, Michael

    2014-01-01

    Carbon fiber composites have become popular in aerospace applications because of their lightweight yet strong material properties. The injection molding process can be used to produce discontinuous fiber composites using less time and resources than traditional methods, thereby broadening carbon fiber composites’ applications in different industries. Utilization of longer fibers offers more load carrying capability and superior strength properties for injected molded composites. Since the fib...

  20. Cellulose fiber reinforced nylon 6 or nylon 66 composites

    Science.gov (United States)

    Xu, Xiaolin

    Cellulose fiber was used to reinforce higher melting temperature engineering thermoplastics, such as nylon 6 and nylon 66. The continuous extrusion - direct compression molding processing and extrusion-injection molding were chosen to make cellulose fiber/nylon 6 or 66 composites. Tensile, flexural and Izod impact tests were used to demonstrate the mechanical properties of the composites. The continuous extrusion-compression molding processing can decrease the thermal degradation of cellulose fiber, but fiber doesn't disperse well with this procedure. Injection molding gave samples with better fiber dispersion and less void content, and thus gave better mechanical properties than compression molding. Low temperature compounding was used to extrude cellulose fiber/nylon composites. Plasticizer and a ceramic powder were used to decrease the processing temperature. Low temperature extrusion gave better mechanical properties than high temperature extrusion. The tensile modulus of nylon 6 composite with 30% fiber can reach 5GPa; with a tensile strength of 68MPa; a flexural modulus of 4GPa, and a flexural strength of 100MPa. The tensile modulus of nylon 66 composites with 30% fiber can reach 5GPa; with a flexural modulus of 5GPa; a tensile strength of 70MPa; and a flexural strength of 147MPa. The effect of thermal degradation on fiber properties was estimated. The Halpin-Tsai model and the Cox model were used to estimate the composite modulus. The Kelly-Tyson model was used to estimate the composite strength. The result indicates that the change of fiber properties determines the final properties of composites. Fiber length has a minor affect on both modulus and strength as long as the fiber length is above the critical length.