WorldWideScience

Sample records for carbon electrode modified

  1. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  2. Electrocatalytic oxidation of ethanol using zeolite modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Maryam Abrishamkar

    2014-12-01

    Full Text Available In this research application of synthesized ZSM-5 zeolite to prepare the modified carbon paste electrodes was studied. To prepare of modified electrode, the nickel ions as mediator for electrochemical oxidation of ethanol were doped to ZSM-5 zeolite framework through ion exchange mechanism and oxidation of ethanol on the surface of proposed electrode in the alkaline solution was investigated using cyclic voltammetry and chronoamperometry methods. Also, the catalytic rate constant for oxidation of ethanol (k was reported.

  3. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng(王鹏); ZHU,Guo-Yi(朱果逸)

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate (CuHCF)nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite, which was used as electrode material to fabricate surface-renewable CuHCF-modified electrodes. Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voitammetry.Cyclic voltammograms at various scan rates indicated that peak currents were surface-confined at low scan rates. In the presence of glutathione, a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes. In addition, the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper, as well as ease of preparation, and good chemical and mechanical stability in a flowing stream.

  4. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng; ZHU,Guo-Yi

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate(CuHCF) nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite,which was used as electrode materials to fabricate surface-renewable CuHCF-modified electrodes.Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voltammetry. Cyclinc voltammograms at various scan rates indicated that peak currents were suface-confined at low scan rates.In the presence of glutathione,a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes.In addition,the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper,as well as ease of preparation,and good chemical and mechanical stability in a flowing stream.

  5. ELECTROANALYTICAL APPLICATIONS OF CARBOXYL-MODIFIED CARBON NANOTUBE FILM ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu

    2003-01-01

    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  6. Direct Electrochemistry of Catalase on Single Wall Carbon Nanotubes Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiang ZHAO; Lun Hui GUAN; Zhen Nan GU; Qian Kun ZHUANG

    2005-01-01

    Direct electrochemistry of catalase (Ct) has been studied on single wall carbon nanotubes (SWNTs) modified glassy carbon (GC) electrode. A pair of well-defined nearly reversible redox peaks is given at --0.48 V (vs. SCE) in 0.1 mol/L phosphate solution (pH 7.0).The peak current in cyclic voltammogram is proportional to the scan rate. The peak potential of catalase is shifted to more negative value when the pH increases. Catalase can adsorb on the SWNTs modified electrode.

  7. Electrochemical investigation of NO at single-wall carbon nanotubes modified electrodes

    Indian Academy of Sciences (India)

    Tingliang Xia; Hongmei Bi; Keying Shi

    2010-05-01

    The NO electro-oxidation was investigated at various single-wall carbon nanotubes (SWCNTs) modified electrodes by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared with the glassy carbon electrode, the SWCNTs modified electrodes possess higher electro-catalytic activity to NO electro-oxidation. CV results indicate that the peak current density of NO electro-oxidation at the SWCNT-COOH (SWCNTs with carboxyl groups) modified electrode is the highest and the peak potential is the most negative among the four kinds of electrodes. EIS indicates that the charge transfer resistance of NO electro-oxidation at the SWCNT-COOH modified electrode is the least. The determined factors (charge transfer and mass transfer of diffusion) of NO electro-oxidation are different in varied potential region. The mechanism of NO electro-oxidation reaction at the SWCNTs modified electrodes is also discussed.

  8. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    Science.gov (United States)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  9. Catalase-Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two.

    Science.gov (United States)

    Sepunaru, Lior; Laborda, Eduardo; Compton, Richard G

    2016-04-18

    We successfully exploited the natural highly efficient activity of an enzyme (catalase) together with carbon electrodes to produce a hybrid electrode for oxygen reduction, very appropriate for energy transformation. Carbon electrodes, in principle, are cheap but poor oxygen reduction materials, because only two-electron reduction of oxygen occurs at low potentials, whereas four-electron reduction is key for energy-transformation technology. With the immobilization of catalase on the surface, the hydrogen peroxide produced electrochemically is decomposed back to oxygen by the enzyme; the enzyme natural activity on the surface regenerates oxygen, which is further reduced by the carbon electrode with no direct electron transfer between the enzyme and the electrode. Near full four-electron reduction of oxygen is realised on a carbon electrode, which is modified with ease by a commercially available enzyme. The value of such enzyme-modified electrode for energy-transformation devices is evident.

  10. Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine

    Directory of Open Access Journals (Sweden)

    Jun-ichi Anzai

    2013-05-01

    Full Text Available The surface of a glassy carbon (GC electrode was modified with reduced graphene oxide (rGO to evaluate the electrochemical response of the modified GC electrodes to hydrogen peroxide (H2O2 and hydrazine. The electrode potential of the GC electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene oxide (GO to deposit rGO on the surface of the GC electrode. The surface morphology of the modified GC electrode was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM and AFM observations revealed that aggregated rGO was deposited on the GC electrode, forming a rather rough surface. The rGO-modified electrodes exhibited significantly higher responses in redox reactions of H2O2 as compared with the response of an unmodified GC electrode. In addition, the electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also higher than that of the unmodified GC electrode. The response of the rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified electrodes are useful for constructing electrochemical sensors.

  11. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    Science.gov (United States)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT–GDH electrode is 2 times more sensitive than that of the normal-length MWCNT–GDH electrode in the concentration range from 0.25–35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT–GDH electrode formed a better electron transfer network than the normal-length one.

  12. Electroanalysis of cationic species at membrane-carbon electrodes modified by polysaccharides. Bioaccumulation at microorganism-modified electrodes.

    Science.gov (United States)

    Lojou, E; Bianco, P

    2000-05-01

    Membrane-carbon electrodes modified with polysaccharides suspensions entrapped between a dialysis membrane and the carbon surface were used for electroanalysis of various cationic species. Cationic complexes of ruthenium and cobalt, metallic cations (Cu(2+), Fe(3+), UO(2)(2+)) as well as methylviologen were considered. By investigating various parameters (concentration of the suspension, pH) binding of the cations by the polysaccharides was demonstrated. Comparison of cations uptake by different kinds of polysaccharides such as alginic acid, polygalacturonic acid, pectin, dextran and agar was performed. This study has been extended to natural biomaterials, alga and lichen, which are known to contain polysaccharides. The interest of the membrane-electrode strategy is described.

  13. A Multiwall Carbon Nanotube-chitosan Modified Electrode for Selective Detection of Dopamine in the Presence of Ascorbic Acid

    Institute of Scientific and Technical Information of China (English)

    Ling Yan JIANG; Chuan Yin LIU; Li Ping JIANG; Guang Han LU

    2005-01-01

    A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbic acid into two well-defined peak by 212 mY. The mechanism of discrimination of dopamine from ascorbic acid is discussed. Dopamine can be determined selectively with the carbon nanotube-chitosan modified electrode. The electrode shows good sensitivity, selectivity and stability.keywords: Nanotube-chitosan modified electrode, dopamine, ascorbic acid.

  14. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode

    International Nuclear Information System (INIS)

    Ionic liquid, 1-heptyl-3-methylimidazolium hexafluorophosphate (HMIMPF6), has been used to fabricate two new electrodes, carbon ionic liquid electrode (CILE) and ionic liquid modified carbon paste electrode (IL/CPE), using graphite powder mixed with HMIMPF6 or the mixture of HMIMPF6/paraffin liquid as the binder, respectively. The electrochemical behaviors of hydroquinone at the CILE, the IL/CPE and the CPE were investigated in phosphate buffer solution. At all these electrodes, hydroquinone showed a pair of redox peaks. The order of the current response and the standard rate constant of hydroquinone at these electrodes were as follows: CILE > IL/CPE > CPE, while the peak-to-peak potential separation was in an opposite sequence: CILE < IL/CPE < CPE. The results show the superiority of CILE to IL/CPE and CPE, and IL/CPE to CPE in terms of promoting electron transfer, improving reversibility and enhancing sensitivity. The CILE was chosen as working electrode to determine hydroquinone by differential pulse voltammetry, which can be used for sensitive, simple and rapid determination of hydroquinone in medicated skin cosmetic cream

  15. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Science.gov (United States)

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-01-01

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors. PMID:24287539

  16. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  17. SELECTIVE VOLTAMMETRIC DETERMINATION OF HYDROXYPURINS ON ELECTRODE MODIFIED BY CARBON NANOTUBES

    OpenAIRE

    Shaidarova, L. G.; Chelnokova, I. A.; Mahmutova, G. F.; Degteva, M. A.; Gedmina, A. V.; Budnikov, H. C.

    2014-01-01

    Carbon nanotubes (CNT) deposited on the surface of glassy carbon electrode show catalytic activity in the oxidation of uric acid, xanthine and hypoxanthine that is exhibited in decreasing overvoltage and increasing oxidation current of hydroxypurins. The method of simultaneous voltammetric determination of uric acid, xanthine and hypoxanthine at the electrode modified by carbon nanotubes is suggested. The linear dependence of analytical signal from substrates concentration is observed in the ...

  18. Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode.

    Science.gov (United States)

    Manisankar, P; Sundari, Pl Abirama; Sasikumar, R; Palaniappan, Sp

    2008-09-15

    The cyclic voltammetric behaviour of three common pesticides such as isoproturon (ISO), voltage (VOL) and dicofol (DCF) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNTs/GCE), polyaniline (PANI) and polypyrrole (PPY) deposited MWCNT/GCE. The modified electrode film was characterized by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The electroactive behaviour of the pesticides was realized from the cyclic voltammetric studies. The differential pulse voltammetric principle was used to analyze the above-mentioned pesticides using MWCNT/GCE, PANI/MWCNT/GCE and PPY/MWCNT/GCE. Effects of accumulation potential, accumulation time, Initial scan potential, amplitude and pulse width were examined for the optimization of stripping conditions. The PANI/MWCNT/GCE performed well among the three electrode systems and the determination range obtained was 0.01-100 mgL(-1) for ISO, VOL and DCF respectively. The limit of detection (LOD) was 0.1 microgL(-1) for ISO, 0.01 microgL(-1) for VOL and 0.05 microgL(-1) for DCF on PANI/MWCNT/GCE modified system. It is significant to note that the PANI/MWCNT/GCE modified system results in the lowest LOD in comparison with the earlier reports. Suitability of this method for the trace determination of pesticide in spiked samples was also realized.

  19. Electrocatalytic determination of epinephrine and uric acid using a novel hydroquinone modified carbon paste electrode

    Institute of Scientific and Technical Information of China (English)

    Mohammad Mazloum-Ardakani; Zahra Taleat; Hadi Beitollahi; Hossein Naeimi

    2011-01-01

    A sensitive and selective electrochemical method for the determination of epinephrine (EP) was developed using a modified carbon paste electrode (MCPE) with 2,2'- [3,6-dioxa-l,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone (DOH). Cyclic vol-tammetry was used to investigate the redox properties of this modified electrode at various solution pH values and at various scan rates. In differential pulse voltammetry, the modified electrode could separate the oxidation peak potentials of EP and uric acid (UA) present in the solution but at the unmodified CPE the peak potentials were indistinguishable. This method was also examined for determination of EP in EP injection.

  20. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polyethylenimine

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Guillermina L.; Ferreyra, Nancy F. [INFIQC, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Granero, Adrian [INFIQC, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Departamento de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Rio Cuarto (Argentina); Bollo, Soledad [Laboratorio de Bioelectroquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, P.O. Box 233, Santiago (Chile); Rivas, Gustavo A., E-mail: grivas@fcq.unc.edu.ar [INFIQC, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-10-30

    This work reports the electrochemical response of the complex between dsDNA and PEI formed in solution and at the surface of glassy carbon electrodes (GCE) modified with a dispersion of multi-walled carbon nanotubes in polyethylenimine (CNT-PEI). Scanning Electron Microscopy and Scanning Electrochemical Microscopy demonstrate that the dispersion covers the whole surface of the electrode although there are areas with higher density of CNT and, consequently, with higher electrochemical reactivity. The adsorption of DNA at GCE/CNT-PEI is fast and it is mainly driven by electrostatic forces. A clear oxidation signal is obtained either for dsDNA or a heterooligonucleotide of 21 bases (oligoY) at potentials smaller than those for the oxidation at bare GCE. The comparison of the behavior of DNA before and after thermal treatment demonstrated that the electrochemical response highly depends on the 3D structure of the nucleic acid.

  1. Electrochemically reduced graphene modified carbon ionic liquid electrode for the sensitive sensing of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Gao Feng [Fujian Province University Key Laboratory of Analytical Science, Department of Chemistry and Environment Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Qi Xiaowei [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Cai Xili; Wang Qingxiang; Gao Fei [Fujian Province University Key Laboratory of Analytical Science, Department of Chemistry and Environment Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Sun Wei, E-mail: sunwei@qust.edu.cn [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2012-05-31

    In this paper a graphene (GR) modified carbon ionic liquid electrode that was obtained by one-step potentiostatic electroreduction of a graphene oxide solution was described. The resulting electrode displayed excellent electrochemical performance due to the formation of highly conductive GR film on the electrode surface. Electrochemistry of rutin was carefully studied with a pair of well-defined redox peaks appeared in pH 2.5 buffer solution. Rutin exhibited a diffusion-controlled two-electron and two-proton transfer reaction on the modified electrode with the electrochemical parameters calculated. The reduction peak currents are linearly related to rutin concentration in the concentration range from 0.070 to 100.0 {mu}mol/L with a detection limit as low as 24.0 nmol/L (3{sigma}). The modified electrode displayed excellent selectivity with good stability, and was applied to the determination of rutin content in tablet, human serum and urine samples with satisfactory results. - Highlights: Black-Right-Pointing-Pointer Electroreduced graphene modified carbon ionic liquid electrode was obtained. Black-Right-Pointing-Pointer Electrochemical behaviors of rutin were investigated on the modified electrode. Black-Right-Pointing-Pointer Rutin in different samples were detected by the proposed electrode.

  2. Au nanoparticles and graphene quantum dots co-modified glassy carbon electrode for catechol sensing

    Science.gov (United States)

    Zhao, Xuan; He, Dawei; Wang, Yongsheng; Hu, Yin; Fu, Chen

    2016-03-01

    In this letter, the gold nanoparticles and graphene quantum dots were applied to the modification of glassy carbon electrode for the detection of catechol. The synergist cooperation between gold nanoparticles and graphene quantum dots can increase specific surface area and enhance electronic and catalytic properties of glassy carbon electrode. The detection limit of catechol is 0.869 μmol/L, demonstrating the superior detection efficiency of the gold nanoparticles and graphene quantum dots co-modified glassy carbon electrode as a new sensing platform.

  3. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  4. Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhihong [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Xiaoying; Zhuang Xiaoming [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zeng Yan [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Wei, E-mail: sunwei@qust.edu.c [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Huang Xintang [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China)

    2010-11-01

    The single-walled carbon nanotubes (SWCNTs) modified carbon ionic liquid electrode (CILE) was designed and further used for the voltammetric detection of rutin in this paper. CILE was prepared by mixing graphite powder with ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate and liquid paraffin together. Based on the interaction of SWCNTs with IL present on the electrode surface, a stable SWCNTs film was formed on the CILE to get a modified electrode denoted as SWCNTs/CILE. The characteristics of SWCNTs/CILE were recorded by different methods including cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The electrochemical behaviors of rutin on the SWCNTs/CILE were investigated by cyclic voltammetry and differential pulse voltammetry. Due to the specific interface provided by the SWCNTs-IL film, the electrochemical response of rutin was greatly enhanced with a pair of well-defined redox peaks appeared in pH 2.5 phosphate buffer solution. The oxidation peak currents showed good linear relationship with the rutin concentration in the range from 1.0 x 10{sup -7} to 8.0 x 10{sup -4} mol/L with the detection limit as 7.0 x 10{sup -8} mol/L (3{sigma}). The SWCNTs/CILE showed the advantages such as excellent selectivity, improved performance, good stability and it was further applied to the rutin tablets sample detection with satisfactory results.

  5. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    Science.gov (United States)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  6. Preparation,Electrochemical Behavior and Electrocatalytic Activity of a Copper Hexacyanoferrate Modified Ceramic Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    YU,Hao; ZHENG,Jian-Bin

    2007-01-01

    A copper hexacyanoferrate modified ceramic carbon electrode(CuHCF/CCE)had been prepared by two-step sol-gel technique and characterized using electrochemical methods.The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs.SCE)in 0.050 mol·dm-3 HOAc-NaOAc buffer containing 0.30 mol·dm-3 KCI.The charge transfer coefficient (α) and charge transfer rate constant(Ks)for the modified electrode were calculated.The electrocatalytic activity of this modified electrode to hydrazine was also investigated,and chronoamperometry was exploited to conveniently determine the diffusion coefficient(D)of hydrazine in solution and the catalytic rate constant(Kcat).Finally,hydrazine was determined with amperometry using the resulting modified electrode.The calibration plot for hydrazine determination was linear in 3.0×10-6-7.5×10-4 mol·dm-3 with the detection limit of 8.0×10-7 mol·dm-3.This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods,such as renewable surface,good long-term stability,excellent catalytic activity and short response time to hydrazine.

  7. Screen-Printed Carbon Electrodes Modified by Rhodium Dioxide and Glucose Dehydrogenase

    OpenAIRE

    Vojtěch Polan; Jan Soukup; Karel Vytřas

    2011-01-01

    The described glucose biosensor is based on a screen-printed carbon electrode (SPCE) modified by rhodium dioxide, which functions as a mediator. The electrode is further modified by the enzyme glucose dehydrogenase, which is immobilized on the electrode's surface through electropolymerization with m-phenylenediamine. The enzyme biosensor was optimized and tested in model glucose samples. The biosensor showed a linear range of 500–5000 mg L−1 of glucose with a detection limit of 210 mg L−1 (es...

  8. Electroanalysis of thiocyanate using a novel glassy carbon electrode modified by aryl radicals and cobalt tetracarboxyphthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Matemadombo, Fungisai; Nyokong, Tebello [Rhodes University, Grahamstown (South Africa). Department of Chemistry; Westbroek, Philippe [Ghent University, Ghent (Belgium). Department of Textiles

    2007-12-01

    Electrochemical grafting of 4-nitrobenzenediazonium tetrafluoroborate onto a glassy carbon electrode (GCE) results in the formation of a nitrophenyl radical, which reacts with the surface to form a covalent bond (grafting) and results in a nitrophenyl modified electrode. The nitro group is electrochemically reduced to a NH{sub 2} group. Cobalt tetracarboxyphthalocyanine (CoTCPc) complex is then attached to the NH{sub 2} group using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling agents. The new CoTCPc modified electrode was characterized using cyclic voltammetry and then employed for the catalytic oxidation of thiocyanate. (author)

  9. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Dong, Lifeng, E-mail: donglifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Deng, Ying; Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H{sub 2}O{sub 2}, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates.

  10. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    International Nuclear Information System (INIS)

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates

  11. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  12. Electrocatalytic Reduction of NAD+ at Multi-walled Carbon Nanotubes Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    陈黎明; 丁飞; 王欢; 张文; 陆嘉星

    2005-01-01

    The cyclic voltammetric (CV) behaviors of NAD+ were studied with a multi-walled carbon nanotubes (MWNTs) modified glassy carbon (GC) electrode. In 0.05 mol/L tris(hydroxymethyl)aminomethane-HCl (Tris-HCl) buffer solution (pH=6.9), the MWNTs modified electrode showed high electrocatalytic activity toward reduction of NAD+.The electroreduction of NAD+ was an irreversible diffusion controlled process. The cathodic peak current increased linearly with increasing the concentration of NAD+. The influences of scan rate, temperature and concentration were also investigated.

  13. Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode

    Indian Academy of Sciences (India)

    Suling Yang; Ran Yang; Gang Li; Jianjun Li; Lingbo Qu

    2010-11-01

    A Nafion/multi-wall carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied to the sensitive and convenient determination of theophylline (TP). Multi-wall carbon nanotubes (MWNTs) were easily dispersed homogeneously into 0.1% Nafion methanol solution by sonication. Appropriate amount of Nafion/MWNTs suspension was coated on a glassy carbon electrode. After evaporating methanol, a Nafion/MWNTs composite film-modified electrode was achieved. TP could effectively accumulate at Nafion/MWNTs composite film-modified electrode and cause a sensitive anodic peak at around 1180 mV (vs SCE) in 0.01 mol/L H2SO4 medium (pH 1.8). In contrast with the bare glassy carbon electrode, Nafion film-modified electrode, Nafion/MWNTs film-modified electrode could remarkably increase the anodic peak current and decreased the overpotential of TP oxidation. Under the optimized conditions, the anodic peak current was proportional to TP concentration in the range of 8.0 × 10-8-6.0 × 10-5 mol/L, with a detection limit of 2.0 × 10-8 mol/L. This newly developed method was used to determine TP in drug samples with good percentage of recoveries.

  14. Electrocatalytic amperometric determination of amitrole using a cobalt-phthalocyanine-modified carbon paste electrode.

    Science.gov (United States)

    Chicharro, Manuel; Zapardiel, Antonio; Bermejo, Esperanza; Moreno, Mónica; Madrid, Elena

    2002-07-01

    Cobalt-phthalocyanine-modified carbon paste electrodes are shown to be excellent indicators for electrocatalytic amperometric measurements of triazolic herbicides such as amitrole, at low oxidation potentials (+0.40 V). The detection and determination of amitrole in flow injection analysis with a modified carbon paste electrode with Co-phthalocyanine is described. The concentrations of amitrole in 0.1 M NaOH solutions were determined using the electrocatalytic oxidation signal corresponding to the Co(II)/Co(III) redox process. A detection limit of 0.04 microg mL(-1) (4 ng amitrole) was obtained for a sample loop of 100 microL at a fixed potential of +0.55 V (vs. Ag/AgCl) in 0.1 M NaOH and a flow rate of 4.0 mL min(-1). Furthermore, the modified carbon paste electrodes offers reproducible responses in such a system, and the relative standard deviation was 3.3% using the same surface, 5.1% using different surface, and 6.9% using different pastes. The performance of the cobalt-phthalocyanine-modified carbon paste electrodes is illustrated here for the determination of amitrole in commercial formulations. The response of the electrodes is stable, with more than 80% of the initial retained activity after 50 min of continuous use.

  15. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Science.gov (United States)

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. PMID:26878480

  16. A Novel Cholesterol Oxidase Biosensor Based on Pt-nanoparticle /Carbon Nanotube Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiao Cui SHI; Tu Zhi PENG

    2005-01-01

    A Pt-nanoparticle/carbon nanotube modified graphite electrode immobilized with cholesterol oxidase/sol-gel layer was developed for monitoring cholesterol. Using this electrode,cholesterol concentration (4.0×10-6 to 1.0×10 mol/L) could be determined accurately in the presence of ascorbic or uric acid, and the response time was rapid (< 20 s). This biosensor has high sensitivity and selectivity.

  17. Determination of ascorbic acid in pharmaceutical preparation and fruit juice using modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Simona Žabčíková

    2016-06-01

    Full Text Available Acrobic acid is key substance in the human metabolism and the rapid and accurate determination in food is of a great interest. Ascorbic acid is an electroactive compound, however poorly responded on the bare carbon paste electrodes. In this paper, brilliant cresyl blue and multi-walled carbon nanotubes were used for the modification of carbon paste electrode. Brilliant cresyl blue acts as a mediator improving the transition of electrons, whereas multiwalled carbon nanotubes increased the surface of the electrode. Both brilliant cresyl blue and multiwalled carbon nanotubes were added directly to the composite material. The electrochemical behavior of modified electode was determined in electrolyte at various pH, and the effect of the scan rate was also performed. It was shown that the electrochemical process on the surface of the modified carbon paste electrode was diffusion-controlled. The resulted modified carbon paste electrode showed a good electrocatalytic activity towards the oxidation of ascorbic acid at a reduced overpotential of +100 mV descreasing the risk of interferences. A linear response of the ascorbic acid oxidation current measured by the amperometry in the range of 0.1 - 350 µmol.L-1 was obtained applying the sensor for the standard solution. The limit of detection and limit of quantification was found to be 0.05 and 0.15 µmol.L-1, respectively. The novel method was applied for the determination of ascorbic acid in pharmaceutical vitamin preparation and fruit juice, and the results were in good agreement with the standard HPLC method. The presented modification of carbon paste electrode is suitable for the fast, sensitive and very accurate determination of ascorbic acid in fruit juices and pharmaceutical preparation.

  18. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    OpenAIRE

    Zheng Gong; Guoquan Zhang; Song Wang

    2013-01-01

    The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs) nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC) electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR). The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs ...

  19. Selective Voltammetric Determination of Uric Acid in the Presence of Ascorbic Acid at Ordered Mesoporous Carbon Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    WEN,Yan-Li; JIA,Neng-Qin; WANG,Zhi-Yong; SHEN,He-Bai

    2008-01-01

    A novel chemically modified electrode was fabricated by immobilizing ordered mesoporous carbon (OMC)onto a glassy carbon (GC) electrode.The electrocatalytic behavior of the OMC modified electrode towards the oxidation of uric acid (UA) and ascorbic acid (AA) was studied.Compared to a glassy carbon electrode,the OMC modified electrode showed a faster electron transfer rate and reduced the overpotentials greatly.Furthermore,the OMC modified electrode resolved the overlapping voltammetric responses of UA and AA into two well-defined voltammetric peaks with peak separation of ca.0.38 V.All results show that the OMC modified electrode has a good electrocatalytic ability to UA and AA,and has an excellent response towards UA even in the presence of high concentration AA.

  20. Redox poly[Ni(saldMp)] modified activated carbon electrode in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gao Fei [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Li Jianling, E-mail: lijianling@ustb.edu.c [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang Yakun; Wang Xindong [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Kang Feiyu [Department of Material Science and Engineering, Tsinghua University, Beijing 100083 (China)

    2010-08-01

    The complex (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), [Ni(saldMp)], was oxidatively electropolymerized on activated carbon (AC) electrode in acetonitrile solution. The poly[Ni(saldMp)] presented an incomplete coated film on the surface of carbon particles of AC electrode by field emission scanning electron microscopy. The electrochemical behaviors of poly[Ni(saldMp)] modified activated carbon (PAC) electrode were evaluated in different potential ranges by cyclic voltammetry. Counterions and solvent swelling mainly occurred up to 0.6 V for PAC electrode by the comparison of D{sup 1/2}C values calculated from chronoamperometry experiments. Both the Ohmic resistance and Faraday resistance of PAC electrode gradually approached to those of AC electrode when its potential was ranging from 1.2 V to 0.0 V. Galvanostatic charge/discharge experiments indicated that both the specific capacitance and energy density were effectively improved by the reversible redox reaction of poly[Ni(saldMp)] film under the high current density up to 10 mA cm{sup -2} for AC electrode. The specific capacitance of PAC electrode decreased during the first 50 cycles but thereafter it remained constant for the next 200 cycles. This study showed the redox polymer may be an attractive material in supercapacitors.

  1. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    OpenAIRE

    Marko Rodić; Olga Vajdle; Valéria Guzsvány; Jasmina Zbiljić; Zsigmond Papp

    2011-01-01

    Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE) and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV) mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD) not exceeding 1.5%. The tricresyl phosp...

  2. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  3. Cyclam Modified Carbon Paste Electrode as a Potentiometric Sensor For Determination of Cobalt(Ⅱ) Ions

    Institute of Scientific and Technical Information of China (English)

    Hamid Reza POURETEDAL; Mohammad Hossein KESHAVARZ

    2005-01-01

    A new modified carbon paste electrode based on cyclam as a modifier was prepared for the determination of Co(Ⅱ) ions. The proposed electrode shows a Nernstian slope 28.4 mV per decade over a wide concentration range 5.0×10-6_1.0×10-1 mol/L of Co2+ ions with detection limit 2.5×10-6 mol/L. The sensor exhibits good selectivities for Co2+ over a wide variety of other cations. It can be used as an indicator electrode in potentiometric titration of cobalt(Ⅱ) ions as well as in direct determination of cobalt(Ⅱ) ions in wastewater of acidic cobalt electroplating bath. The electrode shows Nernestian behavior in a solution of 25% ethanol.

  4. Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    In this paper 1-ethyl-3-methylimidazolium tetrafluoroborate based carbon ionic liquid electrode (CILE) was fabricated and further modified with chitosan (CTS) and graphene (GR) composite film. The fabricated CTS-GR/CILE was further used for the investigation on the electrochemical behavior of bisphenol A (BPA) by cyclic voltammetry and differential pulse voltammetry. A well-defined anodic peak appeared at 0.436 V in 0.1 mol/L pH 8.0 Britton–Robinson buffer solution, which was attributed to the electrooxidation of BPA on the modified electrode. The electrochemical parameters of BPA on the modified electrode were calculated with the results of the charge transfer coefficient (α) as 0.662 and the apparent heterogeneous electron transfer rate constant (ks) as 1.36 s−1. Under the optimal conditions, a linear relationship between the oxidation peak current of BPA and its concentration can be obtained in the range from 0.1 μmol/L to 800.0 μmol/L with the limit of detection as 2.64 × 10−8 mol/L (3σ). The CTS-GR/CILE was applied to the detection of BPA content in plastic products with satisfactory results. - Highlights: ► A graphene modified carbon ionic liquid electrode was fabricated and characterized. ► Electrochemical behaviors of bisphenol A were investigated. ► Bisphenol A was detected by the proposed electrode.

  5. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Wang, Lei [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-07-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E{sup 0′}) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H{sub 2}O{sub 2}. Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized.

  6. Electrochemical Oxidation of Paracetamol Mediated by MgB2 Microparticles Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Mohammed Zidan

    2011-01-01

    Full Text Available A MgB2 microparticles modified glassy carbon electrode (MgB2/GCE was fabricated by adhering microparticles of MgB2 onto the electrode surface of GCE. It was used as a working electrode for the detection of paracetamol in 0.1 M KH2PO4 aqueous solution during cyclic voltammetry. Use of the MgB2/GCE the oxidation process of paracetamol with a current enhancement significantly by about 2.1 times. The detection limit of this modified electrode was found to be 30 μM. The sensitivity under conditions of cyclic voltammetry is significantly dependent on pH, supporting electrolyte, temperature and scan rate. The current enhancement observed in different electrolytic media varied in the following order: KH2PO4 > KCl > K2SO4 > KBr. Interestingly, the oxidation of paracetamol using modified GC electrode remain constant even after 15 cycling. It is therefore evident that the MgB2 modified GC electrode possesses some degree of stability. A slope of 0.52 dependent of scan rate on current indicates that the system undergoes diffusion-controlled process.

  7. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E0′) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H2O2. Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  8. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review

    Directory of Open Access Journals (Sweden)

    Shen-Ming Chen

    2008-01-01

    Full Text Available Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH. In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.

  9. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani-Bidkorbeh, Fatemeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mohammadi, Ali [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of)

    2010-03-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 muL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 muM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 muM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  10. Impact of SO 2 poisoning of platinum nanoparticles modified glassy carbon electrode on oxygen reduction

    Science.gov (United States)

    Awad, M. I.; Saleh, M. M.; Ohsaka, T.

    An extraordinary recovery characteristic of Pt-nanoparticles from SO 2 poisoning is introduced in this study. Platinum nanoparticles (nano-Pt) modified glassy carbon electrode (nano-Pt/GC) has been compared with polycrystalline platinum (poly-Pt) electrode towards SO 2 poisoning. Two procedures of recovery of the poisoned electrodes were achieved by cycling the potential in the narrow potential range (NPR, 0-0.8 V vs. Ag/AgCl/KCl (sat.)) and wide potential range (WPR, -0.2 to 1.3 V). The extent of recovery was marked using oxygen reduction reaction (ORR) as a probing reaction. SO 2 poisoning of the electrodes changed the mechanism of the oxygen reduction from the direct reduction to water to the stepwise reduction involving the formation of H 2O 2 as an intermediate, as indicated by the rotating ring-disk voltammetry. Using the WPR recovery procedure, it was found that two potential cycles were enough to recover 100% of the activity of the ORR on the nano-Pt/GC electrode. At the poly-Pt electrode, however, four potential cycles of the WPR caused only 79% in the current recovery, while the peak potential of the ORR was 130 mV negatively shifted as compared with the fresh poly-Pt electrode. Interestingly, the NPR procedure at the nano-Pt/GC electrode was even more efficient in the recovery than the WPR procedure at the poly-Pt electrode.

  11. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  12. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  13. Voltammetric determination of adenosine and guanosine using fullerene-C(60)-modified glassy carbon electrode.

    Science.gov (United States)

    Goyal, Rajendra N; Gupta, Vinod K; Oyama, Munetaka; Bachheti, Neeta

    2007-02-28

    A fullerene-C(60)-modified glassy carbon electrode (GCE) is used for the simultaneous determination of adenosine and guanosine by differential pulse voltammetry. Compared to a bare glassy carbon electrode, the modified electrode exhibits an apparent shift of the oxidation potentials in the cathodic direction and a marked enhancement in the voltammetric peak current response for both the biomolecules. Linear calibration curves are obtained over the concentration range 0.5muM-1.0mM in 0.1M phosphate buffer solution at pH 7.2 with a detection limit of 3.02x10(-7)M and 1.45x10(-7)M for individual determination of adenosine and guanosine, respectively. The interference studies showed that the fullerene-C(60)-modified glassy carbon electrode exhibited excellent selectivity in the presence of hypoxanthine, xanthine, uric acid and ascorbic acid. The proposed procedure was successfully applied to detect adenosine and guanosine in human blood plasma and urine, without any preliminary pre-treatment. PMID:19071420

  14. Inorganic-Organic Hybrid 18-Molybdodiphosphate Nanoparticles Bulk-modified Carbon Paste Electrode and Its Electrocatalysis

    Institute of Scientific and Technical Information of China (English)

    WANG,Xiu-Li(王秀丽); KANG,Zhen-Hui(康振辉); WANG,En-Bo(王恩波); HU,Chang-Wen(胡长文)

    2002-01-01

    A kind of inorganic- organic hybrid 18-molybdodiphosphate nanoparticles ([(C4H9)4N]6P2Mo18O62 @4H2O) was firstly used as a bulk-modifier to fabricate a three-dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square-wave voltammetry. The hybrid 18-molybdodiphosphate nanoparticles bulk-modified CPE (MNP-CPE) displayed a high electrocatalytic activity towards the reduction of nitrite,bromate and hydrogen peroxide. The remarkable advantages of the MNP-CPE over the traditional polyoxometalates-modified electrodes are their excellent reproducibility of surface-renewal and high stability owing to the insolubility of the hybrid 18-molybdodiphosphate nanoparticles.

  15. Screen-printed carbon electrodes modified by rhodium dioxide and glucose dehydrogenase.

    Science.gov (United States)

    Polan, Vojtěch; Soukup, Jan; Vytřas, Karel

    2011-01-01

    The described glucose biosensor is based on a screen-printed carbon electrode (SPCE) modified by rhodium dioxide, which functions as a mediator. The electrode is further modified by the enzyme glucose dehydrogenase, which is immobilized on the electrode's surface through electropolymerization with m-phenylenediamine. The enzyme biosensor was optimized and tested in model glucose samples. The biosensor showed a linear range of 500-5000 mg L(-1) of glucose with a detection limit of 210 mg L(-1) (established as 3σ) and response time of 39 s. When compared with similar glucose biosensors based on glucose oxidase, the main advantage is that neither ascorbic and uric acids nor paracetamol interfere measurements with this biosensor at selected potentials. PMID:21528113

  16. Improved hydrogen evolution on glassy carbon electrode modified with novel Pt/cetyltrimethylammonium bromide nanoscale aggregates

    Institute of Scientific and Technical Information of China (English)

    Jahan-Bakhsh Raoof; Sayed Reza Hosseini; Seyedeh Zeinab Mousavi-Sani

    2015-01-01

    A novel, cost‐effective, and simple electrocatalyst based on a Pt‐modified glassy carbon electrode (GCE), using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, is reported. Am‐phiphilic CTAB molecules were adsorbed on GCE by immersion in a CTAB solution. The positively charged hydrophilic layer, which consisted of small aggregates of average size less than 100 nm, was used for accumulation and complexation of [PtCl6]2− anions by immersing the electrode in K2PtCl6 solution. The modified electrode was characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, impedance spectroscopy, and electrochemical methods. The electrocatalytic activity of the Pt particles in the hydrogen evolution reaction (HER) was investigat‐ed. The results show that the CTAB surfactant enhances the electrocatalytic activity of the Pt parti‐cles in the HER in acidic solution.

  17. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  18. Screen-Printed Carbon Electrodes Modified by Rhodium Dioxide and Glucose Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Vojtěch Polan

    2010-01-01

    Full Text Available The described glucose biosensor is based on a screen-printed carbon electrode (SPCE modified by rhodium dioxide, which functions as a mediator. The electrode is further modified by the enzyme glucose dehydrogenase, which is immobilized on the electrode's surface through electropolymerization with m-phenylenediamine. The enzyme biosensor was optimized and tested in model glucose samples. The biosensor showed a linear range of 500–5000 mg L−1 of glucose with a detection limit of 210 mg L−1 (established as 3σ and response time of 39 s. When compared with similar glucose biosensors based on glucose oxidase, the main advantage is that neither ascorbic and uric acids nor paracetamol interfere measurements with this biosensor at selected potentials.

  19. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    Science.gov (United States)

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples. PMID:27474318

  20. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  1. Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2012-05-01

    Full Text Available Multiwalled carbon nanotubes were used to modify the surface of a glassy carbon electrode to enhance its electroactivity. Nafion served to immobilise the carbon nanotubes on the electrode surface. The modified electrode was used to develop an analytical method for the analysis of ascorbic acid (AA by square-wave voltammetry (SWV. The oxidation of ascorbic acid at the modified glassy carbon electrode showed a peak potential at 315 mV, about 80 mV lower than that observed at the bare (unmodified electrode. The peak current was about threefold higher than the response at the bare electrode. Replicate measurements of peak currents showed good precision (3% rsd. Peak currents increased with increasing ascorbic acid concentration (dynamic range = 0.0047–5.0 mmol/L and displayed good linearity (R2 = 0.994. The limit of detection was 1.4 μmol/L AA, while the limit of quantitation was 4.7 μmol/L AA. The modified electrode was applied to the determination of the amount of ascorbic acid in four brands of commercial orange-juice products. The measured content agreed well (96–104% with the product label claim for all brands tested. Recovery tests on spiked samples of orange juice showed good recovery (99–104%. The reliability of the SWV method was validated by conducting parallel experiments based on high-performance liquid chromatography (HPLC with absorbance detection. The observed mean AA contents of the commercial orange juice samples obtained by the two methods were compared statistically and were found to have no significant difference (P = 0.05.

  2. Electrochemical behaviour of platinum at polymer-modified glassy carbon electrodes

    Indian Academy of Sciences (India)

    Carmem L P S Zanta; C A Martínez-Huitle

    2007-07-01

    In this paper, the preparations and voltammetric characteristics of chitosan-modified glassy carbon (Ct-MGC) and platinum electrodes are studied. Ct-MGC can be used for pre-concentration and quantification of trace amounts of platinum in solution. At low pH medium, the complex of Pt with protonated group -NH3+ in the chitosan molecule has been confirmed by FT-IR spectra studies.

  3. Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine.

    Science.gov (United States)

    Navaee, Aso; Salimi, Abdollah; Teymourian, Hazhir

    2012-01-15

    In the present study, the graphene nanosheets (GNSs) modified glassy carbon (GC) electrode is employed for simultaneous determination of morphine, noscapine and heroin. To the best of our knowledge this is the first report of the simultaneous determination of these three important opiate drugs based on their direct electrochemical oxidation. Field emission scanning electron microscopy (FESEM) technique is utilized in order to study the surface morphology of the modified electrode. The modified electrode shows excellent electrocatalytic activity toward oxidation of morphine, noscapine and heroin at reduced overpotentials in wide pH range. In the performed experiments, differential pulse voltammetric determination of morphine, noscapine and heroin yields calibration curves with the following characteristics; linear dynamic range up to 65, 40 and 100 μM, sensitivity of 275, 500 and 217 nA μM(-1) cm(-2), and detection limits of 0.4, 0.2 and 0.5 μM at 3S(B), respectively. Fast response time, signal stability, high sensitivity, low cost and ease of preparation method without using any specific electron-transfer mediator or specific reagent are the advantageous of the proposed sensor. The modified electrode can be used for simultaneous or individual detection of three major narcotic components, heroin, noscapine and morphine at micromolar concentration without any separation or pretreatment steps.

  4. Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes

    OpenAIRE

    Wenwei Tang; Lei Li; Lujun Wu; Jiemin Gong; Xinping Zeng

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good ...

  5. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  6. Determination of Trace Thiocyanate by a Chitosan-Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A chitosan-modified glassy carbon electrode(CMGCE) was employed for the determination of thiocyanate. The measurement was carried out by means of anodic stripping voltammetry. The effects of several experimental parameters, such as pH, the amount of modifier, deposition potential and deposition time were studied for analytical application, respectively. A liner response was obtained in the concentration range of 3.5×10-8-9.3×10-7 g/mL of SCN-. The detection limit was found to be 1.9×10-8 g/mL. The method was satisfactorily used to detect SCN- in saliva.

  7. Determination of cyanide in wastewaters using modified glassy carbon electrode with immobilized silver hexacyanoferrate nanoparticles on multiwall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Noroozifar, Meissam, E-mail: mnoroozifar@chem.usb.ac.ir [Analytical Research Laboratory, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, P.O. Box 98155-147 (Iran, Islamic Republic of); Khorasani-Motlagh, Mozhgan [Inorganic Research Laboratory, Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Taheri, Aboozar [Analytical Research Laboratory, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, P.O. Box 98155-147 (Iran, Islamic Republic of)

    2011-01-15

    Research highlights: {yields} GC electrode modified with silver hexacyanoferrate nanoparticles (SHFNPs) immobilized on MWCNT. {yields} Modified electrode use for determination of Cyanide in waste water. {yields} The detection limit of the sensor is 8.3 nM. {yields} The linear range is from 40.0 nM to 150.0 {mu}M. - Abstract: The sensitive determination of cyanide in wastewaters using modified GC electrode with silver hexacyanoferrate nanoparticles (SHFNPs) immobilized on multiwall carbon nanotube (MWCNT) was reported. The immobilization of SHFNPs on MWCNT was confirmed by transmission electron microscopy (TEM). The TEM image showed that the SHFNPs retained the spherical morphology after immobilized on MWCNT. The size of SHFNPs was examined around 27 nm. The GC/MWCNT-SHFNPs was used for the determination of cyanide in borax buffer (BB) solution (pH 8.0). Using square wave voltammetry, the current response of cyanide increases linearly while increasing its concentration from 40.0 nM to 150.0 {mu}M and a detection limit was found to be 8.3 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 5.0 {mu}M cyanide in the presence of common contaminants at levels presenting in industrial wastewaters. The practical application of the present modified electrode was demonstrated by measuring the concentration of cyanide in industrial wastewater samples. Moreover, the studied sensor exhibited high sensitivity, good reproducibility and long-term stability.

  8. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    Science.gov (United States)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo; Han, Sheng

    2015-12-01

    A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO-La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO-La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO-La/CPE electrode for determining DA was linear in the region of 0.01-0.1 μM and 0.1-400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  9. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode.

    Science.gov (United States)

    Bukkitgar, Shikandar D; Shetti, Nagaraj P

    2016-08-01

    A novel sensor for the determination of 5-fluorouracil was constructed by electrochemical deposition of methylene blue on surface of carbon paste electrode. The electrode surface morphology was studied using Atomic force microscopy and XRD. The electrochemical activity of modified electrode was characterized using cyclic voltammetry and differential pulse method. The developed sensor shows impressive enlargement in sensitivity of 5-fluorouracil determination. The peak currents obtained from differential pulse voltammetry was linear with concentration of 5-fluorouracil in the range 4×10(-5)-1×10(-7)M and detection limit and quantification limit were calculated to be 2.04nM and 6.18nM respectively. Further, the sensor was successfully applied in pharmaceutical and biological fluid sample analysis. PMID:27157751

  10. Direct electrochemistry and electrocatalysis of myoglobin in dodecyltrimethylammonium bromide film modified carbon ceramic electrode

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhen Zhou; Hui Wang; She Ying Dong; An Xiang Tian; Zhi Xian He; Bin Chen

    2011-01-01

    Direct electrochemistry and electrocatalysis of myoglobin (Mb) were studied with Mb immobilized on dodecyltrimethylammonium bromide (DTAB) film modified carbon ceramic (CC) electrode. Cyclic voltammetry showed a pair of well-defined and nearly reversible redox peaks of Mb (FeⅡ/FeⅢ) at about -0.3 V vs. SCE (pH = 6.98). The currents of the redox peak were linear to scan rate, and rate constant (Ks) was estimated to be 3.03 s-1. The formal potential (E01) of Mb in the DTAB/CC electrodes shifted linearly with pH with a slope of-36.44 mV/pH, implying that the electron transfer between DTAB and CC electrodes is accompanied by proton transportation. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide (H2O2).

  11. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II).

    Science.gov (United States)

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-08-01

    The preparation and application of a practical electrochemical sensor for environmental monitoring and assessment of heavy metal ions in samples is a subject of considerable interest. In this paper, a carbon paste electrode modified with maize tassel for the determination of Cu(II) has been proposed. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study morphology and identify the functional groups on the modified electrode, respectively. First, Cu(II) was adsorbed on the carbon paste electrode surface at open circuit and voltammetric techniques were used to investigate the electrochemical performances of the sensor. The electrochemical sensor showed an excellent electrocatalytic activity towards Cu(II) at pH 5.0 and by increasing the amount of maize tassel biomass, a maximum response at 1:2.5 (maize tassel:carbon paste; w/w) was obtained. The electrocatalytic redox current of Cu(II) showed a linear response in the range (1.23 μM to 0.4 mM) with the correlation coefficient of 0.9980. The limit of detection and current-concentration sensitivity were calculated to be 0.13 (±0.01) μM and 0.012 (±0.001) μA/μM, respectively. The sensor gave good recovery of Cu(II) in the range from 96.0 to 98.0 % when applied to water samples. PMID:24705875

  12. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II).

    Science.gov (United States)

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-08-01

    The preparation and application of a practical electrochemical sensor for environmental monitoring and assessment of heavy metal ions in samples is a subject of considerable interest. In this paper, a carbon paste electrode modified with maize tassel for the determination of Cu(II) has been proposed. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study morphology and identify the functional groups on the modified electrode, respectively. First, Cu(II) was adsorbed on the carbon paste electrode surface at open circuit and voltammetric techniques were used to investigate the electrochemical performances of the sensor. The electrochemical sensor showed an excellent electrocatalytic activity towards Cu(II) at pH 5.0 and by increasing the amount of maize tassel biomass, a maximum response at 1:2.5 (maize tassel:carbon paste; w/w) was obtained. The electrocatalytic redox current of Cu(II) showed a linear response in the range (1.23 μM to 0.4 mM) with the correlation coefficient of 0.9980. The limit of detection and current-concentration sensitivity were calculated to be 0.13 (±0.01) μM and 0.012 (±0.001) μA/μM, respectively. The sensor gave good recovery of Cu(II) in the range from 96.0 to 98.0 % when applied to water samples.

  13. The Study of Electrochemical Behavior of Dopamine at Nano-gold Modified Carbon Fiber Electrode

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrochemical behaviors (cyclic voltammetry, CV and different pulse voltammetry, DPV) of dopamine (DA) were studied in this paper. The result indicated that the oxidation of dopamine was controlled by diffusion and adsorption simultaneously at nano-gold (NG) modified carbon fiber electrode (CFE). This modified electrode can separate the peak potentials of dopamine and ascorbic acid (AA). The peak current of DA in DPV curve was found to be linearly proportional to the concentration of DA at range of 2.0×10-6~1.5×10-5mol/L and 1.0×10-5~5.0×10-4mol/L, respectively.

  14. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayed excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.

  15. Using Poly-L-Histidine Modified Glassy Carbon Electrode to Trace Hydroquinone in the Sewage Water

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available A sensitive voltammetric method for trace measurements of hydroquinone in the sewage water is described. The poly-L-histidine is prepared to modify the glassy carbon electrode in order to improve the electrochemical catalysis of interesting substances such as hydroquinone. The influence of the base solution, pH value, and scanning speed on the tracing of hydroquinone is discussed, and the experimental procedures and conditions are optimized. The laboratory results show that it is possible to construct a linear calibration curve between the peak current of hydroquinone on modified electrode and its concentration at the level of 0.00001 mol/L. The potential limitation of the method is suggested by a linear peaking shift model as well. The method was successfully applied to the determination of hydroquinone in the actual sample of industrial waste water.

  16. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes.

    Science.gov (United States)

    Hegde, Rajesh N; Hosamani, Ragunatharaddi R; Nandibewoor, Sharanappa T

    2009-09-01

    The voltammetric oxidation of cinnarizine was investigated. In pH 2.5 Britton-Robinson buffer, cinnarizine shows an irreversible oxidation peak at about 1.20 V at a multi-walled carbon nanotube (MWCNT)-modified glassy carbon electrode. The cyclic voltammetric results indicate that MWCNT-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of cinnarizine. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the cinnarizine determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit are 9.0x10(-8) to 6.0x10(-6) M and 2.58x10(-9) M, respectively for cinnarizine. The proposed method was successfully applied to cinnarizine determination in pharmaceutical samples. The analytical performance of this sensor has been evaluated for the detection of analyte in urine as a real sample. PMID:19446444

  17. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2015-10-01

    Full Text Available A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA. The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV and characterized using CV and scanning electron microscope (SEM. The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3. The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality.

  18. Third generation biosensor based on myoglobin-TiO2/MWCNTs modified glassy carbon electrode

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Dan Bi Tian; Jun Jie Zhu

    2008-01-01

    TiO2 nanoparticles were homogeneously coated on multi-walled carbon nanotubes by hydrothermal deposition, this nano-composite may be a promising material for myoglobin immobilization in view of its high biocompatibility and large surface. The glassy carbon electrode modified with Mb-TiO2/MWCNTs films exhibited a pair of well defined, stable and nearly reversible cycle voltammetric peaks. The electron transfer between Mb and electrode surface, Ks of 3.08 s-1, was greatly facilitated in the TiO2/MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were studied, the apparent Michaelis-Menten constant is calculated to be 83.10 μmol/L, which shows a large catalytic activity of Mb in the TiO2/MWCNTs film to H2O2.

  19. Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode

    Directory of Open Access Journals (Sweden)

    FATEMEH KARIMI

    2009-12-01

    Full Text Available A chemically modified carbon paste electrode (MCPE containing ferrocene (FC and carbon nanotubes (CNT was constructed. The electrochemical behavior and stability of the MCPE were investigated by cyclic voltammetry. The electrocatalytic activity of the MCPE was investigated and it showed good characteristics for the oxidation of carbidopa (CD in phosphate buffer solution (PBS. A linear concentration range of 5 to 600 μM CD, with a detection limit of 3.6±0.17 μM CD, was obtained. The diffusion coefficient of CD and the transfer coefficient ( were also determined. The MCPE showed good reproducibility, remarkable long-term stability and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for the determination of CD in real samples, such as urine samples.

  20. Enhanced Growth and Redox Characteristics of Some Conducting Polymers on Carbon Nanotube Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    R.Saraswathi

    2007-01-01

    1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...

  1. Chiral recognition of alanine across modified carbon electrodes with 3,4-dihydroxyphenylalanine

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700 Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx; Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700 Pedro Escobedo, Queretaro (Mexico); Rangel-Reyes, G.; Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)

    2009-11-01

    3,4-Dihydroxyphenylalanine (DOPA) was covalently grafted onto a glassy carbon electrode (GCE) by the formation of an amine cation radical in the electro-oxidation of the amino-containing compound. Cyclic voltammetric experiments proved that the DOPA was formed on the GCE as a monolayer. Its electron transfer over the GCE surface at different pH values was studied by cyclic voltammetry. Changes in solution pH resulted in the variation of the charge state of the terminal group and the surface pK{sub a} was estimated on the basis of these results. Because of electrostatic interactions between the negatively charged groups on the electrode surface and the alanine (Ala) in solution, the modified electrode was used as an enantioselective sensor. The peak current for D(+) or L(-)DOPA over the modified electrode decreased as a result of the chiral recognition across the blocking interaction with the respective enantiomer of L(-) or D(+)Ala. The recognition was verified with the protection of L(-)DOPA with a Fmoc group.

  2. New triiodomercurate-modified carbon paste electrode for the potentiometric determination of mercury

    International Nuclear Information System (INIS)

    A new tetrazolium-triiodomercurate-modified carbon paste electrode has been described for the sensitive and selective determination of mercury. The electrode shows a stable, near-Nernstian response for 1x10-3 to 6x10-6 M [HgI3]- at 25 deg. C over the pH range of 4.0-9.0, with an anionic slope of 55.5±0.4 mV. The lower detection limit is 4x10-6 M with a fast response time of 30-50 s. Selectivity coefficients of a number of interfering anions and iodo complexes of some metal ions have been estimated. The interference from many of the investigated ions is negligible. The determination of 1-200 μg/ml of mercury in aqueous solutions shows an average recovery of 98.5% and a mean relative standard deviation of 1.6% at 50.0 μg/ml. The direct determination of mercury in spiked wastewater, metal amalgams and dental alloy gave results that compare favorably with those obtained by the cold vapor atomic absorption spectrometric method. Potentiometric titration of mercury and phenylmercury acetate with standard potassium iodide has been monitored using the developed triiodomercurate-carbon paste electrode (CPE) as an end point indicator electrode

  3. Electrochemical Behavior and Determination of Rutin on Modified Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    Pavla Macikova

    2012-01-01

    Full Text Available The performances of ionic liquid (1-hexyl-3-methylimidazolium-bis(trifluoromethylsulfonylimide, IL/CPE and iron phthalocyanine (IP/CPE modified carbon paste electrodes in electroanalytical determinations of rutin were evaluated and compared to the performance of unmodified carbon paste electrode (CPE. Cyclic voltammetry (CV, differential pulse voltammetry (DPV, differential pulse adsorptive stripping voltammetry (DPAdSV, and amperometry were used for rutin analysis. The best current responses of rutin were obtained at pH 4.0 for all tested techniques. IL/CPE electrode was found to perform best with DPAdSV technique, where a detection limit (LOD as low as 5 nmol L-1 of rutin was found. On the other hand, IP/CPE showed itself to be an optimum choice for DPV technique, where LOD of 80 nmol L-1 was obtained. Analytical applicability of newly prepared electrodes was demonstrated on determination of rutin in the model samples and the extracts of buckwheat seeds. To find an optimum method for buckwheat seeds extraction, a boiling water extraction (BWE, Soxhlet extraction (SE, pressurized solvent extraction (PSE, and supercritical fluid extraction (SFE were tested.

  4. Coulometric determination of dissolved hydrogen with a multielectrolytic modified carbon felt electrode-based sensor

    Institute of Scientific and Technical Information of China (English)

    Hiroaki Matsuura; Yosuke Yamawaki; Kosuke Sasaki; Shunichi Uchiyama

    2013-01-01

    A multielectrolytic modified carbon electrode (MEMCE) was fabricated by the electrolytic-oxidation/reduction processes.First,the functional groups containing nitrogen atoms such as amino group were introduced by the electrode oxidation of carbon felt electrode in an ammonium carbamate aqueous solution,and next,this electrode was electroreduced in sulfuric acid.The redox waves between hydrogen ion and hydrogen molecule at highly positive potential range appeared in the cyclic voltammogram obtained by MEMCE.A coulometric cell using MEMCE with a catalytic activity of electrooxidation of hydrogen molecule was constructed and was used for the measurement of dissolved hydrogen.The typical current vs.time curve was obtained by the repetitive measurement of the dissolved hydrogen.These curves indicated that the measurement of dissolved hydrogen was finished completely in a very short time (ca.10sec).A linear relationship was obtained between the electrical charge needed for the electrooxidation process of hydrogen molecule and dissolved hydrogen concentration.This indicates that the developed coulometfic method can be used for the determination of the dissolved hydrogen concentration.

  5. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue

    Institute of Scientific and Technical Information of China (English)

    Shu Ping Zhang; Lian Gang Shan; Zhen Ran Tian; Yi Zheng; Li Yi Shi; Deng Song Zhang

    2008-01-01

    The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes(MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase(ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected byusing i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrodewith 0.01U activity value and the detection limit of carbaryl is 10-12 g L-1 so the enzyme biosensor showed good properties forpesticides residue detection.2008 Shu Ping Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  6. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  7. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    Directory of Open Access Journals (Sweden)

    Shuping Zhang

    2013-01-01

    Full Text Available A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE to MWNTs-modified glassy carbon electrode (GCE with chitosan (CS by layer-by-layer (LBL technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from  g/L to  g/L with a detection limit of  g/L. This biosensor is a promising new method for pesticide analysis.

  8. Electrochemical determination of bisphenol A with a glassy carbon electrode modified with gold nanodendrites

    International Nuclear Information System (INIS)

    Three-dimensional gold nanodendrites with (111)-oriented growth were fabricated on a glassy carbon electrode by one-step electrodeposition of AuCl4− in the presence of L-asparagine. The gold nanodendrites were functionalized with 4-mercaptobenzoic acid (4-MBA), which showed the improved catalytic performance for sensitive and selective determination of bisphenol A (BPA) by differential pulse voltammetry. The oxidation peak currents of BPA at 514 mV showed linear responses to BPA concentrations from 0.05 to 55.0 μM (R2 = 0.995), with the detection limit of 1.2 nM (S/N = 3). The modified electrode was extended for trace detection of BPA in (spiked) real samples with satisfied results. (author)

  9. Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode

    International Nuclear Information System (INIS)

    The electrochemical behavior of phenol, using glassy carbon (GC) modified electrodes containing a hydrotalcite (HT)-like clay and anionic surfactants such as sodium octyl sulfate (SOS), sodium dodecyl sulfate (SDS), or sodium dodecylbenzenesulfonate (SDBS) in alkaline media, has been examined. Phenol oxidation at the modified electrodes, after a time accumulation under open circuit conditions, promotes increments of the current and shifts the oxidation potential to less positive values, compared to phenol oxidation at HT-GC or GC electrodes. The phenol oxidation is favored by the presence of surfactants in the films. The results suggest that the surfactant molecules intercalate between the HT layers, yielding a hydrophobic clay capable of preconcentrating phenol molecules. X-ray diffraction analyses showed a larger spacing of the HT layers when the surfactant intercalates between them. Cyclic voltammograms have shown that the SOS-HT-GC modified electrode exhibits short-lived activity for phenol oxidation as a consequence of surface fouling, while the SDS-HT-GC and SDBS-HT-GC modified electrodes showed a more stable behavior. The SDBS-HT-GC modified electrode was the most effective adsorbing phenol, since the charge (Q), obtained from the integration of the anodic peak current of the phenol, is higher at this modified electrode. This is probably because the adsolubilization capacity of phenol on the SDBS-HT-GC electrode is higher than on SDS-HT-GC electrode

  10. Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin

    International Nuclear Information System (INIS)

    Graphical abstract: Atomic force microscopic images of (A) bare GCE and (B) TOB imprinted PPy/GCE surface. - Highlights: • Glassy carbon electrode based on molecularly imprinted polypyrrole was prepared. • The developed surfaces were characterized by AFM, FTIR, EIS and CV. • The developed nanosensor was applied to egg and milk samples. - Abstract: Over the past two decades, molecular imprinted polymers have attracted a broad interest from scientists in sensor development. In the preparation of molecular imprinted polymers the desired molecule (template) induces the creation of specific recognition sites in the polymer. In this study, the glassy carbon electrode (GCE) based on molecularly imprinted polypyrrole (PPy) was fabricated for the determination of tobramycin (TOB). The developed electrode was prepared by incorporation of a template molecule (TOB) during the electropolymerization of pyrrole on GCE in aqueous solution using cyclic voltammetry (CV) method. The performance of the imprinted and non-imprinted electrodes was evaluated by square wave voltammetry (SWV). The effect of pH, monomer and template concentrations, electropolymerization cycles on the performance of the imprinted and non-imprinted electrodes was investigated and optimized. The non-modified and TOB-imprinted surfaces were characterized by using atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and CV. The linearity range of TOB was 5.0 × 10−10–1.0 × 10−8 M with the detection limit of 1.4 × 10−10 M. The developed nanosensor was applied successfully for the determination of TOB in egg and milk

  11. Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol.

    Science.gov (United States)

    Afzali, Daryoush; Zarei, Somaye; Fathirad, Fariba; Mostafavi, Ali

    2014-10-01

    In the present study, a carbon paste electrode chemically modified with gold nanoparticles was used as a sensitive electrochemical sensor for determination of eugenol. The differential pulse voltammetric method was employed to study the behavior of eugenol on this modified electrode. The effect of variables such as percent of gold nanoparticles, pH of solution, accumulation potential and time on voltammogram peak current were optimized. The proposed electrode showed good oxidation response for eugenol in 0.1 mol L(-1) phosphate buffer solution (pH8) and the peak potential was about +285 mV (vs. Ag/AgCl). The peak current increased linearly with the eugenol concentration in the range of 5-250 μmol L(-1). The detection limit was found to be 2.0 μmol L(-1) and the relative standard deviation was 1.2% (n=7). The effect of interferences on the eugenol peak current was studied. The method has been applied to the determination of eugenol in different real samples, spiked recoveries were in the range of 96%-99%.

  12. Studies on the Electrochemistry of Dopamine at a Pyrocatechol Sulfonephthalein Modified Glassy Carbon electrode

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The electrochemical response of dopamine(DA)at a pyrocaterchol fulfonephthalein modified glassy carbon(PS/GC)electrode is reported.The electrode can be used as a detector for the determination of dopamine with a high stability and a good sensitivity.The cyclic voltammetric results indicated that there was a couple of well-defined redox peakds for dopamine at the PS/GC electrode with Epa=200mV,Epc=mV and the formal potential E0'=157.5 mV(vs.SCE) at 100 mV/s in the buffer solution of pH7.0. The PS/GC electrode can also be used to separate the electrochemical responses of ascorbic acid and DA by 54 mV with the differential pulse voltammetry.Under the selected conditions,the oxidation peak currents are linear with DA concetration in the range of 5.0×10-6 to 5.0×10-4 mol/L,and the detection limit is 1.0×10-6mol/L at S/N=3.Normalized with concentration,the Relative sensitivity of dopamine to ascorbic acid reaches ca.30.8:1.

  13. Gold nanoparticle-coated multiwall carbon nanotube-modified electrode for electrochemical determination of methyl parathion

    International Nuclear Information System (INIS)

    We report on an electrochemical sensor for the determination of methyl parathion. It is based on an electrode modified with multi-walled carbon nanotubes that were covered with gold nanoparticles (Au-NPs). The vertically aligned array of MWCNTs on a tantalum substrate was coated with Au-NPs by overhead magnetron sputtering deposition. Scanning and transmission electron microscopy and XRD were used to characterize the Au-NP-MWCNTs composite. Cyclic voltammetry and differential pulse voltammetry were employed to evaluate the suitability of the new electrode for the determination of methyl parathion. Under the optimal conditions, the current response of the electrode to methyl parathion is linear in the range from 0.50 to 16.0 mg mL-1, with a detection limit of 50 μg mL-1 (signal/noise = 3), and the sensitivity is 4.5 times better than that of the plain MWCNTs electrode. We conclude that this method represents a simple, rapid, effective and sensitive approach for the detection of methyl parathion. (author)

  14. Electrochemical behavior of labetalol at an ionic liquid modified carbon paste electrode and its electrochemical determination

    Directory of Open Access Journals (Sweden)

    Zhang Yan-Mei

    2013-01-01

    Full Text Available Electrochemical behavior of labetalol (LBT at carbon paste electrode (CPE and an ionic liquid1-benzyl-3-methylimidazolehexafluorophosphate([BnMIM]PF6modified carbon paste electrode([BnMIM]PF6/CPEin Britton-Robinson buffer solution (pH 2.0 was investigated by cyclic voltammetry (CV and square wave voltammetric (SWV. The experimental results showed that LBT at both the bare CPE and [BnMIM]PF6/CPEshowed an irreversible oxidation process, but at [BnMIM]PF6/CPE its oxidation peak current increased greatly and the oxidation peak potential shifted negatively. The electrode reaction process is a diffusion-controlled process involving one electron transferring accompanied by a participation of one proton at [BnMIM]PF6/CPE. At the same time, the electrochemical kinetic parameters were determined. Under the optimized electrochemical experimental conditions, the oxidation peak currents were proportional to LBT concentration in the range of 7.0 x 10-6-1.0 x 10-4 mol L-1 with the limit of detection(LOD, S/N=3 of 4.810 x 10-8 mol L-1and the limit of quantification(LOQ, S/N=10 of 1.60 x 10-7 mol L-1, respectively. The proposed method was successfully applied in the determination of LBT content in commercial tablet samples.

  15. An improved biosensor for acetaldehyde determination using a bienzymatic strategy at poly(neutral red) modified carbon film electrodes

    OpenAIRE

    Ghica, Mariana Emilia; Pauliukaite, Rasa; Marchand, Nicolas; Devic, Eric; Brett, Christopher M. A.

    2007-01-01

    Improved biosensors for acetaldehyde determination have been developed using a bienzymatic strategy, based on a mediator-modified carbon film electrode and co-immobilisation of NADH oxidase and aldehyde dehydrogenase. Modification of the carbon film electrode with poly(neutral red) mediator resulted in a sensitive, low-cost and reliable NADH detector. Immobilisation of the enzymes was performed using encapsulation in a sol-gel matrix or cross-linking with glutaraldehyde. The bienzymatic biose...

  16. Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone.

    Science.gov (United States)

    Upan, Jantima; Reanpang, Preeyaporn; Chailapakul, Orawon; Jakmunee, Jaroon

    2016-01-01

    Flow injection amperometric (FI-Amp) sensor was developed for sensitive and selective determination of hydroquinone. A simple screen printed carbon electrode (SPCE) was modified with various nanomaterials for improvement of sensitivity on the determination of quinone. As a result, the appropriate sensitivity is obtained from the SPCE modified with carbon nanotube (CNT) which indicated that CNT contributed to the transfer of electron to quinone. The reproducibility (n=9) and repeatability (n=111) of SPCE-CNT were obtained at 4.4% and 3.6%RSD, respectively. The SPCE-CNT electrode and enzymatic column were incorporated to the FI-Amp system to determine hydroquinone. Laccase was immobilized on silica gel using a cross-linking method by glutaraldehyde modification and then packed in the column. The laccase column has high efficiency for catalytic oxidation of hydroquinone to quinone, which further detects by amperometric detection. Parameters affecting response of the proposed sensor, i.e., pH, ionic strength, and temperature have been optimized. The proposed system provided a wide linear range between 1 and 50 µM with detection limit of 0.1 µM. Satisfactory recoveries in the range of 91.2-103.8% were obtained for the analysis of water sample. PMID:26695328

  17. The electrochemical behavior of some podands at a benzo[c]cinnoline modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Isbir, Aybueke A. [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)]. E-mail: osolak@science.ankara.edu.tr; Uestuendag, Zafer [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Bilge, Selen [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Natsagdorj, Amgalan [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Kilic, Emine [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Kilic, Zeynel [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)

    2005-08-15

    This paper describes the grafting of benzo[c]cinnoline (BCC) molecules on glassy carbon (GC) electrode surface. The attachment of BCC molecules to carbon substrate is induced by the electrochemical reduction of the corresponding diazonium salt. The modification of GC with BCC diazonium salt was done in aprotic solution and proved by blocking of dopamine electron transfer. The presence of BCC at the GC surface was characterized by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). On modified surface, the electrochemical behavior of two different types of podands and the catalytic effects of the GC-BCC surface were studied. The XPS was used to monitor element characteristics of the adsorbates on the GC surface and confirm the attachment of BCC molecules to the GC surface.

  18. Direct Electrochemical Oxidation of NADPH at a Low Potential on the Carbon Nanotube Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    CHEN, Jing(陈静); CAI, Chen-Xin(蔡称心)

    2004-01-01

    NADPH can be directly oxidized on a carbon nanotube modified glassy carbon (CNT/GC) electrode in phosphate buffer solution (pH=6.0) with a diminution of the overpotential of more than 700 mV. The anodic peak currents increase linearly with the increase of concentration of NADPH in the range of 5×10-7 to 1×10-3 mol/L with a detection limit of about 1×10-7 mol/L. The CNT/GC electrode exhibits high sensitivity, low potential and stability in detecting NADPH and thus might be used in biosensors to study the electrocatalytic reaction of important dehydrogenase-based biological systems.

  19. Determination of ascorbic acid in pharmaceutical preparation and fruit juice using modified carbon paste electrode

    OpenAIRE

    Simona Žabčíková; Dai Long Vu; Libor Červenka; Vojtěch Tambor; Martina Vašatová

    2016-01-01

    Acrobic acid is key substance in the human metabolism and the rapid and accurate determination in food is of a great interest. Ascorbic acid is an electroactive compound, however poorly responded on the bare carbon paste electrodes. In this paper, brilliant cresyl blue and multi-walled carbon nanotubes were used for the modification of carbon paste electrode. Brilliant cresyl blue acts as a mediator improving the transition of electrons, whereas multiwalled carbon nanotubes increased the surf...

  20. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  1. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  2. Simultaneous determination of nitrophenol isomers at the single-wall carbon nanotube compound conducting polymer film modified electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; WANG Zhenhui; ZHOU Shuping

    2005-01-01

    Based on the molecular recognition ability of conductive polymer and the peculiar properties of carbon nanotubes, a novel single wall nanotubes (SWNTs) compound poly(4- aminopyridine) modified electrode (SWNTs/POAPE) is prepared at glass carbon electrode (GCE). The electrochemistry response of nitrophenol isomers is studied at the SWNTs/POAPE. The result indicates that o-, m- and p-nitrophenol are separated entirely at the SWNTs/POAPE interface. The electrode present here can be easily used to determine nitrophenol isomers simultaneously with higher sensitivity.

  3. Electrochemical study of functionalization on the surface of a chitin/platinum-modified glassy carbon paste electrode.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Terui, Norifumi; Kuramitz, Hideki

    2009-11-01

    To functionalize chitin surfaces using proteins, we developed a glucose oxidase (GOD)-chitin/platinum-modified glassy carbon paste electrode (GCPE) as a model. In a weakly acidic solution, negatively charged GOD were immobilized by the protonated acetylamide groups on chitin. When the electrode was immersed in a solution containing GOD, the enzyme was readily immobilized due to the electrostatic interaction. In addition, measurements were performed using electrodes made with powders of different sizes because sensor performance depends on the particle sizes of glassy carbon powder. PMID:19907096

  4. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques.

  5. Iron-enriched natural zeolite modified carbon paste electrode for H2O2 detection

    International Nuclear Information System (INIS)

    This work demonstrates that iron-enriched natural zeolitic volcanic tuff (Paglisa deposit, Cluj county, Transilvania, Romania) resulting from a previous use as adsorbent in wastewater treatment can be recycled into effective electrode modifier applied to the electrocatalytic detection of hydrogen peroxide. After physico-chemical characterization of tuff samples using various techniques such as chemical analysis, X-ray diffraction, scanning electron microscopy, infrared spectroscopy, BET analysis and X-ray photoelectron spectroscopy, the electrochemical response of the iron-enriched zeolites was studied on the basis of solid carbon paste electrodes modified with these samples. The results indicate that iron centers in the zeolite are electroactive and that they act as electrocatalysts in the voltammetric and amperometric detection of H2O2. Best performance was achieved in phosphate buffer at pH 7, showing a sensitivity of 0.57 mA M-1 cm-2, a detection limit down to 60 μM, and a linear domain up to 100 mM H2O2.

  6. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Danaee, I.; Jafarian, M.; Forouzandeh, F.; Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran)

    2008-08-15

    Nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetery (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of {beta}/{beta} crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. In CV studies, in the presence of methanol NiCu alloy modified electrode shows a significantly higher response for methanol oxidation. The peak current of the oxidation of nickel hydroxide increase is followed by a decrease in the corresponding cathodic current in presence of methanol. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of methanol was found to be 2 x 10{sup -6} cm{sup 2} s{sup -1} in agreement with the values obtained from CV measurements. (author)

  7. Methionine – Au Nanoparticle Modified Glassy Carbon Electrode: a Novel Platform for Electrochemical Detection of Hydroquinone

    Directory of Open Access Journals (Sweden)

    Jiahong HE

    2014-12-01

    Full Text Available A high sensitive electrochemical sensor based on methionine/gold nanoparticles (MET/AuNPs modified glassy carbon electrode (GCE was fabricated for the quantitative detection of hydroquinone (HQ. The as-modified electrode was characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD techniques. The electrochemical performance of the sensor to HQ was investigated by using cyclic and differential pulse voltammetry, which revealed its excellent electrocatalytic activity and reversibility towards HQ. The separation of anodic and cathodic peak (∆Ep was decreased from 471 mV to 75 mV. The anodic peak current achieved under the optimum conditions was linear with the HQ concentration ranging from 8 μM to 400 μM with the detection limit 0.12 μM (3σ. The as-fabricated sensor also showed a good selectivity towards HQ without demonstrating interference from other coexisting species. Furthermore, the sensor showed a good performance for HQ detection in environmental water, which suggests its potential practical application. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6477

  8. Electrochemical Characterization and Determination of Phenol and Chlorophenols by Voltammetry at Single Wall Carbon Nanotube/Poly(3,4-ethylenedioxythiophene) Modified Screen Printed Carbon Electrode

    OpenAIRE

    Negash, Negussie; Alemu, Hailemichael; Tessema, Merid

    2015-01-01

    Screen printed carbon electrode (SPCE) has been modified with single wall carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) composites for the determination of phenol and chlorophenols (phenol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol). The effect of the modifiers on the electrode characteristics was evaluated and the responses were optimized for the voltammetric determination of phenol and chlorophenols. The parameters affecting the responses such as pH, sca...

  9. Sensitive determination of domperidone in biological fluids using a conductive polymer modified glassy carbon electrode

    International Nuclear Information System (INIS)

    A simple and sensitive method for domperidone (DP) determination has been developed by electropolymerizing a polymer film on the surface of glassy carbon electrode (GCE) in acidic solution using cyclic voltammetry. The modified sensor was characterized by Field Emission Scanning Electron Microscopy (FE-SEM) and Electrochemical Impedance Spectroscopy (EIS). The electrochemical measurements were carried out using square wave voltammetry and cyclic voltammetry. The modified sensor exhibited an excellent catalytic response towards the oxidation of DP with a well-defined oxidation peak at 840 mV. The modified sensor exhibited linear calibration curve for DP over a concentration range of 0.1 μM to 100 μM in phosphate buffer solution of pH 7.2 with detection limit of 12.0 nM. The sensor was capable to determine DP effectively without any interference from the common metabolites like ascorbic acid, uric acid, xanthine and hypoxanthine. The analytical utilities of the sensor have been demonstrated by determining the DP in human fluids and pharmaceutical samples. Further, the modified sensor displayed voltammetric responses with high sensitivity, good selectivity and reproducibility which make it suitable for clinical diagnosis

  10. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes

    International Nuclear Information System (INIS)

    A carbon nanotube (CNT) modified biosensor based on oxygen-independent, pyrrole quinoline quinone glucose dehydrogenase (PQQ-GDH) for monitoring glucose was studied. The disposable amperometric biosensors based on screen-printed carbon paste electrodes are low cost and suitable for mass production. Potassium ferricyanide was immobilized on the surface of the electrodes as an electron mediator, which decreased the work potential. The biosensor showed a linear amperometric response to glucose from 1 to 35 mM, with a sensitivity of 31.0 µA mM−1 cm−2. Experimentally, the compositions of PQQ-GDH, potassium ferricyanide, CNTs and other components were evaluated and optimized. Only 2 µl of sample are needed for one test, and the response time of the sensor is 20 s. The characteristics of the biosensor were studied through cyclic voltammetry, and experimental results showed that the CNTs could facilitate the electron transfer between the enzyme and electrode surface significantly. Compared with the biosensor without carbon nanotube modification, the CNTs improved the sensitivity of the biosensor up to five times

  11. Carbon Based Electrodes Modified with Horseradish Peroxidase Immobilized in Conducting Polymers for Acetaminophen Analysis

    OpenAIRE

    Cecilia Cristea; Robert Sandulescu; Anca Florea; Mihaela Tertis

    2013-01-01

    The development and optimization of new biosensors with horseradish peroxidase immobilized in carbon nanotubes-polyethyleneimine or polypyrrole nanocomposite film at the surface of two types of transducer is described. The amperometric detection of acetaminophen was carried out at −0.2 V versus Ag/AgCl using carbon based-screen printed electrodes (SPEs) and glassy carbon electrodes (GCEs) as transducers. The electroanalytical parameters of the biosensors are highly dependent on their configur...

  12. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes

    International Nuclear Information System (INIS)

    Carbon screen-printed electrodes (CSPE) modified with gold nanoparticles present an interesting alternative in the determination of antimony using differential pulse anodic stripping voltammetry. Metallic gold nanoparticles deposits have been obtained by direct electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles are deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analyzed to ensure that common interferents in the determination of antimony by ASV. The detection limit for Sb(III) obtained was 9.44 x 10-10 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.69% (n = 10). The method was applied to determine levels of antimony in seawater samples and pharmaceutical preparations

  13. MODIFIED SCREEN-PRINTED CARBON ELECTRODES WITH TYROSINASE FOR DETERMINATION OF PHENOLIC COMPOUNDS IN SMOKED FOOD

    Directory of Open Access Journals (Sweden)

    V. Dragancea

    2010-12-01

    Full Text Available A screen-printed carbon electrode modified with tyrosinase (SPCE-Tyr/Paa/Glut has been developed for the determination of phenol concentration in real samples. The resulting SPCE-Tyr/Paa/Glut was prepared in a one-step procedure, and was then optimized as an amperometric biosensor operating at 0 mV versus Ag/AgCl for phenol determination in flow injection mode. Phenol detection was realized by electrochemical reduction of quinone produced by tyrosinase activity. The possibility of using the developed biosensor to determine phenol concentrations in various smoked products (bacon, ham, chicken and salmon was also evaluated. Gas chromatography (GC method was used for result validation obtained in flow injection mode using amperometric biosensor. The result showed good correlation with those obtained by flowinjection analysis (FIA.

  14. Electro-oxidation of ascorbic acid catalyzed on cobalt hydroxide-modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    GHASEM KARIM-NEZHAD

    2009-05-01

    Full Text Available The electrochemical behavior of ascorbic acid on a cobalt hydroxide modified glassy carbon (CHM–GC electrode in alkaline solution was investigated. The process of the involved oxidation and its kinetics were established using the cyclic voltammetry, chronoamperometry techniques, as well as by steady state polarization measurements. The results revealed that cobalt hydroxide promotes the rate of oxidation by increasing the peak current; hence ascorbic acid is oxidized at lower potentials, which is thermodynamically more favorable. The cyclic voltammograms and chronoamperometry indicate a catalytic EC mechanism is operative with the electrogeneration of Co(IV as the electrochemical process. Also, the process is diffusion-controlled and the current–time responses follow Cottrellian behavior. This result was confirmed by steady state measurements. The rate constants of the catalytic oxidation of ascorbic acid and the electron-transfer coefficient are reported.

  15. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nano tubes-Chitosan Modified Electrode

    International Nuclear Information System (INIS)

    A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE) to MWNTs-modified glassy carbon electrode (GCE) with chitosan (CS) by layer-by-layer (LBL) technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from 10-10  g/L to 10-3 g/L with a detection limit of 10-12 g/L. This biosensor is a promising new method for pesticide analysis

  16. Electrochemical detection of hydrogen peroxide at a waxed graphite electrode modified with platinum-decorated carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    SHI Qiao-cui; ZENG Wen-fang; ZHU Yunu

    2009-01-01

    Platinum-decorated carbon nanotubes (CNT-Pt) were produced by the chemical reduction method. A novel modified electrode was fabricated by intercalated CNT-Pt in the surface of waxed graphite, which provided excellent electro-catalytic activity and selectivity for both oxidation and reduction of hydrogen peroxide. The current response of the modified electrode for hydrogen peroxide was very rapid and the detection limits in amperometry are 2.5×10-6 mol/L at reduction potential and 4.8×10-6 mol/L at oxidation potential. It was desmonstrated that the electrode with high electro-activity was a suitable basic electrode for preparing enzyme electrode.

  17. Amperometric sensor for detection of bisphenol A using a pencil graphite electrode modified with polyaniline nanorods and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    We report on a simple and highly sensitive amperometric method for the determination of bisphenol A (BPA) using pencil graphite electrodes modified with polyaniline nanorods and multiwalled carbon nanotubes. The modified electrodes display enhanced electroactivity for the oxidation of BPA compared to the unmodified pencil graphite electrode. Under optimized conditions, the sensor has a linear response to BPA in the 1. 0 and 400 μM concentration range, with a limit of detection of 10 nM (at S/N = 3). The modified electrode also has a remarkably stable response, and up to 95 injections are possible with a relative standard deviation of 4. 2% at 100 μM of BPA. Recoveries range from 86 to 102% for boiling water spiked with BPA from four brands of baby bottles. (author)

  18. Modified carbon paste electrode as a tool for the evaluation of oxidative stability of rapeseed oil

    Directory of Open Access Journals (Sweden)

    Simona Žabčíková

    2015-10-01

    Full Text Available Carbon paste electrode was used for evaluation of oxidative stability of rapeseed oil samples using cyclic voltammetry in 0.1 mol.L-1 HCl as a supporting electrolyte. Rapeseed oil samples were exposed to daylight and oxygen in open glass baker at the laboratory condition in order to obtain oils with accelerated primary and secondary products of oxidation. The oxidation status was determinated by peroxide value and p-anisidine value. Total oxidative stability was expressed as TOTOX index. The edible oils were used for preparation (modification of the carbon paste composite material followed by the cyclic voltammetric measurement. Peroxide values significantly increased whereas p-anisinde value rather fluctuated during 40 days of storage in all the samples. Cyclic voltammograms showed anodic current peaks at 575 - 600 mV and cathodic current peaks at 400 - 425 mV. The oxidation and reduction waves diminished at pH ≥3.0 suggesting not only phenolic compounds contributed to the electrochemical characteristic of oil samples. The peroxide value or p-anisidine value did not correlate with oxidation or reduction peak currents at the potential 575 - 600 mV and 400 - 425 mV, respectively. Both cathodic and anodic currents increased with increasing TOTOX index exhibiting positive correlation with high Spearman correlation coefficient (r = 0.894 and r = 0.914 for anodic and cathodic current, respectively. Linear relationship was found for each sample individually. A caution has to be done when interpreting results since the correlation seems to be of oil sample specific. Nevertheless, the modified carbon paste electrode with rapeseed oil represents a suitable and alternative tool for determination of the oxidative state of edible oils without use of organic solvents.

  19. Electrocatalytic oxidation of hydrazine by copper iodide modified sol-gel derived carbon-ceramic composite Electrode

    Directory of Open Access Journals (Sweden)

    Ghasem Karim-Nezhad

    2014-03-01

    Full Text Available A new sol-gel derived ceramic-carbon composite electrode was fabricated by the use of CuI as modifier. The electrocatalytic activity of the copper iodide modified sol-gel derived ceramic-carbon composite (CIM-SGD-CCC electrode was examined for the oxidation of hydrazine. Cyclic voltammetry was employed to study the electrochemical and electrocatalytic properties of the modified electrode. Results showed that the CIM-SGD-CCC electrode has very high catalytic activity for electrooxidation of hydrazine. This proves that the copper iodide bears the main role in electro-catalytic oxidation of hydrazine. This modified electrode shows fast amperometric response with the range from 1 μ mol L-1 to 40 μ mol L-1 and the limit of detection (LOD of 0.524 μ mol L-1 for hydrazine. The relative standard deviation (R.S.D. was 0.72 % for 5 successive assays. High stability, good reproducibility, rapid response, easy surface regeneration and fabrication are the important characteristics of the proposed electrode.

  20. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Wenwei Tang

    Full Text Available A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1 cm(-2 and a low detection limit of 5 µM (S/N = 3, with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  1. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co3O4. • Incorporating Co3O4 nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co3O4/MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10−7–1.9 × 10−5 M with a detection limit of 7.4 × 10−7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89

  2. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry.

    Science.gov (United States)

    Cittan, Mustafa; Koçak, Süleyman; Çelik, Ali; Dost, Kenan

    2016-10-01

    A multi-walled carbon nanotube modified glassy carbon electrode was used to prepare an electrochemical sensing platform for the determination of oleuropein. Results showed that, the accumulation of oleuropein on the prepared electrode takes place with the adsorption process. Electrochemical behavior of oleuropein was studied by using cyclic voltammetry. Compared to the bare GCE, the oxidation peak current of oleuropein increased about 340 times at MWCNT/GCE. Voltammetric determination of oleuropein on the surface of prepared electrode was studied using square wave voltammetry where the oxidation peak current of oleuropein was measured as an analytical signal. A calibration curve of oleuropein was performed between 0.01 and 0.70µM and a good linearity was obtained with a correlation coefficient of 0.9984. Detection and quantification limits of the method were obtained as 2.73 and 9.09nM, respectively. In addition, intra-day and inter-day precision studies indicated that the voltammetric method was sufficiently repeatable. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract. Microwave-assisted extraction of oleuropein had good recovery values between 92% and 98%. The results obtained with the proposed electrochemical sensor were compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. PMID:27474292

  3. Screen-Printed Carbon Electrodes Modified with Cobalt Phthalocyanine for Selective Sulfur Detection in Cosmetic Products

    Directory of Open Access Journals (Sweden)

    Ying Shih

    2011-06-01

    Full Text Available Cobalt phthalocyanine (CoPc films were deposited on the surface of a screen-printed carbon electrode using a simple drop coating method. The cyclic voltammogram of the resulting CoPc modified screen-printed electrode (CoPc/SPE prepared under optimum conditions shows a well-behaved redox couple due to the (CoI/CoII system. The CoPc/SPE surface demonstrates excellent electrochemical activity towards the oxidation of sulfur in a 0.01 mol·L−1 NaOH. A linear calibration curve with the detection limit (DL, S/N = 3 of 0.325 mg·L−1 was achieved by CoPc/SPE coupled with flow injection analysis of the sulfur concentration ranging from 4 to 1120 mg·L−1. The precision of the system response was evaluated (3.60% and 3.52% RSD for 12 repeated injections, in the range of 64 and 480 mg·L−1 sulfur. The applicability of the method was successfully demonstrated in a real sample analysis of sulfur in anti-acne creams, and good recovery was obtained. The CoPc/SPE displayed several advantages in sulfur determination including easy fabrication, high stability, and low cost.

  4. Preparation and Electrochemical Characterization of a Carbon Ceramic Electrode Modified with Ferrocenecarboxylic Acid

    Directory of Open Access Journals (Sweden)

    Christiana A. Pessoa

    2011-01-01

    Full Text Available The present paper describes the characterization of a carbon ceramic electrode modified with ferrocenecarboxylic acid (designated as CCE/Fc by electrochemical techniques and its detection ability for dopamine. From cyclic voltammetric experiments, it was observed that the CCE/Fc presented a redox pair at Epa = 405 mV and Epc = 335 mV (DE = 70 mV, related to the ferrocene/ferrocenium process. Studies showed a considerably increase in the redox currents at the same oxidation potential of ferrocene (Epa = 414 mV vs. Ag/AgCl in the presence of dopamine (DA, differently from those observed when using only the unmodified CCE, in which the anodic peak increase was considerably lower. From SWV experiments, it was observed that the AA (ascorbic acid oxidation at CCE/Fc occurred in a different potential than the DA oxidation (with a peak separation of approximately 200 mV. Moreover, CCE/Fc did not respond to different AA concentrations, indicating that it is possible to determine DA without the AA interference with this electrode.

  5. Highly sensitive hydrogen peroxide sensor based on a glassy carbon electrode modified with platinum nanoparticles on carbon nanofiber heterostructures

    International Nuclear Information System (INIS)

    We are presenting a sensor for hydrogen peroxide (H2O2) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H2O2. If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H2O2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H2O2. (author)

  6. Immunoassay for netrin 1 via a glassy carbon electrode modified with multi-walled carbon nanotubes, thionine and gold nanoparticles

    International Nuclear Information System (INIS)

    We describe a nanostructured immunosensor for the cardiovascular biomarker netrin 1. A glassy carbon electrode was consecutively modified with multi-walled carbon nanotubes (MWCNTs), nafion (to retain the MWCNTs), thionine-coated gold nanoparticles (Thi-AuNPs), and monoclonal antibodies against netrin 1. The modified electrode was characterized by transmission electron microscopy, cyclic voltammetry, differential pulse voltammetry, UV-visible spectrophotometry and X-ray diffraction. The presence of Thi-AuNPs warrants direct and convenient immobilization of the antibody. This immunoelectrode enables netrin 1 to be determined, best at a voltage of −300 mV (vs. SCE), with a limit of detection of 30 fg mL−1 (at an S/N ratio of 3) after a 50 min incubation time. The detection range extends from 0.09 to 1800 pg∙mL−1. The method is simple, sensitive, specific and reproducible. We presume this stable and reproducible biosensor to be useful for the early detection of cardiovascular diseases. (author)

  7. Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: Oxidation of phenol

    International Nuclear Information System (INIS)

    The characteristics of hydrotalcite (HT)-like clay films containing ionic and nonionic surfactants and their ability to oxidize phenol have been examined. The HT clay (Co/Al-NO3) was synthesized by coprecipitation techniques and then modified with surfactants such as sodium dodecylbenzenesulfonate (SDBS), octylphenoxypolyethoxyethanol (TX100) or cetylpyridinium bromide (CPB). X-ray diffraction analysis revealed that the interlayer basal spacing varied depending on the type of surfactant retained by the HT. The presence of SDBS and CPB expanded the HT interlayer, which in the presence of TX100 did not show an appreciable change. Phenol oxidation is favored at surfactant-HT-GC modified electrodes, after a preconcentration time, compared to phenol oxidation at HT-GC or GC electrodes. Surfactant-HT-GC modified electrodes display good stability in continuous electrochemical phenol oxidation. At pH values between 6 and 10.8, both SDBS-HT-GC and TX100-HT-GC modified electrodes seem to be promising electrodes for the detection of phenol in water; while the CPB-HT-GC modified electrode should be affected by the inorganic anions

  8. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose

    International Nuclear Information System (INIS)

    A nano-structured Ni(II)-curcumin (curcumin: 1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) film is electrodeposited on a glassy carbon electrode in alkaline solution. The morphology of polyNi(II)-curcumin (NC) was investigated by scanning electron microscopy (SEM). The SEM results show NC has a nano-globular structure in the range 20-50 nm. Using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) showed that the nano-structure NC film acts as an efficient material for the electrocatalytic oxidation of fructose. According to the voltammetric studies, the increase in the anodic peak current and subsequent decrease in the corresponding cathodic current, fructose was oxidized on the electrode surface via an electrocatalytic mechanism. The EIS results show that the charge-transfer resistance has as a function of fructose concentration, time interval and applied potential. The increase in the fructose concentration and time interval in fructose solution results in enhanced charge transfer resistance in Nyquist plots. The EIS results indicate that fructose electrooxidation at various potentials shows different impedance behaviors. At lower potentials, a semicircle is observed in the first quadrant of impedance plot. With further increase of the potential, a transition of the semicircle from the first to the second quadrant occurs. Also, the results obtained show that the rate of fructose electrooxidation depends on concentration of OH-. Electron transfer coefficient, diffusion coefficient and rate constant of the electrocatalytic oxidation reaction are obtained. The modified electrode was used as a sensor for determination of fructose with a good dynamic range and a low detection limit

  9. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose

    Energy Technology Data Exchange (ETDEWEB)

    Elahi, M. Yousef [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Mousavi, M.F. [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)], E-mail: mousavim@modares.ac.ir; Ghasemi, S. [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2008-12-30

    A nano-structured Ni(II)-curcumin (curcumin: 1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) film is electrodeposited on a glassy carbon electrode in alkaline solution. The morphology of polyNi(II)-curcumin (NC) was investigated by scanning electron microscopy (SEM). The SEM results show NC has a nano-globular structure in the range 20-50 nm. Using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) showed that the nano-structure NC film acts as an efficient material for the electrocatalytic oxidation of fructose. According to the voltammetric studies, the increase in the anodic peak current and subsequent decrease in the corresponding cathodic current, fructose was oxidized on the electrode surface via an electrocatalytic mechanism. The EIS results show that the charge-transfer resistance has as a function of fructose concentration, time interval and applied potential. The increase in the fructose concentration and time interval in fructose solution results in enhanced charge transfer resistance in Nyquist plots. The EIS results indicate that fructose electrooxidation at various potentials shows different impedance behaviors. At lower potentials, a semicircle is observed in the first quadrant of impedance plot. With further increase of the potential, a transition of the semicircle from the first to the second quadrant occurs. Also, the results obtained show that the rate of fructose electrooxidation depends on concentration of OH{sup -}. Electron transfer coefficient, diffusion coefficient and rate constant of the electrocatalytic oxidation reaction are obtained. The modified electrode was used as a sensor for determination of fructose with a good dynamic range and a low detection limit.

  10. Electro-oxidation of chlorophenols at glassy carbon electrodes modified with polyNi(II)complexes

    International Nuclear Information System (INIS)

    The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (-NH2 or -SO3-) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic C=O stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH)2 clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH)2 clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH)2 clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.

  11. Electrocatalytic Oxidation of Hydroxylamine at a Quinizarine Modified Glassy Carbon Electrode: Application to Differential Pulse Voltammetry Detection of Hydroxylamine

    OpenAIRE

    MAZLOUMARDAKANI, Mohammad; KARAMI, Payam EBRAHIMI

    2008-01-01

    The electrocatalytic behavior of hydroxylamine was studied on a glassy carbon electrode modified by electrodeposition of quinizarine, using cyclic voltammetry, chronoamperometry, and rotating disk voltammetry as diagnostic techniques. Cyclic voltammetry showed that the catalytic current of the system depends on the concentration of hydroxylamine. The magnitude of the peak current for quinizarine increased sharply in the presence of hydroxylamine and proportional to hydroxylamine conc...

  12. USE OF BATTERY CARBON AS ELECTRODES IN ARC DISCHARGE METHOD FOR FABRICATION OF CARBON-MODIFIED TIO2

    Directory of Open Access Journals (Sweden)

    Isya Fitria Andhika

    2016-09-01

    Full Text Available Fabrication with carbon-modified TiO2 by arc discharge method in liquid medium has been studied. This research was performed in two steps including fabrication and characterization. This fabrication was done by arcdischarge method with graphite electrodes from dry cell batteries and liquid medium suspension of TiO2 in ethanol 30, 50 and 70 %. A strong current was applied to electrode as 10 -50 A (20-40 V. Nanocomposites formed on the liquid medium surface were collected and characterized using X-ray diffraction (XRD,scanning electron microscope (SEM dan energy dispersive spectroscopy (EDS to determine crystallinity, surface morphology and the constituent elements, respectively. XRD data shows that the most effective fabrication TiO2/Karbon by liquid medium in ethanol 50 % indicated from the formation of a new peak with high intensity of TiC on 2Ɵ= 36.02 °. SEM data shows that the morphology of each aggregated TiO2/Karbon compared to the morphology of TiO2. In addition, EDS data shows the presence of the element carbon, titanium and oxygen in the same area indicating that the successful formation of composite material between TiO2 dan carbon.

  13. DNA biosensor based on a glassy carbon electrode modified with electropolymerized Eriochrome Black T

    International Nuclear Information System (INIS)

    We report on an electrochemical DNA biosensor consisting of a glassy carbon electrode modified with a film of electropolymerized Eriochrome Black T (pEBT) that serves as a functional platform for the immobilization of probe DNA. pEBT was deposited via cyclic voltammetry, and the amino-modified DNA capture probe was covalently linked to the surface via a sulfanilamide coupling reaction. The single step of the assembly process was monitored by atomic force microscopy and electrochemistry. The surface density of DNA probe on the biosensor interface was calculated to be 1.7 × 10−10 mol cm−2 using methylene blue as an electroactive probe. Hybridization experiments showed the peak currents of methylene blue to decrease with increasing concentration of complementary sequence in the range from 5.0 f. to 5.0 pM. The detection limit is as low as 0.11 fM. Selectivity studies showed that the biosensor can discriminate a fully complementary sequence from a single-base mismatch, three-base mismatch, and a fully non-complementary sequence. The biosensor displays good stability and can be regenerated due to the beneficial effects of electropolymerization and covalent immobilization of probe DNA. (author)

  14. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wang

    2015-12-01

    Full Text Available By using the hydrothermal method, carbon microspheres (CMS were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ. The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors.

  15. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay.

    Science.gov (United States)

    Ziyatdinova, Guzel; Kozlova, Ekaterina; Budnikov, Herman

    2016-04-01

    Phenolic antioxidants of wine were electrochemically oxidized on multi-walled carbon nanotubes modified glassy carbon electrode (MWNT/GCE) in phosphate buffer solution. Three oxidation peaks were observed at 0.39, 0.61 and 0.83V for red dry wine and 0.39, 0.80 and 1.18 V for white dry wine, respectively, using differential pulse voltammetry at pH 4.0. The oxidation potentials for individual phenolic antioxidants confirmed the integral nature of the analytical signals for the wines examined. A one-step chronocoulometric method at 0.83 and 1.18 V for red and white wines, respectively, has been developed for the evaluation of wine antioxidant capacity (AOC). The AOC is expressed in gallic acid equivalents per 1L of wine. The AOC of white wine was significantly less than red wine (386 ± 112 vs. 1224 ± 184, pwine and total antioxidant capacity, based on coulometric titration with electrogenerated bromine (r=0.8957 at n=5 and r=0.8986 at n=4 for red and white wines, respectively).

  16. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    Science.gov (United States)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  17. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility.

  18. Anodic stripping voltammetric determination of arsenic(III) using a glassy carbon electrode modified with gold-palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    A glassy carbon electrode (GC E) was modified by casting gold-palladium (Au-Pd) nanoparticles onto its surface and then used for the determination of As(III) by stripping voltammetry. The structure and electrochemical properties of the nanoparticles were characterized by UV-vis spectroscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. Anodic stripping voltammetry of the modified electrode was performed in solutions of pH 4.5 containing various concentrations of arsenite. The modified GC E exhibited good response towards As(III), with a limit of detection of around 0.25 ppb which is much lower than the current EPA standard of 10 ppb. The electrode is stable and not interfered by Pb(II), Cd(II), Mn(II), and Zn(II). (author)

  19. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode.

    Science.gov (United States)

    Kalambate, Pramod K; Rawool, Chaitali R; Karna, Shashi P; Srivastava, Ashwini K

    2016-12-01

    A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (Ip) current for MM is found to be rectilinear in the range 4.0×10(-8)-2.0×10(-5)M with a detection limit of 7.1×10(-9)M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. PMID:27612735

  20. A novel non-enzymatic hydrogen peroxide sensor based on single walled carbon nanotubes-manganese complex modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@uok.ac.i [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Mahdioun, Monierosadat; Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Abdolmaleki, Amir [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111 (Iran, Islamic Republic of); Ghavami, Raoof [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2011-03-30

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20-100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1-12). The surface coverages and heterogeneous electron transfer rate constants (k{sub s}) of immobilized Mn-complex were approximately 1.58 x 10{sup -10} mole cm{sup -2} and 48.84 s{sup -1}. The modified electrode showed excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Detection limit, sensitivity, linear concentration range and k{sub cat} for H{sub 2}O{sub 2} were, 0.2 {mu}M and 692 nA {mu}M{sup -1} cm{sup -2}, 1 {mu}M to 1.5 mM and 7.96({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1}, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.

  1. Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes.

    Science.gov (United States)

    Moreno, Mónica; Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-04-01

    A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10⁻⁵ to 10⁻⁴  M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine.

  2. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid

    Indian Academy of Sciences (India)

    Fereshteh Chekin; Samira Bagheri; Sharifah Bee Abd Hamid

    2015-12-01

    A simple approach for the preparation of gelatin functionalized reduced graphene oxide nanosheet (Gel-RGONS) by chemical reduction of graphene oxide (GO) using gelatin as both reducing agent and stabilizing agent in an aqueous solution was developed. The morphology and structure of the Gel-RGONS were examined by X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy and Raman spectroscopy. Gelatin acted as a functionalizing reagent to guarantee good dispersibility and stability of the r in distilled water. Moreover, a new electrochemical sensor was developed based on Gel-RGONS modified glassy carbon electrode (Gel-RGONS/GCE). Gel-r exhibits excellent electrocatalytic activity to gallic acid (GA) oxidation. The experimental conditions such as pH, adsorption time and scan rate were optimized for the determination of GA. Under optimum conditions, the sensor responded linearly to GA in the concentration of 1.0 × 10−6 to 1.1 × 10−4 M with detection limit of 4.7 × 10−7 M at 3 using linear sweep voltammetry (LSV). The method has been successfully applied to the determination of GA in sample of black tea.

  3. Voltammetric Determination of Codeine on Glassy Carbon Electrode Modified with Nafion/MWCNTs

    Directory of Open Access Journals (Sweden)

    Robert Piech

    2015-01-01

    Full Text Available A glassy carbon electrode modified with a Nafion/MWCNTs composite is shown to enable the determination of codeine using differential pulse voltammetry in phosphate buffer of pH 3.0. At a preconcentration time of 15 s, the calibration graph is linear in the 0.5 µM (0.15 mg·L−1 to 15 µM (4.5 mg·L−1 concentration range with a correlation coefficient of 0.998. The detection limit at a preconcentration time of 120 s is as low as 4.5 μg·L−1. The repeatability of the method at a 0.6 μg·L−1 concentration level, expressed as the RSD, is 3.7% (for n=5. The method was successfully applied and validated by analyzing codeine in drug, human plasma, and urine samples.

  4. Carbon paste electrode modified with duplex molecularly imprinted polymer hybrid film for metronidazole detection.

    Science.gov (United States)

    Xiao, Ni; Deng, Jian; Cheng, Jianlin; Ju, Saiqin; Zhao, Haiqing; Xie, Jin; Qian, Duo; He, Jun

    2016-07-15

    A novel electrochemical sensor based on duplex molecularly imprinted polymer (DMIP) hybrid film modified carbon paste electrode (CPE) has been developed for highly sensitive and selective determination of metronidazole (MNZ). A conductive poly(anilinomethyltriethoxysilane) film is firstly electrodeposited on the surface of a CPE, and then a molecularly imprinted polysiloxane (MIPS) membrane is covalently covered on the film via sol-gel process. The as-constructed DMIP hybrid film, combining the advantages of MIPS and conducting MIP, can make feasible the direct and efficient signal transformation between the target analyte and the transducer, as well as enhance the imprinting recognition capability, mass transfer efficiency and the detection sensitivity. Under optimized conditions, the reduction peak currents of MNZ are linear to MNZ concentrations in the range from 4.0×10(-7) to 2.0×10(-4) molL(-1) with a detection limit of 9.1×10(-8)molL(-1). The RSD values vary from 2.9% to 4.7% for intra-day and from 3.4% to 4.2% for inter-day precision. The DMIP-based sensor has been successfully applied for the determination of MNZ in biological and pharmaceutical samples. The accuracy and reliability of the method is further confirmed by high performance liquid chromatography. PMID:26921552

  5. A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene

    International Nuclear Information System (INIS)

    We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM−1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry. (author)

  6. Electro-oxidation of chlorophenols at glassy carbon electrodes modified with polyNi(II)complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berrios, Cristhian [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile); Marco, Jose F.; Gutierrez, Claudio [Instituto de Quimica Fisica ' Rocasolano' , CSIC, C. Serrano, 119, 28006, Madrid (Spain); Ureta-Zanartu, Maria Soledad [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile)], E-mail: soledad.ureta@usach.cl

    2009-11-01

    The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (-NH{sub 2} or -SO{sub 3}{sup -}) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic C=O stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH){sub 2} clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH){sub 2} clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH){sub 2} clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.

  7. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  8. A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    In this paper, a novel and convenient electrochemical sensor based on stacked graphene nanofibers (SGNF) and gold nanoparticles (AuNPs) composite modified glassy carbon electrode (GCE) was developed for the determination of bisphenol A (BPA). The AuNPs/SGNF modified electrode showed an efficient electrocatalytic role for the oxidation of BPA, and the oxidation overpotentials of BPA were decreased significantly and the peak current increased greatly compared with bare GCE and other modified electrode. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 4, α = 0.52 for BPA, which indicated the electrochemical oxidation of BPA on AuNPs/SGNF modified electrode was a four-electron and four-proton process. The effective surface areas of AuNPs/SGNF/GCE increased for about 1.7-fold larger than that of the bare GCE. In addition, the kinetic parameters of the modified electrode were calculated and the apparent heterogeneous electron transfer rate constant (ks) was 0.51 s−1. Linear sweep voltammetry was applied as a sensitive analytical method for the determination of BPA and a good linear relationship between the peak current and BPA concentration was obtained in the range from 0.08 to 250 μM with a detection limit of 3.5 × 10−8 M. The modified electrode exhibited a high sensitivity, long-term stability and remarkable reproducible analytical performance and was successfully applied for the determination of BPA in baby bottles with satisfying results

  9. Electrochemical oxidation of 4-chloro phenol over a carbon paste electrode modified with Zn Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez F, D.; Palomar P, M.; Licona S, T. de J.; Romero R, M. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D. F. (Mexico); Valente, Jaime S., E-mail: mepp@correo.azc.uam.mx [Instituto Mexicano del Petroleo, Eje Central No. 152, 07730 Mexico D. F. (Mexico)

    2014-07-01

    A study is presented on the electrochemical oxidation of 4-chloro phenol (4cp) in aqueous solution using a bare carbon paste electrode, Cpe, and another one that was modified with Zn Al layered double hydroxides (Cpe/Zn Al-LDH). The electro-oxidation was effected at ph values ranging from 3 up to 11. It was found through cyclic voltammetry that this process was irreversible, namely, there were no reduction peaks, and that depending on the nature of the electrode, the anodic current was limited either by adsorption (Cpe) or diffusion (Cpe/Zn Al-LDH). The energy required and the oxidation reaction rate depended on the ph and on the nature of the electrode, such that the greater rates were obtained when the Cpe/Zn Al-LDH electrode and acid ph were used. The Zn Al-LDH was characterized by means of X-ray diffraction. (Author)

  10. The Application of Nafion Metal Catalyst Free Carbon Nanotube Modified Gold Electrode: Voltammetric Zinc Detection in Serum

    Science.gov (United States)

    Yue, Wei; Bange, Adam; Riehl, Bill L.; Johnson, Jay M.; Papautsky, Ian; Heineman, William R.

    2013-01-01

    Metal catalyst free carbon nanotube (MCFCNT) whiskers were first used as an electrode modification material on a gold electrode surface for zinc voltammetric measurements. A composite film of Nafion and MCFCNT whiskers was applied to a gold electrode surface to form a mechanically stable sensor. The sensor was then used for zinc detection in both acetate buffer solution and extracted bovine serum solution. A limit of detection of 53 nM was achieved for a 120 s deposition time. The zinc in bovine serum was extracted via a double extraction procedure using dithizone in chloroform as a zinc chelating ligand. The modified electrode was found to be both reliable and sensitive for zinc measurements in both matrices. PMID:24436574

  11. Carbon Based Electrodes Modified with Horseradish Peroxidase Immobilized in Conducting Polymers for Acetaminophen Analysis

    Directory of Open Access Journals (Sweden)

    Cecilia Cristea

    2013-04-01

    Full Text Available The development and optimization of new biosensors with horseradish peroxidase immobilized in carbon nanotubes-polyethyleneimine or polypyrrole nanocomposite film at the surface of two types of transducer is described. The amperometric detection of acetaminophen was carried out at −0.2 V versus Ag/AgCl using carbon based-screen printed electrodes (SPEs and glassy carbon electrodes (GCEs as transducers. The electroanalytical parameters of the biosensors are highly dependent on their configuration and on the dimensions of the carbon nanotubes. The best limit of detection obtained for acetaminophen was 1.36 ± 0.013 μM and the linear range 9.99–79.01 μM for the HRP-SWCNT/PEI in GCE configuration. The biosensors were successfully applied for the detection of acetaminophen in several drug formulations.

  12. Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier.

    Science.gov (United States)

    Beitollahi, Hadi; Ivari, Susan Ghofrani; Torkzadeh-Mahani, Masoud

    2016-12-01

    ZnO-CuO nanoplates and 2-chlorobenzoyl ferrocene, were synthesized and used to construct a modified carbon paste electrode. The electrooxidation of 6-thioguanine at the surface of the modified electrode was studied. Under the optimized conditions, the square wave voltammetric (SWV) peak current of 6-thioguanine increased linearly in the concentration range 0.05 to 200.0μM and detection limit of 25±2nM was obtained for 6-thioguanine. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of 6-thioguanine and folic acid which makes it suitable for the detection of 6-thioguanine in the presence of folic acid in real samples. PMID:27612697

  13. A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Fang Bin, E-mail: binfang_47@yahoo.com.c [Anhui Key Laboratory of Chemo-Biosensor, College of Chemistry and Materials Science, Anhui Normal University, Beijing East Road, No. 1, Wuhu 241000 (China); Zhang Cuihong; Zhang Wei; Wang Guangfeng [Anhui Key Laboratory of Chemo-Biosensor, College of Chemistry and Materials Science, Anhui Normal University, Beijing East Road, No. 1, Wuhu 241000 (China)

    2009-12-15

    ZnO nanoflowers were synthesized by a simple process (ammonia-evaporation-induced synthetic method) and were applied to the hydrazine electrochemical sensor. The prepared material was characterized by means of scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) and was then immobilized onto the surface of a glassy carbon electrode (GCE) via multi-walled carbon nanotubes (MWCNTs) to obtain ZnO/MWCNTs/GCE. The potential utility of the constructed electrodes was demonstrated by applying them to the analytical determination of hydrazine concentration. An optimized limit of detection of 0.18 muM was obtained at a signal-to-noise ratio of 3 and with a fast response time (within 3 s). Additionally, the ZnO/MWCNTs/GCE exhibited a wide linear range from 0.6 to 250 muM and higher sensitivity for hydrazine than did the ZnO modified electrode without immobilization of MWCNTs.

  14. Ni(II) decorated nano silicoaluminophosphate molecular sieves-modified carbon paste electrode as an electrocatalyst for electrooxidation of methanol

    Indian Academy of Sciences (India)

    SEYED KARIM HASSANINEJAD-DARZI; MOSTAFA RAHIMNEJAD; SEYEDEH ELHAM MOKHTARI

    2016-06-01

    In this work, we reported amethod for the synthesis of nanosized silicoaluminophosphate (SAPO) molecular sieves that are important members of zeolites family. The synthesized SAPO was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) as well as infrared (IR) techniques. Then, the modified carbon paste electrode was prepared by nano SAPO molecular sieves and nickel (II) ion incorporated at this electrode. The electrochemical behaviour of the modified electrode (Ni-SAPO/CPE) towards the oxidation of methanol was investigated by cyclic voltammetry and hronoamperometry methods. It has been found that the oxidation current is extremely increased by using Ni-SAPO/CPE compared to the unmodified Ni-CPE, it seems that Ni$^{2+}$ inclusion into nano SAPO channels provides the active sites for catalysis of methanol oxidation. The effect of some parameters such as scan rate of potential, concentration of methanol, amount of SAPO was investigated on the oxidation of methanol at the surface of modified electrode. The values of electron transfer coefficient, charge-transfer rate constant and electrode surface coverage for the Ni(II)/Ni(III) couple in the surface of Ni-SAPO/CPE were found to be 0.555, 0.022 s$^{−1}$ and 5.995 $\\times$ 10$^{−6}$ mol cm$^{−2}$, respectively. Also, the diffusion coefficient and the mean value of catalytic rate constant for methanol and redox sites of modified electrode were obtained to be $1.16\\times 10^{−5}$ cm$^2$ s$^{−1}$ and $4.62\\times 10^4$ cm$^3$ mol$^{−1} s$^{−1}$, respectively. The good catalytic activity, high sensitivity, good selectivity and stability and easy in preparation rendered the Ni-SAPO/CPE to be a capable electrode for electrocatalytic oxidation of methanol.

  15. Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode

    Institute of Scientific and Technical Information of China (English)

    Ali Taherkhani; Hassan Karimi-Maleh; Ali A.Ensafi; Hadi Beitollahi; Ahmad Hosseini; Mohammad A.Khalilzadeh; Hassan Bagheri

    2012-01-01

    A carbon paste electrode (CPE) chemically modified with multiwall carbon nanotubes and ferrocene (FC) was used as a selective electrochemical sensor for the simultaneous determination of trace amounts of cysteamine (CA) and folic acid (FA).This modified electrode showed very efficient electrocatalytic activity for the anodic oxidation of CA.The peak current of differential pulse voltammograms of CA and FA increased linearly with their concentration in the ranges of 0.7-200 μmol/L CA and 5.0-700 μmol/L FA.The detection limits for CA and FA were 0.3 μmol/L and 2.0 μ mol/L,respectively.The diffusion coefficient (D) and transfer coefficient (α) of CA were also determined.These conditions are sufficient to allow determination of CA and FA both individually and simultaneously.

  16. Glutathione modified screen-printed carbon nanofiber electrode for the voltammetric determination of metal ions in natural samples.

    Science.gov (United States)

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2016-08-01

    This work reports the development of a glutathione modified electrode via electrografting on a screen-printed carbon nanofiber substrate (GSH-SPCNFE). GSH-SPCNFE was compared to a classical screen-printed carbon electrode modified with glutathione (GSH-SPCE) for the simultaneous voltammetric determination of Cd(II) and Pb(II). Their electrochemical characterization and analytical performance suggest that SPCNFE could be a much better support for GSH immobilization. The applicability of GSH-SPCNFE for the determination of low concentration levels of Pb(II) and Cd(II) ions in environmental samples was successfully tested in a certified wastewater reference material by means of stripping voltammetry with a very high reproducibility and good trueness. PMID:27216650

  17. Photoamperometric flow injection analysis of glucose based on dehydrogenase modified quantum dots-carbon nanotube nanocomposite electrode.

    Science.gov (United States)

    Ertek, Bensu; Dilgin, Yusuf

    2016-12-01

    In this work, a core-shell quantum dot (QD, ZnS-CdS) was electrodeposited onto multiwalled carbon nanotube modified glassy carbon electrode (ZnS-CdS/MWCNT/GCE) and following glucose dehydrogenase (GDH) was immobilized onto QD modified electrode. The proposed electrode (GDH/ZnS-CdS/MWCNT/GCE) was effectively used for the photoelectrochemical biosensing of glucose in flow injection analysis (FIA) system using a home-made flow cell. Results from cyclic voltammetric and FI amperometric measurements have revealed that GDH/ZnS-CdS/MWCNT/GCE is capable of signaling photoelectrocatalytic activity toward NADH when the surface of enzyme modified electrode was irradiated with a light source (250W Halogen lamp). Thus, photoelectrochemical biosensing of glucose was monitored by recording current-time curve of enzymatically produced NADH at optimized conditions. The biosensor response was found linear over the range 0.010-2.0mM glucose with detection limits of 6.0 and 4.0μM for amperometric and photoamperometric methods, respectively. The relative standard deviations (n=5) for 0.5mM glucose were 5.8% and 3.8% for photoamperometric and amperometric results, respectively. The photoelectrochemical biosensor was successfully applied to the real samples. The results with this biosensor showed good selectivity, repeatability and sensitivity for monitoring glucose in amperometric and photoamperometric FIA studies. PMID:26944347

  18. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Meixia; Gao, Feng [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Wang, Qingxiang, E-mail: axiang236@126.com [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Cai, Xili [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Jiang, Shulian; Huang, Lizhang [Zhangzhou Product Quality Supervision and Inspection Institute, Zhangzhou 363000 (China); Gao, Fei [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China)

    2013-04-01

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (k{sub s}), diffusion coefficient (D) and the surface adsorption amount (Γ{sup ⁎}) of ACOP on GR–CS/GCE were determined to be 0.25 s{sup −1}, 3.61 × 10{sup −5} cm{sup 2} s{sup −1} and 1.09 × 10{sup −9} mol cm{sup −2}, respectively. Additionally, a 2e{sup −}/2H{sup +} electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10{sup −6} to 1.0 × 10{sup −4} M with a low detection limit of 3.0 × 10{sup −7} M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied.

  19. Silver nanoparticle decorated poly(2-aminodiphenylamine) modified carbon paste electrode as a simple and efficient electrocatalyst for oxidation of formaldehyde

    Institute of Scientific and Technical Information of China (English)

    Reza Ojani; Saeid Safshekan; Jahan-Bakhsh Raoof

    2014-01-01

    This work describes the promising activity of silver nanoparticles on the surface of a poly(2-amino diphenylamine) modified carbon paste electrode (CPE) towards formaldehyde oxidation. Electro-deposition of the conducting polymer film on the CPE was carried out using consecutive cyclic voltammetry in an aqueous solution of 2-aminodiphenylamine and HCl. Nitrogen groups in the polymer backbone had a Ag ion accumulating effect, allowing Ag nanoparticles to be electrochemi-cally deposited on the surface of the electrode. The electrochemical and morphological characteris-tics of the modified electrode were investigated. The electro-oxidation of formaldehyde on the sur-face of electrode was studied using cyclic voltammetry and chronoamperometry in aqueous solu-tion of 0.1 mol/L NaOH. The electro-oxidation onset potential was found to be around-0.4 V, which is unique in the literature. The effect of different concentrations of formaldehyde on the electrocat-alytic activity of the modified electrode was investigated. Finally, the diffusion coefficient of formal-dehyde in alkaline media was calculated to be 0.47 × 10-6 cm2/s using chronoamperometry.

  20. Laccase on Black Pearl 2000 modified glassy carbon electrode: Characterization of direct electron transfer and biological sensing properties for pyrocatechol

    International Nuclear Information System (INIS)

    Highlights: ► Laccase can complete direct electron transfer process on BP2000 matrices. ► Laccase immobilized on BP2000 matrices has catalytic oxidation effect to pyrocatechol. ► A pyrocatechol biosensor has constructed been using Nafion/Lac-BP2000/GC electrode. ► Detection limit and linear range of the biosensor are 0.003 mM and 0.003–5.555 mM. - Abstract: In this paper, it was found that Laccase (Lac) could be stably immobilized on the glassy carbon electrode modified with Black Pearl 2000 (BP2000) and Nafion by a simple technique. The adsorption behavior of Lac immobilized on BP2000 matrix was characterized by environment scanning electron microscope (ESEM), ultraviolet–visible (UV–vis) and Fourier transform infrared (FTIR), which demonstrated that BP2000 could facilitate the electron exchange between the active center of Lac and modified electrode. The direct electrochemistry and electrocatalysis behavior of Lac on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that Lac immobilized on the modified electrode displayed a direct, nearly reversible and surface-controlled redox reaction with an enhanced electron-transfer rate constant of 1.940 s−1 at the scan rate of 100 mV s−1 in 0.1 M phosphate buffer solution (PBS) (pH 7.0). Furthermore, it was also discovered that, in the presence of O2, Lac immobilized on the modified electrode exhibited the electrocatalytic response to pyrocatechol, and the kinetic apparent Michaelis-constant (KMapp) obtained from the Lineweaver–Burk equation was 1.79 mM. The detection limit, linear range and sensitivity of the Lac biosensor were 0.003 mM, 0.003–5.555 mM and 99.84 μA mM−1 cm−2, respectively.

  1. Influence of alkylammonium cation on multisweep cyclic voltammetry of Cu(II) on carbon paste electrode modified with montmorillonite

    OpenAIRE

    Navrátilová, Zuzana; Hranická, Zuzana

    2010-01-01

    Cyclic voltammetry of Cu2+ on the carbon paste electrode modified either with montmorillonite SAz-1 or with montmorillonite SAz-1 pretreated with hexadecyltrimethylammonium cation was performed to find the hexadecyltrimethylammonium cation influence on the Cu2+ sorption. In addition, the hexadecyltrimethylammonium presence in the sorption solution was studied, too. In this case, a significant inhibition on the Cu2+ sorption was found. The inhibition is supposed to be a conse...

  2. EVALUATION OF ADSORPTION OF COPPER IONS IN THE PERLITE USING DIFFERENTIAL PULSE VOLTAMMETRY EMPLOYING A CHITOSAN MODIFIED GLASSY CARBON ELECTRODE

    OpenAIRE

    NOGUEIRA, James Pyetro do Amaral; CARVALHO, Araújo Daniel; MARTINEZ-HUITLE, CarlosAlberto; FERNANDES, Nedja Suely

    2011-01-01

    In this work the perlite, an aluminosilicate constituted by 72.1% of SiO2 and 18.5% of Al2O3 was evaluated as an adsorbent of copper ions in aqueous solution using the differential pulse voltammetry technique employing a chitosan modified glassy carbon electrode (EMQ). The adsorption tests performed in the range from 5 to 30 min indicated that an adsorption of copper ions around 73% at time of 30 min was achivied.

  3. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  4. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Kumaravel, Ammasai; Chandrasekaran, Maruthai

    2015-07-15

    A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.

  5. Application of Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode for Determination of Mefenamic Acid in Pharmaceutical Preparations and Biological Fluids

    International Nuclear Information System (INIS)

    A chemically modified electrode is constructed based on multi-walled carbon nanotube modified glassy carbon electrode (MWCNTs/GCE). It is demonstrated that this sensor could be used for determination of pharmaceutically important compound mefenamic acid (MEF). Differential pulse voltammetry (DPV) experiments of various concentration of MEF showed two linear dynamic ranges. The first linear dynamic range was from 2 micro M to 40 micro M, and the second linear dynamic range was between 50 micro M to 360 micro M. A detection limit of 0.21 micro M (S/N = 3) was obtained. Under optimal conditions the modified electrode exhibited high sensitivity and stability for determination of MEF, making it a suitable sensor for the submicromolar detection of MEF in solutions. The analytical performance of this sensor has been evaluated for the detection of MEF in human serum, human urine and a pharmaceutical preparation with satisfactory results. (author)

  6. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinchun [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Chen Zuanguang, E-mail: chenzg@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Zhong Yuwen, E-mail: yu0106@163.com [Center for Disease Control and Prevention of Guangdong Province, 176 Xingangxi, Guangzhou 510300 (China); Yang Fan; Pan Jianbin; Liang Yajing [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer CoHCF nanoparticles modified MWCNTs/graphite electrode use for electrochemistry on electrophoresis microchip for the first time. Black-Right-Pointing-Pointer Simultaneous, rapid, and sensitive electrochemical detection of hydrazine and isoniazid in real samples. Black-Right-Pointing-Pointer An exemplary work of CME sensor assembly onto microchip for determination of analytes with environmental significance. Black-Right-Pointing-Pointer Manifestation of the applicability and flexibility of CME sensor for electroanalysis on microfluidic chip. - Abstract: Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 {mu}M (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and

  7. A glucose oxidase sensor based on screen-printed carbon electrodes modified by polypyrrole.

    Science.gov (United States)

    Xu, Hui; Li, Guang; Wu, Jieying; Wang, You; Liu, Jun

    2005-01-01

    A disposable amperometric biosensor for detecting blood glucose has been developed. The sensor is based on a screen-printed electrode prepared by electrochemical polymerization of pyrrole with glucose oxidase (GOD) and LiClO4 dopants. In citric acid buffer (pH5.0), GOD with negative charges is immobilized within electropositive polypyrrole matrices onto a carbon electrode surface. Afterward, the electron transfer mediator, potassium ferricyanide is immobilized by adsorption. Experimentally the compositions of pyrrole, LiClO4 and potassium ferricyanide are optimized. Amperometry is used for the determination of glucose concentration. Four microliters of glucose solution is needed for one test, and the response time of the sensor is 70s. The amperometric response of the enzyme electrode is linear in the range of 1-30 mM. PMID:17282595

  8. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma

    Directory of Open Access Journals (Sweden)

    Nastaran Hashemzadeh

    2016-08-01

    Full Text Available Low toxic graphene quantum dot (GQD was synthesized by pyrolyzing citric acid in alkaline solution and characterized by ultraviolet--visible (UV–vis spectroscopy, X-ray diffraction (XRD, atomic force microscopy (AFM, spectrofluorimetery and dynamic light scattering (DLS techniques. GQD was used for electrode modification and electro-oxidation of doxorubicin (DOX at low potential. A substantial decrease in the overvoltage (−0.56 V of the DOX oxidation reaction (compared to ordinary electrodes was observed using GQD as coating of glassy carbon electrode (GCE. Differential pulse voltammetry was used to evaluate the analytical performance of DOX in the presence of phosphate buffer solution (pH 4.0 and good limit of detection was obtained by the proposed sensor. Such ability of GQD to promote the DOX electron-transfer reaction suggests great promise for its application as an electrochemical sensor.

  9. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma$

    Institute of Scientific and Technical Information of China (English)

    Nastaran Hashemzadeh; Mohammad Hasanzadeh; Nasrin Shadjou; Jamal Eivazi-Ziaei; Maryam Khoubnasabjafari; Abolghasem Jouyban

    2016-01-01

    Low toxic graphene quantum dot (GQD) was synthesized by pyrolyzing citric acid in alkaline solution and characterized by ultraviolet–visible (UV–vis) spectroscopy, X-ray diffraction (XRD), atomic force micro-scopy (AFM), spectrofluorimetery and dynamic light scattering (DLS) techniques. GQD was used for electrode modification and electro-oxidation of doxorubicin (DOX) at low potential. A substantial de-crease in the overvoltage ( ? 0.56 V) of the DOX oxidation reaction (compared to ordinary electrodes) was observed using GQD as coating of glassy carbon electrode (GCE). Differential pulse voltammetry was used to evaluate the analytical performance of DOX in the presence of phosphate buffer solution (pH 4.0) and good limit of detection was obtained by the proposed sensor. Such ability of GQD to promote the DOX electron-transfer reaction suggests great promise for its application as an electrochemical sensor.

  10. Sensitive electrochemical sensor of tryptophan based on Ag-C core-shell nanocomposite modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shuxian [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Li Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Long Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Tu Yifeng; Deng, Anping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2012-08-13

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: Black-Right-Pointing-Pointer The electrochemical behavior of Ag-C core-shell nanocomposite was firstly proposed. Black-Right-Pointing-Pointer Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. Black-Right-Pointing-Pointer The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. Black-Right-Pointing-Pointer The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core-shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 Multiplication-Sign 10{sup -7} to 1.0 Multiplication-Sign 10{sup -4} M with a detection limit of 4.0 Multiplication-Sign 10{sup -8} M (S/N = 3). In addition

  11. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenju [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wang Fang [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)] [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yao Yanli [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Hu Shengshui [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shiu, Kwok-Keung, E-mail: kkshiu@hkbu.edu.h [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-09-30

    The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H{sub 2}O{sub 2} which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H{sub 2}O{sub 2} production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M{sup -1} cm{sup -2} at an applied potential of -0.10 V in air-saturated electrolytes.

  12. Adsorptive stripping voltammetric determination of nitroimidazole derivative on multiwalled carbon nanotube modified electrodes: influence of size and functionalization of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jara-Ulloa, Paola; Canete-Rosales, Paulina; Nunez-Vergara, Luis J; Squella, Juan A., E-mail: asquella@ciq.uchile.c [University of Chile, Santiago (Chile). Chemical and Pharmaceutical Sciences Faculty. Bioelectrochemistry Lab.

    2011-07-01

    1-Methyl-4-nitro-2-bromine methylimidazole (4-NimMeBr), was electrochemically reduced on mercury, glassy carbon and multiwalled carbon nanotubes (MWCNT) modified electrodes. 4-NimMeBr was adsorbed on the MWCNT modified electrode thus permitting the implementation of an adsorptive stripping voltammetric (ASV) method. We have used 4-NimMeBr as a prototype electroactive nitro compound to study the effect of both the size of the nanotubes and its functionalization by oxidation. The oxidized MWCNT forms better dispersions than the non-oxidized, producing electrode surface with higher density of MWCNT as was determined by electrochemical mapping using scanning electrochemical microscopy (SECM). Under the optimized conditions, the peak current was proportional to the concentration of 4-NimMeBr in the range of 10{sup -6} mol L{sup -1} to 10{sup -4} mol L{sup -1} with detection and quantification limits of 4.41 x 10{sup -6} mol L{sup -1} and 6.21 x 10{sup -6} mol L{sup -1}, respectively. The sensibility of bare electrode was 0.01 {mu}A per mmol L{sup -1}, which was lower than the value of 5.34 and 6.97 mA per mmol L{sup -1} obtained using short and large oxidized MWCNT, respectively. (author)

  13. Application of CdS quantum dots modified carbon paste electrode for monitoring the process of acetaminophen preparation.

    Science.gov (United States)

    Pasandideh-Nadamani, M; Omrani, A; Sadeghi-Maleki, M R; Samadi-Maybodi, A

    2016-06-01

    In this research article, a novel, selective, and sensitive modified carbon paste electrode (CPE) using CdS quantum dots (QDs) is presented. The highly stable CdS QDs were successfully synthesized in an in situ process using Na2S2O3 as a precursor and thioglycolic acid as a catalyst and capping agent. The synthesis of CdS QDs was studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The synthesized CdS QDs were used for preparation of a modified carbon paste electrode (CdS/CPE). The electrochemical behavior of the electrode toward p-aminophenol (PAP) and acetaminophen (Ac) was studied, and the results demonstrated that the CdS/CPE exhibited good electrocatalytic performance toward PAP and Ac oxidation. The oxidation peak potential of each analyte in the mixture was well separated. As a result, a selective and reliable method was developed for the determination of PAP and Ac simultaneously without any chemical separations. Application of the fabricated electrode for monitoring the process of Ac preparation from PAP was investigated. The obtained results show that CdS/CPE has satisfactory analytical performance; it could be a kind of attractive and promising nanomaterial-based sensor for process monitoring via the electrochemical approach. PMID:26945834

  14. Nickel (II) incorporated AlPO-5 modified carbon paste electrode for determination of thioridazine in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Mandana, E-mail: mandanaamiri@uma.ac.ir [Department of Chemistry, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Sohrabnezhad, Shabnam [Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht. Iran (Iran, Islamic Republic of); Rahimi, Azad [Department of Chemistry, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2014-04-01

    In this approach, synthesis of nickel (II) incorporated aluminophosphate (NiAlPO-5) was performed by using hydrothermal method. The diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques were applied in order to characterize synthesized compounds. The NiAlPO-5 was used as a modifier in carbon paste electrode for the selective determination of thioridazine which is an antidepressant drug. This research is the first example of an aluminophosphate being employed in electroanalysis. The effective catalytic role of the modified electrode toward thioridazine oxidation can be attributed to the electrocatalytic activity of nickel (II) in the aluminaphosphate matrix. In addition, NiAlPO-5 has unique properties such as the high specific surface area which increases the electron transfer of thioridazine. The effects of varying the percentage of modifier, pH and potential sweep rate on the electrode response were investigated. Differential pulse voltammetry was used for quantitative determination as a sensitive method. A dynamic linear range was obtained in the range of 1.0 × 10{sup −7}–1.0 × 10{sup −5} mol L{sup −1}. The determination of thioridazine in real samples such as commercial tablets and human serum was demonstrated. - Highlights: • Nickel aluminophosphate (NiAlPO-5) has been synthesized and characterized. • Nickel (II) in modified electrode shows electrocatalytic activity. • High specific surface area of NiAlPO-5 increases electron transfer of thioridazine. • Modified electrode has very good applicability for determination of thioridazine.

  15. RuO2/Activated Carbon Composite Electrode Prepared by Modified Colloidal Procedure and Thermal Decomposition Method

    Science.gov (United States)

    Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun

    2016-01-01

    RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.

  16. New Modified-Multiwall Carbon Nanotubes Paste Electrode for Electrocatalytic Oxidation and Determination of Hydrazine Using Square Wave Voltammetry

    Institute of Scientific and Technical Information of China (English)

    Ali A. ENSAF; Mahsa LOTFI; Hassan KARIMI-MALEH

    2012-01-01

    The application of p-aminophenol as a suitable mediator, as a sensitive and selective voltammetric sensor for the determination of hydrazine using square wave voltammetric method were described. The modified multiwall carbon nanotubes paste electrode exhibited a good electrocatalytic activity for the oxidation of hydrazine at pH = 7.0. The catalytic oxidation peak currents showed a linear dependence of the peaks current to the hydrazine concentrations in the range of 0.5–175 μmol/L with a correlation coefficient of 0.9975. The detection limit (S/N = 3) was estimated to be 0.3 μmol/L of hydrazine. The relative standard deviations for 0.7 and 5.0 μmol/L hydrazine were 1.7 and 1.1%, respectively. The modified electrode showed good sensitivity and selectivity. The diffusion coefficient (D = 9.5 × 10–4 cm2/s) and the kinetic parameters such as the electron transfer coefficient (α = 0.7) of hydrazine at the surface of the modified electrode were determined using electrochemical approaches. The electrode was successfully applied for the determination of hydrazine in real samples with satisfactory results.

  17. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    International Nuclear Information System (INIS)

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H2O2. The observed sensitivities for the electrocatalytic oxidation and reduction of H2O2 at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M−1, respectively. The detection limit (S/N = 3) for H2O2 was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M−1 and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M−1 and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H2O2 reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor

  18. A sensitive electrochemical sensor for paracetamole based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles

    International Nuclear Information System (INIS)

    We describe an electrochemical sensor for paracetamole that is based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. The functionalized nanospheres were prepared by a chemical route and characterized by scanning electron microscopy. The well-dispersed gold nanoparticles were anchored on the dopamine nanosphere via a chemical reduction of the gold precursor. The stepwise fabrication of the modified electrode and its electrochemical response to paracetamole were evaluated using electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode displayed improved electrocatalytic activity towards paracetamole, a lower oxidation potential (371 mV), and a larger peak current when compared to a bare electrode or other modified electrodes. The kinetic parameters governing the electro-oxidation of paracetamole were studied, and the analytical conditions were optimized. The peak current was linearly related to the concentration of paracetamole in 0.8–400 μM range, and the detection limit was 50 nM (at an SNR of 3). The method was successfully applied to the determination of paracetamole in spiked human urine samples and gave recoveries between 95.3 and 105.2 %. (author)

  19. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors

    OpenAIRE

    Ghica, M. Emilia; Christopher M. A. Brett

    2014-01-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer...

  20. Electrochemical Study and Application on Shikonin at Poly(diallyldimethylammonium chloride) Functionalized Graphene Sheets Modified Glass Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    AN Jing; LI Ji-ping; CHEN Wen-xia; YANG Chun-xia; HU Fang-di; WANG Chun-ming

    2013-01-01

    The electrochemical behaviors of shikonin at a poly(diallyldimethylammonium chloride) functionalized graphene sheets modified glass carbon electrode(PDDA-GS/GCE) have been investigated.Shikonin could exhibit a pair of well-defined redox peaks at the PDDA-GS/GCE located at 0.681 V(Epa) and 0.662 V(Epc)[vs.saturated calomel electrode(SCE)] in 0.1 mol/L phosphate buffer solution(pH=2.0) with a peak-to-peak separation of about 20 mV,revealing a fast electron-transfer process.Moreover,the current response was remarkably increased at PDDAGS/GCE compared with that at the bare GCE.The electrochemical behaviors of shikonin at the modified electrode were investigated.And the results indicate that the reaction involves the transfer of two electrons,accompanied by two protons and the electrochemical process is a diffusional-controlled electrode process.The electrochemical parameters of shikonin at the modified electrode,the electron-transfer coefficient(α),the electron-transfer number(n) and the electrode reaction rate constant(ks) were calculated to be as 0.53,2.18 and 3.6 s-1,respectively.Under the optimal conditions,the peak current of differential pulse voltammetry(DPV) increased linearly with the shikonin concentration in a range from 9.472×10-8 mol/L to 3.789×10-6 mol/L with a detection limit of 3.157×10-8 mol/L.The linear regression equation was Ip=0.7366c+0.7855(R=0.9978; Ip:10 7 A,c:10-8 mol/L).In addition,the modified glass carbon electrode also exhibited good stability,selectivity and acceptable reproducibility that could be used for the sensitive,simple and rapid determination of shikonin in real samples.Therefore,the present work offers a new way to broaden the analytical application of graphene in pharmaceutical analysis.

  1. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jana Vlachova

    2015-01-01

    Full Text Available Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH. It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  2. Understanding the mechanism of direct electrochemistry of mitochondria-modified electrodes from yeast, potato and bovine sources at carbon paper electrodes

    International Nuclear Information System (INIS)

    Although mitochondria have been used for bio-electrochemistry for over 5 years, little is known about their direct electrochemistry mechanism. This paper focuses on developing a better understanding of the electron transfer mechanism of mitochondria from three different organisms at carbon electrodes. Yeast, potato and bovine mitochondria have been successfully isolated and immobilized onto Toray paper electrodes via vapor deposited silica. Organelle-modified electrodes were first characterized using cyclic voltammetry. Similar electrochemical signals were obtained for all organisms. Direct electron transfer was observed when a metabolite of the Krebs cycle was present in the buffer solution. Control experiments based on the immobilization of two electron carriers contained in mitochondria, cytochrome c and a quinone (coenzyme Q10), tend to show the electron transfer mechanism to the carbon material comes from the quinone pool of the organelles. As quinones are known to be pH-dependent, we further investigated the response of the electrochemical signal of the three isolated mitochondria and the two electron carriers separately. The half wave potentials obtained from the organelles appeared to be pH-dependent and their variations are comparable to coenzyme Q10 rather than cytochrome c. Finally, extraction of both the cytochrome c and the quinone pool from intact mitochondria was performed to validate our hypothesis that direct electrochemistry of mitochondria happens via the quinone pool. Electrochemistry of immobilized quinone-depleted mitochondria validated the hypothesis that the mitochondria are communicating with the electrodes through the quinone pool

  3. Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands Reagent) modified carbon paste electrode.

    Science.gov (United States)

    Veera Manohara Reddy, Y; Prabhakara Rao, V; Vijaya Bhaskar Reddy, A; Lavanya, M; Venu, M; Lavanya, M; Madhavi, G

    2015-12-01

    In this paper, we have fabricated a modified carbon paste electrode (CPE) by electropolymerisation of spands reagent (SR) onto surface of CPE using cyclic voltammetry (CV). The developed electrode was abbreviated as poly(SR)/CPE and the surface morphology of the modified electrode was studied by using scanning electron microscopy (SEM). The developed electrode showed higher electrocatalytic properties towards the detection of dopamine (DA) in 0.1M phosphate buffer solution (PBS) at pH7.0. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at poly(SR)/CPE. The poly(SR)/CPE was successfully used as a sensor for the selective determination of DA in presence of ascorbic acid (AA) and uric acid (UA) without any interference. The poly(SR)/CPE showed a good detection limit of 0.7 μM over the linear dynamic range of 1.6 μM to 16 μM, which is extremely lower than the reported methods. The prepared poly(SR)/CPE exhibited good stability, high sensitivity, better reproducibility, low detection limit towards the determination of DA. The developed method was also applied for the determination of DA in real samples. PMID:26354279

  4. Electrocatalytic sensing of hydrogen peroxide using a screen printed carbon electrode modified with nitrogen-doped graphene nanoribbons

    International Nuclear Information System (INIS)

    We have synthesized nitrogen-doped graphene nanoribbons (N-GrNRs) by unzipping multi-walled carbon nanotubes (CNTs) under strongly oxidizing conditions and subsequent doping with nitrogen by a low-temperature hydrothermal method. The N-GNRs were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy, and assembled on a disposable screen-printed carbon electrode to give a sensor for H2O2 that was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, chronocoulometry and chronoamperometry. The nano-modified electrode displays enhanced electron transfer ability, and has a large active surface and a large number of catalytically active sites that originate from the presence of nitrogen atoms. This results in a catalytic activity towards H2O2 reduction at near-neutral pH values that is distinctly improved compared to electrodes modified with CNTs or unzipped (non-doped) CNTs only. At a working potential of −0.4 V (vs. Ag/AgCl), the amperometric responses to H2O2 cover the 5 to 2785 μM concentration range, with a limit of detection as low as 1.72 μM. This enzyme-free electrochemical sensor exhibits outstanding selectivity and long-term stability for H2O2 detection. (author)

  5. A Novel Amperometric Nitric Oxide Sensor Based on Polythionine /Nation Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel amperometric sensor for the determination of nitric oxide was developed by coating polythionine / nafion on a glassy carbon electrode. This sensor exhibited a great enhancement to the oxidation of nitric oxide. The oxidation peak currents were linear to the concentration of nitric oxide over the wide range from 3.6×10-7 to 6.8×10-5 mol. L-1, and the detection limit was 7.2×10-8 mol. L-1. Experimental results showed that this nitric oxide sensor possessed excellent selectivity and longer stability. NO releasing from rat kidney was monitored by this sensor.

  6. Determination of Diclofenac on a Dysprosium Nanowire- Modified Carbon Paste Electrode Accomplished in a Flow Injection System by Advanced Filtering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moosavi-Movahedi

    2009-09-01

    Full Text Available A new detection technique called Fast Fourier Transform Square-Wave Voltammetry (FFT SWV is based on measurements of electrode admittance as a function of potential. The response of the detector (microelectrode, which is generated by a redox processes, is fast, which makes the method suitable for most applications involving flowing electrolytes. The carbon paste electrode was modified by nanostructures to improve sensitivity. Synthesized dysprosium nanowires provide a more effective nanotube-like surface [1-4] so they are good candidates for use as a modifier for electrochemical reactions. The redox properties of diclofenac were used for its determination in human serum and urine samples. The support electrolyte that provided a more defined and intense peak current for diclofenac determination was a 0.05 mol L−1 acetate buffer pH = 4.0. The drug presented an irreversible oxidation peak at 850 mV vs. Ag/AgCl on a modified nanowire carbon paste electrode which produced high current and reduced the oxidation potential by about 100 mV. Furthermore, the signal-to-noise ratio was significantly increased by application of a discrete Fast Fourier Transform (FFT method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. To obtain the much sensivity the effective parameters such as frequency, amplitude and pH was optimized. As a result, CDL of 2.0 × 10−9 M and an LOQ of 5.0 × 10−9 M were found for the determination for diclofenac. A good recovery was obtained for assay spiked urine samples and a good quantification of diclofenac was achieved in a commercial formulation.

  7. Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang Yuhua; Zhang Yuanyuan; Ju Xiaomei; Li Guangjiu [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Sun Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Poly(methylene blue) functionalized graphene was electrodeposited on the electrode. Black-Right-Pointing-Pointer The fabricated electrode showed better electrochemical performances. Black-Right-Pointing-Pointer Dopamine was sensitive detected by the modified electrode. - Abstract: An ionic liquid 1-butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) was used as the substrate electrode and a poly(methylene blue) (PMB) functionalized graphene (GR) composite film was co-electrodeposited on CILE surface by cyclic voltammetry. The PMB-GR/CILE exhibited better electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behavior of dopamine (DA) was further investigated by cyclic voltammetry and a pair of well-defined redox peaks appeared with the peak-to-peak separation ({Delta}E{sub p}) as 0.058 V in 0.1 mol L{sup -1} pH 6.0 phosphate buffer solution, which proved a fast quasi-reversible electron transfer process on the modified electrode. Electrochemical parameters of DA on PMB-GR/CILE were calculated with the electron transfer number as 1.83, the charge transfer coefficients as 0.70, the apparent heterogeneous electron transfer rate constant as 1.72 s{sup -1} and the diffusional coefficient (D) as 3.45 Multiplication-Sign 10{sup -4} cm{sup 2} s{sup -1}, respectively. Under the optimal conditions with differential pulse voltammetric measurement, the linear relationship between the oxidation peak current of DA and its concentration was obtained in the range from 0.02 to 800.0 {mu}mol L{sup -1} with the detection limit as 5.6 nmol L{sup -1} (3{sigma}). The coexisting substances exhibited no interference and PMB-GR/CILE was applied to the detection of DA injection samples and human urine samples with satisfactory results.

  8. Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine

    International Nuclear Information System (INIS)

    Highlights: ► Poly(methylene blue) functionalized graphene was electrodeposited on the electrode. ► The fabricated electrode showed better electrochemical performances. ► Dopamine was sensitive detected by the modified electrode. - Abstract: An ionic liquid 1-butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) was used as the substrate electrode and a poly(methylene blue) (PMB) functionalized graphene (GR) composite film was co-electrodeposited on CILE surface by cyclic voltammetry. The PMB–GR/CILE exhibited better electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behavior of dopamine (DA) was further investigated by cyclic voltammetry and a pair of well-defined redox peaks appeared with the peak-to-peak separation (ΔEp) as 0.058 V in 0.1 mol L−1 pH 6.0 phosphate buffer solution, which proved a fast quasi-reversible electron transfer process on the modified electrode. Electrochemical parameters of DA on PMB–GR/CILE were calculated with the electron transfer number as 1.83, the charge transfer coefficients as 0.70, the apparent heterogeneous electron transfer rate constant as 1.72 s−1 and the diffusional coefficient (D) as 3.45 × 10−4 cm2 s−1, respectively. Under the optimal conditions with differential pulse voltammetric measurement, the linear relationship between the oxidation peak current of DA and its concentration was obtained in the range from 0.02 to 800.0 μmol L−1 with the detection limit as 5.6 nmol L−1 (3σ). The coexisting substances exhibited no interference and PMB–GR/CILE was applied to the detection of DA injection samples and human urine samples with satisfactory results.

  9. Carbon nanotubes and graphene modified screen-printed carbon electrodes as sensitive sensors for the determination of phytochelatins in plants using liquid chromatography with amperometric detection.

    Science.gov (United States)

    Dago, Àngela; Navarro, Javier; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2015-08-28

    Nanomaterials are of great interest for the development of electrochemical sensors. Multi-walled carbon nanotubes and graphene were used to modify the working electrode surface of different screen-printed carbon electrodes (SPCE) with the aim of improving the sensitivity of the SPCE and comparing it with the conventional glassy carbon electrode. To assay the usability of these sensors, a HPLC methodology with amperometric detection was developed to analyze several phytochelatins in plants of Hordeum vulgare and Glycine max treated with Hg(II) or Cd(II) giving detection limits in the low μmolL(-1) range. Phytochelatins are low molecular weight peptides with the general structure γ-(Glu-Cys)n-Gly (n=2-5) which are synthesized in plants in the presence of heavy metal ions. These compounds can chelate heavy metal ions by the formation of complexes which, are transported to the vacuoles, where the toxicity is not threatening. For this reason phytochelatins are essential in the detoxification of heavy metal ions in plants. The developed HPLC method uses a mobile phase of 1% of formic acid in water with KNO3 or NaCl (pH=2.00) and 1% of formic acid in acetonitrile. Electrochemical detection at different carbon-based electrodes was used. Among the sensors tested, the conventional glassy carbon electrode offers the best sensitivity although modification improves the sensitivity of the SPCE. Glutathione and several isoforms of phytochelatin two were found in plant extracts of both studied species.

  10. Potentiometric stripping analysis of bismuth based on carbon paste electrode modified with cryptand [2.2.1] and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    An electrochemical method based on potentiometric stripping analysis (PSA) employing a cryptand [2.2.1] (CRY) and carbon nanotube (CNT) modified paste electrode (CRY-CNT-PE) has been proposed for the subnanomolar determination of bismuth. The characterization of the electrode surface has been carried out by means of scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronocoulometry (CC). It was observed that by employing CRY-CNT-PE, a 9-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s/V) was proportional to the Bi(III) concentration in the range of 5.55 x 10-8 to 9.79 x 10-11 M (r = 0.9990) with the detection limit (S/N = 3) of 3.17 x 10-11 M. The practical analytical utilities of the modified electrode were demonstrated by the determination of bismuth in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as a simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. Moreover, the results obtained for bismuth analysis in commercial and real samples using CRY-CNT-PE and those obtained by atomic absorption spectroscopy (AAS) are in agreement at the 95% confidence level.

  11. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode.

    Science.gov (United States)

    Mutyala, Sankararao; Mathiyarasu, Jayaraman

    2016-12-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H2O2) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV-Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H2O2. Amperometric study using ERGO/GCE showed high sensitivity (0.3μA/μM) and faster response upon the addition of H2O2 at an applied potential of -0.25V vs. Ag/AgCl. The detection limit is assessed to be 0.7μM (S/N=3) and the time to reach a stable study state current is <3s for a linear range of H2O2 concentration (1-16μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. PMID:27612728

  12. Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe

    International Nuclear Information System (INIS)

    We describe a biosensor for dopamine that is based on the use of a gold electrode modified with carbon nanoparticles (CNPs) coupled to thionine labeled gold nanoparticles (AuNPs) acting as signal amplifiers. The biosensor was constructed by first modifying the CNPs on the gold electrode and adsorbing the thionine on the surface of the AuNPs, and then linking the complementary strand of the dopamine aptamer to the AuNPs via gold-thiol chemistry. Next, dopamine aptamer is added and the duplex is formed on the surface. On addition of a sample containing dopamine, it will interact with aptamer and cause the release of the electrochemical probe which then will be adsorbed on the surface of the CNP-modified gold electrode and detected by differential pulse voltammetry. The current is linearly related to the concentration of dopamine in the 30 nM to 6.0 μM ranges. The detection limit is as low as 10 nM, and the RSD is 3.1 % at a 0.3 μM level (for n = 11). The protocol was successfully applied to the determination of dopamine in spiked human urine samples. We perceive that this method holds promise as a widely applicable platform for aptamer-based electrochemical detection of small molecules. (author)

  13. A simple and sensitive method for the determination of 4-n-octylphenol based on multi-walled carbon nanotubes modified glassy carbon electrode

    Institute of Scientific and Technical Information of China (English)

    Qiaoli Zheng; Ping Yang; He Xu; Jianshe Liu; Litong Jin

    2012-01-01

    A simple and sensitive electroanalytical method was presented for the determination of 4-n-octylphenol (OP) based on multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE).OP was directly oxidized on the MWCNTs/GCE,and the electrochemical oxidation mechanism was demonstrated by a one-electron and one-proton process in the reaction.The oxidation peak current of OP was significantly enhanced by the use of MWCNTs/GCE compared with those of bare glassy carbon electrode; suggesting that the modified electrode can remarkably improve the performance for OP determination.Factors influencing the detection processes were optimized.Under these optimal conditions,a linear relationship between concentration of OP and current response was obtained in the range of 5 × 10-8 to 1 × 10-5 mol/L with a detection limit of 1.5 × 10-8 mol/L and correlation coeffìcient 0.9986.The modified electrode showed good selectivity,sensitivity,reproducibility and high stability.

  14. Ionic liquid modified carbon paste electrode and investigation of its electrocatalytic activity to hydrogen peroxide

    Indian Academy of Sciences (India)

    Erhan Canbay; Hayati Türkmen; Erol Akyilmaz

    2014-05-01

    This paper reports on the preparation and advantages of novel amperometric biosensors in the presence of hydrophobic ionic liquid (IL), 1-methyl-3-butylimidazolium bromide ([MBIB]). Carbon paste bio-sensor has been constructed by entrapping horseradish peroxidase in graphite and IL mixed with paraffin oil as a binder. The resulting IL/graphite material brings new capabilities for electrochemical devices by combining the advantages of ILs composite electrodes. Amounts of H2O2 were amperometrically detected by monitoring current values at reduction potential (–0.15 V) of K3Fe(CN)6. Decrease in biosensor responses were linearly related to H2O2 concentrations between 10 and 100 M with 2 s response time. Limit of detection of the biosensor were calculated to be 3.98 M for H2O2. In the optimization studies of the biosensor some parameters such as optimum pH, optimum temperature, enzyme amount, interference effects of some substances on the biosensor response, reproducibility and storage stability were carried out. The promising results are ascribed to the use of an ionic liquid, which forms an excellent charge-transfer bridge and wide electrochemical windows in the bulk of carbon paste electrode.

  15. Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Nader Sheibani

    2013-07-01

    Full Text Available Direct electron transfer of hemoglobin (Hb was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs and gold nanoparticles (AuNPs nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis, transmission electron microscopy (TEM and Fourier transform infrared (FTIR methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V (vs. Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks was evaluated to be 4.0 ± 0.2 s−1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10−10 mol cm−2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.

  16. Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes.

    Science.gov (United States)

    Arribas, Alberto Sánchez; Martínez-Fernández, Marta; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2013-02-15

    The use of glassy carbon electrodes (GCEs) modified with multi-walled carbon nanotube (CNT) films for the continuous monitoring of polyphenols in flow systems has been examined. The performance of these modified electrodes was evaluated and compared to bare GCE by cyclic voltammetry experiments and by flow injection analysis (FIA) with amperometric detection monitoring the response of gallic, caffeic, ferulic and p-coumaric acids in 0.050 M acetate buffer pH 4.5 containing 100 mM NaCl. The GCE modified with CNT dispersions in polyethyleneimine (PEI) provided lower overpotentials, higher sensitivity and much higher signal stability under a dynamic regime than bare GCEs. These properties allowed the estimation of the total polyphenol content in red and white wines with a remarkable long-term stability in the measurements despite the presence of potential fouling substances in the wine matrix. In addition, the versatility of the electrochemical methodology allowed the selective estimation of the easily oxidisable polyphenol fraction as well as the total polyphenol content just by tuning the detection potential at +0.30 or 0.70 V, respectively. The significance of the electrochemical results was demonstrated through correlation studies with the results obtained with conventional spectrophotometric assays for polyphenols (Folin-Ciocalteu, absorbance at 280 nm index and colour intensity index).

  17. Development of Novel Glucose and Pyruvate Biosensors at Poly(Neutral Red) Modified Carbon Film Electrodes. Application to Natural Samples

    OpenAIRE

    Ghica, Mariana Emilia; Brett, Christopher M. A.

    2006-01-01

    Amperometric biosensors based on the corresponding oxidase enzyme with poly(neutral red) redox mediator have been developed for the determination of glucose and pyruvate. The enzymes have been immobilized on top of poly(neutral red) modified carbon film electrodes with glutaraldehyde as the cross-linking agent. The biosensors were characterized by cyclic voltammetry and by electrochemical impedance spectroscopy. The glucose biosensor exhibited a linear response in the range 90 muM to 1.8 mM w...

  18. A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers

    International Nuclear Information System (INIS)

    We have prepared a novel sensor for hydrogen peroxide that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes wired to CuO nanoflowers. The nanoflowers were characterized by X-ray powder diffraction, and the electrode was characterized by cyclic voltammetry (CV) and scanning electron microscopy. The response of the modified electrode towards hydrogen peroxide was investigated by CV and chronoamperometry and showed it to exhibit high electrocatalytic activity, with a linear range from 0. 5 μM to 82 μM and a detection limit of 0. 16 μM. The sensor also displays excellent selectivity and stability. (author)

  19. Kinetic Study of the Electro-Catalytic Oxidation of Hydrazine on Cobalt Hydroxide Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    HASANZADEH,Mohammad; KARIM-NEZHAD,Ghasem; SHADJOU,Nasrin; KHALILZADEH,Balal; SAGHATFOROUSH,Lotali; ERSHAD,Sohrab; KAZEMAN,Isa

    2009-01-01

    Electrocatalytic oxidation of hydrazine was investigated on a cobalt hydroxide modified glassy carbon (CHM-GC) electrode in alkaline solution.The process of oxidation involved and its kinetics were established by using cyclic voltammetry,chronoamperometry techniques as well as steady state polarization measurements.In cyclic voltammetry (CV) studies,in the presence of hydrazine the peak current increase of the oxidation of cobalt hydroxide is followed by a decrease in the corresponding cathodic current.This indicates that hydrazine is oxidized on the redox mediator that is immobilized on the electrode surface via an electrocatalytic mechanism.A mechanism based on the electrochemical generation of Co(IV) active sites and their subsequent consumption by the hydrazine in question was also investigated.

  20. A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides

    International Nuclear Information System (INIS)

    An amperometric biosensor is described for the detection of organophosphorus pesticides. It is based on the enzyme tyrosinase immobilized on platinum nanoparticles and the use of a glassy carbon electrode modified with graphene. Tyrosinase was immobilized on the electrode surface via electrostatic interaction between a monolayer of cysteamine and the enzyme. In the presence of catechol as a substrate, the pesticides chlorpyrifos, profenofos and malathion can be determined as a result of their inhibition of the enzyme which catalyzes the oxidation of catechol to o-quinone. Platinum nanoparticles and graphene effectively enhance the efficiency of the electrochemical reduction of o-quinone, thus improving sensitivity. Under optimum experimental conditions, the inhibition effect of the pesticides investigated is proportional to their concentrations in the lower ppb-range. The detection limits are 0.2, 0.8 and 3 ppb for chlorpyrifos, profenofos and malathion, respectively. The biosensor displays good repeatability and acceptable stability. (author)

  1. Determination of Sunset Yellow using a carbon paste electrode modified with a nanostructured resorcinol-formaldehyde resin

    International Nuclear Information System (INIS)

    This article describes an electrochemical sensor for the dye additive Sunset Yellow (SY). It consists of a carbon paste electrode modified with nanostructured resorcinol-formaldehyde (RF) resin. The RF resin warrants strong signal enhancement and a strongly increased oxidation peak currents of SY at 0.66 V (vs. SCE). The effects of pH value, amount of RF polymer, accumulation potential and time were optimized. The sensor has a linear response to SY in the 0.3 to 125 nM concentration range, and the limit of detection is 0.09 nM after a 2-min accumulation time. The electrode was applied to the analysis of samples of wastewater and drinks, and the results are consistent with those obtained by HPLC. (author)

  2. Improving the detection of hydrogen peroxide of screen-printed carbon paste electrodes by modifying with nonionic surfactants.

    Science.gov (United States)

    Yuan, Chiun-Jye; Wang, Yen-Chi; Reiko, Ohara

    2009-10-19

    Nonionic surfactants, such as Triton X-100 and Tween-20, were shown in this study to improve the electrocatalytic activity of screen-printed carbon paste electrodes (SPCE). The electrochemical response of SPCE to hydrogen peroxide increased 8-10-fold with the modification of nonionic surfactants. In addition, the glucose biosensors fabricated from nonionic surfactant-modified SPCE exhibited 6.4-8.6-fold higher response to glucose than that fabricated from unmodified SPCE. A concentration effect is proposed for nonionic surfactant to bring neutral reactants to the surface of electrode. Moreover, nonionic surfactant-modified SPCE exhibits a capability of repetitive usage and good reproducibility (R.S.D.<5%) in the measurement of H(2)O(2). Interestingly, the nonionic surfactant-modified SPCE exhibited an opposite effect to ascorbic acid, a common electroactive agent, which causes interference during clinical diagnosis. The differential responses of nonionic surfactant-modified SPCE to H(2)O(2) and ascorbic acid suggest its potential in the development of biosensors for clinical diagnosis. PMID:19800476

  3. Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Wu, Liang; Zhang, Xiaohua; Chen, Jinhua [Hunan Univ., Changsha (China)

    2014-01-15

    The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 μM, 0.7-440 μM and 3.0-365 μM, respectively, and the detection limits (S/N = 3) are 0.03 μM, 0.11 μM and 0.38 μM, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

  4. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  5. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  6. Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode.

    Science.gov (United States)

    Alarcón-Ángeles, G; Guix, M; Silva, W C; Ramírez-Silva, M T; Palomar-Pardavé, M; Romero-Romo, M; Merkoçi, A

    2010-12-15

    A novel enzyme entrapment approach based on an electropolymerization process utilizing multi-walled carbon nanotubes (MWCNT), β-cyclodextrin (β-CD) and glucose oxidase (GOx) is shown. Dopamine (DA) quantification is presented using a screen-printed electrode modified by electropolymerization of cyclodextrin with glucose oxidase, SPE/MWCNT/β-CD-GOx. In order to show the relevance of the enzyme entrapment strategy controlled by electropolymerization to develop a specific and efficient biosensor, the various parts composing the electrode: SPE, SPE/β-CD, SPE/GOx, SPE/β-CD/GOx, SPE/MWCNT/β-CD, SPE/MWCNT/GOx and SPE/MWCNT/β-CD/GOx were tested separately. It was shown that although DA determination can be achieved with all of them, the electrodes modified with MWCNT presented better analytical features that those built without MWCNT, the best being the one including all components. This biosensor displayed good reproducibility, repeatability, and prolonged life-time under cold storage conditions. Its DA limit of detection (LOD) was 0.48±0.02 μA in a linear range of 10-50 μM with a sensitivity of 0.0302±0.0003 μA μM(-1) that makes it comparable or even better than many other electrodes reported in the literature. Moreover, it was also shown that using this electrode, DA quantification can be done in the presence of interfering agents such as ascorbic and uric acid. These findings demonstrate that the approach employed is feasible for enzyme entrapment and may find applications in other biosensing systems, where better sensitivity, stability and fast response are required. PMID:20863684

  7. Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands Reagent) modified carbon paste electrode

    International Nuclear Information System (INIS)

    In this paper, we have fabricated a modified carbon paste electrode (CPE) by electropolymerisation of spands reagent (SR) onto surface of CPE using cyclic voltammetry (CV). The developed electrode was abbreviated as poly(SR)/CPE and the surface morphology of the modified electrode was studied by using scanning electron microscopy (SEM). The developed electrode showed higher electrocatalytic properties towards the detection of dopamine (DA) in 0.1 M phosphate buffer solution (PBS) at pH 7.0. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at poly(SR)/CPE. The poly(SR)/CPE was successfully used as a sensor for the selective determination of DA in presence of ascorbic acid (AA) and uric acid (UA) without any interference. The poly(SR)/CPE showed a good detection limit of 0.7 μM over the linear dynamic range of 1.6 μM to 16 μM, which is extremely lower than the reported methods. The prepared poly(SR)/CPE exhibited good stability, high sensitivity, better reproducibility, low detection limit towards the determination of DA. The developed method was also applied for the determination of DA in real samples. - Highlights: • Electropolymerization of spands reagent was fabricated by cyclic voltammetry • The Poly (spands reagent) electrode shows excellent electrocatalytic activity for the detection of dopamine. • The detection limit for dopamine was found to be 0.7 μM. • The proposed method can be applied for DA in injection and human blood serum samples

  8. Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands Reagent) modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Veera Manohara Reddy, Y.; Prabhakara Rao, V.; Vijaya Bhaskar Reddy, A.; Lavanya, M.; Venu, M.; Lavanya, M.; Madhavi, G., E-mail: gmchem01@gmail.com

    2015-12-01

    In this paper, we have fabricated a modified carbon paste electrode (CPE) by electropolymerisation of spands reagent (SR) onto surface of CPE using cyclic voltammetry (CV). The developed electrode was abbreviated as poly(SR)/CPE and the surface morphology of the modified electrode was studied by using scanning electron microscopy (SEM). The developed electrode showed higher electrocatalytic properties towards the detection of dopamine (DA) in 0.1 M phosphate buffer solution (PBS) at pH 7.0. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at poly(SR)/CPE. The poly(SR)/CPE was successfully used as a sensor for the selective determination of DA in presence of ascorbic acid (AA) and uric acid (UA) without any interference. The poly(SR)/CPE showed a good detection limit of 0.7 μM over the linear dynamic range of 1.6 μM to 16 μM, which is extremely lower than the reported methods. The prepared poly(SR)/CPE exhibited good stability, high sensitivity, better reproducibility, low detection limit towards the determination of DA. The developed method was also applied for the determination of DA in real samples. - Highlights: • Electropolymerization of spands reagent was fabricated by cyclic voltammetry • The Poly (spands reagent) electrode shows excellent electrocatalytic activity for the detection of dopamine. • The detection limit for dopamine was found to be 0.7 μM. • The proposed method can be applied for DA in injection and human blood serum samples.

  9. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration

    International Nuclear Information System (INIS)

    Highlights: • Ti/SnO2-Sb-CNT electrodes were prepared by pulse electrodeposition technology. • The characteristics of Ti/SnO2-Sb-CNT was compared with Ti/SnO2-Sb. • We combined electro-catalytic oxidation with NF to treat dye wastewater. - Abstract: A new type of Ti/SnO2-Sb electrode modified with carbon nanotube (CNT) has been fabricated using a pulse electrodeposition method. The electrode modified with CNT versus without CNT has larger surface area and smaller crystallite particles (41.9 nm versus 46.8 nm) as seen by scanning electron microscopy (SEM), and calculated through X-ray diffraction (XRD), respectively. It means that the CNT-modified electrode can provide more active sites for electrochemical oxidation of organic pollutants. Oxygen evolution potential of the CNT-modified electrode has 0.07 V higher overpotential in the Linear sweep voltammetry (LSV) curve. The service lifetime of Ti/SnO2-Sb-CNT electrode is 4.8 times longer than that of the Ti/SnO2-Sb electrode without CNT modifying. The Ti/SnO2-Sb-CNT electrode is demonstrated to have a superior electrochemical oxidation and degradation abilities using Acid Red 73 (AR 73) as a model organic pollutant. The CNT-modified electrode has higher kinetic rate constant, chemical oxygen demand (COD) and total organic carbon (TOC) removals, and mineralization current efficiency, which is 1.93, 1.27, 1.26, and 1.38 times those of the Ti/SnO2-Sb electrode, respectively. The repeated experiments prove the reproducibility of the data. Ti/SnO2-Sb-CNT electrode is 1.15 times more effective in permeation flux than the Ti/SnO2-Sb electrode when combining electro-catalytic oxidation and nanofiltration for treating dye wastewater

  10. Reaction of erythromycin with dissolved oxygen on gold nanoparticle-modified glassy carbon electrodes

    Institute of Scientific and Technical Information of China (English)

    LI Xue; FU Ying; WANG Jian-xiu; L(U) Hui-dan; XU Mao-tian

    2008-01-01

    Cyclic voltammetry was used to investigate the reaction of erythromycin (EM) with dissolved oxygen on gold nanoparticle-modified electrodes prepared via electrodeposition. A well-defined reduction peak at -0.420 V and a reoxidation peak at -0.055V were observed. With the addition of EM into the NaOH solution containing dissolved oxygen, the oxidation peak at -0.055 V was still indiscernible. However, a new oxidation peak at 0.200V appeared, which suggests the interaction between EM and dissolved oxygen. Therefore, this method can be used for the analysis of EM in tablets. The present method is simple, reproducible,and does not require complex analytical instruments.

  11. Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15

    International Nuclear Information System (INIS)

    In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s-1 in 0.1 M phosphate buffer solution (PBS) (pH 7.12). Furthermore, it was also discovered that, in the presence of O2, GOD immobilized on Nafion and MC-FDU-15 matrices could produce a linear response to glucose. Thus, Nafion/GOD-MC-FDU-15/GC electrode is hopeful to be used in glucose biosensor. In addition, GOD immobilized on MC-FDU-15 and Nafion matrices possesses an excellent bioelectrocatalytic activity for the reduction of O2. So, the Nafion/GOD-MC-FDU-15/GC electrode can be utilized as the cathode in biofuel cell.

  12. Determination of 4-aminophenol using a glassy carbon electrode modified with a three-dimensionally ordered macroporous film of polycysteine

    International Nuclear Information System (INIS)

    A three-dimensionally ordered macroporous (3DOM) film of polycysteine (poly-Cys) was used to modify a glassy carbon electrode (GCE) to result in a sensor for 4-aminophenol. The new electrode was used to study the behavior of 4-aminophenol by cyclic voltammetry and differential pulse voltammetry. In comparison to a bare GCE and a GCE modified with poly-Cys without using template, this electrode displays a larger peak current which may be attributed to the structure of poly-Cys and the large surface area of the macroporous structure. The anodic peak current at a working voltage of 195 mV is linearly related to the concentration of 4-aminophenol in two concentration intervals: 0.02 to 20 μM and 20 to 200 μM, respectively. The detection limit is 8 nM (at an S/N ratio of 3). The method was successfully applied to the determination of 4-aminophenol in spiked water samples. (author)

  13. Role of iron oxide impurities in electrocatalysis by multiwall carbon nanotubes: An investigation using a novel magnetically modified ITO electrodes

    Indian Academy of Sciences (India)

    Kanchan M Samant; Vrushali S Joshi; Kashinath R Patil; Santosh K Haram

    2014-04-01

    The role of iron oxide impurities in the electrocatalytic properties of multiwall carbon nanotubes (MWCNTs) prepared by catalytic chemical vapour decomposition method (CCVD) is studied in detail. A novel magnetically modified electrodes have been developed by which MWCNTs were immobilized on indium-tin oxide (ITO) electrodes, without any chemical binders. The electro-catalytic oxidation of dopamine, and reduction of hydrogen peroxide have been studied by cyclic voltammetry on magnetically modified electrodes with (i) MWCNTs with occluded iron oxide impurities (Fe-MWCNTs), (ii) MWCNTs grown on iron oxide nanoparticle particulate films (Io-MWCNTs) and (iii) pristine iron oxide nanoparticle particulate film (Io-NPs). A shift towards less positive potentials for the oxidation of dopamine was observed which is in the order of Fe-MWCNTs < Io-MWCNTs < Io-NPs. Similarly, trend towards less negative potentials for the reduction of hydrogen peroxide was observed. Thus, the electrocatalytic activities displayed by MWCNTs have been attributed to the iron oxide impurities associated with it. The systematic variation was related to the nature of interaction of iron oxide nanoparticles with MWCNT surface.

  14. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  15. Layer-by-layer self-assembling copper tetrasulfonated phthalocyanine on carbon nanotube modified glassy carbon electrode for electro-oxidation of 2-mercaptoethanol

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Mahabul, E-mail: mshaik86@gmail.com; Rao, V.K.; Gupta, Manish; Pandey, P.

    2012-12-30

    This paper describes the electrocatalytic activity of layer-by-layer self-assembled copper tetrasulfonated phthalocyanine (CuPcTS) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode. CuPcTS is immobilized on the negatively charged CNT surface by alternatively assembling a cationic poly(diallyldimethylammonium chloride) (PDDA) layer and a CuPcTS layer. UV-vis absorption spectra and electrochemical measurements suggested the successive linear depositions of the bilayers of CuPcTs and PDDA on CNT. The surface morphology was observed using scanning electron microscopy. The viability of this CuPcTS/PDDA/CNT modified GC electrode as a redox mediator for the anodic oxidation and sensitive amperometric determination of 2-mercaptoethanol (2-ME) in alkaline conditions is described. The effect of number of bilayers of CuPcTS/PDDA and pH on electrochemical oxidation of 2-ME was studied. The proposed electrochemical sensor displayed excellent characteristics towards the determination of 2-ME in 0.1 M NaOH; such as low overpotentials (- 0.15 V vs Ag/AgCl), linear concentration range of 3 Multiplication-Sign 10{sup -5} M to 6 Multiplication-Sign 10{sup -3} M, and with a detection limit of 2.5 Multiplication-Sign 10{sup -5} M using simple amperometry. - Highlights: Black-Right-Pointing-Pointer Carbon nanotubes (CNT) were drop-dried on glassy carbon electrode (GCE). Black-Right-Pointing-Pointer Copper tetrasulfonated phthalocyanine (CuPcTS) was deposited on CNT/GCE. Black-Right-Pointing-Pointer Layer-by-layer self-assembling method is used for depositing CuPcTS. Black-Right-Pointing-Pointer Electrocatalytic oxidation of 2-mercaptoethanol (ME) was studied at this electrode Black-Right-Pointing-Pointer The detection limit of ME at modified electrode was 25 {mu}M by amperometry.

  16. Amperometric Biosensor for Hydrogen Peroxide Based on Electrodeposited Sub-micrometer Gold Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG,Shu-Qing(王树青); CHEN,Jun(陈峻); LIN,Xiang-Qin(林祥钦)

    2004-01-01

    A new type of hydrogen peroxide amperometric biosensor was fabricated based on electrochemically deposited sub-micrometer Au particles(sm-Au)on a glassy carbon electrode(GCE).Electrochemical deposition condition was optimized for obtaining uniformly distributed sub-micrometer sized Au array on the electrode surface.The hydrogen peroxide sensor was fabricated by adsorbing phenothiazine methylene blue(MB)molecules on the surface of sm-Au and covering a cross-linked horseradish peroxidase(HRP)layer,labeled as HRP/MB/sm-Au/GCE.The characteristics of this biosensor were evaluated with respect to applied potential and pH.The amperometric response of the sensor was linear to the H2O2 concentration over a wide range of 9.9×10-6-1.11×10-2 mol/L.A detection limit(s/n=3)of 3.0×10-6 mol/L H2O2 was estimated for a sampled chronoamperometric detection at 1.5 min after potential step of 200 to-400 mV vs.SCE.The immobilized MB molecules shuttled electrons at(=0.77 and an apparent electron transfer rate constant of =0.053 s-1.Interference of ascorbic acid,dopamine and uric acid was investigated.This sensor has very good stability and reproducibility for long-term use.

  17. Electrocatalytic oxidation of some amino acids on a nickel-curcumin complex modified glassy carbon electrode

    International Nuclear Information System (INIS)

    This study investigated the electrocatalytic oxidation of alanine, L-arginine, L-phenylalanine, L-lysine and glycine on poly-Ni(II)-curcumin film (curcumin: 1,7-bis [4-hydroxy-3-methoxy phenyl]-1,6-heptadiene-3,5-dione) electrodeposited on a glassy carbon electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of amino acids the anodic peak current of low valence nickel species increased, followed by a decrease in the corresponding cathodic current. This indicates that amino acids were oxidized on the redox mediator which was immobilized on the electrode surface via an electrocatalytic mechanism. Using Laviron's equation, the values of α and k s for the immobilized redox species were determined as 0.43 ± 0.03 and 2.47 ± 0.02 x 106 s-1, respectively. The rate constant, the electron transfer coefficient and the diffusion coefficients involved in the electrocatalytic oxidation of amino acids were determined

  18. Electrocatalytic oxidation of some amino acids on a nickel-curcumin complex modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majdi, S. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)]. E-mail: jabbari@kntu.ac.ir; Heli, H. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2007-04-01

    This study investigated the electrocatalytic oxidation of alanine, L-arginine, L-phenylalanine, L-lysine and glycine on poly-Ni(II)-curcumin film (curcumin: 1,7-bis [4-hydroxy-3-methoxy phenyl]-1,6-heptadiene-3,5-dione) electrodeposited on a glassy carbon electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of amino acids the anodic peak current of low valence nickel species increased, followed by a decrease in the corresponding cathodic current. This indicates that amino acids were oxidized on the redox mediator which was immobilized on the electrode surface via an electrocatalytic mechanism. Using Laviron's equation, the values of {alpha} and k {sub s} for the immobilized redox species were determined as 0.43 {+-} 0.03 and 2.47 {+-} 0.02 x 10{sup 6} s{sup -1}, respectively. The rate constant, the electron transfer coefficient and the diffusion coefficients involved in the electrocatalytic oxidation of amino acids were determined.

  19. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors.

    Science.gov (United States)

    Ghica, M Emilia; Brett, Christopher M A

    2014-12-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer pH 7.0 at -0.20 and +0.30 V vs. SCE, respectively, and the results were compared with other similarly modified electrodes existing in the literature. An interference study and recovery measurements in natural samples were successfully performed, indicating these architectures to be good and promising biosensor platforms. PMID:25159399

  20. A sensor for determination of tramadol in pharmaceutical preparations and biological fluids based on multi-walled carbon nanotubes-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    A chemically modified electrode is constructed based on multi-walled carbon nanotube modified glassy carbon electrode (MWCNTs/GCE). It is demonstrated that this sensor could be used for determination of pharmaceutical important compound tramadol (TRA). The measurements were carried out using differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry (CA) methods. DPV experiments of various concentration of TRA showed two linear dynamic ranges. The first linear dynamic range was from 4 micro M to 35 micro M, and the second linear dynamic range was between 60 micro M to 550 micro M. A detection limit of 0.38 micro M (S/N = 3) was obtained. The analytical performance of this sensor has been evaluated for the detection of TRA in human serum, human urine and some pharmaceutical preparations with satisfactory results. (author)

  1. Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide

    International Nuclear Information System (INIS)

    We report on a non-enzymatic electrochemical sensing strategy for ultrasensitive detection of hydrogen peroxide (H2O2) at nanomolar levels. A glassy carbon electrode (GCE) was modified with a hybrid material consisting of multiwalled carbon nanotubes (CNT) and molybdenum disulfide (MoS2). Transmission electron microscopy and Raman spectroscopy were employed to characterize the hybrid nanostructures. GCEs modified with carbon nanotubes, or nanoscaled MoS2, or with the CNT-MoS2 hybrid were investigated with respect to sensing H2O2, and this revealed that the GCE modified with the CNT-MoS2 hybrid performed best and resulted in a limit of detection as low as 5.0 nM. A repeatability and intermediate precision of 9 % was accomplished. The method was applied to determine H2O2 in spiked sterilized milk and gave satisfactory results. (author)

  2. Electro-oxidation of some non-steroidal anti-inflammatory drugs on an alumina nanoparticle-modified glassy carbon electrode

    OpenAIRE

    TABESHNIA, Mahla; HELI, Hossein; Jabbari, Ali

    2010-01-01

    The electro-oxidation of mefenamic acid, diclofenac, and indomethacin on glassy carbon and alumina nanoparticle-modified glassy carbon electrodes in a phosphate buffer solution at physiological pH was studied. The techniques of cyclic voltammetry, chronoamperometry, impedance spectroscopy, and steady state polarization measurements were applied. The drugs were irreversibly oxidized on bath electrodes via an anodic peak and the process was controlled by diffusion in the bulk of soluti...

  3. Simultaneous determination of mycophenolate mofetil and its active metabolite, mycophenolic acid, by differential pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode

    International Nuclear Information System (INIS)

    A highly sensitive electrochemical sensor for the simultaneous determination of mycophenolate mofetil (MPM) and mycophenolic acid (MPA) was fabricated by multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE). The electrochemical behavior of these two drugs was studied at the modified electrode using cyclic voltammetry and adsorptive differential pulse voltammetry. MPM and MPA were oxidized at the GCE during an irreversible process. DPV analysis showed two oxidation peaks at 0.87 V and 1.1 V vs. Ag/AgCl for MPM and an oxidation peak at 0.87 V vs. Ag/AgCl for MPA in phosphate buffer solution of pH 5.0. The MWCNTs/GCE displayed excellent electrochemical activities toward oxidation of MPM and MPA relative to the bare GCE. The experimental design algorithm was used for optimization of DPV parameters. The electrode represents linear responses in the range 5.0 × 10−6 to 1.6 × 10−4 mol L−1 and 2.5 × 10−6 mol L−1 to 6.0 × 10−5 mol L−1 for MPM and MPA, respectively. The detection limit was found to be 9.0 × 10−7 mol L−1 and 4.0 × 10−7 mol L−1 for MPM and MPA, respectively. The modified electrode showed a good sensitivity and stability. It was successfully applied to the simultaneous determination of MPM and MPA in plasma and urine samples. - Highlights: • A new modified electrochemical sensor was constructed and used. • Multiwalled carbon nanotubes were used as the modifiers. • MPM and MPA were measured simultaneously at the low levels. • The sensor was used to the determination of MPA and MPM in real samples

  4. Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode.

    Science.gov (United States)

    Abdel-Hamid, Refat; Newair, Emad F

    2016-01-01

    A simple and sensitive poly(gallic acid)/multiwalled carbon nanotube modified glassy carbon electrode (PGA/MWCNT/GCE) electrochemical sensor was prepared for direct determination of the total phenolic content (TPC) as gallic acid equivalent. The GCE working electrode was electrochemically modified and characterized using scanning electron microscope (SEM), cyclic voltammetry (CV), chronoamperometry and chronocoulometry. It was found that gallic acid (GA) exhibits a superior electrochemical response on the PGA/MWCNT/GCE sensor in comparison with bare GCE. The results reveal that a PGA/MWCNT/GCE sensor can remarkably enhance the electro-oxidation signal of GA as well as shift the peak potentials towards less positive potential values. The dependence of peak current on accumulation potential, accumulation time and pH were investigated by square-wave voltammetry (SWV) to optimize the experimental conditions for the determination of GA. Using the optimized conditions, the sensor responded linearly to a GA concentration throughout the range of 4.97 × 10(-6) to 3.38 × 10(-5) M with a detection limit of 3.22 × 10(-6) M (S/N = 3). The fabricated sensor shows good selectivity, stability, repeatability and (101%) recovery. The sensor was successfully utilized for the determination of total phenolic content in fresh pomegranate juice without interference of ascorbic acid, fructose, potassium nitrate and barbituric acid. The obtained data were compared with the standard Folin-Ciocalteu spectrophotometric results. PMID:27547628

  5. Carbon electrodes modified with ruthenium metallodendrimer multilayers for the mediated oxidation of methionine and insulin at physiological pH.

    Science.gov (United States)

    Cheng, L; Pacey, G E; Cox, J A

    2001-11-15

    A pentaerythritol-based metallodendrimer with ruthenium(II) terpyridine units, Ru(II)Den, catalyzed the oxidation of L-methionine and insulin at pH 7.0. The Ru(II)Den was immobilized on a carbon surface through layer-by-layer electrostatic deposition; the negatively charged polymer, poly(styrene sulfonate), was its counterpart. These bilayers were assembled on a glassy carbon electrode that was first modified by deposition of a layer of the conjugate base of sulfanilic acid and then with quaternized poly(4-vinylpyridine). Reversible voltammetry for the Ru(II/III) redox couple was observed, the current for which increased linearly with layer number, n, of Ru(II)Den up to n = 12. Cyclic voltammetry was used to demonstrate the mediation of L-methionine oxidation by a Ru(II)Den-containing multilayer assembly. Flow injection amperometric determination of insulin at pH 7.0 at this modified electrode yielded a calibration curve with the following characteristics: linear dynamic range, 6 nM-0.4 microM; sensitivity, 225 nA microM(-1); detection limit (k = 3 criterion), 2 nM. Of particular importance was that the sensitivity was proportional to the number of Ru(II)Den layers. PMID:11816594

  6. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite

    International Nuclear Information System (INIS)

    We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes. (author)

  7. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir; Khosravi, Mehdi; Barati, Ali

    2014-07-01

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H{sub 2}O{sub 2}. The observed sensitivities for the electrocatalytic oxidation and reduction of H{sub 2}O{sub 2} at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M{sup −1}, respectively. The detection limit (S/N = 3) for H{sub 2}O{sub 2} was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M{sup −1} and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M{sup −1} and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H{sub 2}O{sub 2} reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor.

  8. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    Science.gov (United States)

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling.

  9. Electrochemical Characterization and Determination of Phenol and Chlorophenols by Voltammetry at Single Wall Carbon Nanotube/Poly(3,4-ethylenedioxythiophene) Modified Screen Printed Carbon Electrode

    Science.gov (United States)

    Negash, Negussie; Alemu, Hailemichael; Tessema, Merid

    2015-01-01

    Screen printed carbon electrode (SPCE) has been modified with single wall carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) composites for the determination of phenol and chlorophenols (phenol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol). The effect of the modifiers on the electrode characteristics was evaluated and the responses were optimized for the voltammetric determination of phenol and chlorophenols. The parameters affecting the responses such as pH, scan rate, and stability were studied. The analytical performance of the SWCNT/PEDOT/SPCE using cyclic voltammetry was tested and found to be impressive. Under these conditions, the designed electrode showed a good performance for the voltammetric measurements of the phenolic compounds. The modified SPCE, when it is compared with other enzymatic and nonenzymatic sensors, showed a wider dynamic range for the detection of the phenolic compounds. The modified SPCE was used for the quantification of phenol in water samples. The results suggest that the method is quite useful for analyzing and monitoring phenols and chlorophenols. PMID:27347519

  10. Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines

    International Nuclear Information System (INIS)

    Graphical abstract: A 5-hydroxytryptamine (5-HT) modified electrode was fabricated by electro-polymerization of 5-HT on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) in 0.05 M PBS (pH 7). The characterization of the modified electrode was carried out by atomic force microscopy (AFM), voltammetry and electrochemical impedance spectroscopy (EIS). The mechanism of electro-deposition of 5-HT at GCE was discussed based on electrochemical studies and quantum chemical calculations. The poly(5-HT)-modified electrode could separately detect NE and UA, even in the presence of 10-fold concentration of ascorbic acid (AA) and was applied successfully to the analysis of NE preparations and healthy human urines. Due to the favorable functionalized groups (-NH2 and -OH), electroactivity, biocompatibility and stability, the poly(5-HT) film could be a promising immobilization matrix for anchoring interested biological molecules in the fabrication of sensors and biosensors. Highlights: ► A poly(5-HT)-modified electrode was fabricated originally by CV. ► The electro-deposition mechanism of 5-HT at GCE was proposed. ► The polymer film shows favorable electrocatalytic properties to NE and UA. ► The modified GCE was applied to the sensing analysis of real samples. -- Abstract: A poly(5-hydroxytryptamine) (poly(5-HT)) modified electrode was fabricated by electropolymerization of 5-hydroxytryptamine (5-HT) on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) in 0.05 M PBS (pH 7). The characterization of poly(5-HT)-modified electrode was carried out by atomic force microscopy (AFM), voltammetry and electrochemical impedance spectroscopy (EIS). Results showed that a brown and heterogeneous film was formed on the surface of the modified electrode. The mechanism of electro-deposition of 5-HT at GCE was discussed. The modified electrode showed good affinity and electrocatalytic properties to some species, such as norepinephrine (NE) and uric acid (UA). Furthermore

  11. Electrochemically pretreated zeolite-modified carbon-paste electrodes for determination of linuron in an agricultural formulation and water

    International Nuclear Information System (INIS)

    Highlights: • Cyclic voltammetry, square-wave voltammetry, electrochemical impedance spectroscopic, and scanning electron microscopy were employed. • Kinetic parameters (n, α, ks, and Γ) were calculated. • High sensitivity was observed in the linear concentration range. • Excellent recovery rates were achieved for tap water samples. • The method proved applicable to the determination of linuron in the presence of potential organic and inorganic interferents, none of which affected the results. - Abstract: A simple and inexpensive, yet highly sensitive electrochemical method for quantifying linuron in tap and distilled water and in agricultural formulations was developed using electrochemically pretreated zeolite-modified carbon-paste electrodes (ZMCPEs). Compared with untreated ZMCPEs, the electrochemically pretreated electrodes showed significantly enhanced peak currents for linuron oxidation. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to examine the structure of the zeolite-modified and unmodified carbon-paste electrodes (CPEs). ZMCPEs were electrochemically characterized using cyclic voltammetry, chronocoulometry, square-wave voltammetry, and electrochemical impedance spectroscopy. A mechanism for linuron oxidation on ZMCPE surfaces was proposed. The electrochemical variables taken into account were electrode area, number of transferred electrons, electron transfer coefficient, electrode reaction standard rate constant, surface coverage, and capacitance of the electric double layer. Zeolite was found to have a strong influence on these variables. The electrochemical procedure applied to linuron was developed using electrochemically pretreated ZMCPEs under optimal conditions. Linuron oxidation currents exhibited linear concentration in the 87.36 to 625.72 nmol L−1 range, with a limit of detection of 22.57 nmol L−1. The proposed electrochemical method was employed to quantify linuron in tap and distilled water

  12. Determination of Phenol and Chlorophenols at Single-Wall Carbon Nanotubes/Poly(3,4-ethylenedioxythiophene) Modified Glassy Carbon Electrode Using Flow Injection Amperometry

    OpenAIRE

    Negussie Negash; Hailemichael Alemu; Merid Tessema

    2014-01-01

    Phenol and chlorophenols were investigated using single-wall carbon nanotubes (SWCNT) and poly(3,4-ethylenedioxythiophene) (PEDOT) composite modified glassy carbon electrode (SWCNT/PEDOT/GCE) as a detector in flow injection system. Optimization of experimental variables such as the detection potential, flow rate, and pH of the carrier solution (0.1 M sodium acetate) for the determination of phenol (P), 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP), and pentachloro...

  13. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.G. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Department of Chemistry, Universidad de Guanajuato, Cerro de la Venada S/N Col. Pueblito de Rocha, 36040 Guanajuato, Gto (Mexico); Armendariz, G.M.E.; Godinez, Luis A.; Torres, J. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad, San Nicolas de los Garza, Nuevo Leon, 66451 Nuevo Leon (Mexico); Bustos, E., E-mail: ebustos@cideteq.mx [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico)

    2011-09-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 {+-} 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  14. Preparation and Evaluation of Acetabularia-Modified Carbon Paste Electrode in Anodic Stripping Voltammetry of Copper and Lead Ions

    Directory of Open Access Journals (Sweden)

    Muhammad Raziq Rahimi Kooh

    2013-01-01

    Full Text Available Seaweed is well known about for potential in chelating heavy metals. In this study, carbon paste electrodes were fabricated with siphonous seaweed Acetabularia acetabulum as the modifiers to sense lead (II and copper (II by square-wave anodic stripping voltammetry. Various scan rates and deposition potentials were measured to obtain the optimal peak current for Pb(II and Cu(II. Optimum conditions of Acetabularia-CPE for sensing Pb(II were at the scan rate of 75 mV/s and deposition potential of −800 mV, while for Cu(II sensing were at 100 mV/s and −300 mV, respectively. The electrodes were characterized by the duration of accumulation time, preconcentration over a range of standards, supporting electrolyte, and standard solutions of various pH values. Interference studies were carried out. Both Zn(II and Cu(II were found to interfere with Pb(II sensing, whereas only Zn(II causes interference with Cu(II sensing. The electrode was found to have good regeneration ability via electrochemical cleaning. Preliminary testing of complex samples such as NPK fertilisers, black soil, and sea salt samples was included.

  15. Electrocatalytic oxidation of 2-mercaptoethanol using modified glassy carbon electrode by MWCNT in combination with unsymmetrical manganese (II) Schiff base complexes

    Energy Technology Data Exchange (ETDEWEB)

    Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir; Eslami, Saadat

    2015-06-15

    Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT and new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.

  16. Double-ion imprinted polymer @magnetic nanoparticles modified screen printed carbon electrode for simultaneous analysis of cerium and gadolinium ions

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Jauhari, Darshika

    2015-05-22

    Highlights: • Synthesis of a double-ion imprinted polymer for analysis of Ce(IV) and Gd(III). • Imprinted nano-beads were grown on MNPs-modified SPCE surface. • Voltammetric determination of both templates was carried out simultaneously. • Ultra-trace analysis with LOD (ng mL{sup −1}) 0.07 for Ce(IV) and 0.19 for Gd(III) is achieved. - Abstract: A typical, reproducible, and rugged screen printed carbon electrode, modified with dual-ion imprinted beads, was fabricated employing the “surface grafting from” approach. For this, the acyl chloride functionalized magnetic nanoparticles were first immobilized and chemically attached with a typical functional monomer (but-2-enedioic acid bis-[(2-amino-ethyl)-amide]) on the electrode surface. This was subsequently subjected to the thermal polymerization in the presence of template ions (Ce(IV) and Gd(III)), cross-linker (ethylene glycol dimethacrylate), initiator (AIBN), and multiwalled carbon nanotubes. The modified sensor was used for the simultaneous analysis of both template ions in aqueous, blood serum, and waste-water samples, using differential pulse anodic stripping voltammetry which revealed two oxidation peaks for respective templates with resolution as much as 950 mV, without any cross reactivity, interferences and false-positives. The detection limits realized by the proposed sensor, under optimized conditions, were found to be as low as 0.07 ng mL{sup −1} for Ce(IV) and 0.19 ng mL{sup −1} for Gd(III) (S/N = 3) that could eventually be helpful for lanthanide estimation at stringent levels.

  17. An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods

    International Nuclear Information System (INIS)

    We describe a highly sensitive electrochemical enzymatic glucose biosensor. A glassy carbon electrode was modified with cylinder-shaped titanium dioxide nanorods (TiO2-NRs) for the immobilization of glucose oxidase. The modified nanorods and the enzyme biosensor were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The glucose oxidase on the TiO2-NRs displays a high activity and undergoes fast surface-controlled electron transfer. A pair of well-defined quasi-reversible redox peaks was observed at −0.394 and −0.450 V. The TiO2-NRs provide a good microenvironment to facilitate the direct electron transfer between enzyme and electrode surface. The biosensor has two linear response ranges, viz. from 2.0 to 52 μM, and 0.052 to 2.3 mM. The lower detection limit is 0.5 μM, and the sensitivity is 68.58 mA M−1 cm−2. The glucose biosensor is selective, well reproducible, and stable. In our perception, the cylindrically shaped TiO2-NRs provide a promising support for the immobilization of proteins and pave the way to the development of high-performance biosensors. (author)

  18. Highly sensitive choline biosensor based on carbon nanotube-modified Pt electrode combined with sol-gel immobilization

    Institute of Scientific and Technical Information of China (English)

    SONG Zhao; ZHAO Zixia; QIN Xia; HUANG Jiadong; SHI Haibin; WU Baoyan; CHEN Qiang

    2007-01-01

    A novel amperometric choline biosensor has been fabricated with choline oxidase (ChOx) immobilized by the sol-gel method on the surface of multi-walled carbon nanotubes (MWCNT) modified platinum electrode to improve the sensitivity and the anti-interferential property of the sensor.By analyzing the electrocatalytic activity of the modified electrode by MWCNT,it was found that MWCNT could not only improve the current response to H2O2 but also decrease the electrocatalytic potential.The effects of experimental variables such as the buffer solutions,pH and the amount of loading enzyme were investigated for the optimum analytical performance.This sensor shows sensitive determination of choline with a linear range from 5.0×10-6 to 1.0×10-4 mol/L when the operating pH and potential are 7.2 and 0.15 V,respectively.The detection limit of choline was 5.0×10-7 mol/L.Selectivity for choline was 9.48 μA.(mmol/L)-1.The biosensor exhibits excellent anti-interferential property and good stability,retaining 85% of its original current value even after a month.It has been applied to the determination of choline in human serum.

  19. Enhanced sensitivity for biosensors: Functionalized P1,5-diaminonaphthalene-multiwall carbon nanotube composite film-modified electrode

    International Nuclear Information System (INIS)

    A homogeneous electroactive poly(1,5-diaminonaphthalene) (P1,5DAN) and multiwalled carbon nanotube (MWNT) composite film-modified electrode was fabricated by cyclic voltammetry and a casting method. The dispersion and morphology of the MWNTs/P1,5DAN composite film were investigated by scanning electron microscopy. The cyclic voltammograms of the electrode modified by the MWNTs/P15DAN composite film strongly depended on the film thickness and pH of the electrolyte solution. Two absolutely isolated oxidation potentials were found as the MWCNTs were immobilized onto the surface of P1,5DAN film in a pH 6.8 buffer solution containing ascorbic acid (AA) and uric acid (UA). Both peak currents linearly increased with increased concentrations. The electrochemical behavior of UA was not interrupted even in the presence of high-concentration AA given that AA had no observable electrochemical changes at the immobilized concentration. The electrocatalytic behavior of H2O2 was also investigated by steady-state amperometry for the immobilization of horseradish peroxidase on the P1,5DAN film. The plot of the response current vs. H2O2 concentration was linear over the wide concentration range of 0.015–5.37 mM.

  20. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Liu Yinping [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-11-30

    Highlights: > A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. > This sensor exhibited excellent electrocatalytic oxidation to nitrite. > This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 {mu}M and with a detection limit of 0.5 {mu}M. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  1. Voltammetric determination of dopamine and norepinphrine on a glassy carbon electrode modified with poly (L-aspartic acid)

    Indian Academy of Sciences (India)

    Zhangyu Yu; Xiaochun Li; Xueliang Wang; Xinying Ma; Xia Li; Kewei Cao

    2012-03-01

    A convenient and useful method for the voltammetric determination of dopamine (DA) and norepinphrine (NE) based on poly(L-aspartic acid) modified glassy carbon electrode (GCE) is reported in this paper. The modified electrode exhibits excellent electro-catalytic activities for the oxidation-reduction of DA and NE, as well as eliminating the interference of ascorbic acid (AA) and uric acid (UA). Factors influencing the detection processes are optimized and the kinetic parameters are calculated. Under the optimal conditions, the anodic peak currents of DA and NE are linear with their concentration and the detection limits (S/N = 3) are 1.0 × 10−9 mol L-1 for DA and 4.31 10−9 mol L-1 for NE, respectively. The practical application of this method is demonstrated by determining the concentration of NE and DA in injection which is commercially available with satisfactory results. Compared with other electrochemical methods, this method is simple, highly selective and sensitive.

  2. An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes.

    Science.gov (United States)

    Sales, Fernanda C P F; Iost, Rodrigo M; Martins, Marccus V A; Almeida, Maria C; Crespilho, Frank N

    2013-02-01

    An intravenous implantable glucose/dioxygen hybrid enzyme-Pt micro-biofuel cell (BFC) was investigated. In this miniaturized BFC, a flexible carbon fiber (FCF) microelectrode modified with neutral red redox mediator and glucose oxidase was used as the bioanode, and an FCF modified with platinum nanoparticles stabilized on PAMAM-G4 dendrimer was used as the cathode. In vitro experiments conducted using the BFC in a phosphate buffer solution (50 mmol L(-1), pH = 7.2) and glucose (47 mmol L(-1)) showed high electrocatalytic performance with an open circuit voltage (OCV) of 400 mV, a maximum current density of 2700 μA cm(-2) at 0.0 V and a maximum output power of 200 μW cm(-2) at 250 mV. Under physiological conditions, glucose from rat blood is used as a fuel in anodic reactions and dissolved molecular oxygen is used as the oxidizing agent on the cathode. For in vivo experiments, the BFC was inserted into the jugular vein of a living rat (Rattus novergicus) using a catheter (internal diameter 0.5 mm). The power density of the implantable BFC was evaluated over a period of 24 h, and an OCV of 125 mV with a maximum power density of 95 μW cm(-2) was obtained at 80 mV.

  3. Electroanalysis with carbon paste electrodes

    CERN Document Server

    Svancara, Ivan; Walcarius, Alain; Vytras, Karel

    2011-01-01

    Introduction to Electrochemistry and Electroanalysis with Carbon Paste-Based ElectrodesHistorical Survey and GlossaryField in Publication Activities and LiteratureCarbon Pastes and Carbon Paste ElectrodesCarbon Paste as the Binary MixtureClassification of Carbon Pastes and Carbon Paste ElectrodesConstruction of Carbon Paste HoldersCarbon Paste as the Electrode MaterialPhysicochemical Properties of Carbon PastesElectrochemical Characteristics of Carbon PastesTesting of Unmodified CPEsIntera

  4. Modified carbon-free silver electrodes for the use as cathodes in lithium-air batteries with an aqueous alkaline electrolyte

    Science.gov (United States)

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas; Amin, Hatem M. A.; Baltruschat, Helmut

    2014-11-01

    Gas diffusion electrodes with silver catalysts show a high activity towards oxygen reduction reaction in alkaline media but a rather poor activity towards oxygen evolution reaction. For the use in future lithium-air batteries with an aqueous alkaline electrolyte the activity of such electrodes must be improved significantly. As Co3O4 is a promising metal oxide catalyst for oxygen evolution in alkaline media, silver electrodes were modified with Co3O4. For comparison silver electrodes were also modified with IrO2. Due to the poor stability of carbon materials at high anodic potentials these gas diffusion electrodes were prepared without carbon support to improve especially the long-term stability. Gas diffusion electrodes were electrochemically investigated in an electrochemical half-cell arrangement. In addition to cyclic voltammograms electrochemical impedance spectroscopy (EIS) was carried out. SEM and XRD were used for the physical and morphological investigations. Investigations showed that silver electrodes containing 20 wt.% Co3O4 exhibited the highest performance and highest long-term stability. For comparison, rotating - ring - disc - electrode experiments have been performed using model electrodes with thin catalyst layers, showing that the amount of hydrogen peroxide evolved is negligible.

  5. In situ modified screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in its formulation

    Institute of Scientific and Technical Information of China (English)

    Gehad G. Mohamed; F.A. Nour El-Dien; Eman Y.Z. Frag; Marwa El-Badry Mohamed

    2013-01-01

    The construction and performance characteristics of new sensitive and selective in situ modified screen printed (ISPE) and carbon paste (ICPE) electrodes for determination of naphazoline hydrochloride (NPZ-HCl) have been developed. The electrodes under investigation show potentiometric response for NPZ-HCl in the concentration range from 7.0 Â 10-7 to 1.0 Â 10-2 M at 25 1C and the electrode response is independent of pH in the range of 3.1-7.9. These sensors have slope values of 59.770.6 and 59.270.2 mV decade−1 with detection limit values of 5.6 Â 10-7 and 5.9 Â 10-7 M NPZ-HCl using ISPE and ICPE, respectively. These electrodes show fast response time of 4-7 s and 5-8 s and exhibits lifetimes of 28 and 30 days for ISPE and ICPE, respectively. Selectivity for NPZ-HCl with respect to a number of interfering materials was also investigated. It was found that there is no interference from the investigated inorganic cations, anions, sugars and other pharmaceutical excipients. The proposed sensors were applied for the determination of NPZ-HCl in pharmaceutical formulation using the direct potentiometric method. It showed a mean average recovery of 100.2%and 102.6%for ISPE and ICPE, respectively. The obtained results using the proposed sensors were in good agreement with those obtained using the official method. The proposed sensors show significantly high selectivity, response time, accuracy, precision, limit of detection (LOD) and limit of quantification (LOQ) compared with other proposed methods.

  6. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt-Au/multi-walled carbon nanotubes modified electrode.

    Science.gov (United States)

    Miao, Shan Shan; Wu, Mei Sheng; Ma, Li Ya; He, Xiao Jing; Yang, Hong

    2016-09-01

    A novel and highly sensitive electrochemiluminescence (ECL) biosensing system was designed and developed for individual detection of different organophosphorous pesticides (OPs) in food samples. Bimetallic Pt-Au nanoparticles were electrodeposited on multi-walled carbon nanotubes (MWNTs)-modified glass carbon electrode (GCE) to increase the surface area of electrode and ECL signals of luminol. Biocomposites of enzymes from acetylcholinesterase and choline oxidase (AChE and ChOx) were immobilized onto the electrode surface to produce massive hydrogen peroxides (H2O2), thus amplifying ECL signals. Based on the dual-amplification effects of nanoparticles and H2O2 produced by enzymatic reactions, the proposed biosensor exhibits highly sensitivity. The proposed biosensing approach was then used for detecting OPs by inhibition of OPs on AChE. Under optimized experimental conditions, the ECL intensity decreased accordingly with the increase in concentration of OPs, and the inhibition rates of OPs were proportional to their concentrations in the range of 0.1-50nmolL(-1) for malathion, methyl parathion and chlorpyrifos, with detection limit of 0.16nmolL(-1), 0.09nmolL(-1) and 0.08nmolL(-1), respectively. The linearity range of the biosensor for pesticide dufulin varied from 50 to 500nmolL(-1), with the detection limit of 29.7nmolL(-1). The resulting biosensor was further validated by assessment of OPs residues in cabbage, which showed a fine applicability for the detection of OPs in the realistic sample. PMID:27343588

  7. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    Science.gov (United States)

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose. PMID:26278169

  8. Amino-functionalized mesoporous silica modified glassy carbon electrode for ultra-trace copper(II) determination

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xingxin [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China); Qiu, Fagui [Department of Quartermaster Engineering, Jilin University, No. 5333, Xi' an Road, Changchun 130062 (China); Zhou, Xuan [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China); Long, Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China); Li, Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China); Tu, Yifeng [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 (China)

    2014-10-27

    NH{sub 2}-MCM-41 modified glassy carbon electrode was prepared and it exhibited enhanced anodic stripping response toward Cu (II), which could result from the large surface area of MCM-41 and the good chelating ability of amine-group. The as-constructed electrochemical sensor showed excellent analytical properties in the determination of Cu{sup 2+} and was successfully used for real sample assays. - Highlights: • We report a facile method to selectively detect Cu{sup 2+} based on NH{sub 2}-MCM-41 as sensing platform. • NH{sub 2}-MCM-41 has good affinity toward Cu{sup 2+}. • Detection limit of 0.9 ng L{sup −1} and linear concentration range of 5–1000 ng L{sup −1} are achieved. • The method is successfully applied to detect Cu{sup 2+} in real samples. - Abstract: This paper described a facile and direct electrochemical method for the determination of ultra-trace Cu{sup 2+} by employing amino-functionalized mesoporous silica (NH{sub 2}-MCM-41) as enhanced sensing platform. NH{sub 2}-MCM-41 was prepared by using a post-grafting process and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy. NH{sub 2}-MCM-41 modified glassy carbon (GC) electrode showed higher sensitivity for anodic stripping voltammetric (ASV) detection of Cu{sup 2+} than that of MCM-41 modified one. The high sensitivity was attributed to synergistic effect between MCM-41 and amino-group, in which the high surface area and special mesoporous morphology of MCM-41 can cause strong physical absorption, and amino-groups are able to chelate copper ions. Some important parameters influencing the sensor response were optimized. Under optimum experimental conditions the sensor linearly responded to Cu{sup 2+} concentration in the range from 5 to 1000 ng L{sup −1} with a detection limit of 0.9 ng L{sup −1} (S/N = 3). Moreover, the sensor possessed good stability and electrode renewability. In the end, the proposed

  9. Determination of Silver(I) by Differential Pulse Voltammetry Using a Glassy Carbon Electrode Modified with Synthesized N-(2-Aminoethyl)-4,4′-Bipyridine

    OpenAIRE

    Gabriel Lucian Radu; Bogdan Bucur; Madalina Petruta Bucur; Medeea Radulescu; Maria-Cristina Radulescu; Ana Chira

    2010-01-01

    A new modified glassy carbon electrode (GCE) based on a synthesized N-(2-aminoethyl)-4,4'-bipyridine (ABP) was developed for the determination of Ag(I) by differential pulse voltammetry (DPV). ABP was covalently immobilized on GC electrodes surface using 4-nitrobenzendiazonium (4-NBD) and glutaraldehyde (GA). The Ag(I) ions were preconcentrated by chemical interaction with bipyridine under a negative potential (−0.6 V); then the reduced ions were oxidized by differential pulse voltammetry and...

  10. Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Graphical abstract: PtNPs/MWCNTs has been successfully stabilized onto the surface of GCE and used for electrochemical determination of PRO as a sensor. The results showed that the oxidation of PRO was catalyzed by PtNPs/MWCNTs film in neutral environment and that the peak potential of PRO was shifted to 1.10 V. Highlights: ► Pt nanoparticles and multi-walled carbon nanotubes mixture as the electrode modified material. ► The modified material doped directly onto the electrode surface. ► Detected in the neutral environment. - Abstract: Platinum nanoparticles (PtNPs) were used in combination with multi-walled carbon nanotubes (MWCNTs) with Nafion as the adhesives for fabricating sensitivity-enhanced electrochemical propranolol hydrochloride (PRO) sensor. The modifier, PtNPs doped MWCNTs (PtNPs/MWCNTs), was characterized by transmission electron microscopy (TEM) and electrochemical method which showed an excellent character for electrocatalytic oxidization of PRO. In addition, the experimental parameters such as pH values, the concentration of PtNPs/MWCNTs and the scan rate were optimized. Due to the fine characteristics of PtNPs/MWCNTs, a good linear relationship between the anodic peak current and PRO concentration in the range 6.76 × 10−7–3.8 × 10−5 M was observed. The detection limit of 8.45 × 10−8 M was achieved with the linear correlation coefficient R = 0.9965. The relative standard derivation was 2.74% for 3.38 10−6 M PRO in 11 repeated determinations. This modified electrode showed excellent sensitivity and stability for the determination of PRO.

  11. Preparation of glass carbon electrode modified with nanocrystalline nickel-decorated carbon nanotubes and electrocatalytic oxidation of methanol in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanocrystalline nickel with an average diameter of about 16 nm and a face-centered cubic (fcc)structure was uniformly attached to the surface of carbon nanotubes (CNT) by wet chemistry.The sample was characterized by X-ray powder diffraction and transmission electron microscopy (TEM).A glass carbon electrode modified with nickel-modified multi-wall carbon nanotubes (MWCNTs-Ni/GCE) was prepared.The electrochemical behavior of the MWCNTs-Ni/GCE and the electrocatalytic oxidation of methanol at the MWCNTsNi/GCE were investigated by cyclic voltammetry in 1.0 mol/L NaOH solution.The cyclic voltammograms showed that the electron transfer between β-Ni(OH)2 and β-NiOOH is mainly a diffusion-controlled quasireversible process,and that the electrode has high catalytic activity for the electrooxidation of methanol in alkaline medium,revealing its potential application in alkaline rechargeable batteries and fuel cells.

  12. The electrochemical behavior of Co(TPTZ){sub 2} complex on different carbon based electrodes modified with TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ortaboy, Sinem, E-mail: ortaboy@istanbul.edu.tr; Atun, Gülten, E-mail: gatun@istanbul.edu.tr

    2015-04-15

    Electrochemical behavior of cobalt (II) complex with the N-donor ligand 2,2′-bipyridyl-1,3,5-tripyridyl-s-triazine (TPTZ) was investigated to elucidate the electron-proton transfer mechanisms. The electrochemical response of the complex was studied using square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. A conventional three-electrode system, consisting of glassy carbon (GCE), TiO{sub 2} modified glassy carbon (T/GCE), carbon paste (CPE) and TiO{sub 2} modified carbon paste (T/CPE) working electrodes were employed. The ligand/metal ratio and stability constant of the complex as well as the mechanisms of the electrode processes were elucidated by examining the effects of pH, ligand concentration and frequency on the voltammograms. The EIS results indicated that the samples modified with TiO{sub 2} had the higher charge transfer resistance than that of the bare electrodes and also suggested that the electroactivity of the electrode surfaces increased in the following order, T/CPE > CPE > T/GCE > GCE. The surface morphology of the working electrodes was also characterized by atomic force microscopy (AFM). The values of surface roughness parameters were found to be consistent with the results obtained by EIS experiments. - Graphical abstract: Schematic illustration of the experimental process. - Highlights: • Electrochemical behavior of Co(TPTZ){sub 2} complex studied by SWV and EIS techniques. • GCE, CPE T/GCE and T/CPE were used as working electrodes for comparative studies. • The surface morphologies of the electrodes were characterized by AFM. • Mechanisms were proposed from the effects of pH, ligand concentration and frequency. • EIS and morphologic relationships of the surfaces were established successfully.

  13. Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips

    Science.gov (United States)

    Popa, Adriana; Abenojar, Eric C.; Vianna, Adam; Buenviaje, Czarina Y. A.; Yang, Jiahua; Pascual, Cherrie B.; Samia, Anna Cristina S.

    2015-01-01

    A laboratory experiment in which students synthesize Ag, Au, and Pt nanoparticles (NPs) and use them to modify screen printed carbon electrodes for the electroanalysis of the hydrogen peroxide content in commercially available teeth whitening strips is described. This experiment is designed for two 3-h laboratory periods and can be adapted for…

  14. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Teo Peik-See

    2014-08-01

    Full Text Available The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE and its simultaneous detection of dopamine (DA and ascorbic acid (AA is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV and differential pulse voltammetry (DPV analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1–9 mM and 0.5–100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3 was found to be 0.42 and 0.12 µM for AA and DA, respectively.

  15. Highly sensitive amperometric sensor for micromolar detection of trichloroacetic acid based on multiwalled carbon nanotubes and Fe(II)–phtalocyanine modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kurd, Masoumeh [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-04-01

    A highly sensitive electrochemical sensor for the detection of trichloroacetic acid (TCA) is developed by subsequent immobilization of phthalocyanine (Pc) and Fe(II) onto multiwalled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode. The GC/MWCNTs/Pc/Fe(II) electrode showed a pair of well-defined and nearly reversible redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) with surface-confined characteristics. The surface coverage (Γ) and heterogeneous electron transfer rate constant (k{sub s}) of immobilized Fe(II)–Pc were calculated as 1.26 × 10{sup −10} mol cm{sup −2} and 28.13 s{sup −1}, respectively. Excellent electrocatalytic activity of the proposed GC/MWCNTs/Pc/Fe(II) system toward TCA reduction has been indicated and the three consequent irreversible peaks for electroreduction of CCl{sub 3}COOH to CH{sub 3}COOH have been clearly seen. The observed chronoamperometric currents are linearly increased with the concentration of TCA at concentration range up to 20 mM. Detection limit and sensitivity of the modified electrode were 2.0 μM and 0.10 μA μM{sup −1} cm{sup −2}, respectively. The applicability of the sensor for TCA detection in real samples was tested. The obtained results suggest that the proposed system can serve as a promising electrochemical platform for TCA detection. Highlights: ► Phthalocyanine (PC) and Fe(II) immobilized onto MWCNTs modified GC electrode. ► A pair of well-defined redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) observed. ► Modified electrode shows excellent catalytic activity to electroreduction of CCl{sub 3}COOH. ► Amperometry and cyclic voltammetry techniques were used for detection of CCl{sub 3}COOH. ► Detection limit and sensitivity were 2.0 μM and 0.10 μA μM{sup −1} cm{sup −2}, respectively.

  16. A hydrogen peroxide sensor based on a horseradish peroxidase/polyaniline/carboxy-functionalized multiwalled carbon nanotube modified gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mu-Yi, E-mail: huamy@mail.cgu.edu.t [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Lin, Yu-Chen [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Tsai, Rung-Ywan [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Rd., Hsinchu 31040, Taiwan (China); Chen, Hsiao-Chien; Liu, Yin-Chih [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China)

    2011-10-30

    We have developed a polyaniline/carboxy-functionalized multiwalled carbon nanotube (PAn/MWCNTCOOH) nanocomposite by blending the emeraldine base form of polyaniline (PAn) and carboxy-functionalized multiwalled carbon nanotubes (MWCNT) in dried dimethyl sulfoxide (DMSO) at room temperature. The conductivity of the resulting PAn/MWCNTCOOH was 3.6 x 10{sup -3} S cm{sup -1}, mainly as a result of the protonation of the PAn with the carboxyl group and the radical cations of the MWCNT fragments. Horseradish peroxidase (HRP) was immobilized within the PAn/MWCNTCOOH nanocomposite modified Au (PAn/MWCNTCOOH/Au) electrode to form HRP/PAn/MWCNTCOOH/Au for use as a hydrogen peroxide (H{sub 2}O{sub 2}) sensor. The adsorption between the negatively charged PAn/MWCNTCOOH nanocomposite and the positively charged HRP resulted in a very good sensitivity to H{sub 2}O{sub 2} and an increased electrochemically catalytical current during cyclic voltammetry. The HRP/PAn/MWCNTCOOH/Au electrode exhibited a broad linear response range for H{sub 2}O{sub 2} concentrations (86 {mu}M-10 mM). This sensor exhibited good sensitivity (194.9 {mu}A mM{sup -1} cm{sup -2}), a fast response time (2.9 s), and good reproducibility and stability at an applied potential of -0.35 V. The construction of the enzymatic sensor demonstrated the potential application of PAn/MWCNTCOOH nanocomposites for the detection of H{sub 2}O{sub 2} with high performance and excellent stability.

  17. Label-free electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, polythionine, and graphene

    International Nuclear Information System (INIS)

    We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility. (author)

  18. Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode.

    Science.gov (United States)

    Prabakaran, E; Pandian, K

    2015-01-01

    A simple and sensitive electrochemical method was developed to determine the concentration of Sudan I in chili powder based on silver nanoparticles decorated graphene oxide modified glassy carbon electrode (AgNPs@GO/GCE). The voltammetry behaviour of Sudan I on modified GCE was investigated in phosphate buffer medium (PBS) with various pH ranges and the electron transfer properties were studied. It is found that the AgNPs@GO/GCE can catalyse the reduction of azo group, -N=N- followed by electrochemical oxidation of (-)OH group present in Sudan I dye molecule. Quantitative detection of Sudan I present in food products was carried out by amperometry method in which reduction potential was fixed at -0.77 V vs. Ag/AgCl. The amperometry method showed an excellent performance with a sensitivity of 6.83 μA mM(-1) and a detection limit of 11.4 × 10(-7)ML(-1). A linear calibration graph was constructed in the ranging 3.90 × 10(-6) to 3.19 × 10(-5)ML(-1). The method was successfully applied for the determination of Sudan I in red chili powder samples.

  19. Sol-gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultra trace sensing of dopamine in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (India); Kumar, Deepak; Madhuri, Rashmi; Tiwari, Mahavir Prasad [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (India)

    2011-08-01

    Highlights: > MWCNTs-CE was prepared by silane acrylate which provides a nanometer thin MIP film. > The sensor was modified by iniferter and MIP using 'surface grafting-from approach'. > A comparative study was performed between differentially designed ceramic electrodes. > The sensor can detect dopamine in real samples with LODs (0.143-0.154 ng mL{sup -1}). - Abstract: A new class of composite electrodes made of sol-gel derived ceramic-multiwalled carbon nanotubes is used for the growth of a nanometer thin film adopting 'surface grafting-from approach'. For this the multiwalled carbon nanotubes-ceramic electrode surface is first modified with an iniferter (benzyl N,N-diethyldithiocarbamate) and then dopamine imprinted polymer, under UV irradiation, for differential pulse anodic stripping voltammetric sensing of dopamine in aqueous, blood serum, cerebrospinal fluid, and pharmaceutical samples (detection limit 0.143-0.154 ng mL{sup -1}, 3{sigma}), without any cross reactivity, interferences and false-positive contributions. Such composite electrodes offer higher stability, electron kinetics, and renewable porous surface of larger electroactive area (with insignificant capacitance) than carbon ceramic electrodes. Additional cyclic voltammetry (stripping mode) and chronocoulometry experiments were performed to explore electrodics and kinetics of electro-oxidation of dopamine.

  20. Application of a nanostructured sensor based on NiO nanoparticles modified carbon paste electrode for determination of methyldopa in the presence of folic acid

    Science.gov (United States)

    Fouladgar, Masoud; Ahmadzadeh, Saeid

    2016-08-01

    A new method for determination of methyldopa in the presence of folic acid has been described in this work. This method is based on modification of carbon paste electrode with NiO nanoparticles and an ionic liquid (1-Butyl-3-methylimidazolium hexafluorophosphate). Electrochemical studies showed that on the surface of modified electrode, oxidation current of methyldopa has been enhanced and shifted to negative potentials. The fabricated electrode exhibited a linear response to concentration of methyldopa from 0.1 to 700.0 μmol L-1. The sensitivity of the modified electrode to methyldopa not changed in the presence of folic acid and simultaneous or independent measurements of them are possible. The performance of proposed method was investigated by determination of methyldopa in real samples.

  1. An amperometric hydrogen peroxide biosensor based on Co{sub 3}O{sub 4} nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra, E-mail: erdenpe@gmail.com; Kiliç, Esma

    2014-08-30

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co{sub 3}O{sub 4}. • Incorporating Co{sub 3}O{sub 4} nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co{sub 3}O{sub 4}/MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co{sub 3}O{sub 4} nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co{sub 3}O{sub 4} nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10{sup −7}–1.9 × 10{sup −5} M with a detection limit of 7.4 × 10{sup −7}. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  2. Application of a Cu-chitosan/multiwalled carbon nanotube film-modified electrode for the sensitive determination of rutin.

    Science.gov (United States)

    Gholivand, Mohammad Bagher; Mohammadi-Behzad, Leila; Hosseinkhani, Hossein

    2016-01-15

    A new sensitive electrochemical sensor, a glassy carbon electrode modified with chemically cross-linked copper-complexed chitosan/multiwalled carbon nanotubes (Cu-CS/MWCNT/GCE), for rutin analysis was constructed. Experimental investigations of the influence of several parameters showed that the rutin can effectively accumulate on the surface of the Cu-CS/MWCNT/GCE, which accumulation caused a pair of well-defined redox peaks in the electrochemical signal when measurements were carried out in Britton-Robinson buffer solution (pH 3, 0.04 M). The surface of the Cu-CS/MWCNT/GCE was characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry analysis. In a rutin concentration range of 0.05-100 μM and under optimized conditions, a linear relationship between the oxidation peak current of rutin and its concentration was obtained with a detection limit of 0.01 μM. The Cu-CS/MWCNT/GCE showed good selectivity, stability, and reproducibility. Moreover, the sensor was used to determine the presence of rutin in fruits with satisfactory results.

  3. Modified nickel electrodes: a review

    International Nuclear Information System (INIS)

    Catalysts in the form of electrode surfaces offer the added dimension of the electrode potential which can be used to manage the catalyst reactivity and in some cases selectivity. The catalytic effect of nickel oxyhydroxide for the electrochemical determination of organics in alkaline media is very common. This has also received substantial thought because of the application of Ni in rechargeable alkaline batteries. This subject matter has been reviewed from different views before. The present review depicts the role of additives and the modifiers towards the enhancement of electro catalytic properties of electrode surface. (author)

  4. Highly selective differential pulse voltammetric determination of phenazopyridine using MgCr2O4 nanoparticles decorated MWCNTs-modified glassy carbon electrode.

    Science.gov (United States)

    Ensafi, Ali A; Arashpour, B; Rezaei, B; Allafchian, Ali R

    2013-11-01

    A selective modified glassy carbon electrode based on multiwall carbon nanotubes decorated with MgCr2O4 nanoparticles was fabricated and used for the determination of phenazopyridine using differential pulse voltammetry. The electrochemical response of the modified electrode toward phenazopyridine was characterized by different electrochemical methods including differential pulse voltammetry (DPV), cyclic voltammetry (CV), and impedance spectroscopy. The prepared electrode showed an efficient synergic effect on the oxidation of phenazopyridine at pH 6.0. The oxidation peak current was proportional to the concentration of phenazopyridine from 0.05 to 7.5 μmol L(-1). The detection limit was 0.025 μmol L(-1). The applicability of the method was confirmed with satisfactory results obtained through the assay of phenazopyridine in human plasma, urine samples, and pharmaceuticals. PMID:23838192

  5. Fabrication of CeO2 Nanoparticle Modified Glassy Carbon Electrode for Ultrasensitive Determination of Trace Amounts of Uric Acid in Urine

    Institute of Scientific and Technical Information of China (English)

    WEI Yan; LI Mao-Guo; FANG Bin

    2007-01-01

    The preparation of a glassy carbon electrode modified by CeO2 nanoparticles was described, which was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. In pH 6.0 buffer, the CeO2 nanoparticle modified electrode (CeO2 NP/GC) gave an excellent electrocatalytic activity for the oxidation of uric acid (UA).The catalytic current of UA versus its concentration had a good linear relation in the range of 2.0 × 10-7-5.0×10-4 mol/L, with the correlation coefficient of 0.9986 and detection limit of 1.0×10-7 mol/L. The modified electrode can be used for the determination of UA in urine, which can tolerate the interference of ascorbic acid up to 1000-fold. The method was simple, quick and sensitive.

  6. Amperometric detection of hydrogen peroxide at nano-nickel oxide/thionine and celestine blue nanocomposite-modified glassy carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 426, Sanandaj (Iran, Islamic Republic of)], E-mail: absalimi@uok.ac.ir

    2009-11-01

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with nickel oxide (NiOx) nanoparticles and water-soluble dyes. By immersing the GC/NiOx modified electrode into thionine (TH) or celestine blue (CB) solutions for a short period of time (5-120 s), a thin film of the proposed molecules was immobilized onto the electrode surface. The modified electrodes showed stable and a well-defined redox couples at a wide pH range (2-12), with surface confined characteristics. In comparison to usual methods for the immobilization of dye molecules, such as electropolymerization or adsorption on the surface of preanodized electrodes, the electrochemical reversibility and stability of these modified electrodes have been improved. The surface coverage and heterogeneous electron transfer rate constants (k{sub s}) of thionin and celestin blue immobilized on a NiOx-GC electrode were approximately 3.5 x 10{sup -10} mol cm{sup -2}, 6.12 s{sup -1}, 5.9 x 10{sup -10} mol cm{sup -2} and 6.58 s{sup -1}, respectively. The results clearly show the high loading ability of the NiOx nanoparticles and great facilitation of the electron transfer between the immobilized TH, CB and NiOx nanoparticles. The modified electrodes show excellent electrocatalytic activity toward hydrogen peroxide reduction at a reduced overpotential. The catalytic rate constants for hydrogen peroxide reduction at GC/NiOx/CB and GC/NiOx/TH were 7.96 ({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1} and 5.5 ({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1}, respectively. The detection limit, sensitivity and linear concentration range for hydrogen peroxide detection were 1.67 {mu}M, 4.14 nA {mu}M{sup -1} nA {mu}M{sup -1} and 5 {mu}M to 20 mM, and 0.36 {mu}M, 7.62 nA {mu}M{sup -1}, and 1 {mu}M to 10 mM for the GC/NiOx/TH and GC/NiOx/CB modified electrodes, respectively. Compared to other modified electrodes, these modified electrodes have many advantages, such as remarkable catalytic activity, good

  7. A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2010-01-01

    Full Text Available A disposable organophosphorus pesticides (OPs enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE has been developed. Firstly, an acetylcholinesterase (AChE-coated Fe3O4/Au (GMP magnetic nanoparticulate (GMP-AChE was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs/nano-ZrO2/prussian blue (PB/Nafion (Nf composite membrane by an external magnetic field. Thus, the biosensor (SPCE|CNTs/ZrO2/PB/Nf|GMP-AChE for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM and X-ray fluorescence spectrometery (XRFS and its electrochemical properties were studied by cyclic voltammetry (CV and differential pulse voltammetry (DPV. The degree of inhibition (A% of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh. In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10-3–10 ng•mL-1 with a detection limit of 5.6 × 10-4 ng•mL-1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis.

  8. Layer-by-Layer Assembly of Silicotungstate Multilayer Films Modified on Glassy Carbon Electrode and Their Electrochemical Behaviors

    International Nuclear Information System (INIS)

    A new electrode was modified by multilayer films composed of heteropolyanion (SiW12) and cationic polymer poly(diallyldimethylammonium chloride) through electrochemical growth. The modified electrode electrochemical behavior, the effect of solution ph and electrocatalytic response to the reduction of BrO3- and NO2- have been investigated. The result shows that the electrochemical process of multilayer films modified electrode including SiW12 is a reversible process by electrochemical step. One-electron process has no proton participation in the first step, and one-electron process is accompanied by one proton participation in the second step and two-electron process is accompanied by two protons participation in the third step. The films grow uniformly, and the peak currents increase with increasing layer numbers. The peak currents increase with scan rate, and the reduced potentials of multilayer films shift negatively with increasing pH. The electrochemical mechanism of multilayer films was suggested

  9. Electrochemical Properties of Modified Carbon Electrodes for Electric Double Layer Capacitors

    OpenAIRE

    Tashima, D.; Sakamoto, A.; Taniguchi, M.; Sakoda, T; Otsubo, M.

    2008-01-01

    To improve capacitance and energy density of electric double layer capacitors (EDLCs), plasma surface treatments were carried out on surface of activated carbon sheets, and optimal conditions for the treatment were discuused. Operating gas pressure of argon was 20 Pa, and activated carbon sheets were set up so that they were covered with the dc glow discharge at 70 W. Electrochemical properties, including cyclic voltammetry (CV) and cole-cole plot of EDLCs in organic electrolyte, were examine...

  10. Morphology and Electrochemical Properties of Thermal Modified Nanoporous Carbon as Electrode of Lithium Power Sources

    Directory of Open Access Journals (Sweden)

    V.I. Mandzyuk

    2014-04-01

    Full Text Available The paper explored the effect of thermal modification on morphology of porous carbon material and specific energy parameters of lithium power sources formed on it bases. The structural and sorption properties of these materials – specific surface area, micropore surface, total pore volume, micropore volume, average pore diameter, are defined by low-temperature porometry method. The electro-stimulated diffusion coefficient of lithium ions into porous carbon material is calculated on the bases of galvanostatic intermittent titration.

  11. A Novel Electrochemical Sensor for Probing Doxepin Created on a Glassy Carbon Electrode Modified with Poly(4-Amino- benzoic Acid/Multi-Walled Carbon Nanotubes Composite Film

    Directory of Open Access Journals (Sweden)

    Ji-Lie Kong

    2010-09-01

    Full Text Available A novel electrochemical sensor for sensitive detection of doxepin was prepared, which was based on a glassy carbon electrode modified with poly(4-aminobenzoic acid/multi-walled carbon nanotubes composite film [poly(4-ABA/MWNTs/GCE]. The sensor was characterized by scanning electron microscopy and electrochemical methods. It was observed that poly(4-ABA/MWNTs/GCE showed excellent preconcentration function and electrocatalytic activities towards doxepin. Under the selected conditions, the anodic peak current was linear to the logarithm of doxepin concentration in the range from 1.0 ´ 10−9 to 1.0 ´ 10−6 M, and the detection limit obtained was 1.0 × 10−10 M. The poly(4-ABA/MWNTs/GCE was successfully applied in the measurement of doxepin in commercial pharmaceutical formulations, and the analytical accuracy was confirmed by comparison with a conventional ultraviolet spectrophotometry assay.

  12. Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550 mV in linear sweep voltammograms at pH 7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10 nM to 104 nM, the correlation coefficient being 0.9983, and the detection limit (S/N = 3) being 5.0 nM. The method was successfully applied to the determination of BPA in food package. (author)

  13. Gold Nanoparticle-based Layer-by-Layer Enhancement of DNA Hybridization Electrochemical Signal at Carbon Nanotube Modified Carbon Paste Electrode

    Institute of Scientific and Technical Information of China (English)

    Li Bo NIE; Jian Rong CHEN; Yu Qing MIAO; Nong Yue HE

    2006-01-01

    Colloid gold nanoparticle-based layer-by-layer amplification approach was applied to enhance the electrochemical detection sensitivity of DNA hybridization at carbon nanotube modified carbon paste electrodes (CNTPEs). Streptavidin was immobilized onto the surface of CNTPEs, and the conjugation of biotin labeled target oligonucleotides to the above immobilized streptavidin was performed, followed by the hybridization of target oligonucleotides with the gold nanoparticle-labeled DNA probe and then the layer-by-layer enhanced connection of gold nanoparticles, on which oligonucleotides complementary to the DNA probe were attached, to the hybridization system. The differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the layer-by-layer colloidal gold DPV detection enhanced the sensitivity by about one order of magnitude compared with that of one-layer detection. One-base mismatched DNA and complementary DNA could be distinguished clearly.

  14. Studies on electrochemical behaviour on NpO{sub 2}{sup 2+}/NpO{sub 2}{sup +} redox couple at single walled carbon nanotube modified glassy carbon electrode (SWCNT-GC)

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ruma; Kamat, J.V.; Aggarwal, Suresh K. [Bhabha Atomic Research Centre, Mumbai (India). Fuel Chemistry Div.

    2014-07-01

    Electrochemistry of NpO{sub 2}{sup 2+}/NpO{sub 2}{sup +} couple in 1 M H{sub 2}SO{sub 4} was studied on bare and modified glassy carbon (GC) electrodes by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The modified electrode (SWCNTs-GC) was characterized by scanning electron microscopy (SEM). Electrocatalysis of NpO{sub 2}{sup 2+}/NpO{sub 2}{sup +} redox reaction was observed on SWCNT-GC electrode. The lower charge transfer resistance at SWCNT-GC reflects faster rate of electron transfer reaction of Np(VI)/Np(V) couple. These results are interesting to develop electroanalytical methodologies for neptunium determination using SWCNT modified electrode. To the best of our knowledge, this is the first study on the electrocatalysis of neptunium on SWCNT modified electrode.

  15. Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine-nafion ion-pair as an electron mediator

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed [Department of Chemistry, Sharif University of Technology, Tehran 11365-9516 (Iran, Islamic Republic of)]. E-mail: shahrokhian@sharif.edu; Ghalkhani, Masoumeh [Department of Chemistry, Sharif University of Technology, Tehran 11365-9516 (Iran, Islamic Republic of)

    2006-03-05

    The electrochemical behavior of ascorbic acid (AA) and uric acid (UA) at the surface of a carbon-paste electrode modified with incorporate thionine-nafion ion-paired was thoroughly investigated. The results show the presence of nafion inside the matrix of modified electrode, because of the effective ion-pairing and hydrophobic interactions, significantly enhances the stability of thionine as an electron mediator inside the modified electrode. A high reproducibility in voltammetric response to analyte species results because of this enhancement. The cyclic voltammetric studies using the prepared modified electrode show the best electrocatalytic property for the electro-oxidation of AA and noticeable decrease in anodic overpotential. Although the catalytic effect is observed to some extent for UA, the property cannot be seen for other biologically reducing agents such as cysteine. The voltammetric studies using the thionine-nafion modified electrode show two well-resolved anodic peaks for AA and UA, revealing the possibility of the simultaneous electrochemical detection of these compounds in the presence of biological thiols. The detection limits of 5 x 10{sup -8} and 5 x 10{sup -7} M were obtained in differential pulse voltammetric (DPV) measurements for UA and AA, respectively. Spectrophotometric investigations were used to confirm the selective catalytic effect of thionine in oxidation of AA and to some extent, UA. The detection system is stable (R.S.D. for the slope of the calibration curves was less than 4% for six measurements in one month) and is of high selectivity for electro-oxidation of AA and UA in complex biological and clinical matrices. The prepared modified electrode is applied for the DPV measurement of AA in pharmaceutical preparations. Also, the electrode is used to determine UA in human urine and serum samples and recovery of the amounts of UA added to these complex samples.

  16. Amperometric Biosensors Based on Carbon Paste Electrodes Modified with Nanostructured Mixed-valence Manganese Oxides and Glucose Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured multivalent manganese oxides octahedral molecular sieve (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. Amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes (CPEs) with glucose oxidase as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs. Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mM and 1.75 mM, and detection limits (S/N = 3) of 0.1 mM and 0.05 mM for todorokite-type manganese oxide and cryptomelane-type manganese oxide modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  17. Amperometric biosensors based on carbon paste electrodes modified with nanostructured mixed-valence manganese oxides and glucose oxidase.

    Science.gov (United States)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured, multivalent, manganese-oxide octahedral molecular sieves (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with subnanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. With glucose oxidase (GOx) as an enzyme model, amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes with GOx as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mmol/L and 1.75 mmol/L, and detection limits (S/N = 3) of 0.1 mmol/L and 0.05 mmol/L for todorokite-type manganese oxide and cryptomelane-type manganese oxide-modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  18. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s−1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L−1 with a detection limit of 0.0153 mmol L−1 (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L−1 with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L−1 with a detection limit of 0.282 μmol L−1 (3σ). So the proposed electrode had the

  19. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Cao, Lili; Deng, Ying; Gong, Shixing [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Shi, Fan; Li, Gaonan; Sun, Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China)

    2013-06-05

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k{sub s}) as 0.97 s{sup −1}. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L{sup −1} with a detection limit of 0.0153 mmol L{sup −1} (3σ), H{sub 2}O{sub 2} in the concentration range from 0.1 to 516.0 mmol L{sup −1} with a detection limit of 34.9 nmol/L (3σ) and NaNO{sub 2} in the concentration range from 0.5 to 650.0 mmol L{sup −1} with a detection limit of 0

  20. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Afraz, Ahmadreza [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan (Iran, Islamic Republic of); Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan (Iran, Islamic Republic of); Najafi, Mojgan [Department of Materials Engineering, Hamedan University of Technology (HUT), 65169 Hamedan (Iran, Islamic Republic of)

    2014-11-01

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. - Highlights: • New method for simultaneous determination of AA, DA and UA was developed. • MWCNT/ionic liquid/cauliflower-like Au nanostructure was used for CPE modification. • Optimization of electrode composition was done by Design-Expert software. • The pH effect, peak separation mechanism and real samples was thoroughly studied.

  1. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: • A novel and reliable AgNPs/SF-GR modified glassy carbon electrode was constructed and characterized. • The AgNPs/SF-GR/GCE was successfully applied in the shrimp for simultaneous determination of MTZ and CAP. • Under optimized conditions, common substances such as UA, AA, DA and ion did not interfered in the electrode performance. • The modified electrode exhibited considerable sensitivity, stability and reproducibility. • This fabricated electrode achieved a satisfactory level compared with other electrodes toward MTZ and CAP. -- Abstract: A novel silver nanoparticles/sulfonated functionalized graphene modified glassy carbon electrode (AgNPs/SF-GR/GCE) was fabricated to determine chloramphenicol and metronidazole simultaneously. Taking advantage of sulfonic group, AgNPs were successfully electrodeposited on functionalized GR immobilized on the surface of a GCE. Scanning electron microscopy and energy spectrum analysis results confirmed that AgNPs were deposited on the functionalized GR film. Compared to the bare GCE or the pristine SF-GR modified electrode, AgNPs/SF-GR/GCE exhibited excellent electroreduction towards chloramphenicol and metronidazole. In addition, the two antibacterial drugs were separated completely in 0.10 M citric acid-sodium citrate buffer (pH 4.0) by differential pulse stripping voltammetry under optimum conditions. The cathodic current was linearly related with 0.02∼20.0 μM chloramphenicol and 0.10∼20.0 μM metronidazole, with the detection limits of 0.01 μM and 0.05 μM respectively. Furthermore, AgNPs/SF-GR/GCE was applied to the simultaneous determination of chloramphenicol and metronidazole in an aquatic product

  2. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5′-monophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Xu, Li; Zhu, Huanhuan [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Sun, Zhenfan [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Sun, Wei, E-mail: swyy26@hotmail.com [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5′-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. - Highlights: • A graphene, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite were prepared. • Composite-modified carbon molecular wire electrode was fabricated and characterized. • A sensitive electrochemical method for the detection of adenosine-5′-monophosphate was established.

  3. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5′-monophosphate

    International Nuclear Information System (INIS)

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5′-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. - Highlights: • A graphene, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite were prepared. • Composite-modified carbon molecular wire electrode was fabricated and characterized. • A sensitive electrochemical method for the detection of adenosine-5′-monophosphate was established

  4. Fabrication of folic acid sensor based on the Cu doped SnO2 nanoparticles modified glassy carbon electrode

    Science.gov (United States)

    Lavanya, N.; Radhakrishnan, S.; Sudhan, N.; Sekar, C.; Leonardi, S. G.; Cannilla, C.; Neri, G.

    2014-07-01

    A novel folic acid biosensor has been fabricated using Cu doped SnO2 nanoparticles (NPs) synthesized by a simple microwave irradiation method. Powder XRD and TEM studies confirmed that both the pure and Cu doped SnO2 (Cu: 0, 10, 20wt%) crystallized in tetragonal rutile-type structure with spherical morphology. The average crystallite size of pure SnO2 was estimated to be around 16 nm. Upon doping, the crystallite sizes decreased to 9 nm and 5 nm for 10 and 20wt% Cu doped SnO2 respectively. XPS studies confirmed the electronic state of Sn and Cu to be 4+ and 2+ respectively. Cu (20wt%) doped SnO2 NPs are proved to be a good sensing element for the determination of folic acid (FA). Cu-SnO2 NPs (20wt%) modified glassy carbon electrode (GCE) exhibited the lowest detection limit of 0.024 nM over a wide folic acid concentration range of 1.0 × 10-10 to 6.7 × 10-5 M at physiological pH of 7.0. The fabricated sensor is highly selective towards the determination of FA even in the presence of a 100 fold excess of common interferent ascorbic acid. The sensor proved to be useful for the estimation of FA content in pharmaceutical sample with satisfactory recovery.

  5. Highly sensitive nonenzymatic glucose sensor based on nickel nanoparticle-attapulgite-reduced graphene oxide-modified glassy carbon electrode.

    Science.gov (United States)

    Shen, Zongxu; Gao, Wenyu; Li, Pei; Wang, Xiaofang; Zheng, Qing; Wu, Hao; Ma, Yuehui; Guan, Weijun; Wu, Songmei; Yu, Yu; Ding, Kejian

    2016-10-01

    In this article, a fast and sensitive nonenzymatic glucose sensor is reported utilizing a glassy carbon electrode modified by synthesizing nanocomposites of nickel nanoparticle-attapulgite-reduced graphene oxide (Ni NPs/ATP/RGO). A facile one-step electrochemical co-deposition approach is adopted to synthesize Ni NPs-ATP-RGO nanocomposites via electrochemical reduction of mixed precursor solution containing graphene oxide (GO), attapulgite (ATP) and nickel cations (Ni(2+)) at the cathode potentials. This strategy results in simultaneous depositions of ATP, cathodic reduction of Ni(2+) into nickel nanoparticles under acidic conditions, and in situ reduction of GO. The as-prepared NiNPs/ATP/RGO-based glucose sensor exhibits outstanding performance for enzymeless glucose sensing with sensitivity (1414.4 μAmM(-1)cm(-2)), linear range (1-710μM) and detection limit (0.37μM). What is more, the sensor has excellent stability and selectivity against common interferences in real sample. PMID:27474298

  6. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide–Au nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhuo, E-mail: guozhuochina@syuct.edu.cn [Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); Wang, Ze-yu [Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); Wang, Hui-hua, E-mail: hhwang@suda.edu.cn [Shagang School of Iron and Steel, Soochow University, Suzhou 215021 (China); Huang, Guo-qing; Li, Meng-meng [Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China)

    2015-12-01

    A sensitive electrochemical sensor has been fabricated to detect Isoniazid (INZ) using reduced graphene oxide (RGO) and Au nanocomposites (RGO–Au). RGO–Au nanocomposites were synthesized by a solution-based approach of chemical co-reduction of Au(III) and graphene oxide (GO), and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and Fourier transform infrared (FT-IR). The Au nanoparticles separate the RGO sheets in the precipitate and prevent RGO sheets from aggregation upon π–π stacking interactions. RGO–Au nanocomposites were used to modify the glassy carbon electrode (GCE). The electrochemical properties of RGO–Au/GCE were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the RGO–Au/GCE exhibited remarkably strong electrocatalytic activities towards INZ. Under the optimized conditions, there was linear relationships between the peak currents and the concentrations in the range of 1.0 × 10{sup −7} M to 1.0 × 10{sup −3} M for INZ, with the limit of detection (LOD) (based on S/N = 3) of 1.0 × 10{sup −8} M for INZ. - Highlights: • RGO–Au nanocomposites were synthesized and characterized by chemical co-reduction of Au (III) and GO. • RGO–Au/GCE was used as a sensitive electrochemical sensor to detect Isoniazid. • RGO–Au/GCE exhibited strong electrocatalytic activities towards Isoniazid.

  7. Glassy carbon electrode modified with a graphene oxide/poly(o-phenylenediamine) composite for the chemical detection of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van Hoa [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang (Viet Nam); Tran, Trung Hieu [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of)

    2014-11-01

    Conducting poly(o-phenylenediamine) (POPD)/graphene oxide (GO) composites were prepared using a facile and efficient method involving the in-situ polymerization of OPD in the presence of GO in an aqueous medium. Copper sulfate was used as an oxidative initiator for the polymerization of OPD. Scanning electron microscopy and transmission electron microscopy images showed that POPD microfibrils were formed and distributed relatively uniformly with GO sheets in the obtained composites. X-ray diffraction results revealed the highly crystal structure of POPD. This composite exhibited good catalytic activity and stability. These results highlight the potential applications of POPD/GO composites as excellent electrochemical sensors. The composites were used to modify glass carbon electrodes for the chemical detection of hydrogen peroxide in aqueous media. - Highlights: • Graphene oxide/poly(o-phenylenediamine) composites were prepared efficiently. • POPD microfibrils were distributed relatively uniformly with GO sheets. • The composite exhibited good catalytic activity and stability for H{sub 2}O{sub 2} sensing.

  8. A study of nanostructured gold modified glassy carbon electrode for the determination of trace Cr(VI)

    Indian Academy of Sciences (India)

    Benzhi Liu; Liyuan Lu; Min Wang; Yanqin Zi

    2008-09-01

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles were deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analysed to ensure that common interference in the determination of chromium(VI) by square wave voltammetry, do not influence the electrochemical response of the latter element. The results show that this method allows for Cr(VI) determinations with a much lower detection limit (0.01 g L-1) in the presence of excess of Cr(III) than the commonly used diethylenetriammine pentaacetic acid (DTPA) method. The method was applied to determine levels of chromium(VI) in tap water and sewage water.

  9. Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p-aminophenol: Optimisation and application in alkaline phosphatase-based assays

    Energy Technology Data Exchange (ETDEWEB)

    Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Queipo, Paula [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo, Asturias (Spain); Fanjul-Bolado, Pablo [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-05-12

    Carboxylated multiwalled carbon nanotubes (MWCNT-COOH) were used to modify the working electrode surface of different screen-printed electrodes. The effect of this modification on the electrodic characteristics (double layer capacitance, electroactive area and heterogeneous rate constants for the electron transfer) was evaluated and optimized for the cyclic voltammetric determination of p-aminophenol. The enzymatic hydrolysis of p-aminophenylphosphate was employed for the quantification of alkaline phosphatase, one of the most important label enzymes in immunoassays. Finally, ELISA assays were carried out to quantify pneumolysin using this enzymatic system. Results obtained indicated that low superficial densities of MWCNT-COOH (0.03-0.06 {mu}g mm{sup -2}) yielded the same electrodic improvements but with better analytical properties.

  10. A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles–modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Arvand, Majid, E-mail: arvand@guilan.ac.ir; Dehsaraei, Mohammad

    2013-08-01

    Folic acid (FA) is a water soluble vitamin that exists in many natural species. The lack of FA causes some deficiencies in human body, so finding a simple and sensitive method for determining the FA is important. A new chemically modified electrode was fabricated for determination of FA in human blood plasma using gold nanoparticles (AuNPs) and carbon paste electrode (CPE). Gold nanoparticles–modified carbon paste electrode (AuNPs/CPE) was characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experimental parameters such as pH, scan rate (ν) and amount of modifier were studied by cyclic voltammetry and the optimized values were chosen. The electrochemical parameters such as diffusion coefficient of FA (D{sub FA}), electrode surface area (A) and electron transfer coefficient (α) were calculated. Square wave voltammetry as an accurate technique was used for quantitative calculations. A good linear relation was observed between anodic peak current (i{sub pa}) and FA concentration (C{sub FA}) in the range of 6 × 10{sup −8} to 8 × 10{sup −5} mol L{sup −1}, and the detection limit (LOD) achieved 2.7 × 10{sup −8} mol L{sup −1}, that is comparable with recently studies. This paper demonstrated a novel, simple, selective and rapid sensor for determining the FA in the biological samples. - Highlights: • We examine a AuNPs/CPE for direct electrooxidation behavior and determination of FA. • Characterization of the electrode showed an obvious increase in surface area and porosity after modification. • The modified electrode showed good ability to distinguish the electrochemical response of FA. • The results were attributed to the specific characteristics of AuNPs present in the AuNPs/CPE. • This paper demonstrated a simple and rapid sensor for determination of FA in plasma.

  11. Determination of lead(Ⅱ) using sodium phytic acid modified glassy carbon electrode%植酸钠修饰玻碳电极测定铅(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    阮勇; 朱艳; 龙丽; 黄杉生

    2012-01-01

      A sodium phytic acid modified electrode was prepared by coating solution containing phytic acid on the surface of glassy carbon electrode. The electrochemical behavior of Pb2+at modified electrode were investigated by electrochemical methods and the measurement conditions were optimized. Compared with the bare glassy carbon electrode, the modified electrode showed good characteristics in the response current for Pb2+, lower detection limit and fast analysis. Under the best experimental condition, the peak current of Pb2+has good linearity with concentra-tion in the range of 1.2×10-6~1.2×10-5 mol/L with a detection limit of 8×10-7 mol/L. The modified electrode pre-pared simply showed good stability%  采用涂覆法制备了植酸钠修饰电极,采用电化学方法研究了Pb2+在修饰玻碳电极上的电化学行为,对测定条件进行了优化.与裸玻碳电极相比较,Pb2+在修饰电极上的峰电流强度明显提高,该方法检出限低、分析速度快.在最佳实验条件下,Pb2+在1.2×10-6~1.2×10-5 mol/L的浓度范围内与其峰电流呈良好的线性关系,检出限为8.0×10-7 mol/L.该修饰电极制备简单,稳定性好

  12. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    International Nuclear Information System (INIS)

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s-1 in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  13. Voltammetric determination of isoproterenol using a 5-amino-2′,4′-dimethoxybiphenyl-2-ol modified carbon nanotube paste electrode

    Institute of Scientific and Technical Information of China (English)

    Hadi Beitollahi; Hojatollah Khabazzadeh; Hassan Karimi-Maleh; Ali Akbari

    2012-01-01

    A new electrochemical sensor for determination ofisoproterenol (IP) is described.The sensor is based on carbon paste electrode (CPE) modified with 5-amino-2',4'-dimethoxybiphenyl-2-ol (5ADMB) and takes the advantages of carbon nanotubes (CNTs).Under the optimum pH of 7.0,the oxidation of IP occurs at a potential about 210 mV less positive than that of the unmodified CPE.The oxidation currents increased linearly with two concentration intervals of IP,one is 0.09 to 20.0 μmol/L and,the other is 20.0 to 400.0 μmol/L.The detection limit (3σ) obtained by square wave voltammetry (SWV) was 39.0 nmol/L.The practical application of the modified electrode was demonstrated by determining IP in IP ampoule,urine and human blood serum samples.

  14. A rapid and sensitive method for hydroxyl radical detection on a microfluidic chip using an N-doped porous carbon nanofiber modified pencil graphite electrode.

    Science.gov (United States)

    Ouyang, Jun; Li, Zhong-Qiu; Zhang, Jing; Wang, Chen; Wang, Jiong; Xia, Xing-Hua; Zhou, Guo-Jun

    2014-07-01

    Hydroxyl radicals (˙OH) play an important role in human diseases. Traditional detection methods are time consuming and require expensive instruments. Here, we present a simple and sensitive method for the detection of hydroxyl radicals on a microfluidic chip using an electrochemical technique. Aniline monomer is electrochemically polymerized on the surface of a pencil graphite electrode and carbonized at 800 °C. The resulting N-doped porous carbon nanofiber-modified pencil graphite electrode is embedded into a microfluidic chip directly as a working electrode. 4-Hydroxybenzoic acid (4-HBA) is selected as the trapping agent owing to its unique 3,4-DHBA product and high trapping efficiency. A low detection limit of 1.0 × 10(-6) M is achieved on the microfluidic chip. As a demonstration, the microfluidic chip is successfully utilized for the detection of ˙OH in cigarette smoke. The strong π-π stacking and hydrophobic interactions between the nitrogen-doped carbon materials and the pencil graphite make the modified electrode well-suited for the microfluidic chip.

  15. Glassy carbon electrode modified by graphene–gold nanocomposite coating for detection of trace lead ions in acetate buffer solution

    International Nuclear Information System (INIS)

    Reduced graphene oxide (RGO) decorated with gold nanoparticles (AuNPs) was electrodeposited on glassy carbon electrode (GCE) using cyclic voltammetric method. The results of Raman spectroscopy confirmed the simultaneous formation of AuNPs and reduction of graphene oxide through the electrodeposition process. Scanning electron microscopic measurements showed a uniform distribution of the AuNPs on the RGO sheets. The RGO-AuNP nanocomposite coated GCE (G–Au/GCE) was used to detect lead ions (Pb2+) contained in a 0.1 M acetate buffer solution (pH 5.3) using square wave anodic stripping voltammetry (SWASV). The G–Au/GCE demonstrated higher detection sensitivity and stronger SWASV signals than the bare GCE, with the limit of detection of about 0.8 nM. - Highlights: • Graphene with gold nanoparticles was electrodeposited on glassy carbon electrode. • The prepared electrode was able to detect trace lead ions at nM concentration. • Interference study against copper confirmed the selectivity of the electrode for lead. • The prepared electrode showed a promising recovery tested in tap water samples

  16. Glassy carbon electrode modified by graphene–gold nanocomposite coating for detection of trace lead ions in acetate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Pui Mun [Interdisplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Environmental Chemistry and Materials Group (ECMG), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, Zhaomeng [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Xiaoxu [Heilongjiang University of Science and Technology, Harbin 150027 (China); Chen, Zhong [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Erjia, E-mail: MEJLiu@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2015-06-01

    Reduced graphene oxide (RGO) decorated with gold nanoparticles (AuNPs) was electrodeposited on glassy carbon electrode (GCE) using cyclic voltammetric method. The results of Raman spectroscopy confirmed the simultaneous formation of AuNPs and reduction of graphene oxide through the electrodeposition process. Scanning electron microscopic measurements showed a uniform distribution of the AuNPs on the RGO sheets. The RGO-AuNP nanocomposite coated GCE (G–Au/GCE) was used to detect lead ions (Pb{sup 2+}) contained in a 0.1 M acetate buffer solution (pH 5.3) using square wave anodic stripping voltammetry (SWASV). The G–Au/GCE demonstrated higher detection sensitivity and stronger SWASV signals than the bare GCE, with the limit of detection of about 0.8 nM. - Highlights: • Graphene with gold nanoparticles was electrodeposited on glassy carbon electrode. • The prepared electrode was able to detect trace lead ions at nM concentration. • Interference study against copper confirmed the selectivity of the electrode for lead. • The prepared electrode showed a promising recovery tested in tap water samples.

  17. Determination of Lead Ion by a Modified Carbon Paste Electrode Based on Multi-Walled Carbon Nanotubes (MWCNTs andLigand (N-(4-Hydroxyphenyl Ethanamide

    Directory of Open Access Journals (Sweden)

    Marzieh Bagheri

    2015-06-01

    Full Text Available The preparation of a new modified carbon paste electrode (CPEto measure lead ion has been reported in this study. Lead is a highly toxic element which can have a negative impact on the environment. Therefore, measurement of lead in aquatic environments is very important. Although several methods have been developed for determination of lead ion in aquatic environments, there is no a cheap, simple, accurate and rapid method to measure this ion. Aim of this study is to develop a new method to measure the lead based on using multi walls carbon nanotubes (MWCNTs and Paracetamol as an ionophore for modificationof a CPE.The optimum composition of modified CPE was determined as 64% of graphite powder, 20% of paraffin oil, 12% of nanotube and 4% of ionophore.This optimum composition was shown high selectivity, with appropriate Nernestian slope (-29.73 mV/decade, linear range (from 1.0×10-1to 1.0×10-8M, low lead concentration detection limit (7.5×10-9M and good response time (equal of 25 sec.The results of this study to introduce a cheap, accurate and simple method for determination of lead ion in aquatic environments.

  18. Determination of Lead Ion by a Modified Carbon Paste Electrode Based on Multi-Walled Carbon Nanotubes (MWCNTs and Ligand (N-(4-Hydroxyphenyl Ethanamide

    Directory of Open Access Journals (Sweden)

    Marzieh Bagheri

    2015-06-01

    Full Text Available The preparation of a new modified carbon paste electrode (CPE to measure lead ion has been reported in this study. Lead is a highly toxic element which can have a negative impact on the environment. Therefore, measurement of lead in aquatic environments is very important. Although several methods have been developed for determination of lead ion in aquatic environments, there is no a cheap, simple, accurate and rapid method to measure this ion. Aim of this study is to develop a new method to measure the lead based on using multi walls carbon nanotubes (MWCNTs and Paracetamol as an ionophore for modification of a CPE. The optimum composition of modified CPE was determined as 64% of graphite powder, 20% of paraffin oil, 12% of nanotube and 4% of ionophore. This optimum composition was shown high selectivity, with appropriate Nernestian slope (-29.73 mV/decade, linear range (from 1.0×10-1to 1.0×10-8M, low lead concentration detection limit (7.5×10-9M and good response time (equal of 25 sec.The results of this study to introduce a cheap, accurate and simple method for determination of lead ion in aquatic environments.

  19. Prussian Blue Modified Solid Carbon Nanorod Whisker Paste Composite Electrodes: Evaluation towards the Electroanalytical Sensing of H2O2

    Directory of Open Access Journals (Sweden)

    Carolin Siimenson

    2012-01-01

    Full Text Available Metallic impurity free solid carbon nanorod “Whiskers” (SCNR Whiskers, a derivative of carbon nanotubes, are explored in the fabrication of a Prussian Blue composite electrode and critically evaluated towards the mediated electroanalytical sensing of H2O2. The sensitivity and detection limits for H2O2 on the paste electrodes containing 20% (w/w Prussian Blue, mineral oil, and carbon nanorod whiskers were explored and found to be 120 mA/(M cm2 and 4.1 μM, respectively, over the concentration range 0.01 to 0.10 mM. Charge transfer constant for the 20% Prussian Blue containing SCNR Whiskers paste electrode was calculated, for the reduction of Prussian Blue to Prussian White, to reveal a value of 1.8±0.2 1/s (α=0.43, N=3. Surprisingly, our studies indicate that these metallic impurity-free SCNR Whiskers, in this configuration, behave electrochemically similar to that of an electrode constructed from graphite.

  20. Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples

    International Nuclear Information System (INIS)

    Graphical abstract: A simple one-step electrodeposition method was used to fabricate a Cu doped gold nanoparticles modified glassy carbon electrode. An electrochemical reaction mechanism for o-methoxy phenols was suggested. In addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples. - Highlights: • One-step construction of the Cu@AuNPs/GCE electrode. • The modified electrode showed high sensitivity for the analysis of eugenol. • Electrochemical mechanism of eugenol by use of Cu@AuNPs/GCE was inferred. • The novel method was successfully employed for analysis of eugenol in food samples. - Abstract: A simple one-step electrodeposition method was used to construct a glassy carbon electrode (GCE), which has been modified with Cu doped gold nanoparticles (GNPs), i.e. a Cu@AuNPs/GCE. This electrode was characterized with the use of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The eugenol was electrocatalytically oxidized at the Cu@AuNPs/GCE. At this electrode, in comparison with the behavior at the GCE alone, the corresponding oxidation peak current was enhanced and the shift of the oxidation potentials to lower values was observed. Electrochemical behavior of eugenol at the Cu@AuNPs/GCE was investigated with the use of the cyclic voltammetry (CV) technique, and additionally, in order to confirm the electrochemical reaction mechanism for o-methoxy phenols, CVs for catechol, guaiacol and vanillin were investigated consecutively. Based on this work, an electrochemical reaction mechanism for o-methoxy phenols was suggested, and in addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples

  1. Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine

    Directory of Open Access Journals (Sweden)

    Apetrei IM

    2013-11-01

    Full Text Available Irina Mirela Apetrei,1 Constantin Apetrei21Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, 2Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, RomaniaAbstract: A biosensor comprising tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode has been developed. The sensitive element, ie, tyrosinase, was immobilized using a drop-and-dry method followed by cross-linking. Tyrosinase maintained high bioactivity on this nanomaterial, catalyzing the oxidation of epinephrine to epinephrine-quinone, which was electrochemically reduced (-0.07 V versus Ag/AgCl on the biosensor surface. Under optimum conditions, the biosensor showed a linear response in the range of 10–110 µM. The limit of detection was calculated to be 2.54 µM with a correlation coefficient of 0.977. The repeatability, expressed as the relative standard deviation for five consecutive determinations of 10-5 M epinephrine solution was 3.4%. A good correlation was obtained between results obtained by the biosensor and those obtained by ultraviolet spectrophotometric methods.Keywords: amperometry, single-walled carbon nanotubes, spectrophotometry, catecholamine, pharmaceutical formula

  2. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa.

    Science.gov (United States)

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH=7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol-gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more--NH2 reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N=3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility.

  3. Synthesis and Characterization of Ferrocene Derivatives and Preliminarily Electrocatalytic Oxidation of L-Cysteine at Nafion-Ferrocene Derivatives Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jianping Yong

    2014-01-01

    Full Text Available Five new structural ferrocene derivatives (2a~2e were firstly synthesized and characterized by 1H NMR, 13C NMR, ESI-MS, and XRD. Subsequently, the preliminarily electrocatalytic oxidation of L-cysteine (L-Cys at nafion-ferrocene derivatives modified glassy carbon electrode (GCE has also been investigated by cyclic voltammetry. The results showed that 2e can dramatically electrocatalyze the oxidation of L-cysteine at its modified GCE in 0.1 mol L−1 NaNO3 aqueous solution with a quasireversible process with ΔEp≈55 mV.

  4. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits.

    Science.gov (United States)

    Zhou, Jian; Li, Xi; Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan; Zhang, Chaocan

    2015-10-29

    A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L(-1) (RHQ = 0.9999) for HQ and 0.1-1150 μmol L(-1) (RCT = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L(-1), respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results.

  5. Characterisation of poly(neutral red) modified carbon film electrodes; application as a redox mediator for biosensors

    OpenAIRE

    Pauliukaite, Rasa; Ghica, Mariana; Barsan, Madalina; Brett, Christopher

    2007-01-01

    Abstract The polymer redox mediator, poly(neutral red) (PNR), has been synthesised and characterised electrochemically to investigate the best electropolymerisation and mediation conditions for application in enzyme biosensors and to clarify the mechanism of action. Neutral red was electropolymerised by potential cycling on carbon film electrode substrates by allowing the monomer to be oxidised during the full 20 cycles of polymerisation or reducing the positive limit of the potential window...

  6. A Hydrogen Peroxide Biosensor Combined HRP Doped Polypyrrole with Ferrocene Modified Sol-gel Derived Composite Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel amperometric biosensor for the detection of hydrogen peroxide is described.The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gives response to hydrogen peroxide in a few seconds with detection limit of 5×l0-7 mol · L-1(based on signal: noise=3). Linear range is up to 0.2 mmol · L-1.

  7. Preparation of electrochemically reduced graphene oxide/multi-wall carbon nanotubes hybrid film modified electrode, and its application to amperometric sensing of rutin

    Indian Academy of Sciences (India)

    Uling Yang; Gang Li; Meifang Hu; Lingbo Qu

    2014-07-01

    Through a facile electrochemical method, we prepared an electrochemically reduced graphene oxide (ERGO)/multi-wall carbon nanotubes (MWNTs) hybrid film modified glassy carbon electrode (GCE), and characterized it by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray diffraction (XRD) The experimental results demonstrated that ERGO-MWNTs/GCE exhibited excellent electrocatalytic activity toward rutin as evidenced by the significant enhancement of redox peak currents in comparison with a bare GCE, ERGO/GCE and MWNTs/GCE. This method has been applied for the direct determination of rutin in real samples with satisfactory results.

  8. Hydrogen peroxide biosensor based on gold nanoparticles/thionine/gold nanoparticles/multi-walled carbon nanotubes-chitosans composite film-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li Shenfeng; Zhu Xiaoying; Zhang Wei; Xie Guoming [Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Feng Wenli, E-mail: fengwlcqmu@sina.com [Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2012-01-15

    In this paper, an amperometric electrochemical biosensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}), based on gold nanoparticles (GNPs)/thionine (Thi)/GNPs/multi-walled carbon nanotubes (MWCNTs)-chitosans (Chits) composite film was developed. MWCNTs-Chits homogeneous composite was first dispersed in acetic acid solution and then the GNPs were in situ synthesized at the composite. The mixture was dripped on the glassy carbon electrode (GCE) and then the Thi was deposited by electropolymerization by Au-S or Au-N covalent bond effect and electrostatic adsorption effect as an electron transfer mediator. Finally, the mixture of GNPs and horseradish peroxidase (HRP) was assembled onto the modified electrode by covalent bond. The electrochemical behavior of the modified electrode was investigated by scanning electron microscope, cyclic voltammetry and chronoamperometry. This study introduces the in situ-synthesized GNPs on the other surface of the modified materials in H{sub 2}O{sub 2} detection. The linear response range of the biosensor to H{sub 2}O{sub 2} concentration was from 5 Multiplication-Sign 10{sup -7} mol L{sup -1} to 1.5 Multiplication-Sign 10{sup -3} mol L{sup -1} with a detection limit of 3.75 Multiplication-Sign 10{sup -8} mol L{sup -1} (based on S/N = 3).

  9. Development of sensitive amperometric hydrogen peroxide sensor using a CuNPs/MB/MWCNT-C60-Cs-IL nanocomposite modified glassy carbon electrode.

    Science.gov (United States)

    Roushani, Mahmoud; Bakyas, Kobra; Zare Dizajdizi, Behruz

    2016-07-01

    A sensitive hydrogen peroxide (H2O2) sensor was constructed based on copper nanoparticles/methylene blue/multiwall carbon nanotubes-fullerene-chitosan-ionic liquid (CuNPs/MB/MWCNTs-C60-Cs-IL) nanocomposites. The MB/MWCNTs-C60-Cs-IL and CuNPs were modified glassy carbon electrode (GCE) by the physical adsorption and electrodeposition of copper nitrate solution, respectively. The physical morphology and chemical composition of the surface of modified electrode was investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The electrochemical properties of CuNPs/MB/MWCNTs-C60-Cs-IL/GCE were investigated by cyclic voltammetry (CV) and amperometry techniques and the sensor exhibited remarkably strong electrocatalytic activities toward the reduction of hydrogen peroxide. The peak currents possess a linear relationship with the concentration of H2O2 in the range of 0.2μM to 2.0mM, and the detection limit is 55.0nM (S/N=3). In addition, the modified electrode was used to determine H2O2 concentration in human blood serum sample with satisfactory results. PMID:27127028

  10. Biosensor for bisphenol A leaching from baby bottles using a glassy carbon electrode modified with DNA and single walled carbon nanotubes

    International Nuclear Information System (INIS)

    We have developed a biosensor for highly sensitive and selective determination of the endocrinic disruptor bisphenol A (BPA). It is based on glassy carbon electrode modified with calf thymus DNA and a composite prepared from single walled carbon nanotubes (SWNT) and Nafion. The interaction between BPA and DNA was studied by voltammetry. The binding constant was determined to be 3.55 × 103 M−1, and the binding site has a length of 4.3 base pairs. These electrochemical studies provide further information for a better understanding of the toxicity and carcinogenicity of BPA. Under optimal conditions, the biosensor displays a linear electrochemical response to BPA in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3). The method was successfully applied to the quantification of BPA in leachates from plastic baby bottles. Recoveries range from 94.0 % to 106.0 % which underpins the excellent performance of this SWNT-based DNA sensor. (author)

  11. Voltammetric sensor for D-penicillamine determination based on its electrocatalytic oxidation at the surface of ferrocenes modified carbon paste electrodes

    Indian Academy of Sciences (India)

    Jahan-Bakhsh Raoof; Reza Ojani; Fereshteh Chekin

    2009-11-01

    Electrocatalytic oxidation of D-penicillamine (D-PA) at the surface of ferrocene modified carbon paste electrode (FCCPE) was thoroughly investigated in aqueous solution with various pH. The performance of this modified electrode was compared with those of 2,7-bis(ferrocenyl ethyl) fluoren-9-one modified carbon paste electrode (2,7-BFEFMCPE). In the optimum condition, the oxidation of D-PA at the surface of FCCPE and 2,7-BFEFMCPE is occurred about 480 and 320 mV less positive than that unmodified carbon paste electrode, respectively. The linear dynamic ranges 6 × 10-5 M-2 × 10-3 M, 6.5 × 10-5 M-1.1 × 10-3 M and 7 × 10-6 M-1.6 × 10-4M, 7 × 10-6 M-2 × 10-4 M of D-PA are obtained from CV and DPV methods for FCCPE and 2,7-BFEFMCPE, respectively. The detection limits (3) were determined as 5.4 × 10-5 M and 6.3 × 10-5 M in CV and 6.2 × 10-6 M and 6.8 × 10-6 M in DPV determinations for FCCPE and 2,7-BFEFMCPE, respectively. The proposed method was applied in a highly sensitive determination of D-PA in drug and human synthetic serum samples by standard addition and recovery methods, respectively.

  12. Electrocatalytic determination of L-cysteine using a modified carbon nanotube paste electrode: Application to the analysis of some real samples

    Institute of Scientific and Technical Information of China (English)

    Malihe Ahmadipour; Mohammad Ali Taher; Hadi Beitollahi; Rahman Hosseinzadeh

    2012-01-01

    The electrooxidation of L-cysteine (L-Cys) was studied using a benzoylferrocene (BF) modified multi-wall carbon nanotube paste electrode (BFCNPE) using cyclic voltammetry (CV),square wave voltammetry (SWV) and chronoamperometry (CHA).Under optimum pH in CV the oxidation of L-Cys occurs at a potential about 215 mV less positive than that at the surface of unmodified carbon paste electrode.The catalytic oxidation peak currents were dependent on the L-Cys concentration and a linearcalibration curve was obtained in the range 0.7-350.0 μmol/L of L-Cys with SWV method.The detection limit (3σ) was determined as 0.1 μmolL.This method was also used for the determination of L-Cys in some real samples.

  13. Electrochemical oxidation of adenosine-5 Prime -triphosphate on a chitosan-graphene composite modified carbon ionic liquid electrode and its determination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Liu Jun; Wang Xiuzhen; Li Tongtong; Li Guangjiu; Wu Jie [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhang Liqi [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-01

    In this paper a new electrochemical method was proposed for the determination of adenosine-5 Prime -triphosphate (ATP) based on a chitosan (CTS) and graphene (GR) composite film modified carbon ionic liquid electrode (CTS-GR/CILE). CILE was fabricated by using ionic liquid 1-butyl-3-methylimidazolium dihydrogen phosphate ([BMIM]H{sub 2}PO{sub 4}) as the binder, which was further modified by GR and CTS composite. The modified electrode exhibited an excellent electrocatalytic activity toward the oxidation of ATP with the increase of the oxidation peak current and the decrease of the oxidation peak potential. The electrochemical parameters of ATP on CTS-GR/CILE were calculated with the electron transfer coefficient ({alpha}) as 0.329, the electron transfer number (n) as 2.15, the apparent heterogeneous electron transfer rate constant (ks) as 3.705 Multiplication-Sign 10{sup -5} s{sup -1} and the surface coverage ({Gamma}{sub T}) as 9.33 Multiplication-Sign 10{sup -10} mol cm{sup -2}. Under the optimal conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -3} M with the detection limit of 0.311 {mu}M (S/N = 3). The proposed electrode showed excellent reproducibility, stability, anti-interference ability and further successfully applied to the ATP injection sample detection. - Highlights: Black-Right-Pointing-Pointer Ionic liquid [BMIM]H{sub 2}PO{sub 4} based carbon ionic liquid electrode (CILE) was prepared. Black-Right-Pointing-Pointer Graphene modified CILE was fabricated for the sensitive electrochemical detection of ATP. Black-Right-Pointing-Pointer Good electrocatalytic ability to the ATP oxidation was achieved. Black-Right-Pointing-Pointer Detection of 5 Prime -ATP in commercial injection samples with satisfactory results.

  14. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    Science.gov (United States)

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  15. Electrochemical sandwich immunoassay for the peptide hormone prolactin using an electrode modified with graphene, single walled carbon nanotubes and antibody-coated gold nanoparticles

    International Nuclear Information System (INIS)

    We describe a new kind of electrochemical immunoassay for the peptide hormone prolactin. A glassy carbon electrode (GCE) was modified with a hybrid material consisting of graphene, single walled carbon nanotubes and gold nanoparticles (AuNPs) in a chitosan (CS) matrix. The graphene and the single wall carbon nanotubes were first placed on the GCE, and the AuNPs were then electrodeposited on the surface by cyclic voltammetry. This structure results in a comparably large surface for immobilization of the capturing antibody (Ab1). The modified electrode was used in a standard sandwich-type of immunoassay. The secondary antibody (Ab2) consisted of AuNPs with immobilized Ab2 and modified with biotinylated DNA as signal tags. Finally, alkaline phosphatase was bound to the biotinylated DNA-AuNPs-Ab2 conjugate via streptavidin chemistry. The enzyme catalyzes the hydrolysis of the α-naphthyl phosphate to form α-naphthol which is highly electroactive at an operating voltage as low as 180 mV (vs. Ag/AgCl). The resulting immunoassay exhibits high sensitivity, wide linear range (50 to 3200 pg∙mL-1), low detection limit (47 pg∙mL-1), acceptable selectivity and reproducibility. The assay provides a pragmatic platform for signal amplification and has a great potential for the sensitive determination of antigens other than prolactine. (author)

  16. Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: Application to the electrocatalytic oxidation of L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Qu Lingbo, E-mail: qulingbo@zzu.edu.c [Department of Chemistry, Zhengzhou University, Kexue Road, Zhengzhou 450001 (China); Chemistry and Chemical Engineering School, Henan University of Technology, Zhengzhou 450001 (China); College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455002 (China); Yang Suling [Department of Chemistry, Zhengzhou University, Kexue Road, Zhengzhou 450001 (China); Li Gang [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455002 (China); Yang Ran; Li Jianjun; Yu Lanlan [Department of Chemistry, Zhengzhou University, Kexue Road, Zhengzhou 450001 (China)

    2011-02-28

    An yttrium hexacyanoferrate nanoparticle/multi-walled carbon nanotube/Nafion (YHCFNP/MWNT/Nafion)-modified glassy carbon electrode (GCE) was constructed. Several techniques, including infrared spectroscopy, energy dispersive spectrometry, scanning electron microscopy and electrochemistry, were performed to characterize the yttrium hexacyanoferrate nanoparticles. The electrochemical behavior of the YHCFNP/MWNT/Nafion-modified GCE in response to L-cysteine oxidation was studied. The response current of L-cysteine oxidation at the YHCFNP/MWNT/Nafion-modified GCE was obviously higher than that at the bare GCE or other modified GCE. The effects of pH, scan rate and interference on the response to L-cysteine oxidation were investigated. In addition, on the basis of these findings, a determination of L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was carried out. Under the optimum experimental conditions, the electrochemical response to L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was fast (within 4 s). Linear calibration plots were obtained over the range of 0.20-11.4 {mu}mol L{sup -1} with a low detection limit of 0.16 {mu}mol L{sup -1}. The YHCFNP/MWNT/Nafion-modified GCE exhibited several advantages, such as high stability and good resistance against interference by ascorbic acid and other oxidizable amino acids.

  17. Electrochemical horseradish peroxidase biosensor based on dextran-ionic liquid-V2O5 nanobelt composite material modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Direct electrochemistry of horseradish peroxidase (HRP) was realized in a dextran (De), 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM]EtOSO3) and V2O5 nanobelt composite material modified carbon ionic liquid electrode (CILE). Spectroscopic results indicated that HRP retained its native structure in the composite. A pair of well-defined redox peaks of HRP appeared in pH 3.0 phosphate buffer solution with the formal potential of -0.213 V (vs. SCE), which was the characteristic of HRP heme Fe(III)/Fe(II) redox couple. The result was attributed to the specific characteristics of De-IL-V2O5 nanocomposite and CILE, which promoted the direct electron transfer rate of HRP with electrode. The electrochemical parameters of HRP on the composite modified electrode were calculated and the electrocatalysis of HRP to the reduction of trichloroacetic acid (TCA) was examined. Under the optimal conditions the reduction peak current increased with TCA concentration in the range from 0.4 to 16.0 mmol L-1. The proposed electrode is valuable for the third-generation electrochemical biosensor.

  18. Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles

    International Nuclear Information System (INIS)

    We report on a glassy carbon electrode modified with bismuth nanoparticles (NanoBiE) for the simultaneous determination Pb2+ and Cd2+ by anodic stripping voltammetry. Operational parameters such as bismuth nanoparticles labelling amount, deposition potential, deposition time and stripping parameters were optimized with respect to the determination of Pb2+ and Cd2+ in 0.1 M acetate buffer solution (pH 4.5). The NanoBiE gives well-defined, reproducible and sharp stripping peaks. The peak current response increases linearly with the metal concentration in a range of 5.0–60.0 μg L−1, with a detection limit of 0.8 and 0.4 μg L−1 for Pb2+ and Cd2+, respectively. The morphology and composition of the modified electrode before and after voltammetric measurements were analysed by scanning electron microscopy and energy dispersive X-ray analysis. The NanoBiE was successfully applied to analysis of Pb2+ and Cd2+ in real water samples and the method was validated by ICP-MS technique, suggesting that the electrode can be considered as an interesting alternative to the bismuth film electrode for possible use in electrochemical studies and electro analysis. (author)

  19. Ni(II)-quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Li [Institute of Analytical Science, Northwest University, Xi' an, 710069 (China); College of Chemistry and Chemical Engineering, Xi' an Shiyou University, Xi' an, 710065 (China); Zhang Jiaoqiang [Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi' an, 710072 (China); Song Junfeng [Institute of Analytical Science, Northwest University, Xi' an, 710069 (China)], E-mail: songjunf@nwu.edu.cn

    2009-07-30

    A modified electrode Ni(II)-Qu-MWCNT-IL-PE has been fabricated by electrodepositing Ni(II)-quercetin [Ni(II)-Qu] complex on the surface of multi-wall carbon nanotube ionic liquid paste electrode (MWCNT-IL-PE) in alkaline solution. The Ni(II)-Qu-MWCNT-IL-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-Qu-MWCNT-PE. It also shows good electrocatalytic activity toward the oxidation of glucose. Kinetic parameters such as the electron transfer coefficient {alpha}, rate constant k{sub s} of the electrode reaction and the catalytic rate constant k{sub cat} of the catalytic reaction are determined. Moreover, the catalytic current presents linear dependence on the concentration of glucose from 5.0 {mu}M to 2.8 mM, with a detection limit of 1.0 {mu}M by amperometry. The modified electrode for glucose determination is of the property of simple preparation, good stability, fast response and high sensitivity.

  20. Electrochemical hydrogen peroxide sensor based on a glassy carbon electrode modified with nanosheets of copper-doped copper(II) oxide

    International Nuclear Information System (INIS)

    A new electrochemical sensor for H2O2 was constructed by depositing copper doped CuO nanosheets on a glassy carbon electrode (GCE). The morphology and composition of the modified electrode were characterized via scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The electrochemical properties of the electrode were studied using cyclic voltammetry and electrochemical impedance spectroscopy. The catalytic performance of the sensor was studied in 100 mM NaOH solution via differential pulse voltammetry and revealed the sensor to display significantly improved electrocatalytic activity with respect to the analysis of the H2O2 in comparison to a plain GCE or a GCE modified with copper only. The response to H2O2 at a working voltage of −0.46 V (vs. Ag/AgCl) is linear in the 0.003 – 8 mM concentration range, and the detection limit is 0.21 mM (at an S/N ratio of 3). Satisfactory results were obtained in the analysis of tap, rain and river waters spiked with H2O2. The analytical performance of this electrode compares favorably to the results obtained with other commonly used techniques for analysis of H2O2. (author)

  1. Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers

    International Nuclear Information System (INIS)

    The authors describe an electrochemical immunoassay for α-fetoprotein (α-FP) using a glassy carbon electrode (GCE) modified with a nanocomposite made from gold nanoparticles, graphene oxide and multi-walled carbon nanotubes (AuNPs/GO-MWCNTs) and acting as a signal amplification matrix. The nanocomposite was synthesized in a one-pot redox reaction between GO and HAuCl4 without using an additional reductant. The stepwise assembly of the immunoelectrode was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. The interaction of antigen and antibody on the surface of the electrode creates a barrier for electrons and causes retarded electron transfer, this resulting in decreased signals in differential pulse voltammetry of hexacyanoferrate which is added as an electrochemical probe. Using this strategy and by working at a potential of 0.2 V (vs. SCE), a wide analytical range (0.01 - 100 ng∙mL-1) is covered. The correlation coefficient is 0.9929, and the limit of detection is as low as 3 pg∙mL-1 at a signal-to-noise ratio of 3. This electrochemical immunoassay combines the specificity of an immunological detection scheme with the sensitivity of an electrode modified with AuNPs and GO-MWCNTs. (author)

  2. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  3. Simultaneous and sensitive detection of dopamine and uric acid using a poly(L-methionine)/gold nanoparticle-modified glassy carbon electrode

    Institute of Scientific and Technical Information of China (English)

    Reza Ojani; Jahan-Bakhsh Raoof; Ali Asghar Maleki; Saeid Safshekan

    2014-01-01

    A novel electrochemical sensor was fabricated by electrodeposition of gold nanoparticles on a poly(L-methionine) (PMT)-modified glassy carbon electrode (GCE) to form a nano-Au/PMT compo-site-modified GCE (nano-Au/PMT/GCE). Scanning electron microscopy and electrochemical tech-niques were used to characterize the composite electrode. The modified electrode exhibited con-siderable electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) in phosphate buffer solution (pH = 7.00). Differential pulse voltammetry revealed that the electrocat-alytic oxidation currents of DA and UA were linearly related to concentration over the range of 5.0 × 10-8 to 10-6 mol/L for DA and 7.0 × 10-8 to 10-6 mol/L for UA. The detection limits were 3.7 × 10-8 mol/L for DA and 4.5 × 10-8 mol/L for UA at a signal-to-noise ratio of 3. According to our experi-mental results, nano-Au/PMT/GCE can be used as a sensitive and selective sensor for simultaneous determination of DA and UA.

  4. Differential pulse anodic stripping voltammetry for detection of As (III) by Chitosan-Fe(OH)3 modified glassy carbon electrode: A new approach towards speciation of arsenic.

    Science.gov (United States)

    Saha, Suparna; Sarkar, Priyabrata

    2016-09-01

    An efficient electrochemical sensor for As(III) was developed based on adsorption of arsenic on a specially modified electrodes at some applied potential and subsequent i) stripping at a fixed potential by anodic stripping voltammetry ii) analysis by generating surface plasmon resonance (SPR). The working glassy carbon electrode was modified by Chitosan-Fe(OH)3 composite and a reducing agent L-cysteine. The composite enhanced adsorption of As(III) and subsequent reduction to As(O) moieties and measurement by anodic stripping. The surface property of modified electrode was characterized by SEM, AFM, FTIR, XPS and electrochemistry was analyzed by impedance spectroscopy (EIS). Surface Plasmon resonance (SPR) was also employed to investigate the As(III) binding capability of polymer matrix. Several optimum voltammetric parameters e.g supporting electrolyte; 0.1M acetate buffer (pH 5.2) deposition potential, -0.9V; deposition time, 100s were established for anodic stripping voltammetry (ASV). A linear correlation was obtained in the range of 2-100ppb for ASV (R(2) 0.974) with limit of detection 0.072ppb. A variety of common coexistent ions such as Mn, Zn, Pb, Cu, Cd in water samples showed no interferences on the As (III) determination. The method was applied successfully to real samples collected from arsenic affected areas of West Bengal, India. PMID:27343601

  5. Electroanalysis and simultaneous determination of dopamine and epinephrine at poly(isonicotinic acid)-modified carbon paste electrode in the presence of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhen Zhou; Li Juan Zhang; Shuang Li Chen; She Ying Dong; Xiao Hui Zheng

    2009-01-01

    A carbon paste electrode modified with electropolymerized fills of isonicotinic acid was developed.The modified electrode shows excellent electrocatalytic activity toward the oxidation of both dopamine(DA)and epinephrine(EP).Separation of the reduction peak potentials for dopamine and epinephrine was about 357 mV in pH 5.3 phosphate buffer solution(PBS)and the character was used for the detection DA and EP simultaneously.The peak currents increase linearly with DA and EP concentration over the range of 8.0×10-5 to 7.0×10-4 mol/L and 5.0×10-6 to 1.0×10-4 mol/L with detection limits of 2 × 10-5 and 1×10-6 mol/L,respectively.The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid(AA).

  6. Mixed ion-exchanger chemically modified carbon paste ion-selective electrodes for determination of triprolidine hydrochloride

    OpenAIRE

    Yousry M. Issa; Fekria M. Abu Attia; Nahla S. Ismail

    2010-01-01

    Triprolidine hydrochloride (TpCl) ion-selective carbon paste electrodes were constructed using Tp-TPB/Tp-CoN and Tp-TPB/Tp-PTA as ion-exchangers. The two electrodes revealed Nernstian responses with slopes of 58.4 and 58.1 mV decade−1 at 25 °C in the ranges 6 × 10−6–1 × 10−2 and 2 × 10−5–1 × 10−2 M for Tp-TPB/Tp-CoN and Tp-TPB/Tp-PTA, respectively. The potentials of these electrodes were independent of pH in the ranges of 2.5–7.0 and 4.5–7.0, and detection limits were 6 × 10−6 and 1 × 10−5 M ...

  7. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    International Nuclear Information System (INIS)

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: · Constructed a novel composite material using Fe3O4NP and c-MWCNT at Au electrode for electrocatalysis. · The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. · The biosensor exhibited good sensitivity (0.475 mA μM-1) · The half life of electrode was 2 months. · The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe3O4NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe3O4/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe3O4NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 μM substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The biosensor exhibited good sensitivity (0.475 mA μM-1), reusability (more than 50 times) and stability (2

  8. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Nidhi [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India); Pundir, Chandra Shekhar, E-mail: pundircs@rediffmail.com [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India)

    2011-09-02

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: {center_dot} Constructed a novel composite material using Fe{sub 3}O{sub 4}NP and c-MWCNT at Au electrode for electrocatalysis. {center_dot} The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. {center_dot} The biosensor exhibited good sensitivity (0.475 mA {mu}M{sup -1}) {center_dot} The half life of electrode was 2 months. {center_dot} The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe{sub 3}O{sub 4}NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe{sub 3}O{sub 4}/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe{sub 3}O{sub 4}NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 {mu}M substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The

  9. Mixed ion-exchanger chemically modified carbon paste ion-selective electrodes for determination of triprolidine hydrochloride

    Directory of Open Access Journals (Sweden)

    Yousry M. Issa

    2010-01-01

    Full Text Available Triprolidine hydrochloride (TpCl ion-selective carbon paste electrodes were constructed using Tp-TPB/Tp-CoN and Tp-TPB/Tp-PTA as ion-exchangers. The two electrodes revealed Nernstian responses with slopes of 58.4 and 58.1 mV decade−1 at 25 °C in the ranges 6 × 10−6–1 × 10−2 and 2 × 10−5–1 × 10−2 M for Tp-TPB/Tp-CoN and Tp-TPB/Tp-PTA, respectively. The potentials of these electrodes were independent of pH in the ranges of 2.5–7.0 and 4.5–7.0, and detection limits were 6 × 10−6 and 1 × 10−5 M for Tp-TPB/Tp-CoN and Tp-TPB/Tp-PTA, respectively. The electrodes showed a very good selectivity for TpCl with respect to a large number of inorganic cations and compounds. The standard addition, potentiometric titration methods and FIA were applied to the determination of TpCl in pure solutions and pharmaceutical preparations. The results obtained were in close agreement with those found by the official method. The mean recovery values were 100.91% and 97.92% with low coefficient of variation values of 0.94%, and 0.56% in pure solutions, 99.82% and 98.53% with coefficient of variation values of 2.20%, and 0.73% for Actifed tablet and Actifed syrup, respectively, using the Tp-TPB/Tp-CoN electrode, and 98.85%, and 99.18% with coefficient of variation values of 0.48% and 0.85% for Actifed tablet and Actifed syrup, respectively, using the Tp-TPB/Tp-PTA electrode.

  10. Deposition of new thia-containing Schiff-base iron (III) complexes onto carbon nanotube-modified glassy carbon electrodes as a biosensor for electrooxidation and determination of amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Saghatforoush, Lotfali [Department of Chemistry, Faculty of Science, Payame Noor University (PNU), P.O. Box 58168-45164, Khoy (Iran, Islamic Republic of); Hasanzadeh, Mohammad, E-mail: mhmmd_hasanzadeh@yahoo.co [Department of Chemistry, Faculty of Science, Payame Noor University (PNU), P.O. Box 58168-45164, Khoy (Iran, Islamic Republic of); Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology (KNTU), Tehran (Iran, Islamic Republic of); Shadjou, Nasrin [Department of Chemistry, Faculty of Science, Payame Noor University (PNU), P.O. Box 58168-45164, Khoy (Iran, Islamic Republic of); Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology (KNTU), Tehran (Iran, Islamic Republic of); Khalilzadeh, Balal [Department of Analytical Chemistry, Faculty of Science, Arak University, Arak (Iran, Islamic Republic of)

    2011-01-01

    Multiwall carbon nanotubes (MWCNTs) were used as an immobilization matrix to incorporate an Fe (III)-Schiff base complex as an electron-transfer mediator onto a glassy carbon electrode surface. First, the preheated glassy carbon was subjected to abrasive immobilization of MWCNTs by gently rubbing the electrode surface on filter paper supporting the carbon nanotubes. Second, the electrode surface was modified by casting 100 {mu}L of an Fe (III)-complex solution (0.01 M in ACN). The cyclic voltammograms of the modified electrode in an aqueous solution displayed a pair of well-defined, stable and nearly reversible reductive oxidation redox systems with surface confined characteristics. Combinations of unique electronic and electrocatalytic properties of MWCNTs and Fe (III)-Schiff base complexes resulted in a remarkable synergistic augmentation of the response. The electrochemical behavior and stability of the modified electrode in aqueous solutions at pH 1-9 were characterized by cyclic voltammetry. The apparent electron transfer rate constant (K{sub s}) and transfer coefficient (a) were determined by cyclic voltammetry and were approximately 7 s{sup -1} and 0.55, respectively. The modified electrodes showed excellent catalytic activity towards the oxidation of amino acids at an unusually positive potential in acidic solution. They also displayed inherent stability at a wide pH range, fast response time, high sensitivity, low detection limit and had a remarkably positive potential oxidation of amino acids that decreased the effect of interferences in analysis. The linear concentration range, limits of detection (LOD), limits of quantization (LOQ) and relative standard deviation of the proposed sensor for the amino acid detection were 1-55,000, 1.10-13.70, 2.79-27.14 and 1.30-5.11, respectively.

  11. Electrocatalytic oxidation and determination of dopamine at a carbon ionic liquid electrode modified with nafion-L-aspartic acid composite film

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The electrocatalytic oxidation of dopamine(DA)was studied by electrochemical approaches at a carbon ionic liquid electrode(CILE)modified with the composite film of nafion and L-aspartic acid(NL-CILE).The CILE was fabricated by replacing non-conductive organic binders with a room-temperature hydrophobic ionic liquid,1-butyl-3-methyl-imidazolium hexafluorophosphate.The composite film of NL was used as matrix to adsorb DA and catalyze the oxidation of DA in phosphate buffer solution(PBS).The electrochemical re...

  12. Electrocatalytic oxidation behavior of NADH at Pt/Fe3O4/reduced-graphene oxide nanohybrids modified glassy carbon electrode and its determination.

    Science.gov (United States)

    Roushani, Mahmoud; Hoseini, S Jafar; Azadpour, Mitra; Heidari, Vahid; Bahrami, Mehrangiz; Maddahfar, Mahnaz

    2016-10-01

    We have developed Pt/Fe3O4/reduced-graphene oxide nanohybrids modified glassy carbon (Pt/Fe3O4/RGO/GC) electrode as a novel system for the preparation of electrochemical sensing platform. Characterization of as-made composite was determined using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and energy-dispersive analysis of X-ray (EDAX) where the Pt, Fe, Si, O and C elements were observed. The Pt/Fe3O4/RGO/GC electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect between Pt, Fe3O4 and RGO, the nanohybrid exhibited excellent performance toward dihydronicotinamide adenine dinucleotide (NADH) oxidation in 0.1M phosphate buffer solution, pH7.0, with a low detection limit of 5nM. PMID:27287119

  13. Synthesis and characterization of novel dopamine-derivative:Application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation

    Institute of Scientific and Technical Information of China (English)

    Shadpour Mallakpour; Mehdi Hatami; Ali A. Ensafi; Hassan Karimi-Maleh

    2011-01-01

    Novel dopamine-derivative compound, 3,5-diamino-N-(3,4-dihydroxyphenethyl)benzamide (3,5-DAB) was prepared in two steps. In the first step dopamine hydrochloride was reacted with 3,5-dinitrobenzoyl chloride in the presence of propylene oxide. In the second step reduction of nitro groups resulted in preparation of 3,5-DAB in quantitative yield. This material was characterized using conventional spectroscopic methods such as FT-IR and 1H NMR. In addition, the redox response of a modified carbon nanotubes paste electrode of 3,5-DAB was investigated in aqueous solution at a neutral pH. The result showed that the electrode process has a guasi-reversible response, with △Ep, greater than the (59/n) mV expected for a reversible system. Finally, the diffusion coefficient for redox process in paraffin oil matrix obtained using chronoamperometry methods.

  14. Ammonium ions determination with polypyrrole modified electrode

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available The present work relates the preparation of polypyrrole films (PPy deposited on surfaces of glass carbon, nickel and ITO (tin oxide doped with indium on PET plastic, in order to study the ammonium detection. The popypyrrole films were polymerized with dodecylbenzenesulfonate (DBSA on the electrodes, at + 0,70 V vs. Ag/AgCl, based on a solution containing the pyrrole monomer and the amphiphilic salt. Films deposited on glass carbon presented better performance. Cyclic voltammetries, between – 1,50 to + 0,5 V vs. Ag/AgCl, were repeated adding different concentrations of NH4Cl, in order to observe the behavior of the film as a possible detector of ions NH4+. The peak current for oxidation varies with the concentration of ammonium. A linear region can be observed in the band of 0 to 80 mM, with a sensibility (Sppy approximately similar to 4,2 mA mM-1 cm-2, showing the efficacy of the electrodes as sensors of ammonium ions. The amount of deposited polymer, controlled by the time of growth, does not influence on the sensor sensibility. The modified electrode was used to determine ammonium in grounded waters.

  15. A Voltammetric Biosensor Based on Glassy Carbon Electrodes Modified with Single-Walled Carbon Nanotubes/Hemoglobin for Detection of Acrylamide in Water Extracts from Potato Crisps

    Directory of Open Access Journals (Sweden)

    Hanna Radecka

    2008-09-01

    Full Text Available The presence of toxic acrylamide in a wide range of food products such as potato crisps, French fries or bread has been confirmed by Swedish scientists from Stockholm University. The neurotoxicity, possible carcinogenicity of this compound and its metabolites compels us to control them by quantitative and qualitative assays. Acrylamide forms adduct with hemoglobin (Hb as a result of the reaction the -NH2 group of the Nterminal valine with acrylamide. In this work we present the use of glassy carbon electrodes coated with single-walled carbon nanotubes (SWCNTs and Hb for voltammetric detection of acrylamide in water solutions. The electrodes presented a very low detection limit (1.0×10-9 M. The validation made in the matrix obtained by water extraction of potato crisps showed that the electrodes presented are suitable for the direct determination of acrylamide in food samples.

  16. Acrylonitrile-contamination induced enhancement of formic acid electro-oxidation at platinum nanoparticles modified glassy carbon electrodes

    Science.gov (United States)

    El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Deab, Mohamed S.; Ohsaka, Takeo; El-Anadouli, Bahgat E.

    2014-11-01

    Minute amount (∼1 ppm) of acrylonitrile (AcN), a possible contaminant, shows an unexpected enhancement for the direct electro-oxidation of formic acid (FAO) at Pt nanoparticles modified GC (nano-Pt/GC) electrodes. This is reflected by a remarkable increase of the current intensity of the direct oxidation peak (Ipd, at ca. 0.3 V) in the presence of AcN, concurrently with a significant decrease of the second (indirect) oxidation current (Ipind, at ca. 0.7 V), compared to that observed in the absence of AcN (i.e., at the unpoisoned Pt electrode). The extent of enhancement depends on the surface coverage (θ) of AcN at the surface of Pt nanoparticles. AcN is thought to favor the direct FAO by disturbing the contiguity of the Pt sites, which is necessary for CO adsorption. Furthermore, XPS measurements revealed a change in the electronic structure of Pt in presence of AcN, which has a favorable positive impact on the charge transfer during the direct FAO.

  17. Studies on the electrochemical behavior of 3-nitrobenzaldehyde thiosemicarbazone at glass carbon electrode modified with nano-γ-Al2O3

    International Nuclear Information System (INIS)

    Nano-γ-Al2O3 is dispersed onto the glass carbon electrode (GCE) by polishing. This nanostructured modified GCE exhibits a great enhancement to the redox responses of 3-nitrobenzaldehyde thiosemicarbazone (3-NBT). In comparison with bare GCE, 3-NBT gives a more sensitive voltammetric response because of the nanoparticle's unique properties. The lowest detectable concentration (3σ) of 3-NBT is estimated to be 1.18 x 10-6 M (accumulation for 4 min). The linear relationship between peak current and concentration of 3-NBT holds in the range 1.0 x 10-5 M to 1.0 x 10-4 M (r = 0.9981). The electrochemical properties of 3-NBT on this modified electrode have been investigated with various electrochemical methods. The results indicate that the transference of one electron and one proton involves electrode radical reaction processes I and II, respectively. The coverage value (Γ) of 1.62 x 10-9 mol cm-2 was calculated and the electrochemical parameters, diffusion coefficient D (2.54 x 10-3 cm2 s-1, 2.03 x 10-3 cm2 s-1) and reaction rate constant ks (5.9573 s-1, 7.15 x 10-2 cm s-1) were obtained for quasi-reversible system I and irreversible system II, respectively

  18. Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode.

    Science.gov (United States)

    Beitollahi, Hadi; Raoof, Jahan-Bakhsh; Hosseinzadeh, Rahman

    2011-01-01

    The present work describes the preparation and characterization of a carbon nanotube paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one (2,7-BF). This electrode showed an efficient catalytic activity for the electro-oxidation of 6-thioguanine (6-TG), which leads to lowering 6-TG overpotential by more than 610 mV. Also, the values of catalytic rate constant (k = 2.7 × 10(3) mol(-1) L s(-1)), and diffusion coefficient (D = 2.7 × 10(-5) cm(2) s) were calculated. In 0.1 M phosphate buffer solution of pH 7.0, the oxidation current increased linearly with two concentration intervals of 6-TG, one is 0.06 to 10.0 µmol L(-1) and the other is 10.0 to 160.0 µmol L(-1). The detection limit (3σ) obtained by differential pulse voltammetry (DPV) was 22.0 nmol L(-1). DPV was used for simultaneous determination of 6-TG, uric acid (UA) and folic acid (FA) at the modified electrode, and for quantification of 6-TG, UA and FA in some real samples by the standard addition method.

  19. Glassy carbon electrode modified with gold nanoparticles and hemoglobin in a chitosan matrix for improved pH-switchable sensing of hydrogen peroxide

    International Nuclear Information System (INIS)

    Hemoglobin (Hb) has been demonstrated to endow electrochemical sensors with pH-switchable response because of the presence of carboxyl and amino groups. Hb was deposited in a chitosan matrix on a glassy carbon electrode (GCE) that was previously coated with clustered gold nanoparticles (Au-NPs) by electrodeposition. The switching behavior is active (“on”) to the negatively charged probe [Fe(CN)63−] at pH 4.0, but inactive (“off”) to the probe at pH 8.0. This switch is fully reversible by simply changing the pH value of the solution and can be applied for pH-controlled reversible electrochemical reduction of H2O2 catalyzed by Hb. The modified electrode was tested for its response to the different electroactive probes. The response to these species strongly depends on pH which was cycled between 4 and 8. The effect is also attributed to the presence of pH dependent charges on the surface of the electrode which resulted in either electrostatic attraction or repulsion of the electroactive probes. The presence of Hb, in turn, enhances the pH-controllable response, and the electrodeposited Au-NPs improve the capability of switching. This study reveals the potential of protein based pH-switchable materials and also provides a simple and effective strategy for fabrication of switchable chemical sensors as exemplified in a pH-controllable electrode for hydrogen peroxide. (author)

  20. Application of poly(acridine orange) and graphene modified carbon/ionic liquid paste electrode for the sensitive electrochemical detection of rutin

    International Nuclear Information System (INIS)

    A carbon/ionic liquid paste electrode (CILPE) prepared by 1-hexylpyridinium hexafluorophosphate as the binder was used as the substrate electrode. A layer of graphene oxide (GO) film was cast on CILPE surface (GO/CILPE) and the electropolymerization of acridine orange (AO) on electrode was further realized by cyclic voltammetry in the potential range from −1.40 V to 1.40 V, which could simultaneously reduce GO to graphene (GR) electrochemically. The fabricated PAO-GR/CILPE exhibited good electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behaviors of rutin were further investigated on the modified electrode in 0.1 mol/L pH 2.0 phosphate buffer solution by cyclic voltammetry with a pair of well-defined redox peaks appeared. The peak-to-peak separation (ΔEp) was calculated as 0.076 V, which proved a fast quasi-reversible electron transfer process and the electrochemical parameters of rutin on PAO-GR/CILPE were calculated. Under the optimal conditions, the linear relationship between the oxidation peak current of rutin and its concentration was obtained in the range from 0.03 to 800.0 μmol/L with the detection limit as 8.33 nmol/L (3σ). The PAO-GR/CILPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet samples with satisfactory results

  1. Electrochemical Degradation Characteristics of Refractory Organic Pollutants in Coking Wastewater on Multiwall Carbon Nanotube-Modified Electrode

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-01-01

    Full Text Available The multiwall carbon nanotube-mollified electrode (MWCNT-ME was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical behavior of phenol and aniline at the MWCNT-ME were analyzed. Using ultraviolet-visible adsorption spectroscopy (UV-vis, Gas chromatography mass spectrometry (GC/MS, and chemical oxygen demand (COD test, the electrochemical oxidation properties of refractory organic pollutants of coking wastewater using the MWCNT-ME and the IrSnSb/Ti electrode were analyzed. Compared with the powder adsorption media, the MWCNT-ME was proved to have weaker adsorption activity, which means electrochemical degradation is the decisive factor of the removal of organic pollutants. The MWCNT-ME shows high electrochemical reactivity with oxidation peaks of 0.18 A and 0.12 A for phenol and aniline, respectively. Under the same working conditions, the MWCNT-ME COD removal rate 51% is higher than IrSnSb/Ti electrode’s rate 35%. The MWCNT-ME has application potential of electrochemical oxidation of refractory organic pollutants of coking wastewater.

  2. Th(IV)-hexacyanoferrate modified carbon paste electrode as a new electrocatalytic probe for simultaneous determination of ascorbic acid and dopamine from acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, Khalil; Kheiri, Farshad [Urmia University (Iran, Islamic Republic of). Faculty of Science. Dept. of Chemistry; Golzan, Mirmaqsoud [Urmia University, Urmia (Iran, Islamic Republic of). Faculty of Science. Dept. of Physics]. E-mail: khfarhadi@yahoo.com

    2008-07-01

    A stable carbon paste electrode (CPE) was prepared with Th(IV)-hexacyanoferrate (Th-HCF) ion pair and its electrochemical behavior was investigated by cyclic voltammetry. The apparent heterogeneous rate constant, k{sub s}, and transfer coefficient, alpha, for electron transfer between Th-HCF ion-pair and CPE were calculated as 3.1 +- 0.1 s{sup -1} and 0.47, respectively. The surface coverage ({gamma}) of the proposed electrode was calculated as 7.06 x 10{sup -10} mol cm{sup -2}. The proposed Th-HCF modified carbon paste electrode (THMCPE) showed a good electrocatalytic behavior with a significant shift toward negative potentials in oxidation of ascorbic acid (AA) and dopamine (DA) in acidic media (phosphate buffer solution, pH 3). The THMCPE exhibited excellent characteristics for simultaneous determination of AA and DA. Amperometric curves using the catalytic currents are linear for DA and AA concentrations in the ranges 8 x 10{sup -6} - 2 x 10{sup -3} and 1 x 10{sup -5} - 2 x 10{sup -3} mol L{sup -1} with detection limits 5.6 x 10{sup -6} mol L{sup -1} and 4.7 x 10{sup -6} mol L{sup -1}, respectively. Diffusion coefficients of AA and DA in electrocatalytic oxidation were calculated from chronoamperometric data. (author)

  3. Th(IV)-hexacyanoferrate modified carbon paste electrode as a new electrocatalytic probe for simultaneous determination of ascorbic acid and dopamine from acidic media

    International Nuclear Information System (INIS)

    A stable carbon paste electrode (CPE) was prepared with Th(IV)-hexacyanoferrate (Th-HCF) ion pair and its electrochemical behavior was investigated by cyclic voltammetry. The apparent heterogeneous rate constant, ks, and transfer coefficient, alpha, for electron transfer between Th-HCF ion-pair and CPE were calculated as 3.1 +- 0.1 s-1 and 0.47, respectively. The surface coverage (Γ) of the proposed electrode was calculated as 7.06 x 10-10 mol cm-2. The proposed Th-HCF modified carbon paste electrode (THMCPE) showed a good electrocatalytic behavior with a significant shift toward negative potentials in oxidation of ascorbic acid (AA) and dopamine (DA) in acidic media (phosphate buffer solution, pH 3). The THMCPE exhibited excellent characteristics for simultaneous determination of AA and DA. Amperometric curves using the catalytic currents are linear for DA and AA concentrations in the ranges 8 x 10-6 - 2 x 10-3 and 1 x 10-5 - 2 x 10-3 mol L-1 with detection limits 5.6 x 10-6 mol L-1 and 4.7 x 10-6 mol L-1, respectively. Diffusion coefficients of AA and DA in electrocatalytic oxidation were calculated from chronoamperometric data. (author)

  4. Encyclopedia of electrochemistry. Vol. 10. Modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bard, A.J. [Texas Univ., Austin, TX (United States). Dept. of Chemistry; Stratmann, M. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Rubinstein, I. [Weizmann Institute of Science, Rehovot (Israel). Dept. of Materials and Interfaces; Fujihira, Masamichi [Tokyo Institute of Technology, Yokohama (Japan). Dept. of Biomolecular Engineering; Rusling, J.F. (eds.) [Connecticut Univ., Storrs, CT (United States). Dept. of Chemistry, U-60]|[Connecticut Univ., Storrs, CT (United States). Dept. of Pharmacology

    2007-07-01

    This volume contains the following topics: 1. Preparation of monolayer modified electrodes; 2. Layer-by-layer assemblies of thin films on electrodes; 3. Epitaxial electrochemical growth; 5. Other films; 6. Ex-situ methods; 7. In-situ methods; 8. Electron transfer; 9. Charge transport in polymer-modified electrodes; 10. Electrochemical reactions on modified electrodes; 11. Redox-active dendrimers in solution and as films on surfaces; 12. Electrochemical formation of organic thin films; 13. Electron transfer and transport in ordered enzyme layers.

  5. Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations.

    Science.gov (United States)

    Yiğit, Aydın; Yardım, Yavuz; Çelebi, Metin; Levent, Abdulkadir; Şentürk, Zühre

    2016-09-01

    A graphene-Nafion composite film was fabricated on the glassy carbon electrode (GR-NF/GCE), and used for simultaneous determination of paracetamol (PAR), aspirin (ASA) and caffeine (CAF). The electrochemical behaviors of PAR, ASA and CAF were investigated by cyclic voltammetry and square-wave adsorptive anodic stripping voltammetry. By using stripping one for simultaneous determination of PAR, ASA and CAF, their electrochemical oxidation peaks appeared at +0.64, 1.04 and 1.44V, and good linear current responses were obtained with the detection limits of 18ngmL(-1) (1.2×10(-9)M), 11.7ngmL(-1) (6.5×10(-8)M) and 7.3ngmL(-1) (3.8×10(-8)M), respectively. Finally, the proposed electrochemical sensor was successfully applied for quantifying PAR, ASA and CAF in commercial tablet formulations. PMID:27343573

  6. Electrospun composite nanofibers of poly vinyl pyrrolidone and zinc oxide nanoparticles modified carbon paste electrode for electrochemical detection of curcumin.

    Science.gov (United States)

    Afzali, Moslem; Mostafavi, Ali; Shamspur, Tayebeh

    2016-11-01

    A simple and novel ferrocene-nanofiber carbon paste electrode was developed to determine curcumin in a phosphate buffer solution at pH=8. ZnO nanoparticles were produced via a sonochemical process and composite nanofibers of PVP/ZnO were prepared by electrospinning. The characterization was performed by SEM, XRD and IR. The results suggest that the electrospun composite nanofibers having a large surface area promote electron transfer for the oxidation of curcumin and hence the FCNFCPE exhibits high electrocatalytic activity and performs well in regard to the oxidation of curcumin. The proposed method was successfully applied for measurement of curcumin in urine and turmeric as real samples. PMID:27524081

  7. Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode

    Directory of Open Access Journals (Sweden)

    Hayati Filik

    2016-05-01

    Full Text Available In this paper, multi-walled carbon nanotube/Azure A/gold nanoparticle composites (Nafion/AuNPs/AzA/MWCNTs were prepared by binding gold nanoparticles to the surfaces of Azure A-coated carbon nanotubes. Nafion/AuNPs/AzA/MWCNTs based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrochemical properties of the modified electrodes. The modified electrode showed excellent electrocatalytic activity toward ascorbic acid, dopamine, uric acid, and tryptophan (pH 7.0. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA and Trp were 300–10,000 μM, 0.5–50 μM, 0.5–50 μM and 1.0–100 μM, respectively, and the detection limits were 16 μM, 0.014 μM, 0.028 μM and 0.56 μM (S/N = 3. The proposed method offers promise for simple, rapid, selective and cost-effective analysis of small biomolecules. The procedure was also applied to the determination of tryptophan in spiked milk samples.

  8. Amperometric determination of rutin on carbon paste electrodes

    Directory of Open Access Journals (Sweden)

    Pavla Macikova

    2010-12-01

    Full Text Available Three different carbon paste electrodes (i.e. unmodified, ironphthalocyanine and ionic liquid modified were tested to determinerutin by amperometry. The widest linear concentration range andlowest detection limit were obtained with unmodified carbon pasteelectrode.

  9. A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva.

    Science.gov (United States)

    Ye, Daixin; Liang, Guohai; Li, Huixiang; Luo, Juan; Zhang, Song; Chen, Hui; Kong, Jilie

    2013-11-15

    Here, we report on a novel nonenzymatic amperometric glucose sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode. The results of the scanning electron microscopy indicate that electronic network was formed through their direct binding with the graphene/carbon nanofiber, which leads to larger active surface areas and faster electron transfer for the glucose sensor. High electrocatalytic activity toward the oxidation of glucose was observed with a rapid response (<2 s), a low detection limit (0.1 µM), a wide and useful linear range (1-5.3 mM) as well as good stability and repeatability. Moreover, the common interfering species, such as ascorbic acid, uric acid, dopamine and so forth did not cause obvious interference. The sensor can also be used for quantification of glucose concentration in real saliva samples. Therefore, this work has demonstrated a simple and effective sensing platform for nonenzymatic detection of glucose. PMID:24148397

  10. A sensitive and selective on-line amperometric sulfite biosensor using sulfite oxidase immobilized on a magnetite-gold-folate nanocomposite modified carbon-paste electrode.

    Science.gov (United States)

    Sroysee, Wongduan; Ponlakhet, Kitayanan; Chairam, Sanoe; Jarujamrus, Purim; Amatatongchai, Maliwan

    2016-08-15

    We describe a novel amperometric sulfite biosensor, comprising a carbon-paste electrode (Fe3O4@Au-Cys-FA/CPE) modified with immobilized sulfite oxidase (SOx) on a gold-coated magnetite nanoparticle core, encased within a conjugated folic acid (FA) cysteine (Cys) shell. The biosensor electrode was fabricated using a polydimethylsiloxane (PDMS) and mineral oil mixture as binder, which also enhances the physical stability and sensitivity of the electrode. The developed biosensor displays good electrocatalytic activity toward oxidation of H2O2, which occurs by an enzymatic reaction between SOx and sulfite. The Fe3O4@Au-Cys-FA electrode exhibits good electrocatalytic activity, and has good retention of chemisorbed SOx on the electrode because of its large surface area. Sulfite was quantified using amperometric measurements from the Fe3O4@Au-Cys-FA/CPE biosensor, and using an in-house assembled flow cell at +0.35V (vs. Ag/AgCl), with a phosphate buffer carrier (0.10M, pH 7.0) at a flow rate of 0.8mLmin(-1). The system detects sulfite over the range 0.1-200mgL(-1) (r(2)=0.998), with a detection limit of 10µgL(-1) (3σ of blank). The system exhibits acceptable precision (%R.S.D.=3.1%), rapid sample throughput (109samplesh(-1)), and good stability (2w). The developed biosensor shows satisfactory tolerance to potential interferences, such as sugars, anions, ascorbic acid, and ethanol. We applied the developed method to the determination of sulfite content in wines and pickled food extracts, and our results are in good agreement with those obtained by the standard iodometric method. PMID:27260448

  11. A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica for differential pulse adsorptive stripping analysis of nickel in ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Regina M. [Departamento de Quimica Analitica, Instituto de Quimica, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)]. E-mail: takeuchi@iq.unesp.br; Santos, Andre L. [Departamento de Quimica Analitica, Instituto de Quimica, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); Padilha, Pedro M. [Departamento de Quimica e Bioquimica-IB/UNESP, CP 510, 18618-000 Botucatu, SP (Brazil); Stradiotto, Nelson R. [Departamento de Quimica Analitica, Instituto de Quimica, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)

    2007-02-19

    A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni{sup 2+} determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni{sup 2+} preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni{sup 2+} adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG){sub 2} complex, whose electrochemical reduction provides the analytical signal. All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10{sup -9} to 1.0 x 10{sup -6} mol L{sup -1} with detection limit of 2.0 x 10{sup -9} mol L{sup -1}. Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 {mu}mol L{sup -1} Ni{sup 2+} and the developed electrode was totally stable in ethanolic solutions. The contents of Ni{sup 2+} found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni{sup 2+} determination in commercial ethanol fuel samples without any sample pretreatment or dilution step.

  12. Electrochemical studies of U(VI)/U(IV) redox reaction in 1M H{sub 2}SO{sub 4} at single-walled carbon nanotubes (SWCNTs) modified gold (Au) electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ruma; Aggarwal,S.K. [Bhabha Atomic Reseach Centre, Trombay, Mumbai (India). Fuel Chemistry Div.

    2013-08-01

    Electrochemistry of U(VI)/U(IV) couple in 1 M H{sub 2}SO{sub 4} was studied on bare and SWCNT modified gold (Au) electrodes by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The gold electrode modified with single-walled carbon nanotubes (SWCNTs-Au) was characterized by scanning electron microscopy (SEM). Electrocatalysis of U(VI)/U(IV) redox reaction was observed on SWCNT-Au. The lower charge transfer resistance at SWCNT-Au promoted the rate of electron transfer reaction of U(VI)/U(IV) couple. These results are interesting to develop electroanalytical methodologies for uranium determination using SWCNT modified electrodes. To the best of our knowledge, this is the first study on the electrocatalysis of uranium on SWCNT modified electrode. (orig.)

  13. A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: This study reports a novel, simple and fast approach for construction of a highly stable glucose biosensor based on the immobilization of glucose oxidase (GOx) onto a glassy carbon electrode (GCE) electrografted with 4-aminophenyl (AP) by diazonium chemistry. Aminophenyl was used as cross-linker for covalent attachment of glucose oxidase to the electrode surface. Cyclic voltammograms of the GOx-modified GCE in phosphate buffer solution exhibited a pair of well-defined redox peaks, attesting the direct electron transfer (DET) of GOx with the underlying electrode. The proposed biosensor could be used to detect glucose based on the consumption of O2 with the oxidation of glucose catalyzed by GOx and exhibited a wide linear range of glucose from 0.05 mM to 4.5 mM and low detection limit of 10 μM. The surface coverage of active GOx, heterogeneous electron transfer rate constant (ks) and Michaelis–Menten constant (KM) of immobilized GOx were 1.23 × 10−12 mol cm−2, 4.25 s−1 and 2.95 mM, respectively. The great stability of this biosensor, technically simple and possibility of preparation at short period of time make this method suitable for fabrication of low-cost glucose biosensors

  14. Amperometric detection of carbohydrates based on the glassy carbon electrode modified with gold nano-flake layer

    Directory of Open Access Journals (Sweden)

    Huy Du Nguyen

    2015-09-01

    Full Text Available An electro-deposition approach was established to incorporate the gold nano-flakes onto the glassy carbon electrode in electrochemical cells (nano-Au/GC/ECCs. Using pulsed amperometric detection (PAD without any gold oxidation for cleaning (non-oxidative PAD, the nano-Au/GC/ECCs were able to maintain their activity for oxidizing of carbohydrates in a normal alkaline medium. The reproducibility of peak area was about 2 relative standard deviation (RSD,% for 6 consecutive injections. A dynamic range of carbohydrates was obtained over a concentration range of 5–80 mg L−1 and the limits of detection (LOD were of 2 mg L−1 for fructose and lactose and 1 mg L−1 for glucose and galactose. Moreover, the nano-Au/GC/ECC using the non-oxidative PAD was able to combine with the internal standard method for determination of lactose in fresh cow milk sample.

  15. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    Science.gov (United States)

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples. PMID:27211634

  16. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L-Cysteine in real samples using quercetin silver nanoparticles-graphene nanosheets modified glassy carbon electrode

    Science.gov (United States)

    Zare, Hamid R.; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-07-01

    By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q-AgNPs-GNs-GCE) a new sensor has been fabricated. The cyclic voltammogram of Q-AgNPs-GNs-GCE shows a stable redox couple with surface confined characteristics. Q-AgNPs-GNs-GCE demonstrated a high catalytic activity for L-Cysteine (L-Cys) oxidation. Results indicated that L-Cys peak potential at Q-AgNPs-GNs-GCE shifted to less positive values compared to GNs-GCE or AgNPs-GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k‧, for the oxidation of L-Cys at the Q-AgNPs-GNs-GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L-Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9-12.4 μM and 12.4-538.5 μM of L-Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L-Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L-Cys in a milk sample and UA in a human urine sample.

  17. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand2013@gmail.com; Mohammadi-Behzad, Leila

    2015-12-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk.

  18. Signal amplification of dopamine using lanthanum hexacyanoferrate-modified electrode

    Indian Academy of Sciences (India)

    T Selvaraju; R Ramaraj

    2014-01-01

    A sensitive and selective electrochemical sensor has been developed using an electroactive polynuclear lanthanum hexacyanoferrate (LaHCF) complex with counter alkali cation (Na+) deposited on the glassy carbon (GC) electrode (GC/LaHCF). The GC/LaHCF-modified electrode is found to be an excellent transducer in mediating the oxidation of neurotransmitter molecule such as dopamine (DA) at physiological pH 7.2. Interestingly, the GC/LaHCF-modified electrode amplifies a 50-fold enhancement in the oxidation of DA signal compared to the bare GC electrode. Besides, the GC/LaHCF-modified electrode shows excellent selectivity in the voltammetric oxidation of DA in the presence of ascorbic acid (AA). Under optimal conditions, the GC/LaHCF modified electrode shows a linear relationship in DA oxidation between 0.1 × 10−6 and 1.0 × 10−6M with the detection limit of 1 × 10−8M (10 nM). Importantly, practical utility of the modified electrode is good in studying the real sample analysis such as dopamine hydrochloride injection assay.

  19. Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III).

    Science.gov (United States)

    Huang, Jing-Fang; Chen, Hsiao-Hua

    2013-11-15

    A Cu(I)-ion-mediating Au reduction is proposed for preparing an Au-nanoparticle-embedded nafion (NF(Aunano)) composite. The NF(Aunano) composite consisted of highly dense, well-dispersed, and protecting-agent-free Au nanocrystals with a narrow particle size (4.8±0.1 nm) distribution. The NF(Aunano) composite was characterized as a function of composition and particle size distribution using powder X-ray diffraction, transmission electron microscopy, and electrochemical measurements. It was demonstrated that the NF(Aunano) composite provided high activity in the redox behavior of As(III), and was used as a potential sensing material with low Au loading for As(III) detection. An NF(Aunano)-composite-modified electrode is easy to prepare and regenerate. The dynamic range of a calibration curve from 0.1 to 12.0 μg L(-1) (from 1.3 to 160 nM), y=23.98x (in μA μM(-1))+0.42 (R(2)=0.999), showed linear behavior with a slope of 23.98 μA μM(-1). The detection limit is as low as 0.047 μg L(-1) (0.63 nM). The chelating agent ethylenediaminetetraacetate (EDTA) can selectively chelate with interfering metal ions, forming bulky complexes or bulky anions that are excluded from the NF film. The presence of EDTA effectively eliminated interference from several metal ions, particularly Cu(II) and Hg(II), which are generally considered to be major interferents in the electroanalysis of As(III). This method was applicable to As(III) analysis in three real water samples, namely groundwater, lake, and drinking waters.

  20. A glassy carbon electrode modified with bismuth nanotubes in a silsesquioxane framework for sensing of trace lead and cadmium by stripping voltammetry

    International Nuclear Information System (INIS)

    Single-walled bismuth nanotubes (sw-BiNTs) were self-assembled with octa(3-aminopropyl) silsesquioxane as a framework and to govern morphology. Deposited on a glassy carbon electrode (GCE), the sw-BiNTs were used for the simultaneous analysis of Pb(II) and Cd(II) by square wave stripping voltammetry. The sw-BiNTs were prepared by (a) coordination interaction between the amino groups of the silsesquioxane and the Bi(III) ions, and by (b) reduction with sodium borohydride. Transmission electron microscopy images revealed single-walled tubular structures with diameters of ∼4–6 nm, and with lengths of several hundreds nanometers. GCEs modified with such sw-BiNTs perform much better than bare GCEs in stripping analysis of Pb(II) and Cd(II). The effects of adsorption quantity of sw-BiNTs, solution pH, pulse amplitude, and pulse width were optimized. The modified electrode was then used for the analysis of Pb(II) and Cd(II) in a linear response range from 0.4 to 6 μM with a sensitivity of 4.692 μA μM−1 and 3.835 μA μM−1, and detection limits of 1 nM and 5 nM, respectively. The method was successfully applied to the analysis of Pb(II) and Cd(II) in toy leachates, and the results were in good agreement with those obtained with atomic absorption spectrometry. Sensitivity and detection limits were compared with other voltammetric methods, and the sw-BiNTs are deemed to be an attractive alternative for practical applications. Other features of the electrode include low costs, a well reproducible nanostructure, and ease of scale-up of the fabrication process. (author)

  1. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite.

    Science.gov (United States)

    Jahanbani, Shahriar; Benvidi, Ali

    2016-11-01

    In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe3O4/reduced graphene oxide (Fe3O4NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe3O4-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-18)molL(-1) to 1.0×10(-8)molL(-1) with a correlation coefficient of 0.9935 and a detection limit of 2.8×10(-19)molL(-1). In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe3O4-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCA1 5382 insC mutation. PMID:27523989

  2. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode.

    Science.gov (United States)

    Chaiyo, Sudkate; Mehmeti, Eda; Žagar, Kristina; Siangproh, Weena; Chailapakul, Orawon; Kalcher, Kurt

    2016-04-28

    A simple, low cost, and highly sensitive electrochemical sensor, based on a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode (N/IL/G/SPCE) was developed to determine zinc (Zn(II)), cadmium (Cd(II)), and lead (Pb(II)) simultaneously. This disposable electrode shows excellent conductivity and fast electron transfer kinetics. By in situ plating with a bismuth film (BiF), the developed electrode exhibited well-defined and separate peaks for Zn(II), Cd(II), and Pb(II) by square wave anodic stripping voltammetry (SWASV). Analytical characteristics of the BiF/N/IL/G/SPCE were explored with calibration curves which were found to be linear for Zn(II), Cd(II), and Pb(II) concentrations over the range from 0.1 to 100.0 ng L(-1). With an accumulation period of 120 s detection limits of 0.09 ng mL(-1), 0.06 ng L(-1) and 0.08 ng L(-1) were obtained for Zn(II), Cd(II) and Pb(II), respectively using the BiF/N/IL/G/SPCE sensor, calculated as 3σ value of the blank. In addition, the developed electrode displayed a good repeatability and reproducibility. The interference from other common ions associated with Zn(II), Cd(II) and Pb(II) detection could be effectively avoided. Finally, the proposed analytical procedure was applied to detect the trace metal ions in drinking water samples with satisfactory results which demonstrates the suitability of the BiF/N/IL/G/SPCE to detect heavy metals in water samples and the results agreed well with those obtained by inductively coupled plasma mass spectrometry. PMID:27046207

  3. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen, E-mail: yctsai@dragon.nchu.edu.tw

    2012-05-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E Degree-Sign Prime ) of - 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s{sup -1}; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M{sup -1} cm{sup -2} and an apparent Michaelis-Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: Black-Right-Pointing-Pointer A film composed of MWCNT-ACS was used for biosensor application. Black-Right-Pointing-Pointer High sensitivity and good selectivity were obtained for the detection of glucose. Black-Right-Pointing-Pointer This approach is potential for fabrication of mediator-free biosensor.

  4. A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol A

    International Nuclear Information System (INIS)

    Thin-layered molybdenum disulfide (MoS2) was intercalated, via ultrasonic exfoliation, into self-doped polyaniline (SPAN). This material, when placed on a glassy carbon electrode (GCE), exhibits excellent electrical conductivity and synergistic catalytic activity with respect to the detection of bisphenol A (BPA). The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. Under optimal conditions, the oxidation peak current (measured best at 446 mV vs. SCE) is related to the concentration of BPA in the range from 1.0 nM to 1.0 μM, and the detection limit is 0.6 nM. (author)

  5. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection

    NARCIS (Netherlands)

    Manea, F.; Motoc, S.; Pop, A.; Remes, A.; Schoonman, J.

    2012-01-01

    The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon nan

  6. Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold nanoparticles, ZnS/NiS-ZnS quantum dots and L-cysteine

    International Nuclear Information System (INIS)

    We describe an electrochemical sensor for simultaneous determination of hydroquinone (HQ) and catechol (CC). A glassy carbon electrode (GCE) was modified with gold nanoparticles, L-cysteine, and ZnS/NiS-ZnS quantum dots using a layer-by-layer technique. The materials were characterized by X-ray diffractometry, field emission scanning electron microscopy, and electrochemical impedance and Fourier transform infrared spectroscopy. Cyclic voltammetry and differential pulse voltammetry revealed this modified GCE to represent a highly sensitive sensor for the simultaneous determination of HQ and CC. The anodic peak current for HQ at a working voltage of 80 mV (vs. Ag/AgCl) is related to its concentration in the 0.1 to 300 μM range (even in the presence of 0.1 mM of CC). The anodic peak current for CC at a working voltage of 184 mV is related to its concentration in the 0.5 to 400 μM range (even in the presence of 0.1 mM of HQ). The detection limits (at an S/N ratio of 3) are 24 and 71 nM for HQ and CC, respectively. The modified GCE was successfully applied to the determination of HQ and CC in aqueous solutions and gave satisfactory results. (author)

  7. Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: Toward sensitive and fast detection of hydrogen peroxide and iodate

    International Nuclear Information System (INIS)

    A robust and stable film comprising n-octylpyridinum hexafluorophosphate ([C8Py][PF6]) and 1:12 phosphomolybdic acid (PMo12) was prepared on glassy carbon electrodes modified with multiwall carbon nanotubes (GCE/MWCNTs) by dip-coating. The cyclic voltammograms of the GCE/MWCNTs/[C8Py][PF6]-PMo12 showed three well-defined pairs of redox peaks due to the PMo12 system. The surface coverage for the immobilized PMo12 and the average values of the electron transfer rate constant for three pairs of redox peaks were evaluated. The GCE/MWCNTs/[C8Py][PF6]-PMo12 showed great electrocatalytic activity towards the reduction of H2O2 and iodate. The kinetic parameters of the catalytic reduction of hydrogen peroxide and iodate at the electrode surface and analytical features of the sensor for amperometric determination of hydrogen peroxide and iodate were evaluated.

  8. Amperometric biosensor for bisphenol A based on a glassy carbon electrode modified with a nanocomposite made from polylysine, single walled carbon nanotubes and tyrosinase

    International Nuclear Information System (INIS)

    We have prepared a nanocomposite consisting of single-walled carbon nanotubes and polylysine. It was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and by UV/vis and FTIR spectroscopy. Tyrosinase was covalently immobilized on the nanocomposite, and the resulting bioconjugate deposited on a glassy carbon electrode to form a biosensor for bisphenol A. The biosensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimized experimental conditions, the biosensor gives a linear response to bisphenol A in the 4.00 nM to 11.5 μM concentration range. Its sensitivity is 788 mA M−1 cm−2, and the lower detection limit is 0.97 nM (at an S/N of 3). The biosensor shows good repeatability, reproducibility and long-term stability. In a preliminary practical application, it was successfully applied to the determination of bisphenol A in leachates of plastic spoons. (author)

  9. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    Science.gov (United States)

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid.

  10. Electrochemical Sensing toward Trace As(III Based on Mesoporous MnFe2O4/Au Hybrid Nanospheres Modified Glass Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Shaofeng Zhou

    2016-06-01

    Full Text Available Au nanoparticles decorated mesoporous MnFe2O4 nanocrystal clusters (MnFe2O4/Au hybrid nanospheres were used for the electrochemical sensing of As(III by square wave anodic stripping voltammetry (SWASV. Modified on a cheap glass carbon electrode, these MnFe2O4/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb and limit of detection (LOD (3.37 ppb toward As(III under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0 by depositing for 150 s at the deposition potential of −0.9 V. No obvious interference from Cd(II and Hg(II was recognized during the detection of As(III. Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III and other toxic metal ions.

  11. Improved sensing of dopamine and ascorbic acid using a glassy carbon electrode modified with electrochemically synthesized nickel-cobalt hexacyanoferrate microparticles deposited on graphene

    International Nuclear Information System (INIS)

    We report on the preparation of a nanocomposite by an electrochemical redox reaction in which graphene oxide is reduced to graphene while nickel-cobalt hexacyanoferrate (III) microparticles are simultaneously formed by oxidation. The microparticles deposit uniformly on the surface of graphene sheets, and the resulting nanocomposite was characterized by scanning electron microscopy, energy dispersive X-ray studies, cyclic voltammetry, and differential pulse voltammetry. Electrochemical studies using a glassy carbon electrode showed the material to possess superior electrocatalytic activity in terms of the oxidation of dopamine (DA) and ascorbic acid (AA). Calibration plots were established for DA in the concentration range from 0.2 to 500 μM (at a potential of 280 mV), and for AA from 0.5 to 200 μM and from 200 to 2,000 μM, (at a potential of 100 mV). These linear ranges are much wider than those of most modified electrodes reported before. (author)

  12. A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode.

    Science.gov (United States)

    Soleymani, Jafar; Hasanzadeh, Mohammad; Shadjou, Nasrin; Khoubnasab Jafari, Maryam; Gharamaleki, Jalil Vaez; Yadollahi, Mehdi; Jouyban, Abolghasem

    2016-04-01

    A novel magnetic nanocomposite was synthesized in one step using polymerization of magnetic graph oxide grafted with chlorosulfonic acid (Fe3O4-GO-SO3H) in the presence of polystyrene. The prepared magnetic nanocomposite was characterized using transmission electron microscopy (TEM), dynamic differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), (Thermo-gravimetric/differential thermal analysis (DTA)), Fourier transform infrared (FTIR), and UV-Vis techniques. Magnetic nanocomposite was casted on the surface of the glassy carbon electrode (PS/Fe3O4-GO-SO3H/GCE) and used for the detection and determination of doxorubicin hydrochloride (DOX) in human biological fluids. The cyclic voltammograms (CVs) of the modified electrode in aqueous solution displayed a pair of well-defined, stable and irreversible reductive/oxidation redox systems. CV study indicated that the oxidation process is irreversible and adsorption controlled. In addition, CV results indicated that DOX is oxidized via two electrons and three protons which is an unusual approach for the oxidation of DOX. A sensitive and time-saving procedure was developed for the analysis of DOX in plasma, cerebrospinal fluid, and urine with detection limit of 4.9 nM, 14 nM and 4.3 nM, respectively. PMID:26838892

  13. Electroanalytical Performance of a Carbon Paste Electrode Modified by Coffee Husks for the Quantification of Acetaminophen in Quality Control of Commercialized Pharmaceutical Tablets

    Directory of Open Access Journals (Sweden)

    Serge Foukmeniok Mbokou

    2016-01-01

    Full Text Available Electrochemical determination of acetaminophen (APAP was successfully performed using a carbon paste electrode (CPE modified with coffee husks (CH-CPE. Scanning electron microscopy (SEM and SEM-energy dispersive X-ray spectroscopy (SEM-EDX were, respectively, used for the morphological and elemental characterization of coffee husks prior to their utilization. The electrochemical oxidation of APAP was investigated by cyclic voltammetry (CV, differential pulse voltammetry (DPV, and square wave voltammetry (SWV. SWV technique appeared to be more sensitive since the oxidation current of APAP was twofold higher with the CH-CPE sensor than with the bare CPE, in relation to the increase in the organophilic character of the electrode surface. Furthermore, on CH-CPE, the current response of APAP varied linearly with its concentration in the range of 6.6 μM to 0.5 mM, leading to a detection limit of 0.66 μM (S/N=3. Finally, the proposed CH-CPE sensor was successfully used to determine the amount of APAP in commercialized tablets (Doliprane® 500 and Doliprane 1000, with a recovery rate ranging from 98% to 103%. This novel sensor opens the way for the development of low-cost and reliable devices for the electroanalysis of pharmaceutical formulations in developing countries.

  14. Electrohemical Properties of Carbon Nanotube Paste Electrodes Modified with Redox Cationic Dyes - doi: 10.4025/actascitechnol.v34i3.15250

    Directory of Open Access Journals (Sweden)

    Juliana Maria Ramos Antônio

    2012-05-01

    Full Text Available The present work describes the electrochemical behavior of cationic dyes (methylene blue and toluidine blue as electron mediators adsorbed in the multiwall carbon nanotubes paste in 0.5 KCl at pH 7.0 by using cyclic voltammetry. Based on midpoint potential [Em = (Eap + Ecp/2] and separation of cathodic and anodic peaks (ΔE, it was not observed interaction of different eletrolytes (LiCl, KCl, BaCl2, CaCl2, NaCl, NaNO3, Na2SO4 and NaClO4, with the cationic dyes by an ion exchange reaction and, as a consequence, absence of leaching of cationic dyes to the solution phase.  The kinetics of electron transfer on the surface electrode was not sufficiently fast showing a fairly resistence of carbon nanotube paste modified with the cationic dyes.  The midpoint potential and ΔE also were insentive to the pH range (4-8, confirming the protective effect of carbon nanotubes matrix, owing to strong interaction of between the latter and the nitrogen of nitrogen of cationic dyes with carbon nanotube matrix, minimizing the proton interaction under cationic dye. This result is very important for sensor/biosensor preparation, because the eletrooxidation behavior of the analyte will be only affected by its formal potencial shifting.  Carbon nanotubes proved to be an efficient solid matrix for the adsorption of mediator electron in comparison to the electrochemical behavior of free cationic dyes in solution phase.

  15. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection

    OpenAIRE

    Manea, F.; Motoc, S.; Pop, A.(National Institute for Physics and Nuclear Engineering, Bucharest, Romania); Remes, A.; Schoonman, J.

    2012-01-01

    The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon nanotube composite electrode exhibited the best electroanalytical parameters through applying preconcentration/differential-pulsed voltammetry scheme.

  16. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection

    Science.gov (United States)

    Manea, Florica; Motoc, Sorina; Pop, Aniela; Remes, Adriana; Schoonman, Joop

    2012-06-01

    The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon nanotube composite electrode exhibited the best electroanalytical parameters through applying preconcentration/differential-pulsed voltammetry scheme.

  17. Disposable, enzymatically modified printed film carbon electrodes for use in the high-performance liquid chromatographic-electrochemical detection of glucose or hydrogen peroxide from immobilized enzyme reactors.

    Science.gov (United States)

    Osborne, P G; Yamamoto, K

    1998-04-10

    Disposable screen-printed, film carbon electrodes (PFCE) were modified with cast-coated Osmium-polyvinylpyrridine-wired horse radish peroxidase gel polymer (Os-gel-HRP) to enable the detection of the reduction at 0 mV of hydrogen peroxide (H2O2) derived from a post-column immobilized enzyme reactor (IMER) containing acetylcholinesterase and choline oxidase. In another series of experiments PFCE were initially modified with cast-coated Os-gel-HRP and then treated with glucose oxidase in bovine serum albumin (BSA) and cross-linked with glutaraldehyde to form a bi-layer glucose-Os-gel-HRP PFCE. This bi-layer glucose-Os-gel-HRP PFCE generated a reduction current at 0 mV to H2O2 derived from the reaction of glucose oxidase and glucose in solution. These enzyme-modified PFCE were housed in a radial flow cell and coupled with cation-exchange liquid chromatographic methods to temporally separate substrates in solution for the determination of acetylcholine (ACh) and choline (Ch) in the first experimental series, or glucose in the second experimental series. These two disposable enzyme-modified PFCE exhibited linear current vs. substrate relations, were durable, being usable for approximately 40 determinations, and were sufficiently sensitive to be employed in biological sampling. Both assays utilized the same HPLC equipment. The limit of detection for ACh was 16 fmol/10 microl and that for glucose was 12 micromol/7.5 microl. ACh and Ch were measured from a microdialysate from the frontal cortex of a rat. Glucose in human urine was determined using the bi-layer glucose oxidase-Os-gel-HRP PFCE. PMID:9613927

  18. Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode.

    Science.gov (United States)

    Li, Yaya; Du, Jie; Yang, Jiandong; Liu, Dong; Lu, Xiaoquan

    2012-09-01

    Single-walled carbon nanotubes (SWCNTs) fabricated by sodium dodecyl sulfate (SDS) (f-SWCNTs) modified glassy carbon electrodes (f-SWCNTs/GCE) for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The f-SWCNTs/GCE displayed very good electrochemical catalytic activities with respect to GCE. The oxidation over-potentials of DA and UA decreased dramatically, and their oxidation peak currents increased significantly at f-SWCNTs/GCE compared to those obtained at the bare GCE. Simultaneously, the oxidation peak currents of AA decreased accordingly. The f-SWCNTs/GCE not only divide the overlapping voltammetric responses of them into individual voltammetric peaks, but also totally eliminate the interference from AA and distinguish DA from UA. The catalytic peak currents obtained from square-wave voltammetry increased linearly with increasing DA concentrations in the range of 5.0×10(-6) to 1.0×10(-4)M with a detection limit of 2.0×10(-8)M (S/N=3). The method was also successfully applied for determination of DA and showed good recovery in some biological fluids. PMID:22580482

  19. Determination of Catechol Based on Carbon Nanotube Modified Glassy Carbon Electrode%碳纳米管修饰玻碳电极测定邻苯二酚的研究

    Institute of Scientific and Technical Information of China (English)

    崔艳萍; 王卫星; 王小龙

    2011-01-01

    文章借助循环伏安法(CV)研究了邻二苯酚(CAT)在碳纳米管修饰玻碳电极(CNTs/GCE)表面的电催化氧化行为.试验结果表明:CNTs/GCE对邻二苯酚的氧化过程表现出良好的催化活性,其响应峰电流与裸GCE相比增加了10倍以上;在最佳响应条件下,在0.25~2.0 mmol/L的浓度范围内,邻苯二酚的催化氧化峰电流与浓度呈良好的线性关系;并对模拟废水中的邻苯二酚进行了回收试验.%Carbon nanotubes (CNTs) were loaded on the glassy carbon electrode to prepare carbon nanotube modified glassy carbon electrode (CNTs/GCE). And the electrocatalytic oxidation behavior of catechol was investigated on this modified electrode by cyclic voltammetry (CV) of the electrochemical methods. Results show that good electrocatalytic activity for catechol oxidation could be observed at CNTs/GCE. Compared with bare GCE, the response peak current of CNTs/GCE had an increase of more than lOtimes. Under the optimal condition of response, the oxidation peak current were increased linear with the concentrations of catechol at the range 0.25-2.0 mmol/L. And the recovery test of catechol in simulating wastewater was satisfactory.

  20. Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 x 10-6 to 1 x 10-5 M. The detection limit is 5 x 10-7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid

  1. Electrochemical Determination of Dopamine on a Glassy Carbon Electrode Modified by Using Nanostructure Ruthenium Oxide Hexacyanoferrate/Ruthenium Hexacyanoferrate Thin Film

    OpenAIRE

    Reza Karimi Shervedani; Hossein Ali Alinajafi-Najafabadi

    2011-01-01

    Application of mixed ruthenium oxide hexacyanoferrate/ruthenium hexacyanoferrate glassy carbon electrode for electrochemical determination of dopamine (DA) is described for the first time. The overlapped voltammetric oxidation potentials of ascorbic acid (AA) and DA are separated and shifted to more facile direction, +170 and +320 mV versus Ag/AgCl, respectively. Voltammetric response of the electrode toward the DA showed a dynamic calibration curve with two linear parts, from 0.50 to 10.00 ...

  2. Attractive forces in microporous carbon electrodes for capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Porada, S.; Levi, M.; Bazant, M.Z.

    2014-01-01

    The recently developed modified Donnan (mD) model provides a simple and useful description of the electrical double layer in microporous carbon electrodes, suitable for incorporation in porous electrode theory. By postulating an attractive excess chemical potential for each ion in the micropores tha

  3. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    Science.gov (United States)

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  4. Glassy carbon electrodes modified with supramolecular assemblies generated by π-stacking of Cobalt (II) octaethylporphyrins. A 4 electrons-dioxygen reduction reaction occurring at positive potentials

    International Nuclear Information System (INIS)

    A new method of modifying previously oxidized glassy carbon electrode (GCE) using commercial cobalt (II) porphyrin is proposed. This novel assembly presents a significant improvement in terms of electroactivity towards the oxygen reduction reaction (ORR), as compared to other reported systems. The device reduces molecular oxygen at positive potentials involving 4 electrons, as corroborated by kinetic studies. In addition, a 46 mV per decade Tafel slope was obtained, evidencing that the ORR mechanism would involve a chemical step following the first electron transfer, or, the rate determining step would be the transfer of a second electron. Concomitant to this, studies with different metalloporphirins were accomplished in order to compare the central metal ion effect. Morphological studies conducted using Atomic Force Microscopy (AFM) consistent with the proposed modification based on the structural changes found on the GCE surface, as well as to the obtained differences of roughness parameters (Rq values). Finally, it was demonstrated that this new system is better, in terms of electroactivity, than previously reported arrays

  5. Rapid Quantitative Detection of Brucella melitensis by a Label-Free Impedance Immunosensor Based on a Gold Nanoparticle-Modified Screen-Printed Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Xiaowen Wang

    2013-07-01

    Full Text Available A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs. Cyclic voltammetry (CV and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 104 to 4 × 106 CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 104 and 4 × 105 CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis.

  6. Fuel blends: Enhanced electro-oxidation of formic acid in its blend with methanol at platinum nanoparticles modified glassy carbon electrodes

    Science.gov (United States)

    El-Deab, Mohamed S.; El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Anadouli, Bahgat E.

    2015-07-01

    The current study addresses, for the first time, the enhanced direct electro-oxidation of formic acid (FA) at platinum-nanoparticles modified glassy carbon (nano-Pt/GC) electrode in the presence of methanol (MeOH) as a blending fuel. This enhancement is probed by: (i) the increase of the direct oxidation current of FA to CO2 (Ipd, dehydrogenation pathway), (ii) suppressing the dehydration pathway (Ipind, producing the poisoning intermediate CO) and (iii) a favorable negative shift of the onset potential of Ibd with increasing the mole fraction of MeOH in the blend. Furthermore, the charge of the direct FA oxidation in 0.3 M FA + 0.3 M MeOH blend is by 14 and 21times higher than that observed for 0.3 M FA and 0.3 M MeOH, respectively. MeOH is believed to adsorb at the Pt surface sites and thus disfavor the "non-faradaic" dissociation of FA (which produces the poisoning CO intermediate), i.e., MeOH induces a high CO tolerance of the Pt catalyst. The enhanced oxidation activity indicates that FA/MeOH blend is a promising fuel system.

  7. A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles

    International Nuclear Information System (INIS)

    This article describes an electrochemical immunosensor for rapid determination of Salmonella pullorum and Salmonella gallinarum. The first step in the preparation of the immunosensor involves the electrodeposition of gold nanoparticles used for capturing antibody and enhancing signals. In order to generate a benign microenvironment for the antibody, the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate was used to modify the surface of a screen-printed carbon electrode (SPCE). The single steps of modification were monitored via cyclic voltammetry and electrochemical impedance spectroscopy. Based on these findings, a sandwich immunoassay was worked out for the two Salmonella species by immobilizing the respective unlabeled antibodies on the SPCE. Following exposure to the analytes, secondary antibody (labeled with HRP) is added to form the sandwich. After adding hydrogen peroxide and thionine, the latter is oxidized and its signal measured via CV. A linear response to the Salmonella species is obtained in the 104 to 109 cfu · mL−1 concentration range, and the detection limits are 3.0 × 103 cfu · mL−1 for both species (at an SNR of 3). This assay is sensitive, highly specific, acceptably accurate and reproducible. Given its low detection limit, it represents a promising tool for the detection of S. pullorum, S. gallinarum, and - conceivably - of other food-borne pathogens by exchanging the antibody. (author)

  8. Facile direct electron transfer in glucose oxidase modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dan [Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Chen Liwei [Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Suzhou Institute of Nano Tech and Nano Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215125 (China)], E-mail: lwchen2008@sinano.ac.cn

    2009-07-15

    Glucose oxidase (GOx) is widely used in the glucose biosensor industry. However, mediatorless direct electron transfer (DET) from GOx to electrode surfaces is very slow. Recently, mediatorless DET has been reported via the incorporation of nanomaterials such as carbon nanotubes and nanoparticles in the modification of electrodes. Here we report GOx electrodes showing DET without the need for any nanomaterials. The enzyme after immobilization with poly-L-lysine (PLL) and Nafion retains the biocatalytic activities and oxidizes glucose efficiently. The amperometric response of Nafion-PLL-GOx modified electrode is linearly proportional to the concentration of glucose up to 10 mM with a sensitivity of 0.75 {mu}A/mM at a low detection potential (-0.460 V vs. Ag/AgCl). The methodology developed in this study will have impact on glucose biosensors and biofuel cells and may potentially simplify enzyme immobilization in other biosensing systems.

  9. A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite

    International Nuclear Information System (INIS)

    Nanoporous palladium-iron alloy (np-PdFe) was fabricated by dealloying. It possesses a three-dimensional nanospongy architecture with a typical dimension of ∼ 5 nm and displays a high catalytic activity towards oxidation of nitrite in phosphate buffer of pH 7.0 at a working voltage of 1.2 V (vs. the reversible hydrogen electrode). Compared to np-Pd and a commercial Pd/C catalyst, the np-PdFe alloy exhibits superior detection capability such as a wide linear range (that extends from 0.5 to 25.5 mM), fast amperometric response (within 2 s), and a low detection limit (0.8 μM). Long-term tests demonstrate that the np-PdFe alloy has improved reproducibility and durability, with almost no activity loss upon continuous nitrite detection for two weeks. The method was applied to determine nitrite in sausage and the results are in good agreement with those of the Griess method. (author)

  10. Electro-oxidation of carbon monoxide and methanol on bare and Pt-modified Ru(1010) electrodes.

    Science.gov (United States)

    Pinheiro, A L N; Zei, M S; Ertl, G

    2005-03-21

    The activity towards CO and methanol electrooxidation of bare and platinum-modified Ru(1010) surfaces has been investigated. The structure/morphology and composition of the modified surfaces were characterized using electron diffraction techniques (LEED, RHEED) and Auger spectroscopy. The bare Ru(1010) surface exhibits a higher catalytic activity towards CO electrooxidation than the Ru(0001) surface due to the lower oxidation potential of the former surface. The early stages of surface oxidation lead to disordering of the surface and further enhancing of the electrocatalytic activity. Electrodeposition of Pt on Ru(1010) leads to epitaxial growth via a Volmer-Weber growth mode. The Pt clusters grow preferentially with the (311) plane parallel to the substrate surface with (011) rows in the layers in contact with the substrate compressed by about 3% with respect to bulk Pt, in order to match with the (1210) rows of the Ru(1010) surface. This compression leads to enhanced catalytic activity towards CO oxidation for thin Pt deposits whereas for large deposited Pt particles the dominating factor for the catalytic enhancement is the higher concentration of surface defects. On the other hand, in the case of methanol oxidation, the dominant factor in determining the catalytic activity is the concentration of adjacent Pt-Ru sites, although surface defects play an important role in the methanol dehydrogenation steps.

  11. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    Science.gov (United States)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing

    2016-01-01

    In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10-9 to 1.0 × 10-7 M and 1.0 × 10-7 to 1.0 × 10-4 M with the detection limit (S/N = 3) of 8.0 × 10-10 M. And the linear concentration ranges for PCP were 2.0 × 10-9 to 1.0 × 10-7 M and 1.0 × 10-7 to 9.0 × 10-5 M with the detection limit of 5.0 × 10-10 M. Moreover, the proposed PRhB/GO/MWCNTs/GCE was successfully applied to the simultaneous determination of 2,4,6-TCP and PCP in practical water samples.

  12. Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes

    International Nuclear Information System (INIS)

    We report on a nonenzymatic method for the determination of glucose using an electrode covered with graphene nanosheets (GNs) modified with Pt-Pd nanocubes (PtPdNCs). The latter were prepared on GNs by using N,N-dimethylformamide as a bifunctional solvent for the reduction of both metallic precursors and graphene oxide, and for confining the growth of PtPdNCs on the surface. The modified electrode displays strong and sensitive current response to the electrooxidation of glucose, notably at pH 7. The sensitivities increase in the order of Pt1Pd5NCs< Pt1Pd3NCs< Pt5Pd1NCs< Pt3Pd1NCs< Pt1Pd1NCs. At an applied potential of +0.25 V, the electrode responds linearly (R = 0.9987) to glucose in up to 24.5 mM concentration, with a sensitivity of 1.4 μA cm−2 M−1. The sensor is not poisoned by chloride, and not interfered by ascorbic acid, uric acid and p-acetamidophenol under normal physiological conditions. The modified electrode also displays a wide linear range, good stability and fast amperometric response, thereby indicating the potential of the bimetallic materials for nonenzymatic sensing of glucose. (author)

  13. 基于碳纳米管修饰电极的甲醛生物传感器%An Formaldehyde Biosensor Based on Carbon Nanotubes Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    张仁彦; 张学骜; 贾红辉; 李新华

    2012-01-01

    A novel formaldehyde biosensor based on the detection of reduced coenzyme I by using the formaldehyde dehydrogenase and carboxyl multi-walled carbon nanotubes modified screen printed electrode was reported. The best detection conditions in experiments were examined. The experiment results showed that the sensor had good electrocatalytic oxidization function to formaldehyde, and it significantly reduced the formaldehyde oxidation peak voltage. The concentrate of formaldehyde in the range of 1 nmol/L to 11 mmol/L presented excellent linear relationship to its peak currents and its the linear regression equation was i(μ)=0. 944c (mmol/L) + 0.0623, with a correlation coefficient of 0. 9934. The response time was about 20 s. The detection limit was 0. 2 u,mol/L(S/N=3).%利用甲醛脱氢酶和羧基化多壁碳纳米管修饰的丝网印刷电极,制备了基于还原型辅酶Ⅰ检测的甲醛生物传感器,并优化了传感器的检测条件.结果表明,此传感器对甲醛有较好的电催化氧化作用,显著降低了甲醛的氧化峰电位.在0.001~11nmol/L范围内,响应电流与甲醛的浓度线性相关,其线性回归方程为z(μA)=0.944c(mmol/L,) +0.0623,相关系数为0.9934,响应时间约为20 s,检出限为0.2 μmol/L( S/ N=3).

  14. Highly Sensitive and Selective Detection of Dopamine at Poly(chromotrope 2B)-Modified Glassy Carbon Electrode in the Presence of Uric Acid and Ascorbic Acid

    International Nuclear Information System (INIS)

    A highly sensitive and selective electrochemical method based on a poly(chromotrope 2B)-modified anodized glassy carbon electrode (PCHAGCE) was developed for the determination of dopamine (DA) in the presence of uric acid (UA) and ascorbic acid (AA). The PCHAGCE sensor exhibited excellent electron-mediating behavior towards the oxidation of DA in 0.1 M phosphate buffer solution (PBS) (pH 7.0). It was found that the electrocatalytic activity was significantly dependent on the charge status and molecular structure of the target molecules. Differential pulse voltammetry (DPV) measurements revealed oxidation signals for DA, UA, and AA that were well-resolved into three distinct peaks with AA–DA, DA–UA, and AA–UA peak potential separations (ΔEp) of 172, 132, and 304 mV, respectively. A detection limit of 0.04 ± 0.001 μM (S/N = 3) and a quantification limit (S/N = 10) of 0.149 ± 0.03 μM were obtained for DA sensing in a linear range of 1 to 40 μM in PBS (pH 7.0) with a very high sensitivity of 1.522 ± 0.032 μA·μM−1. The DA concentrations in human urine samples were also successfully determined with recoveries of 94.0–98.0%. This approach provides a simple, easy, sensitive, and selective method to detect DA in the presence of AA and UA

  15. Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination.

    Science.gov (United States)

    Rezaei, B; Lotfi-Forushani, H; Ensafi, A A

    2014-04-01

    A new, simple, and disposable molecularly imprinted electrochemical sensor for the determination of ranitidine was developed on pencil graphite electrode (PGE) via cyclic voltammetry (CV). The PGEs were coated with MWCNTs containing the carboxylic functional group (f-MWCNTs), imprinted with sol-gel and Au nanoparticle (AuNPs) layers (AuNP/MIP-sol-gel/f-MWCNT/PGE), respectively, to enhance the electrode's electrical transmission and sensitivity. The thin film of molecularly imprinted sol-gel polymers with specific binding sites for ranitidine was cast on modified PGE by electrochemical deposition. The AuNP/MIP-sol-gel/f-MWCNT/PGE thus developed was characterized by electrochemical impedance spectroscopy (EIS) and CV. The interaction between the imprinted sensor and the target molecule was also observed on the electrode by measuring the current response of 5.0mMK3[Fe(CN)6] solution as an electrochemical probe. The pick currents of ranitidine increased linearly with concentration in the ranges of 0.05 to 2.0μM, with a detection limit of (S/N=3) 0.02μM. Finally, the modified electrode was successfully employed to determine ranitidine in human urine samples.

  16. Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine.

    Science.gov (United States)

    Mohammadi-Behzad, Leila; Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Gholivand, Khodayar; Barati, Ali; Gholami, Akram

    2016-03-01

    In the present paper, a new bisphosphoramidate derivative compound, 1, 4-bis(N-methyl)-benzene-bis(N-phenyl, N-benzoylphosphoramidate) (BMBPBP), was synthesized and used as a mediator for the electrocatalytic oxidation of olanzapine. The electro-oxidation of olanzapine at the surface of the BMBPBP/CdS-quantum dots/multi-walled carbon nanotubes (BMBPBP/CdS-QDs/MWCNTs) modified gold electrode was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. This sensor showed an excellent electrocatalytic oxidation activity toward olanzapine at less positive potential, pronounced current response, and good sensitivity. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) were determined for olanzapine oxidation, using the electrochemical approaches. Surface morphology and electrochemical properties of the prepared modified electrode were investigated by scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy techniques. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of olanzapine. Under optimized conditions, the calibration plot was linear in the concentration range of 20 nM to 100 μM and detection limit was found to be 6 nM. The proposed method was successfully applied to the determination of olanzapine in pharmaceuticals and human serum samples. PMID:26706508

  17. Renewable-surface sol-gel derived carbon ceramic-modified electrode fabricated by a newly synthesized polypyridil and phosphine Ru (II) complex and its application as an amperometric sensor for hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour, Abdolkarim [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 7145685464 (Iran, Islamic Republic of)], E-mail: abbaspour@chem.susc.ac.ir; Shamsipur, Mojtaba [Department of Chemistry, College of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Siroueinejad, Arash [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 7145685464 (Iran, Islamic Republic of); Kia, Reza; Raithby, Paul R. [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2009-04-01

    A chemically modified carbon ceramic composite electrode (CCE) containing Dichloro{l_brace}(8, 9-dimethyl-dipyridio [2,3-a;2',3'-c] phenazine-{kappa}{sup 2}-N,N') bis(triphenylphosphine-{kappa}-P){r_brace}ruthenium (II) complex which synthesized newly was constructed by the sol-gel technique. Electrochemical behavior and stability of modified CCE were investigated by cyclic voltammetry. The electrocatalytic activity of CCE was investigated and showed a good effect for oxidation of hydrazine in phosphate buffer solution (PBS). A linear concentration range of 6 {mu}M to 1.2 mM of hydrazine with an experimental detection limit of 1 {mu}M of hydrazine was obtained. The diffusion coefficient of hydrazine and its catalytic rate constant for electrocatalytic reaction along with the apparent electron transfer rate constant (k{sub s}) and transfer coefficient ({alpha}) were also determined. The modified carbon ceramic electrode doped with this new Ru-complex showed good reproducibility, short response time (t < 2 s), remarkable long-term stability (>3 month) and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for determination of hydrazine in real water samples used in Fars Power Plant Station, including its heat recovery steam generator (HRSG) water (at different operational condition), cooling system and clean waste water.

  18. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  19. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  20. Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode

    OpenAIRE

    Hayati Filik; Asiye Aslıhan Avan; Sevda Aydar

    2016-01-01

    In this paper, multi-walled carbon nanotube/Azure A/gold nanoparticle composites (Nafion/AuNPs/AzA/MWCNTs) were prepared by binding gold nanoparticles to the surfaces of Azure A-coated carbon nanotubes. Nafion/AuNPs/AzA/MWCNTs based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrochemical properties of the modified e...

  1. Voltammetric determination of dopamine in the presence of uric acid using a 2-hydroxy-1-(1-hydroxynaphthyl-2-azo-naphthalin-4-sulfonic acid modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    ALI ASGHAR ENSAF

    2010-12-01

    Full Text Available A polymerized film of 2-hydroxy-1-(1-hydroxynaphthyl-2-azo-naphthalin-4-sulfonic acid (HHNANSA was prepared at the surface of a glassy carbon electrode by electropolymerization. The modified electrode was used for the simultaneous determination of dopamine (DA and uric acid (UA. The electrochemical behaviors of the compounds at the surface of the modified electrode were studied using cyclic voltammetry, chronoamperometry, and square wave voltammetry (SWV. The experimental results indicated that the modified electrode exhibited an efficient electrocatalytic activity towards the oxidation of DA and UA, with a peak separation of about 140 mV at pH 5.0. Using chronoamperometry, the catalytic reaction rate constant was measured and found to equal to 1.23×104 mol-1 L s-1. At pH 5.0, the catalytic peak currents linearly depended on the DA and/or UA concentrations in the range of 1.0–300 µmol L-1 DA (two linear segments with different slopes and 6.7–20 µmol L-1 UA, using SWV. The detection limits for DA and UA were 0.25 and 1.17 µmol L-1, respectively. The RSD % for 40.0 and 140.0 µmol L-1 DA were 1.9 and 2.2 %, respectively, whereas for 10.0 and 20.0 µmol L-1 UA, they were 1.8 and 1.2 %, respectively. The modified electrode showed good sensitivity, selectivity, and stability. It was successfully applied for the determination of DA and UA in real samples, such as drugs and urine.

  2. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  3. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  4. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode

    International Nuclear Information System (INIS)

    Heterogeneous electron transfer dynamics and oxygen reduction reaction (ORR) activities using octabutylsulphonylphthalocyanine complexes of iron (FeOBSPc) and cobalt (CoOBSPc) supported on multi-walled carbon nanotube (MWCNT) platforms have been described. The MWCNT-based electrodes (MWCNT-CoOBSPc and MWCNT-FeOBSPc) showed larger Faradaic current responses than the electrodes without the MWCNTs, interpreted as a consequence of the trapped electrolyte species within the porous layers of MWCNTs undergoing a redox process. The EPPGE-MWCNT-FeOBSPc showed onset potential (-0.01 V vs Ag|AgCl) which is comparable and even much lower than recent reports. The MWCNT-FeOBSPc showed the best ORR activity involving a direct 4-electron mechanism, with a Tafel slope of about 124 mV, indicating a 1-electron process in the rate-determining step.

  5. Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide

    International Nuclear Information System (INIS)

    We describe an anodic stripping voltammetric (ASV) method for glucose sensing that widely expands the typical amperometric i-t response of glucose sensors. The electrode is based on a working electrode consisting of a glassy carbon electrode modified with Pt-Pd nanoparticles (NPs; in an atomic ratio of 3:1) on a reduced graphene oxide (rGO) support. The material was prepared via the spontaneous redox reaction between rGO, PdCl42− and PtCl42− without any additional reductant or surfactant. Unlike known Pt-based sensors, the use of Pt3Pd NPs results in an ultrasensitive ASV approach for sensing glucose even at near-neutral pH values. If operated at a working voltage as low as 0.06 V (vs. SCE), the modified electrode can detect glucose in the 2 nM to 300 μM concentration range. The lowest detectable concentration is 2 nM which is much lower than the LODs obtained with other amperometric i-t type sensing approaches, most of which have LODs at a μM level. The sensor is not interfered by the presence of 0.1 M of NaCl. (author)

  6. Fabrication, Characterization and Electrocatalysis of an Ordered Carbon Nanotube Electrode

    Institute of Scientific and Technical Information of China (English)

    陈静; 包建春; 蔡称心

    2003-01-01

    A method for fabrication of ordered carbon nanotube (CNT) film,which was template-synthesized within the highly ordered pores of a commercially available alumina template membrane,modified glassy carbon(CNT/GC) electrode was established.The CNT/GC electrode showed excellent electrocatalytic activity toward dopamine electrochemical reaction without introducing any electrochemically active group into CNT film or activating any electrochemically active group into CNT film or activating the electrode electrochemically.DA undergoes ideal reversible electrochemical reaction on CNT/GC electrode at low scan rate(≤20mV/s) with an excellent reproducibility and stability.The CNT/GC electrode might be used in biosensors because the highly ordered CNT may present a steric effect on more efficient redox reactions of biomolecules.

  7. Attractive forces in microporous carbon electrodes for capacitive deionization

    OpenAIRE

    Biesheuvel, P. M.; Porada, S.; Levi, M.; Bazant, M.Z.

    2013-01-01

    The recently developed modified Donnan (mD) model provides a simple and useful description of the electrical double layer in microporous carbon electrodes, suitable for incorporation in porous electrode theory. By postulating an attractive excess chemical potential for each ion in the micropores that is inversely proportional to the total ion concentration, we show that experimental data for capacitive deionization (CDI) can be accurately predicted over a wide range of applied voltages and sa...

  8. Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles

    International Nuclear Information System (INIS)

    We described a sensitive, label-free electrochemical immunosensor for the detection of carcinoembryonic antigen. It is based on the use of a glassy carbon electrode (GCE) modified with a multi-layer films made from Prussian Blue (PB), graphene and carbon nanotubes by electrodeposition and assembling techniques. Gold nanoparticles were electrostatically absorbed on the surface of the film and used for the immobilization of antibody, while PB acts as signaling molecule. The stepwise assembly process was investigated by differential pulse voltammetry and scanning electron microscopy. It is found that the formation of antibody-antigen complexes partially inhibits the electron transfer of PB and decreased its peak current. Under the optimal conditions, the decrease of intensity of the peak current of PB is linearly related to the concentration of carcinoembryonic antigen in two ranges (0.2–1.0, and 1.0–40.0 ng·mL−1), with a detection limit of 60 pg·mL−1 (S/N = 3). The immunosensor was applied to analyze five clinical samples, and the results obtained were in agreement with clinical data. In addition, the immunosensor exhibited good precision, acceptable stability and reproducibility. (author)

  9. Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide

    International Nuclear Information System (INIS)

    A nanocomposite consisting of flower-like zinc oxide (ZnO) and reduced functionalized graphene oxide (rFGO) was prepared via a hydrothermal route, and characterized by spectrophotometry, photoluminescence, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The nanocomposite was deposited on the surface of a glassy carbon electrode and studied using impedance spectroscopy. It exhibits excellent electrocatalytic activity toward the oxidation of nitrite. At a working potential of 0.9 V (vs. Ag/AgCl), it displayed a higher current and lower over potential (reduced by up to ∼200 mV) than controlled electrodes. This is attributed to the synergistic catalytic effects of the ZnO and rfGO. The oxidation current is linearly related to the concentration of nitrite in the 10 μM to 8 mM range, and the detection limit is 33 μM. Its excellent electrocatalytic activity, wide linear range, low detection limit, high sensitivity, and rapid response time make this nanocomposite-based electrode a potential candidate for practical applications. (author)

  10. Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles

    International Nuclear Information System (INIS)

    We report on a non-enzymatic amperometric sensor for hydrogen peroxide (H2O2). It was fabricated by electrodeposition of multi-wall carbon nanotubes and polyaniline along with platinum nanoparticles on the surface of a glassy carbon electrode. The modification was probed by scanning electron microscopy and cyclic voltammetry. The resulting sensor exhibits a high sensitivity (748.4 μA.mM-1.cm-2), a wide linear range (7.0 μM-2.5 mM), a low detection limit (2.0 μM) (S/N = 3), a short response time (>5 s), and long-term stability, and is not interfered by common species. It was successfully applied to determine H2O2 in disinfectants. (author)

  11. Direct Electrochemistry of Glucose Oxidase on A Nano Complex Modified Glassy Carbon Electrode%葡萄糖氧化酶在修饰玻碳电极上的直接电化学

    Institute of Scientific and Technical Information of China (English)

    耿方勇; 李迪; 张钰帅; 杨晓璐; 肖宝林; 洪军

    2016-01-01

    Direct electrochemistry of glucose oxidase was realized when it was immobilized on a nano-complex modified glassy carbon electrode, and the nano-complex was composed of graphene and multi-walled carbon nanotubes. The outermost layer covered with chitosan. Using cyclic voltammetry ( CV ) to measure electrochemical and electro-catalyzed reaction of glucose oxidase that modified electrode, the electron transfer rate constant (ks) was evaluated to be 0. 87 s-1, and electroactive surface density was 1. 54í10-10 mol/cm-2. The apparent Michaelis-Menten constant (Kappm ) was 1. 32í103 μmol/L, linear detection range was 40 ~1000 μmol/L, and the modified electrode had better stability, and modified electrode had good anti-interference ability when detected the substrate. Therefore, the modified electrode can be used to detect glucose, as the third generation biosensors.%将葡萄糖氧化酶( Glucose oxidase, GOD)固定在由多壁碳纳米管( MWCNTS)和石墨烯( Graphene)构成的纳米复合材料修饰的玻碳电极上,最外层用壳聚糖( Chitosan)进行覆盖,利用循环伏安法( Cyclic Voltammetry, CV)来测量葡萄糖氧化酶在修饰电极上的电化学和电催化反应,测得电子传递速率常数ks 为0.87 s-1,电活性物质表面密度Г为1.54×10-10 mol/cm-2,动力学表观米氏常数Km 为1.32×103μmol/L,线性检测范围为:40~1000μmol/L,修饰电极有较好的稳定性,而且修饰电极在检测底物时有较好的抗干扰能力,因此,该体系修饰的电极有希望构建第三代葡萄糖生物传感器。

  12. Nanostructured copper particles-incorporated Nafion-modified electrode for oxygen reduction

    Indian Academy of Sciences (India)

    T Selvaraju; R Ramaraj

    2005-10-01

    The electrocatalytic activity of nanostructured copper particles (represented as Cunano) incorporated Nafion (Nf) film-coated glassy carbon (GC) electrode (GC/Nf/Cunano) towards oxygen reduction was investigated in oxygenated 0.1 M phosphate buffer (pH 7.2). The electrodeposited Cunano in Nf film was characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of Cunano at the modified electrode towards oxygen reduction was studied using cyclic voltammetry technique. The molecular oxygen reduction at the GC/Nf/Cunano-modified electrode started at a more positive potential than at a bare GC electrode. A possible reaction mechanism was proposed in which oxygen reduction may proceed through two-step two-electron processes at the GC/Nf/Cunano electrode. The GC/Nf/Cunano electrode shows higher stability for oxygen reduction in neutral solution and the electrode may find applications in fuel cells.

  13. Determination of Thallium(I by Hybrid Mesoporous Silica (SBA-15 Modified Electrode

    Directory of Open Access Journals (Sweden)

    Geeta Rani

    2016-01-01

    Full Text Available Chemically modified mesoporous silica material (SBA-15 was used for the construction of Tl(I selective carbon paste electrode. The best response was found with the electrode containing 10% modifier as electrode material. The electrode has a lower detection limit of 6.0 × 10−9 M in a working concentration range of 1.0 × 10−8–1.0 × 10−1 M. The selectivity coefficient calculated by match potential method (MPM shows the high selectivity of electrode towards Tl(I over other tested ions. The electrode was successfully applied as an indicator electrode for the titration of 0.01 M TlNO3 solution with standards EDTA solution and for sequential titration of mixture of different anions.

  14. Assembly and Electrochemical Study of Transition Metal Substituted Polyoxometalates SiW11NiO6-39 and SiW11MnO6-39 on 4-Aminothiophenol Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    L(U¨) Gui-qin; DU Jin-yan; HU Chang-wen

    2005-01-01

    Via layer-by-layer assembly, the polyoxometalates of Keggin type, SiW11O39Ni(H2O)6-(SiNiW11) and SiW11O39Mn(H2O)6-(SiMnW11) were first immobilized on a 4-aminothiophenol(4-ATP) modified glassy carbon electrode surface. The electrochemical behavior of these polyoxometalates was investigated. They exhibited some special properties in the films, which are different from those in a homogeneous aqueous solution. Their reaction mechanism in a multilayer film is proposed. The electrocatalytic behavior of these multilayer film electrodes for the reduction of BrO-3 and NO-2 were comparatively studied.

  15. Determination of Bergenin Using Nafion - Multiwalled Carbon Nanotubes Composite Film Modified Glassy Carbon Electrode%Nafion-多壁碳纳米管复合膜修饰玻碳电极测定岩白菜素的研究

    Institute of Scientific and Technical Information of China (English)

    周群; 段德良; 王光灿; 王庆忠; 殷志禹; 曹秋娥; 丁中涛

    2009-01-01

    A chemically modified electrode of Nafion - multiwalled carbon nanotubes coated glassy carbon electrode( Nafion - MWCNTs/GCE) was prepared. The electrochemical behaviors of bergenin and its electroanalytical method were studied. The modified electrode exhibited a remarkable catalytic and enhanced effects on the current response of bergenin. The property of kinetics were also studied. The results indicated that one - electron and one - proton transfer were involved in the electrode reac-tion process. Diffusion coefficient (D) and rate constant (k) were 6. 02 × 10~(-6) cm~2 · s~(-1) and 5. 54 × 10~(-3) mol · L~(-1) s~(-1), respectively. The experimental conditions were optimized. Under the optimal conditions, the linear calibration range for bergenin were 1. 44 × 10~(-7) - 1.92 × 10~(-6) mol · L~(-1) and 4. 18 × 10~(-5)-1.06×l0~(-4) mol · L~(-1) with a detection limit of 1.02 × 10~(-7) mol · L~(-1).The RSD(n = 10) for determination of bergenin sample were 4. 6% . This method was applied in the determination of bergenin in the real sample with satisfactory results.%研制了以Nafion分散多壁碳纳米管的化学修饰电极,研究了岩白菜素在该修饰电极上的电化学行为和电化学动力学性质.发现修饰电极对岩白菜素有显著的电催化作用,岩白菜素的氧化过程是单电子单质子过程,岩白菜素在该修饰电极上的扩散系数、速率常数分别为6.02×10~(-6) cm~2·s~(-1)、5.54×10~(-3) mol·L~(-1)·s~(-1). 通过优化各项参数,建立了一种直接测定岩白菜素的电分析方法.该方法的线性范围为1.44×10~(-7) ~1.92×10~(-6) mol·L~(-1)和4.18×10~(-5) ~1.06×10~(-4) mol·L~(-1),检出限为1.02×10~(-7) mol·L~(-1),同支电极测定10次的相对标准偏差为4.6%,可用于岩白菜素样品的含量测定.

  16. The immobilization of chloroperoxidase on gold and carbon nanotubes modified electrode with enhanced catalytic activity%CPO在金-碳纳米管修饰电极上的固定化及应用

    Institute of Scientific and Technical Information of China (English)

    成佳; 穆世磊; 张红霞; 吴霞琴

    2011-01-01

    应用电化学方法在碳纳米管修饰的玻碳电极上沉积金,继而固定氯过氧化物酶(CPO),制得的CPO-Au/SWNT/GC修饰电极的循环伏安曲线上呈现一对对称的氧化还原电流峰,说明CPO在金-碳纳米管复合修饰膜上可进行直接的电子传递,并且是一个受吸附控制的准可逆电极过程.循环伏安行为与溶液的pH值密切相关,是典型的一电子一质子反应.修饰电极性能稳定,对氧的电化学还原具有很好的催化作用,可应用于原位产生过氧化氢下CPO催化的有机合成反应.%The gold nano-particles were electrochemically deposited onto the single wall carbon nanotubes (SWNTs) modified glassy carbon electrode (GCE) ,then the Chloroporoxidase (CPO) was immobilized on it. A pair of well-defined reduction and oxidation peaks in the cyclic voltammogram were observed at the CPO-Au/SWNTs/GC modified electrode, indicating that the direct electron transfer reaction between CPO and Au-SWNTs composite modified electrode occurred and followed by a quasi-reversible process controlled by surface adsorption. The results of cyclic voltammetry showed that the electrode reaction of CPO displayed a good relationship with pH of the solution,corresponding to a process of one electron and one proton reaction. The modified electrode showed a good stanbility and excellent catalytic activity for electrochemical reduction of O2 could be used for catalyse organic synthesis reaction with on-line generated hydrogen peroxide

  17. Determination of Trace Copper( Ⅱ ) with Poly-lamotrigine Modified Glassy Carbon Electrode%聚拉莫三嗪修饰玻碳电极测定痕量铜(Ⅱ)的研究

    Institute of Scientific and Technical Information of China (English)

    王洪海; 石光辉; 朱爱梅; 王赪胤

    2012-01-01

    在稀H2SO4介质中,采用循环伏安法制备了聚拉莫三嗪膜修饰玻碳电极(PLTG/GCE),将制得的膜修饰电极(PLTG/GCE)在一定电位下选择性预富集Cu(Ⅱ),并用差分脉冲溶出伏安法测定.结果表明,该膜修饰电极对Cu(Ⅱ)的富集作用明显强于裸玻碳电极.对电聚合条件、富集和溶出介质、富集时间及富集电位等实验参数进行了考察,在优化实验条件下,Cu(Ⅱ)的浓度在4.0×10-9~1.3×10-7mol· L-1范围内与溶出峰电流呈线性关系,相关系数为0.9999,检出限为1.5×10-9 mol·L-1.该修饰电极具有较高的灵敏度和选择性,用于实际水样的分析,平均回收率为98.7%.%A glassy carbon electrode modified by poly-lamotrigine (PLTG/GCE) was prepared using cyclic voltammetry in dilute H2 SO4 and its electrochemical behavior was investigated in this work. The poly-lamotrigine film as the modifier could attach firmly onto the electrode surface. Copper ions were pre-concentrated selectively with the electrode under a certain reductive potential, and were detected by differential pulse stripping voltammetry. It was found that the modified electrode could capture more Cu( Ⅱ ) than the bare electrode. The experimental conditions, such as electrochemical polymerization condition, medium of concentration and stripping, and pre-concentration time and potential were optimized. A good linear relationship was realized between the anodic peak currents of copper and Cu( Ⅱ ) concentrations in the range of 4. 0X10-9~1. 3X 10-7mol· L-1 with the detection limit of 1. 5 X 10-9mol·L-1 and a correlation coefficient of 0. 9999. The modified electrode demonstrated a high sensitivity and an ideal selectivity,which was successfully applied to the determination of Cu( Ⅱ) in real water samples,and the average recovery was 98. 7%.

  18. Electrochemiluminescence sensor for melamine based on a Ru(bpy)₃²⁺-doped silica nanoparticles/carboxylic acid functionalized multi-walled carbon nanotubes/Nafion composite film modified electrode.

    Science.gov (United States)

    Chen, Xiaomei; Lian, Sai; Ma, Ying; Peng, Aihong; Tian, Xiaotian; Huang, Zhiyong; Chen, Xi

    2016-01-01

    In this work, a sensitive electrochemiluminescence (ECL) sensor for the determination of melamine (MEL) was developed based on a Ru(bpy)3(2+)-doped silica nanoparticles (RUDS)/carboxylic acid functionalized multi-walled carbon nanotubes (CMWCNTs)/Nafion composite film modified electrode. The homogeneous spherical RUDS were synthesized by a reverse microemulsion method. As Ru(bpy)3(2+) were encapsulated in the RUDS, Ru(bpy)3(2+) dropping from the modified electrode can be greatly prevented, which is helpful for obtaining a stable ECL signal. Moreover, to improve the conductivity of the film and promote the electron transfer rate on electrode surface, CMWCNTs with excellent electrical conductivity and large surface area were applied in the construction of the sensing film. As CMWCNTs acted as electron bridges making more Ru(bpy)3(2+) participate in the reaction, the ECL intensity was greatly enhanced. Under the optimum conditions, the relative ECL signal (△IECL) was proportional to the logarithmic MEL concentration ranging from 5×10(-13) to 1×10(-7) mol L(-1) with a detection limit of 1×10(-13) mol L(-1). To verify the reliability, the thus-fabricated ECL sensor was applied to determine the concentration of MEL in milk. Based on these investigations, the proposed ECL sensor exhibited good feasibility and high sensitivity for the determination of MEL, promising the applicability of this sensor in practical analysis. PMID:26695338

  19. 基于L-Cys/MWCNT/HRP修饰金电极的过氧化氢传感器%Hydrogen Peroxide Biosensor Based on L-cysteine/Multi-walled Carbon Nanotube/Horseradish Peroxidase Modified Glod Electrode

    Institute of Scientific and Technical Information of China (English)

    马美萍; 曹建明

    2011-01-01

    Horseradish peroxidase(HRP) was selected as a model enzyme to fabricate a novel biosensor based on the L-cysteine, mutli-walled carbon nanotube. The electrochemical characteristics of the electrode were characterized by cyclic voltammetry. And the effects of pH and temperature of phosphate buffer solution on the response to H2O2 were also studied. At last, the reproducibility and selectivity of the modified electrode were investigated in detail. The results show that the modified electrode exhibites wide linear range,lower detection limit and good stability, as well as certain anti-interference ability.%制备了以L-半胱氨酸(L-Cys)、多壁碳纳米管(MWCNT)、辣根过氧化物酶(HRP)修饰的H2O2生物传感器.研究了修饰电极的电化学特性,探讨了测定溶液PBS的温度和pH值对电极响应H2O2的影响,考察了电极的重现性、抗干扰能力及使用寿命等.结果表明:该传感器具有线性范围宽、检出限低、灵敏度高、稳定性好和抗干扰能力强等特点.

  20. 碳纳米颗粒修饰丝网印刷电极测定百合镉含量%Detection of cadmium content of lily by carbon nanoparticles modified screen-printed electrode

    Institute of Scientific and Technical Information of China (English)

    郑琦琦; 俞永华; 吴坚

    2015-01-01

    People are more and more interested in health foods with the improvement of living standard. Edible lily tastes sweet with a little bitter and can be used to treat cough, phthisis, beriberi, and so on. There are almost 10 species of edible lily in China. The production of lily is in rapid expansion. However, the sample of lily is usually found to have cadmium (Cd) above the national standard. Cd is one of the toxic heavy metals. It will cause damage of lung and kidney. There are a lot of methods to detect the cd in foods, such as graphite furnace atomic absorption spectrometry, atomic fluorescence spectrometry, and spectrophotometry. Although these methods have high precision, they need large-scale equipment, high cost, and professional staff, and even some use toxic reagents. Scientists developed several rapid determination methods, one of which was electrochemical detection. In this paper, we designed a novel electrode, which combined screen printing technique with carbon nanodots to detect cd in lily. Carbon nanodots were prepared with candle soot which was low-cost and easily obtained. The carbon nanodots of 1.5μL dissolving in dimethyl formamide were added twice onto the working electrode of screen-printed electrode which was fabricated in our laboratory. Using scanning electron microscope to compare the surface texture of modified screen-printed electrode with original one, we found that the former had more uniform particles. We also compared the electrochemical performance by cyclic voltammetry. The result showed that the modified screen-printed electrode had larger peak current and smaller peak separation which meant superior electrochemical performance. Furthermore, we tested an HAc-NaAc buffer solution with 75μg/L Cd2+ using 2 different electrodes noted above by square-wave anodic stripping voltammetry. The peak potential of original screen-printed electrode was?0.65 V, while modified one was?0.64 V. The anodic stripping voltammogarm showed that the

  1. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: Study of direct voltammetry and bioelectrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Saadati, Shagayegh [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman; Rostami, Amin [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Catalase and amine-terminated ionic liquid were immobilized to GC/TiNnp with LBL assembly method. Black-Right-Pointing-Pointer First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation. Black-Right-Pointing-Pointer With alternative assemble of IL and catalase with positive and negative charged, multilayer was formed. Black-Right-Pointing-Pointer Immobilized catalase shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Black-Right-Pointing-Pointer Biosensor response is directly correlated to the number of bilayers. - Abstract: A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH{sub 2}-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH{sub 2}-IL and negatively charged catalase a sensitive H{sub 2}O{sub 2} biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}) of immobilized catalase were 3.32 Multiplication-Sign 10{sup -12} mol cm{sup -2}, 5.28 s{sup -1} and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 {mu}A mM{sup -1} cm{sup -2} and low detection limit of 100 nM at concentration range up to 2.1 mM.

  2. Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co-Pt core-shell nanoparticles

    International Nuclear Information System (INIS)

    Co-Pt core-shell nanoparticles (NPs) were synthesized by a two-step reductive method using carbon (Vulcan XC-72) as a solid support. The NPs were characterized by X-ray diffraction, field emission gun scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. Their electrochemical performance was evaluated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry, and these showed that the Co-Pt NPs display an electrocatalytic activity towards the oxidation of glucose that is much better than that of plain Pt NPs. Under optimized conditions and at pH 7.0, the oxidation current of glucose at a working potential of −50 mV (vs. SCE) is linearly related to its concentration in the 1.0 to 30 mM range, and the detection limit is 0.3 mM (S/N = 3). It therefore covers the clinical range. The sensor also exhibits excellent stability and repeatability. (author)

  3. Voltammetric Determination of Meloxicam in Pharmaceutical Formulation and Human Serum at Glassy Carbon Electrode Modified by Cysteic Acid Formed by Electrochemical Oxidation of L-cysteine

    Directory of Open Access Journals (Sweden)

    Xiao Ya Hu

    2005-09-01

    Full Text Available The improvement of electrochemical detection of meloxicam is presented bymodification of a glassy carbon electrode with anionic layer of cysteic acid providingelectrostatic accumulation of the analyte onto the electrode surface. The modificationformed by electrochemical oxidation of L-cysteine was performed by cycling potential incysteine solution. The anodic peak current obtained at 1.088 V (vs. Ag/AgCl byvoltammetry was linearly dependent on the meloxicam concentration in the range of 4.3 ×10-8 ~ 8.5 × 10-6 M in the B-R buffer solution (0.04 M, pH 1.86 with a correlationcoefficient of 0.999. The detection limit (S/N = 3 is 1.5 × 10-9 M. The low-cost modifiedelectrode shows good sensitivity, selectivity and stability and has been applied to thedetermination of meloxicam in pharmaceutical formulation and spiked serum withsatisfactory results. The electrochemical reaction mechanism of meloxicam was discussed.

  4. Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor.

    Science.gov (United States)

    Aswini, K K; Vinu Mohan, A M; Biju, V M

    2016-08-01

    Theophylline is an inexpensive drug employed in asthma and chronic obstructive pulmonary disorder medications and is toxic at higher concentration. The development of a molecularly imprinted polymer based theophylline electrochemical sensor on glassy carbon electrode by the electropolymerization of 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid is being discussed in this work. The MIP modification enhances the theophylline recognition ability and the electron transfer kinetics of the bare electrode. The parameters, controlling the performance of the imprinted polymer based sensor, like number of electropolymerization cycles, composition of the pre-polymerization mixture, pH and immersion time were investigated and optimized. The interaction energy and the most stable conformation of the template-monomer complex in the pre-polymerization mixture were determined computationally using ab initio calculations based on density functional theory. The amperometric measurements showed that the developed sensor has a method detection limit of 0.32μM for the dynamic range of 0.4 to 17μM, at optimized conditions. The transducer possesses appreciable selectivity in the presence of structurally similar interferents such as theobromine, caffeine and doxofylline. The developed sensor showed remarkable stability and reproducibility and was also successfully employed in theophylline detection from commercially available tablets. PMID:27157734

  5. Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yin Huanshun; Zhou Yunlei [College of Chemistry and Material Science, Shandong Agricultural University, Daizong Street 61, Taian, 271018, Shangdong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Daizong Street 61, Taian, 271018, Shangdong (China); Chen Quanpeng; Zhu Xiangbin [College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong (China); Liu Xianggang [College of Chemistry and Material Science, Shandong Agricultural University, Daizong Street 61, Taian, 271018, Shangdong (China); Zhu Lusheng, E-mail: lushzhu@sdau.edu.cn [College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong (China)

    2010-02-15

    Bisphenol A (BPA) is an environmental pollutant to disrupt endocrine system or cause cancer, thus the detection of BPA is very important. Herein, an amperometric sensor was fabricated based on immobilized CoTe quantum dots (CoTe QDs) and PAMAM dendrimer (PAMAM) onto glassy carbon electrode (GCE) surface. The cyclic voltammogram of BPA on the sensor exhibited a well-defined anodic peak at 0.490 V in 0.1 M pH 8.0 PBS. The determination conditions were optimized and the kinetic parameters were calculated. The linear range was 1.3 x 10{sup -8} to 9.89 x 10{sup -6} M with the correlation coefficient of 0.9999. The limit of detection was estimated to be 1 x 10{sup -9} M. The current reached the steady-state current within about 5 s. Furthermore, the fabricated sensor was successfully applied to determine BPA in real water samples.

  6. Enzyme-based sensing of glucose using a glassy carbon electrode modified with a one-pot synthesized nanocomposite consisting of chitosan, reduced graphene oxide and gold nanoparticles

    International Nuclear Information System (INIS)

    A nanocomposite was prepared that consists of chitosan, reduced graphene oxide and gold nanoparticles by in-situ and simultaneous reduction of graphene oxide and hexachloroaurate whereby chitosan acts as a reducing and stabilizing agent. The nanocomposite was then deposited on a glassy carbon electrode, and glucose oxidase (GOx) was immobilized on its surface to obtain a glucose biosensor. The immobilized GOx displays fast electron transfer with a transfer rate constant of 2.80 s−1. Operated at a working voltage of −0.45 V (vs. Ag/AgCl), the sensor gives a linear response to glucose in the 0.05 to 1.2 mM concentration range, with a sensitivity of 13.58 μA mM−1 cm−2, and a 0.52 μM detection limit. The apparent Michaelis-Menten constant is 2.39 mM. It also possesses good selectivity, reproducibility and stability. (author)

  7. Sensing glucose based on its affinity for concanavalin A on a glassy carbon electrode modified with a C60 fullerene nanocomposite

    International Nuclear Information System (INIS)

    An ultrasensitive electrochemical glucose biosensor has been developed by depositing C60-fullerene functionalized with tetraoctylammonium bromide (C60-TOAB+) on the surface of a glassy carbon electrode (GCE). The glucose-binding protein concanavalin A (Con A) was then linked to the surface. Binding of glucose by Con A affects the electroactivity of the reversible redox couple C60/C60−, and this finding forms the basis for a quantitative glucose assay over the 10 to 10 mM concentration range and with a lower detection limit of 3.3 nM (at an S/N ratio of 3). The sensitivity of this sensor allowed glucose to be determined in saliva. This biosensor possesses excellent selectivity, outstanding reproducibility and good long-term stability. (author)

  8. DNA Nano-netting Intertexture on Carbon Electrodes

    Institute of Scientific and Technical Information of China (English)

    Xiang Qin LIN; Xiao Hua JIANG; Li Ping LU

    2004-01-01

    Native calf thymus double stranded DNA (ct-dsDNA) is successfully immobilized from solution onto carbon substrates by covalent linkages under an optimized deposition potential of 1.8±0.3 V vs.50 mmol/L NaCl-Ag/AgCl.The long chain DNA fabricates a layer of well conductive nano-netting intertexture, which is stable in pH 14 alkaline solution and in boiling water.The ct-dsDNA modified carbon fiber disk electrode shows two to three orders of magnitude enlarged electrode effective surface area and similarly enlarged voltammetric responses to Co(phen)33+ and dopamine.Thermal dissociated single stranded ct-DNA can also lead to similar result.This modified electrode will find wide applications in the fields of DNA-based electrochemical biosensors.

  9. Electrochemical quantification of the thermodynamic equilibrium constant of the tenoxicam-β-cyclodextrin inclusion complex formed on the surface of a poly-β cyclodextrin-modified carbon paste electrode

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A carbon paste electrode (CPE) was modified with a β-CD polymer. • Tenoxicam oxidation on the CPE/poly-β-CD was adsorption controlled. • Influence of pH, scan rate, angular velocity and concentration was evaluated. • Fittings of i-E plots were done considering an irreversible surface reaction. • Electrochemical evaluation of the surface inclusion constant is presented. - Abstract: In this work it is shown that when a carbon paste electrode, CPE, is modified with a β-cyclodextrin polymer, the tenoxicam oxidation becomes an adsorption controlled process due to formation of a surface inclusion complex with the β-CD molecules comprising the surface of the polymer. It was found that such surface inclusion complex can be formed independently of the tenoxicam predominant species, Tenox’, in the aqueous solution namely: H2Tenox+, HTenox or Tenox−, depending on the solution pH. The electrochemical quantification of the thermodynamic constant of the equilibrium Tenox’ + β-CD (polymer) = Tenox’-β-CD (polymer) was estimated as log Kincl. = 4.26 ± 0.01. Furthermore, from the analyses of the experimental voltammograms according with Laviron's equation for an irreversible surface reaction [E. Laviron, J. Electroanal. Chem. 52 (1974) 355-393] it is shown that the surface concentration, ΓR, of tenoxicam increases as its concentration in solution does, reaching a maximum value of 1.51 × 10−10 mol cm−2 at 64 μM

  10. A glucose biosensor using methyl viologen redox mediator on carbon film electrodes

    OpenAIRE

    Ghica, Mariana Emilia; Christopher M. A. Brett

    2005-01-01

    A new methyl viologen-mediated amperometric enzyme electrode sensitive to glucose has been developed using carbon film electrode substrates. Carbon film electrodes from resistors fabricated by pyrolytic deposition of carbon were modified by immobilization of glucose oxidase through cross-linking with glutaraldehyde in the presence of bovine serum albumin. The mediator, methyl viologen, was directly immobilised with the enzyme together with Nafion cation-exchange polymer. The electrochemistry ...

  11. Recent nanoarchitectures in metal nanoparticle-graphene nanocomposite modified electrodes for electroanalysis.

    Science.gov (United States)

    Oyama, Munetaka; Chen, Xiaomei; Chen, Xi

    2014-01-01

    While increasing attention has been devoted to the use of carbon-based nanomaterials or metal nanoparticles (MNPs) as electrode modifiers for electroanalysis, there is a noticeable development in studies using MNP-graphene nanocomposites or nanohybrids in very recent years. In this review, first, very recent nanoarchitectures in MNP-graphene nanocomposites for modifying electrodes (mainly in 2013) are summarized together with the targets and achievements of electroanalysis. The variety of nanoarchitectures comes from the fact that graphene oxide and metal precursor ions can be reduced chemically or electrochemically, and concurrently or stepwisely. By browsing various preparation methods of the modified electrodes, some characteristic and interesting features of the preparations of MNP-graphene nanocomposites are described together with the possibilities and prospects as electrode modifiers for electroanalysis.

  12. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    OpenAIRE

    Pop, A.(National Institute for Physics and Nuclear Engineering, Bucharest, Romania); Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite electrode (Cu/CNT-epoxy) exhibited the highest sensitivity to glucose determination.

  13. Simultaneous determination of hydrazine and phenyl hydrazine using 4′-(4-carboxyphenyl)-2,2′:6′,2″ terpyridine diacetonitrile triphenylphosphine ruthenium(II) tetrafluoroborate complex functionalized multiwalled carbon nanotubes modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Ida, E-mail: idatiwari_2001@rediffmail.com [Department of Chemistry (Center of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi (India); Gupta, Mandakini; Sinha, Preeti [Department of Chemistry (Center of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi (India); Banks, Craig E. [Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD (United Kingdom)

    2014-12-15

    Highlights: • A nanocomposite of ruthenium(II) terpyridine, triphenylphosphine based complex and multiwalled carbon nanotubes have been used first time for simultaneous detection of hydrazine and phenyl hydrazine. • The detection limit reported is lower as compared to other reported works. • The paper also focuses towards effect of ligand variation attached to ruthenium(II) terpyridine based complexes complex for the hydrazine and phenyl hydrazine detection. • Nanocomposite does not involve any biological entity hence high stability. - Abstract: A nanocomposite based on the incorporation of the complex 4′-(4-carboxyphenyl)-2,2′:6′,2″ terpyridine triphenylphosphine diacetonitrile ruthenium(II) tetrafluoroborate with multiwalled carbon nanotubes and ionomer supported upon a glassy carbon electrode substrate is reported and characterized with scanning electron microscopy, transmission electron microscopy and infrared spectroscopy. The electrochemical behavior and stability of the composite electrode was investigated via cyclic voltammetry. The modified electrode exhibits an electro-catalytic activity towards the oxidation of both hydrazine and phenyl hydrazine in 0.1 M phosphate buffer solution (PBS, pH 7.4). The oxidation of hydrazine and phenyl hydrazine occurs at 0.81 V and 0.32 V with limit of detection found to be 3.7 × 10{sup −7} M and 1.15 × 10{sup −7} M and having a linear range from 5 × 10{sup −6} M to 6.5 × 10{sup −3} M, and 5 × 10{sup −6} M to 0.2 × 10{sup −3} M, respectively.

  14. Selective determination of L-dopa in the presence of uric acid and ascorbic acid at a gold nanoparticle self-assembled carbon nanotube-modified pyrolytic graphite electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hu Guangzhi [Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Chen Long [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo Yong [Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang Xiaolai, E-mail: xlwang@lzb.ac.c [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shao Shijun, E-mail: shaoguo@licp.cas.c [Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-06-30

    Gold nanoparticle-functionalized carbon nanotubes (AuNP-CNT) have been prepared by a novel self-assembly method. The new material has been characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) and utilized for constructing AuNP-CNT-modified pyrolytic graphite electrode (AuNP-CNT/PGE) to investigate the electrochemical behavior of L-dopa in neutral phosphate buffer solution. Compared to bare PG electrode, AuNP-CNT/PGE shows novel properties towards the electrochemical redox of L-dopa in phosphate buffer solution at pH 7.0. The oxidation potential of L-dopa shows a significant decrease at the AuNP-CNT/PGE. The oxidation current of L-dopa is about 5-fold higher than that of the unmodified PGE. Using differential pulse voltammetry (DPV) method, the oxidation current is well linear with L-dopa concentration in the range of 0.1-150 muM, with a detection limit of about 50 nM (S/N = 3). The proposed electrode can also effectively avoid the interference of ascorbic acid and uric acid, making the proposed sensor suitable for the accurate determination of L-dopa in both pharmaceutical preparations and human body fluids.

  15. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode.

    Science.gov (United States)

    Lian, Wenjing; Liu, Su; Yu, Jinghua; Li, Jie; Cui, Min; Xu, Wei; Huang, Jiadong

    2013-06-15

    A novel imprinted electrochemical sensor for neomycin recognition was developed based on chitosan-silver nanoparticles (CS-SNP)/graphene-multiwalled carbon nanotubes (GR-MWCNTs) composites decorated gold electrode. Molecularly imprinted polymers (MIPs) were synthesized by electropolymerization using neomycin as the template, and pyrrole as the monomer. The mechanism of the fabrication process and a number of factors affecting the activity of the imprinted sensor have been discussed and optimized. The characterization of imprinted sensor has been carried out by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The performance of the proposed imprinted sensor has been investigated using cyclic voltammetry (CV) and amperometry. Under the optimized conditions, the linear range of the sensor was from 9×10(-9)mol/L to 7×10(-6)mol/L, with the limit of detection (LOD) of 7.63×10(-9)mol/L (S/N=3). The film exhibited high binding affinity and selectivity towards the template neomycin, as well as good reproducibility and stability. Furthermore, the proposed sensor was applied to determine the neomycin in milk and honey samples based on its good reproducibility and stability, and the acceptable recovery implied its feasibility for practical application. PMID:23395725

  16. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode.

    Science.gov (United States)

    Lian, Wenjing; Liu, Su; Yu, Jinghua; Li, Jie; Cui, Min; Xu, Wei; Huang, Jiadong

    2013-06-15

    A novel imprinted electrochemical sensor for neomycin recognition was developed based on chitosan-silver nanoparticles (CS-SNP)/graphene-multiwalled carbon nanotubes (GR-MWCNTs) composites decorated gold electrode. Molecularly imprinted polymers (MIPs) were synthesized by electropolymerization using neomycin as the template, and pyrrole as the monomer. The mechanism of the fabrication process and a number of factors affecting the activity of the imprinted sensor have been discussed and optimized. The characterization of imprinted sensor has been carried out by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The performance of the proposed imprinted sensor has been investigated using cyclic voltammetry (CV) and amperometry. Under the optimized conditions, the linear range of the sensor was from 9×10(-9)mol/L to 7×10(-6)mol/L, with the limit of detection (LOD) of 7.63×10(-9)mol/L (S/N=3). The film exhibited high binding affinity and selectivity towards the template neomycin, as well as good reproducibility and stability. Furthermore, the proposed sensor was applied to determine the neomycin in milk and honey samples based on its good reproducibility and stability, and the acceptable recovery implied its feasibility for practical application.

  17. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures.

    Science.gov (United States)

    Hernández-Ibáñez, Naiara; García-Cruz, Leticia; Montiel, Vicente; Foster, Christopher W; Banks, Craig E; Iniesta, Jesús

    2016-03-15

    l-lactate is an essential metabolite present in embryonic cell culture. Changes of this important metabolite during the growth of human embryo reflect the quality and viability of the embryo. In this study, we report a sensitive, stable, and easily manufactured electrochemical biosensor for the detection of lactate within embryonic cell cultures media. Screen-printed disposable electrodes are used as electrochemical sensing platforms for the miniaturization of the lactate biosensor. Chitosan/multi walled carbon nanotubes composite have been employed for the enzymatic immobilization of the lactate oxidase enzyme. This novel electrochemical lactate biosensor analytical efficacy is explored towards the sensing of lactate in model (buffer) solutions and is found to exhibit a linear response towards lactate over the concentration range of 30.4 and 243.9 µM in phosphate buffer solution, with a corresponding limit of detection (based on 3-sigma) of 22.6 µM and exhibits a sensitivity of 3417 ± 131 µAM(-1) according to the reproducibility study. These novel electrochemical lactate biosensors exhibit a high reproducibility, with a relative standard deviation of less than 3.8% and an enzymatic response over 82% after 5 months stored at 4 °C. Furthermore, high performance liquid chromatography technique has been utilized to independently validate the electrochemical lactate biosensor for the determination of lactate in a commercial embryonic cell culture medium providing excellent agreement between the two analytical protocols.

  18. Immobilization of [Cu(bpy){sub 2}]Br{sub 2} complex onto a glassy carbon electrode modified with {alpha}-SiMo{sub 12}O{sub 40}{sup 4-} and single walled carbon nanotubes: Application to nanomolar detection of hydrogen peroxide and bromate

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)], E-mail: absalimi@uok.ac.ir; Korani, Aazam; Hallaj, Rahman; Khoshnavazi, Roshan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hadadzadeh, Hasan [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-03-02

    A simple procedure has been used for preparation of modified glassy carbon electrode with carbon nanotubes and copper complex. Copper complex [Cu(bpy){sub 2}]Br{sub 2} was immobilized onto glassy carbon (GC) electrode modified with silicomolybdate, {alpha}-SiMo{sub 12}O{sub 40}{sup 4-} and single walled carbon nanotubes (SWCNTs){sub .} Copper complex and silicomolybdate irreversibly and strongly adsorbed onto GC electrode modified with CNTs. Electrostatic interactions between polyoxometalates (POMs) anions and Cu-complex, cations mentioned as an effective method for fabrication of three-dimensional structures. The modified electrode shows three reversible redox couples for polyoxometalate and one redox couple for Cu-complex at wide range of pH values. The electrochemical behavior, stability and electron transfer kinetics of the adsorbed redox couples were investigated using cyclic voltammetry. Due to electrostatic interaction, copper complex immobilized onto GC/CNTs/{alpha}-SiMo{sub 12}O{sub 40}{sup 4-} electrode shows more stable voltammetric response compared to GC/CNTs/Cu-complex modified electrode. In comparison to GC/CNTs/Cu-complex the GC/CNTs/{alpha}-SiMo{sub 12}O{sub 40}{sup 4-} modified electrodes shows excellent electrocatalytic activity toward reduction H{sub 2}O{sub 2} and BrO{sub 3}{sup -} at more reduced overpotential. The catalytic rate constants for catalytic reduction hydrogen peroxide and bromate were 4.5({+-}0.2) x 10{sup 3} M{sup -1} s{sup -1} and 3.0({+-}0.10) x 10{sup 3} M{sup -1} s{sup -1}, respectively. The hydrodynamic amperommetry technique at 0.08 V was used for detection of nanomolar concentration of hydrogen peroxide and bromate. Detection limit, sensitivity and linear concentration range proposed sensor for bromate and hydrogen peroxide detection were 1.1 nM and 6.7 nA nM{sup -1}, 10 nM-20 {mu}M, 1 nM, 5.5 nA nM{sup -1} and 10 nM-18 {mu}M, respectively.

  19. Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application

    Science.gov (United States)

    Wei, Guanjie; Jia, Chuankun; Liu, Jianguo; Yan, Chuanwei

    2012-12-01

    A modified electrode for vanadium redox flow battery (VRFB) has been developed in this paper. The electrode is based on a traditional carbon felt (CF) grafted with the short-carboxylic multi-walled carbon nanotubes (MWCNTs). The microstructure and electrochemical property of the modified electrode as well as the performance of the VRFB single cell with it have been characterized. The results show that the MWCNTs are evenly dispersed and adhere to the surface of carbon fibres in the CF. The electrochemical activities of the modified CF electrode have been improved dramatically and the reversibility of the VO2+/VO2+ and V3+/V2+ redox couples increased greatly. The VRFB single cell with the modified CF exhibits higher coulombic efficiency (93.9%) and energy efficiency (82.0%) than that with the pristine CF. The SEM analysis shows that the MWCNTs still cohere with carbon fibres after charge and discharge test, indicating the stability of the MWCNTs in flowing electrolyte. Therefore, the composite electrode presents considerable potential for the commercial application of CF in VRFB.

  20. Method for making thin carbon foam electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

    1999-08-03

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  1. Method for making thin carbon foam electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, Richard W. (Pleasant Hill, CA); Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Morrison, Robert L. (Modesto, CA)

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  2. Square Wave Voltammetric Determination of Residues of Carbendazim Using a Fullerene/Multiwalled Carbon Nanotubes/Nafion/Coated Glassy Carbon Electrode

    OpenAIRE

    Djimadoum N. Teadoum; Seraphine K. Noumbo; Kamdem T. Arnaud; Temgoua T. Ranil; Antoine D. Mvondo Zé; Ignas K. Tonle

    2016-01-01

    A glassy carbon electrode (GCE) was modified with a fullerene/Multiwalled Carbon Nanotubes (MWCNTs)/Nafion composite and applied to the determination of carbendazim, a fungicide. The voltammetric behavior of the analyte was investigated using Cyclic Voltammetry (CV), on the bare GCE and on the same electrode coated by a thin film of the composite material. The electrode response was more than fourfold important on the modified electrode, due to electrical conductivity of fullerene and MWCNT a...

  3. Electrodeposited nanostructured raspberry-like gold-modified electrodes for electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-10-15

    A facile method for fabrication of raspberry-like Au nanostructures (Au NRBs)-modified electrode by electrodeposition and its applications toward the electrocatalytic oxidation of methanol (MOR) in alkaline medium and oxygen reduction reaction (ORR) in both alkaline and acidic media are demonstrated. The Au NRBs are characterized by UV-Vis absorption spectra, SEM, X-ray diffraction, and electrochemical measurements. The growth of Au NRBs was monitored by recording the in-situ absorption spectral changes during electrodeposition using spectroelectrochemical technique. Here we systematically studied the MOR by varying several reaction parameters such as potential scan rate and methanol concentration. The electrocatalytic poisoning effect due to the MOR products are not observed at the Au NRBs-modified electrode. At the alkaline medium the Au NRBs-modified electrode shows the better catalytic activities toward the MOR and ORR when compared to the poly crystalline gold and bare glassy carbon electrodes. The Au NRBs-modified electrode is a promising and inexpensive electrode material for other electrocatalytic applications.Graphical AbstractRaspberry-like Au nanostructures modified electrode is prepared and used for electrocatalytic applications.

  4. Improved stability of redox enzyme layers on glassy carbon electrodes via covalent grafting

    Energy Technology Data Exchange (ETDEWEB)

    Pellissier, Marie; Barriere, Frederic [Universite de Rennes 1, CNRS UMR no. 6226, Sciences Chimiques de Rennes, Equipe MaCSE (France); Downard, Alison J. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Canterbury, Christchurch (New Zealand); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland)

    2008-06-15

    One of the challenges in the field of enzymatic biofuel cells is to significantly improve their current limited lifetime. In the present work, we report the covalent immobilization of enzyme layers on glassy carbon electrodes, functionalized via electrochemical reduction of in situ generated aryldiazonium salts bearing carboxylic acid groups. We present the performance and the stability over time of the modified electrodes. For glucose oxidase - modified electrodes, stable catalytic activity is observed for a minimum of 6 weeks. (author)

  5. Carbon paste electrodes in electroanalytical chemistry

    Directory of Open Access Journals (Sweden)

    KAREL VYTŘAS

    2009-09-01

    Full Text Available An overview is given dealing with the applications of carbon paste electrodes in equilibrium potentiometry as well as in electrochemical stripping analysis using both voltammetric and potentiometric modes. Various modifications of carbon pastes and carbon paste-based biosensors are also mentioned. The main emphasis in this article is directed at summarizing recent results of the authors’ research group during the past few years.

  6. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  7. Improved technology for manufacture of carbon electrodes

    Indian Academy of Sciences (India)

    A Platon; A Dumbrava; N Iutes-Petrescu; Luzia Simionescu

    2000-02-01

    Current industrial carbon electrodes are typically manufactured by blending petroleum coke particles (the filler) with molten coal tar pitch (the binder) and extruding the resultant mix to form the `green electrode’. This is then baked under controlled conditions. In case of usage as anodes in steel electric furnaces (or as other carbon and graphite products), the electrodes could undergo further processing like pitch impregnation or graphitization. During heat treatment, some of the organics are destructively distilled, vaporized or decomposed, resulting in carbon deposition in the electrode. As the vaporized materials exit the body of the electrode they cause porosity in the walls, which results in reduction in density, current carrying capacity and flexural strength. The paper presents investigations to improve some physico-chemical characteristics of these electrodes (such as coefficient of thermal expansion, mechanical strengths, density, pore volume, porosity etc.), obtained in different manufacture steps, by addition of varieties of coal tar pitch. These include attempts to improve the chemical compatibility of the coke-pitch system in the mixture and establish the method and the point of introduction of additive, the concentration required and appropriate analytical control during the entire manufacture. Methods of analysis used include thermogravimetry and porosimetry. The microstructure of the electrodes is investigated through a wide range and the data obtained include pore size and pore volume distribution, surface area, porosity, particle size distribution and type of pores. The overall results clearly indicate better characteristics and performance for electrodes with additives as against electrodes without them, such as lower porosity, lower thermal expansion coefficients and greater mechanical strength. These data are analyzed with respect to the process step and electrode type.

  8. 聚次甲基蓝修饰玻碳电极测定叶酸%Determination of folic acid by a poly ( methylene blue) -modified glassy carbon electrode

    Institute of Scientific and Technical Information of China (English)

    古宁宇; 刘彩胜

    2011-01-01

    利用循环伏安法将次甲基蓝修饰到玻碳电极表面,制备了聚次甲蓝修饰电极(PMB/GCE),并研究了此电极的化学性质及对叶酸的电化学响应特性.在磷酸盐缓冲液中PMB/GCE电极对叶酸有良好的催化作用并出现一个灵敏的还原峰,用循环伏安法测得峰电流与叶酸的浓度在0.1×10-3~2.9×10 -3 mol/L范围内呈良好线性关系,方法检出限(S/N =3)为0.575×10 -6mol/L.并用此法对叶酸药片进行了测定和加标回收试验RSD<5%.%A poly ( methylene blue) modified glassy carbon electrode ( PMB/ GCE) was prepared by cyclic voltammetry. Electrochemical properties of PMB/ GCE electrode and response characteristics of folic acid on the PMB/ GCE were investigated. The results showed that the PMB/ GCE modified electrode exhibited effective electrocatalysis for reduction of folic acid in PBS solution. A sensitive reduction peak for folic acid was observed in the voltammogram. The reduction peak current was linear with the concentration of folic acid over the range from 1. 0 x 10- 4 to 2. 9 x 10- 3mol/L. The detection limit of the method ( S/N = 3 ) was 5. 75 x 10 -7mol/L. The proposed method was used for the determination of folic acid in tablets and recovery of folic acid samples. The results were consistent with the marked values and RSD was less than 5%.

  9. Electroanalysis using modified hierarchical nanoporous carbon materials.

    Science.gov (United States)

    Rodriguez, Rusbel Coneo; Moncada, Angelica Baena; Acevedo, Diego F; Planes, Gabriel A; Miras, Maria C; Barbero, Cesar A

    2013-01-01

    The role of the electrode nanoporosity in electroanalytical processes is discussed and specific phenomena (slow double layer charging, local pH effects) which can be present in porous electrode are described. Hierarchical porous carbon (HPC) materials are synthesized using a hard template method. The three dimensional carbon porosity is examined using scanning electron microscopy on flat surfaces cut using a focused ion beam (FIB-SEM). The electrochemical properties of the HPC are measured using cyclic voltammetry, AC impedance, chronoamperometry and Probe Beam Deflection (PBD) techniques. Chronoamperometry measurements of HPC seems to fit a transmission line model. PBD data show evidence of local pH changes inside the pores, during double layer charging. The HPC are modified by in situ (chemical or electrochemical) formation of metal (Pt/Ru) or metal oxide (CoOx, Fe3O4) nanoparticles. Additionally, HPC loaded with Pt decorated magnetite (Fe3O4) nanoparticles is produced by galvanic displacement. The modified HPC materials are used for the electroanalysis of different substances (CO, O2, AsO3(-3)). The role of the nanoporous carbon substrate in the electroanalytical data is evaluated.

  10. Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode

    International Nuclear Information System (INIS)

    Highlights: • Single-walled carbon nanotubes (SWCNTs)-ionic liquid (IL) nanocomposite fabrication. • SWCNTs-Poly-IL film modified electrode was prepared and characterized. • Voltammetric behaviors of bisphenol A were investigated thoroughly. • Sensitive voltammetric method for bisphenol A determination was developed. -- Abstract: Using carboxylic acid-functionalized single walled carbon nanotubes (SWCNTs-COO−) as an anion and 3-butyl-1-[3-(N-pyrrolyl)propyl]imidazolium as a cation, a novel SWCNTs-COO-ionic liquid (SWCNTs-COO-IL) nanocomposite was fabricated successfully. The as-prepared SWCNTs-COO-IL nanocomposite was confirmed with transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis, FTIR and Raman spectroscopy. The SWCNTs-COO-IL nanocomposite was coated onto a glassy carbon electrode surface followed by cyclic voltammetric scanning to fabricate a SWCNTs/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode (SWCNTs/Poly-IL/GCE). Scanning electron microscope and electrochemical impedance spectroscopy were used to characterize SWCNTs/Poly-IL/GCE. Electrochemical behaviors of bisphenol A (BPA) at the SWCNTs/Poly-IL/GCE were investigated thoroughly. It was found that an obvious oxidation peak appeared without reduction peak in the reverse scanning, indicating an irreversible electrochemical process. The oxidation peak currents of BPA were linearly related to scan rate in the range of 20–300 mV s−1, suggesting an adsorption controlled process rather than a diffusion controlled process. Differential pulse voltammetry was employed for the voltammetric sensing of BPA. Experimental conditions such as film thickness, pH value, accumulation potential and time that influence the analytical performance of the SWCNTs/Poly-IL/GCE were optimized. Under optimal conditions, the oxidation peak current was linearly related to BPA concentration in the range of 5.0 × 10−9 to 3.0 × 10−5 mol L−1

  11. Detection of Catechol by TiO2-graphene-modified Glassy Carbon Electrode%TiO2-石墨烯修饰玻碳电极测定邻苯二酚

    Institute of Scientific and Technical Information of China (English)

    熊小琴; 王兰; 张丽媛

    2011-01-01

    制备了Ti02 -石墨烯修饰玻碳电极,利用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了邻苯二酚在该修饰电极的电化学行为.结果表明:在pH值为6.0的磷酸盐缓冲液(PBS)中,该修饰电校对邻苯二酚具有良好的电催化作用.邻苯二酚氧化峰电流与其浓度(1.0×10-6~ 1.0×10-5 mol/L)呈现良好的线性关系,线性相关系数为0.993,检出限为1×10-7 mol/L.该电极显著提高了检测的灵敏度,并表现出良好的选择性和重现性.%novel TiO2-graphene-modified glassy carbon electrode (TiO2-Gr/GCE) was fabricated. The electrochemical behaviors of catechol at the modified electrode were studied by cyclic voltammetry ( CV) and differential pulse voltammetry ( DPV). In pH 6.0 phosphate buffer solution ( PBS) , the composite film showed excellent electrocatalytic activity for the redox of catechol. The results of DPV indicated that the oxidation peak currents was linear with catechol concentrations in the range of 1.0 × 10 -6 mol/L to 1. 0 × 10 -5 mol/L. The detection limit of catechol is 1.0 × 10 -7 mol/L (S/iV = 3). This modified CCE showed good sensitivity and selectivity and reproducibility.

  12. Characterization of Carbon Nanotube/Graphene on Carbon Cloth as an Electrode for Air-Cathode Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hung-Yin Tsai

    2015-01-01

    Full Text Available Microbial fuel cells (MFCs, which can generate low-pollution power through microbial decomposition, have become a potentially important technology with applications in environmental protection and energy recovery. The electrode materials used in MFCs are crucial determinants of their capacity to generate electricity. In this study, we investigate the performance of using carbon nanotube (CNT and graphene-modified carbon-cloth electrodes in a single-chamber MFC. We develop a process for fabricating carbon-based modified electrodes and Escherichia coli HB101 in an air-cathode MFC. The results show that the power density of MFCs can be improved by applying a coat of either graphene or CNT to a carbon-cloth electrode, and the graphene-modified electrode exhibits superior performance. In addition, the enhanced performance of anodic modification by CNT or graphene was greater than that of cathodic modification. The internal resistance decreased from 377 kΩ for normal electrodes to 5.6 kΩ for both electrodes modified by graphene with a cathodic catalyst. Using the modified electrodes in air-cathode MFCs can enhance the performance of power generation and reduce the associated costs.

  13. Electroanalysis of trimethoprim on metalloporphyrin incorporated glassy carbon electrode.

    Science.gov (United States)

    Rajith, Leena; Kumar, Krishnapillai Girish

    2010-09-01

    Trimethoprim (TMP) is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections. It belongs to the class of chemotherapeutic agents known as dihydrofolate reductase inhibitors. Its use is associated with idiosyncratic reactions, including liver toxicity and agranulocytosis. In order to determine TMP electrochemically, a metalloporphyrin modified glassy carbon electrode was prepared by coating [5,10,15,20- tetrakis(4-methoxyphenyl) porphyrinato]Mn (III)chloride (TMOPPMn(III)Cl) solution on the surface of the electrode. The electrochemical behaviour of TMP in Phosphate buffer solution (PBS) on TMOPPMn(III)Cl modified glassy carbon electrode (TMOPPMn(III)Cl/GCE) was explored using differential pulse voltammetry (DPV). The voltammograms showed enhanced oxidation response at the TMOPPMn (III)Cl/GCE with respect to the bare GCE for TMP, attributable to the electrocatalytic activity of TMOPPMn(III)Cl. Electrochemical parameters of the oxidation of TMP on the modified electrode were analyzed. The electro-oxidation of TMP was found to be irreversible, pH dependent and adsorption controlled on the modified electrode. It is found that the oxidation peak current is proportional to the concentration of TMP over the range 6 × 10⁻⁸ - 1 × 10⁻⁶ M with a very low detection limit of 3 × 10⁻⁹ M at 2 min open circuit accumulation. The repeatability expressed as relative standard deviation (RSD) for n = 9 was 3.2% and the operational stability was found to be 20 days. Another striking feature is that equimolar concentration of sulfamethoxazole did not interfere in the determination of TMP. Applicability to assay the drug in urine and tablet samples has also been studied.

  14. Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Lin Xiangqin [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China)]. E-mail: xqlin@ustc.edu.cn

    2007-07-23

    A novel biosensor was fabricated by electrochemical deposition of gold nanoclusters on ultrathin overoxidized polypyrrole (PPyox) film, formed a nano-Au/PPyox composite on glassy carbon electrode (nano-Au/PPyox/GCE). The properties of the nanocomposite have been characterized by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and electrochemical investigations. The nano-Au/PPyox/GCE had strongly catalytic activity toward the oxidation of epinephrine (EP), uric acid (UA) and ascorbic acid (AA), and resolved the overlapping voltammetric response of EP, UA and AA into three well-defined peaks with a large anodic peak difference. The catalytic peak currents obtained from differential pulse voltammetry increased linearly with increasing EP and UA concentrations in the range of 3.0 x 10{sup -7} to 2.1 x 10{sup -5} M and 5.0 x 10{sup -8} to 2.8 x 10{sup -5} M with a detection limit of 3.0 x 10{sup -8} and 1.2 x 10{sup -8} M (s/n = 3), respectively. The results showed that the modified electrode can selectively determine EP and UA in the coexistence of a large amount of AA. In addition, the sensor exhibited excellent sensitivity, selectivity and stability. The nano-Au/PPyox/GCE has been applied to determination of EP in epinephrine hydrochloride injection and UA in urine samples with satisfactory results.

  15. Improvement of Capacitive Desalination Performance for Carbon Electrode Modified by Nanometer ZnO%纳米ZnO改性活性炭电极电吸附除盐性能的研究

    Institute of Scientific and Technical Information of China (English)

    郗丽娟; 李婷; 郭佳; 张瑛洁

    2013-01-01

    为了提高电吸附技术中活性炭粉电极(AC电极)电吸附容量,本实验采用sol-gel法制备了纳米ZnO-AC电极,以提高电吸附容量.研究结果表明,AC电极表面负载了一定量的纳米ZnO,其形态为棒状结构;经比表面积测定,AC电极比表面积从785 m2/g增加到1120 m2/g;对KCl的吸附试验表明,当极板有效面积5 cm×5 cm,两极板间距0.5 cm,电压1.6V,流速20 mL/min,原水为KCl溶液,原水电导320 μs/min时,除盐效率达到62.25%;并且经过5个循环,除盐效率基本没有降低,纳米ZnO-AC电极表现出良好的重复使用性能.本实验对活性炭粉在电吸附技术中的实际应用有重要意义.%Activated carbon (AC) electrode modified by nanometer ZnO (ZnO-AC) was fabricated by sol-gel method in order to improve the electro-absorption capacity of AC electrode.The surface and electrochemical properties of ZnO-AC electrode were characterized by SEM analysis,BET test and cyclic voltammetry analysis respectively.The results show that rod-like nanometer ZnO is loaded on the surface of AC electrode.The specific surface area of the ZnO-AC electrode achieves the maxium of 1120 m2/g increasing 335 m2/g compared to that of AC electrode.The adsorption experiments show that the salt removal efficiency of KCl solution achieves the maximum of 62.25% under the conditions of the voltage of 1.6 V,plate area of 5 cm × 5 cm,electrode spacing of 0.5 cm,flow rate of 20 mL/min and raw water conductance of 320 μs/min.The rate of desalination could be maintained after several cycles,indicating that the ZnO-AC electrode shows a good repeatability.This study gives a guide for AC electrode to be applied to capacitive deionization technology

  16. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  17. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose.

    Science.gov (United States)

    Li, Liang; Liang, Bo; Li, Feng; Shi, Jianguo; Mascini, Marco; Lang, Qiaolin; Liu, Aihua

    2013-04-15

    In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of D-glucose and D-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of D-glucose and D-xylose containing coenzyme NAD⁺ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at -0.5 V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of D-glucose, and oxidation peak at +0.55 V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD⁺ involved in the catalysis of D-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at -0.5 V was linear with the concentration of D-glucose within the range of 0.25-6 mM with a low detection limit of 0.1 mM D-glucose (S/N=3), and the anodic peak current at +0.55 V was linear with the concentration of d-xylose in the range of 0.25∼4 mM with a low detection limit of 0.1 mM D-xylose (S/N=3). Further, D-xylose and D-glucose did not interfere with each other. 300-fold excess saccharides including D-maltose, D-galactose, D-mannose, D-sucrose, D-fructose, D-cellobiose, and 60-fold excess L-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess D-xylitol did not affect the detection of D-glucose and D-xylose (both 1 mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. PMID:23202346

  18. Voltammetric determination of meloxicam at a graphene modified glassy carbon electrode%石墨烯修饰玻碳电极伏安法测定美洛昔康

    Institute of Scientific and Technical Information of China (English)

    习霞; 明亮

    2012-01-01

    通过在玻碳电极表面电化学还原氧化石墨烯的方法制备了石墨烯修饰电极,研究了美洛昔康在该修饰电极上的电化学行为.优化了包括支持电解质及pH、修饰剂用量、富集电位及时间等测定条件,据此建立了一种直接测定美洛昔康的电化学分析方法.在0.1 mol/L Britton-Robinson缓冲液(pH 3.0)中,氧化峰电流与美洛昔康浓度在1.0×10-6~8.0×10-5 mol/L范围内呈现良好的线性关系,检出限为3.0×10-7 mol/L( S/N=3).方法可用于片剂和尿样中美洛昔康的测定.%A graphene modified electrode was prepared through electrochemical reduction of graphene oxide ( GO) on the surface of a glassy carbon electrode ( GCE) and the electrochemical behavior of meloxicam (MLX) at this modified glassy carbon electrode was investigated. The experimental parameters such as the supporting electrolyte and buffer pH, the amount of GO suspension, the accumulation potential and time were optimized, and a direct electroanalytical method for the determination of meloxicam was developed. The oxidation peak current was proportional to the concentration of meloxicam in the range of 1.0 x 10 -6 - 8. 0 x 10 ~5 mol/L with a detection limit of 3. 0 x 10 ~7 mol/L (S/N = 3) in 0. 1 mol/L Britton-Robinson buffer solution ( pH 3. 0). The proposed method was used for the determination of meloxicam in tablets and human urines.

  19. Fabrication of ECL glucose sensor based on immobilization glucose oxidase on carbon nanotubes modified electrode%基于碳纳米管固定葡萄糖氧化酶的ECL葡萄糖传感器的制备

    Institute of Scientific and Technical Information of China (English)

    张然; 杨善丽; 买楠楠; 魏万之; 罗胜联; 聂舟

    2011-01-01

    将葡萄糖氧化酶(GOD)固定在多壁碳纳米管(MWCNTs)修饰电极(ME)上,GOD催化氧化葡萄糖生成过氧化氢,并使鲁米诺产生电致化学发光(ECL),据此构建了一种新型ECL葡萄糖传感器.结果表明:CNTs修饰的电极对鲁米诺和H2O2反应具有显著的电催化活性和增敏效果.该传感器对葡萄糖检测的线性范围为0.01~10.0 mmol/L,相关系数R=0.999(n=5),检测限为5.0 μmol/L.此传感器响应快,稳定性高,测定条件接近人体自然pH.将所建立的方法用于临床血清样品中葡萄糖含量的测定,获得了满意的结果.%Incorporation of multi-walled carbon nanotubes on the electrode is performed and modification of glassy carbon electrode with the prepared nano-hybrid material led to the fabrication of a novel electrode. The modified electrode shows attractive electrocatalytic activity and sensitizing effect on Luminol-H2O2 electrochemiluminescence (ECL) reactions at neutral media. The sensitized Luminol-H2O2 reactions are successfully applied for the ECL determination of glucose. Under the optimal conditions for Luminol-H2 O2 system, the ECL signal intensity of luminol is linear with the concentration of glucose in the range of 0. 01 ~10. 0 mmol/L,correlation coefficient R = 0. 999 ( n =5 ) , the limits of detection for glucose are 5. 0 μmol/L. Excellent electrocatalytic activity, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this glucose biosensor.

  20. The determination of catechol at single walled carbon nanotube-graphene oxide modified electrode%单壁碳纳米管-氧化石墨烯复合修饰电极测定邻苯二酚

    Institute of Scientific and Technical Information of China (English)

    刘小花; 白海鑫; 王瑾

    2015-01-01

    制备了用于测定邻苯二酚的单壁碳纳米管‐氧化石墨烯复合修饰玻碳电极.用循环伏安法研究了邻苯二酚在该电极上的电化学行为.结果表明,该修饰电极对邻苯二酚具有良好的电催化性能.在最佳实验条件下,采用差分脉冲伏安法对邻苯二酚进行了测定,其氧化峰电流与邻苯二酚浓度在2×10-6~1×10-4 mol/L 范围内呈线性关系,相关系数为0.9962,检出限为4×10-7 mol/L .该电极具有良好的重现性,用于模拟废水中邻苯二酚的测定结果令人满意.%A single walled carbon nanotube‐graphene oxide/GCE (glassy carbon electrode) elec‐trode was prepared to determine catechol .The electrochemical behavior of catechol on the mod‐ified electrode was investigated using cyclic voltammetry .The experimental results show that the modified electrode has good catalytical ability to catechol .Under the optimum experimental conditions ,the catechol was determined by differential pulse voltammetry .The oxidation peak current and the concentration of catechol show good linear relationship in the range of 2 × 10 - 6- 1 × 10 - 4 mol/L .The correlation coefficient is 0 .996 2 and the detection limit is 4 × 10 - 7 mol/L .The electrode showed good repeatability and was used to determine catechol in artificial wastewater with satisfactory results .

  1. Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors

    OpenAIRE

    Ruiz Ruiz, Vanesa; Blanco Rodríguez, Clara; Granda Ferreira, Marcos; Menéndez López, Rosa María; Santamaría Ramírez, Ricardo

    2007-01-01

    [EN] This work investigates the influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. Studies were performed using the same activated carbon and polymer polyvynilidene fluoride (PVDF) in the same proportions (10 wt.% PVDF). Only the way in which these components were mixed was modified. The procedure for mixing the activated carbon and the polymer has a significant influence on the electrochemical behaviour of the electrode used in a supercapacit...

  2. 芦丁在纳米金修饰玻碳电极上的电化学行为及其测定%Electrochemical behavior of rutin at a gold nanoparticles modified glassy carbon electrode and its determination

    Institute of Scientific and Technical Information of China (English)

    张亚; 杜芳艳; 严彪; 张永杰

    2012-01-01

    采用循环伏安法将纳米金电沉积于玻碳电极表面,制备了纳米金修饰玻碳电极(NG/GCE).在pH3.29的Britton-Robinson(B-R)缓冲溶液中,用循环伏安法研究了芦丁在NG/GCE上的电化学行为.结果表明,NG/GCE对芦丁的氧化还原反应有良好的电催化作用.用方波伏安法测得芦丁的还原峰电流与其浓度在2.0×10-8~2.0×10-6mol/L范围内呈线性关系,检出限为1.0×10-8mol/L(S/N=3).%A gold nanoparticles modified glassy carbon electrode (NG/GCE) was prepared by electrodepositing. The electrochemical behavior of rutin at the modified electrode was investigated in pH 3. 29 Britton-Robinson ( B-R) buffer solution by cyclic voltammetry. The NG/GCE possessed an excellent electrocatalytic activity for the redox of rutin. On square wave voltammetric curves, a linear dependence of the reduction current versus on the rutin concentration was obtained in the range of 2. 0 × 10-8 ~ 2. 0 × 10-6 mol ? L-1 ( r = 0. 9998 ), with a detection limit of 1. 0 × 10 -8mol ? L-1 (S/N = 3). A novel method for the determination of rutin in tablets has been established.

  3. Electrochemically Reduced Graphene Oxide-nafion/Au Nanoparticle Modified Electrode for Hydrogen Peroxide Sensing

    OpenAIRE

    Yajie Lv; Fang Wang; Hui Zhu; Xiaorong Zou; Cheng-an Tao; Jianfang Wang

    2016-01-01

    n this paper, a non-enzymatic hydrogen peroxide (H2O2) sensor, based on Au nanoparticles (AuNPs) electrodepos‐ ited on an electrochemically reduced graphene oxide(ER‐ GO)-Nafion modified glass carbon electrode (GCE), was reported. The graphene oxide-(GO-)Nafion nanocompo‐ sites were first assembled on the GCE surface to produce a GO-Nafion electrode. GO was then electrochemically reduced to produce an ERGO-Nafion modified GCE (to be subsequently denoted as GCE/ERGO-Nafion). Afterwards, AuNPs ...

  4. Nonenzymatic sensing of glucose at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support

    International Nuclear Information System (INIS)

    Alloy nanoparticles of the type PtxFe (where x is 1, 2 or 3) were synthesized by coreduction with sodium borohydride in the presence of carbon acting as a chemical support. The resulting nanocomposites were characterized by scanning electron microscopy and X-ray diffraction. The nanocomposite was placed on a glassy carbon electrode, and electrochemical measurements indicated an excellent catalytic activity for the oxidation of glucose even a near-neutral pH values and at a working voltage as low as 50 mV (vs. SCE). Under optimized conditions, the sensor responds to glucose in the 10.0 μM to 18.9 mM concentration range and with a 3.0 μM detection limit (at an S/N ratio of 3). Interferences by ascorbic acid, uric acid, fructose, acetamidophenol and chloride ions are negligible. (author)

  5. Recent nanoarchitectures in metal nanoparticle-modified electrodes for electroanalysis.

    Science.gov (United States)

    Oyama, Munetaka

    2010-01-01

    Increasing attention has been devoted to the use of metal nanoparticles (NPs) for electroanalysis. To make the best use of the electrocatalytic and electron-conducting characteristics of metal NPs, various nanoarchitectures have been developed for modifying metal NPs on electrode surfaces. In this review, at first recent nanoarchitectures with metal NPs for modifying electrodes are summarized together with the results of electrochemical analysis. Then, the progress of a seed-mediated growth method that we developed for modifying electrode surfaces is shown as an example that the nanoarchitectures of metal NPs are possible without using organic linker molecules. This approach should be effective for further functional modifications of the surfaces of metal NPs as well as the electrochemical analysis with lower charge-transfer resistance.

  6. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    Science.gov (United States)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  7. 丁香酚在改性蒙脱土修饰电极上的电化学行为及测定%Electrochemical behavior and determination of eugenol on modified montmorillonite modified glassy carbon electrode

    Institute of Scientific and Technical Information of China (English)

    熊健; 李容; 朱伟琼; 韩园园; 何晓英

    2011-01-01

    制备了十八烷基三甲基溴化铵( STMAB)改性蒙脱土修饰电极,用循环伏安法和差分脉冲伏安法(DPV)研究了丁香酚在该电极上的电化学行为.在pH6.0 PBS电解液中,丁香酚在该电极上的电极反应受扩散控制,转移电子数等于质子数n=m=2,电极有效面积Aeff=0.034cm2,扩散系数D =2.58×10-6cm2/s.在优化的实验条件下,差分脉冲伏安法峰电流与丁香酚的浓度在6.0×10-6 ~4.0×10-4mol/L范围呈线性关系,检出限为4.75×10-7 mol/L,并测得丁香酚试样的回收率为97.5% ~ 101.7%.%STMAB-MMT/GCE was made by montmorillonite modified by STMAB. The electrochemical behavior of eugenol on the STMAB-MMT/GCE was investigated by cyclic voltammetry and differential pulse voltammetry. The results showed that the eugenol on the electrode in the electrode reaction was controlled by diffision in PBS ( pH = 6. 0 ) . The number of electron transfer was equal to the number of protons ( n = m = 2 ) , the effective area of STMAB-MMT/GCE Aeff =0.034 cm2, the diffusion coefficient D =2. 58 ×10-6cm2/s. Under the optimized conditions, differential pulse voltammetry peak current and the concentration of eugenol in a range of 6. 0 × 10 -6 ~4. 0 × 10-4 mol/L was linear relation, and its detect limitation was 4.75 × 10-7mol/L. The recovery of eugenol sample was between 97. 5% and 101. 7% .

  8. A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode

    International Nuclear Information System (INIS)

    A disposable biosensor for determination of hydrogen peroxide (H2O2) based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase (HRP) and graphene sheets (GS)–Nafion film modified screen-printed carbon electrode (SPCE) was fabricated. To construct the H2O2 biosensor, GS–Nafion solution was first dropped onto the surface of SPCE. Subsequently, the biocomposites of Fe3O4–Au magnetic nanoparticles coated HRP were adsorbed on the surface with the aid of an external magnetic field to fabricate the SPCE|GS–Nafion/Fe3O4–Au-HRP electrode. X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and chronoamperometry(i–t curve) were employed to study the synthesis of GS, the construction processes and electrochemical properties of the biosensor. Under optimized experimental conditions, CV demonstrated that the direct electron transfer (DET) of HRP was realized. The biosensor had an excellent performance in terms of electrocatalytic reduction toward H2O2. The linear response of the biosensor to H2O2 was in the concentration range of 2.0 × 10−5 mol/L to 2.5 × 10−3 mol/L (R = 0.9994) with a detection limit of 1.2 × 10−5 mol/L (S/N = 3). The proposed electrochemical biosensor was sensitive, rapid, disposable with low cost, fewer sample volume, easy preparation and strong anti-interference, which showed great promise for screen-determination of trace H2O2 in real samples

  9. Improved Electrochemical Performance of Surface-Modified Metal Hydride Electrodes

    Institute of Scientific and Technical Information of China (English)

    YANG Kai; WU Feng; CHEN Shi; ZHANG Cun-zhong

    2005-01-01

    A novel plating process was applied to the surface modification of the metal hydride (MH) electrode of the MH/Ni batteries. The electrode was plated with a thin nickel film about 0.1 μm thick by using multi-arc ion plating technique. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to analyze the electrodes. Influence of the surface modification on the performance of the MH/Ni batteries was studied. It is shown that the surface modification could enhance the electrode conductivity and decrease the batteries ohimic resistance by 28.2 %. After surface modification, the discharge capacity of modification also improves the cyclic durability of the batteries. The inner pressure of the batteries with modified electrode during overcharging is much lower than that with unmodified electrode. The experimental results demonstrate that this process is an effective way for the surface modification of the electrode of MH/Ni batteries.

  10. Effect of unequal load of carbon xerogel in electrodes on the electrochemical performance of asymmetric supercapacitors

    OpenAIRE

    Gómez Calvo, Esther; Lufrano, F.; Arenillas de la Puente, Ana; Brigandi, A.; Menéndez Díaz, José Ángel; Staiti, P.

    2013-01-01

    This paper investigates the electrochemical performance of asymmetric supercapacitors in an environmentally friendly aqueous electrolyte (1.0 mol L−1 sodium sulfate solution). The asymmetric configuration is based on the use of a highly porous carbon xerogel as active material in both the positive and negative electrodes, but the carbon xerogel loading in each electrode has been substantially modified. This configuration leads to an increase in the operational voltage window up to values of 1...

  11. Direct electrochemistry and electrocatalysis of hemoglobin on a glassy carbon electrode modified with poly(ethylene glycol diglycidyl ether) and gold nanoparticles on a quaternized cellulose support. A sensor for hydrogen peroxide and nitric oxide

    International Nuclear Information System (INIS)

    A glassy carbon electrode was modified with gold nanoparticles (Au-NPs) on a quaternized cellulose support in a film composed of poly(ethylene glycol diglycidyl ether) (PEGDGE), and Hb was immobilized on the Au-NPs. The sensor film was characterized by UV–vis spectra, scanning electron microscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry of the Hb in the Au-Qc/PEGDGE film revealed a pair of well-defined and quasi reversible peaks for the protein heme Fe(III)/Fe(II) redox couple at about −0.333 V (vs. SCE). The sensor film also exhibited good electrocatalytic activity for the reduction of nitric oxide and hydrogen peroxide. The amperometric response of the biosensor depends linearly on the concentration of nitric oxide in the 0.9 to 160 μM range, and the detection limit is as low as 12 nM (at 3σ). The response to hydrogen peroxide is linear in the 59 nM to 4.6 μM concentration range, and the detection limit is 16 nM (at 3σ). This biosensor is sensitive, reproducible, and long-term stable. (author)

  12. 4-methoxy-2,6-bis(3,5-dimethylpyrazoyl)-1,3,5-triazine modified carbon paste electrode for trace Cu(Ⅱ) determination by differential pulse voltammetry

    Institute of Scientific and Technical Information of China (English)

    YANG Sheng; LU Xiaoquan; XUE Zhonghua; FENG Xiaoqiang; WANG Xiaofeng

    2003-01-01

    A differential pulse voltammetric method was developed for the sensitive and selective determination of Cu(Ⅱ) at 4-methoxy-2,6-bis(3,5-dimethylpyrazoyl)-1,3,5-triazine modified carbon paste electrode in 0.05 mol/L KHC8H4O4 solution (pH = 4.02). The oxidation peak of Cu(Ⅱ) was observed at 0.065 V(vs Ag/AgC1) by scanning the potentid in positive direction. The analysis procedure consisted of an open circuit accumulation step in stirred sample solution. It was followed by medium exchange to a clean solution and subsequently an anodic potential scan was affected to obtain the voltammetric peak. The current was proportional to the concentration of the Cu(Ⅱ) ion in a range of 1 × 10-7 -1 × 10 -4 mol/L for 6 min accumulation; the most of metal ions did not interfere with the determination. The developed method was applied to Cu(Ⅱ)determination in coal-ash sample, the results agreed with that of atomic adsorption spectroscopy(AAS).

  13. Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2-Zn2SnO4 nanocomposites paste electrode

    Science.gov (United States)

    Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H.

    2016-02-01

    The SnO2-Zn2SnO4 nanocomposite was successfully prepared via a simple solid state method. Then, a chemically modified electrode based on incorporating SnO2-Zn2SnO4 into multi-walled carbon nanotube paste matrix (MWCNTs/SnO2-Zn2SnO4/CPE) was prepared for the simultaneous determination of morphine(MO) and codeine (CO). The measurements were carried out by application of differential pulse voltammetry (DPV), cyclic voltammetry, and chronoamperometry. The MWCNTs/SnO2-Zn2SnO4/CPE showed an efficient electrocatalytic activity for the oxidation of MO and CO. The separation of the oxidation peak potential for MO-CO was about 550 mV. The calibration curves obtained for MO and CO were in the ranges of 0.1-310 μmol L-1 and 0.1-600.0 μmol L-1, respectively. The detection limits (S/N = 3) were 0.009 μmol L-1 for both drugs. The method also successfully employed as a selective, simple, and precise method for the determination of MO and CO in pharmaceutical and biological samples.

  14. Microtitrimetry by differential electrolytic potentiometry using metallic electrodes and nanomaterials modified metallic electrodes

    Science.gov (United States)

    Amro, Abdulaziz Nabil

    For the first time silver wire electrodes have been coated with carbon nanotubes using floating catalyst chemical vapor deposition (CVD) method. The production of CNTs has been conducted in a horizontal tubular reactor. Acetylene gas was used as a carbon source. Ferrocene has been used as a catalyst precursor for the growth of CNT. Different parameters have been optimized to get a high yield of CNTs and ensure their growth on the silver electrodes using univariate method. The parameters studied include the hydrogen flow rate, acetylene flow rate, temperature of the furnace, time of the reaction and the location of the electrodes in the reactor tube. The optimum conditions for those parameters were: for hydrogen and acetylene, the flow rates were 25 mL /min and 75 mL / min respectively. The furnace temperature was found to be 700 °C and the reaction time was 15 minutes. Regarding the location of the silver wires it should be located in the first 10 cm of the front side of the tube. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) have been used to characterize carbon on silver electrodes. According to the experimental results, TEM figures show that CNT produced on Silver wire is multiwall carbon nanotubes MWCNT. Silver electrodes either pure or coated with CNT were used as indicating systems in micro titration using both dc differential electrolytic potentiometry (DEP) and mark-space bias DEP techniques. All types of titrimetric reactions were investigated using different types of electrodes like Pt and gold for oxidation reduction titrations, antimony electrodes for acid base titrations, silver electrodes for precipitation titrations in addition to Ag-CNT electrodes. End points at volumes of 1 microL were determined. Different parameters were optimized like the current density, the percentage bias, the volume of the sample and the concentrations of the reactants. Microtitrimetry has been applied on several types of analytes; Ferrous

  15. 离子液体修饰碳糊电极测定食品中香草醛%Analysis for Vanillin in Food at Imidazole Type Carbon Ionic Liquids Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    陈立新; 李心恬; 方红; 周原

    2013-01-01

    A new kind of carbon paste electrode modified with ionic liquid BMIM BF4 was fabricated. In phosphate buffer solution (pH 7.4), cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of vanillin at the modified dectrode and a new method for selective detection of vanillin was established. The results showed that the electrochemical response was greatly improved with the high conductivity of ILs compared with that of traditional CPE. The vanillin showed a sensitive oxidative peak at 0.440V (VS.SCE), and the peak current was linear to the concentration of vanillin ranging from 2.0 μg/mL-30.0 ug/mL with a detection limit of 1.0 ug/mL. The determination of vanillin hydrochloride was performed and the mechanism for the electrode process was also proposed.%本文合成1-丁基-3-甲基咪唑四氟硼酸[BMIM]BF4,用该离子液体构置了具更高导电效率的修饰电极.在pH=7.4的磷酸二氢钠磷酸氢二钠缓冲溶液中,用循环伏安法和差分脉冲伏安法研究了香草醛在离子液体修饰电极和碳糊电极上的电化学行为,建立了测定香草醛的电化学方法,离子修饰电极显示了更好的电化学特性,在+0.440 V (vs.SCE)左右有一个不可逆的氧化峰.DPV法线性范围2.0 μg/mL~30.0μg/mL,检测限1.0 μg/mL.并对香草醛的电极反应机理做了初步研究.

  16. Desalination with carbon aerogel electrodes. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V. [Lawrence Livermore National Lab., CA (United States); Thomson, S.L.; May, S.C. [Bechtel National, Inc., San Francisco, CA (United States)

    1996-12-04

    Electrically regenerated electrosorption process (carbon aerogel CDI) was developed by LLNL for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area (2-5.4x10{sup 6}ft{sup 2}lb{sup -1} or 400-1100 m{sup 2}g{sup -1}) and very low electrical resistivity ({le}40 m{Omega}). Ions are removed from the electrolyte by the electric field and electrosorbed onto the carbon aerogel. It is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for desalination of brackish water ({le}5000 ppM). The intrinsic energy required by this process is about QV/2, where Q is the stored electrical charge and V is the voltage between the electrodes, plus losses. Estimated requirement for desalination of a 2000 ppM feed is -0.53-2.5 Wh/gal{sup -1} (0.5-2.4 kJ L{sup -1}), depending on voltage, flow rate, cell dimensions, aerogel density, recovery ratio, etc. This assumes that 50-70% of the stored electrical energy is reclaimed during regeneration (electrical discharge). Though the energy requirement for desalination of sea water is also low, this application will be much more difficult. Additional work will be required for desalination of streams that contain more than 5000 ppM total dissolved solids (2000 ppM will require electrochemical cells with extremely tight, demanding tolerances). At this present time, the process is best suited for streams with dilute impurities, as recently demonstrated during a field test at LLNL Treatment Facility C.

  17. Double layer capacitance of carbon foam electrodes

    Science.gov (United States)

    Delnick, F. M.; Ingersoll, D.; Firsich, D.

    We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14), and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

  18. Carbon additives for electrical double layer capacitor electrodes

    Science.gov (United States)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  19. Magnetic core–shell Fe{sub 3}O{sub 4}@SiO{sub 2}/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Arvand, Majid, E-mail: arvand@guilan.ac.ir; Hassannezhad, Morassa

    2014-03-01

    A new type of nanocomposite based on multi-walled carbon nanotubes decorated with magnetic core–shell Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles (Fe{sub 3}O{sub 4}@SiO{sub 2}/MWCNTs) was prepared and used to fabricate a modified carbon paste electrode (CPE). The nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR) techniques. Electrochemical behavior of uric acid (UA) was investigated on Fe{sub 3}O{sub 4}@SiO{sub 2}/MWCNTs-CPE by cyclic voltammetry (CV) and square wave voltammetry (SWV) in phosphate buffer solution (pH 6.0). Under the optimized conditions, the peak currents increased linearly with the concentration of UA in the range from 0.60 to 100.0 μM, with a detection limit of 0.13 μM. The proposed sensor was successfully applied for the determination of UA in biological fluids. - Highlights: • A simple and rapid sensor for determination of UA in human blood serum and urine was prepared. • The Fe{sub 3}O{sub 4}@SiO{sub 2}/MWCNTs-CPE showed an obvious increase in surface area and sensitivity. • The presence of Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles showed good ability to distinguish the response of UA.

  20. Direct Electrochemistry of Cytochrome c at Nanohybrid Film Modified Glassy Carbon Electrode%细胞色素c在纳米杂化膜修饰玻碳电极上的直接电化学

    Institute of Scientific and Technical Information of China (English)

    屈建莹; 陈文静; 王珏; 朱莉莉

    2011-01-01

    L-cysteine (L-Cys), gold nanoparticles (AuNPs) and multi-walled carbon nanotubes (MWNTs) were immobilized on glassy carbon (GC) electrode surface by layer-by-layer self-assembly technique to form a robust and effective nanohybrid film. The modified electrode (L-Cys/AuNPs/MWNTs/GC) can promote the direct electron transfer reaction of cytochrome c (Cyt c). A pair of welldefined and nearly reversible peaks of Cyt c at about 0. 121 V (vs. Ag/AgCI) was obtained. The sensor responded rapidly to Cyt c in the linear range from 4.0 × 10-5 to 3.2 × 10-4 mol/L with detection limit of 2.4×10-5 mol/L in PBS (pH=7.0).%以多壁碳纳米管(MWNTs)修饰玻碳(GC)电极为基底,自组装金纳米粒子(AuNPs)及L-半胱氨酸(L-Cys)研制杂化膜修饰电极(L-Cys/AuNPs/MWNTs/GC).实验表明,该膜修饰电极在pH=7.0的KH2PO4-K2HPO4缓冲溶液中对细胞色素c(Cyt c)的直接电子转移反应具有良好的电催化作用,Cyt c于0.121 V(vs.Ag/AgCl)附近产生一对可逆的氧化还原峰,峰电流与其浓度在4.0×10-5~3.2×10-4mol/L范围内呈现良好的线性关系,线性相关系数为0.9957,检出限为2.4×10-5mol/L.该传感器响应快速,性能优良.

  1. Electrochemical synthesis of nickel–iron layered double hydroxide: Application as a novel modified electrode in electrocatalytic reduction of metronidazole

    Energy Technology Data Exchange (ETDEWEB)

    Nejati, Kamellia, E-mail: k_nejati@pnu.ac.ir [Chemistry Department, Payame Noor University, PO. Box 19395-3697 Tehran, I.R. of Iran (Iran, Islamic Republic of); Asadpour-Zeynali, Karim [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of)

    2014-02-01

    A new and simple approach based on the electrochemical method was used for preparation of reproducible nanostructure thin film of Ni/Fe-layered double hydroxides (Ni/Fe-LDH) on the glassy carbon electrode (GCE). The electrochemical b