WorldWideScience

Sample records for carbon dioxide partial

  1. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  2. A Carbon Dioxide Gas Turbine Direct Cycle with Partial Condensation for Nuclear Reactors

    International Nuclear Information System (INIS)

    Yasuyoshi Kato; Takeshi Nitawaki; Yoshio Yoshizawa

    2002-01-01

    A carbon dioxide gas turbine power generation system with a partial condensation cycle has been proposed for thermal and fast nuclear reactors, in which compression is done partly in the liquid phase and partly in the gas phase. This cycle achieves higher cycle efficiency than a He direct cycle mainly due to reduced compressor work of the liquid phase and of the carbon dioxide real gas effect, especially in the vicinity of the critical point. If this cycle is applied to a thermal reactor, efficiency of this cycle is about 55% at a reactor outlet temperature of 900 deg. C and pressure of 12.5 MPa, which is higher by about 10% than a typical helium direct gas turbine cycle plant (PBMR) at 900 deg. C and 8.4 MPa; this cycle also provides comparable cycle efficiency at the moderate core outlet temperature of 600 deg. C with that of the helium cycle at 900 deg. C. If this cycle is applied to a fast reactor, it is anticipated to be an alternative to liquid metal cooled fast reactors that can provide slightly higher cycle efficiency at the same core outlet temperature; it would eliminate safety problems, simplify the heat transport system and simplify plant maintenance. A passive decay heat removal system is realized by connecting a liquid carbon dioxide storage tank with the reactor vessel and by supplying carbon dioxide gasified from the tank to the core in case of depressurization event. (authors)

  3. A carbon dioxide partial condensation cycle for high-temperature reactors

    International Nuclear Information System (INIS)

    Takeshi, Nitawaki; Yasuyoshi, Kato

    2002-01-01

    A carbon dioxide partial condensation direct cycle concept has been proposed for thermal reactors. This cycle makes it possible to improve cycle efficiency due to low compression work in liquid phase and non-ideal gas behaviour of carbon dioxide, and effective utilisation of recuperative heat. The thermal reactor integrating this concept is expected to be an alternative solution to current high-temperature gas-cooled reactors (HTGRs) with helium gas turbines, allowing comparable cycle efficiency of about 45% at the moderate temperature of 650 deg C instead of 900 deg C in PBMR. By using an ultra high-purity Cr-Fe alloy, a reactor outlet temperature of 900 deg C can be attained, and the cycle efficiency of the direct cycle is about 50% at a pressure of 12.5 MPa. (authors)

  4. A carbon dioxide partial condensation direct cycle for advanced gas cooled fast and thermal reactors

    International Nuclear Information System (INIS)

    Yasuyoshi, Kato; Takeshi, NItawaki; Yoshio, Yoshizawa

    2001-01-01

    A carbon dioxide partial condensation direct cycle concept has been proposed for gas cooled fast and thermal reactors. The fast reactor with the concept are evaluated to be a potential alternative option to liquid metal cooled fast reactors, providing comparable cycle efficiency at the same core outlet temperature, eliminating the safety problems, simplifying the heat transport system and making easier plant maintenance. The thermal reactor with the concept is expected to be an alternative solution to current high temperature gas cooled reactors (HTGRs) with helium gas turbines, allowing comparable cycle efficiency at the moderate temperature of 650 C instead of 800 C in HTGRs. (author)

  5. Resting and post bronchial challenge testing carbon dioxide partial pressure in individuals with and without asthma.

    Directory of Open Access Journals (Sweden)

    David Miedinger

    Full Text Available OBJECTIVE: There is conflicting evidence about resting carbon dioxide levels in asthmatic individuals. We wanted to determine if transcutaneously measured carbon dioxide levels prior and during bronchial provocation testing differ according to asthma status reflecting dysfunctional breathing. METHODS: We investigated active firefighters and policemen by means of a validated questionnaire on respiratory symptoms, spirometry, bronchial challenge testing with methacholine (MCT and measurement of transcutaneous blood carbon dioxide partial pressure (PtcCO(2 at rest prior performing spirometry, one minute and five minutes after termination of MCT. A respiratory physician blinded to the PtcCO(2 results assigned a diagnosis of asthma after reviewing the available study data and the files of the workers medical screening program. RESULTS: The study sample consisted of 128 male and 10 female individuals. Fifteen individuals (11% had physician-diagnosed asthma. There was no clinically important difference in median PtcCO(2 at rest, one and five minutes after recovery from MCT in asthmatics compared to non-asthmatics (35.6 vs 35.7 mmHg, p = 0.466; 34.7 vs 33.4 mmHg, p = 0.245 and 37.4 vs 36.4 mmHg, p = 0.732. The median drop in PtcCO(2 during MCT and the increase after MCT was lower in asthmatics compared to non-asthmatics (0.1 vs 3.2 mmHg, p = 0.014 and 1.9 vs 2.9 mmHg, p = 0.025. CONCLUSIONS: PtcCO(2 levels at rest prior and during recovery after MCT do not differ in individuals with or without physician diagnosed asthma. The fall and subsequent increase in PtcCO(2 levels are higher in non-asthmatics than in asthmatics and seems to be related with increased number of respiratory maneuvers during MCT.

  6. [Measurements of surface ocean carbon dioxide partial pressure during WOCE]. Summary of research progress

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This paper discusses the research progress of the second year of research under ``Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE`` and proposes to continue measurements of underway pCO{sub 2}. During most of the first year of this grant, our efforts to measure pCO{sub 2} on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO{sub 2} in air and surface seawater indicate air-sea equilibrium.

  7. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    Science.gov (United States)

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE; FINAL

    International Nuclear Information System (INIS)

    Weiss, R.F.

    1998-01-01

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0(sub 2)) and nitrous oxide (N(sub 2)O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in th e global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO(sub 2) and N(sub 2)O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N(sub 2)O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO(sub 2), roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N(sub 2)O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone

  9. Is the partial pressure of carbon dioxide in the blood related to the development of retinopathy of prematurity?

    Science.gov (United States)

    Gellen, B.; McIntosh, N.; McColm, J.; Fleck, B.

    2001-01-01

    AIMS—To determine the role of carbon dioxide in the development of retinopathy of prematurity (ROP).
METHODS—This was a retrospective cohort study of 25 consecutive infants admitted to the neonatal unit with continuously recorded physiological data. The daily mean and standard deviation (SD) of transcutaneous carbon dioxide partial pressure (tcPCO2) was compared between infants who had stage 1 or 2 ROP and stage 3 ROP. The time spent hypocarbic (10 kPa and >12 kPa) was also compared between these groups. Intermittent arterial carbon dioxide tension was also measured and compared with the simultaneous tcPCO2 data.
RESULTS—There were no significant differences in carbon dioxide variability or time spent hypocarbic and/or hypercarbic between the ROP groups on any day. 86% of transcutaneous values were within 1.5 kPa of the simultaneous arterial value.
CONCLUSION—TcPCO2 measurement can be a very useful management technique. However, in this cohort neither variable blood carbon dioxide tension nor duration of hypercarbia or hypocarbia in the first 2 weeks of life was associated with the development or severity of ROP.

 PMID:11520752

  10. Is the partial pressure of carbon dioxide in the blood related to the development of retinopathy of prematurity?

    Science.gov (United States)

    Gellen, B; McIntosh, N; McColm, J R; Fleck, B W

    2001-09-01

    To determine the role of carbon dioxide in the development of retinopathy of prematurity (ROP). This was a retrospective cohort study of 25 consecutive infants admitted to the neonatal unit with continuously recorded physiological data. The daily mean and standard deviation (SD) of transcutaneous carbon dioxide partial pressure (tcPCO(2)) was compared between infants who had stage 1 or 2 ROP and stage 3 ROP. The time spent hypocarbic (10 kPa and >12 kPa) was also compared between these groups. Intermittent arterial carbon dioxide tension was also measured and compared with the simultaneous tcPCO(2) data. There were no significant differences in carbon dioxide variability or time spent hypocarbic and/or hypercarbic between the ROP groups on any day. 86% of transcutaneous values were within 1.5 kPa of the simultaneous arterial value. TcPCO(2) measurement can be a very useful management technique. However, in this cohort neither variable blood carbon dioxide tension nor duration of hypercarbia or hypocarbia in the first 2 weeks of life was associated with the development or severity of ROP.

  11. Physiological effects of rapid reduction in carbon dioxide partial pressure in submarine tower escape.

    Science.gov (United States)

    Loveman, Geoffrey A M; Seddon, Fiona M; Thacker, Julian C; White, M Graham; Jurd, Karen M

    2014-06-01

    The objective of this study was to determine whether adverse effects from a rapid drop in inspired carbon dioxide partial pressure (PiCO₂) in the breathing gas could hinder or prevent submarine tower escape. A total of 34 male volunteers, mean (SD) age 33.8 (7.5) years, completed the trial. They breathed air for five minutes then 5% CO₂/16% O₂, 79% N₂ (5CO₂/16O₂) for 60 minutes before switching to breathing 100% O₂ for 15 minutes and then returned to air breathing. Breathing gases were supplied from cylinders via scuba regulators and mouthpieces. Blood pressure, cerebral blood flow velocity, electrocardiogram and end-tidal CO₂ and end-tidal O₂ were monitored throughout. Subjects were asked at intervals to indicate symptom type and severity. Symptoms whilst breathing 5CO₂/16O₂ included breathlessness and headache. Following the switch to 100% O₂ seven subjects reported mild to moderate faintness, which was associated with a significant drop in cerebral blood flow compared to those who did not feel faint (P < 0.02). No subject vomited or fainted following this breathing-gas switch. This study shows that the risk of fainting, sudden collapse or vomiting on switching to 100% O₂ following acute exposures to hypercapnia at a PiCO₂ of up to 5.0 kPa is less than 8%.

  12. Response of photosynthesis in second-generation Pinus radiata trees to long-term exposure to elevated carbon dioxide partial pressure

    Energy Technology Data Exchange (ETDEWEB)

    Greenep, H.; Turnbull, M. H. [Canterbury Univ., Dept. of Plant and Microbial Sciences, Christchurch (New Zealand); Whitehead, D. [Landcare Research, Lincoln (New Zealand)

    2003-06-01

    Second generation pine trees were propagated from cuttings previously grown at ambient and elevated carbon dioxide partial pressure, grown under the same conditions in open-top chambers for an additional year. The objective was to test the effect of tree size independently of age and duration of exposure. Results showed no change in total non-structural carbohydrate concentration, area-based nitrogen concentration, leaf mass per unit area, and chlorophyll concentration. No evidence was found of photosynthetic down-regulation in trees grown at elevated carbon dioxide concentration. Water-use efficiency, as determined by stable carbon isotope analysis, was 49 per cent higher in foliage in the elevated carbon dioxide treatment than in the treatment in ambient carbon dioxide. Since stomatal conductance was the same regardless of the treatment, the entire increase was attributed to photosynthetic enhancement. Based on these results, it was concluded that down-regulation of photosynthesis at elevated carbon dioxide partial pressure is a function of tree size and is independent of tree age or duration of exposure. The capacity for enhanced photosynthetic rates in trees growing at elevated carbon dioxide partial pressures appears unlikely to be lost in subsequent generations. 46 refs., 2 tabs., 2 figs.

  13. Partial amniotic carbon dioxide insufflation (PACI) during minimally invasive fetoscopic interventions on fetuses with spina bifida aperta.

    Science.gov (United States)

    Ziemann, Miriam; Fimmers, Rolf; Khaleeva, Anastasiia; Schürg, Rainer; Weigand, Markus A; Kohl, Thomas

    2018-01-16

    Percutaneous partial amniotic carbon dioxide insufflation (PACI) is one of the most important means for improving visualization during minimally invasive fetoscopic surgery of fetal spina bifida. The purpose of the present study was to analyze maternal and fetal safety aspects of PACI in a recent patient cohort and to present management improvements. PACI under general materno-fetal anesthesia was performed during 65 interventions for fetoscopic patch coverage of fetal spina bifida aperta between 21 + 0 and 29 + 1 weeks of gestation. Filtered carbon dioxide was insufflated into the amniotic cavity via three percutaneously introduced trocars. Maternal ventilatory and hemodynamic parameters during PACI as well as insufflation pressures, BMI, parity, and placental position were recorded and statistically analyzed in order to detect potential risk groups. Maternal respiration parameters during PACI showed a typical variation over time, which was similar in patients with BMI ≤ 25 or BMI > 25. The necessary insufflation pressures were significantly higher in nulliparae than multiparae. There was no statistically significant relationship between insufflation pressure and maternal BMI, or between the expired maternal carbon dioxide concentration (etCO 2 ) and the placental position. PACI was safe for all mothers and fetuses. Postnatal demise in one neonate, one fetus, and two infants occurred unrelated to PACI and resulted from trisomy 13, infection, and severe Chiari II malformations, respectively. PACI seems safe in order to improve visualization of intraamniotic contents during minimally invasive fetoscopic surgery. Nevertheless, continued assessments of its benefits and risks are important.

  14. Agreement between values for arterial and end-tidal partial pressures of carbon dioxide in spontaneously breathing, critically ill dogs.

    Science.gov (United States)

    Kelmer, Efrat; Scanson, Lindsey C; Reed, Ann; Love, Lydia C

    2009-12-01

    To determine agreement between arterial partial pressures of carbon dioxide (PaCO(2)) and end-tidal partial pressures of carbon dioxide (PETCO(2)) measured with a nasal catheter in spontaneously breathing, critically ill dogs. Validation study. 26 client-owned dogs admitted to an intensive care unit for various conditions. PaCO(2) was measured with a commercial blood gas analyzer, and PETCO(2) was measured with a sidestream capnograph attached to a nasal catheter. Measurements were obtained twice (ie, with and without supplemental oxygen). Paired values were compared by means of the Pearson correlation method. Level of agreement was assessed by means of the Bland-Altman method. Mean difference between PaCO(2) and PETCO(2) when dogs did not receive supplemental oxygen (mean +/- SD, 3.95 +/- 4.92 mm Hg) was significantly lower than mean difference when dogs did receive supplemental oxygen (6.87 +/- 6.42 mm Hg). Mean difference in dogs with a condition affecting the respiratory system (8.55 +/- 5.43 mm Hg) was significantly higher than mean difference in dogs without respiratory tract disease (3.28 +/- 3.23 mm Hg). There was a significant linear correlation and good agreement between measured values of PaCO(2) and PETCO(2). Catheter size, ventilatory status, and outcome were not significantly associated with mean difference between PaCO(2) and PETCO(2). Results suggested that nasal capnography is a clinically relevant method of estimating PaCO(2) in spontaneously breathing, critically ill dogs, but that values should be interpreted with caution in dogs receiving supplemental oxygen and in dogs with conditions affecting the respiratory system.

  15. Lack of agreement between tonometric and gastric juice partial carbon dioxide tension

    Science.gov (United States)

    Dubin, Arnaldo; Badie, Julio; Fernandez, Sofía; Estenssoro, Elisa; Canales, Héctor; Bordoli, Guillermo; Pálizas, Fernando

    2000-01-01

    min of equilibration time. At the same time, gastric juice was anaerobically extracted from the aspiration port of the tonometer. The initial 20 ml was discarded. PCO2 in both samples was measured using a blood gas analyzer (AVL 945; AVL List GMBH, Gratz, Austria). These measurements were taken at various time points in each patient, and under various haemodynamic and oxygen transport conditions, All measurements were performed with the patient fasted. Correlation between the two measurements was examined using the Bland-Altman technique. We also performed an in vitro study to quantify the precision and bias for the AVL 945. For this purpose, a stable PCO2 in saline solution was achieved by bubbling 5% carbon dioxide calibration gas. Results: We performed 112 pairs of measurements in 15 patients. Table 1 shows clinical data and the first values of arterial, tonometered and gastric juice PCO2 for each patient. Regression analysis demonstrated a significant correlation between both methods of measuring PCO2 (r 2 =0.43; gastric juice PCO2 = -28.79 + [2.55 × tonometric PCO2]; P celulitis, septic shock, ARDS Epinephrine 1.2 Death 28 33 31 9 Male 64 Multiple trauma, pneumonia, ARDS Death 36 41 57 10 Male 65 Lung cancer postoperatively, ARDS Death 35 51 242 11 Male 65 Lung cancer postoperatively, ARDS Dopamine 20 Death 36 30 125 12 Female 22 Neutropenia, septic shock, ARDS Epinephrine 0.8 Death 50 69 81 13 Male 83 Perioperative shock Dopamine 25 Survival 23 28 34 14 Male 52 Ventilator-associated pneumonia Survival 43 43 126 15 Male 56 Colangitis, septic shock Dopamine 36 Survival 38 44 92 ARDS, acute respiratory distress syndrome. PMID:11056754

  16. Carbon dioxide as chemical feedstock

    National Research Council Canada - National Science Library

    Aresta, M

    2010-01-01

    ... Dioxide as an Inert Solvent for Chemical Syntheses 15 Alessandro Galia and Giuseppe Filardo Introduction 15 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15 Enzymatic Catalysis in Dense Carbon Dioxide 18 Other Reactions in Dense Carbon Dioxide 19 Polymer Synthesis in Supercritical Carbon Dioxide 20 Chain Polymerizations: Synt...

  17. Partial extracorporeal carbon dioxide removal using a standard continuous renal replacement therapy device: a preliminary study.

    Science.gov (United States)

    Quintard, Jean-Marie; Barbot, Olivier; Thevenot, Florence; de Matteis, Olivier; Benayoun, Laurent; Leibinger, Frank

    2014-01-01

    To test the feasibility, safety, and efficacy of partial extracorporeal CO2 removal (PECCO2R) using a standard continuous renal replacement (CRRT) device with a pediatric oxygenation membrane introduced into the circuit in a serial manner. In this retrospective single-center study, we have studied mechanically ventilated patients with persistent significant respiratory acidosis and acute renal failure requiring ongoing CRRT. Sixteen patients were treated with our PECCO2R device. PaCO2 and arterial pH were measured before as well as at 6 and 12 hours after PECCO2R implementation. Hemodynamic parameters were continuously monitored. Our PECCO2R system was efficient to significantly reduce PaCO2 and increase arterial pH. The median PaCO2 before treatment was 77 mm Hg (59-112) with a median reduction of 24 mm Hg after 6 hours and 30 mm Hg after 12 hours (31% and 39%, respectively). The median pH increase was 0.16 at 6 hours and 0.23 at 12 hours. Partial extracorporeal CO2 removal treatment had no effect on oxygenation. No complication was observed. Our PECCO2R approach based on the simple introduction of a pediatric extracorporeal membrane oxygenation membrane into the circuit of a standard CRRT device is easy to implement, safe, and efficient to improve respiratory acidosis.

  18. Effects of reduced rebreathing time, in spontaneously breathing patients, on respiratory effort and accuracy in cardiac output measurement when using a partial carbon dioxide rebreathing technique: a prospective observational study.

    Science.gov (United States)

    Tachibana, Kazuya; Imanaka, Hideaki; Takeuchi, Muneyuki; Nishida, Tomoyo; Takauchi, Yuji; Nishimura, Masaji

    2005-10-05

    New technology using partial carbon dioxide rebreathing has been developed to measure cardiac output. Because rebreathing increases respiratory effort, we investigated whether a newly developed system with 35 s rebreathing causes a lesser increase in respiratory effort under partial ventilatory support than does the conventional system with 50 s rebreathing. We also investigated whether the shorter rebreathing period affects the accuracy of cardiac output measurement. Once a total of 13 consecutive post-cardiac-surgery patients had recovered spontaneous breathing under pressure support ventilation, we applied a partial carbon dioxide rebreathing technique with rebreathing of 35 s and 50 s in a random order. We measured minute ventilation, and arterial and mixed venous carbon dioxide tension at the end of the normal breathing period and at the end of the rebreathing periods. We then measured cardiac output using the partial carbon dioxide rebreathing technique with the two rebreathing periods and using thermodilution. With both rebreathing systems, minute ventilation increased during rebreathing, as did arterial and mixed venous carbon dioxide tensions. The increases in minute ventilation and arterial carbon dioxide tension were less with 35 s rebreathing than with 50 s rebreathing. The cardiac output measures with both systems correlated acceptably with values obtained with thermodilution. When patients breathe spontaneously the partial carbon dioxide rebreathing technique increases minute ventilation and arterial carbon dioxide tension, but the effect is less with a shorter rebreathing period. The 35 s rebreathing period yielded cardiac output measurements similar in accuracy to those with 50 s rebreathing.

  19. [Transcutaneous measurement of partial pressure of carbon dioxide and oxygen saturation: validation of the SenTec monitor].

    Science.gov (United States)

    Domingo, Ch; Canturri, E; Luján, M; Moreno, A; Espuelas, H; Marín, A

    2006-05-01

    To validate a monitor for transcutaneous measurement of oxygen saturation (SpO2) and partial pressure of carbon dioxide (TcPCO2). This observational study included 140 Caucasian nonsmokers without jaundice. Patients underwent forced spirometry, measurement of SpO2 and TcPCO2 with the SenTec monitor, and arterial blood gas analysis (readings with 2 devices) during the stabilization phase of the monitor. In the statistical analysis, values from the 2 devices for measuring arterial blood gases were compared by mean differences for PaCO2 and oxygen saturation (SaO2). The arithmetic mean of the 2 blood gas measurements was calculated and relations between them and the SpO2 and TcPCO2 were assessed by the Pearson correlation coefficient (r) and the intraclass correlation coefficient (ICC) as a measure of agreement. Bland-Altman analysis was used to test data dispersion. Ten patients were excluded due to a systematic error in the gas calibrator. The mean (SD) time to stabilization of the monitor before reading was 13.9 (2.4) minutes. The forced expiratory volume in the first second was greater than 80% in 40 patients, between 60% and 79% in 23, between 40% and 59% in 30, and less than 40% in 37. The mean (SD) differences between arterial blood gas measurements were 0.28 (1.0) mm Hg for PaCO2, -0.06% (0.86%) for SaO2, and -0.9 (2.7) mm Hg for PaO2. In the tests for correlation and agreement, r was 0.74 and ICC was 0.73 for SaO2 and SpO2; r was 0.92 and ICC was 0.92 for PaCO2 and TcPCO2. The subgroup analyses did not show any noteworthy differences. The Bland Altman analysis showed no significant dispersion. It was observed that the SenTec monitor underestimated oxygen saturation values by around 1% with respect to SaO2 and overestimated carbon dioxide pressure by 1 mm Hg with respect to PaCO2 values. The stabilization time recommended for the SenTec monitor before taking a reading is 20 minutes. The overestimates and underestimates by the monitor are not clinically

  20. Carbon dioxide removal process

    Science.gov (United States)

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  1. Carbon dioxide recycling

    Science.gov (United States)

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  2. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO 2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO 2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  3. Bench Remarks: Carbon Dioxide.

    Science.gov (United States)

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  4. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  5. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  6. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  7. High performance hydrophobic solvent, carbon dioxide capture

    Science.gov (United States)

    Nulwala, Hunaid; Luebke, David

    2017-05-09

    Methods and compositions useful, for example, for physical solvent carbon capture. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at least one siloxane compound which is covalently modified with at least one non-siloxane group comprising at least one heteroatom. Polydimethylsiloxane (PDMS) materials and ethylene-glycol based materials have high carbon dioxide solubility but suffer from various problems. PDMS is hydrophobic but suffers from low selectivity. Ethylene-glycol based systems have good solubility and selectivity, but suffer from high affinity to water. Solvents were developed which keep the desired combinations of properties, and result in a simplified, overall process for carbon dioxide removal from a mixed gas stream.

  8. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  9. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  10. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of reduced rebreathing time, in spontaneously breathing patients, on respiratory effort and accuracy in cardiac output measurement when using a partial carbon dioxide rebreathing technique: a prospective observational study

    OpenAIRE

    Tachibana, Kazuya; Imanaka, Hideaki; Takeuchi, Muneyuki; Nishida, Tomoyo; Takauchi, Yuji; Nishimura, Masaji

    2005-01-01

    Introduction New technology using partial carbon dioxide rebreathing has been developed to measure cardiac output. Because rebreathing increases respiratory effort, we investigated whether a newly developed system with 35 s rebreathing causes a lesser increase in respiratory effort under partial ventilatory support than does the conventional system with 50 s rebreathing. We also investigated whether the shorter rebreathing period affects the accuracy of cardiac output measurement. Method Once...

  12. Reconstruction of pH and partial pressure of carbon dioxide during the Mesozoic era period using boron and oxygen isotopic compositions of fresh ammonoids & nautiloids

    Science.gov (United States)

    Kawahata, Hodaka; Fukushima, Ayaka; Moriya, Kazuyori; Ishikawa, Tsuyoshi; Suzuki, Atsushi; Tanabe, Kazushige

    2013-04-01

    The increase of partial pressure of carbon dioxide (pCO2) in the atmosphere induces global warming and ocean acidification at the modern condition. The reconstruction of pCO2 during the geological time is required together with proxy calibration by laboratory experiments to predict the future environments. Boron isotopic ratio is an excellent proxy for pH and the relevant partial pressure of carbon dioxide in the seawater (PCO2). This study is the first to quantify pH dependence of delta 11B of the ammonoids and nautiloids mainly in the Cretaceous and in Jurassic (70-162 Ma), which are expected to be much warmer due to higher PCO2. However, no reliable reconstruction data using foraminiferal delta 11B before Cenozoic era has been reported. We used the very fresh aragonite shells of ammonoids and nautiloids by big advantages. Since aragonite changes into secondary calcite by diagenesis, it is easy and effective to identify the degree of alteration at each sample by measuring calcite/aragonite ratio. Also we carefully conducted the assessment of secondary alteration from three perspectives: 1) Determination of calcite/aragonite ratio by X-ray diffraction (XRD), 2) Observation of microstructures of the nacreous layers by scanning electron microscope (SEM), and 3) Measurement of trace element contents and stable isotope ratios. We conducted high precision boron isotope analysis of biogenic carbonates with +/- 0.1 per mil reproducibility by adopting positive thermal ionization mass spectrometry (P-TIMS) methods. Also we analyzed delta 18O to estimate paleo-temperature, at which biogenic aragonite was formed. Combination of delta 11B and delta 18O of biogenic aragonite in 80 Ma and 86 Ma revealed that deeper dwellers showed lower delta 11B values, which corresponded to lower pH. This feature is consistent with those observed in the modern vertical water column. The respective shallow water temperature was 19.7 and 19.1 centigrade. Based on these results, the

  13. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  14. Method for carbon dioxide sequestration

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2017-12-05

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  15. ISLSCP II Air-Sea Carbon Dioxide Gas Exchange

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the calculated net ocean-air carbon dioxide (CO2) flux and sea-air CO2 partial pressure (pCO2) difference. The estimates are based on...

  16. ISLSCP II Air-Sea Carbon Dioxide Gas Exchange

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the calculated net ocean-air carbon dioxide (CO2) flux and sea-air CO2 partial pressure (pCO2) difference. The estimates are based...

  17. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Shih-Cheng

    2015-01-01

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO 2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O 2 to CH 4 (O 2 /CH 4 ratio) is fixed at 0.5 and the mole ratio of CO 2 to O 2 (CO 2 /O 2 ratio) is in the range of 0–2. The results reveal that CO 2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO 2 addition are in a comparable state. Once CO 2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH 4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH 4 conversion in the catalyst bed; it also intensifies the H 2 selectivity, H 2 yield, CO 2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO 2 addition and heat recovery is studied. • CO 2 addition has a slight effect on methane combustion. • CO 2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH 4 consumption when CO 2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  18. Solubility and partial molar volumes of naphthalene, phenanthrene, benzoic acid, and 2-methoxynaphthalene in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goenenc, Z.S.; Akman, U. [Univ. of South Florida, Tampa, FL (United States). Dept. of Chemical Engineering]|[Bogaziici Univ., Istanbul (Turkey). Dept. of Chemical Engineering; Sunol, A.K. [Univ. of South Florida, Tampa, FL (United States). Dept. of Chemical Engineering

    1995-07-01

    The effect of temperature, pressure, and supercritical fluid density on the retention and solubility in the mobile phase of solutes in supercritical fluid chromatography was investigated. New retention data for naphthalene, phenanthrene, benzoic acid, and 2-methoxynaphthalene were obtained as a function of pressure at different temperatures. Most of the data were taken near the critical region of the fluid phase where the anomalities such as enhanced solubility/selectivity and retrogate behavior are expected. These data were then used to compare two different approaches for modeling the pressure dependence of solute retention on the column. In these approaches, mobile-phase partial molar volumes of the solutes were determined either from bulk solubility data or from infinite-dilution fugacity coefficients. In both approaches, an integrated expression for the change of retention with pressure was utilized to explicitly reveal the nature of interactions between the stationary phase and the solute. The approach that utilizes the infinite-dilution fugacity coefficient predicts the pressure dependence of solute retention more accurately, especially for solutes that are substantially soluble in the mobile phase near the critical point of the mobile phase. Relationships between the pressure and temperature dependence of the solute solubility in the mobile phase and the retention of solutes on the column were also investigated.

  19. Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers.

    Science.gov (United States)

    Xu, Jiaqi; Li, Xiaodong; Liu, Wei; Sun, Yongfu; Ju, Zhengyu; Yao, Tao; Wang, Chengming; Ju, Huanxin; Zhu, Junfa; Wei, Shiqiang; Xie, Yi

    2017-07-24

    Structural parameters of ternary transition-metal dichalcogenide (TMD) alloy usually obey Vegard law well, while interestingly it often exhibits boosted electrocatalytic performances relative to its two pristine binary TMDs. To unveil the underlying reasons, we propose an ideal model of ternary TMDs alloy monolayer. As a prototype, MoSeS alloy monolayers are successfully synthesized, in which X-ray absorption fine structure spectroscopy manifests their shortened Mo-S and lengthened Mo-Se bonds, helping to tailor the d-band electronic structure of Mo atoms. Density functional theory calculations illustrate an increased density of states near their conduction band edge, which ensures faster electron transfer confirmed by their lower work function and smaller charge-transfer resistance. Energy calculations show the off-center charge around Mo atoms not only benefits for stabilizing COOH* intermediate confirmed by its most negative formation energy, but also facilitates the rate-limiting CO desorption step verified by CO temperature programmed desorption and electro-stripping tests. As a result, MoSeS alloy monolayers attain the highest 45.2 % Faradaic efficiency for CO production, much larger than that of MoS 2 monolayers (16.6 %) and MoSe 2 monolayers (30.5 %) at -1.15 V vs. RHE. This work discloses how the partially delocalized charge in ternary TMDs alloys accelerates electrocatalytic performances at atomic level, opening new horizons for manipulating CO 2 electroreduction properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Partial pressure of carbon dioxide, pH, oxygen and other variables collected from time series observations using SAMI-CO2, SAMI-pH, and other instruments from Buoy NH-10 off the coast of Newport, Oregon, United States, at the near bottom depth of ~80 meters from 2011-08-16 to 2015-08-25 (NCEI Accession 0145162)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains time series measurements of near bottom partial pressure of carbon dioxide, pH, dissolved oxygen that are measured from SAMI-CO2, and...

  1. Carbon dioxide capture and storage

    International Nuclear Information System (INIS)

    Durand, B.

    2011-01-01

    The author first highlights the reasons why storing carbon dioxide in geological formations could be a solution in the struggle against global warming and climate change. Thus, he comments various evolutions and prospective data about carbon emissions or fossil energy consumption as well as various studies performed by international bodies and agencies which show the interest of carbon dioxide storage. He comments the evolution of CO 2 contributions of different industrial sectors and activities, notably in France. He presents the different storage modes and methods which concern different geological formations (saline aquifers, abandoned oil or gas fields, not exploitable coal seams) and different processes (sorption, carbonation). He discusses the risks associated with these storages, the storable quantities, evokes some existing installations in different countries. He comments different ways to capture carbon dioxide (in post-combustion, through oxy-combustion, by pre-combustion) and briefly evokes some existing installations. He evokes the issue of transport, and discusses efficiency and cost aspects, and finally has few words on legal aspects and social acceptability

  2. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  3. Venous lactate, pH and partial pressure of carbon dioxide levels as prognostic indicators in 110 premature calves with respiratory distress syndrome.

    Science.gov (United States)

    Yildiz, R; Aydogdu, U; Guzelbektes, H; Coskun, A; Sen, I

    2017-06-24

    Hyperlactatemia, hypercapnia, low pH and low oxygen saturation (SatO 2 ) are commonly observed in premature calves. These clinical indicators are associated with increased mortality in preterm human newborns with respiratory distress syndrome (RDS). The aim of this study was to investigate the prognostic importance of venous pH, partial pressure of carbon dioxide (pCO 2 ) and lactate level and which parameters are related with mortality in premature calves with RDS. All premature calves (52 male/58 female) were admitted to clinic within 12-24 hours after birth and blood samples were also taken into heparinised plastic syringes from the jugular vein within 30 minutes following admission. Diagnosis of RDS was made by both clinical signs and blood gas results. For the evaluation of independent samples, t test was used to compare the venous blood gas indicators of surviving and non-surviving premature calves. Receiver operating characteristics curves were used to determine a cut-off value in terms of lactate and pCO 2 measurements among non-surviving and surviving calves. Venous pH, pCO 2 , SatO 2 , base deficit, bicarbonate (HCO 3 ) and lactate levels showed a significant variance between surviving and non-surviving calves. Mean venous pH, pCO 2 , SatO 2 , lactate levels in non-surviving premature calves was 7.05, 78.9 mm Hg, 16.1 per cent and 9.50 mmol/l, respectively. Mean pH, pCO 2 , SatO 2 and lactate levels in surviving premature calves were 7.29, 56.3 mm Hg, 25.5 per cent and 5.1 mmol/l, respectively. The cut-off values for lactate and pCO 2 were 7.5 mmol/l and 63.5 mm Hg, respectively. In conclusion, the results of the study show that venous blood lactate and pCO 2 have prognostic importance in premature calves with RDS. British Veterinary Association.

  4. Effect of body position on the arterial partial pressures of oxygen and carbon dioxide in spontaneously breathing, conscious dogs in an intensive care unit.

    Science.gov (United States)

    McMillan, Matthew W; Whitaker, Katie E; Hughes, Dez; Brodbelt, David C; Boag, Amanda K

    2009-12-01

    To evaluate the effect of body position on the arterial partial pressures of oxygen and carbon dioxide (PaO(2), PaCO(2)), and the efficiency of pulmonary oxygen uptake as estimated by alveolar-arterial oxygen difference (A-a difference). Prospective, randomized, crossover study. University teaching hospital, intensive care unit. Twenty-one spontaneously breathing, conscious, canine patients with arterial catheters placed as part of their management strategy. Patients were placed randomly into lateral or sternal recumbency. PaO(2) and PaCO(2) were measured after 15 minutes in this position. Patients were then repositioned into the opposite position and after 15 minutes the parameters were remeasured. Results presented as median (interquartile range). PaO(2) was significantly higher (P=0.001) when patients were positioned in sternal, 91.2 mm Hg (86.0-96.1 mm Hg), compared with lateral recumbency, 86.4 mm Hg (73.9-90.9 mm Hg). The median change was 5.4 mm Hg (1.1-17.9 mm Hg). All 7 dogs with a PaO(2)<80 mm Hg in lateral recumbency had improved arterial oxygenation in sternal recumbency, median increase 17.4 mm Hg with a range of 3.8-29.7 mm Hg. PaCO(2) levels when patients were in sternal recumbency, 30.5 mm Hg (27.3-32.7 mm Hg) were not significantly different from those in lateral recumbency, 32.2 mm Hg (28.3-36.0 mm Hg) (P=0.07). The median change was -1.9 mm Hg (-3.6-0.77 mm Hg). A-a differences were significantly lower (P=0.005) when patients were positioned in sternal recumbency, 21.7 mm Hg (17.3-27.7 mm Hg), compared with lateral recumbency, 24.6 mm Hg (20.4-36.3 mm Hg). The median change was -3.1 mm Hg (-14.6-0.9 mm Hg). PaO(2) was significantly higher when animals were positioned in sternal recumbency compared with lateral recumbency, predominantly due to improved pulmonary oxygen uptake (decreased A-a difference) rather than increased alveolar ventilation (decreased PaCO(2)). Patients with hypoxemia (defined as PaO(2)<80 mm Hg) in lateral recumbency may

  5. Carbon Dioxide Sensor Technology.

    Science.gov (United States)

    1983-04-01

    concentration. Most of the data given by the manufacturer relate to the gaseous concentration of combustible gaseous--such as hydrogen , carbon monoxide...UNCLASSIFIED * 15IS& OCASSIFICA TION/ OOWNGRADING N/A SCHEDULE 10. DISTRIBUTION STATEM tot dais Aspen ) Approved for public re-lease; distribution unlimited 17...were somewhat arbitrarily selected at + 0.1 -w Hg, which is a good goal for laboratory simulations , but this accuracy may not be reached in practical

  6. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  7. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  8. Visual and reversible carbon dioxide sensing enabled by doctor blade coated macroporous photonic crystals.

    Science.gov (United States)

    Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta

    2017-11-15

    With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nuclear energy significantly reduces carbon dioxide emissions

    International Nuclear Information System (INIS)

    Koprda, V.

    2006-01-01

    This article is devoted to nuclear energy, to its acceptability, compatibility and sustainability. Nuclear energy is non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy, radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously adjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  10. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  11. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  12. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    , when used in full scale animal buildings as basis for estimation of ventilation flow. Based on the data reviewed in this study, we recommend adding 10% carbon dioxide production to the laboratory based carbon dioxide production for animal houses with slatted or solid floors, provided that indoor manure......This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  13. Sonochemical reduction of carbon dioxide.

    Science.gov (United States)

    Harada, H

    1998-06-01

    Sonolysis of carbon dioxide dissolved in water was performed from a standpoint of reducing this material in atmosphere. During one hour of sonication, the amount of CO2 decreased to about half at 5 degrees C under CO2-Ar atmosphere. The decreasing rate for CO2 followed the order Ar > He > H2 > N2 and it was down with increasing temperature in the range of 5-45 degrees C. The most favorable concentration for reducing CO2 was 0.03 (mole fraction of CO2 in gas phase). This concentration in gas phase means an equal mixture of CO2 and Ar in water, because CO2 is more soluble than Ar. Since carbon dioxide dissolved in water would be partly ionized, the roles of ions on the sonolysis were also examined. Gaseous reaction products were CO, H2 and a small amount of O2. Carbon monoxide and hydrogen might be obtained from CO2 and H2O by sonolysis, respectively. Both gases are fuel and react each other to C1 compounds such as methanol, and so on. Therefore, irradiation of ultrasonic waves should be an important technique for reducing CO2.

  14. Accuracy of Transcutaneous Carbon Dioxide Measurement in Premature Infants

    OpenAIRE

    Marie Janaillac; Sonia Labarinas; Riccardo E. Pfister; Oliver Karam

    2016-01-01

    Background. In premature infants, maintaining blood partial pressure of carbon dioxide (pCO2) value within a narrow range is important to avoid cerebral lesions. The aim of this study was to assess the accuracy of a noninvasive transcutaneous method (TcpCO2), compared to blood partial pressure of carbon dioxide (pCO2). Methods. Retrospective observational study in a tertiary neonatal intensive care unit. We analyzed the correlation between blood pCO2 and transcutaneous values and the accuracy...

  15. Dissolved organic carbon content and characteristics in relation to carbon dioxide partial pressure across Poyang Lake wetlands and adjacent aquatic systems in the Changjiang basin.

    Science.gov (United States)

    Wang, Huaxin; Jiao, Ruyuan; Wang, Fang; Zhang, Lu; Yan, Weijin

    2016-12-01

    Dissolved organic carbon (DOC) plays diverse roles in carbon biogeochemical cycles. Here, we explored the link between DOC and pCO 2 using high-performance size-exclusion chromatography (HPSEC) with UV 254 detection and excitation emission matrix (EEM) fluorescence spectroscopy to determine the molecular weight distribution (MW) and the spectral characteristics of DOC, respectively. The relationship between DOC and pCO 2 was investigated in the Poyang Lake wetlands and their adjacent aquatic systems. The results indicated significant spatial variation in the DOC concentrations, MW distributions, and pCO 2 . The DOC concentration was higher in the wetlands than in the rivers and lakes. pCO 2 was high in wetlands in which the dominant vegetation was Phragmites australis, whereas it was low in wetlands in which Carex tristachya was the dominant species. DOC was divided into five fractions according to MW, as follows: super-low MW (SLMW, 40 kDa). Rivers contained high proportions of HMW and extremely low amounts of SLMW, whereas wetlands had relatively high proportions of SLMW. The proportion of SMW (SMW p ) was particularly high in wetlands. We found that pCO 2 significantly positively correlated with the proportion of IMW, and significantly negatively correlated with SMW p . These data improve our understanding of the MW of bioavailable DOC and its conversion to CO 2 . The present results demonstrate that both the content and characteristics of DOC significantly affect pCO 2 . pCO 2 and DOC must be studied further to help understanding the role of the wetland on the regional CO 2 budget. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Carbon dioxide disposal in solid form

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)

    1995-12-31

    Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

  17. Carbon Dioxide for pH Control

    Energy Technology Data Exchange (ETDEWEB)

    Wagonner, R.C.

    2001-08-16

    Cardox, the major supplier of carbon dioxide, has developed a diffuser to introduce carbon dioxide into a water volume as small bubbles to minimize reagent loss to the atmosphere. This unit is integral to several configurations suggested for treatment to control alkalinity in water streams.

  18. Pressure pumping of carbon dioxide from soil

    Science.gov (United States)

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  19. Encapsulated liquid sorbents for carbon dioxide capture.

    Science.gov (United States)

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  20. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized for temperatures in the region of 300 to 900 0 C and partial pressure of carbon dioxide near 5 x 10 -7 Torr. Dynamic film pumping speeds were measured against a mercury diffusion pump of known pumping speed and conductance. A quadrupole mass spectrometer was used to monitor the carbon dioxide flow which originated from a calibrated leak in the 10 -6 standard cm 3 /s range. Data reduction was via a dedicated minicomputer with associated printer/plotter. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C. The reaction was preceded by the desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface

  1. Dissolved carbon dioxide in Dutch coastal waters

    NARCIS (Netherlands)

    Bakker, D.C E; de Baar, H.J.W.; de Wilde, H.P.J.

    1996-01-01

    The role of shelf seas in global carbon cycling is poorly understood. The dissolved inorganic carbon system and air-sea exchange of carbon dioxide (CO2) are described for the Dutch coastal zone in September 1993. The inorganic carbon chemistry was affected by tidal mixing, wind speed, wind

  2. Carbon dioxide capture process with regenerable sorbents

    Science.gov (United States)

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  3. Carbon dioxide: Global warning for nephrologists.

    Science.gov (United States)

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-06

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle.

  4. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    Energy Technology Data Exchange (ETDEWEB)

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2001-06-15

    During the present reporting period, six complementary tasks involving experimentation, model development, and coal characterization were undertaken to meet our project objectives: (1) A second adsorption apparatus, utilizing equipment donated by BP Amoco, was assembled. Having confirmed the reliability of this additional experimental apparatus and procedures, adsorption isotherms for CO{sub 2}, methane, ethane, and nitrogen on wet Fruitland coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 3%. The addition of this new facility has allowed us to essentially double our rate of data production. (2) Adsorption isotherms for pure CO{sub 2}, methane, and nitrogen on wet Illinois-6 coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia) on our first apparatus. The activated carbon measurements showed good agreement with literature data and with measurements obtained on our second apparatus. The expected uncertainty of the data is about 3%. The Illinois-6 adsorption measurements are a new addition to the existing database. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on DESC-8 coal. (3) Adsorption from binary mixtures of methane, nitrogen and CO{sub 2} at a series of compositions was also measured on the wet Fruitland coal at 319.3 K (115 F), using our first apparatus. The nominal compositions of these mixtures are 20%/80%, 40%/60%, 60%/40%, and 80%/20%. The experiments were conducted at pressures from 100 psia to 1800 psia. The expected uncertainty for these binary mixture data varies from 2 to 9%. (4) A study was completed to address the previously-reported rise in the CO{sub 2} absolute adsorption on wet Fruitland coal at 115 F and pressures exceeding 1200 psia. Our additional adsorption measurements on

  5. Carbon dioxide to carbon nanotube scale-up

    OpenAIRE

    Licht, Stuart

    2017-01-01

    Team C2CNT, or team Carbon dioxide to carbon nanotubes, proprietary technology directly removes the widest range of carbon dioxide from the ecosystem. C2CNT technology simply transforms low to high carbon dioxide into carbon and oxygen, and the carbon produced is permanently removed, that is stable on the order of geologic time frames. C2CNT technology directly removes, transforms and stores atmospheric 0.04% CO2 without pre-concentration from the air, or 5% CO2 removal of gas power plant CO2...

  6. Report of the Carbon Dioxide Committee II

    International Nuclear Information System (INIS)

    1994-01-01

    The Carbon Dioxide Committee was given the task of preparing a suggestion of the acts aimed at reducing the greenhouse gas emissions and increasing the sinks of carbon in Finland. Emissions of all greenhouse gases were in 1990 80 million tons. calculated as carbon dioxide. The carbon dioxide emissions were about 58 million tons of the total. The increase of forest resources binds carbon from the atmosphere and reduces thereby net emissions of Finland at present by nearly 30 million tons of carbon dioxide. Carbon dioxide emissions will grow during the next decades, unless strong measures to control them will not be taken. As a result of the Commissions examination, acts will be needed both in the production of energy and in its consumption. Emissions can be reduced by replacing fossil fuels with nuclear energy, bioenergy and other renewable energy sources. Saving of energy and improvement of energy efficiency will limit carbon dioxide emissions. The Commission has made suggestions both to change the structure of energy production and to control the consumption of energy. (orig.)

  7. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  8. Reactive Capture of Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  9. Carbon Dioxide Collection and Pressurization Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reactive Innovations, LLC, proposes a Phase I SBIR program to develop a compact and lightweight electrochemical reactor to separate and pressurize carbon dioxide...

  10. Life Support Systems: Carbon Dioxide Removal

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Carbon Dioxide Removal and Management task includes development of systems that remove CO2 from a...

  11. Renal artery intervention utilizing carbon dioxide angiography.

    Science.gov (United States)

    Sag, Alan A; Afsar, Baris; Kanbay, Mehmet

    2017-12-01

    Carbon dioxide angiography is an established non-nephrotoxic option for imaging of the infradiaphragmatic arteries and veins. Safe performance of the technique once required a somewhat cumbersome system, however, recent innovations have simplified implementation and expanded the user base for this technique. As such, patient access has also increased. In this issue, Hameed et al. provide initial feasibility data regarding carbon dioxide angiography and renal denervation therapy. This experience may be translated into future renovascular interventions in patients with limited renal reserve.

  12. Response of photosynthesis in second-generation Pinus radiata trees to long-term exposure to elevated carbon dioxide partial pressure.

    Science.gov (United States)

    Greenep, H; Turnbull, M H; Whitehead, D

    2003-06-01

    Second-generation Pinus radiata D. Don trees, propagated from cuttings of 4-year-old trees previously grown at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressure (Ca) were grown under the same conditions in open-top chambers for a further year. As cuttings of the original trees, these second-generation trees were physiologically the same age as the first-generation trees with the only difference between the two being size. This allowed us to test the effects of tree size independently of age or duration of exposure. Total non-structural carbohydrate concentration, area-based nitrogen concentration, leaf mass per unit area and chlorophyll concentration measured in three foliage age cohorts were unaffected by either age or Ca. There were no signs of photosynthetic down-regulation in trees grown at elevated Ca. When measured at the growth Ca, photosynthetic rate in young needles during summer, autumn and spring was 34, 43 and 38% higher, respectively, in trees grown at elevated Ca than in trees grown at ambient Ca. In older needles, the corresponding photosythetic rate increases were 26, 47 and 49%. Water-use efficiency, determined by stable carbon isotope analysis, was 49% higher in foliage in the elevated Ca treatment than in foliage in the ambient Ca treatment. This increase was entirely due to photosynthetic enhancement, because stomatal conductance did not differ between treatments. We conclude that down-regulation of photosynthesis at elevated Ca is related to tree size rather than tree age or duration of exposure, and that enhanced photosynthetic rates can be maintained while sink strength is high enough to use the excess photosynthates.elevated CO2, needle age, photosynthetic down-regulation, photosynthetic enhancement, sink strength, water-use efficiency.

  13. Stationary plume induced by carbon dioxide dissolution

    International Nuclear Information System (INIS)

    Nadal, F.; Meunier, P.; Pouligny, B.; Laurichesse, E.

    2013-01-01

    In this paper, laminar convection flows induced by carbon dioxide absorption are addressed from experimental, numerical and theoretical points of view. A vertical glass tube (of centimetre scale) filled with distilled water is subjected to a sudden increase in the partial pressure of carbon dioxide. As a result of the diffusion of the gas into the unsaturated solution, a thin layer of fluid located underneath the surface becomes heavier. This initial density gradient first destabilizes to form a plume, which goes downwards through the entire cell. After a first transient pulsating regime (periodic succession of such Rayleigh-Benard plumes), a stationary flow settles in the tube, which is maintained by the constant supply of gas at the surface. At late stages, this stationary regime is followed by an aperiodic regime, which lasts until the complete saturation of the solution (thermodynamic equilibrium). The present study only focuses on the stationary regime, whose characteristics appear to be almost independent of the Bond number and the aspect ratio but strongly dependent on the chemical Rayleigh number. Three decades of Rayleigh numbers are explored using particle image velocimetry measurements, which allows for a precise determination of the scaling exponents for the vertical velocity amplitude and the plume width. The assumption that gravity and a constant pressure gradient balance the viscous effects enables us to derive an analytic expression for the stationary vertical velocity on the axis, which scales as Ra 2/3 (ln Ra) 1/3 . As a consequence, the width of the plume scales as Ra -1/6 (ln Ra) -1/3 and the mass Nusselt number as (Ra= ln Ra) 1/3 . These scalings are in excellent agreement with the experimental and numerical results. The multiplicative constants of these scalings can also be calculated and show a fairly good agreement if a rigid boundary condition (no-slip) is assumed at the free surface. (authors)

  14. Turning carbon dioxide into fuel.

    Science.gov (United States)

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  15. The central and eastern Arabian Sea as a perennial source of atmospheric carbon dioxide

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; DileepKumar, M.; George, M.D.

    Seasonal (winter monsoon, intermonsoon and southwest monsoon) and interannual (between southwest monsoon seasons of 1995 and 1996) variations in total carbon dioxide (TCO sub(2)) and partial pressure of CO sub(2) (pCO sub(2)) were studied...

  16. Monthly dynamics of carbon dioxide exchange across the sea surface of the Arctic Ocean in response to changes in gas transfer velocity and partial pressure of CO2 in 2010

    Directory of Open Access Journals (Sweden)

    Iwona Wrobel

    2017-10-01

    Full Text Available The Arctic Ocean (AO is an important basin for global oceanic carbon dioxide (CO2 uptake, but the mechanisms controlling air–sea gas fluxes are not fully understood, especially over short and long timescales. The oceanic sink of CO2 is an important part of the global carbon budget. Previous studies have shown that in the AO differences in the partial pressure of CO2 (ΔpCO2 and gas transfer velocity (k both contribute significantly to interannual air–sea CO2 flux variability, but that k is unimportant for multidecadal variability. This study combined Earth Observation (EO data collected in 2010 with the in situ pCO2 dataset from Takahashi et al. (2009 (T09 using a recently developed software toolbox called FluxEngine to determine the importance of k and ΔpCO2 on CO2 budgets in two regions of the AO – the Greenland Sea (GS and the Barents Sea (BS with their continental margins. Results from the study indicate that the variability in wind speed and, hence, the gas transfer velocity, generally play a major role in determining the temporal variability of CO2 uptake, while variability in monthly ΔpCO2 plays a major role spatially, with some exceptions.

  17. Reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1987-01-01

    It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800 0 C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350 0 C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo

  18. Method for Extracting and Sequestering Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  19. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    Energy Technology Data Exchange (ETDEWEB)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing

  20. Designed amyloid fibers as materials for selective carbon dioxide capture.

    Science.gov (United States)

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  1. Electron irradiation of carbon dioxide-carbon disulphide ice analog ...

    Indian Academy of Sciences (India)

    Upon electron irradiation the chemical composition was found to have altered and the new products from irradiation were found to be carbonyl sulphide (OCS), sulphur dioxide (SO2), ozone (O3), carbon trioxide (CO3), sulphur trioxide (SO3), carbon subsulphide (C3S2) and carbon monoxide (CO). Results obtained confirm ...

  2. Electron irradiation of carbon dioxide-carbon disulphide ice analog ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-015-0996-6. Electron irradiation of carbon dioxide-carbon disulphide ice analog and its implication on the identification of carbon disulphide on Moon. B SIVARAMAN. ∗. Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad 380 009, India e-mail: bhala@prl.res.in.

  3. A carbon dioxide fatality from dry ice.

    Science.gov (United States)

    Srisont, Smith; Chirachariyavej, Thamrong; Peonim, A V M Vichan

    2009-07-01

    This report documents a rare case of carbon dioxide intoxication in a young healthy male. The deceased hid in a small plastic container, size 1.5 x 1 x 1 m, and within 5 min he was located suffering convulsions and was reported as dead within minutes. Scene investigation revealed dry ice in the container. Autopsy findings were unremarkable. The probable cause of the convulsions was carbon dioxide intoxication due to both the dry ice sublimation and the small confined space in which he was hiding. This report emphasizes the significance of scene investigation in establishing the cause of the death.

  4. Suppressing bullfrog larvae with carbon dioxide

    Science.gov (United States)

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  5. Carbon dioxide removal in gas treating processes

    International Nuclear Information System (INIS)

    Lidal, H.

    1992-06-01

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO 2 in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140 o C, for CO 2 loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO 2 into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO 2 in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO 2 /TEG/MEA system for estimation of CO 2 partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs

  6. International Space Station Carbon Dioxide Removal Assembly Testing

    Science.gov (United States)

    Knox, James C.

    2000-01-01

    Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.

  7. Magnesian calcite sorbent for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Mabry, J.C.; Mondal, K. [Southern Illinois University, Carbondale, IL (United States)

    2011-07-01

    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO{sub 2} capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO{sub 3}:MgCO{sub 3}) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 {sup o}C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  8. Carbon dioxide: making the right connection

    African Journals Online (AJOL)

    During the changeover of machines, the patient was manually ventilated with a ... Fearing residual contamination of the new machine with volatile agents, an ICU .... Grey with black-and-white shoulder. High-pressure air. Salmon pink. Carbon dioxide. Green. Green with grey shoulder. Medical vacuum. Primrose yellow.

  9. Carbon dioxide therapy in hypocapnic respiratory failure.

    Science.gov (United States)

    Julu, P O O; Shah, M; Monro, J A; Puri, B K

    2018-01-01

    Oxygen therapy, usually administered by a facemask or nasal cannulae, is the current default treatment of respiratory failure. Since respiration entails intake of oxygen and release of carbon dioxide from tissues as waste product, the notion of administering carbon dioxide in respiratory failure appears counter-intuitive. However, carbon dioxide stimulates the chemosensitive area of the medulla, known as the central respiratory chemoreceptor, which activates the respiratory groups of neurones in the brainstem and stimulates inspiration thereby initiating oxygen intake during normal breathing. This vital initiation of normal breathing is via a reduction in the pH of the cerebrospinal fluid and the medullary interstitial fluid. We hypothesise that in cases of type I respiratory failure in which the P a CO 2 is low, administration of carbon dioxide by inhalation would stimulate the respiratory groups of brainstem neurones and facilitate breathing, which would be of therapeutic value. Preliminary clinical evidence in favour of this hypothesis is presented and we recommend that a formal randomised study be carried out. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Integrated Vertical Photobioreactor System for Carbon Dioxide ...

    African Journals Online (AJOL)

    A vertical photobioreactor containing the microalgae Scenedesmus obliquus is a highly efficient system for converting carbon dioxide (CO2) into biomass. The use of photobioreactor for CO2 mitigation has been explored using microalgae as photosynthetic microorganism. The growth rate (m, h-1) were 0.03; 0.13; 0.20; 0.09 ...

  11. Tourism Transport, Technology, and Carbon Dioxide Emissions

    NARCIS (Netherlands)

    Peeters, P.M.

    2010-01-01

    Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left

  12. Carbon dioxide (CO2) utilizing strain database

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... CSD can be used to gain information related to CO2 fixing microbes. It can also contribute to devising biological strategies for reducing carbon dioxide from the environment. It introduces an innovative idea of exploring the potential of these bacterial strains for reversing global warming. The CSD can be.

  13. Electrocatalytic carbon dioxide reduction - a mechanistic study

    NARCIS (Netherlands)

    Schouten, Klaas Jan Schouten

    2013-01-01

    This thesis presents new insights into the reduction of carbon dioxide to methane and ethylene on copper electrodes. This electrochemical process has great potential for the storage of surplus renewable electrical energy in the form of hydrocarbons. The research described in this thesis focuses on

  14. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  15. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  16. Carbon dioxide capture and air quality

    NARCIS (Netherlands)

    Horssen, A. van; Ramirez, C.A.; Harmelen, T. van; Koornneef, J.

    2011-01-01

    Carbon dioxide (CO2) is one of the most important greenhouse gases (GHG). The most dominant source of anthropogenic CO2 contributing to the rise in atmospheric concentration since the industrial revolution is the combustion of fossil fuels. These emissions are expected to result in global climate

  17. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  18. Bicontinuous nanoporous polymers by carbon dioxide foaming

    NARCIS (Netherlands)

    Krause, B.; Münüklü, P.; van der Vegt, N.F.A.; Wessling, Matthias; Sijbesma, H.P.

    2001-01-01

    We investigate the physical foaming process of glassy poly(ether imide) and poly(ether sulfone) using carbon dioxide and report temperature-concentration diagrams ("foam diagrams") marking out the foaming envelope in which dense CO2-saturated films expand and microvoids are introduced. Two types of

  19. 21 CFR 868.5310 - Carbon dioxide absorber.

    Science.gov (United States)

    2010-04-01

    ... breathing circuit as a container for carbon dioxide absorbent. It may include a canister and water drain. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a...

  20. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1...) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid must comply with the following special requirements: (1) All plates for tank, manway nozzle...

  1. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New calibration...

  2. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter, the NDIR carbon dioxide analyzer shall be calibrated as follows: (a...

  3. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...

  4. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide...

  5. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up and...

  6. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon dioxide...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from time series observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Polaris II in the South Pacific Ocean from 2006-08-29 to 2006-10-24 (NODC Accession 0112883)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112883 includes time series data collected from Polaris II in the South Pacific Ocean from 2006-08-29 to 2006-10-24. These data include Partial...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Munida in the South Pacific Ocean from 2004-01-26 to 2006-07-30 (NODC Accession 0100218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0100218 includes Surface underway data collected from Munida in the South Pacific Ocean from 2004-01-26 to 2006-07-30. These data include Partial...

  9. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Peng, Tsung-Hung; Takahashi, Taro

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  10. Secular trends and seasonal variations of partial pressure of carbon dioxide in the surface sea water in the Australian secutor of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Gen Hashida

    2010-12-01

    Full Text Available In order to elucidate the secular trends of oceanic CO_2 uptake in the Indian sector of the Southern Ocean, pCO_2, the partial pressure of CO_2 in the ocean surface layer, has been measured since 1987 on board the icebreaker Shirase. Meridional distributions of pCO_2 along 110゜E in early December clearly show steep changes at such fronts as the subtropical front, subantarctic front, and polar front. Although pCO_2 of each zone shows interannual variation, secular trend is detectable. For example, the estimated rate of increase of pCO_2 in the permanent open ocean zone between the polar front (around 53゜S and the northern edge of winter ice cover (63゜S is about 1.3 μatm y, which is slightly lower than the rate of increase of the atmospheric CO_2 concentration. From the results obtained by multi-ship observations with 4 research vessels in the Southern Ocean in summer, we found that the values of pCO_2 off the coast of the Antarctic Continent (66゜S varied temporally by 100 μatm for 5 months. We also found that nDIC decreased with time from December 2001 to March 2002 in the upper layer from 100 to 200 m due to biological activity during summer.

  11. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    In the year 2013, 9.5 billion metric tons of carbon dioxide gas was emitted into the air, and each year this amount is increasing [1]. Carbon dioxide emissions are of particular concern as they represent 80% of greenhouse gas emissions and therefore are a large contributor to global warming. Amon...... framework with its implemented methods and tools is a small but important step. Collaboration and integration of data, methods and tools is necessary to provide a more sustainable solution to the global carbon dioxide emission problem.......In the year 2013, 9.5 billion metric tons of carbon dioxide gas was emitted into the air, and each year this amount is increasing [1]. Carbon dioxide emissions are of particular concern as they represent 80% of greenhouse gas emissions and therefore are a large contributor to global warming. Among...... which the issue of global carbon dioxide emissions can be investigated in terms of different available capture-utilization technologies, solution methods, and benefit scenarios, with the objective to determine more sustainable solutions within an appropriate application boundary. The framework would...

  12. Carbon Dioxide: The Other Planetary Fluid

    Science.gov (United States)

    Glaser, S.; Gamez, D.; Shock, E.

    2016-12-01

    Cometary and interstellar ices have carbon dioxide to water mole ratios of up to 0.3. When melted, such high levels of carbon dioxide cannot all be dissolved in the aqueous phase and instead partition into a CO2-rich (carbonic) fluid. This implies that during the accretion and formation of planetary systems carbonic fluids are not only possible, but common. In fact, they make up the atmosphere of Venus, are found bubbling out of Champagne Vent in the Pacific Ocean, and are documented by metamorphic fluid inclusions. Examination of phase diagrams reveals the conditions where carbonic fluids will exist or predominate. Carbonic fluids are predicted to exist in Earth's subduction zones and under the ice of small ocean worlds. CO2 had previously been shown to completely dissolve into NH­­3­-H­­2O oceans on small icy bodies by forming ammonium carbonate, but the newer measurements of CO2­ abundances indicate that not all of the CO2 can partition into the aqueous fluid as ammonium carbonate. The remaining CO2 would necessarily form a separate carbonic fluid making it likely that liquid CO2 would be a major oceanic component on some small icy bodies. The enhanced solubility of nonpolar and slightly polar organic compounds in carbonic fluids relative to aqueous fluids means that generation, transport, and deposition processes can be greatly enhanced in those cases where carbonic fluids occur. As an example, the solubility of benzoic acid, a polar compound, is about an order of magnitude greater in carbonic than in aqueous fluids, which is surprising given that water is a polar solvent and carbon dioxide is a nonpolar solvent. Anthracene, a nonpolar compound, has an even greater solubility difference between carbonic and aqueous fluids at approximately four orders of magnitude. Highly polar compounds, including most of the building blocks of life, are more soluble in aqueous fluids than in carbonic fluids. The solubility difference of organic molecules in carbonic

  13. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers. (b...

  14. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

    DEFF Research Database (Denmark)

    Bjerregård, Asger; Jansen, Erik

    2012-01-01

    Measurement of the arterial carbon dioxide (P(a)CO(2)) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P(ET)CO(2)) and transcutaneous carbon dioxide (PTCCO2......). Carbon dioxide in the blood and cerebral tissue has great influence on vasoactivity and thereby blood volume of the brain. We have found no studies on the correlation between P(ET)CO(2) or P(TC)CO(2), and P(a)CO(2) during hyperbaric oxygen therapy (HBOT)....

  15. Energy efficient solvent regeneration process for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shaojun; Meyer, Howard S.; Li, Shiguang

    2018-02-27

    A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.

  16. Carbon dioxide research conference: carbon dioxide, science and consensus

    International Nuclear Information System (INIS)

    1983-02-01

    The DOE program focuses on three areas each of which requires more research before the many CO 2 -related questions can be answered. These areas include the global carbon cycle, climate effects, and vegetation effects. Additional information is needed to understand the sources and sinks of CO 2 . Research efforts include an attempt to estimate regional and global changes in temperature and precipitation. Increased atmospheric CO 2 may be a potential benefit to vegetation and crops because it is an essential element required for plant growth. Eight separate papers are included

  17. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    Science.gov (United States)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  18. [Relation between ultrasound-measured diaphragm movement and partial pressure of carbon dioxide in blood from patients with acute hypercapnic respiratory failure after the start of noninvasive ventilation in an emergency department].

    Science.gov (United States)

    Sánchez-Nicolás, José Andrés; Cinesi-Gómez, César; Villén-Villegas, Tomás; Piñera-Salmerón, Pascual; García-Pérez, Bartolo

    2016-10-01

    To evaluate the correlation between variations in ultrasound-measured diaphragm movement and changes in the arterial partial pressure of carbon dioxide (PCO2) after the start of noninvasive ventilation (NIV). RDescriptive study of a prospective case series comprised of nonconsecutive patients aged 18 years or older with hypercapnic respiratory failure who were placed on NIV in an emergency department. We recorded clinical data, blood gas measurements, and ultrasound measurements of diaphragm movement. Twenty-one patients with a mean (SD) age of 83 (13) years were studied; 11 (52.4%) were women. The mean (SD) range of diaphragm movement and PCO2 values at 4 moments were as follows: 1) at baseline: diaphragm movement, 13.90 (7.7) mm and PCO2, 71.75 (11.4) mm Hg; 2) after 15 minutes on NIV: diaphragm movement, 17.10 (9.1) mm; 3) at 1 hour: diaphragm movement, 22.40 (10.4) mm and PCO2, 63.45 (16.0) mm Hg; and 4) at 3 hours: diaphragm movement, 26.60 (19.5) mm and PCO2, 61.85 (13.0) mm Hg. We detected a statistically significant correlation between the difference in range of diaphragm movement at baseline and at 15 minutes and the decrease in PCO2 after 1 hour of NIV (r=-0.489, P=.035). In patients with hypercapnic respiratory failure, the increase in range of diaphragm movement 15 minutes after starting NIV is associated with a decrease in PCO2 after 1 hour.

  19. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, Sander; Clauson-Kaas, Anne Sofie Kjærulff; Bobuľská, L.

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application....... This study investigated the nature of the early release of CO2 and the degree to which stabilizing mechanisms protect biochar from microbial attack. Incubations of 14C-labelled biochar produced at different temperatures were performed in soils with different clay contents and in sterilized and non......-sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over...

  20. Pulsed discharge plasmas in supercritical carbon dioxide

    OpenAIRE

    Kiyan, Tsuyoshi; Uemura, A.; Tanaka, K.; Zhang, C.H.; Namihira, Takao; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Roy, B.C.; Sasaki, M.; Goto, M.; キヤン, ツヨシ; ナミヒラ, タカオ; サクガワ, タカシ; カツキ, スナオ

    2005-01-01

    In recent years, several studies about electrical discharge plasma in supercritical carbon dioxide (CO2) have been carried out. One of the unique characteristics of supercritical fluid is a large density fluctuation near the critical point that can result in marked dramatic changes of thermal conductivity. Therefore, the electrical discharge plasma produced in supercritical fluid has unique features and reactions unlike those of normal plasma produced in gas phase. In our experiments, two typ...

  1. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  2. Carbon dioxide embolism during laparoscopic sleeve gastrectomy

    Directory of Open Access Journals (Sweden)

    Amir Abu Zikry

    2011-01-01

    Full Text Available Bariatric restrictive and malabsorptive operations are being carried out in most countries laparoscopically. Carbon dioxide or gas embolism has never been reported in obese patients undergoing bariatric surgery. We report a case of carbon dioxide embolism during laparoscopic sleeve gastrectomy (LSG in a young super obese female patient. Early diagnosis and successful management of this complication are discussed. An 18-year-old super obese female patient with enlarged fatty liver underwent LSG under general anesthesia. During initial intra-peritoneal insufflation with CO 2 at high flows through upper left quadrant of the abdomen, she had precipitous fall of end-tidal CO 2 and SaO 2 % accompanied with tachycardia. Early suspicion led to stoppage of further insufflation. Clinical parameters were stabilized after almost 30 min, while the blood gas analysis was restored to normal levels after 1 h. The area of gas entrainment on the damaged liver was recognized by the surgeon and sealed and the surgery was successfully carried out uneventfully. Like any other laparoscopic surgery, carbon dioxide embolism can occur during bariatric laparoscopic surgery also. Caution should be exercised when Veress needle is inserted through upper left quadrant of the abdomen in patients with enlarged liver. A high degree of suspicion and prompt collaboration between the surgeon and anesthetist can lead to complete recovery from this potentially fatal complication.

  3. Carbon dioxide makes heat therapy work

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, H.

    1987-01-01

    Scientists can now propagate healthy blueberry and raspberry plants from virus-infected stock by treating it with heat and carbon dioxide. Plants are grown at 100/sup 0/F, which makes them develop faster than the virus can spread. Then cuttings are taken of the new growth - less than an inch long - and grown into full-sized, virus-free plants. But in this race to outdistance the virus, some plant species are not able to take the heat. Some even die. Chemical reactions double for every 14/sup 0/F rise in temperature. So, if you try to grow a plant at 100/sup 0/F that was originally growing at 86/sup 0/F, it will double its respiration rate. Adding carbon dioxide increases the rate of photosynthesis in plants, which increases the plant's food reserves. What carbon dioxide does to allow some plants to grow at temperatures at which they would otherwise not survive and it allows other plants to grow for longer periods at 100/sup 0/F. One problem with the process, says Converse, is that the longer plants are exposed to heat the greater the mutation rate. So, resulting clones should be closely examined for trueness to horticultural type.

  4. Electrocatalytic process for carbon dioxide conversion

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Salehi-Khojin, Amin; Kutz, Robert

    2017-11-14

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and a Helper Polymer in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said carbon dioxide reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.

  5. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    Science.gov (United States)

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the

  6. Ionic Liquid Membranes for Carbon Dioxide Separation

    Energy Technology Data Exchange (ETDEWEB)

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on

  7. Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation

    OpenAIRE

    Lamb, Katie J.; Dowsett, Mark R.; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D.; Aguiar, Pedro M.; North, Michael; Parkin, Alison

    2018-01-01

    An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbon...

  8. Synthesis of carbonated fatty methyl esters using supercritical carbon dioxide.

    Science.gov (United States)

    Doll, Kenneth M; Erhan, Sevim Z

    2005-11-30

    The two-step syntheses of the cyclic carbonates carbonated methyl oleate (CMO) and carbonated methyl linoleate (CML) are reported. First, synthesis of epoxides through well-precedented chemical reactions of unsaturated fatty methyl esters with hydrogen peroxide and formic acid was accomplished. Next, a carbonation reaction with a simple tetrabutylammonium bromide catalyst was performed, allowing the direct incorporation of carbon dioxide into the oleochemical. These syntheses avoid the use of the environmentally unfriendly phosgene. The carbonated products are characterized by IR, 1H NMR, and 13C NMR spectroscopy and studied by thermogravimetric analysis (TGA). Also reported is the synthesis of a similar cyclic carbonate from the commercially available 2-ethylhexyl epoxy soyate. These carbonates show properties that may make them useful as petrochemical replacements or as biobased industrial product precursors.

  9. Method of immobilizing carbon dioxide from gas streams

    International Nuclear Information System (INIS)

    Holladay, D.W.; Haag, G.L.

    1979-01-01

    This invention comprises a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants

  10. Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.

    Science.gov (United States)

    Lamb, Katie J; Dowsett, Mark R; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D; Aguiar, Pedro M; North, Michael; Parkin, Alison

    2018-01-10

    An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  12. The carbon dioxide thermometer and the cause of global warming

    International Nuclear Information System (INIS)

    Calder, Nigel

    1999-01-01

    Carbon dioxide in the air may be increasing because the world is warming. This possibility, which contradicts the hypothesis of an enhanced greenhouse warming driven by manmade emissions, is here pursued in two ways. First, increments in carbon dioxide are treated as readings of a natural thermometer that tracks global and hemispheric temperature deviations, as gauged by meteorologists' thermometers. Calibration of the carbon dioxide thermometer to conventional temperatures then leads to a history of carbon dioxide since 1856 that diverges from the ice-core record. Secondly, the increments of carbon dioxide can also be accounted for, without reference to temperature, by the combined effects of cosmic rays, El Nino and volcanoes. The most durable effect is due to cosmic rays. A solar wind history, used as a long-term proxy for the cosmic rays, gives a carbon dioxide history similar to that inferred from the global temperature deviations. (author)

  13. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Pendergast, D.R.

    1999-01-01

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  14. Interaction of carbon dioxide with Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, N.; Andersson, Klas Jerker; Grabow, L.C.

    2008-01-01

    Experimental and theoretical studies on the interaction of carbon dioxide with pseudomorphic and rough copper layers deposited on a platinum (111) single crystal are reported. Evidence for carbon dioxide dissociation and carbonate formation is presented and the relevance to methanol synthesis...

  15. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant...

  16. Capacitance‐Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation

    OpenAIRE

    Lamb, Katie J.; Dowsett, Mark R.; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D.; Aguiar, Pedro M.; North, Michael; Parkin, Alison

    2017-01-01

    Abstract An electrochemical cell comprising a novel dual‐component graphite and Earth‐crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrog...

  17. Supercritical carbon dioxide: a solvent like no other

    Directory of Open Access Journals (Sweden)

    Jocelyn Peach

    2014-08-01

    Full Text Available Supercritical carbon dioxide (scCO2 could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs. Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity.

  18. Adverse effects of the automotive industry on carbon dioxide emissions

    OpenAIRE

    Mpho Bosupeng

    2016-01-01

    This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japa...

  19. On reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1986-01-01

    The reaction between titanium polonides and carbon dioxide has been studied by comparing titanium polonide thermal resistance in vacuum and in carbon dioxide. The investigation has shown that titanium mono- and semipolonides fail at temperatures below 350 deg C. Temperature dependence of polonium vapor pressure prepared at failure of the given polonides is determined by the radiotensiometry in carbon dioxide. Enthalpy calculated for this dependence is close to the enthalpy of elementary polonium evaporation in vacuum

  20. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  1. Effects of Elevated Carbon Dioxide on Litter Chemistry and Decomposition

    Data.gov (United States)

    National Aeronautics and Space Administration — The results of published and unpublished experiments investigating the impacts of elevated carbon dioxide on the chemistry (nitrogen and lignin concentration) of...

  2. Effects of Elevated Carbon Dioxide on Litter Chemistry and Decomposition

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The results of published and unpublished experiments investigating the impacts of elevated carbon dioxide on the chemistry (nitrogen and lignin...

  3. Carbon dioxide absorbent and method of using the same

    Science.gov (United States)

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  4. Carbon dioxide absorbent and method of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Robert James; O' Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  5. Accuracy of Transcutaneous Carbon Dioxide Measurement in Premature Infants

    Science.gov (United States)

    Janaillac, Marie; Labarinas, Sonia

    2016-01-01

    Background. In premature infants, maintaining blood partial pressure of carbon dioxide (pCO2) value within a narrow range is important to avoid cerebral lesions. The aim of this study was to assess the accuracy of a noninvasive transcutaneous method (TcpCO2), compared to blood partial pressure of carbon dioxide (pCO2). Methods. Retrospective observational study in a tertiary neonatal intensive care unit. We analyzed the correlation between blood pCO2 and transcutaneous values and the accuracy between the trends of blood pCO2 and TcpCO2 in all consecutive premature infants born at TcpCO2 and blood pCO2 values. Pearson's R correlation between these values was 0.58. The mean bias was −0.93 kPa with a 95% confidence limit of agreement of −4.05 to +2.16 kPa. Correlation between the trends of TcpCO2 and blood pCO2 values was good in only 39.6%. Conclusions. In premature infants, TcpCO2 was poorly correlated to blood pCO2, with a wide limit of agreement. Furthermore, concordance between trends was equally low. We warn about clinical decision-making on TcpCO2 alone when used as continuous monitoring. PMID:27375901

  6. Capture of carbon dioxide by hybrid sorption

    Science.gov (United States)

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  7. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO 2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO 2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO 2 transport options, the geological storage of the CO 2 and Total commitments in the domain. (A.L.B.)

  8. Carbon dioxide disposal on the ocean floor

    International Nuclear Information System (INIS)

    Giavarini, C.; Maccioni, F.

    2001-01-01

    A lot of experts propose to dispose of the Co2 in the Oceans; but there is some confusion on that subject. The possibility of dispersing the Carbon Dioxide on the Ocean floor must be considered with great caution, carefully studying all the possible balances Co2 is subject to. A parameter which must be considered is the possibility for Co2 - whatever the form may be - of solving in the sea water, even when very deep. At the moment, the most safe way of storing the Co2 in the oceans seems to be the introduction of Co2 Hydrates into the sediments under the ocean floor [it

  9. Carbon dioxide emissions from Indian monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Viswanadham, R.; Rao, G.D.; Prasad, V.R.; Kumar, B; Naidu, S.A.; Kumar, N.A.; Rao, D.B; Sridevi, T.; Krishna, M.S.; Reddy, N.P.C.; Sadhuram, Y.; Murty, T.V.R.

    /CDIAC-74. Frankignoulle, M., G. Abril, A.V. Borges, I. Bourge, C. Canon, B. DeLille, E. Libert, and J.-M. Théate (1998), Carbon dioxide emissions from European estuaries. Science, 282, 434-436. Frankignoulle, M., I. Bourge, R. Wollast (1996). Atmospheric..., and transport of atmospheric CO 2 . Global Biogeochem. Cycles, 23, GB1005, doi :10.1029/2008GB003349. Gupta, G.V.M., V.V.S.S. Sarma, R.S. Robin, A.V. Raman, M. Jai Kumar, M. Rakesh, and B.R. Subramanian (2008). Influence of net ecosystem metabolism...

  10. Killing wild geese with carbon dioxide or a mixture of carbon dioxide and argon

    NARCIS (Netherlands)

    Gerritzen, M.A.; Reimert, H.G.M.; Lourens, A.; Bracke, M.B.M.; Verhoeven, M.T.W.

    2013-01-01

    The killing of animals is the subject of societal and political debate. Wild geese are caught and killed on a regular basis for fauna conservation and damage control. Killing geese with carbon dioxide (CO2) is commonly practiced, but not listed in legislation on the protection of flora and fauna,

  11. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  12. Ocean Surface Carbon Dioxide Fugacity Observed from Space

    Science.gov (United States)

    Liu, W. Timothy; Xie, Xiaosu

    2014-01-01

    We have developed and validated a statistical model to estimate the fugacity (or partial pressure) of carbon dioxide (CO2) at sea surface (pCO2sea) from space-based observations of sea surface temperature (SST), chlorophyll, and salinity. More than a quarter million in situ measurements coincident with satellite data were compiled to train and validate the model. We have produced and made accessible 9 years (2002-2010) of the pCO2sea at 0.5 degree resolutions daily over the global ocean. The results help to identify uncertainties in current JPL Carbon Monitoring System (CMS) model-based and bottom-up estimates over the ocean. The utility of the data to reveal multi-year and regional variability of the fugacity in relation to prevalent oceanic parameters is demonstrated.

  13. Carbon dioxide research plan. A summary

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  14. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    Science.gov (United States)

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2017-04-10

    Excess carbon dioxide (CO 2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO 2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO 2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO 2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Algae: putting carbon dioxide in a bind

    Energy Technology Data Exchange (ETDEWEB)

    Ewers, J.; Wiechers, G. [RWE Power (Germany)

    2009-03-15

    German utility RWE Power has initiated a cutting edge project that is investigating the use of marine microalgae to capture carbon dioxide produced during lignite combustion. At its Niederaussem power plant, a pilot plant has been erected for the production of microalgae. Flue gas is withdrawn from the lignite-based power plant and transported through polyethylene pipes to the microalgae production plant. The CO{sub 2} in the flue gas is dissolved in the algae suspension and adsorbed by the algae for growth in photobioreactors, developed by Noragreen Projektmanagement GmbH. The photobioreactors which consist of clear plastic hoses, fixed in V shape to supports. The study is aiming to optimise the entire algae production process and subsequent conversion and use of the algae biomass produced. Uses being investigated include hydrothermal carbonization to obtain hydrocarbon products. 1 figs., 1 photo.

  16. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  17. Studies on carbon dioxide power plant, (3)

    International Nuclear Information System (INIS)

    Akagawa, Koji; Fujii, Terushige; Sakaguchi, Tadashi; Kawabata, Yasusuke; Kuroda, Toshihiro.

    1980-01-01

    A power generating plant using carbon dioxide instead of water has been studied by the authors, as high efficiency can be obtained in high temperature range (higher than 650 deg C) and turbines become compact as compared with the Rankine steam cycle. In this paper, the theoretical analysis of the dynamic characteristics of this small power generating plant of supercritical pressure and the comparison with the experimental results are reported. In the theoretical analysis, the linear approximation method using small variation method was adopted for solution. Every component was modeled as the concentrated constant system, and the transfer function for each component was determined, then simulation was carried out for the total system synthesizing these components. The approximation of physical values, and the analysis of a plunger pump, a regenerator, a heater, a vapor valve, a turbine and a blower, piping, and pressure drop are described. The response to the stepwise changes of heating, flow rate, opening of a vapor valve and a load control valve for a blower was investigated. The theoretical anaysis and the experimental results were in good agreement, and this analysis is applicable to the carbon dioxide plant of practical scale. (Kako, I.)

  18. Adaptation to carbon dioxide tax in shipping

    International Nuclear Information System (INIS)

    Olsen, Kristian

    2000-01-01

    This note discusses the consequences for the sea transport sector between Norway and continental Europe of levying a carbon dioxide tax on international bunker. The influence of such a tax on the operational costs of various types of ship and various transport routes is calculated. The profit obtainable from the following ways of adapting to an increased tax level is assessed: (1) Reducing the speed, (2) Rebuilding the engine to decrease fuel consumption, (3) Changing the design speed for new ships. It is found that a carbon dioxide tax of NOK 200 per tonne of CO 2 will increase the transport costs by 3 - 15 percent. In the long run much of this may be transferred to the freight rates since so much of the sea transport are in segments in which the demand for the service is not sensitive to the prices. Even if the freight rates are not changed, a tax this size will not make it necessary to reduce the speed of the existing fleet. The income lost by taking fewer trips will exceed the costs saved in reducing the speed. However, the optimum design speed for new ships may be somewhat reduced (0.5 knots). Rebuilding engines to reduce the fuel consumption would pay off were it not for the fact that the remaining life of the present fleet is probably too short for this to be interesting

  19. Use of supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masayuki (Niigata Univ., Faculty of Engineering, Niigata, (Japan))

    1989-09-25

    Supercritical fluid extraction is a novel diffusion and separation technique which exploits simultaneously the increase of vapor pressure and the difference of chemical affinities of fluids near the critical point. A solvent which is used as the supercritical fluid has the following features: the critical point exists in the position of relatively ease of handling, the solvent is applicable to the extraction of a physiological active substance of thermal instability. Carbon dioxide as the solvent is non-flammable, non-corrosive, non-toxic, cheap, and readily available of high purity. The results of studies on the use of supercritical carbon dioxide (SC-CO{sub 2}) as a solvent for natural products in the fermentation and food industries, were collected. SC-CO{sub 2} extraction are used in many fields, examples for the application are as follows: removal of organic solvents from antibiotics; extraction of vegetable oils contained in wheat germ oil, high quality mustard seeds, rice bran and so on; brewing of sake using rice and rice-koji; use as a non-aqueous medium for the synthesis of precursors of the Aspartame; and use in sterilization. 66 refs., 17 figs., 21 tabs.

  20. The effect of cutting on carbon dioxide absorption and carbohydrate ...

    African Journals Online (AJOL)

    grass) and Osteospermun sinuatum (Karoo-bush) plants during the flag leaf and flower bud stages respectively resulted in a sharp decline in net carbon dioxide absorption. As new photosynthetic material was produced the total carbon ...

  1. Robust optical carbon dioxide isotope analyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  2. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    Science.gov (United States)

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-12-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10-3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10-7, nO2/nN = 5.39 × 10-5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  3. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    Science.gov (United States)

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-12-17

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  4. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    Science.gov (United States)

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  5. Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters

    Science.gov (United States)

    Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.

    2013-12-01

    Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity

  6. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Gerald E. Marsh

    2014-01-01

    Full Text Available The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  7. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    OpenAIRE

    Gerald E. Marsh

    2014-01-01

    The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  8. Stability of wheat germ oil obtained by supercritical carbon dioxide ...

    African Journals Online (AJOL)

    Wheat germ oil was extracted using an environmental friendly solvent, supercritical carbon dioxide (SCCO2) at a semi-batch flow extraction process. The supercritical carbon dioxide (SC-CO2) extraction was carried out to extract oil at temperature of 40°C and pressure of 25 MPa. Ethanolysis was performed with 1 ...

  9. Carbon dioxide (CO 2 ) utilizing strain database | Saini | African ...

    African Journals Online (AJOL)

    The biological means of CO2 fixation using various microorganisms is gaining importance because database of their substantial role in reversing global warming. Carbon dioxide utilizing strain database (CSD) presents a comprehensive overview of microorganisms involved in biological fixation of carbon dioxide. As a part ...

  10. Carbon Dioxide and Global Warming: A Failed Experiment

    Science.gov (United States)

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  11. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  12. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon dioxide...

  13. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration. 86.1524 Section 86.1524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Procedures § 86.1524 Carbon dioxide analyzer calibration. (a) The calibration requirements for the...

  14. Carbon Dioxide Production in Animal Houses: A literature review

    NARCIS (Netherlands)

    Pedersen, S.; Blanes-Vidal, V.; Joergensen, H.; Chwalibog, A.; Haeussermann, A.; Heetkamp, M.J.W.; Aarnink, A.J.A.

    2008-01-01

    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from

  15. Flexible substrates as basis for photocatalytic reduction of carbon dioxide

    DEFF Research Database (Denmark)

    Jensen, Jacob; Mikkelsen, Mette; Krebs, Frederik C

    2011-01-01

    A photocatalytic system for converting carbon dioxide into carbon monoxide was designed and constructed. The system relies on thin films of the photocatalyst prepared at low temperature using spray coating. We formulated inks based on the well-known photocatalyst titanium dioxide and characterized...

  16. Combined reactions and separations using ionic liquids and carbon dioxide

    NARCIS (Netherlands)

    Kroon, M.C.

    2006-01-01

    A new and general type of process for the chemical industry is presented using ionic liquids and supercritical carbon dioxide as combined reaction and separation media. In this process, the carbon dioxide pressure controls the miscibility of reactants, products, catalyst and ionic liquid, enabling

  17. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Kleingeld, T.; van Aken, C.; Hogendoorn, J. A.; Versteeg, G. F.

    2006-01-01

    In the present work the absorption of carbon dioxide into aqueous piperazine (PZ) solutions has been studied in a stirred cell, at low to moderate temperatures, piperazine concentrations ranging from 0.6 to 1.5 kmol m- 3, and carbon dioxide pressures up to 500 mbar, respectively. The obtained

  18. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...

  19. Carbon dioxide absorbent and method of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Robert James [Niskayuna, NY; Lewis, Larry Neil [Scotia, NY; O' Brien, Michael Joseph [Clifton Park, NY; Soloveichik, Grigorii Lev [Latham, NY; Kniajanski, Sergei [Clifton Park, NY; Lam, Tunchiao Hubert [Clifton Park, NY; Lee, Julia Lam [Niskayuna, NY; Rubinsztajn, Malgorzata Iwona [Ballston Spa, NY

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  20. Adverse effects of the automotive industry on carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    Mpho Bosupeng

    2016-05-01

    Full Text Available This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japan. In addition, significant relations were observed between output and carbon dioxide discharges in Spain, Canada, India and Japan. Changes in output had substantial impact on emissions in Germany, Canada and India. The results also show that the number of passenger cars influences the magnitude of emissions in multiple economies. In conclusion, the automotive industry has to be considered in policies that aim to reduce carbon dioxide emissions.

  1. New technology for carbon dioxide at high pressure

    International Nuclear Information System (INIS)

    Hassina, Bazaze; Raouf, Zehioua; Menial, A. H.

    2006-01-01

    Carbon dioxide has long been the nemesis of environmentalists because of its role in global warming, but under just the right conditions-namely, high pressure and high temperature its one of nature's best and most environmentally benign solvents. Decaf-coffee lovers, for instance, benefit from its ability to remove caffeine from coffee beans.During the last few years, carbon dioxide has also made inroads in the dry-cleaning industry, providing a safe cleaning alternative to the chemical perchloroethylene. But it's on the high-tech front that carbon dioxide may make its biggest impact. T here are huge opportunities. Scientists have known for more than a century that at 75 times atmospheric pressure and 31 degree centigrade, carbon dioxide goes into and odd state that chemists called s upercritical . What's interesting to industry is that supercritical carbon dioxide may be an enabling technology for going to smaller dimensions.(Author)

  2. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  3. Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2013-01-01

    . The Menzengraben mine experienced an extreme outburst in 1953, possibly involving a several thousand tons of carbon dioxide. This source of accidents fills an important gap in the available carbon dioxide accident history and may provide a unique empirical perspective on the hazards of handling very large amounts...

  4. Carbon dioxide hydrogenation on Ni(110).

    Science.gov (United States)

    Vesselli, Erik; De Rogatis, Loredana; Ding, Xunlei; Baraldi, Alessandro; Savio, Letizia; Vattuone, Luca; Rocca, Mario; Fornasiero, Paolo; Peressi, Maria; Baldereschi, Alfonso; Rosei, Renzo; Comelli, Giovanni

    2008-08-27

    We demonstrate that the key step for the reaction of CO 2 with hydrogen on Ni(110) is a change of the activated molecule coordination to the metal surface. At 90 K, CO 2 is negatively charged and chemically bonded via the carbon atom. When the temperature is increased and H approaches, the H-CO 2 complex flips and binds to the surface through the two oxygen atoms, while H binds to the carbon atom, thus yielding formate. We provide the atomic-level description of this process by means of conventional ultrahigh vacuum surface science techniques combined with density functional theory calculations and corroborated by high pressure reactivity tests. Knowledge about the details of the mechanisms involved in this reaction can yield a deeper comprehension of heterogeneous catalytic organic synthesis processes involving carbon dioxide as a reactant. We show why on Ni the CO 2 hydrogenation barrier is remarkably smaller than that on the common Cu metal-based catalyst. Our results provide a possible interpretation of the observed high catalytic activity of NiCu alloys.

  5. Global carbon dioxide emissions from inland waters

    Science.gov (United States)

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Robert G.; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  6. Layered solid sorbents for carbon dioxide capture

    Science.gov (United States)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  7. Dispersion Polymerizations in Supercritical Carbon Dioxide

    Science.gov (United States)

    Desimone, J. M.; Maury, E. E.; Menceloglu, Y. Z.; McClain, J. B.; Romack, T. J.; Combes, J. R.

    1994-07-01

    Conventional heterogeneous dispersion polymerizations of unsaturated monomers are performed in either aqueous or organic dispersing media with the addition of interfacially active agents to stabilize the colloidal dispersion that forms. Successful stabilization of the polymer colloid during polymerization results in the formation of high molar mass polymers with high rates of polymerization. An environmentally responsible alternative to aqueous and organic dispersing media for heterogeneous dispersion polymerizations is described in which supercritical carbon dioxide (CO_2) is used in conjunction with molecularly engineered free radical initiators and amphipathic molecules that are specifically designed to be interfacially active in CO_2. Conventional lipophilic monomers, exemplified by methyl methacrylate, can be quantitatively (>90 percent) polymerized heterogeneously to very high degrees of polymerization (>3000) in supercritical CO_2 in the presence of an added stabilizer to form kinetically stable dispersions that result in micrometer-sized particles with a narrow size distribution.

  8. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    ; however, differences may occur in response to soil spatial variability. A better coverage of spatial variability is more easily addressed using manually operated systems whereas temporal variability can be covered using the automated system. Depending on the aim of the study, the two systems may be used......Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding...... on the comparability of results obtained using different methods is limited. We therefore aimed to compare the dynamics in soil CO2 concentrations obtained from an automated system (GMP343 sensors) to those from a manually operated measurement system (i.e., soil gas sampled using stainless steel needles and rods...

  9. Medical device disinfection by dense carbon dioxide.

    Science.gov (United States)

    Bertoloni, G; Bertucco, A; Rassu, M; Vezzù, K

    2011-01-01

    The employment of disinfection-sterilisation processes for the re-use of medical devices without negative effects such as the presence of toxic residues, material degradation or other modifications is an important consideration for reducing the costs of surgical and medical procedures. Ethylene oxide is the most commonly used low temperature sterilisation technique in healthcare facilities, but its associated toxicity has reduced interest in this technology for the reprocessing of medical equipment. The aim of this study was to examine the disinfection efficiency of a novel low temperature approach, based on dense carbon dioxide on artificially contaminated catheters. The results obtained demonstrated that this method provided a complete inactivation of all bacteria and yeast strains tested, and that no obvious modifications to the surfaces tested were observed with multiple treatments. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. Pulsed-discharge carbon dioxide lasers

    Science.gov (United States)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  11. Biochemical Capture and Removal of Carbon Dioxide

    Science.gov (United States)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  12. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  13. Carbon Dioxide Mitigation Benefit of High-Speed Railway in Terms of Carbon Tax

    Directory of Open Access Journals (Sweden)

    Fu Yanbing

    2013-01-01

    Full Text Available This paper calculates the carbon dioxide mitigation benefit of high-speed railway based on the carbon dioxide tax policy. We define the carbon dioxide emission system boundary for high-speed railway in its whole life cycle and estimate the life cycle carbon dioxide inventories during its construction, application, and recovery stages. And then we establish a theoretical model to calculate the life cycle carbon dioxide mitigation quantity for high-speed railway when compared with road transport and then calculate its carbon dioxide mitigation benefit. The numerical example shows that the carbon dioxide mitigation benefit of high-speed railway is better than that of road transport from the whole life cycle perspective.

  14. Amazon River carbon dioxide outgassing fuelled by wetlands

    NARCIS (Netherlands)

    Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.-H.; Bernardes, M.C.; Savoye, N.; Deborde, J.; Souza, E.L.; Alberic, P.; de Souza, M.F.L.; Roland, F.

    2014-01-01

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial

  15. Absorption of carbon dioxide and isotope exchange rate of carbon in a reaction system between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1985-01-01

    The performance of isotope separation of carbon-13 by chemical exchange between carbon dioxide and carbamic acid was studied. The working fluid used in the study was a solution of DNBA, (C 4 H 9 ) 2 NH and n-octane mixture. Factors related to the isotope exchange rate were measured, such as the absorption rate of carbon dioxide into the solution of DNBA and n-octane, the isotope exchange rate and the separation factor in the reaction between CO 2 and carbamic acid. The absorption of CO 2 into the working fluid was the sum of chemical absorption by DNBA and physical absorption by n-octane. The absorption of carbon dioxide into the working fluid was negligible at temperatures over 90 0 C, but increased gradually at lower temperatures. Carbon dioxide was absorbed into DNBA by chemical absorption, and DNBA was converted to carbamic acid by the reaction. The reaction for synthesis and decomposition of carbamic acid was reversible. The separation factor in equilibrium reached a large value at lower temperatures. The isotope exchange rate between gas and liquid was proportional to the product of the concentration of carbamic acid and the concentration of CO 2 by physical absorption. The isotope separation of carbon by chemical exchange reaction is better operated under the conditions of lower temperature and higher pressure. (author)

  16. Modeling and calculation of open carbon dioxide refrigeration system

    International Nuclear Information System (INIS)

    Cai, Yufei; Zhu, Chunling; Jiang, Yanlong; Shi, Hong

    2015-01-01

    Highlights: • A model of open refrigeration system is developed. • The state of CO 2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO 2 has little relation to the state of CO 2 . • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration

  17. Homogeneous Reduction of Carbon Dioxide with Hydrogen.

    Science.gov (United States)

    Dong, Kaiwu; Razzaq, Rauf; Hu, Yuya; Ding, Kuiling

    2017-04-01

    Carbon dioxide (CO 2 ), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO 2 using a homogeneous system is regarded as an efficient process for CO 2 valorization. This approach leads to the direct products including formic acid (HCOOH), carbon monoxide (CO), methanol (MeOH), and methane (CH 4 ). The hydrogenation of CO 2 to CO followed by alkene carbonylation provides value-added compounds, which also avoids the tedious separation and transportation of toxic CO. Moreover, the reduction of CO 2 with H 2 in the presence of amines is of significance to attain fine chemicals through catalytic formylation and methylation reactions. The synthesis of higher alcohols and dialkoxymethane from CO 2 and H 2 has been demonstrated recently, which opens access to new molecular structures using CO 2 as an important C1 source.

  18. Accuracy of Transcutaneous Carbon Dioxide Measurement in Premature Infants

    Directory of Open Access Journals (Sweden)

    Marie Janaillac

    2016-01-01

    Full Text Available Background. In premature infants, maintaining blood partial pressure of carbon dioxide (pCO2 value within a narrow range is important to avoid cerebral lesions. The aim of this study was to assess the accuracy of a noninvasive transcutaneous method (TcpCO2, compared to blood partial pressure of carbon dioxide (pCO2. Methods. Retrospective observational study in a tertiary neonatal intensive care unit. We analyzed the correlation between blood pCO2 and transcutaneous values and the accuracy between the trends of blood pCO2 and TcpCO2 in all consecutive premature infants born at <33 weeks’ gestational age. Results. 248 infants were included (median gestational age: 29 + 5 weeks and median birth weight: 1250 g, providing 1365 pairs of TcpCO2 and blood pCO2 values. Pearson’s R correlation between these values was 0.58. The mean bias was −0.93 kPa with a 95% confidence limit of agreement of −4.05 to +2.16 kPa. Correlation between the trends of TcpCO2 and blood pCO2 values was good in only 39.6%. Conclusions. In premature infants, TcpCO2 was poorly correlated to blood pCO2, with a wide limit of agreement. Furthermore, concordance between trends was equally low. We warn about clinical decision-making on TcpCO2 alone when used as continuous monitoring.

  19. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    Science.gov (United States)

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  20. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Chouinard, Y.

    2003-01-01

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  1. Determining the Carbon Dioxide Permeability of Paint Films

    OpenAIRE

    C. Carneiro; F. Oliveira; J. Nogueira; A. Mendes

    2006-01-01

    An in-house set-up was developed for determining the permeability of paint films towards carbon dioxide. The system implemented the so-called Wicke-Kallenback method, described in EN 1062-6. This method consists of a two-chamber permeation cell divided by a supported paint film. A carbon dioxide/nitrogen mixture stream (15% CO2/85% N-2) is fed to the retentate chamber and a nitrogen carrier stream is fed to the permeate chamber. Carbon dioxide permeates from the retentate to the permeate cham...

  2. Carbon dioxide fluid-flow modeling and injectivity calculations

    Science.gov (United States)

    Burke, Lauri

    2011-01-01

    At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.

  3. Analysis of forced convection heat transfer to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Ko, H.S.; Sakurai, Katsumi; Okamoto, Koji; Madarame, Haruki

    2000-01-01

    The supercritical carbon dioxide flow has been visualized under forced convection by a Mach-Zehnder interferometry system. The forced convection heat transfer has been examined by an one-sided wall heater in the vertical rectangular test section. Temperature and density distributions of the heated carbon dioxide inside the test section have been calculated from the measured interferometry projections for the visible interferograms conditions. The relationship of the temperature distributions with the physical conditions has been analyzed to inspect the forced convection heat transfer of the supercritical carbon dioxide flow. (author)

  4. Interaction of titanium and vanadium with carbon dioxide under heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskij, V.Ya.; Lyapunov, V.P.; Radomysel'skij, I.D.

    1986-01-01

    The methods of gravitmetric and X-ray phase analysis as well as analysis of composition of gases in the heating chamber have been used to investigate the mechanism of titanium and vanadium interaction with carbon dioxide in the 300-1000 deg C temperature range. The analogy of mechanisms of the interaction of titanium and vanadium with carbon dioxide in oxides production on the metal surface with subsequent carbidizing treatment at temperatures above 800 deg C is shown. Temperature limits of material operation on the base of titanium or vanadium in carbon dioxide must not exceed 400 or 600 deg C, respectively

  5. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  6. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)

    2012-06-15

    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  7. Synthesis of dimethyl carbonate in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    D. Ballivet-Tkatchenko

    2006-03-01

    Full Text Available The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH32 , and [n-Bu2(CH3OSn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.

  8. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  9. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  10. Air quality assessment of carbon monoxide, nitrogen dioxide and ...

    African Journals Online (AJOL)

    Air quality in urban areas is a cause of concern because of increased industrial activities that contribute to large quantities of emissions. The study assess levels and variations of carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur dioxide (SO2) in Blantyre, Malawi using a stationary environmental monitoring station ...

  11. Multum in Parvo: Explorations with a Small Bag of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    EJM Campbell

    2001-01-01

    Full Text Available A collection of 12 papers published between 1957 and 1972 are revisited. The papers had a common theme of the use of rebreathing carbon dioxide and explored a variety of topics in respiratory physiology. The first study established a method for the noninvasive and indirect estimation of arterial carbon dioxide pressure that was suitable for the routine clinical monitoring of respiratory failure and whose clinical utility remains to this day, but which also provided observations that were the stimulus for the studies that followed. The rate of rise in the partial pressure of carbon dioxide (PCO2 during rebreathing led to an analysis of body carbon dioxide storage capacity. Knowledge of carbon dioxide storage led to a method for quantifying lactate production in exercise without the need for blood sampling. The changes in ventilation that accompanied the increase in PCO2 provided the basis for a rapid method for measuring aspects of breathing control (Read's method, which was later modified to measure the ventilatory response to hypoxia. The physiology of breath-holding was explored through observations of the fall in breath-holding time as PCO2 climbed. Rebreathing also allowed increases in voluntary ventilation to be achieved without the development of alkalosis, leading to studies of maximal voluntary ventilation and respiratory muscle fatigue. Equilibration of PCO2 during rebreathing was used to measure mixed venous PCO2 during exercise and develop an integrated approach to the physiology of exercise in health and disease; alveolar-arterial disequilibrium in PCO2 during exercise was uncovered. Equilibration of PCO2, as well as PO2, during rebreathing of carbon dioxide and nitrogen gas mixtures showed different time courses of venous gases at the onset of exercise. Starting with the rebreathing of carbon dioxide in oxygen mixtures in a small rubber bag, an astonishing range of topics in respiratory physiology was explored, with observations

  12. Elevated carbon dioxide: impacts on soil and plant water relations

    National Research Council Canada - National Science Library

    Kirkham, M. B

    2011-01-01

    .... Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2...

  13. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Beardall, J.; Giordano, Mario

    2014-01-01

    Roč. 121, 2-3 (2014), s. 111-124 ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : carbon dioxide * environmental change * radiation Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  14. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  15. Monthly Carbon Dioxide in Troposphere (AIRS on AQUA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon dioxide (CO2) is an important greenhouse gas released through natural processes such as respiration and volcano eruptions and through huma activities such as...

  16. Studies on carbon dioxide system in central Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Singbal, S.Y.S.

    significantly with depth Bicarbonate ion is quantitatively the major component of the carbon dioxide system The observed vertical distributions are discussed in terms of biological and geochemical processes in the sea...

  17. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase 1 has seen the development of a revolutionary new type of sensor for making carbon dioxide (CO2) measurements from small Unmanned Aircraft Systems (UAS) and...

  18. Compact in situ Polyethylene Production from Carbon Dioxide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Opus 12 has redesigned the cathode of the commercially available PEM water electrolyzer such that it can support the reduction of carbon dioxide into ethylene and...

  19. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A.; Jayakumar, D.A.; George, M.D.; Narvekar, P.V.; DeSousa, S.N.

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  20. Precision remote sensor for oxygen and carbon dioxide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes development of a passive optical sensor for simultaneous high-precision measurement of oxygen and carbon dioxide profiles within the full...

  1. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  2. Pumpless extracorporeal carbon dioxide removal for life-threatening asthma.

    Science.gov (United States)

    Elliot, Stuart C; Paramasivam, Kumar; Oram, John; Bodenham, Andrew R; Howell, Simon J; Mallick, Abhiram

    2007-03-01

    To report the use of pumpless extracorporeal carbon dioxide removal in two cases of acute severe asthma. Case reports. Adult general intensive care unit, Leeds General Infirmary, Leeds, UK. A 74-yr-old male and 52-yr-old female with life-threatening asthma developed progressive hypercapnia and severe acidosis that proved nonresponsive to all other therapies. Initiation of extracorporeal arteriovenous carbon dioxide removal using the Novalung device (Novalung GmbH, Lotzenäcker 3, D-72379 Hechingen, Germany). The addition of extracorporeal carbon dioxide removal to mechanical ventilation corrected hypercapnia and acidosis, allowing reduction of other supportive measures. In both cases, adequate gas exchange was maintained until their underlying condition improved sufficiently for device removal. The two patients were subsequently weaned from mechanical ventilation and made a full recovery. Extracorporeal carbon dioxide removal proved to be a valuable adjunct to mechanical ventilation and other medical treatment.

  3. Euthanasia of neonatal mice with carbon dioxide

    Science.gov (United States)

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  4. Periorbital area rejuvenation using carbon dioxide therapy.

    Science.gov (United States)

    Paolo, Fioramonti; Nefer, Fallico; Paola, Parisi; Nicolò, Scuderi

    2012-09-01

    Different conservative and surgical approaches are used for periorbital region rejuvenation, but none of them is effective in the treatment of the medial third of the lower eyelid. The present study is designed to assess the effectiveness of carboxytherapy in the treatment of wrinkles on the median and medial region of the lower eyelid and dark circles around the eyes. From January 2008 to December 2010, 90 patients with moderate to severe periorbital wrinkles and/or dark circles underwent subcutaneous injections of CO(2) once a week for 7 weeks. Patients were assessed before and 2 months after the treatment through photographic documentation and the compilation of visual analog scales. At the end of the study period, patients reported a reduction of facial fine lines and wrinkles as well as a decrease in periorbital hyperpigmentation. A few side effects were observed but they were all transient and did not require discontinuation of treatment. Carbon dioxide therapy results as an effective noninvasive modality for the rejuvenation of the periorbital area. © 2012 Wiley Periodicals, Inc.

  5. Demographic change and carbon dioxide emissions.

    Science.gov (United States)

    O'Neill, Brian C; Liddle, Brant; Jiang, Leiwen; Smith, Kirk R; Pachauri, Shonali; Dalton, Michael; Fuchs, Regina

    2012-07-14

    Relations between demographic change and emissions of the major greenhouse gas carbon dioxide (CO(2)) have been studied from different perspectives, but most projections of future emissions only partly take demographic influences into account. We review two types of evidence for how CO(2) emissions from the use of fossil fuels are affected by demographic factors such as population growth or decline, ageing, urbanisation, and changes in household size. First, empirical analyses of historical trends tend to show that CO(2) emissions from energy use respond almost proportionately to changes in population size and that ageing and urbanisation have less than proportional but statistically significant effects. Second, scenario analyses show that alternative population growth paths could have substantial effects on global emissions of CO(2) several decades from now, and that ageing and urbanisation can have important effects in particular world regions. These results imply that policies that slow population growth would probably also have climate-related benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Carbon dioxide generation rates for building occupants.

    Science.gov (United States)

    Persily, A; de Jonge, L

    2017-09-01

    Indoor carbon dioxide (CO 2 ) concentrations have been used for decades to characterize building ventilation and indoor air quality. Many of these applications require rates of CO 2 generation from the building occupants, which are currently based on approaches and data that are several decades old. However, CO 2 generation rates can be derived from well-established concepts within the fields of human metabolism and exercise physiology, which relate these rates to body size and composition, diet, and level of physical activity. This paper reviews how CO 2 generation rates have been estimated in the past and discusses how they can be characterized more accurately. Based on this information, a new approach to estimating CO 2 generation rates is presented, which is based on the described concepts from the fields of human metabolism and exercise physiology. Using this approach and more recent data on body mass and physical activity, values of CO 2 generation rates from building occupants are presented along with the variability that may occur based on body mass and activity data. © 2017 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  7. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  8. System-Level Analysis Modeling of Impacts of Operation Schemes of Geologic Carbon Dioxide Storage on Deep Groundwater and Carbon Dioxide Leakage Risk

    Science.gov (United States)

    Park, S.; Lee, S.; Park, J.; Kim, J.; Kihm, J.

    2013-12-01

    The objectives of this study are to predict quantitatively groundwater and carbon dioxide flow in deep saline sandstone aquifers under various carbon dioxide injection schemes (injection rate, injection period) and to analyze integratively impacts of such carbon dioxide injection schemes on deep groundwater (brine) and carbon dioxide leakage risk through abandoned wells or faults. In order to achieve the first objective, a series of process-level prediction modeling of groundwater and carbon dioxide flow in a deep saline sandstone aquifer under several carbon dioxide injection schemes was performed using a multiphase thermo-hydrological numerical model TOUGH2 (Pruess et al., 1999). The prediction modeling results show that the extent of carbon dioxide plume is significantly affected by such carbon dioxide injection schemes. In order to achieve the second objective, a series of system-level analysis modeling of deep groundwater and carbon dioxide leakage risk through an abandoned well or a fault under several carbon dioxide injection schemes was then performed using a brine and carbon dioxide leakage risk analysis model CO2-LEAK (Kim, 2012). The analysis modeling results show that the rates and amounts of deep groundwater and carbon dioxide leakage through an abandoned well or a fault increase as the carbon dioxide injection rate increases. However, the rates and amounts of deep groundwater and carbon dioxide leakage through an abandoned well or a fault decrease as the carbon dioxide injection period increases. These system-level analysis modeling results for deep groundwater and carbon dioxide leakage risk can be utilized as baseline data for establishing guidelines to mitigate anticipated environmental adverse effects on shallower groundwater systems (aquifers) when deep groundwater and carbon dioxide leakage occur. This work was supported by the Geo-Advanced Innovative Action (GAIA) Program funded by the Korea Environmental Industry and Technology Institute

  9. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  10. A simple, disposable end-tidal carbon dioxide detector.

    OpenAIRE

    Rosenberg, M.; Block, C. S.

    1991-01-01

    Detection of expired carbon dioxide is one of the most reliable methods of avoiding accidental esophageal intubation. Although capnography has become a standard monitoring technique in the hospital operating room, it is rarely available in the office setting or other arenas where emergency endotracheal intubation may be required. A new and inexpensive device, however, has been developed for assessing end-tidal carbon dioxide. This semi-quantitative detector fits between the endotracheal tube ...

  11. POSSIBILITIES OF CARBON DIOXIDE FIXATION BY MICROALGAE IN REFINERY

    OpenAIRE

    Šingliar, Michal; Mikulec, Jozef; Kušnir, Patrik; Polakovičova, Gabriela

    2013-01-01

    Capture and sequestration of carbon dioxide is one of the most critical challenges today for businesses and governments worldwide. Thousands of emitting power plants and industries worldwide face this costly challenge – reduce the CO2 emissions or pay penalties. One possibility for carbon dioxide sequestration is its fixation in microalgae. Microalgae can sequester CO2 from flue gases emitted from fossil fuel-fired refinery plants and units, thereby reducing emissions of a major greenhouse ga...

  12. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon [Kyunghee Univ., Seoul (Korea, Republic of); Yim, Sanghak; Yoon, Weonseob [Ulchin Nuclear Power Site, Ulchin (Korea, Republic of)

    2006-07-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 {approx} 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  13. Use of carbon dioxide in underground natural gas storage processes

    Directory of Open Access Journals (Sweden)

    Nagy Stanislaw

    2006-10-01

    Full Text Available The possibility of use of carbon dioxide in gas storage processes is presented. The model of mixing process between CO2 and methane in porous media is given. The process of injection of carbon dioxide into a lower part of storage near the water –gas contact is modeled. The example of changes in the mixing zone is presented and discussed.

  14. Drivers of Global Carbon Dioxide Emissions: International Evidence

    OpenAIRE

    Bosupeng, Mpho

    2015-01-01

    Studies pertaining to the effects of economic growth on the environment generally focused on diverse relationships between carbon dioxide, economic growth and energy consumption.This paper contributes to the literature by determining the effects of the US and China’s emissions on several economies carbon dioxide discharges from 1960 to 2010. The analysis uses a cointegration procedure proposed by Saikkonen and Lütkepohl. The study further applies the Granger causality test to test for causal...

  15. Tethered catalysts for the hydration of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  16. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    International Nuclear Information System (INIS)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Yim, Sanghak; Yoon, Weonseob

    2006-01-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 ∼ 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  17. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

    NARCIS (Netherlands)

    Shen, J.; Kortlever, R.; Kas, Recep; Mul, Guido; Koper, M.T.M.

    2015-01-01

    The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low

  18. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    Science.gov (United States)

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  19. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  20. Supercritical carbon dioxide for textile applications and recent developments

    Science.gov (United States)

    Eren, H. A.; Avinc, O.; Eren, S.

    2017-10-01

    In textile industry, supercritical carbon dioxide (scCO2), possessing liquid-like densities, mostly find an application on textile dyeing processes such as providing hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can result in shorter dyeing periods in comparison with the conventional water dyeing process. Supercritical carbon dioxide dyeing is an anhydrous dyeing and this process comprises the usage of less energy and chemicals when compared to conventional water dyeing processes leading to a potential of up to 50% lower operation costs. The advantages of supercritical carbon dioxide dyeing method especially on synthetic fiber fabrics hearten leading textile companies to alter their dyeing method to this privileged waterless dyeing technology. Supercritical carbon dioxide (scCO2) waterless dyeing is widely known and applied green method for sustainable and eco-friendly textile industry. However, not only the dyeing but also scouring, desizing and different finishing applications take the advantage of supercritical carbon dioxide (scCO2). In this review, not only the principle, advantages and disadvantages of dyeing in supercritical carbon dioxide but also recent developments of scCO2 usage in different textile processing steps such as scouring, desizing and finishing are explained and commercial developments are stated and summed up.

  1. Carbon Dioxide Reduction Technology Trade Study

    Science.gov (United States)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  2. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  3. Stabilization of carbon dioxide and chromium slag via carbonation.

    Science.gov (United States)

    Wu, Xingxing; Yu, Binbin; Xu, Wei; Fan, Zheng; Wu, Zucheng; Zhang, Huimin

    2017-08-01

    As the main greenhouse gas, CO 2 is considered as a threat in the context of global warming. Many available technologies to reduce CO 2 emission was about CO 2 separation from coal combustion and geological sequestration. However, how to deal with the cost-effective storage of CO 2 has become a new challenge. Moreover, chromium pollution, the treatment of which requires huge energy consumption, has attracted people's widespread attention. This study is aimed to develop the sequestration of CO 2 via chromium slag. A dynamic leaching experiment of chromium slag was designed to testify the ability of CO 2 adsorption onto chromium slag and to release Cr(VI) for stabilization. The results showed that the accumulative amounts of Cr(VI) were ca. 2.6 mg/g released from the chromium slag after 24 h of leaching. In addition, ca. 89 mg/g CO 2 was adsorbed by using pure CO 2 in the experiment at 12 h. Calcite is the only carbonate species in the post-carbonated slag analyzed by powder X-ray diffraction and thermal analysis. The approach provides the feasibility of the utilization of chromium slag and sequestration of the carbon dioxide at the same time at ordinary temperatures and pressures.

  4. A selective and efficient electrocatalyst for carbon dioxide reduction

    Science.gov (United States)

    Lu, Qi; Rosen, Jonathan; Zhou, Yang; Hutchings, Gregory S.; Kimmel, Yannick C.; Chen, Jingguang G.; Jiao, Feng

    2014-01-01

    Converting carbon dioxide to useful chemicals in a selective and efficient manner remains a major challenge in renewable and sustainable energy research. Silver is an interesting electrocatalyst owing to its capability of converting carbon dioxide to carbon monoxide selectively at room temperature; however, the traditional polycrystalline silver electrocatalyst requires a large overpotential. Here we report a nanoporous silver electrocatalyst that is able to electrochemically reduce carbon dioxide to carbon monoxide with approximately 92% selectivity at a rate (that is, current) over 3,000 times higher than its polycrystalline counterpart under moderate overpotentials of high activity is a result of a large electrochemical surface area (approximately 150 times larger) and intrinsically high activity (approximately 20 times higher) compared with polycrystalline silver. The intrinsically higher activity may be due to the greater stabilization of CO2 - intermediates on the highly curved surface, resulting in smaller overpotentials needed to overcome the thermodynamic barrier.

  5. A selective and efficient electrocatalyst for carbon dioxide reduction.

    Science.gov (United States)

    Lu, Qi; Rosen, Jonathan; Zhou, Yang; Hutchings, Gregory S; Kimmel, Yannick C; Chen, Jingguang G; Jiao, Feng

    2014-01-01

    Converting carbon dioxide to useful chemicals in a selective and efficient manner remains a major challenge in renewable and sustainable energy research. Silver is an interesting electrocatalyst owing to its capability of converting carbon dioxide to carbon monoxide selectively at room temperature; however, the traditional polycrystalline silver electrocatalyst requires a large overpotential. Here we report a nanoporous silver electrocatalyst that is able to electrochemically reduce carbon dioxide to carbon monoxide with approximately 92% selectivity at a rate (that is, current) over 3,000 times higher than its polycrystalline counterpart under moderate overpotentials of high activity is a result of a large electrochemical surface area (approximately 150 times larger) and intrinsically high activity (approximately 20 times higher) compared with polycrystalline silver. The intrinsically higher activity may be due to the greater stabilization of CO2 (-) intermediates on the highly curved surface, resulting in smaller overpotentials needed to overcome the thermodynamic barrier.

  6. Carbon Dioxide Physiological Training at NASA.

    Science.gov (United States)

    Law, Jennifer; Young, Millennia; Alexander, David; Mason, Sara S; Wear, Mary L; Méndez, Claudia M; Stanley, David; Ryder, Valerie Meyers; Van Baalen, Mary

    2017-10-01

    Astronauts undergo CO2 exposure training to recognize their symptoms that can arise acutely both on the ground and in spaceflight. This article describes acute CO2 exposure training at NASA and examines the symptoms reported by astronauts during training. In a controlled training environment, astronauts are exposed to up to 8% CO2 (60 mmHg) by a rebreathing apparatus. Symptoms are reported using a standard form. Symptom documentation forms between April 1994 and February 2012 were obtained for 130 astronauts. The number of symptoms reported per session out of the possible 24 was related to age and sex, with those older slightly more likely to report symptoms. Women reported more symptoms on average than men (men: 3.7, women: 4.7). Respiratory symptoms (90%), flushing sensation/sweating (56%), and dizziness/feeling faint/lightheadedness (43%) were the top symptoms. Only headache reached statistical significance in differences between men (13%) and women (37%) after adjustment for multiple testing. Among those with multiple training sessions, respiratory symptoms were the most consistently reported. CO2 exposure training is an important tool to educate astronauts about their potential acute CO2 symptoms. Wide interindividual and temporal variations were observed in symptoms reported during astronaut CO2 exposure training. Headache could not be relied on as a marker of acute exposure during testing since fewer than half the subjects reported it. Our results support periodic refresher training since symptoms may change over time. Further study is needed to determine the optimal interval of training to maximize symptom recognition and inform operational decisions.Law J, Young M, Alexander D, Mason SS, Wear ML, Méndez CM, Stanley D, Meyers Ryder V, Van Baalen M. Carbon dioxide physiological training at NASA. Aerosp Med Hum Perform. 2017; 88(10):897-902.

  7. UNIQUAC activity coefficient model and modified Redlich- Kwong EOS for the vapor liquid equilibrium systems of carbon dioxide-water

    Directory of Open Access Journals (Sweden)

    Nurak Grisdanurak

    2004-11-01

    Full Text Available The UNIQUAC activity coefficient model and fugacity coefficient model of modified Redlich-Kwong predicted vapor-liquid equilibrium between carbon dioxide and water efficiently. The activity coefficient model needed the energy interaction parameters between molecules of carbon dioxide and water. Those parameters can be obtained by non-linear regression method of the experimental data of the vapor-liquid equilibria of carbon dioxide and water (Lide, 1992. The fugacity coefficient model of modified Redlich- Kwong needed only some physical properties of carbon dioxide and water without any interaction parameters. The experimental data had ranges of temperature and partial pressure of carbon dioxide between 10 to 100ºC and 5 to 1,200 kPa, respectively. The parameters for the activity coefficient model are temperature dependent but are not concentration dependent. The regression results gave good agreements with the experimental data in which the mean absolute error (MAE between experiment and calculated partial pressure of carbon dioxide was 2.72% and the mean absolute standard deviation (MAD of that error was 1.35%. Comparing the effects of activity coefficients and fugacity coefficients, we found that the non-ideality in vapor phase was more influential than the non-ideality in liquid phase.

  8. Removal of organic impurities from liquid carbon dioxide

    Science.gov (United States)

    Zito, Richard R.

    2002-09-01

    The use of a high velocity stream of carbon dioxide snowflakes to clean large optics is well known, and has gained widespread acceptance in the astronomical community as a telescope maintenance technique. Ultimately, however, the success of carbon dioxide snow cleaning depends on the availability of high purity carbon dioxide. The higher the purity of the carbon dioxide, the longer will be the time interval between required mirror washings. The highest grades of commercially produced liquid carbon dioxide are often not available in the more remote regions of the world - such as where major astronomical observatories are often located. Furthermore, the purity of even the highest grades of carbon dioxide are only nominal, and wide variations are known to occur from tank to tank. Occasionally, visible deposits of organic impurities are left behind during cleaning with carbon dioxide that is believed to be 99.999% pure. A zeolite molecular sieve based filtration system has proven to be very effective in removing these organic impurities. A zeolite is a complex alumino-silicate. One example has an empirical formula of Na2O(Al2O3)(SiO2)2yH2O, where y=0 to 8. The zeolites have an open crystal structure and are capable of trapping impurities like 8-methylheptadecane (an oil) and 2,6-octadine-1-ol,3,7- dimethyl-,(E)- (a fatty acid). In fact, a zeolite can trap 29.5% of its own weight in SAE 20 lubricant at 25 degree(s)C. After filtration of liquid CO2 through zeolites, the concentration of measured impurities was below the detection limit for state-of-the-art gas chromatography systems.

  9. Dissolved Carbon Dioxide in Tropical East Atlantic Surface Waters

    NARCIS (Netherlands)

    Bakker, D.C.E.; Baar, H.J.W. de; Jong, E. de

    1999-01-01

    Variability of dissolved inorganic carbon (DIC) and the fugacity of carbon dioxide (fCO2) is discussed for tropical East Atlantic surface waters in October–November 1993 and May–June 1994. High precipitation associated with the Intertropical Convergence Zone, river input and equatorial upwelling

  10. Uptake and Loss of Carbon Dioxide in Volumetric Analysis.

    Science.gov (United States)

    Macca, Carlo

    1986-01-01

    Discusses the use of ratio diagrams, which plot the calculations of equilibrium concentrations of the species of the carbonate system. Provides examples to describe how these diagrams can be used to illustrate the behavior systems of interest in volumetric analysis, where absorption or loss of carbon dioxide takes place. (TW)

  11. Reducing Carbon Dioxide Emissions through Joint Implementation of Projects

    OpenAIRE

    Martin, Will

    2000-01-01

    Efficient reduction of carbon dioxide emissions requires coordination of international efforts. Approaches proposed include carbon taxes, emission quotas, and jointly implemented energy projects. To reduce emissions efficiently, requires equalizing the marginal costs of reduction between countries. The apparently large differentials between the costs of reducing emissions in industrial and...

  12. Assessing Carbon Dioxide Emissions from Energy Use at a University

    Science.gov (United States)

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  13. 27.12 MHz plasma generation in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Toyota, Hiromichi; Nomura, Shinfuku; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro; Yamashita, Hiroshi

    2007-01-01

    An experiment was conducted for generating high-frequency plasma in supercritical carbon dioxide; it is expected to have the potential for applications in various types of practical processes. It was successfully generated at 6-20 MPa using electrodes mounted in a supercritical cell with a gap of 1 mm. Emission spectra were then measured to investigate the physical properties of supercritical carbon dioxide plasma. The results indicated that while the emission spectra for carbon dioxide and carbon monoxide could be mainly obtained at a low pressure, the emission spectra for atomic oxygen could be obtained in the supercritical state, which increased with the pressure. The temperature of the plasma in supercritical state was estimated to be approximately 6000-7000 K on the assumption of local thermodynamic equilibrium and the calculation results of thermal equilibrium composition in this state showed the increase of atomic oxygen by the decomposition of CO 2

  14. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  15. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    KAUST Repository

    Shekhah, Osama

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. 2014 Macmillan Publishers Limited.

  16. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture.

    Science.gov (United States)

    Shekhah, Osama; Belmabkhout, Youssef; Chen, Zhijie; Guillerm, Vincent; Cairns, Amy; Adil, Karim; Eddaoudi, Mohamed

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4(4) square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.

  17. A trap for the removal of nitrogen oxides from carbon-11 carbon dioxide

    International Nuclear Information System (INIS)

    Tewson, T.J.; Franceschini, M.; Hoffpauir, J.; Banks, W.

    1989-01-01

    A trap is described that removes the nitrogen oxides from ( 11 C)carbon dioxide. This improves the yields of the subsequent reactions of the carbon dioxide and permits the use of much smaller amounts of reagents, which should improve the specific activities of the final products. (author)

  18. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  19. Carbon dioxide, the feedstock for using renewable energy

    Science.gov (United States)

    Hashimoto, K.; Kumagai, N.; Izumiya, K.; Kato, Z.

    2011-03-01

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  20. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    Science.gov (United States)

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  1. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  2. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry

  3. Hydrogen adsorption on partially oxidised microporous carbons

    International Nuclear Information System (INIS)

    J B Parra; C O Ania; C J Duran Valle; M L Sanchez; C Otero Arean

    2005-01-01

    The search for cost effective adsorbents for large scale gas separation, storage and transport constitutes a present day strategic issue in the energy sector, propelled mainly by the potential use of hydrogen as an energy vector in a sustainable (and cleaner) energy scenario. Both, activated carbons and carbon based nano-structured materials have been proposed as potential candidates for reversible hydrogen storage in cryogenically cooled vessels. For that purpose, surface modification so as to enhance the gas solid interaction energy is desirable. We report on hydrogen adsorption on microporous (active) carbons which have been partially oxidised with nitric acid and ammonium persulfate. From the corresponding hydrogen adsorption isotherms (Fig. 1) an isosteric heat of about 3 kJ mol -1 was derived. This value is in agreement with that of about 3 to 4 kJ mol -1 obtained by quantum chemical calculations on the interaction between the hydrogen molecule and simple model systems (Fig. 2) of both, hydroxyl and carboxyl groups. Further research is in progress with a view to further increases the gas solid interaction energy. However, the values so far obtained are significantly larger than the liquefaction enthalpy of hydrogen: 0.90 kJ mol -1 ; and this is relevant to both, hydrogen separation from gas mixtures and cryogenic hydrogen storage. (authors)

  4. Interaction of titanium and vanadium with carbon dioxide in heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskii, V.Y.; Lyapunov, A.P.; Radomysel'skii, I.D.

    1986-01-01

    To obtain prediction data on the change in properties of titaniumand vanadium-base powder metallurgy materials operating in a carbon dioxide atmosphere, and also to clarify the mechanism of their interaction with the gas in this work, gravimetric investigations of specimens heated at temperatures of 300-1000 C and an x-ray diffraction analysis of their surface were made and the composition of the gas in the heating chamber was studied. The results of the investigations indicate a similarity between the mechanisms of interaction of titanium and vanadium with carbon dioxide including the formation of oxides on the surface of the metal with subsequent carbidization at temperatures above 800 C. On the basis of the data obtained, it may be concluded that the operating temperature limits of titanium- or vanadium-base materials in carbon dioxide must not exceed 400 and 600 C, respectively

  5. The carbon dioxide problem - a challenge to environmental protection

    International Nuclear Information System (INIS)

    Hlubek, W.; Spalthoff, F.J.

    1989-01-01

    Over the last century, man's activities on earth have sent off trace gases into the planet's atmosphere that have been concentrating to a level posing a threat to the global climate. Since scientists particularly spotted carbon dioxide as the main contributor to what we now call the greenhouse effect, there is urgent need for measures reducing carbon dioxide emission worldwide, may be on the basis of a global convention to be signed by both the industrialised and the developing countries. The industrialised countries, which certainly are the main pollutors, also will have the technological and financial resources to respond to the challenge of global warning more directly and faster than the developing countries. The power industry's management in the FRG is taking the problem seriously and has already come out with strategies for curbing carbon dioxide emissions from fossil-fuel power plant. (orig.) [de

  6. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Roč. 41, č. 6 (2012), s. 1931-1938 ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevate carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  7. Solid carbon dioxide to promote the extraction of extra-virgin olive oil

    Energy Technology Data Exchange (ETDEWEB)

    Zinnai, A.; Venturi, F.; Quartacci, V.F.; Sanmartin, C.; Favati, F.; Andrich, G.

    2016-07-01

    The use of solid carbon dioxide (dry ice) as a cryogen is widespread in the food industry to produce high quality wines, rich in color and perfumes. The direct addition of carbon dioxide to olives in the solid state before milling represents a fundamental step which characterizes this innovative extraction system. At room temperature conditions solid carbon dioxide evolves directly into the air phase (sublimation), and the direct contact between the cryogen and the olives induces a partial solidification of the cellular water inside the fruits. Since the volume occupied by water in the solid state is higher than that in the liquid state, the ice crystals formed are incompatible with the cellular structure and induce the collapse of the cells, besides promoting the diffusion of the cellular substances in the extracted oil, which is thus enriched with cellular metabolites characterized by a high nutraceutical value. Furthermore, a layer of CO2 remains over the olive paste to preserve it from oxidative degradation. The addition of solid carbon dioxide to processed olives induced a statistically significant increase in oil yield and promoted the accumulation of tocopherols in the lipid phase, whereas a not significant increase in the phenolic fraction of the oil occurred. (Author)

  8. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  9. Carbon dioxide capture and storage : hindrances for implementation in Norway

    OpenAIRE

    Houm, Marius

    2007-01-01

    This paper is an actor-network theory-based analysis of the hindrances for implementation of carbon dioxide capture, transport and storage, CCS, as a climate mitigation initiative in Norway. It uses the Norwegian projects Kårstø, Mongstad, Tjeldbergodden/Halten/Draugen, Sleipner and Snøhvit as the basis for a discussion of the relevant technologies, obstacles, policies, rhetoric and realities. CCS is a possible way to reduce emissions of carbon dioxide. We need an emission reduction of th...

  10. Airline emissions of carbon dioxide in the European trading system

    OpenAIRE

    John FitzGerald; Richard S. J. Tol

    2007-01-01

    A simulation model of international tourist flows is used to estimate the impact of including carbon dioxide emissions from aviation fuels in the European Trading System. The effect on global carbon dioxide emissions from international aviation is minimal: -0.01% at current permit prices, and ?0.13% for the aggressive climate policy advocated by the Stern Review. In the latter case, total CO2 emissions from fossil fuels would fall by 0.004%, and total greenhouse gas emissions by 0.002%. Touri...

  11. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  12. Supercritical carbon dioxide-based sterilization of decellularized heart valves

    Science.gov (United States)

    Hennessy, Ryan S.; Jana, Soumen; Tefft, Brandon J.; Helder, Meghana R.; Young, Melissa D.; Hennessy, Rebecca R.; Stoyles, Nicholas J.; Lerman, Amir

    2017-01-01

    Objective The goal of this research project encompasses finding the most efficient and effective method of decellularized tissue sterilization. Background Aortic tissue grafts have been utilized to repair damaged or diseased valves. Although, the tissues for grafting are collected aseptically, it does not eradicate the risk of contamination nor disease transfer. Thus, sterilization of grafts is mandatory. Several techniques have been applied to sterilize grafts; however, each technique shows drawbacks. In this study, we compared several sterilization techniques: supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide for impact on the sterility and mechanical integrity of porcine decellularized aortic valves. Methods Valve sterility was characterized by histology, microbe culture, and electron microscopy. Uniaxial tensile testing was conducted on the valve cusps along their circumferential orientation to study these sterilization techniques on their integrity. Results Ethanol-peracetic acid and supercritical carbon dioxide treated valves were found to be sterile. The tensile strength of supercritical carbon dioxide treated valves (4.28 ± 0.22 MPa) was higher to those valves treated with electrolyzed water, gamma radiation, ethanol-peracetic acid and hydrogen peroxide (1.02 ± 0.15, 1.25 ± 0.25, 3.53 ± 0.41 and 0.37 ± 0.04 MPa, respectively). Conclusions Superior sterility and integrity were found in the decellularized porcine aortic valves with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Summary Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid and supercritical carbon dioxide treated

  13. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...... performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made....

  14. Carbon dioxide based power generation in renewable energy systems

    International Nuclear Information System (INIS)

    Kumar, Pramod; Srinivasan, Kandadai

    2016-01-01

    After a substantial impact on refrigeration, carbon dioxide (CO 2 ) is gaining considerable attention as a working fluid for thermal power generation. This can be attributed mainly to its excellent heat transfer properties and compactness of components arising from its high density. It has the merit of being amenable to operation in sub-, trans- or super-critical Brayton cycle modes. However, inhibiting factors are high pressures needed when operated in trans- or supercritical cycles and the work of compression eroding most of the work of expansion in sub-critical cycle operation. Some of the lacunae of CO 2 such as high work of compression can be alleviated by using non-mechanical means such as thermal compression using the adsorption technique either for partial compression in high pressure Brayton cycles or for total compression in low pressure cycles. CO 2 has also been proposed as an additive to flammable hydrocarbons such that their flammability can be suppressed and yet retaining their other desirable thermodynamic qualities. This review explores the potential and limitations of thermodynamic cycles where either CO 2 is used alone or as a component in mixture of working fluids. Inter alia, it also highlights the issues of regulation of load management using the efficiency-specific power output plane. When used as a blending component, pinch point in the regenerators affects the cycle performance. The objective is to identify research and developmental challenges involving CO 2 as a working fluid specifically for solar power generation.

  15. Plant growth and physiology of vegetable plants as influenced by carbon dioxide environment

    International Nuclear Information System (INIS)

    Ito, Tadashi

    1973-01-01

    In order to obtain basic knowledge on the increased giving of carbon dioxide to vegetables, the carbon dioxide environment in growing houses was analyzed, and the physiological and ecological properties of vegetables cultivated in carbon dioxide environment were elucidated. To improve the carbon dioxide environment, giving increased quantity of carbon dioxide, air flow, ventilation, and others were examined. The concentration of carbon dioxide began to decrease when the illumination intensity on growing layer reached 1 -- 1.5 lux, owing to the photo-synthetic activity of vegetables, and decreased rapidly at 3 -- 5 lux. The lowering of carbon dioxide concentration lowered the photo-synthesis of vegetables extremely, and the transfer of synthesized carbohydrate to roots was obstructed. The effect suffered in low carbon dioxide concentration left some aftereffect even after ventilation and the recovery of carbon dioxide concentration. But this aftereffect was not observed in case of cucumber. To improve carbon dioxide environment, the air flow or ventilation required for minimizing the concentration lowering was determined, but giving increased quantity of carbon dioxide was most effective. The interaction of carbon dioxide concentration and light was examined regarding the effect on photo-synthesis, and some knowledge of practical application was obtained. The effect of giving more carbon dioxide was more remarkable as the treatment was given to younger seedlings and in the period when the capacity of absorbing assimilation products was higher. (Kako, I.)

  16. Fluxes of carbon dioxide at Thetford Forest

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The Thetford Project (1968–1976 was a keystone project for the newly established Institute of Hydrology. Its primary objective was to elucidate the processes underlying evaporation of transpired water and intercepted rainfall from plantation forest, so as to explain hydrological observations that more water was apparently returned to the atmosphere from plantations than from grassland and heathland. The primary approach was to determine the fluxes of water vapour from a stand of Scots pine, situated within a larger area of plantations of Scots and Corsican pine, in Thetford Forest, East Anglia, UK, using the Bowen ratio approach. In 1976, advantage was taken of the methodology developed to add measurement of profiles of carbon dioxide concentration so as to enable the fluxes of CO2 also to be calculated. A team from Aberdeen and Edinburgh Universities collected 914 hours of 8-point CO2 concentration profiles, largely between dawn and dusk, on days from March to October, and the data from an "elite" data set of 710 hours have been analysed. In conditions of moderate temperature (−1 with high solar irradiance (>500 W m−2, CO2 uptake reached relatively high rates for pine of up to 20 µmol m−2 s−1 in the middle of the day. This rate of CO2 uptake is higher than has been recently found for four Scots pine forests in continental Europe during July 1997. However, the year of 1976 was exceptionally hot and dry, with air temperatures reaching 30°C and the water deficit in the top 3 m of soil at the site of 152 mm by August. Air temperatures of over 25°C led to large specific humidity deficits, approaching 20 g kg−1, and associated severe reductions in CO2 uptake, as well as in evaporation. However, when specific humidity deficits dropped below c. 15 g kg−1 on succeeding days, generally as a result of lower air temperatures rather than lower solar irradiance, there was rapid recovery in both uptake and evaporation, thus indicating that

  17. Influence of terrestrial inputs on continental shelf carbon dioxide

    Directory of Open Access Journals (Sweden)

    L.-Q. Jiang

    2013-02-01

    Full Text Available The US South Atlantic Bight (SAB is a low-latitude shallow continental shelf bordered landward by abundant salt marshes and rivers. Based on previously published data on sea surface partial pressure of carbon dioxide (pCO2 and new dissolved inorganic carbon (DIC and dissolved organic carbon (DOC data, a model analysis is presented to identify and quantify the contributions of various terrestrial carbon inputs on SAB sea surface pCO2. After removal of pCO2 variations due to annual temperature variability and air–sea gas exchange from the in situ pCO2, the temperature- and gas-exchange-corrected pCO2 (TG-corrected pCO2 is derived. Contributions from rivers, salt marshes, and the continental shelf to the TG-corrected pCO2 are then calculated. Our findings demonstrate that although additions of CO2 from within shelf waters (i.e., ΔpCO2(shelf were the greatest of the three components and underwent the largest seasonal changes, ΔpCO2(shelf showed smaller onshore–offshore gradients than rivers and marshes. In contrast, CO2 contributions from river (ΔpCO2(river and salt marsh (ΔpCO2(marsh components were greatest closest to the coast and decreased with distance offshore. In addition, the magnitude of ΔpCO2(marsh was about three-fold greater than ΔpCO2(river. Our findings also revealed that decomposition of terrestrial organic carbon was an important factor regulating the seasonal pattern of pCO2 on the inner shelf. Despite large uncertainties, this study demonstrates the importance of terrestrial inputs, in particular those from coastal wetlands, on coastal ocean CO2 distributions.

  18. Carbon Dioxide Effects Research and Assessment Program: Proceedings of the carbon dioxide and climate research program conference

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, L E [ed.

    1980-12-01

    Papers presented at the Carbon Dioxide and Climate Research Program Conference are included in this volume. Topics discussed are: the carbon cycle; modeling the carbon system; climatic response due to increased CO2; climate modeling; the use of paleoclimatic data in understanding climate change; attitudes and implications of CO2; social responses to the CO2 problem; a scenario for atmospheric CO2 to 2025; marine photosynthesis and the global carbon cycle; and the role of tropical forests in the carbon balance of the world. Separate abstracts of nine papers have been prepared for inclusion in the Energy Data Base. (RJC)

  19. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions,...

  20. Energy Saving High-Capacity Moderate Pressure Carbon Dioxide Storage System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach to high-pressure carbon dioxide storage will directly address the challenges associated with storage of compressed carbon dioxide - the need to reduce...

  1. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2015-06-15

    Phase I concludes with significant progress made towards the SunShot ELEMENTS goals of high energy density, high power density, and high temperature by virtue of a SrO/SrCO3 based material. A detailed exploration of sintering inhibitors has been conducted and relatively stable materials supported by YSZ or SrZO3 have been identified as the leading candidates. In 15 cycle runs using a 3 hour carbonation duration, several materials demonstrated energy densities of roughly 1500 MJ/m3 or greater. The peak power density for the most productive materials consistently exceeded 40 MW/m3—an order of magnitude greater than the SOPO milestone. The team currently has a material demonstrating nearly 1000 MJ/m3 after 100 abbreviated (1 hour carbonation) cycles. A subsequent 8 hour carbonation after the 100 cycle test exhibited over 1500 MJ/m3, which is evidence that the material still has capacity for high storage albeit with slower kinetics. Kinetic carbonation experiments have shown three distinct periods: induction, kinetically-controlled, and finally a diffusion-controlled period. In contrast to thermodynamic equilibrium prediction, higher carbonation temperatures lead to greater conversions over a 1 hour periods, as diffusion of CO2 is more rapid at higher temperatures. A polynomial expression was fit to describe the temperature dependence of the linear kinetically-controlled regime, which does not obey a traditional Arrhenius relationship. Temperature and CO2 partial pressure effects on the induction period were also investigated. The CO2 partial pressure has a strong effect on the reaction progress at high temperatures but is insignificant at temperatures under 900°C. Tomography data for porous SrO/SrCO3 structures at initial stage and after multiple carbonation/decomposition cycles have been obtained. Both 2D slices and 3D reconstructed representations have

  2. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-01-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C

  4. Somewhere beyond the sea? The oceanic - carbon dioxide - reactions

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2014-05-01

    In correlation to climate change and CO2 emission different campaigns highlight the importance of forests and trees to regulate the concentration of carbon dioxide in the earths' atmosphere. Seeing millions of square miles of rainforest cut down every day, this is truly a valid point. Nevertheless, we often tend to forget what scientists like Spokes try to raise awareness for: The oceans - and foremost deep sea sections - resemble the second biggest deposit of carbon dioxide. Here carbon is mainly found in form of carbonate and hydrogen carbonate. The carbonates are needed by corals and other sea organisms to maintain their skeletal structure and thereby to remain vital. To raise awareness for the protection of this fragile ecosystem in schools is part of our approach. Awareness is achieved best through understanding. Therefore, our approach is a hands-on activity that aims at showing students how the carbon dioxide absorption changes in relation to the water temperature - in times of global warming a truly sensitive topic. The students use standard syringes filled with water (25 ml) at different temperatures (i.e. 10°C, 20°C, 40°C). Through a connector students inject carbon dioxide (25ml) into the different samples. After a fixed period of time, students can read of the remaining amount of carbon dioxide in relation to the given water temperature. Just as with every scientific project, students need to closely monitor their experiments and alter their setups (e.g. water temperature or acidity) according to their initial planning. A digital template (Excel-based) supports the analysis of students' experiments. Overview: What: hands-on, minds -on activity using standard syringes to exemplify carbon dioxide absorption in relation to the water temperature (Le Chatelier's principle) For whom: adjustable from German form 11-13 (age: 16-19 years) Time: depending on the prior knowledge 45-60 min. Sources (extract): Spokes, L.: Wie Ozeane CO2 aufnehmen. Environmental

  5. Optimization through Response Surface Methodology of a Reactor Producing Methanol by the Hydrogenation of Carbon Dioxide

    OpenAIRE

    Grazia Leonzio

    2017-01-01

    Carbon dioxide conversion and utilization is gaining significant attention worldwide, not only because carbon dioxide has an impact on global climate change, but also because it provides a source for potential fuels and chemicals. Methanol is an important fuel that can be obtained by the hydrogenation of carbon dioxide. In this research, the modeling of a reactor to produce methanol using carbon dioxide and hydrogen is carried out by way of an ANOVA and a central composite design. Reaction te...

  6. Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING

    International Nuclear Information System (INIS)

    Wiesberg, Igor L.; Medeiros, José Luiz de; Alves, Rita M.B.; Coutinho, Paulo L.A.; Araújo, Ofélia Q.F.

    2016-01-01

    Highlights: • Evaluation of carbon dioxide conversion to methanol by two chemical routes. • HYDROGENATION: conversion via catalytic hydrogenation at high pressure. • BI-REFORMING: conversion via syngas from bi-reforming of natural gas. • HYDROGENATION is viable for hydrogen price inferior to 1000 US$/t. • BI-REFORMING is unable to avoid emissions; viable only if gas price is very low. - Abstract: Chemical conversion of carbon dioxide to methanol has the potential to address two relevant sustainability issues: economically feasible replacement of fossil raw materials and avoidance of greenhouse gas emissions. However, chemical stability of carbon dioxide is a challenging impediment to conversion requiring severe reaction conditions at the expense of increased energy input, therefore adding capital, operation and environmental costs, which could result in partial or total override of its potential sustainability as feedstock to the chemical and energy industries. This work investigates two innovative chemical destinations of carbon dioxide to methanol, namely a direct conversion through carbon dioxide hydrogenation (HYDROGENATION), and an indirect via carbon dioxide conversion to syngas through bi-reforming (BI-REFORMING). Process simulation is used to obtain mass and energy balances needed to support assessment of economic and environmental performance. A business scenario is considered where an industrial source of nearly pure carbon dioxide exists and an investment decision for utilization of carbon dioxide is faced. Due to uncertainties in prices of the raw materials, hydrogen (HYDROGENATION) and natural gas (BI-REFORMING), the decision procedure includes the definition of price thresholds to reach profitability. Sensitivity analyses are performed varying costs with greater uncertainty, i.e., carbon dioxide and methanol, and recalculating maximum allowable prices of raw materials. The analyses show that in a Brazilian scenario, BI-REFORMING is unlikely

  7. Experimental and theoretical study of the solubility of carbon dioxide in aqueous blends of piperazine and N-methyldiethanolamine

    NARCIS (Netherlands)

    Derks, P. W. J.; Hogendoorn, J. A.; Versteeg, G. F.

    In the present study, new experimental equilibrium data are reported on the solubility of carbon dioxide into aqueous solutions of N-methyldiethanolamine (MDEA) and piperazine (PZ) over a wide range of conditions. These data not only include CO(2) solubilities and their corresponding partial

  8. A Miniaturized Carbon Dioxide Gas Sensor Based on Sensing of pH-Sensitive Hydrogel Swelling with a Pressure Sensor

    NARCIS (Netherlands)

    Herber, S.; Bomer, Johan G.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2005-01-01

    A measurement concept has been realized for the detection of carbon dioxide, where the CO2 induced pressure generation by an enclosed pH-sensitive hydrogel is measured with a micro pressure sensor. The application of the sensor is the quantification of the partial pressure of CO2 (Pco2) in the

  9. Real-World Carbon Dioxide Impacts of Traffic Congestion

    OpenAIRE

    Barth, Matthew; Boriboonsomsin, Kanok

    2010-01-01

    Transportation plays a significant role in carbon dioxide (CO2) emissions, accounting for approximately a third of the U.S. inventory. To reduce CO2 emissions in the future, transportation policy makers are planning on making vehicles more efficient and increasing the use of carbon-neutral alternative fuels. In addition, CO2 emissions can be lowered by improving traffic operations, specifically through the reduction of traffic congestion. Traffic congestion and its impact on CO2 emissions wer...

  10. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    Science.gov (United States)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co

  11. An approach to carbon dioxide particle distribution in accidental releases

    NARCIS (Netherlands)

    Hulsbosh-Dam, C.; Spruijt, M.; Necci, A.; Cozzani, V.

    2012-01-01

    The main problem in calculating the consequences of a carbon dioxide dispersion following an accidental release is the formation of solid CO2 during the expansion to ambient pressure. The dispersion models more frequently used in the framework of quantitative risk analysis, cannot describe the

  12. 9 CFR 313.5 - Chemical; carbon dioxide.

    Science.gov (United States)

    2010-01-01

    ... the species of animals being anesthetized. They shall be free from pain-producing restraining devices... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Chemical; carbon dioxide. 313.5 Section 313.5 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  13. Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations

    Czech Academy of Sciences Publication Activity Database

    Colina, C. M.; Olivera-Fuentes, C. G.; Siperstein, F. R.; Lísal, Martin; Gubbins, K. E.

    2003-01-01

    Roč. 29, 6-7 (2003), s. 405-412 ISSN 0892-7022 R&D Projects: GA ČR GA203/02/0805 Grant - others:NSF(US) CHE-9876674291 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluctuations * carbon dioxide * 2CLJQ Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.721, year: 2003

  14. Effects of Elevated Soil Carbon dioxide (CO2) Concentrations on ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Author of correspondence: 1Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin,. Benin City, Ugbowo Campus ... Detection (ASGARD) facility which controls CO2 injection into the soil. Eight plots (each 2.5 x ... potential for leakage of stored carbon dioxide to the ocean or ...

  15. Extended-length fiber optic carbon dioxide monitoring

    Science.gov (United States)

    Delgado-Alonso, Jesus; Lieberman, Robert A.

    2013-05-01

    This paper discusses the design and performance of fiber optic distributed intrinsic sensors for dissolved carbon dioxide, based on the use optical fibers fabricated so that their entire lengths are chemically sensitive. These fibers use a polymer-clad, silica-core structure where the cladding undergoes a large, reversible, change in optical absorbance in the presence of CO2. The local "cladding loss" induced by this change is thus a direct indication of the carbon dioxide concentration in any section of the fiber. To create these fibers, have developed a carbon dioxide-permeable polymer material that adheres well to glass, is physically robust, has a refractive index lower than fused silica, and acts as excellent hosts for a unique colorimetric indicator system that respond to CO2. We have used this proprietary material to produce carbon-dioxide sensitive fibers up to 50 meters long, using commercial optical fiber fabrication techniques. The sensors have shown a measurement range of dissolved CO2 of 0 to 1,450 mg/l (0 to 100% CO2 saturation), limit of detection of 0.3 mg/l and precision of 1.0 mg/l in the 0 to 50 mg/l dissolved CO2 range, when a 5 meter-long sensor fiber segment is used. Maximum fiber length, minimum detectable concentration, and spatial resolution can be adjusted by adjusting indicator concentration and fiber design.

  16. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    An increase in carbon dioxide (CO2) concentrations in the atmosphere due to anthropogenic activities is responsible for global warming and hence in recent years, CO2 measurement network has expanded globally. In the monsoon season (July–September) of year 2011, we carried out measurements of CO2 and water ...

  17. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment

    Science.gov (United States)

    Gaihre, Santosh; Semple, Sean; Miller, Janice; Fielding, Shona; Turner, Steve

    2014-01-01

    Background: We tested the hypothesis that classroom carbon dioxide (CO[subscript 2]) concentration is inversely related to child school attendance and educational attainment. Methods: Concentrations of CO[subscript 2] were measured over a 3-5?day period in 60 naturally ventilated classrooms of primary school children in Scotland. Concentrations of…

  18. Distribution of Carbon Dioxide Produced by People in a Room:

    DEFF Research Database (Denmark)

    Naydenov, Kiril Georgiev; Baránková, Petra; Sundell, Jan

    2004-01-01

    Carbon dioxide exhaled by people can be used as a tracer gas for air change measurements in homes. Good mixing of tracer gas with room air is a necessary condition to obtain accurate results. However, the use of fans to ensure mixing is inconvenient. The natural room distribution of metabolic CO2...

  19. Stability of wheat germ oil obtained by supercritical carbon dioxide ...

    African Journals Online (AJOL)

    심정은

    Wheat germ oil was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-. CO2) at a semi-batch flow ... With better refining technologies, these resources can be turned into value added products. ..... parameter determination of vegetable oil oxidation under rancimat test conditions (Reza et al., ...

  20. Supercritical carbon dioxide extraction of oil from Clanis bilineata ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... Oil was extracted from the dry meat of Clanis bilineata (Lepidoptera) using supercritical carbon dioxide in a continuous flow extractor. The following optimum extraction conditions were investigated: temperature, 35°C; pressure, 25 MPa; supercritical CO2 flow rate, 20 L/min and time, 60 min. Under these.

  1. Binary mixtures of carbon dioxide and dimethyl ether as alternative ...

    African Journals Online (AJOL)

    Vapor-liquid equilibrium (VLE) data were predicted for the binary mixture of carbon dioxide (CO2) and dimethyl ether (DME) at ten temperatures ranging from 273.15 to 386.56 K and pressure upto 7.9 MPa to observe this mixture's potential of COP enhancement and capacity modulation as a working fluid in a refrigeration ...

  2. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    Science.gov (United States)

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  3. Kinetics of absorption of carbon dioxide in aqueous ammonia solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Versteeg, G. F.

    2009-01-01

    In the present work the absorption of carbon dioxide into aqueous ammonia solutions has been studied in a stirred cell reactor, at low temperatures and ammonia concentrations ranging from 0.1 to about 7 kmol m-3. The absorption experiments were carried out at conditions where the so-called pseudo

  4. Gas flaring: Carbon dioxide contribution to global warming ...

    African Journals Online (AJOL)

    Flaring been a source of anthropogenic carbon dioxide, is a concern to skeptics and local oil producing communities as a significant contributor to global warming, environmental degradation, health risk and economic loss. The purpose of the study was to ascertain the impacts of gas flaring on global warming and the local ...

  5. Convergence of carbon dioxide emissions in different sectors in China

    International Nuclear Information System (INIS)

    Wang, Juan; Zhang, Kezhong

    2014-01-01

    In this paper, we analyze differences in per capita carbon dioxide emissions from 1996 to 2010 in six sectors across 28 provinces in China and examine the σ-convergence, stochastic convergence and β-convergence of these emissions. We also investigate the factors that impact the convergence of per capita carbon dioxide emissions in each sector. The results show that per capita carbon dioxide emissions in all sectors converged across provinces from 1996 to 2010. Factors that impact the convergence of per capita carbon dioxide emissions in each sector vary: GDP (gross domestic product) per capita, industrialization process and population density impact convergence in the Industry sector, while GDP per capita and population density impact convergence in the Transportation, Storage, Postal, and Telecommunications Services sector. Aside from GDP per capita and population density, trade openness also impacts convergence in the Wholesale, Retail, Trade, and Catering Service sector. Population density is the only factor that impacts convergence in the Residential Consumption sector. - Highlights: • Analyze differences in CO 2 emissions in six sectors among 28 provinces in China. • Examine the convergence of CO 2 emissions in six sectors. • Investigate factors impact on convergence of CO 2 emissions in each sector. • Factors impact on convergence of per capita CO 2 emissions in each sector vary

  6. Supercritical carbon dioxide extraction of oil from Clanis bilineata ...

    African Journals Online (AJOL)

    Oil was extracted from the dry meat of Clanis bilineata (Lepidoptera) using supercritical carbon dioxide in a continuous flow extractor. The following optimum extraction conditions were investigated: temperature, 35°C; pressure, 25 MPa; supercritical CO2 flow rate, 20 L/min and time, 60 min. Under these extraction ...

  7. Electrochemical carbon dioxide reduction on rough copper surfaces

    NARCIS (Netherlands)

    Kas, Recep

    2016-01-01

    Sustainable development and climate change is considered to be one of the top challenges of humanity. Electrochemical carbon dioxide (CO2) reduction to fuels or fuel precursor using renewable electricity is a very promising way to recycle CO2 and store the electricity. This would also provide

  8. Trade, production fragmentation, and China's carbon dioxide emissions

    NARCIS (Netherlands)

    Dietzenbacher, Erik; Pei, Jiansuo; Yang, Cuihong

    An input-output framework is adopted to estimate China's carbon dioxide (CO2) emissions as generated by its exports in 2002. More than one half of China's exports are related to international production fragmentation. These processing exports generate relatively little value added but also

  9. Gas Flaring: Carbon dioxide Contribution to Global Warming ...

    African Journals Online (AJOL)

    PROF HORSFALL

    risks of climate change. Meeting global energy demand whilst limiting or reducing carbon dioxide emissions presents an enormous challenge. Energy outlooks show that between now and 2030 the bulk of the increase in energy demand will be met by fossil fuels (IPCC,. 2001). Renewable energy sources, such as wind and.

  10. Synthesis of fatty acid starch esters in supercritical carbon dioxide

    NARCIS (Netherlands)

    Muljana, Henky; van der Knoop, Sjoerd; Keijzer, Danielle; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2010-01-01

    This manuscript describes an exploratory study on the synthesis of fatty acid/potato starch esters using supercritical carbon dioxide (scCO(2)) as the solvent. The effects of process variables such as pressure (6-25 MPa), temperature (120-150 degrees C) and various basic catalysts and fatty acid

  11. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  12. Solubility of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Dijkstra, H. B. S.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    In the present work, new experimental data are presented on the solubility of carbon dioxide in aqueous piperazine solutions, for concentrations of 0.2 and 0.6 molar piperazine and temperatures of 25, 40, and 70°C respectively. The present data, and other data available in the literature, were

  13. Carbon Dioxide Emissions Reduction Estimates: Potential Use of ...

    African Journals Online (AJOL)

    User

    Carbon Dioxide Emissions Reduction Estimates: Potential Use of Biofuels in Mauritian. Transport Sector for Cars and Dual Cars. 513 transportation sector. Out of ... shift to local renewable sources of energy away from imported fossil fuel. ..... environmental concerns, foreign exchange savings, and socio−economic issues.

  14. Removing carbon dioxide from a stationary source through co ...

    African Journals Online (AJOL)

    Except temperature of solvent, all study variables showed strong relation with the amount of carbon dioxide absorbed (with a P-value < 0.05). Uniquely, this study has evaluated the potential for sodium bicarbonate production from the CO2 absorbed using gravimetric analysis. It is also possible to recover over 28% crystal ...

  15. Source and Sink Strength of Carbon Dioxide, Methane and ...

    African Journals Online (AJOL)

    MICHAEL

    Full-text Available Online at www.bioline.org.br/ja. Source and Sink Strength of Carbon Dioxide, Methane and Distribution of Sulfate in Salt-marsh Soils at the Wadden Sea Coast of Northern Germany. ·1KHAN, MD. HARUNOR RASHID; 2HANS-PETER BLUME; 1TADASHI. ADACHI; 3ULRICH PFISTERER; 3UDO MÜLLER- ...

  16. Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during ...

    African Journals Online (AJOL)

    Background: Acid base alterations occur during laparoscopy with carbon dioxide insufflation. The purpose of this study was to investigate the effects of low tidal volume ventilation on acid base status during pneumoperitonium. Materials and Methods: 30 patients undergoing laparoscopic surgery under General Anaesthesia ...

  17. Intertidal zones as carbon dioxide sources to coastal oceans

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; Rajagopal, M.D.

    To understand the factors controlling carbon dioxide (CO sub(2)) exchanges near land-sea boundary diurnal observations have been made twice on CO sub(2) in the air and water in a coastal region. The results suggest that CO sub(2) enrichment...

  18. Optimization of carbon dioxide fixation and starch accumulation by ...

    African Journals Online (AJOL)

    ... are very important to CO2 bio-fixation and carbohydrate accumulation in microalgae. The objective of this study was to optimize semi-continuous culture conditions of Tetraselmis subcordiformis in a rectangular airlift photobioreactor for obtaining maximized carbon dioxide fixation rate and intracellular starch productivity.

  19. Optimizing Carbon Dioxide Utilization for Microalgae Biofilm Cultivation

    NARCIS (Netherlands)

    Blanken, W.M.; Schaap, S.; Theobald, S.; Rinzema, A.; Wijffels, R.H.; Janssen, M.G.J.

    2017-01-01

    The loss of carbon dioxide (CO2) to the environment
    during microalgae cultivation is undesirable for both environmental
    and economic reasons. In this study, a phototrophic biofilm growth
    model was developed and validated with the objective to maximize
    both CO2 utilization efficiency

  20. Intravenous carbon dioxide as an echocardiographic contrast agent

    NARCIS (Netherlands)

    R.S. Meltzer (Richard); P.W.J.C. Serruys (Patrick); P.G. Hugenholtz (Paul); J.R.T.C. Roelandt (Jos)

    1981-01-01

    textabstractIntravenous carbon dioxide (CO2) was employed to cause echocardiographic contrast in 40 patients. One to 3 cc of medically pure CO2 were agitated with 5 to 8 cc of 5% dextrose in water and rapidly injected into an upper extremity vein. Contrast was obtained in all patients. In 33

  1. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    Measurements of carbon dioxide and heat fluxes during monsoon-2011 season over rural site of India by eddy covariance technique. M N Patil∗. , T Dharmaraj, R T Waghmare, T V Prabha and J R Kulkarni. Indian Institute of Tropical Meteorology, Dr Homi Bhabha Road, Pune 411 008, India. ∗. Corresponding author.

  2. Carbon dioxide, water vapour and energy fluxes over a semi ...

    Indian Academy of Sciences (India)

    42

    1Department of Environmental Science, Tezpur Central University, Tezpur 784028, Assam,. India. 2Prince Of Wales Institute Of Engineering & Technology, Jorhat, Assam; 3Indian Institute. Of Tropical Meteorology, Pune; 4Savitribai Phule Pune University, Pune, India. Carbon dioxide, water vapour and energy fluxes over a ...

  3. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  4. Carbon dioxide uptake by a temperate tidal sea

    NARCIS (Netherlands)

    Klaassen, Wim

    2007-01-01

    Carbon dioxide (CO2) exchange between the atmosphere and the Wadden Sea, a shallow coastal region along the northern Netherlands, has been measured from April 2006 onwards on a tidal flat and over open water. Tidal flat measurements were done using a flux chamber, and ship borne measurements using

  5. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    An increase in carbon dioxide (CO2) concentrations in the atmosphere due to anthropogenic activities is responsible for global warming and hence in recent .... The vehicular traffic was low with about 10 vehicles passing in one hour. The ... Towards west and north, at a distance of about 100 m, thorny plants with a height of.

  6. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    NARCIS (Netherlands)

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical

  7. Crewmember repairing the Regenerative Carbon Dioxide Removal System wiring.

    Science.gov (United States)

    1992-01-01

    Mission Pilot Ken Bowersox, busy at work on the wiring harness for the Regenerative Carbon Dioxide Removal System located under the mid deck floor. Photo shows Bowersox splicing wires together to 'fool' a faulty sensor that caused the 'air conditioner' to shut down.

  8. Dry-cleaning with high-pressure carbon dioxide

    NARCIS (Netherlands)

    Van Roosmalen, M.J.E.

    2003-01-01

    Dry-cleaning is a process for removing soils and stains from fabrics and garments which uses a non-aqueous solvent with detergent added. The currently most used dry-cleaning solvent is perchloroethylene (PER), which is toxic, environmentally harmful and suspected to be carcinogenic. Carbon dioxide

  9. Carbon dioxide absorption in piperazine activated N-methyldiethanolamine

    NARCIS (Netherlands)

    Derks, P.W.J.

    2006-01-01

    The removal of carbon dioxide from process gas streams is an important step in many industrial processes for a number of technical, economical or environmental reasons. The conventional technology to capture CO2 on large scale is the absorption - desorption process, in which (aqueous) solutions of

  10. Carbon dioxide and water vapour characteristics on the west coast ...

    Indian Academy of Sciences (India)

    Carbon dioxide and water vapour in the atmo- sphere are considered as the green-house gases and responsible for the global warming, hence much attention has been given to its measurement and analysis (Jones et al. 1978; Jones and Smith 1977;. Leuning et al. 1982; Ohtaki and Matsui 1982;. Ohtaki 1985).

  11. Exercise carbon dioxide (CO2) retention with inhaled CO2 and breathing resistance.

    Science.gov (United States)

    Shykoff, Barbara E; Warkander, Dan E

    2012-01-01

    Combined effects on respiratory minute ventilation (VE)--and thus, on end-tidal carbon dioxide partial pressure (P(ET)CO2)--of breathing resistance and elevated inspired carbon dioxide (CO2) had not been determined during heavy exercise. In this Institutional Review Board-approved, dry, sea-level study, 12 subjects in each of three phases exercised to exhaustion at 85% peak oxygen uptake while V(E) and P(ET)CO2 were measured. Participants inhaled 0%, 1%, 2% or 3% CO2 in air, or 0% or 2% CO2 in oxygen, with or without breathing resistance, mimicking the U.S. Navy's MK 16 rebreather underwater breathing apparatus (UBA). Compared to air baseline (0% inspired CO2 in air without resistance): (1) Oxygen decreased baseline V(E) (p carbon dioxide partial pressure and respiratory effort. Because elevated CO2 may not increase V(E) if breathing resistance and VE are high, rebreather UBA safety requires very low inspired CO2.

  12. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized at 300 to 900 0 C and 5 x 10 -7 torr. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C, preceded by desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface. The sticking coefficients were plotted as a function of Langmuirs of carbon dioxide exposure. Between 400 and 600 0 C, the length of the exposure was found to be more important than the temperature of the exposure in determining the sticking coefficient. Some evolution of carbon monoxide was noted particularly in the 400 to 500 0 C region. An 80% conversion of carbon dioxide to carbon monoxide was measured at 500 0 C. The film pumping speeds were compared with published vapor pressure data for erbium. This comparison indicated that a significant portion of the pumping action observed at temperatures of 800 0 C and above was due to evaporation of erbium metal

  13. Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport.

    Science.gov (United States)

    Tingay, D G; Stewart, M J; Morley, C J

    2005-11-01

    To assess the accuracy of measurements of end tidal carbon dioxide (CO2) during neonatal transport compared with arterial and transcutaneous measurements. Paired end tidal and transcutaneous CO2 recordings were taken frequently during road transport of 21 ventilated neonates. The first paired CO2 values were compared with an arterial blood gas. The differences between arterial CO2 (Paco2), transcutaneous CO2 (TcPco2), and end tidal CO2 (Petco2) were analysed. The Bland-Altman method was used to assess bias and repeatability. Petco2 correlated strongly with Paco2 and TcPco2. However, Petco2 underestimated Paco2 at a clinically unacceptable level (mean (SD) 1.1 (0.70) kPa) and did not trend reliably over time within individual subjects. The Petco2 bias was independent of Paco2 and severity of lung disease. Petco2 had an unacceptable under-recording bias. TcPco2 should currently be considered the preferred method of non-invasive CO2 monitoring for neonatal transport.

  14. Carbon dioxide euthanasia in rats: Oxygen supplementation minimizes signs of agitation and asphyxia

    NARCIS (Netherlands)

    Coenen, A.M.L.; Drinkenburg, W.H.I.M.; Hoenderken, R.; Luijtelaar, E.L.J.M. van

    1995-01-01

    This paper records the effects of carbon dioxide when used for euthanasia, on behaviour, electrical brain activity and heart rate in rats. Four different methods were used. Animals were placed in a box (a) that was completely filled with carbon dioxide; (b) into which carbon dioxide was streamed at

  15. Extraction of Carbon Dioxide and Hydrogen from Seawater and Hydrocarbon Production Therefrom

    Science.gov (United States)

    2016-04-05

    extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide . The carbon dioxide and hydrogen may be used to produce hydrocarbons....acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H.sup. ions for Na.sup. ions. Carbon dioxide may be

  16. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve

  17. The impact of carbon dioxide in stored-product insect treatment with ...

    African Journals Online (AJOL)

    In laboratory experiments, toxicity of carbon dioxide and carbon dioxide - phosphine mixture was investigated against 4 species of stored-product insects. In empty-space trials, estimates of the median lethal doses of carbon dioxide against adults of Oryzaephilus surinamensis (L.), Lasioderma serricorne (F.) and eggs of ...

  18. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register... Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide AGENCY... greenhouse gas monitoring and reporting from facilities that conduct geologic sequestration of carbon dioxide...

  19. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from the coastal surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Henry B. Bigelow in the North Atlantic Ocean, US North-East coast in 2017 (NCEI Accession 0162290)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2011, the Ocean Carbon Group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an instrument to measure CO2 levels in...

  20. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from the coastal surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Henry B. Bigelow in the North Atlantic Ocean, US North East coast from 2014-03-29 to 2014-11-13 (NCEI Accession 0162228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2011, the Ocean Carbon Group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an instrument to measure CO2 levels in...

  1. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from the coastal surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Henry B. Bigelow in the North Atlantic Ocean, US North East coast from 2013-03-14 to 2013-11-19 (NCEI Accession 0162209)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2011, the Ocean Carbon Group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an instrument to measure CO2 levels in...

  2. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from the coastal surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from NOAA Ship Gordon Gunter in the North Atlantic Ocean, US North-East coast during 2017 (NCEI Accession 0163566)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In March, 2008, the Ocean Carbon Cycle (OCC) group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an underway system to measure...

  3. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP C/S Allure of the Seas in the Caribbean Sea, Gulf of Mexico and North Atlantic Ocean in 2017 (NCEI Accession 0161619)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2015, the Ocean Carbon Group at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an autonomous instrument to measure CO2 levels in...

  4. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Las Cuevas cruises in the North Atlantic Ocean, Gulf of Mexico and Caribbean Sea from 2011-01-06 to 2011-12-31 (NCEI Accession 0162099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2009, the Global Carbon Group at NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), in collaboration with Methanol Holdings LTD and the National...

  5. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Equinox in the Caribbean Sea and North Atlantic Ocean in 2017 (NCEI Accession 0161868)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2015, the Ocean Carbon Group at NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) installed an autonomous instrument to measure CO2 levels in...

  6. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from SOOP M/V Las Cuevas cruises in the Gulf of Mexico and Caribbean Sea from 2009-09-12 to 2009-10-28 (NCEI Accession 0162030)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2009, the Global Carbon Group at NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), in collaboration with Methanol Holdings LTD and the National...

  7. Methane and Carbon Dioxide Emissions from Different Composting Periods

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Chang

    2009-01-01

    Full Text Available To investigate green house gas emissions from compost preparations, methane and carbon dioxide concentrations and emission rates at different accumulative times and composting periods were determined. While the accumulative time was less than 10 min with a closed acrylic chamber, meth ane and carbon dioxide emissions in creased slightly but with high fluntuation in the sampling e ror, and these values decreased significantly when the accumulative time was more than 20 min. During the 8 weeks of composting, the methane emission rate reaches its peak near the end of the second week and the carbon dioxide emission rate does the same near the end of third week. Meth ane and carbon dioxide emissions had high val ues at the first stage of com post ing and then de creased grad u ally for the ma tu rity of com post. Carbon dioxide emission (y was significantly related to temperature (x1, moisture content (x2, and total or ganiccarbon (x3; and there gression equation is: y = 3.11907x1 + 6.19236x2 - 6.63081x3 - 50.62498. The re gres sion equa tion be tween meth ane emis sion (y? and mois ture con tent (x2, pH (x4, C/N ra tio (x5, and ash con tent (x6 is: y?= 0.13225x2 - 0.97046x4 - 1.10599x5 - 0.55220x6 + 50.77057 in the ini tial com post ing stage (weeks 1 to 3; while, the equa tion is: y?= 0.02824x2 - 0.0037x4 - 0.1499x5 - 0.07013x6 + 4.13589 in the later compost ing stage (weeks 4 to 8. Dif ferent stage composts have significant variation of properties and greenhouse gas emissions. Moreover, the emissions may be reduced by manipulating the proper factors.

  8. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    Science.gov (United States)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  9. Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Xiao Wu

    2016-01-01

    Full Text Available The catalytic synthesis of cyclic carbonates using carbon dioxide as a C1-building block is a highly active area of research. Here, we review the catalytic production of enantiomerically enriched cyclic carbonates via kinetic resolution of racemic epoxides catalysed by metal-containing catalyst systems.

  10. Mineralization of Carbon Dioxide: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O' Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  11. The role of carbon dioxide in chemoselective hydrogenation of halonitroaromatics over supported noble metal catalysts in supercritical carbon dioxide.

    Science.gov (United States)

    Ichikawa, Shinichiro; Tada, Mizuki; Iwasawa, Yasuhiro; Ikariya, Takao

    2005-02-21

    Chemoselective hydrogenation of halogenated nitrobenzenes over Pt/C catalysts proceeds effectively in supercritical carbon dioxide (scCO2) to produce halogenated anilines with excellent selectivity; the rate of the hydrogenation of nitro groups is markedly enhanced in scCO2 compared to the neat reaction, and the dehalogenation reaction is significantly suppressed.

  12. Carbon dioxide effects research and assessment program

    International Nuclear Information System (INIS)

    Jacoby, G.

    1980-12-01

    Information about the past and present concentrations of CO 2 in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis

  13. Do we need to sequester carbon dioxide?

    International Nuclear Information System (INIS)

    Delbecq, D.

    2011-01-01

    Carbon sequestration may be the solution to face our difficulty to cut down the use of fossil energies. CO 2 has to be separated from other gases released by thermal power plants before being stored in deep geological layers, there it can stay as a gas, or it can be dissolved in a fluid phase, or it can react with minerals and be integrated to a solid phase. Oil fields and deep saline water reservoirs are natural candidates for carbon sequestration. Carbon sequestration implies the installation of a network of pipelines to transport CO 2 from the place of production to the place of sequestration. The high cost of carbon sequestration implies the implementation of financial incentives from governments. Some economists foresee a raise of the electricity cost up to 50% if carbon sequestration is used. Other economists see a contradiction: sequestration techniques will not be available in a short term range while numerous thermal power plants are planned to be built in the decade. So carbon sequestration may arrive too late and at a cost that may be not competitive with some renewable energies like off-shore wind energy or thermal solar energy which will be full-grown at that time. (A.C.)

  14. Fugitive carbon dioxide: It's not hiding in the ocean

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1992-01-01

    The fugitive carbon is the difference between the 7 billion or so tons that spew as carbon dioxide from smokestacks and burning tropical forests and the 3.4 billion tons known to stay in the atmosphere. Finding the other 3 billion or 4 billion tons has frustrated researchers for the past 15 years. The oceans certainly take up some of it. Any forecast of global warming has to be based on how much of the carbon dioxide released by human activity will remain in the atmosphere, and predictions vary by 30% depending on the mix of oceanic and terrestrial processes assumed to be removing the gas. What's more, those predictions assume that the processes at work today will go on operating. But not knowing where all the carbon is going raises the unnerving possibility that whatever processes are removing it may soon fall down on the job without warning, accelerating any warming. Such concerns add urgency to the question of whether the ocean harbors the missing carbon. But there's no simple way to find out. The obvious strategy might seem to be to measure the carbon content of the ocean repeatedly to see how much it increases year by year. The trouble is that several billion tons of added carbon, though impressive on a human scale, are undetectable against the huge swings in ocean carbon that occur from season to season, year to year, and place to place

  15. Carbon dioxide: A new material for energy storage

    Directory of Open Access Journals (Sweden)

    Jacques Amouroux

    2014-08-01

    Full Text Available Though carbon dioxide is the main green house gas due to burning of fossil resource or miscellaneous chemical processes, we propose here that carbon dioxide be a new material for energy storage. Since it can be the key to find the solution for three critical issues facing the world: food ecosystems, the greenhouse issue and energy storage. We propose to identify the carbon recovery through a circular industrial revolution in the first part, and in the second part we present the starting way of three business plants to do that from industrial examples. By pointing out all the economic constraints and the hidden competitions between energy, water and food, we try to qualify the phrase “sustainable development” and open the way of a huge circular economy.

  16. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch

    International Nuclear Information System (INIS)

    Uhm, Han S.; Kwak, Hyoung S.; Hong, Yong C.

    2016-01-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO 2  + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. - Highlights: • Carbon dioxide gas produces a plasma-torch by making use of 2.45 GHz microwaves. • The temperature measurement of torch flame by optical spectroscopy. • Disintegration of carbon dioxide into carbon monoxide and oxygen atom. • Emission profiles of carbon monoxide confirm disintegration theory. • Conversion of carbon dioxide into carbon monoxide in the plasma torch. - This article presents carbon-dioxide plasma torch operated by microwaves and its applications to regeneration of new resources, eliminating carbon dioxide molecules.

  17. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  18. Inflammability of magnesium and its alloys in carbon dioxide either pure or mixed with water vapour, air or oxygen

    International Nuclear Information System (INIS)

    Baque, P.; Chevilliard, C.; Darras, R.

    1964-01-01

    Whereas low contents of metallic additions have only a small influence on the temperature at which magnesium begins to burn in carbon dioxide, an increase in the specific surface area of the samples is likely to reduce it considerably, the self-heating phenomena being then more pronounced. On the other hand, the exact nature of the surrounding atmosphere is a very important factor; thus the temperature at which ignition begins increases with increasing carbon dioxide pressure, decreases very rapidly when the moisture content of this gas increases up to 3000 v.p.m., and decreases regularly when the partial pressure of air or oxygen increases. (authors) [fr

  19. Atmospheric carbon dioxide levels over phanerozoic time.

    Science.gov (United States)

    Berner, R A

    1990-09-21

    A new model has been constructed for calculating the level of atmospheric CO(2) during the past 570 million years. A series of successive steady states for CO(2) is used in order to calculate CO(2) level from a feedback function for the weathering of silicate minerals. Processes considered are: sedimentary burial of organic matter and carbonates; continental weathering of silicates, carbonates, and organic matter; and volcanic and metamorphic degassing of CO(2). Sediment burial rates are calculated with the use of an isotope mass-balance model and carbon isotopic data on ancient seawater. Weathering rates are calculated from estimates of past changes in continental land area, mean elevation, and river runoff combined with estimates of the effects of the evolution of vascular land plants. Past degassing rates are estimated from changes in the rate of generation of sea floor and the shift of carbonate deposition from platforms to the deep sea. The model results indicate that CO(2) levels were high during the Mesozoic and early Paleozoic and low during the Permo-Carboniferous and late Cenozoic. These results correspond to independently deduced Phanerozoic paleoclimates and support the notion that the atmospheric CO(2) greenhouse mechanism is a major control on climate over very long time scales.

  20. Weathering approaches to carbon dioxide sequestration

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The aim of enhanced weathering is to capture CO2 by the carbonation of silicates, or by dissolution of these silicates during which the greenhouse gas CO2 is converted to bicarbonate in solution. Research in this field is still focused on increasing the rate of reaction, but the required

  1. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  2. Potential carbon dioxide fixation by industrially important microalgae.

    Science.gov (United States)

    Sydney, Eduardo Bittencourt; Sturm, Wilerson; de Carvalho, Julio Cesar; Thomaz-Soccol, Vanete; Larroche, Christian; Pandey, Ashok; Soccol, Carlos Ricardo

    2010-08-01

    The present study aimed at investigating the carbon metabolism in terms of carbon dioxide fixation and its destination in microalgae cultivations. To this purpose, analysis of growth parameters, media of cultivation, biomass composition and productivity and nutrients balance were performed. Four microalgae suitable for mass cultivation were evaluated: Dunaliella tertiolecta SAD-13.86, Chlorella vulgaris LEB-104, Spirulina platensis LEB-52 and Botryococcus braunii SAG-30.81. Global rates of carbon dioxide and oxygen were determinated by a system developed in our laboratory. B. braunii presented the highest CO(2) fixation rate, followed by S. platensis,D. tertiolecta and C. vulgaris (496.98, 318.61, 272.4 and 251.64 mg L(-1)day(-1), respectively). Carbon dioxide fixated was mainly used for microalgal biomass production. Nitrogen, phosphorus (calcium for D. tertiolecta), potassium and magnesium consumption rates (mg gX(-1)) were evaluated for the four microalgae. Biomass composition presented a predominance of proteins but also a high amount of lipids, especially in D. tertiolecta and B. braunii. (c) 2010. Published by Elsevier Ltd.

  3. Carbonic acid as a reserve of carbon dioxide on icy moons: The formation of carbon dioxide (CO{sub 2}) in a polar environment

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Brant M.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States); Strazzulla, Giovanni, E-mail: brantmj@hawaii.edu [INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy)

    2014-06-20

    Carbon dioxide (CO{sub 2}) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν{sub 3} band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO{sub 2} band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H{sub 2}O)-carbon dioxide (CO{sub 2}) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν{sub 3} band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  4. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions.

    Science.gov (United States)

    Xiang, Shengchang; He, Yabing; Zhang, Zhangjing; Wu, Hui; Zhou, Wei; Krishna, Rajamani; Chen, Banglin

    2012-07-17

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve such separations and to replace current technologies, which use aqueous solvents to chemically absorb carbon dioxide. Here we show that a metal-organic frameworks (UTSA-16) displays high uptake (160 cm(3) cm(-3)) of CO(2) at ambient conditions, making it a potentially useful adsorbent material for post-combustion carbon dioxide capture and biogas stream purification. This has been further confirmed by simulated breakthrough experiments. The high storage capacities and selectivities of UTSA-16 for carbon dioxide capture are attributed to the optimal pore cages and the strong binding sites to carbon dioxide, which have been demonstrated by neutron diffraction studies.

  5. Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material

    Science.gov (United States)

    Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

    2010-05-01

    Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air

  6. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO(sub 2) capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO(sub 2) and H(sub 2)O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  9. Carbon dioxide utilisation in anaerobic digesters as an on-site carbon revalorisation strategy

    OpenAIRE

    Bajón Fernández, Yadira

    2014-01-01

    The increasing carbon footprint of the water and organic waste sectors has led to water utilities to voluntarily include carbon mitigation approaches within their strategic plans and to an increase in research aimed at mitigating carbon dioxide (CO2) emissions. Injection of CO2 in anaerobic digesters (ADs) for its bioconversion into methane (CH4) has been identified as a potential solution. However, previous literature provided limited knowledge of the carbon benefits obtainable and presented...

  10. Production of lightweight aggregate from industrial waste and carbon dioxide.

    Science.gov (United States)

    Gunning, Peter J; Hills, Colin D; Carey, Paula J

    2009-10-01

    The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m(3) and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.

  11. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    Science.gov (United States)

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  12. Phase behaviour of binary systems of lactones in carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Joao P.; Feitein, Mirian; Franceschi, Elton; Corazza, Marcos L. [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99700-000 (Brazil); Oliveira, J. Vladimir, E-mail: vladimir@uricer.edu.b [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99700-000 (Brazil)

    2010-01-15

    Experimental phase equilibrium data for binary systems involving epsilon-caprolactone, delta-hexalactone, and gamma-caprolactone with carbon dioxide have been measured applying the synthetic method using a high-pressure, variable-volume view cell over the temperature range of (303 to 343) K and pressures up to 21 MPa. For the systems investigated, (vapour + liquid) (VLE), (liquid + liquid) (LLE), and (vapour + liquid + liquid) (VLLE) equilibrium were visually recorded. It was observed that an increase in temperature or in carbon dioxide concentration led to a pronounced raise in transition pressure values. The experimental results were modelled using the Peng-Robinson equation of state with the conventional quadratic mixing rule, affording a satisfactory representation of the experimental values.

  13. The underground storages of carbon dioxide. Juridical aspects

    International Nuclear Information System (INIS)

    Bersani, F.

    2006-04-01

    In the framework of the reduction of the carbon dioxide emissions in the air, the underground storage of the CO 2 is studied. Some experimentation are already realized in the world and envisaged in France. This document aims to study the juridical aspects of these first works in France. After a presentation of the realization conditions and some recalls on the carbon dioxide its capture and storage, the natural CO 2 underground storages and the first artificial storages are discussed. The CO 2 waste qualification, in the framework of the environmental legislation is then detailed with a special task on the Lacq region. The problem of the sea underground storages is also presented. (A.L.B.)

  14. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...... equilibrium and associated property models are used. Simulations are performed to investigate the sensitivity of the process variables to change in the design variables including process inputs and disturbances in the property model parameters. Results of the sensitivity analysis on the steady state...... performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made....

  15. Climatic response to a gradual increase of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Stouffer, R.J.; Manabe, S.; Bryan, K.

    1990-01-01

    The transient response of a coupled ocean-atmosphere model to an increase of carbon dioxide has been the subject of several studies. The models used in these studies explicitly incorporate the effect of heat transport by ocean currents and are different from the model used by Hansen et al. Here the authors evaluate the climatic influence of increasing atmospheric carbon dioxide using a coupled model recently developed at the NOAA Geophysical Fluid Dynamics Laboratory. The model response exhibits a marked and unexpected interhemispheric asymmetry. In the circumpolar ocean of the southern hemisphere, a region of deep vertical mixing, the increase of surface air temperature is very slow. In the Northern hemisphere of the model, the rise of surface air temperature is faster and increases with latitude, with the exception of the northern North Atlantic, where it is relatively slow because of the weakening of the thermohaline circulation

  16. Monitoring of the ventilatory status of anesthetized birds of prey by using end-tidal carbon dioxide measured with a microstream capnometer.

    Science.gov (United States)

    Desmarchelier, Marion; Rondenay, Yves; Fitzgerald, Guy; Lair, Stéphane

    2007-03-01

    The relationship between end-tidal partial pressure of carbon dioxide (PETCO2), arterial partial pressure of carbon dioxide (PaCO2), and blood pH in isoflurane-anesthetized raptors was evaluated. PaCO2 and pH were determined in serial arterial samples from isoflurane anesthetized birds and compared with concurrent end-tidal partial pressure of carbon dioxide measured with a Microstream sidestream capnograph. Forty-eight paired samples, taken from 11 birds of prey (weighing 416-2,062 g), were used to determine correlations coefficients between PaCO2 and PETCO2, and between PETCO2 and pH. Limits of agreement between PaCO2 and PETCO2 also were calculated. Strong correlations were observed between PaCO2 and PETCO2 (r = 0.94; P 400 g and receiving manual positive ventilation with a Bain system. In our study, the linear relationship observed between the pH and the end-tidal partial pressure of carbon dioxide suggested that the monitoring of end-tidal partial pressure of carbon dioxide also can be useful to prevent respiratory acidosis.

  17. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.

    Science.gov (United States)

    Hall-Spencer, Jason M; Rodolfo-Metalpa, Riccardo; Martin, Sophie; Ransome, Emma; Fine, Maoz; Turner, Suzanne M; Rowley, Sonia J; Tedesco, Dario; Buia, Maria-Cristina

    2008-07-03

    The atmospheric partial pressure of carbon dioxide (p(CO(2))) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years. The oceans are a principal sink for anthropogenic CO(2) where it is estimated to have caused a 30% increase in the concentration of H(+) in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100 (refs 2, 3). Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO(2) vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of p(CO(2)). Sea-grass production was highest in an area at mean pH 7.6 (1,827 (mu)atm p(CO(2))) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of p(CO(2)) and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.

  18. Carbon dioxide fixation in isolated Kalanchoe chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Levi, C.; Gibbs, M.

    1975-07-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 ..mu..moles of CO/sub 2/ per milligram of chlorophyll per hour. The dark rate of fixation was about 1 percent of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1, 6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO/sub 2/ fixation were primarily those of the photosynthetic carbon reduction cycle. (auth)

  19. Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1984-01-01

    The Calvin cycle of carbon dioxide fixation constitutes a biosynthetic pathway for the generation of (multi-carbon) intermediates of central metabolism from the one-carbon compound carbon dioxide. The product of this cycle can be used as a precursor for the synthesis of all components of cell

  20. The effect of carbon dioxide therapy on composite graft survival

    OpenAIRE

    Durães, Eliana Ferreira Ribeiro; Durães, Leonardo de Castro; Carneiro, Fabiana Pirani; Lino Júnior, Ruy de Souza; Sousa, João Batista de

    2013-01-01

    PURPOSE: To investigate the effect of carboxytherapy in auricular composite grafts in rabbits. METHODS: An experimental study was conducted using 20 rabbits randomly assigned to a treatment group of carboxytherapy or a control group of saline solution. In each ear, a circular graft with 1.5 cm or 2 cm of diameter was amputated and reattached. Animals underwent carbon dioxide or saline injection four times during the experiment. We analyzed clinical evolution of the animals, grafts survival, h...

  1. The use of modern technologies in carbon dioxide monitoring

    Directory of Open Access Journals (Sweden)

    Komínek Petr

    2017-12-01

    Full Text Available Indoor environment has huge influence on person’s health and overall comfort. It is of great importance that we realize how essential indoor air quality is, considering we spend on average as much as 90% of our time indoors. There are many factors that affect indoor air quality: specifically, inside air temperature, relative humidity, and odors to name the most important factors. One of the key factors indicating indoor air quality is carbon dioxide (CO2 level.

  2. Development of packed capillary columns using carbon dioxide slurries

    Czech Academy of Sciences Publication Activity Database

    Planeta, Josef; Karásek, Pavel; Vejrosta, Jiří

    2003-01-01

    Roč. 26, 6/7 (2003), s. 525-530 ISSN 1615-9306 R&D Projects: GA ČR GA203/02/0023; GA AV ČR IAA4031104 Institutional research plan: CEZ:AV0Z4031919 Keywords : packed capillary * supercritical carbon dioxide * slurry packing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.108, year: 2003

  3. Efficiency of Carbon Dioxide Fractional Laser in Skin Resurfacing

    Directory of Open Access Journals (Sweden)

    Andrej Petrov

    2016-05-01

    CONCLUSION: Multifunctional fractional carbon dioxide laser used in treatment of patients with acne and pigmentation from acne, as well as in the treatment of scars from different backgrounds, is an effective and safe method that causes statistically significant better effect of the treatment, greater patients’ satisfaction, minimal side effects and statistically better response to the therapy, according to assessments by the patient and the therapist.

  4. Briefing: Embodied carbon dioxide assessment in buildings: guidance and gaps

    OpenAIRE

    Giesekam, Jannik.; Pomponi, Francesco.

    2017-01-01

    The construction industry, through its activities and supply chains as well as the operation of the assets that it creates, is a major contributor to global greenhouse gas emissions. Embodied carbon dioxide emissions associated with the construction of new assets constitute a growing share of whole-life emissions across all project types and make up nearly a quarter of all annual emissions from the UK built environment. Yet these embodied emissions are still rarely assessed in practice, owing...

  5. Application of supercritical carbon dioxide extrusion in food processing technology

    OpenAIRE

    Panak-Balentić Jelena; Ačkar Đurđica; Jozinović Antun; Babić Jurislav; Miličević Borislav; Jokić Stela; Pajin Biljana; Šubarić Drago

    2017-01-01

    Extrusion process is one of the most important innovations of the 20th century applied in many industries. Extrusion is a technology that is increasingly used for the production of various food products, especially snacks and breakfast cereals. Supercritical carbon dioxide (CO2) as a non-toxic, non-flammable and inexpensive, is applied in many processes, including the extrusion technology. Supercritical CO2 extrusion process (SCFX) found its application primarily in the processing and manufac...

  6. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  7. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  8. Remote operated vehicle with carbon dioxide blasting (ROVCO2)

    International Nuclear Information System (INIS)

    Resnick, A.M.

    1995-01-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO 2 ), as shown in a front view, is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO 2 xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. Figure 2 shows a block diagram with the various subsystems labeled

  9. Effect Of Geothermal Heat Pump On Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Ahmed F. Atwan

    2015-08-01

    Full Text Available In this research the calculations of carbon dioxide emissions CO2 in summer May to September 150 day and winter seasons December to February 90 day were performed by using the coefficient of performance for each air and ground source heat pump. The place of study case take relative to solar path in to account and the study case was three halls men women and surgery halls in Al-Musayyib hospital in Babylon.

  10. Renewable Methane Generation from Carbon Dioxide and Sunlight.

    Science.gov (United States)

    Steinlechner, Christoph; Junge, Henrik

    2018-01-02

    The direct approach: Methane is a potential key player in the world's transition to a more sustainable energy future. The direct conversion of carbon dioxide into methane is highly desirable to lower the concentration of CO 2 in the atmosphere and also to store renewable energy. This Highlight describes the first homogeneous system for the light-driven conversion of CO 2 into CH 4 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.

    1979-01-01

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  12. Carbon dioxide utilization and hydrogen production by photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Katsuhiro [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan); Takasaki, Koichi [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan)]|[RITE, Project Center for CO2 Fixation and Utilization, Minato, Tokyo (Japan); Miyake, Jun; Asada, Yasuo [National Institute of Bioscience and Human-Technology, AIST/MITI, Tsukuba, Ibaraki (Japan)

    1999-07-01

    The solar energy is the largest energy source in the world. Using the photosynthesis, we will be able utilise the huge amount of carbon dioxide. Microalgae, cyanobacteria, photosynthetic bacteria belong to photosynthetic microorganisms, which assimilate carbon dioxide during the photosynthesis. One of the cyanobacteria, Spirulina platensis accumulates carbohydrate photoautotrophically up to 50% of the dry cell weight in the nitrogen-deficient condition. Under an anaerobic condition in the dark, it is degraded into organic compounds such as organic acids, alcohol and sugar. As the hydrogen gas is also evolved in this process, the participation of hydrogenase (Hydrogen producing enzyme) has been suggested in this metabolism. We have investigated several conditions of evolution of hydrogen and production of organic compounds. The bacterial concentration initial pH and temperature had significant effects on hydrogen evolution as well as production of organic compounds. When the bacterial cell concentration was high, the pH of fermentation products was reduced to acidic and the evolution of hydrogen tended to be inhibited. The profiles of fermentation products varied according to the culture condition. The increase of organic acids were remarkable in the inhibitory condition for hydrogen production, such as acidic pH and high temperature. Furthermore these fermentation products were converted into hydrogen gas by using photosynthetic bacterium Rhodobacter sphaeroides RV with light energy. The composition of evolved gas was mainly hydrogen and carbon dioxide, and their contents were 78% and 10%, respectively. The total amount of evolved hydrogen was nearly equal to the estimated, value which was calculated by the degradation of each organic acid. Combining this system with the photosynthesis of cyanobacteria, we could accomplish the production of hydrogen by solar energy, carbon dioxide and water. And we demonstrated that the evolved gas could be directly supplied to the

  13. Spontaneous oxygen isotope exchange between carbon dioxide and\

    Czech Academy of Sciences Publication Activity Database

    Knížek, Antonín; Zukalová, Markéta; Kavan, Ladislav; Zukal, Arnošt; Kubelík, Petr; Rojík, P.; Skřehot, P.; Ferus, Martin; Civiš, Svatopluk

    2017-01-01

    Roč. 137, MAR 2017 (2017), s. 6-10 ISSN 0169-1317 R&D Projects: GA MŠk LD14115; GA ČR(CZ) GA14-12010S; GA ČR GA13-07724S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388955 Keywords : clay * carbon dioxide * FTIR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.101, year: 2016

  14. Determination of carbon chlorine and fluorine in uranium dioxide

    International Nuclear Information System (INIS)

    Kijko, N.I.; Timofeev, G.A.

    1983-01-01

    Techniques of chlorine and fluorine determination and simultaneous determination of carbon and chlorine in electrolytic uranium dioxide are described. The method of chlorine and fluorine determination is based on their separation during oxide pyrohydrolysis with subsequent spectrophotometric analysis of condensate. Lower determination limits constitute 1 μg for chlorine, 0.5 μg for fluorine. Relative standard deviation when the content of impurities analyzed is 10 -3 % constitutes 0.05-0.07

  15. Exponential growth and atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Laurmann, J.A.; Rotty, R.M.

    1983-01-01

    The adequacy of assumptions required to project atmospheric CO 2 concentrations in time frames of practical importance is reviewed. Relevant issues concern the form assumed for future fossil fuel release, carbon cycle approximations, and the implications of revisions in fossil fuel patterns required to maintain atmospheric CO 2 levels below a chosen threshold. In general, we find that with a judiciously selected exponential fossil fuel release rate, and with a constant airborn fraction, we can estimate atmospheric CO 2 growth over the next 50 years based on essentially surprise free scenarios. Resource depletion effects must be included for projections beyond about 50 years, and on this time frame the constant airborne fraction approximation has to be questioned as well (especially in later years when the fossil fuel use begins to taper off). For projections for over 100 years, both energy demand scenarios and currently available carbon cycle models have sufficient uncertainties that atmospheric CO 2 levels derived from them are not much better than guesses

  16. Study on carbon dioxide conversion by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Hyun; Park, Geun Il; Cho, Il Hoon; Choi, Sang Do; Hong, Kwang Hee; Lee, Chang Woo

    1999-09-01

    This study was carried out to investigate the synergistic effects on the CO{sub 2} conversion by the application of semiconductor in the field of gamma-ray. Gamma-ray irradiation was performed to examine the effects of semiconductor application on CO{sub 2} conversion in water and the formation of organic material from carbonate solution. From experimental results it is clear that the supplication of semiconductor in the field of gamma-ray increases the efficiency for CO{sub 2} conversion to organic matter. Based on the obtained experimental results it is obvious that the synergistic effects of semiconductor materials in the gamma-ray field leads to increase of the CO{sub 2} conversion yield to organic matter up to 50 percent compared to the gamma-ray irradiation. The way of achieving higher activity is due to thecatalytic action of semiconductor by gamma-ray irradiation. Zr-doped TiO{sub 2} catalyst prepared by sol-gel method exhibits the higher efficiency for CO{sub 2} conversion in aqueous solution and carbonate containing solution. This effect of Zr-doping can be explained by the formation of additional defects in surface of TiO{sub 2} film. (author)

  17. The effect of carbon dioxide therapy on composite graft survival.

    Science.gov (United States)

    Durães, Eliana Ferreira Ribeiro; Durães, Leonardo de Castro; Carneiro, Fabiana Pirani; Lino, Ruy de Souza; Sousa, João Batista de

    2013-08-01

    To investigate the effect of carboxytherapy in auricular composite grafts in rabbits. An experimental study was conducted using 20 rabbits randomly assigned to a treatment group of carboxytherapy or a control group of saline solution. In each ear, a circular graft with 1.5 cm or 2 cm of diameter was amputated and reattached. Animals underwent carbon dioxide or saline injection four times during the experiment. We analyzed clinical evolution of the animals, grafts survival, histopathology features and histomorphometry of collagen. The treated group had a significantly lower weight gain (p=0.038). Histopathology was not significantly different between groups. There was an increase in amount of collagen in 2 cm grafts submitted to carbon dioxide therapy (p=0.003). Carboxytherapy didn't influence graft survival rate for 1.5 cm grafts or 2 cm grafts (p=0.567 and p=0.777, respectively). Carbon dioxide therapy increased the amount of collagen in 2 cm grafts. CO2 was not significantly different from saline infusion on composite grafts survival, but this study suggests that there is a mechanical effect caused by distension which favored graft survival.

  18. Balance of emissions and consumptions of carbon dioxide in Spain

    International Nuclear Information System (INIS)

    Valero, A.; Subiela, V.; Cortes, C.

    1994-01-01

    The amount of carbon dioxide in atmosphere increase due to deforestation and anthropogenic emissions. The consumption of this gas in vegetal ecosystems must also be considered to know the net mass of CO 2 that gets into the atmosphere. This article summarizes the methodology, results and conclusions of the carbon dioxide balance in Spain by autonomous communities. The different fossil fuel consumer sectors (Thermal power plants, industry, transport, domestic and agricultural), forest biomass reduction due to fires and wood extractions for firewood are considered as sources. As sinks, natural and reforested forests, and the equivalent sea are noticed. Basically, the article presents a new methodology to estimate carbon dioxide consumption in forest biomass. The average emissions for 1981 to 1990 are presented. A per capita value of 5 t(CO 2 /year is obtained in contrast to the EC average of 8,6 t(CO 2 ) year. The resulting net balance shows that it is only consumed between 20 and 50% of the emitted CO 2 . (Author) 47 refs

  19. Irreversible climate change due to carbon dioxide emissions.

    Science.gov (United States)

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.

  20. [Thoracoscopic thymectomy with carbon dioxide insufflation in the mediastinum].

    Science.gov (United States)

    Ferrero-Coloma, C; Navarro-Martinez, J; Bolufer, S; Rivera-Cogollos, M J; Alonso-García, F J; Tarí-Bas, M I

    2015-02-01

    The case is presented of a 71 year-old male, diagnosed with a thymoma. A thoracoscopic thymectomy was performed using the carbon dioxide insufflation technique in the mediastinum. During the procedure, while performing one-lung ventilation, the patient's respiration worsened. The contralateral lung had collapsed, as carbon dioxide was travelling from the mediastinum to the thorax through the opened pleura. Two-lung ventilation was decided upon, which clearly improved oxygenation in the arterial gases and airway pressures. Both pH and pCO2 stabilized. The surgical approach and the carbon dioxide technique were continued because 2-lung ventilation did not affect the surgical procedure. This technique has many serious complications and it should always be performed using 2-lung ventilation. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo

    2010-03-15

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  2. Developing a molecular platform for potential carbon dioxide fixing

    DEFF Research Database (Denmark)

    Mikkelsen, Mette; Jørgensen, Mikkel; Krebs, Frederik C

    2010-01-01

    the ability to liberate CO2 at a later stage in the process, i.e., in a separate compartment. The liberated CO2 presents a carbon neutral way of obtaining pure CO2. The proposed molecular system is based on a small stable organic molecule that potentially have two forms: one without bound CO2 and one......This paper presents an attempt to develop a new system for fixing carbon dioxide from the atmosphere. The proposed molecular system has been designed to have the capacity to spontaneously bind CO2 from the atmosphere with high affinity. The molecular system is furthermore designed to have...

  3. Biotransformations of carbon dioxide in photobioreactors

    International Nuclear Information System (INIS)

    Jacob-Lopes, Eduardo; Gimenes Scoparo, Carlos Henrique; Queiroz, Maria Isabel; Franco, Telma Teixeira

    2010-01-01

    Laboratory experiments were performed to study the capacity of CO 2 sequestration and carbon fixation into biomass during the cultivation of the cyanobacteria Aphanothece microscopica Naegeli in refinery wastewater. The influence of the photoperiod (day/night) on the rates of CO 2 sequestration and O 2 release was also determined. Rates of CO 2 sequestration were measured both in the liquid and gaseous phases. The results showed that the capacity of CO 2 sequestration and O 2 release during the day/night experiment was about one-fourth less than that achieved in the continuously illuminated experiment. Equivalence was found between rates of CO 2 sequestration measured in the two phases. Despite large amounts of CO 2 that were sequestered during the cultivation, it is demonstrated that only a small fraction (about 3%) was effectively fixed as microalgae biomass, indicating the existence of other routes of CO 2 conversion in the photobioreactor.

  4. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia

    International Nuclear Information System (INIS)

    Jung, Kyeong Taek; Bell, Alexis T.

    2001-01-01

    The mechanism of dimethyl carbonate (DMC) synthesis from methanol and carbon dioxide over monoclinic zirconia has been investigated using in situ infrared spectroscopy. The dissociative adsorption of methanol occurs more slowly than the adsorption of carbon dioxide, but the species formed from methanol are bound more strongly. Upon adsorption, the oxygen atom of methanol binds to coordinately unsaturated Zr4+ cations present at the catalyst surface. Rapid dissociation of the adsorbed methanol leads to the formation of a methoxide group (Zr-OCH3) and the release of a proton, which reacts with a surface hydroxyl group to produce water. Carbon dioxide inserts in the Zr-O bond of the methoxide to form a mondentate methyl carbonate group (Zr-OC(O)OCH3). This process is facilitated by the interactions of C and O atoms in CO2 with Lewis acid-base pairs of sites (Zr4+O2-) on the surface of the catalyst. Methyl carbonate species can also be produced via the reaction of methanol with carbon dioxide adsorbed in the form of bicarbonate species with methanol, a process that results in the transfer of a methyl group to the carbonate and restores a hydroxyl group to the zirconia surface. The decomposition of DMC on monoclinic zirconia has also been investigated and has been observed to occur via the reverse of the processes described for the synthesis of DMC

  5. Modelling interactions of carbon dioxide, forests, and climate

    International Nuclear Information System (INIS)

    Luxmoore, R.J.; Baldocchi, D.D.

    1994-01-01

    Atmospheric carbon dioxide is rising and forests and climate is changing exclamation point This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken

  6. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    International Nuclear Information System (INIS)

    Amouroux, Jacques; Cavadias, Simeon

    2017-01-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO 2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C–400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO 2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C–400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO 2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO 2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst. (paper)

  7. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    Science.gov (United States)

    Amouroux, Jacques; Cavadias, Simeon

    2017-11-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C-400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C-400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst.

  8. Structural characterisation of subcritical carbon dioxide confined in nanoporous carbon by in situ neutron diffraction

    International Nuclear Information System (INIS)

    Katsaros, F K; Steriotis, Th A; Stefanopoulos, K L; Kanellopoulos, N K; Hannon, A C; Ramsay, J D F

    2012-01-01

    In situ neutron diffraction measurements of adsorbed carbon dioxide in an ordered mesoporous carbon (CMK-1) have been carried out along an isotherm at 253 K and at a range of pressures up to 18 bar. The experiment has been performed with the aid of a novel high-pressure adsorption apparatus and the GEM diffractometer (ISIS, Rutherford Appleton Laboratory, UK). Diffraction measurements of bulk liquid carbon dioxide have also been carried out. The structure factors and the total differential correlation functions of the adsorbed carbon dioxide suggest that the confined fluid has liquid-like properties at all thermodynamic states studied; however, some subtle differences were observed pointing to enhanced adsorption because of the presence of micropores.

  9. Removal of extracorporeal carbon dioxide in chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Bozkuş, Fulsen; Bilal, Bora; Öksüz, Hafize

    2016-03-01

    The use of invasive mechanical ventilation (IMV) procedures in chronic obstructive pulmonary disease (COPD) patients suffering from episodes of acute exacerbation are associated with high rates of mortality. In this case study, we describe the use of a new device for extracorporeal carbon dioxide removal (ECCO2R) that can provide partial respiratory support for patients where noninvasive ventilation (NIV) proved insufficient. The case described in this manuscript represents the first clinical feasibility study for the Hemolung device, and was also the first use and application of the device at our department.

  10. Carbon dioxide narcosis due to inappropriate oxygen delivery: a case report.

    Science.gov (United States)

    Herren, Thomas; Achermann, Eva; Hegi, Thomas; Reber, Adrian; Stäubli, Max

    2017-07-28

    Oxygen delivery to patients with chronic obstructive pulmonary disease may be challenging because of their potential hypoxic ventilatory drive. However, some oxygen delivery systems such as non-rebreathing face masks with an oxygen reservoir bag require high oxygen flow for adequate oxygenation and to avoid carbon dioxide rebreathing. A 72-year-old Caucasian man with severe chronic obstructive pulmonary disease was admitted to the emergency department because of worsening dyspnea and an oxygen saturation of 81% measured by pulse oximetry. Oxygen was administered using a non-rebreathing mask with an oxygen reservoir bag attached. For fear of removing the hypoxic stimulus to respiration the oxygen flow was inappropriately limited to 4L/minute. The patient developed carbon dioxide narcosis and had to be intubated and mechanically ventilated. Non-rebreathing masks with oxygen reservoir bags must be fed with an oxygen flow exceeding the patient's minute ventilation (>6-10 L/minute.). If not, the amount of oxygen delivered will be too small to effectively increase the arterial oxygen saturation. Moreover, the risk of carbon dioxide rebreathing dramatically increases if the flow of oxygen to a non-rebreathing mask is lower than the minute ventilation, especially in patients with chronic obstructive pulmonary disease and low tidal volumes. Non-rebreathing masks (with oxygen reservoir bags) must be used cautiously by experienced medical staff and with an appropriately high oxygen flow of 10-15 L/minute. Nevertheless, arterial blood gases must be analyzed regularly for early detection of a rise in partial pressure of carbon dioxide in arterial blood in patients with chronic obstructive pulmonary disease and a hypoxic ventilatory drive. These patients are more safely managed using a nasal cannula with an oxygen flow of 1-2L/minute or a simple face mask with an oxygen flow of 5L/minute.

  11. Amazon River carbon dioxide outgassing fuelled by wetlands.

    Science.gov (United States)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  12. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.

    Science.gov (United States)

    Roger, Magali; Brown, Fraser; Gabrielli, William; Sargent, Frank

    2018-01-08

    Hydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO 2 to formate is to use chemical catalysts in homogeneous or heterogeneous reactions [2]. An alternative approach is to use the ability of living organisms to perform this reaction biologically. However, although CO 2 fixation pathways are widely distributed in nature, only a few enzymes have been described that have the ability to perform the direct hydrogenation of CO 2 [3-5]. The formate hydrogenlyase (FHL) enzyme from Escherichia coli normally oxidizes formic acid to carbon dioxide and couples that reaction directly to the reduction of protons to molecular hydrogen [6]. In this work, the reverse reaction of FHL is unlocked. It is established that FHL can operate as a highly efficient hydrogen-dependent carbon dioxide reductase when gaseous CO 2 and H 2 are placed under pressure (up to 10 bar). Using intact whole cells, the pressurized system was observed to rapidly convert 100% of gaseous CO 2 to formic acid, and >500 mM formate was observed to accumulate in solution. Harnessing the reverse reaction has the potential to allow the versatile E. coli system to be employed as an exciting new carbon capture technology or as a cell factory dedicated to formic acid production, which is a commodity in itself as well as a feedstock for the synthesis of other valued chemicals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Social acceptance of carbon dioxide storage

    International Nuclear Information System (INIS)

    Huijts, Nicole M.A.; Midden, Cees J.H.; Meijnders, Anneloes L.

    2007-01-01

    This article discusses public acceptance of carbon capture and storage (CCS). Responses by citizens are described in relation to responses by professionally involved actors. Interviews with members of the government, industry and environmental NGOs showed that these professional actors are interested in starting up storage projects, based on thorough evaluation processes, including discussions on multi-actor working groups. As appeared from a survey among citizens living near a potential storage site (N=103), public attitudes in general were slightly positive, but attitudes towards storage nearby were slightly negative. The general public appeared to have little knowledge about CO 2 -storage, and have little desire for more information. Under these circumstances, trust in the professional actors is particularly important. NGOs were found to be trusted most, and industry least by the general public. Trust in each of the three actors appeared to depend on perceived competence and intentions, which in turn were found to be related to perceived similarity of goals and thinking between trustee and trustor. Implications for communication about CCS are discussed. (author)

  14. Modulation of magmatic processes by carbon dioxide

    Science.gov (United States)

    Caricchi, L.; Sheldrake, T. E.; Blundy, J. D.

    2017-12-01

    Volatile solubility in magmas increases with pressure, although the solubility of CO2 is much lower than that of H2O. Consequently, magmas rising from depth release CO2-rich fluids, which inevitably interact with H2O-poor magmas in the upper crust (CO2-flushing). CO2-flushing triggers the exsolution of H2O-rich fluids, leading to an increase of volume and magma crystallisation. While the analyses of eruptive products demonstrates that this process operates in virtually all magmatic system, its impact on magmatic and volcanic processes has not been quantified. Here we show that depending on the initial magma crystallinity, and the depth of magma storage, CO2-flushing can lead to volcanic eruptions or promote conditions that favour the impulsive release of mineralising fluids. Our calculations show that the interaction between a few hundred ppm of carbonic fluids, and crystal-poor magmas stored at shallow depths, produces rapid pressurisation that can potentially lead to an eruption. Further addition of CO2 increases magma compressibility and crystallinity, reducing the potential for volcanic activity, promoting the formation of ore deposits. Increasing the depth of fluid-magma interaction dampens the impact of CO2-flushing on the pressurisation of a magma reservoir. CO2-flushing may result in surface inflation and increases in surface CO2 fluxes, which are commonly considered signs of an impending eruption, but may not necessarily result in eruption depending on the initial crystallnity and depth of the magmatic reservoir. We propose that CO2-flushing is a powerful agent modulating the pressurisation of magma reservoirs and the release of mineralising fluids from upper crustal magma reservoirs.

  15. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.

    Science.gov (United States)

    Laurenczy, Gábor

    2011-01-01

    Carbon dioxide and the carbonates, the available natural C1 sources, can be easily hydrogenated into formic acid and formates in water; the rate of this reduction strongly depends on the pH of the solution. This reaction is catalysed by ruthenium(II) pre-catalyst complexes with a large variety of water-soluble phosphine ligands; high conversions and turnover numbers have been realised. Although ruthenium(II) is predominant in these reactions, the iron(II) - tris[(2-diphenylphosphino)-ethyl]phosphine (PP3) complex is also active, showing a new perspective to use abundant and inexpensive iron-based compounds in the CO2 reduction. In the catalytic hydrogenation cycles the in situ formed metal hydride complexes play a key role, their structures with several other intermediates have been proven by multinuclear NMR spectroscopy. In the other hand safe and convenient hydrogen storage and supply is the fundamental question for the further development of the hydrogen economy; and carbon dioxide has been recognised to be a viable H2 vector. Formic acid--containing 4.4 weight % of H2, that is 53 g hydrogen per litre--is suitable for H2 storage; we have shown that in aqueous solutions it can be selectively decomposed into CO-free (CO formic acid cleavage, in environmentally friendly propylene carbonate solution, opening the way to use cheap, non-noble metal based catalysts for this reaction, too.

  16. Selected constituents in the smokes of foreign commercial cigaretts: tar, nicotine, carbon monoxide, and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.

    1979-05-01

    The tar, nicotine, carbon monoxide, and carbon dioxide contents of the smokes of 220 brands of foreign commercial cigarettes are reported. In some instances, filter cigarettes of certain brands were found to deliver as much or more smoke constituents than their nonfilter counterparts. Also, data indicated that there can be a great variation in the tar, nicotine, or carbon monoxide content of the smoke of samples of a given brand of cigarettes, depending on the nation in which they are purchased. 24 tables.

  17. Assessing the Health and Performance Risks of Carbon Dioxide Exposures

    Science.gov (United States)

    James, John T.; Meyers, V. E.; Alexander, D.

    2010-01-01

    Carbon dioxide (CO2) is an anthropogenic gas that accumulates in spacecraft to much higher levels than earth-normal levels. Controlling concentrations of this gas to acceptable levels to ensure crew health and optimal performance demands major commitment of resources. NASA has many decades of experience monitoring and controlling CO2, yet we are uncertain of the levels at which subtle performance decrements develop. There is limited evidence from ground-based studies that visual disturbances can occur during brief exposures and visual changes have been noted in spaceflight crews. These changes may be due to CO2 alone or in combination with other known spaceflight factors such as increased intracranial pressure due to fluid shifts. Discerning the comparative contribution of each to performance decrements is an urgent issue if we hope to optimize astronaut performance aboard the ISS. Long-term, we must know the appropriate control levels for exploration-class missions to ensure that crewmembers can remain cooperative and productive in a highly stressful environment. Furthermore, we must know the magnitude of interindividual variability in susceptibility to the adverse effects of CO2 so that the most tolerant crewmembers can be identified. Ground-based studies have been conducted for many years to set exposure limits for submariners; however, these studies are typically limited and incompletely reported. Nonetheless, NASA, in cooperation with the National Research Council, has set exposure limits for astronauts using this limited database. These studies do not consider the interactions of spaceflight-induced fluid shifts and CO2 exposures. In an attempt to discern whether CO2 levels affect the incidence of headache and visual disturbances in astronauts we performed a retrospective study comparing average CO2 levels and the prevalence of headache and visual disturbances. Our goal is to narrow gaps in the risk profile for in-flight CO2 exposures. Such studies can

  18. Atmospheric carbon dioxide and the global carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Trabalka, J R [ed.

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  19. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.

    Science.gov (United States)

    Pang, Hong; Masuda, Takuya; Ye, Jinhua

    2018-01-18

    The photoelectrochemical (PEC) carbon dioxide reduction process stands out as a promising avenue for the conversion of solar energy into chemical feedstocks, among various methods available for carbon dioxide mitigation. Semiconductors derived from cheap and abundant elements are interesting candidates for catalysis. Whether employed as intrinsic semiconductors or hybridized with metallic cocatalysts, biocatalysts, and metal molecular complexes, semiconductor photocathodes exhibit good performance and low overpotential during carbon dioxide reduction. Apart from focusing on carbon dioxide reduction materials and chemistry, PEC cells towards standalone devices that use photohybrid electrodes or solar cells have also been a hot topic in recent research. An overview of the state-of-the-art progress in PEC carbon dioxide reduction is presented and a deep understanding of the catalysts of carbon dioxide reduction is also given. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    Energy Technology Data Exchange (ETDEWEB)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2004-06-30

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2004, 6.26 MM lb of carbon dioxide were injected into the pilot area. Carbon dioxide injection rates averaged about 250 MCFD. Carbon dioxide was detected in one production well near the end of May. The amount of carbon dioxide produced was small during this period. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February, increasing to an average of about 2.5 B/D in May and June. Operational problems encountered during the initial stages of the flood were identified and resolved.

  1. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  2. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-04-12

    ...: Injection and Geologic Sequestration of Carbon Dioxide; Proposed Rule #0;#0;Federal Register / Vol. 75 , No...: Injection and Geologic Sequestration of Carbon Dioxide AGENCY: Environmental Protection Agency (EPA). ACTION.... \\4\\ DOE. 2008. Carbon Sequestration Atlas of the United States and Canada (Atlas II). Available at...

  3. Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid

    International Nuclear Information System (INIS)

    Yuan Dandan; Yan Cuihong; Lu Bin; Wang Hongxia; Zhong Chongmin; Cai Qinghai

    2009-01-01

    The direct synthesis of dimethyl carbonate from methanol and carbon dioxide is challenging due to the thermodynamic stability and kinetic inertness of CO 2 . Electrochemical technique can overcome this challenge by providing a method for preliminary activation of CO 2 . Electrocatalytic activation and conversion of carbon dioxide to dimethyl carbonate with platinum electrodes in a dialkylimidazolium ionic liquids-basic compounds-methanol system was conducted under ambient conditions. Among the basic compounds and ionic liquids, CH 3 OK acts as a co-catalyst and 1-butyl-3-methylimidazolium bromide (bmimBr) acts as an electrolyte. In the bmimBr-CH 3 OK-methanol system, the absence of CH 3 I and/or any other organic additives allows dimethyl carbonate to be effectively synthesized. The reaction mechanism proposed here is different from those previously reported

  4. The use of the carbon dioxide laser in head and neck lymphangioma.

    Science.gov (United States)

    White, B; Adkins, W Y

    1986-01-01

    The carbon dioxide laser has been used to treat various lesions of the head and neck, ranging from carcinomas to hemangiomas, and even including tatoos. A search of the literature does not reveal any reports of the carbon dioxide laser being used to treat lymphangioma. This report discusses the efficacy of treating lymphangioma of the air and food passages with the carbon dioxide laser, and presents three patients who have been treated in this fashion-two for palliation and one for cure.

  5. New equipment to prevent carbon dioxide rebreathing during eye surgery under retrobulbar anaesthesia

    OpenAIRE

    Schlager, A; Staud, H.

    1999-01-01

    BACKGROUND—Carbon dioxide concentration under ophthalmic drapes increases during eye surgery under local anaesthesia. A new prototype has been designed which combines continuous suction of carbon dioxide enriched air and continuous oxygen insufflation under ophthalmic drapes to prevent carbon dioxide accumulation in spontaneously breathing patients undergoing cataract surgery.
METHODS—In a prospective randomised single blind study the effectiveness of this new prototype was examined in 50 unp...

  6. Process systems engineering issues and applications towards reducing carbon dioxide emissions through conversion technologies

    DEFF Research Database (Denmark)

    Roh, Kosan; Frauzem, Rebecca; Gani, Rafiqul

    2016-01-01

    This paper reviews issues and applications for design of sustainable carbon dioxide conversion processes, specifically through chemical conversion, and the integration of the conversion processes with other systems from a process systems engineering (PSE) view-point. Systematic and computer...... conversion processes with other systems including coexisting infrastructure and carbon dioxide sources is described.Then, the importance of PSE based studies for such application is discussed. Finally, some perspectives on the status and future directions of carbon dioxide conversion technology...

  7. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    OpenAIRE

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    2016-01-01

    As concerns about the environment are growing, new efforts are needed to achieve more sustainable processes. One such environmental concern is global warming, which is primarily caused by the greenhouse effect or the increase in concentration of greenhouse gases [1]. The most significant greenhouse gases are carbon dioxide, methane and nitrous oxide, of which carbon dioxide is the highest constituent at 82%. Furthermore, the amount of carbon dioxide emissions is growing with time. These trend...

  8. Utilisation of flue gases from biofuels in greenhouses as carbon dioxide source

    International Nuclear Information System (INIS)

    Kuopanportti, H.; Rissanen, R.; Vuollet, A.; Kanniainen, T.; Tikka, A.; Ramm-Chmidt, L.; Seppaelae, R.; Piira, T.

    2006-01-01

    The objectives of the project is to develop technologies by which the flue gases from burning bio fuels and peat can be purified for used in green houses as a low cost source of carbon dioxide. Traditionally carbon dioxide has been produced by burning propane or natural gas or by injecting bottled carbon dioxide gas directly into the green house. The new methods should be more affordable than the present ones. (orig.)

  9. Life cycle study. Carbon dioxide emissions lower in electric heating than in oil heating

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, A.; Jaervinen, P.; Nikula, A.

    1996-11-01

    A primary objective of energy conservation is to cut carbon dioxide emissions. A comparative study on the various heating forms, based on the life cycle approach, showed that the carbon dioxide emissions resulting form heating are appreciably lower now that electric heating has become more common. The level of carbon dioxide emissions in Finland would have been millions of tonnes higher had oil heating been chosen instead of electric heating. (orig.)

  10. Effect of carbon dioxide in carbonated drinks on linguapalatal swallowing pressure.

    Science.gov (United States)

    Moritaka, Hatsue; Kitade, Masami; Sawamura, Shin-ichi; Takihara, Takanobu; Awano, Izumi; Ono, Takahiro; Tamine, Kenichi; Hori, Kazuhiro

    2014-02-01

    This study aimed to investigate the influence of carbonated drinks with gas volumes (GV) of 0, 1.5, and 2.7 on linguapalatal swallowing pressure, intraoral carbonation perception, and maximum velocity of a bolus through the pharynx in healthy volunteers (N = 20, all female, age range; 20-21 years). The volunteers swallowed a 12-mL drink in the natural state. Linguapalatal swallowing pressure was measured using a special sensor sheet, and maximum velocity of the bolus through the pharynx was measured using ultrasonic diagnostic imaging equipment. Peak magnitude, integrated value, and duration of linguapalatal swallowing pressure and maximum velocity of a liquid bolus through the pharynx increased with an increase in carbon dioxide content in the carbonated drink. The total integrated values of carbonated drinks with GV of 1.5 and 2.7 were larger than that of the drink without carbon dioxide. These results suggest that the carbon dioxide dissolved in carbonated drinks influences the activity of taste receptors in the mouth and results in neuromotor responses.

  11. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  12. Yeast-based microporous carbon materials for carbon dioxide capture.

    Science.gov (United States)

    Shen, Wenzhong; He, Yue; Zhang, Shouchun; Li, Junfen; Fan, Weibin

    2012-07-01

    A hierarchical microporous carbon material with a Brunauer-Emmett-Teller surface area of 1348 m(2) g(-1) and a pore volume of 0.67 cm(3) g(-1) was prepared from yeast through chemical activation with potassium hydroxide. This type of material contains large numbers of nitrogen-containing groups (nitrogen content >5.3 wt%), and, consequently, basic sites. As a result, this material shows a faster adsorption rate and a higher adsorption capacity of CO(2) than the material obtained by directly carbonizing yeast under the same conditions. The difference is more pronounced in the presence of N(2) or H(2)O, showing that chemical activation of discarded yeast with potassium hydroxide could afford high-performance microporous carbon materials for the capture of CO(2). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    Science.gov (United States)

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Oxygen Recovery via Carbon Dioxide Electrolysis with Microtubular Solid Oxide Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon dioxide reduction is considered a major shortcoming for the current Atmosphere Revitalization System. Novel technologies are desired so that the oxygen...

  15. Removal of carbon dioxide in reprocessing spent nuclear fuel off gas by adsorption

    International Nuclear Information System (INIS)

    Fukumatsu, Teruki; Munakata, Kenzo; Tanaka, Kenji; Yamatsuki, Satoshi; Nishikawa, Masabumi

    1998-01-01

    The off gas produced by reprocessing spent nuclear fuel includes various radioactivities and these nuclei should be removed. In particular, 14 C mainly released as the form of carbon dioxide is one of the most required gaseous radioactivities to be removed because it has long a half-life. One of the methods to remove gaseous nuclei is the use of adsorption technique. The off gas contains water vapor which influences adsorption process of carbon dioxide. In this report, behavior of adsorption of carbon dioxide on various adsorbent and influence on adsorption behavior of carbon dioxide by containing water vapor are discussed. (author)

  16. Synthesis and characterization of zwitterionic carbon dioxide fixing reagents

    DEFF Research Database (Denmark)

    Mikkelsen, Mette; Jørgensen, Mikkel; Krebs, Frederik C

    2010-01-01

    The synthesis of three amine-based carbon dioxide fixing reagents is presented. The reagents were designed so that they would be able to bind CO2 reversibly through the formation of the well known carbamates that was stabilized through forming a zwitterion. CO2 fixing experiments were performed...... with 13CO2 labeling and medium pressure NMR. The experiments showed that two of the three reagents were able to form carbamates and thus bind CO2. In addition we investigated this particular class of molecules for the possible formation of neutrally charged spiro compounds and we show that these did...

  17. Atlas of high resolution infrared spectra of carbon dioxide

    Science.gov (United States)

    Rinsland, C. P.; Benner, D. C.; Devi, V. M.; Ferry, P. S.; Sutton, C. H.; Richardson, D. J.

    1984-01-01

    A long path, low pressure laboratory spectrum of carbon dioxide is presented for the spectral region 1830 to 2010/cm. The data were recorded at 0.01/cm resolution and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex at Kitt Peak National Observatory. A list of positions and assignments is given for the 1038 lines observed in this region. A total of 30 bands and subbands of 12C1602, 13C1602, 12C160180, 12C160170, and 13C160180 were observed. Previously announced in STAR as N83-19598

  18. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  19. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80......% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly...

  20. TIR-1 carbon dioxide laser system for fusion

    Science.gov (United States)

    Adamovich, V. A.; Anisimov, V. N.; Afonin, E. A.; Baranov, V. Iu.; Borzenko, V. L.; Kozochkin, S. M.; Maliuta, D. D.; Satov, Iu. A.; Sebrant, A. Iu.; Smakovski, Iu. B.

    1980-03-01

    The paper examines the TIR-1 carbon dioxide laser system for fusion. The current efforts are concentrated on (1) the microsecond laser pulse plasma heating in solenoids and theta pinches, and (2) nanosecond CO2 laser utilization for inertial confinement fusion. The TIR-1 system was designed to develop nanosecond CO2 laser technology and to study laser-target interaction at 10 microns. This system consists of an oscillator-preamplifier that produces about 1-nsec laser pulse with an energy contrast ratio of 1 million, a large triple-pass amplifier, and a target chamber with diagnostic equipment.

  1. Recent progress in biocatalysis using supercritical carbon dioxide.

    Science.gov (United States)

    Matsuda, Tomoko

    2013-03-01

    The latest advances in biocatalysis using supercritical carbon dioxide (scCO(2)) are reviewed. Stability and stabilization methodologies of enzymes in scCO(2) as well as reactions for organic synthesis are described. Especially, varieties of examples for lipase-catalyzed synthesis of chiral compounds using scCO(2) are given. Furthermore, asymmetric reduction by alcohol dehydrogenase in scCO(2) and carboxylation by decarboxylase in scCO(2) are also introduced. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Carbon dioxide stripping in aquaculture -- part III: model verification

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    Based on conventional mass transfer models developed for oxygen, the use of the non-linear ASCE method, 2-point method, and one parameter linear-regression method were evaluated for carbon dioxide stripping data. For values of KLaCO2 down at higher values of KLaCO2. How to correct KLaCO2 for gas phase enrichment remains to be determined. The one-parameter linear regression model was used to vary the C*CO2 over the test, but it did not result in a better fit to the experimental data when compared to the ASCE or fixed C*CO2 assumptions.

  3. New and future developments in catalysis activation of carbon dioxide

    CERN Document Server

    Suib, Steven L

    2013-01-01

    New and Future Developments in Catalysis is a package of books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. This volume presents a complete picture of all carbon dioxide (CO2) sources, outlines the environmental concerns regarding CO2, and critica

  4. Renewable methane generation from carbon dioxide and sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Steinlechner, Christoph; Junge, Henrik [Leibniz Institut fuer Katalyse, Universitaet Rostock e.V., Rostock (Germany)

    2018-01-02

    The direct approach: Methane is a potential key player in the world's transition to a more sustainable energy future. The direct conversion of carbon dioxide into methane is highly desirable to lower the concentration of CO{sub 2} in the atmosphere and also to store renewable energy. This Highlight describes the first homogeneous system for the light-driven conversion of CO{sub 2} into CH{sub 4}. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Extraction of bixin from annatto seeds using supercritical carbon dioxide

    OpenAIRE

    Silva,G. F.; Gamarra,Felix M. C.; Oliveira,A. L.; Cabral,F. A.

    2008-01-01

    The solubility of 93% pure bixin in supercritical carbon dioxide (SC-CO2) and of the bixin present in annatto seeds (Bixa orellana L.) was measured. For the seeds, the measurements were made in a temperature range from 30 to 50ºC and pressure between 10 and 35 MPa and for the pure bixin, at 40ºC from 10 to 35 MPa. The main pigments of annatto seeds are bixin and norbixin, but the extracts only showed the presence of cis and trans-bixin, indicating that norbixin is not soluble in SC-CO2. The a...

  6. Modeling seasonal changes of atmospheric carbon dioxide and carbon 13

    International Nuclear Information System (INIS)

    Gillette, D.A.; Box, E.O.

    1986-01-01

    A two-dimensional (latitude-altitude) model of atmospheric CO 2 and δ 13 C was constructed to simulate some features of seasonal carbon cycle fluctuations. The model simulates air-sea exchange, atmospheric diffusion, and fossil fuel carbon sources, which are functions of time and latitude. In addition, it uses biosphere-atmosphere fluxes of carbon that are based on global-scale biological models of vegetation growth and decay. Results of the model show fair agreement with observational results for CO 2 and δ 13 C seasonal fluctuations. Their model results have far northern fluctuations with smaller amplitudes than are observed. Analysis of sources of CO 2 change at given latitudes shows that, for far southern latitudes, southern hemisphere biospheric fluxes are dominant in affecting the seasonal CO 2 fluctuations. Long-term decrease of δ 13 C for the model is larger than for observations. This may be due to errors in the formulation for oceanic fluxes for 13 C in the model or to a net uptake of carbon by the biosphere

  7. Carbon dioxide adsorption in chemically activated carbon from sewage sludge.

    Science.gov (United States)

    de Andrés, Juan Manuel; Orjales, Luis; Narros, Adolfo; de la Fuente, María del Mar; Encarnación Rodríguez, María

    2013-05-01

    In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBA(T16)). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBA(T16) was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBA(T16) (average pore diameter of 56.5 angstroms). The Brunauer-Emmett-Teller (BET) surface area of the SBA(T16) was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBA(T16) adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBA(T16) where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.

  8. The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration

    Directory of Open Access Journals (Sweden)

    Marc Libault

    2014-01-01

    Full Text Available Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2. In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  9. The costs of different energy taxes for stabilizing U.S. carbon dioxide emissions: An application of the Gemini model

    International Nuclear Information System (INIS)

    Leary, N.A.; Scheraga, J.D.

    1993-01-01

    In the absence of policies to mitigate emissions of carbon dioxide, US emissions will grow substantially over the period 1990 to 2030. One option for mitigation of carbon dioxide emissions is to tax energy use. For example, fossil energy might be taxed according to its carbon content, heating value, or market value. Using a partial equilibrium model of US energy markets that combines detailed representation of technological processes with optimizing behavior by energy users and suppliers, the authors compare the costs of using carbon, Btu, and ad valorem taxes as instruments to implement a policy of emission stabilization. The authors also examine the differential impacts of these taxes on the mix of primary energy consumed in the US. The carbon tax induces the substitution of renewables and natural gas for coal and stabilizes carbon dioxide emissions at an estimated annual cost of $125 billion. The Btu tax induces the substitution of renewables for coal, but does not encourage the use of natural gas. The estimated cost of stabilization with the Btu tax is $210 billion per year. The ad valorem tax, like the Btu tax, does not encourage the substitution of natural gas for coal. It also causes a significant shift away from oil in comparison to the carbon tax. The cost of stabilizing emissions with the ad valorem tax is estimated at $450 billion per year

  10. Poly(urethane–carbonate)s from Carbon Dioxide

    KAUST Repository

    Chen, Zuliang

    2017-03-09

    A one-pot, two-step protocol for the direct synthesis of polyurethanes containing few carbonate linkages through polycondensation of diamines, dihalides, and CO2 in the presence of Cs2CO3 and tetrabutylammonium bromide is described. The conditions were optimized by studying the polycondensation of CO2 with 1,6-hexanediamine and 1,4-dibromobutane as model monomers. Then, various diamines and dihalides were tested under optimal conditions. Miscellaneous samples of such carbonate-containing polyurethanes exhibiting molar masses from 6000 to 22 000 g/mol (GPC) and yields higher than 85% were obtained. The thermal properties of such polyurethanes were unveiled by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA): they were found very similar to those of traditional polyurethanes obtained by diisocyanates + diols polycondensation.

  11. Overcoming Barriers to Successfully Commercializing Carbon Dioxide Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Marvin, E-mail: marvin.kant@tu-berlin.de [Department of Entrepreneurship and Innovation Management, Technische Universität Berlin, Berlin (Germany)

    2017-09-13

    The successful transition to a low-carbon economy hinges on innovative solutions and collaborative action on a global scale. Sustainable entrepreneurship is thereby recognized as a key driver in the creation and transformation of ecologically and socially sustainable economic systems. The purpose of this article is to contribute to this topic by understanding commercialization barriers for strong sustainability-oriented new technology ventures and to derive recommendations to overcome them. A qualitative multilevel approach is applied to identify barriers and drivers within the internal dynamic capabilities of the organization and within the organization’s external stakeholders. A model of barriers has been developed based on semi-structured interviews with new carbon dioxide utilization ventures and associated industry players in Canada, the USA, and the European Economic Area. Resulting recommendations to facilitate the (re-)design of a dedicated support system are proposed on four levels: (a) actors, (b) resources, (c) institutional settings, and (d) the coordination of the support system.

  12. Overcoming Barriers to Successfully Commercializing Carbon Dioxide Utilization

    International Nuclear Information System (INIS)

    Kant, Marvin

    2017-01-01

    The successful transition to a low-carbon economy hinges on innovative solutions and collaborative action on a global scale. Sustainable entrepreneurship is thereby recognized as a key driver in the creation and transformation of ecologically and socially sustainable economic systems. The purpose of this article is to contribute to this topic by understanding commercialization barriers for strong sustainability-oriented new technology ventures and to derive recommendations to overcome them. A qualitative multilevel approach is applied to identify barriers and drivers within the internal dynamic capabilities of the organization and within the organization’s external stakeholders. A model of barriers has been developed based on semi-structured interviews with new carbon dioxide utilization ventures and associated industry players in Canada, the USA, and the European Economic Area. Resulting recommendations to facilitate the (re-)design of a dedicated support system are proposed on four levels: (a) actors, (b) resources, (c) institutional settings, and (d) the coordination of the support system.

  13. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

    Science.gov (United States)

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O.; Liu, Jie

    2017-01-01

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C. PMID:28230100

  14. Carbon dioxide capture using resin-wafer electrodeionization

    Energy Technology Data Exchange (ETDEWEB)

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  15. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  16. Carbon Dioxide Emissions: 17 Years and Still Talking

    International Nuclear Information System (INIS)

    Meyer, Ch.

    2010-01-01

    This paper, written in French and in English, examines how the figures have changed from Kyoto base year 1990 up to 2007, before looking at certain countries' proposals for the future of their carbon dioxide emissions. Statistics are given concerning the emissions changes in various countries (or groups of countries) but also their developments in regards to the economy and energy use. Changes in CO 2 emissions, changes in the gross domestic product of a country, its CO 2 emissions per capita, its energy intensity (the ratio of energy use to the monetary value of GDP) and its carbon intensity of energy use as well as population change, are presented. The main countries considered are: United States, European Union, China, Japan, India, Brazil, South Africa and Russia

  17. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation.

    Science.gov (United States)

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O; Liu, Jie

    2017-02-23

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C.

  18. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    Science.gov (United States)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

  19. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Alan F. Talhelm; Kurt S. Pregitzer; Mark E. Kubiske; Donald R. Zak; Courtney E. Campany; Andrew J. Burton; Richard E. Dickson; George R. Hendrey; J. G. Isebrands; Keith F. Lewin; John Nagy; David F. Karnosky

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment...

  20. Potential for sequestration of carbon dioxide in South Africa carbon capture and storage in South Africa

    CSIR Research Space (South Africa)

    Hietkamp, S

    2008-11-01

    Full Text Available CSIR was commissioned by DME to compile a report on the potential for sequestration of carbon dioxide in South Africa in 2004. This report was the first attempt to obtain a picture of this potential. In the paper the main findings of the 2004 report...

  1. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide

    Science.gov (United States)

    Jones, Daniel C.; Ito, Takamitsu; Takano, Yohei; Hsu, Wei-Ching

    2014-11-01

    The exchange of carbon dioxide between the ocean and the atmosphere tends to bring waters within the mixed layer toward equilibrium by reducing the partial pressure gradient across the air-water interface. However, the equilibration process is not instantaneous; in general, there is a lag between forcing and response. The timescale of air-sea equilibration depends on several factors involving the depth of the mixed layer, wind speed, and carbonate chemistry. We use a suite of observational data sets to generate climatological and seasonal composite maps of the air-sea equilibration timescale. The relaxation timescale exhibits considerable spatial and seasonal variations that are largely set by changes in mixed layer depth and wind speed. The net effect is dominated by the mixed layer depth; the gas exchange velocity and carbonate chemistry parameters only provide partial compensation. Broadly speaking, the adjustment timescale tends to increase with latitude. We compare the observationally derived air-sea gas exchange timescale with a model-derived surface residence time and a data-derived horizontal transport timescale, which allows us to define two nondimensional metrics of equilibration efficiency. These parameters highlight the tropics, subtropics, and northern North Atlantic as regions of inefficient air-sea equilibration where carbon anomalies are relatively likely to persist. The efficiency parameters presented here can serve as simple tools for understanding the large-scale persistence of air-sea disequilibrium of CO2 in both observations and models.

  2. Ammonia and Carbon Dioxide Concentrations in a Layer House

    Directory of Open Access Journals (Sweden)

    Ilker Kilic

    2014-08-01

    Full Text Available Higher concentrations of ammonia (NH3 and carbon dioxide (CO2 in animal barns can negatively affect production and health of animals and workers. This paper focuses on measurements of summer concentrations of ammonia (NH3 and carbon dioxide (CO2 in a naturally ventilated laying henhouse located at an egg production facility in Bursa region, western Turkey. Also, indoor and ambient environmental conditions such as temperature and relative humidity were measured simultaneously with pollutant gas concentrations. The average NH3 concentrations during summer of 2013 was 8.05 ppm for exhaust and 5.42 ppm for inlet while average CO2 concentration was 732 ppm for exhaust and 625 ppm for inlet throughout summer. The overall minimum, average and maximum values and humidity were obtained as 16.8°C, 24.72°C, and 34.71°C for indoor temperature and 33.64%, 63.71%, and 86.18% for relative humidity. The lowest exhaust concentrations for NH3 and CO2 were 6.98 ppm and 609 ppm, respectively. They were measured in early morning at the maximum diurnal ventilation rate in July 2013 and August 2013. The highest concentrations were 10.58 ppm for NH3 and 904 ppm for CO2 recorded in the afternoon when the ventilation rate was the lowest in June 2013.

  3. Transcutaneous oxygen and carbon dioxide monitoring in intensive care.

    Science.gov (United States)

    Marsden, D; Chiu, M C; Paky, F; Helms, P

    1985-01-01

    Transcutaneous oxygen (TcPo2) and carbon dioxide (TcPco2) tensions were compared with arterial values in 23 children aged 4 months to 14 years, all requiring some form of respiratory support, but not in shock. Electrodes were placed on the upper chest and were heated to 45 degrees C. For TcPo2 and arterial oxygen (Pao2) a tight linear correlation over the range 6 to 14 kPa was found. Arterial carbon dioxide (Paco2) ranged between 2.63 and 6.8 kPa, and over this range a linear regression adequately described the relation of TcPco2 to Paco2. No effects of age were found for the relation between TcPo2 and Pao2. Over a four hour period, the mean ratio TcPo2/Pao2 rose significantly from 0.96 to 1.04, while the mean ratio of TcPco2/Paco2 fell from 1.65 to 1.62. Five children developed superficial burns which were still present at 48 hours. In children who require respiratory support but are not in shock, TcPo2 and TcPco2 bear a constant and predictable relation to Pao2 and Paco2, and can predict arterial values within clinically acceptable tolerances. PMID:3937497

  4. Performance of carbon dioxide vent for direct methanol fuel cells

    Science.gov (United States)

    Prakash, Shruti; Kohl, Paul A.

    Direct methanol fuel cells have potentially high energy density if the balance of plant and fuel losses can be kept to a minimum. CO 2 accumulation in the fuel tank can lower the efficiency and performance of closed-tank methanol fuel cells. This report discusses the implementation of a passive CO 2 vent fabricated with poly(1-trimethyl silyl propyne) and 1,6-divinylperfluorohexane. The performance of the membrane as a selective vent for carbon dioxide in the presence of methanol has been studied at various operating conditions. First, the selectivity of the vent membrane improved with temperature. Second, the activation energy for permeation through the polymer membrane corresponded to diffusion controlled transport of CO 2 and sorption controlled transport for methanol vapor. The activation energy for CO 2 transport through the poly(1-trimethyl silyl propyne) and 1,6-divinylperfluorohexane membrane was less than that for a pure poly(1-trimethyl silyl propyne) membrane. Finally, the polymer had a high selectivity for carbon dioxide compared to both liquid and vapor phase methanol.

  5. Partitioning Water Vapor and Carbon Dioxide Fluxes using Correlation Analysis

    Science.gov (United States)

    Scanlon, T. M.

    2008-12-01

    A variety of methods are currently available to partition water vapor fluxes (into components of transpiration and direct evaporation) and carbon dioxide fluxes (into components of photosynthesis and respiration), using chambers, isotopes, and regression modeling approaches. Here, a methodology is presented that accounts for correlations between high-frequency measurements of water vapor (q) and carbon dioxide (c) concentrations being influenced by their non-identical source-sink distributions and the relative magnitude of their constituent fluxes. Flux-variance similarity assumptions are applied separately to the stomatal and the non-stomatal exchange, and the flux components are identified by considering the q-c correlation. Water use efficiency for the vegetation, and how it varies with respect to vapor pressure deficit, is the only input needed for this approach that uses standard eddy covariance measurements. The method is demonstrated using data collected over a corn field throughout a growing season. In particular, the research focuses on the partitioning of the water flux with the aim of improving how direct evaporation is handled in soil-vegetation- atmosphere transfer models over the course of wetting and dry-down cycles.

  6. Carbon Dioxide Information Analysis Center: FY 1992 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

    1993-03-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  7. Convergence in carbon dioxide emissions among industrialised countries revisited

    International Nuclear Information System (INIS)

    Romero-Avila, Diego

    2008-01-01

    This paper examines the existence of stochastic and deterministic convergence of carbon dioxide (CO 2 ) emissions in 23 countries over the period 1960-2002. For that purpose, we conduct unit root testing by employing the recently developed panel stationarity test of Carrion-i-Silvestre et al. [Carrion-i-Silvestre, J-L, del Barrio-Castro, T., Lopez-Bazo, E., 2005. Breaking the panels: An application to the GDP per capita. Econometrics Journal 8, 159-175] which assumes a highly flexible trend function by incorporating an unknown number of structural breaks. We accommodate general forms of cross-sectional dependence as well as control for finite-sample bias through bootstrap methods. Overall, our analysis provides strong evidence supporting both stochastic and deterministic convergence in CO 2 emissions, thus confirming Strazicich and List [Strazicich, M.C., List, J.A., 2003. Are CO 2 emission levels converging among industrial countries? Environmental and Resource Economics 24, 263-271] and Westerlund and Basher [Westerlund, J., Basher, S.A., 2007. Testing for convergence in carbon dioxide emissions using a century of panel data. Environmental and Resource Economics, forthcoming] findings of convergence

  8. Carbon Dioxide Information Analysis Center: FY 1991 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  9. Carbon Dioxide Information Analysis Center: FY 1991 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  10. Testing a Regenerative Carbon Dioxide and Moisture Removal Technology

    Science.gov (United States)

    Barta, Daniel J.; Button, Amy; Sweterlitsch, Jeffrey J.; Curley, Suzanne

    2010-01-01

    The National Aeronautics and Space Administration supported the development of a new vacuum-desorbed regenerative carbon dioxide and humidity control technology for use in short duration human spacecraft. The technology was baselined for use in the Orion Crew Exploration Vehicle s Environmental Control and Life Support System (ECLSS). Termed the Carbon Dioxide And Moisture Removal Amine Swing-bed (CAMRAS), the unit was developed by Hamilton Sundstrand and has undergone extensive testing at Johnson Space Center. The tests were performed to evaluate performance characteristics under range of operating conditions and human loads expected in future spacecraft applications, as part of maturation to increase its readiness for flight. Early tests, conducted at nominal atmospheric pressure, used human metabolic simulators to generate loads, with later tests making us of human test subjects. During these tests many different test cases were performed, involving from 1 to 6 test subjects, with different activity profiles (sleep, nominal and exercise). These tests were conducted within the airlock portion of a human rated test chamber sized to simulate the Orion cabin free air volume. More recently, a test was completed that integrated the CAMRAS with a simulated suit loop using prototype umbilicals and was conducted at reduced atmospheric pressure and elevated oxygen levels. This paper will describe the facilities and procedures used to conduct these and future tests, and provide a summary of findings.

  11. Carbon dioxide flux measurements from a coastal Douglas-fir forest floor

    International Nuclear Information System (INIS)

    Drewitt, G.B.

    2002-01-01

    This thesis examined the process that affects the exchange of carbon between the soil and the atmosphere with particular attention to the large amounts of carbon stored in soils in the form of decaying organic matter. This forest floor measuring study was conducted in 2000 at a micro-meteorological tower flux site in a coastal temperature Douglas-fir forest. The measuring study involved half hourly measurements of both carbon dioxide and below-ground carbon dioxide storage. Measurements were taken at 6 locations between April and December to include a large portion of the growing season. Eddy covariance (EC) measurements of carbon dioxide flux above the forest floor over a two month period in the summer and the autumn were compared with forest floor measurements. Below-ground carbon dioxide mixing ratios of soil air were measured at 6 depths between 0.02 to 1 m using gas diffusion probes and a syringe sampling method. Maximum carbon dioxide fluxes measured by the soil chambers varied by a factor of 3 and a high spatial variability in soil carbon dioxide flux was noted. Forest floor carbon dioxide fluxes measured by each of the chambers indicated different sensitivities to soil temperature. Hysteresis in the flux temperature relationship over the year was evident. Reliable below-canopy EC measurements of the forest floor carbon dioxide flux were difficult to obtain because of the every low wind speeds below the forest canopy. The amount of carbon dioxde present in the soil increased rapidly with depth near the surface but less rapidly deeper in the soil. It was suggested that approximately half of the carbon dioxide produced below-ground comes from between the soil surface and the first 0.15 m of depth. Carbon dioxide fluxes from the floor of a Douglas-fir forest were found to be large compared to other, less productive ecosystems

  12. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.

    Science.gov (United States)

    Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia

    2017-12-01

    Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Technical and economical evaluation of carbon dioxide capture and conversion to methanol process

    Science.gov (United States)

    Putra, Aditya Anugerah; Juwari, Handogo, Renanto

    2017-05-01

    Phenomenon of global warming, which is indicated by increasing of earth's surface temperature, is caused by high level of greenhouse gases level in the atmosphere. Carbon dioxide, which increases year by year because of high demand of energy, gives the largest contribution in greenhouse gases. One of the most applied solution to mitigate carbon dioxide level is post-combustion carbon capture technology. Although the technology can absorb up to 90% of carbon dioxide produced, some worries occur that captured carbon dioxide that is stored underground will be released over time. Utilizing captured carbon dioxide could be a promising solution. Captured carbon dioxide can be converted into more valuable material, such as methanol. This research will evaluate the conversion process of captured carbon dioxide to methanol, technically and economically. From the research, it is found that technically methanol can be made from captured carbon dioxide. Product gives 25.6905 kg/s flow with 99.69% purity of methanol. Economical evaluation of the whole conversion process shows that the process is economically feasible. The capture and conversion process needs 176,101,157.69 per year for total annual cost and can be overcome by revenue gained from methanol product sales.

  14. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.

    Science.gov (United States)

    Wang, Jitong; Chen, Huichao; Zhou, Huanhuan; Liu, Xiaojun; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75 degrees C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2. In addition, the developed sorbent could be regenerated easily at 100 degrees C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  15. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    Science.gov (United States)

    A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.

  16. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  17. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Injection of carbon dioxide (CO2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO2 and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO2-H2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO2) the viscosity of carbon

  18. Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization

    NARCIS (Netherlands)

    Huang, N.; Chen, X.; Krishna, R.; Jiang, D.

    2015-01-01

    Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks' dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a

  19. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension

    DEFF Research Database (Denmark)

    Sørensen, Line C; Brage-Andersen, Lene; Greisen, Gorm

    2011-01-01

    The harmful effect of hypocapnia on the neonatal brain emphasizes the importance of monitoring arterial carbon dioxide tension (PaCO2). Transcutaneous monitoring of carbon dioxide (tcPCO2) reduces the need for arterial blood sampling. Drawbacks are high electrode temperature causing risks of skin...

  20. The importance of groundwater-derived carbon dioxide in the restoration of small Sphagnum bogs

    NARCIS (Netherlands)

    Patberg, Wouter; Baaijens, Gert Jan; Smolders, Alfons J. P.; Grootjans, Ab P.; Elzenga, J. Theo M.

    Essential for successful bog restoration is the reestablishment of Sphagnum mosses. High carbon dioxide availability has been shown to be of great importance for the growth of Sphagnum mosses. In well-developed Sphagnum bogs large amounts of carbon dioxide are produced by (an)aerobic decomposition

  1. DOUBLE-SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    International Nuclear Information System (INIS)

    OGDEN DM; KIRCH NW

    2007-01-01

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed

  2. Carbon dioxide rebreathing caused by deformed silicon leaflet in the expiratory unidirectional valve

    Directory of Open Access Journals (Sweden)

    Arumugam Vasudevan

    2013-01-01

    Full Text Available Rebreathing of carbon dioxide caused by incompetent ′cage and disc′ unidirectional valves has been reported earlier. Some manufacturers have changed the design of unidirectional valves to ′flexible leaflets′. We report a series of cases where a deformed membrane leaflet in expiratory unidirectional valves led to rebreathing of carbon dioxide.

  3. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  4. Varmeovergang og trykfald ved fordampning af kuldioxid (Heat Transfer and Pressure Drop for Boiling Carbon Dioxide)

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1999-01-01

    Heat transfer and pressure drop for carbon dioxide, pure and mixed with oil, has the been measured for flow in pipe. The measured heat transfer coefficient for pure carbon dioxide is much higher than the value calculated with the Shah correlation. With oil even higher heat transfer coefficient ha...

  5. Phase diagram of methane and carbon dioxide hydrates computed by Monte Carlo simulations

    NARCIS (Netherlands)

    Waage, Magnus H.; Vlugt, T.J.H.; Kjelstrup, Signe

    2017-01-01

    Molecular Monte Carlo simulations are used to compute the three-phase (hydrate-liquid water-gas) equilibrium lines of methane and carbon dioxide hydrates, using the Transferable Potentials for Phase Equilibria model for carbon dioxide, the united atom optimized potential for liquid simulations

  6. The production of carbon dioxide from flue gas by membrane gas absorption

    NARCIS (Netherlands)

    Feron, P.H.M.; Jansen, A.E.

    1997-01-01

    The use of membrane gas absorption for carbon dioxide production from flue gases is discussed with special reference to the combined supply of heat and carbon dioxide to greenhouses. Novel absorption liquids are introduced which show an improved performance in terms of system stability and mass

  7. 21 CFR 862.1160 - Bicarbonate/carbon dioxide test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bicarbonate/carbon dioxide test system. 862.1160 Section 862.1160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1160 Bicarbonate/carbon dioxide...

  8. Estimating diesel fuel consumption and carbon dioxide emissions from forest road construction

    Science.gov (United States)

    Dan Loeffler; Greg Jones; Nikolaus Vonessen; Sean Healey; Woodam Chung

    2009-01-01

    Forest access road construction is a necessary component of many on-the-ground forest vegetation treatment projects. However, the fuel energy requirements and associated carbon dioxide emissions from forest road construction are unknown. We present a method for estimating diesel fuel consumed and related carbon dioxide emissions from constructing forest roads using...

  9. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Science.gov (United States)

    2010-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  10. Carbon Dioxide (CO2) in Blood: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... enable JavaScript. What is a Carbon Dioxide (CO2) Blood Test? Carbon dioxide (CO2) is an odorless, colorless gas. ... pressure . Why do I need a CO2 in blood test? Your health care provider may have ordered a ...

  11. CQUESTRA, a risk and performance assessment code for geological sequestration of carbon dioxide

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    2008-01-01

    A computationally efficient semi-analytical code, CQUESTRA, has been developed for probabilistic risk assessment and rapid screening of potential sites for geological sequestration of carbon dioxide. The rate of dissolution and leakage from a trapped underground pool of carbon dioxide is determined. The trapped carbon dioxide could be mixed with hydrocarbons and other components to form a buoyant phase. The program considers potential mechanisms for escape from the geological formations such as the movement of the buoyant phase through failed seals in wellbores, the annulus around wellbores and through open fractures in the caprock. Plume animations of dissolved carbon dioxide in formation water around the wellbores are provided. Solubility, density and viscosity of the buoyant phase are determined by equations of state. Advection, dispersion, diffusion, buoyancy, aquifer flow rates and local formation fluid pressure are taken into account in the modeling of the carbon dioxide movement. Results from a hypothetical example simulation based on data from the Williston basin near Weyburn, Saskatchewan, indicate that this site is potentially a viable candidate for carbon dioxide sequestration. Sensitivity analysis of CQUESTRA indicates that criteria such as siting below aquifers with large flow rates and siting in reservoirs having fluid pressure below the pressure of the formations above can promote complete dissolution of the carbon dioxide during movement toward the surface, thereby preventing release to the biosphere. Formation of very small carbon dioxide bubbles within the fluid in the wellbores can also lead to complete dissolution

  12. Evaluation of a membrane based carbon dioxide absorber for spacecraft ECLS applications

    NARCIS (Netherlands)

    Feron, P.H.M.; Eckhard, F.; Witt, J.

    1996-01-01

    In an on-going harmonized ESA/NIVR project, performed by Stork Comprimo and TNO-MEP, the removal of the carbon dioxide with membranes is studied. The use of membrane gas absorption for carbon dioxide removal is currently hampered by the fact that the commonly used alkanolamines result in leakage

  13. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v carbon dioxide concentration, but began started a constant at 30% and 40% (%v carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.

  14. High-resolution carbon dioxide concentration record 650,000-800,000 years before present

    DEFF Research Database (Denmark)

    Lüthi, Dieter; Le Floch, Martine; Bereiter, Bernhard

    2008-01-01

    Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000...

  15. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis

    International Nuclear Information System (INIS)

    Wang, Qunwei; Chiu, Yung-Ho; Chiu, Ching-Ren

    2015-01-01

    Research on the driving factors behind carbon dioxide emission changes in China can inform better carbon emission reduction policies and help develop a low-carbon economy. As one of important methods, production-theoretical decomposition analysis (PDA) has been widely used to understand these driving factors. To avoid the infeasibility issue in solving the linear programming, this study proposed a modified PDA approach to decompose carbon dioxide emission changes into seven drivers. Using 2005–2010 data, the study found that economic development was the largest factor of increasing carbon dioxide emissions. The second factor was energy structure (reflecting potential carbon), and the third factor was low energy efficiency. Technological advances, energy intensity reductions, and carbon dioxide emission efficiency improvements were the negative driving factors reducing carbon dioxide emission growth rates. Carbon dioxide emissions and driving factors varied significantly across east, central and west China. - Highlights: • A modified PDA used to decompose carbon dioxide emission changes into seven drivers. • Two models were proposed to ameliorate the infeasible occasions. • Economic development was the largest factor of increasing CO 2 emissions in China.

  16. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  17. Generation, capture, and utilization of industrial carbon dioxide.

    Science.gov (United States)

    Hunt, Andrew J; Sin, Emily H K; Marriott, Ray; Clark, James H

    2010-03-22

    As a carbon-based life form living in a predominantly carbon-based environment, it is not surprising that we have created a carbon-based consumer society. Our principle sources of energy are carbon-based (coal, oil, and gas) and many of our consumer goods are derived from organic (i.e., carbon-based) chemicals (including plastics, fabrics and materials, personal care and cleaning products, dyes, and coatings). Even our large-volume inorganic-chemicals-based industries, including fertilizers and construction materials, rely on the consumption of carbon, notably in the form of large amounts of energy. The environmental problems which we now face and of which we are becoming increasingly aware result from a human-induced disturbance in the natural carbon cycle of the Earth caused by transferring large quantities of terrestrial carbon (coal, oil, and gas) to the atmosphere, mostly in the form of carbon dioxide. Carbon is by no means the only element whose natural cycle we have disturbed: we are transferring significant quantities of elements including phosphorus, sulfur, copper, and platinum from natural sinks or ores built up over millions of years to unnatural fates in the form of what we refer to as waste or pollution. However, our complete dependence on the carbon cycle means that its disturbance deserves special attention, as is now manifest in indicators such as climate change and escalating public concern over global warming. As with all disturbances in materials balances, we can seek to alleviate the problem by (1) dematerialization: a reduction in consumption; (2) rematerialization: a change in what we consume; or (3) transmaterialization: changing our attitude towards resources and waste. The "low-carbon" mantra that is popularly cited by organizations ranging from nongovernmental organizations to multinational companies and from local authorities to national governments is based on a combination of (1) and (2) (reducing carbon consumption though greater

  18. Carbon taxes, consumer demand and carbon dioxide emissions: a simulation analysis for the UK

    OpenAIRE

    Elizabeth Symons; John Proops; Philip Gay

    1994-01-01

    In this paper we examine the effects of a carbon tax, one of the possible instruments for reducing carbon dioxide (CO2) emissions. Such taxes are currently being proposed as a means of reducing CO2 emissions, motivated by concerns about the global greenhouse effect and its potential impact on global climate and sea levels (Cline, 1991) and on global economies (Nordhaus, 1991). We therefore take as our problem the reduction of CO2 emissions by the UK economy by use of a carbon tax, and the cor...

  19. Carbon nanotube growth on nanozirconia under strong cathodic polarization in steam and carbon dioxide

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Zhang, Wei

    2014-01-01

    Growth of carbon nanotubes (CNTs) catalyzed by zirconia nanoparticles was observed in the Ni-yttria doped zirconia (YSZ) composite cathode of a solid oxide electrolysis cell (SOEC) at approximately 875 °C during co-electrolysis of CO2 and H2O to produce CO and H 2. CNT was observed to grow under...... nanozirconia acting as a catalyst for the growth of carbon nanotubes (CNTs) during electrochemical conversion of carbon dioxide and water in a nickel-yttria- stabilized zirconia cermet under strong cathodic polarization. An electrocatalytic mechanism is proposed for the growth of the CNTs. ${{{\\rm {\\rm V...

  20. The Path of Carbon in Photosynthesis IX. Photosynthesis, Photoreduction, and the Hydrogen-Oxygen-Carbon Dioxide Dark Reaction

    Science.gov (United States)

    Badin, E. J.; Calvin, M.

    1950-02-01

    A comparison of the rates of fixation of Carbon 14 dioxide in algae for the processes of photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction has been made. For the same series of experiments, rates of incorporation of tracer carbon into the separate soluble components using the radiogram method have been determined. The mechanism of carbon dioxide uptake has been shown to occur via two distinct paths. In all cases studied, essentially the same compounds appear radioactive. The distribution with time, however, differs markedly.