WorldWideScience

Sample records for carbon dioxide lasers

  1. Carbon dioxide laser resurfacing of rhytides and photodamaged skin

    OpenAIRE

    Kelly, KM; Nelson, JS

    1998-01-01

    Carbon dioxide (CO 2 ) laser resurfacing has been used as a method to treat rhytides and photodamaged skin. This laser offers several advantages over previously utilised modalities but its use has several inherent risks. This article will review important aspects of CO 2 laser resurfacing including laser-skin interactions, patient selection, effective pre- and post-operative regimens and potential complications.

  2. A Carbon Dioxide Laser Bibliography, 1964-1969,

    Science.gov (United States)

    A bibliography concerning carbon dioxide lasers has been compiled covering the period 1964 through 1969. The chronologically listed references have also been catalogued into an author index and a subject index. (Author)

  3. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.

    1979-01-01

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  4. Carbon dioxide laser for de-epithelialization of periodontal flaps.

    Science.gov (United States)

    Centty, I G; Blank, L W; Levy, B A; Romberg, E; Barnes, D M

    1997-08-01

    Regeneration of mineralized and soft connective tissue components of the attachment apparatus is the main goal in the treatment of periodontal diseases. Often, apical migration of epithelium (long junctional epithelium) effectively prevents the formation of bone and connective tissue attachment after periodontal surgery. The purpose of the present study was to compare conventional periodontal surgery combined with carbon dioxide laser and conventional periodontal surgery alone with respect to epithelial elimination and degree of necrosis of mucoperiosteal flaps. After signing a consent form, five patients with at least two comparable bilateral periodontal defects needing pocket elimination surgery participated in this study. The investigators randomly divided each side into test and control sites. Each patient received oral hygiene instruction and initial therapy prior to surgery. At surgery, the test site received a sulcular incision and carbon dioxide laser de-epithelialization of the outer and inner aspects of the flap. The control group received reverse bevel incision only. The surgeon performed open flap debridement on all teeth. At the time of surgery, the surgeon did a biopsy of each site and submitted specimens for histologic evaluation. A matched pairs t-test was used to analyze the data. The results show significant differences between the carbon dioxide laser and reverse bevel incision with respect to sulcular (P test sites, with a predominance of plasma cells. Lining the sulcular and gingival (external) lased areas, investigators found coagulation necrosis covered by fibrin and coagulated blood. The laser appears to effectively remove epithelium at the time of surgery; however, future long-term, well-controlled quantitative histologic studies are needed to evaluate the effect of repeated carbon dioxide laser de-epithelialization of the gingival (external) surface of mucoperiosteal flaps at intervals during the healing period.

  5. Efficiency of Carbon Dioxide Fractional Laser in Skin Resurfacing.

    Science.gov (United States)

    Petrov, Andrej

    2016-06-15

    The aim of the study was to confirm the efficiency and safety of the fractional CO2 laser in skin renewal and to check the possibility of having a synergistic effect in patients who besides carbon dioxide laser are treated with PRP (platelet-rich plasma) too. The first group (Examined Group 1 or EG1) included 107 patients treated with fractional CO2 laser (Lutronic eCO2) as mono-therapy. The second group (Control Group or CG) covered 100 patients treated with neither laser nor plasma in the same period but subjected to local therapy with drugs or other physio-procedures under the existing protocols for treatment of certain diseases. The third group (Examined Group 2 or EG2) treated 25 patients with combined therapy of CO2 laser and PRP in the treatment of facial rejuvenation or treatment of acne scars. Patient's satisfaction, in general, is significantly greater in both examined groups (EG1 and EG2) (p skin is significant (χ2 = 39.41; df = 4; p skin was significantly lower in examined group (treated with laser), p = 0.0002. Multifunctional fractional carbon dioxide laser used in treatment of patients with acne and pigmentation from acne, as well as in the treatment of scars from different backgrounds, is an effective and safe method that causes statistically significant better effect of the treatment, greater patients' satisfaction, minimal side effects and statistically better response to the therapy, according to assessments by the patient and the therapist.

  6. Efficiency of Carbon Dioxide Fractional Laser in Skin Resurfacing

    Directory of Open Access Journals (Sweden)

    Andrej Petrov

    2016-05-01

    CONCLUSION: Multifunctional fractional carbon dioxide laser used in treatment of patients with acne and pigmentation from acne, as well as in the treatment of scars from different backgrounds, is an effective and safe method that causes statistically significant better effect of the treatment, greater patients’ satisfaction, minimal side effects and statistically better response to the therapy, according to assessments by the patient and the therapist.

  7. Solar pumped continuous wave carbon dioxide laser

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  8. The use of the carbon dioxide laser in head and neck lymphangioma.

    Science.gov (United States)

    White, B; Adkins, W Y

    1986-01-01

    The carbon dioxide laser has been used to treat various lesions of the head and neck, ranging from carcinomas to hemangiomas, and even including tatoos. A search of the literature does not reveal any reports of the carbon dioxide laser being used to treat lymphangioma. This report discusses the efficacy of treating lymphangioma of the air and food passages with the carbon dioxide laser, and presents three patients who have been treated in this fashion-two for palliation and one for cure.

  9. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Science.gov (United States)

    2010-04-01

    ... laser. 874.4500 Section 874.4500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear, nose...

  10. Optical performance of the Gemini carbon dioxide laser fusion system

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Hayden, J.J.; Liberman, I.

    1979-01-01

    The performance of the Gemini two beam carbon dioxide laser fusion system was recently upgraded by installation of optical components with improved quality in the final amplifier. A theoretical analysis was conducted in conjunction with measurements of the new performance. The analysis and experimental procedures, and results obtained are reported and compared. Good agreement was found which was within the uncertainties of the analysis and the inaccuracies of the experiments. The focal spot Strehl ratio was between 0.24 and 0.3 for both beams

  11. Calculation of the characteristics of carbon dioxide TEA photoionization lasers

    Energy Technology Data Exchange (ETDEWEB)

    Aver' yanov, N E; Baloshin, Yu A; Gerke, M N; Dernyatin, A I; Khurgin, Ya B

    1979-01-01

    A mathematical model is proposed for studying the characteristics of a carbon dioxide photoionization laser with pressures of the active mixture of the order of one atmosphere. The kinetics of the CO/sub 2/ molecules is described in terms of population of the group of lower vibrational levels. The part played by N/sub 2/ molecules in the general system of kinetic equations is accounted for by a harmonic oscillator model with Boltzmann population of vibrational levels and the corresponding vibrational temperature. A diagram is given of the fundamental kinetic processes in the proposed model for a TEA laser. The results of calculations are compared with a previously proposed model and with experimental data for a carbon dioxide TEA photoionization laser using preionization by ultraviolet radiation and operating in the semi-selfmaintained discharge mode. The active mixture was CO/sub 2/:N/sub 2/:He=1:1:8. It was found that optimum mixtures for maximum power are those with ratios of CO/sub 2/:N/sub 2/He=5:45:50, 10:40:50 and 5:55:40. The helium molecules supply most of the photoelectrons, and the additives give a uv spectrum that is optimum for photoionization of He. The CO/sub 2/ is the lasing molecule, but absorbs uv radiation, and therefore the optimum CO/sub 2/ concentration is low. The influence that dissociation of CO/sub 2/ molecules has on the laser depends on the electron concentration in the main discharge. Any model that reliably describes laser characteristics must take account of dissociation of the lasing molecules by means of some factor that shows how many molecules are dissociated by uv radiation, although the dissociation by electron impact can be disregarded.

  12. Recurrence of vocal fold leukoplakia after carbon dioxide laser therapy.

    Science.gov (United States)

    Chen, Min; Chen, Jian; Cheng, Lei; Wu, Haitao

    2017-09-01

    This work aims to analyze the recurrence of vocal fold leukoplakia after carbon dioxide (CO 2 ) laser resection. In this retrospective study, all patients undergoing CO 2 laser resection of vocal fold leukoplakia were followed up for at least 2 years. Recurrence was diagnosed as any presence of leukoplakia in the vocal cord subsequent to previous successful complete resection. A total of 326 patients with complete resection of vocal fold leukoplakia and follow-up subsequent surveillance laryngoscopy were studied. The recurrence rate, the recurrence time, and risk factors were evaluated. Of these, 52 (16.0%) patients experienced recurrence with a mean follow-up time of 50.5 ± 15.4 months. The mean time to recurrence was 16.2 ± 14.1 months. Univariate analysis showed that the size of lesion (P vocal fold leukoplakia, long-term follow-up is required after CO 2 laser resection. In conclusion, the size of lesion combined with the pathological grade are important risk factors that predict vocal fold leukoplakia recurrence.

  13. Ultrapulse carbon dioxide laser ablation of xanthelasma palpebrarum: A case series

    Directory of Open Access Journals (Sweden)

    Vikas Pathania

    2015-01-01

    Full Text Available Context: Xanthelasma palpebrarum is the most common form of xanthomas. Albeit a benign entity, it is cosmetically disturbing and a frequently recurring dermatologic referral. Although the classical treatment option remains surgical excision, alternatively, chemical cauterization, cryosurgery and electrofulguration have all been tried in the past with mixed results. The use of laser systems such as carbon dioxide laser, Erb:YAG laser, Q-switched Nd:YAG laser, diode laser, pulsed dye laser and KTP laser have become popular in the treatment of these lesions. Recent literature suggests minimal pigmentary changes and scarring with the use of ultrapulse carbon dioxide laser treatment of these lesions. Aim: To study and evaluate the effectiveness of ultrapulse carbon dioxide laser ablation for treatment of xanthelasma palpebrarum. Materials and Methods: 10 patients presenting with bilateral xanthelasma palpebrarum, new and with recurrence were studied for results after a single treatment with ultrapulse carbon dioxide laser (10,600 nm; 100-200 Hz; 200-400 μsec. The follow-up time was 9 months. Results: All lesions were treatable with a single-laser treatment session. Two patients (20% developed recurrence during the follow-up period. Side effects included post inflammatory hyperpigmentation in two patients (20%, but no visible scarring was observed. Conclusions: The ultrapulse carbon dioxide laser is an effective and safe therapeutic alternative in treatment of xanthelasma palpebrarum.

  14. Nondébridement of laser char after two carbon dioxide laser passes results in faster reepithelialization

    DEFF Research Database (Denmark)

    Collawn, Sherry S; Woods, Anne; Couchman, John R

    2003-01-01

    Skin repair following laser injury can be accelerated by using techniques that promote rapid reepithelialization. In this article, the benefit of intraoperative nondébridement of laser debris after two laser passes is discussed. After carbon dioxide laser resurfacing of the face, skin specimens w...

  15. Carbon dioxide (CO2) laser treatment of cutaneous papillomas in a common snapping turtle, Chelydra serpentina.

    Science.gov (United States)

    Raiti, Paul

    2008-06-01

    Carbon dioxide (CO2) laser was used to treat multiple cutaneous papillomas on an adult female common snapping turtle, Chelydra serpentina serpentina. A combination of excisional and ablative techniques provided excellent intraoperative visibility and postoperative results due to the laser's unique ability to incise and vaporize soft tissue.

  16. Optical wave microphone measurements of laser ablation of copper in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Mitsugi, Fumiaki, E-mail: mitsugi@cs.kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Ikegami, Tomoaki [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Nakamiya, Toshiyuki; Sonoda, Yoshito [Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku, Kumamoto 862-8652 (Japan)

    2013-11-29

    Laser ablation plasma in a supercritical fluid has attracted much attention recently due to its usefulness in forming nanoparticles. Observation of the dynamic behavior of the supercritical fluid after laser irradiation of a solid is necessary for real-time monitoring and control of laser ablation. In this study, we utilized an optical wave microphone to monitor pulsed laser irradiation of a solid in a supercritical fluid. The optical wave microphone works based on Fraunhofer diffraction of phase modulation of light by changes in refractive index. We hereby report on our measurements for pulsed laser irradiation of a Cu target in supercritical carbon dioxide using an optical wave microphone. Photothermal acoustic waves which generated after single pulsed laser irradiation of a Cu target were detectable in supercritical carbon dioxide. The speed of sound around the critical point of supercritical carbon dioxide was clearly slower than that in gas. The optical wave microphone detected a signal during laser ablation of Cu in supercritical carbon dioxide that was caused by shockwave degeneration. - Highlights: • Photothermal acoustic wave in supercritical fluid was observed. • Sound speed around the critical point was slower than that in gas. • Optical wave microphone detected degeneration of a shockwave. • Ablation threshold of a solid in supercritical fluid can be estimated. • Generation of the second shockwave in supercritical phase was suggested.

  17. The Successful Treatment of Elephantiasis Nostras Verrucosa With Ablative Carbon Dioxide Laser.

    Science.gov (United States)

    Robinson, Caitlin G; Lee, Kory R; Thomas, Valencia D

    2018-03-01

    Elephantiasis nostras verrucosa (ENV) is a disfiguring skin condition that is difficult to treat. Existing treatment modalities serve to improve cosmesis or treat symptoms. Herein, we report a case of ENV with lymphocutaneous fistula successfully treated with ablative carbon dioxide laser. A 57-year-old woman with biopsy-proven ENV with lymphocutaneous fistula was treated with ablative carbon dioxide laser to the symptomatic area of her right thigh in 3 treatment sessions over 6 months. The patient had resolution of lymphocutaneous drainage as well as 90% improvement in the appearance of ENV lesions at the 1-month follow-up visit. Ablative carbon dioxide laser may provide cosmetic, symptomatic, and medical benefit for patients with localized ENV.

  18. Wound healing in porcine skin following low-output carbon dioxide laser irradiation of the incision

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.K.; Garden, J.M.; Taute, P.M.; Leibovich, S.J.; Lautenschlager, E.P.; Hartz, R.S.

    1987-06-01

    Wound healing of scalpel incisions to the depth of adipose tissue closed with conventional methods was compared with closure by low-output carbon dioxide laser irradiation. In 3 Pitman-Moore minipigs wound healing was evaluated at intervals from 1 to 90 days by the following methods: clinical variables of wound healing; formation of the basement membrane components bullous pemphigoid antigen, laminin, and fibronectin; and histological evaluation of the regeneration of the epidermis, neovascularization, and elastin and collagen formation. There was no significant difference in healing between wounds closed by the various conventional methods and by the low-output carbon dioxide laser.

  19. Cervical osteomyelitis after carbon dioxide laser excision of recurrent carcinoma of the posterior pharyngeal wall

    NARCIS (Netherlands)

    Timmermans, A. Jacqueline; Brandsma, Dieta; Smeele, Ludi E.; Rosingh, Andert W.; van den Brekel, Michiel W. M.; Lohuis, Peter J. F. M.

    2013-01-01

    Two patients with recurrent carcinoma of the posterior pharyngeal wall, previously treated with carbon dioxide (CO2) laser excision and (chemo)radiotherapy, presented with neck pain due to cervical osteomyelitis. In one patient this led to cervical spine instability, for which a haloframe was

  20. Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars - A natural laser

    Science.gov (United States)

    Mumma, M. J.; Buhl, D.; Chin, G.; Deming, D.; Espenak, F.; Kostiuk, T.; Zipoy, D.

    1981-01-01

    Fully resolved intensity profiles of various lines in the carbon dioxide band at 10.4 micrometers have been measured on Mars with an infrared heterodyne spectrometer. Analysis of the line shapes shows that the Mars atmosphere exhibits positive gain in these lines. The detection of natural optical gain amplification enables identification of these lines as a definite natural laser.

  1. Pulsed TEA CO2 Laser Irradiation of Titanium in Nitrogen and Carbon Dioxide Gases

    Science.gov (United States)

    Ciganovic, J.; Matavulj, P.; Trtica, M.; Stasic, J.; Savovic, J.; Zivkovic, S.; Momcilovic, M.

    2017-12-01

    Surface changes created by interaction of transversely excited atmospheric carbon dioxide (TEA CO2) laser with titanium target/implant in nitrogen and carbon dioxide gas were studied. TEA CO2 laser operated at 10.6 μm, pulse length of 100 ns and fluence of ˜17 J/cm2 which was sufficient for inducing surface modifications. Induced changes depend on the gas used. In both gases the grain structure was produced (central irradiated zone) but its forms were diverse, (N2: irregular shape; CO2: hill-like forms). Hydrodynamic features at peripheral zone, like resolidified droplets, were recorded only in CO2 gas. Elemental analysis of the titanium target surface indicated that under a nitrogen atmosphere surface nitridation occurred. In addition, irradiation in both gases was followed by appearance of plasma in front of the target. The existence of plasma indicates relatively high temperatures created above the target surface offering a sterilizing effect.

  2. Phase aberrations and beam cleanup techniques in carbon-dioxide laser fusion systems

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1981-01-01

    This paper describes the various carbon dioxide laser fusion systems at Los Alamos from the point of view of an optical designer. The types of phase aberrations present in these systems, as well as the beam cleanup techniques that can be used to improve the beam optical quality, are discussed. As this is a review article, some previously published results are also used where relevant

  3. Experimental investigations of driven Alfven wave resonances in a tokamak plasma using carbon dioxide laser interferometry

    International Nuclear Information System (INIS)

    Evans, T.E.

    1984-09-01

    The first direct observation of the internal structure of driven global Alfven eigenmodes in a tokamak plasma is presented. A carbon dioxide laser scattering/interferometer has been designed, built, and installed on the PRETEXT tokamak. By using this diagnostic system in the interferometer configuration, we have for the first time, thoroughly investigated the resonance conditions required for, and the spatial wave field structure of, driven plasma eigenmodes at frequencies below the ion cyclotron frequency in a confined, high temperature, tokamak plasma

  4. Carbon dioxide laser absorption spectra of toxic industrial compounds

    International Nuclear Information System (INIS)

    Loper, G.L.; Sasaki, G.R.; Stamps, M.A.

    1982-01-01

    CO 2 laser absorption cross-section data are reported for acrolein, styrene, ethyl acrylate, trichloroethylene, vinyl bromide, and vinylidene chloride. These data indicate that sub parts per billion level, interference-free detection limits should be possible for these compounds by the CO 2 laser photoacoustic technique. Photoacoustic detectabilities below 40 ppb should be possible for these compounds in the presence of ambient air concentrations of water vapor and other anticipated interferences. These compounds are also found not to be important inerference in the detection of toxic hydrazine-based rocket fuels by CO 2 laser spectroscopic techniques

  5. Carbon dioxide laser versus erbium:YAG laser in treatment of epidermal verrucous nevus: a comparative randomized clinical study.

    Science.gov (United States)

    Osman, Mai Abdel Raouf; Kassab, Ahmed Nazmi

    2017-08-01

    A verrucous epidermal nevus (VEN) is a skin disorder that has been treated using different treatment modalities with varying results. Ablative lasers such as carbon dioxide laser (CO 2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) laser have been considered as the gold standard for the treatment of epidermal nevi. To evaluate and compare the efficacy, postoperative wound healing and side effects of pulsed CO 2 laser and Er:YAG laser for the treatment of verrucous epidermal nevi. Twenty patients with localized VEN were randomly divided into two groups. Group 1 was administered CO 2 laser and group 2 underwent Er:YAG laser treatment. A blinded physician evaluated the photographs and dermoscopic photomicrographs for the efficacy and possible side effects. All patients received one treatment session and were followed up over a 6-month period. Both lasers induced noticeable clinical improvement, but there were no significant differences between two lasers in treatment response, patient satisfaction, duration of erythema and side effects. The average time to re-epithelialization was 13.5 days with CO 2 and 7.9 days with Er:YAG laser (plaser group and no lesional recurrence was detected in CO 2 laser group since treatment. Apart from re-epithelialization, both lasers showed equivalent outcomes with respect to treatment response, patient satisfaction, side effects and complications.

  6. Optically pumped carbon dioxide laser mixtures. [using solar radiation

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1979-01-01

    This work explores the concept of blackbody radiation pumping of CO2 gas as a step toward utilization of solar radiation as a pumping source for laser action. To demonstrate this concept, an experiment was performed in which laser gas mixtures were exposed to 1500 K thermal radiation for brief periods of time. A gain of 2.8 x 10 to the -3rd reciprocal centimeters has been measured at 10.6 microns in a CO2-He gas mixture of 1 Torr pressure. A simple analytical model is used to describe the rate of change of energy of the vibrational modes of CO2 and to predict the gain. Agreement between the prediction and experiment is good.

  7. The advantages of carbon dioxide laser applications in paediatric oral surgery. A prospective cohort study.

    Science.gov (United States)

    Hanna, R; Parker, S

    2016-11-01

    The aim of this study is to evaluate and demonstrate the advantages of the carbon dioxide laser in paediatric oral surgery patients in terms of less post-operative complications, healing without scaring, functional benefits, positive patient perception and acceptance of the treatment. One hundred fit and healthy paediatric patients (aged 4-15 years) were recruited to undergo laser surgery for different soft tissue conditions. The outcome of these laser treatments was examined. The Wong-Baker Faces Pain Rating Scale was employed to evaluate the pain before, immediately after laser treatment in the clinic and 1 day after post-operatively at home. Post-operative complications and patients' perception and satisfaction were self-reported during a review telephone call the day after treatment. The patients were reviewed 2 weeks after surgery. Laser parameter was 1.62 W, measured by power meter, continuous wave mode with 50 % emission cycle. The beam spot size at the target tissue was 0.8 mm. The pain score pre-operative, during and immediately after laser treatment was rated 0. Whilst the pain score 1 day after surgery was rated between 0 and 2, the healing time was measured over 2 weeks. None of the patients reported post-operative complications after surgery. Patients' perception and acceptance were rated very good. Laser dentistry is a promising field in modern minimally invasive dentistry, which enables provision of better care for children and adolescents. In this cohort study, the use of the carbon dioxide laser therapy offers a desirable, acceptable and minimally invasive technique in the surgical management of soft tissues in paediatric oral surgery with minimal post-operative complications.

  8. Water vapor absorption of carbon dioxide laser radiation

    Science.gov (United States)

    Shumate, M. S.; Menzies, R. T.; Margolis, J. S.; Rosengren, L.-G.

    1976-01-01

    An optoacoustic detector or spectrophone has been used to perform detailed measurements of the absorptivity of mixtures of water vapor in air. A (C-12) (O-16)2 laser was used as the source, and measurements were made at forty-nine different wavelengths from 9.2 to 10.7 microns. The details of the optoacoustic detector and its calibration are presented, along with a discussion of its performance characteristics. The results of the measurements of water vapor absorption show that the continuum absorption in the wavelength range covered is 5-10% lower than previous measurements.

  9. Bacterial action of carbon dioxide laser radiation in experimental dental root canals

    International Nuclear Information System (INIS)

    Zakariasen, K.L.; Dederich, D.N.; Tulip, John; DeCoste, Sandra; Jensen, S.E.; Pickard, M.A.

    1986-01-01

    The ability of a carbon dioxide laser to sterilize the root canal of human teeth has been investigated. Three oral bacteria, Streptococcus sanguis, Streptococcus mutans, and Actinomyces viscosus, and three other bacteria, Bacillus cereus, Staphyloccus aureus, and Pseudomonoas aeruginosa were used as experimental organisms. Exposure of cells on glass slides to laser radiation showed there was little difference in the exposure required to kill these six organisms. Complete recovery of bacteria from the root canal was initially a problem and was only achieved when bacterial manipulations and removal were carried out in rapid succession, within 5 min of inoculation. However, the geometry of the instrumented canal and the laser alignment were major factors in achieving consistent cell death of oral bacteria in the root canals. Using sets of 10 teeth, four repeated exposures of 10 W for 1 s was found to sterilize 4 or more of the teeth

  10. The role of transforming growth factor β1 in fractional laser resurfacing with a carbon dioxide laser.

    Science.gov (United States)

    Jiang, Xia; Ge, Hongmei; Zhou, Chuanqing; Chai, Xinyu; Deng, Hui

    2014-03-01

    The aim of this study was to investigate the role of transforming growth factor β1 in mechanisms of cutaneous remodeling induced by fractional carbon dioxide laser treatment. The dorsal skin of Kunming mice was exposed to a single-pass fractional CO2 laser treatment. Biopsies were taken at 1 h and at 1, 3, 7, 14, 21, 28, and 56 days after treatment. Transforming growth factor (TGF) β1 expression in skin samples was evaluated by ELISA, dermal thickness by hematoxylin-eosin staining, collagen and elastic fibers by Ponceau S and Victoria blue double staining, and types I and III collagens by ELISA. The level of TGF β1 in the laser-treated areas of skin was significantly increased compared with that in the control areas on days 1 (p skin of the laser-treated areas had increased significantly (p resurfacing.

  11. Long-term results of carbon dioxide laser treatment of meatal condylomata acuminata

    DEFF Research Database (Denmark)

    Krogh, J; Beuke, H P; Miskowiak, J

    1990-01-01

    A group of 74 men who underwent carbon dioxide laser treatment of meatal condylomata were observed for an average of 18 months. The cure rate after 1 treatment of isolated meatal lesions was 78%; the presence of external lesions lowered the rate to 32% and additional external and urethral warts...... to 25%. Following multiple treatments all but 6 patients were cured; 83% of the recurrences developed within 3 months. One urethral and 6 meatal strictures occurred more than 3 months after treatment; 9 patients had a spraying stream many years after treatment and 2 complained of frequency....

  12. Welding uranium with a multikilowatt, continuous-wave, carbon dioxide laser welder

    International Nuclear Information System (INIS)

    Turner, P.W.; Townsend, A.B.

    1977-01-01

    A 15-kilowatt, continuous-wave carbon dioxide laser was contracted to make partial-penetration welds in 6.35-and 12.7-mm-thick wrought depleted uranium plates. Welding power and speed ranged from 2.3 to 12.9 kilowatts and from 21 to 127 millimeters per second, respectively. Results show that depth-to-width ratios of at least unity are feasible. The overall characteristics of the process indicate it can produce welds resembling those made by the electron-beam welding process

  13. Selective Removal of Residual Orthodontic Composite Using a Rapidly Scanned Carbon Dioxide Laser with Spectral Feedback

    Science.gov (United States)

    Hirasuna, Krista

    Background and Objective: Excessive heat accumulation within the tooth, incomplete removal of composite, and variable damage to the enamel are shortcomings of using conventional burs to remove residual orthodontic composite after debonding fixed appliances. The objective of this study was to determine if composite could be selectively removed from the enamel surface using a rapidly scanned carbon dioxide laser controlled by spectral feedback. Materials and Methods: A carbon dioxide laser operating at a wavelength of 9.3 microm with a pulse duration of 10-15 micros and a pulse repetition rate of ˜ 200 Hz was used to selectively remove composite from the buccal surfaces of 21 extracted teeth. GrenGloo(TM) composite was used to better visualize residual composite and the amount of enamel lost was measured with optical microscopy. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Results: The amount of enamel lost averaged 22.7microm +/- 8.9 and 25.3 microm +/- 9.4 for removal at 3.8 and 4.2 J/cm2, respectively. An average maximum temperature rise of 1.9°C +/- 1.5 was recorded, with no teeth approaching the critical value of 5.5°C. The average time of composite removal was 19.3 +/- 4.1 seconds. Conclusions: Residual orthodontic composite can be rapidly removed from the tooth surface using a rapidly scanned CO2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal damage to the underlying enamel surface.

  14. Outcomes of treatment of nine cases of recalcitrant severe hidradenitis suppurativa with carbon dioxide laser.

    Science.gov (United States)

    Madan, V; Hindle, E; Hussain, W; August, P J

    2008-12-01

    Hidradenitis suppurativa (HS) is a chronic and often a recalcitrant inflammatory skin condition. To present the results of carbon dioxide (CO2) laser treatment of recalcitrant HS in nine patients who had failed to improve on medical and other surgical treatments. HS lesions consisting of abscesses, sinuses and granulation tissue were completely excised using the cutting mode of a CO2 laser, leaving only healthy residual subcutaneous fat. The wounds were closed by primary intention where possible and left to granulate otherwise. Outcomes were determined by clinical review and questionnaire. Twenty-seven sites were treated in 19 sessions on nine patients. Seven procedures were performed under general anaesthesia and 12 under local. All patients rated their postoperative discomfort as less or equal to their preoperative state. Seven of the nine patients had complete remission for 12 months or longer after their last laser treatment and ceased all medications. High levels of patient satisfaction were reported with CO2 laser treatment. The main complication was axillary scar contracture in two patients but this was insufficient to limit limb movement. CO2 laser treatment should be considered as a treatment option in recalcitrant HS, where multiple medical treatments have been ineffective.

  15. Fractional Carbon Dioxide Laser for Keratosis Pilaris: A Single-Blind, Randomized, Comparative Study

    Directory of Open Access Journals (Sweden)

    Vasanop Vachiramon

    2016-01-01

    Full Text Available Objective. Keratosis pilaris (KP is a common condition which can frequently be cosmetically disturbing. Topical treatments can be used with limited efficacy. The objective of this study is to evaluate the effectiveness and safety of fractional carbon dioxide (CO2 laser for the treatment of KP. Patients and Methods. A prospective, randomized, single-blinded, intraindividual comparative study was conducted on adult patients with KP. A single session of fractional CO2 laser was performed to one side of arm whereas the contralateral side served as control. Patients were scheduled for follow-up at 4 and 12 weeks after treatment. Clinical improvement was graded subjectively by blinded dermatologists. Patients rated treatment satisfaction at the end of the study. Results. Twenty patients completed the study. All patients stated that the laser treatment improved KP lesions. At 12-week follow-up, 30% of lesions on the laser-treated side had moderate to good improvement according to physicians’ global assessment (p=0.02. Keratotic papules and hyperpigmentation appeared to respond better than the erythematous component. Four patients with Fitzpatrick skin type V developed transient pigmentary alteration. Conclusions. Fractional CO2 laser treatment may be offered to patients with KP. Dark-skinned patients should be treated with special caution.

  16. Fractional Carbon Dioxide Laser and its Combination with Subcision in Improving Atrophic Acne Scars.

    Science.gov (United States)

    Nilforoushzadeh, Mohammad Ali; Faghihi, Gita; Jaffary, Fariba; Haftbaradaran, Elaheh; Hoseini, Sayed Mohsen; Mazaheri, Nafiseh

    2017-01-01

    Acne is a very common skin disease in which scars are seen in 95% of the patients. Although numerous treatments have been recommended, researchers are still searching for a single modality to treat the complication due to its variety in shape and depth. We compared the effects of fractional carbon dioxide (CO 2 ) laser alone and in combination with subcision in the treatment of atrophic acne scars. This clinical trial study was performed in Skin Diseases and Leishmaniasis Research Center (Isfahan, Iran) during 2011-2012. Eligible patients with atrophic acne scars were treated with fractional CO 2 laser alone (five sessions with 3-week interval) on the right side of the face and fractional CO 2 laser plus subcision (one session using both with four sessions of fractional CO 2 laser, with 3-week interval) on the left side. The subjects were visited 1, 2, and 6 months after the treatment. Patient satisfaction rate was analyzed using SPSS 20 software. The average of recovery rate was 54.7% using the combination method and 43.0% using laser alone ( P < 0.001). The mean patient satisfaction was significantly higher with the combination method than laser alone (6.6 ± 1.2 vs. 5.2 ± 1.8; P < 0.001). Bruising was only seen with the combination method and lasted for 1 week in 57.0% and for 2 weeks in 43.0%. Erythema was seen in both methods. Postinflammatory pigmentation and hyperpigmentation were associated with combination method. No persistent side effects were seen after 6 months. Using a combination of subcision and laser had suitable results regarding scar recovery and satisfaction rate.

  17. Use of the carbon dioxide laser in guided tissue regeneration wound healing in the beagle dog

    Science.gov (United States)

    Rossmann, Jeffrey A.; Parlar, Ates; Abdel-Ghaffar, Khaled A.; El-Khouli, Amr M.; Israel, Michael

    1996-04-01

    The concept of guided tissue regeneration (GTR) allowing cells from the periodontal ligament and alveolar bone to repopulate the treated root surface has shown the ability to obtain periodontal new attachment. Healing studies have also shown that conventional GTR therapy still does not exclude all the epithelium. This epithelial proliferation apically interferes with the establishment of the new connective tissue attachment to the root surface. The objective of this research study was to examine whether controlled de-epithelialization with the carbon dioxide laser during the healing phase after periodontal surgery, would retard the apical migration of the epithelium and thereby enhance the results obtained through guided tissue regeneration. Eight beagle dogs were used, the experimental side received de-epithelialization with the CO2 laser in conjunction with flap reflection and surgically created buccal osseous defects. Selected defects on each side were treated with ePTFE periodontal membranes. The laser de-epithelialization was repeated every 10 days until removal of the membranes. The control side received the same surgical treatment without laser application. This experimental design allowed histologic study of the new attachment obtained in defects treated with flap debridement with or without laser de-epithelialization and with or without ePTFE membranes. A statistical analysis was performed on the histometric data from 48 teeth in the 8 dogs after 4 months of healing. The results showed significant amounts of new attachment obtained from all four treatment modalities with no statistically significant differences for any one treatment. However, the trend towards enhanced regeneration with the combined treatment of laser and membrane vs. membrane alone or debridement alone was evident. The histologic analysis revealed a significant amount of newly formed `fat cementum' seen only on the laser treated teeth. This feature was the most remarkable finding of the

  18. Molecular effects of fractional carbon dioxide laser resurfacing on photodamaged human skin.

    Science.gov (United States)

    Reilly, Michael J; Cohen, Marc; Hokugo, Akishige; Keller, Gregory S

    2010-01-01

    Objective To elucidate the sequential changes in protein expression that play a role in the clinically beneficial results seen with fractional carbon dioxide (CO(2)) laser resurfacing of the face and neck. Methods Nine healthy volunteers were recruited for participation from the senior author's facial plastic surgery practice. After informed consent was obtained, each volunteer underwent a 2-mm punch biopsy from a discrete area of infra-auricular neck skin prior to laser treatment. Patients then immediately underwent laser resurfacing of photodamaged face and neck skin at a minimal dose (30 W for 0.1 second) with the Pixel Perfect fractional CO(2) laser. On completion of the treatment, another biopsy specimen was taken adjacent to the first site. Additional biopsy specimens were subsequently taken from adjacent skin at 2 of 3 time points (day 7, day 14, or day 21). RNA was extracted from the specimens, and reverse transcriptase-polymerase chain reaction and protein microarray analysis were performed. Comparisons were then made between time points using pairwise comparison testing. Results We found statistically significant changes in the gene expression of several matrix metalloproteinases (MMPs). The data demonstrate a consistent up-regulation of MMPs 1, 3, 9, and 13, all of which have been previously reported for fully ablative CO(2) laser resurfacing. There was also a statistically significant increase in MMP-10 and MMP-11 levels in this data set. Conclusion This study suggests that the molecular mechanisms of action are similar for both fractional and fully ablative CO(2) laser resurfacing.

  19. Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing.

    Science.gov (United States)

    Orringer, Jeffrey S; Sachs, Dana L; Shao, Yuan; Hammerberg, Craig; Cui, Yilei; Voorhees, John J; Fisher, Gary J

    2012-10-01

    Fractionated ablative laser resurfacing has become a widely used treatment modality. Its clinical results are often found to approach those of traditional fully ablative laser resurfacing. To directly compare the molecular changes that result from fractionated and fully ablative carbon dioxide (CO(2)) laser resurfacing in photodamaged human skin. Photodamaged skin of 34 adult volunteers was focally treated at distinct sites with a fully ablative CO(2) laser and a fractionated CO(2) laser. Serial skin samples were obtained at baseline and several time points after treatment. Real-time reverse transcriptase polymerase chain reaction technology and immunohistochemistry were used to quantify molecular responses to each type of laser treatment. Fully ablative and fractionated CO(2) laser resurfacing induced significant dermal remodeling and collagen induction. After a single treatment, fractionated ablative laser resurfacing resulted in collagen induction that was approximately 40% to 50% as pronounced as that induced by fully ablative laser resurfacing. The fundamental cutaneous responses that result from fully ablative and fractionated carbon dioxide laser resurfacing are similar but differ in magnitude and duration, with the fully ablative procedure inducing relatively greater changes including more pronounced collagen induction. However, the molecular data reported here provide substantial support for fractionated ablative resurfacing as an effective treatment modality for improving skin texture. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  20. Effect of Carbon Dioxide Laser on Increasing Vestibular Depth in Cleft Lip and Palate Patients.

    Science.gov (United States)

    Yassaei, Sogra; Aghili, Hossein; Azam, Alireza Navab; Moghadam, Mahjobeh Gholdani; Safari, Isa

    2017-09-01

    Shallow upper buccal sulcus deformity in cleft lip and palate patients is one of the common secondary deformities after primary cleft lip and palate repair; this deformity may prevent or complicate orthodontic and prosthodontic procedures causing aesthetic and functional problems. A number of methods are described to increase the anterior maxillary sulcus in these patients. This study assessed the use of a carbon dioxide laser (CO 2 ) to increase the sulcus depth. Fifteen patients with cleft lip and palate (eight unilateral and seven bilateral) were studied. The surgical procedure was performed using CO 2 laser. The vestibular depth and lip length were measured at three time points namely before surgery (T0), 1 week following surgery (T1), and 4 months following surgery (T2). After data collection, statistical analyses were done using PASW ® version 18 SPSS. The mean values of vestibular depth were 9.46 ± 1.92, 13.83 ± 1.88, and 13.23 ± 1.76 mm for T0, T1, and T2, respectively. The vestibular depth significantly increased after 4 months of follow-up (p = 0.001). The mean amount of vestibular depth gain was not significantly different in unilateral and bilateral cleft groups (p = 0.908). The mean value of upper lip length increased by a mean of 1.23 mm and was statistically significant (p = 0.001). Upper buccal sulcus reconstruction with CO 2 laser provides successful and stable results. CO 2 laser application is suggested as an alternative to conventional vestibuloplasty.

  1. Hypertrophic Scarring of the Neck Following Ablative Fractional Carbon Dioxide Laser Resurfacing

    Science.gov (United States)

    Avram, Mathew M.; Tope, Whitney D.; Yu, Thomas; Szachowicz, Edward; Nelson, J. Stuart

    2009-01-01

    Background Ablative fractional carbon dioxide (CO2) laser treatments have gained popularity due to their efficacy, shortened downtime, and decreased potential for scarring in comparison to traditional ablative CO2 resurfacing. To date, scarring with fractional CO2 lasers has not been reported. Objective Five patients treated with the same fractional CO2 laser technology for photodamage of the neck were referred to our practices 1–3 months after treatment. Each patient developed scarring. Of the five cases, two are discussed in detail. The first was treated under general anesthesia on the face and anterior neck at a pulse energy of 30 mJ (859 μm depth) with 25% coverage. Eleven days after treatment, three non-healing areas along the horizontal skin folds of the anterior neck were noted. At 2 weeks after CO2 ablative fractional resurfacing, these areas had become thickened. These raised areas were treated with a non-ablative fractionated 1,550 nm laser to modify the wound healing milieu. One week later, distinct firm pale papules in linear arrays with mild hypopigmentation had developed along involved neck skin folds. Skin biopsy was performed. For the second patient, the neck was treated at a pulse energy of 20 mJ (630 μm depth) with 30% coverage of the exposed skin, with a total treatment energy of 5.0 kJ. Minimal crusting was noted on the neck throughout the initial healing phase of 2 weeks. She then experienced tightness on her neck. Approximately 3 weeks after treatment, she developed multiple vertical and horizontal hypertrophic scars (HS). Results Histopathology for the first case confirmed the presence of a hypertrophic scar. The papules in this case completely resolved with mild residual hypopigmentation after treatment with topical corticosteroids. HS failed to resolve in the second case to date after 1 month. Conclusion As with traditional ablative CO2 laser resurfacing, HS is a potential complication of ablative fractional CO2 laser resurfacing

  2. Fractional ablative carbon dioxide laser resurfacing for skin rejuvenation and acne scars in Asians.

    Science.gov (United States)

    Chan, Nicola P Y; Ho, Stephanie G Y; Yeung, Chi K; Shek, Samantha Y N; Chan, Henry H

    2010-11-01

    Ablative fractional resurfacing (AFR) is a new modality for photorejuvenation and acne scars which combines carbon dioxide (CO₂) laser ablation with fractional photothermolysis. The objective is to evaluate the efficacy and side effects of a new fractional CO₂ ablative device (Fraxel Re:pair) for skin rejuvenation and acne scars in Asians. Nine patients underwent one full-face treatment. The energy levels ranged from 30-70 mJ with coverage between 30% and 45%. Improvement in skin texture, laxity, wrinkles, enlarged pores, overall pigmentation irregularity, and adverse effects were assessed up to 6 months post-treatment. Standardized photographs using the Canfield Visia CR system® were assessed by two independent observers. Subjective improvement was assessed by patient questionnaires. Nine Chinese patients (skin types III and IV, mean age 44.8) were included. Statistically significant improvements were seen for skin texture, skin laxity, wrinkles, enlarged pores, and acne scars. The post-inflammatory hyperpigmentation rate was 55.5% and 11.1% at 1 and 6 months post-treatment, respectively. Eighty-six percent of patients were overall satisfied to very satisfied with the treatment. Ablative fractional CO₂ laser resurfacing was overall safe and effective for skin rejuvenation and acne scars in Asians. However, in view of the high post-inflammatory rate and the statistically significant but only mild to moderate improvement after a single treatment as observed in this study, there is a need to review the current role of fractional ablative CO₂ laser treatment as compared to fractional non-ablative for skin rejuvenation and acne scar treatment in Asians. © 2010 Wiley-Liss, Inc.

  3. Laser corrective surgery with fractional carbon dioxide laser following full-thickness skin grafts

    OpenAIRE

    Emily Forbat; Faisal R Ali; Raj Mallipeddi; Firas Al-Niaimi

    2017-01-01

    Full-thickness skin grafts (FTSGs) are frequently used to treat patients with burn injuries and to repair defects rendered by excisional (including Mohs) surgery. The evidence for corrective laser surgery after scar formation is well established. With regard to laser treatment of FTSG, the evidence is sparse. Laser treatment after FTSG is a novel concept, with minimal literature. We present a case series, one of the first to our knowledge, of the treatment of FTSG with fractional CO2 laser in...

  4. Carbon dioxide as chemical feedstock

    National Research Council Canada - National Science Library

    Aresta, M

    2010-01-01

    ... Dioxide as an Inert Solvent for Chemical Syntheses 15 Alessandro Galia and Giuseppe Filardo Introduction 15 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15 Enzymatic Catalysis in Dense Carbon Dioxide 18 Other Reactions in Dense Carbon Dioxide 19 Polymer Synthesis in Supercritical Carbon Dioxide 20 Chain Polymerizations: Synt...

  5. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  6. Laser corrective surgery with fractional carbon dioxide laser following full-thickness skin grafts

    Directory of Open Access Journals (Sweden)

    Emily Forbat

    2017-01-01

    Full Text Available Full-thickness skin grafts (FTSGs are frequently used to treat patients with burn injuries and to repair defects rendered by excisional (including Mohs surgery. The evidence for corrective laser surgery after scar formation is well established. With regard to laser treatment of FTSG, the evidence is sparse. Laser treatment after FTSG is a novel concept, with minimal literature. We present a case series, one of the first to our knowledge, of the treatment of FTSG with fractional CO2 laser in five patients after Mohs surgery.

  7. Carbon dioxide sensor

    Science.gov (United States)

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  8. Fractional ablative carbon dioxide laser followed by topical sodium stibogluconate application: A treatment option for pediatric cutaneous leishmaniasis.

    Science.gov (United States)

    Hilerowicz, Yuval; Koren, Amir; Mashiah, Jacob; Katz, Oren; Sprecher, Eli; Artzi, Ofir

    2018-05-01

    Leishmaniasis is a protozoan zoonotic parasitic infection with cutaneous, mucocutaneous, and visceral manifestations. Israel is endemic for cutaneous leishmaniasis, which is a self-limited disease but is associated with scarring, which is often a source of psychological and social burden for patients. Scars can be especially devastating for children and teenagers. A wide range of physical and medical approaches is used to treat cutaneous leishmaniasis, among which intralesional injections of sodium stibogluconate rank among the most frequently used. Unfortunately, despite being effective, this therapeutic modality can be very painful. Fractional ablative laser creates a controlled mesh-like pattern of tissue ablation in the skin that promotes dermal remodeling and collagen production while at the same time facilitating enhanced delivery of topically applied medications. Patients were treated with fractional ablative carbon dioxide laser followed by immediate topical application of sodium stibogluconate. All children were diagnosed with cutaneous leishmaniasis prior to treatment initiation.. Ten children were treated. One leishmania tropica-positive girl failed to respond. The other nine patients achieved clinical cure and demonstrated good to excellent final cosmesis. Self-rated patient satisfaction and tolerance were high No adverse effects were observed or reported during treatment. Fractional ablative carbon dioxide laser followed by topical sodium stibogluconate application appears to be a safe and promising treatment for cutaneous leishmaniasis infection in children. Future controlled studies are required to validate these findings and compare this technique with traditional approaches. © 2018 Wiley Periodicals, Inc.

  9. The Effect of Neodymium: Yttrium Aluminum Garnet and Fractional Carbon Dioxide Lasers on Alopecia Areata: A Prospective Controlled Clinical Trial.

    Science.gov (United States)

    Yalici-Armagan, Basak; Elcin, Gonca

    2016-04-01

    Effective treatment options for alopecia areata (AA) are missing. Whether lasers might be effective is a topic of debate. We aimed to evaluate whether neodymium: yttrium aluminum garnet (Nd:YAG) or fractional carbon dioxide lasers might stimulate the development of new hair. Thirty-two patients who had long-standing and treatment refractory diseases were recruited for the study. Three different patches on the scalp were selected, 1 of which served as control. The mean outcome measure was the hair count, which was calculated with the digital phototrichogram. Response was defined as at least 25% increase in the mean hair count at the treated patch compared with the control patch. At the end of the study, there was no statistically significant difference in the mean hair count for the 3 patches. In 7 of 32 patients (22%), an increase in the mean hair count was observed on the whole scalp including the control patch, which resulted in an improved Severity of Alopecia Tool (SALT) score. We have observed that Nd:YAG or fractional carbon dioxide lasers did not increase the mean hair count on the treated AA patches when compared with the control patch. However, an SALT score improvement in 22% of the patients suggested spontaneous remission.

  10. Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts

    Science.gov (United States)

    Herz, Richard K.

    1989-01-01

    The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  11. Optical design and analysis of carbon dioxide laser fusion systems using interferometry and fast Fourier transform techniques

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1979-01-01

    The optical design and analysis of the LASL carbon dioxide laser fusion systems required the use of techniques that are quite different from the currently used method in conventional optical design problems. The necessity for this is explored and the method that has been successfully used at Los Alamos to understand these systems is discussed with examples. This method involves characterization of the various optical components in their mounts by a Zernike polynomial set and using fast Fourier transform techniques to propagate the beam, taking diffraction and other nonlinear effects that occur in these types of systems into account. The various programs used for analysis are briefly discussed

  12. Excellent Aesthetic and Functional Outcome After Fractionated Carbon Dioxide Laser Skin Graft Revision Surgery: Case Report and Review of Laser Skin Graft Revision Techniques.

    Science.gov (United States)

    Ho, Derek; Jagdeo, Jared

    2015-11-01

    Skin grafts are utilized in dermatology to reconstruct a defect secondary to surgery or trauma of the skin. Common indications for skin grafts include surgical removal of cutaneous malignancies, replacement of tissue after burns or lacerations, and hair transplantation in alopecia. Skin grafts may be cosmetically displeasing, functionally limiting, and significantly impact patient's quality-of-life. There is limited published data regarding skin graft revision to enhance aesthetics and function. Here, we present a case demonstrating excellent aesthetic and functional outcome after fractionated carbon dioxide (CO2) laser skin graft revision surgery and review of the medical literature on laser skin graft revision techniques.

  13. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO 2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO 2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  14. Ablative Fractional 10 600 nm Carbon Dioxide Laser Versus Non-ablative Fractional 1540 nm Erbium-Glass Laser in Egyptian Post-acne Scar patients.

    Science.gov (United States)

    Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael

    2018-01-01

    Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.

  15. Deposition of carbon dioxide

    International Nuclear Information System (INIS)

    2001-01-01

    In Norway, there is currently a debate about whether or not to build gas power stations. To meet the possibility of reduced emission quotas for carbon dioxide in the future, current interest focuses on the incorporation of large-scale separation and deposition of carbon dioxide when such plants are planned. A group of experts concludes that this technology will become self-financing by means of environmental taxes. From the environmental point of view, taxes upon production are to be preferred over taxes on consumption

  16. [In-transit metastasis in melanoma: Efficacy of topical imiquimod combined with carbon dioxide laser or with electrocautery].

    Science.gov (United States)

    Elfatoiki, F-Z; Longvert, C; Clerici, T; Bourgault-Villada, I; Roudier-Pujol, C; Vasseur, E; Saiag, P

    2014-02-01

    In-transit metastases in cutaneous melanoma are common and difficult to manage. Therapy is mainly palliative. Use of topical imiquimod has been assessed for surface metastases. We report on four patients with cutaneous melanoma metastases treated with topical imiquimod associated with carbon dioxide laser in the first two patients and with electrocoagulation in the two others. For two patients, we noted complete regression of the lesions after 15 and 18 months. For the two others, treatment was stopped after 9 to 10 months because of progression of subcutaneous metastasis and distant metastasis. Topical imiquimod is an alternative treatment used in superficial in-transit metastasis of melanoma. Its use as a monotherapy is sometimes ineffective. We elected to use combined pre-treatment with carbon dioxide laser or electrocoagulation in order to potentiate the action of imiquimod. This simple and inexpensive therapeutic strategy constitutes a palliative treatment that can allow prolonged local control of cutaneous metastasis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Quantitative evaluation of the safety of mucosal incision and submucosal dissection for colon during endoscopic submucosal dissection using carbon dioxide laser

    Science.gov (United States)

    Noguchi, Takuma; Honda, Norihiro; Hazama, Hisanao; Morita, Yoshinori; Awazu, Kunio

    2018-02-01

    Since the increase in the overall mortality rate in patients with colon cancer is remarkably high in recent years, early treatment is required. For this reason, endoscopic submucosal dissection (ESD) has been at the forefront of international attention as a low invasive treatment for early digestive cancer. In current ESD procedure, an electrosurgical knife is used for mucosal incision and subsequent submucosal dissection. However, the perforation has been reported to occur by approximately 5%. Thus, to enhance the tissue selectivity of this modality, we focused on the application of laser for ESD. A carbon dioxide laser was chosen as a surgical knife because the saline or a sodium hyaluronate solution injected into the submucosal layer in current ESD procedure has a high absorption coefficient at the wavelength of the carbon dioxide laser. In this research, ex vivo experiment was performed at the output power of 3-7 W and discuss the optimum irradiation power of laser. As a result of ex vivo experiment using extracted porcine colon tissues, mucosal incision and submucosal dissection were safely and less invasively performed in every output power, without reaching the thermal damage to a muscular layer. This is because a carbon dioxide laser is strongly absorbed by saline injected into submucosa. ESD using a carbon dioxide laser is a safer method for the treatment of early colon cancer. We are planning to measure and compare the optical and thermal properties of porcine colon with those of human colon.

  18. Does Carbon Dioxide Predict Temperature?

    OpenAIRE

    Mytty, Tuukka

    2013-01-01

    Does carbon dioxide predict temperature? No it does not, in the time period of 1880-2004 with the carbon dioxide and temperature data used in this thesis. According to the Inter Governmental Panel on Climate Change(IPCC) carbon dioxide is the most important factor in raising the global temperature. Therefore, it is reasonable to assume that carbon dioxide truly predicts temperature. Because this paper uses observational data it has to be kept in mind that no causality interpretation can be ma...

  19. Efficacy and safety of 10,600-nm carbon dioxide fractional laser on facial skin with previous volume injections

    Directory of Open Access Journals (Sweden)

    Josiane Hélou

    2013-01-01

    Full Text Available Background: Fractionated carbon dioxide (CO 2 lasers are a new treatment modality for skin resurfacing. The cosmetic rejuvenation market abounds with various injectable devices (poly-L-lactic acid, polymethyl-methacrylate, collagens, hyaluronic acids, silicone. The objective of this study is to examine the efficacy and safety of 10,600-nm CO 2 fractional laser on facial skin with previous volume injections. Materials and Methods: This is a retrospective study including 14 patients treated with fractional CO 2 laser and who have had previous facial volume restoration. The indication for the laser therapy, the age of the patients, previous facial volume restoration, and side effects were all recorded from their medical files. Objective assessments were made through clinical physician global assessment records and improvement scores records. Patients′ satisfaction rates were also recorded. Results: Review of medical records of the 14 patients show that five patients had polylactic acid injection prior to the laser session. Eight patients had hyaluronic acid injection prior to the laser session. Two patients had fat injection, two had silicone injection and one patient had facial thread lift. Side effects included pain during the laser treatment, post-treatment scaling, post-treatment erythema, hyperpigmentation which spontaneously resolved within a month. Concerning the previous facial volume restoration, no granulomatous reactions were noted, no facial shape deformation and no asymmetry were encountered whatever the facial volume product was. Conclusion: CO 2 fractional laser treatments do not seem to affect facial skin which had previous facial volume restoration with polylactic acid for more than 6 years, hyaluronic acid for more than 0.5 year, silicone for more than 6 years, or fat for more than 1.4 year. Prospective larger studies focusing on many other variables (skin phototype, injected device type are required to achieve better

  20. Carbon Dioxide Sensor Technology.

    Science.gov (United States)

    1983-04-01

    second gas permeable membrane separates a compartment containing the non-aqueous " solvent dimethylsulfoxide , ( DMSO ), from the aqueous solution...compartment. In DMSO carbon dioxide can be irreversibly reduced electrochemically to * non-interfering products...current due to its reduction in the DMSO solution is proportional to the partial pressure of CO2 in the gas phase. Overall, the linear response and

  1. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  2. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T J [Discovery Bay Marine Laboratory, Univ. of the West Indies (JM)

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  3. Extensive tissue damage of bovine ovaries after bipolar ovarian drilling compared to monopolar electrocoagulation or carbon dioxide laser.

    Science.gov (United States)

    Hendriks, Marja-Liisa; van der Valk, Paul; Lambalk, Cornelis B; Broeckaert, Mark A M; Homburg, Roy; Hompes, Peter G A

    2010-02-01

    To evaluate the size of ovarian damage caused by ovarian drilling in polycystic ovary syndrome, the amount of inflicted damage was assessed for the most frequently used ovarian drilling techniques. Experimental prospective design. University clinic. Six fresh bovine ovaries per technique. Carbon dioxide (CO(2)) laser, monopolar electrocoagulation, and bipolar electrocoagulation were used for in vitro ovarian drilling. Amount of inflicted ovarian damage per procedure. Bipolar electrocoagulation resulted in significantly more destruction per burn than the CO(2) laser and monopolar electrocoagulation (287.6 versus 24.0 and 70.0 mm(3), respectively). The damage found per lesion was multiplied by the regularly applied number of punctures per procedure in daily practice (based on the literature). Again, the bipolar electrocoagulation resulted in significantly more tissue damage than the CO(2) laser and monopolar coagulation (2,876 versus 599 and 700 mm(3), respectively). Ovarian drilling, especially bipolar electrocoagulation, causes extensive destruction of the ovary. Given the same clinical effectiveness of the various procedures, it is essential to use the lowest possible dose that works; thus, the first choice should be CO(2) laser or monopolar electrocoagulation. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  5. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  6. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  7. The efficacy of fractional carbon dioxide (CO2) laser combined with terbinafine hydrochloride 1% cream for the treatment of onychomycosis.

    Science.gov (United States)

    Shi, Jian; Li, Jin; Huang, He; Permatasari, Felicia; Liu, Juan; Xu, Yang; Wu, Di; Zhou, Bing-Rong; Luo, Dan

    2017-10-01

    Although systemic and topical antifungal agents are widely used to treat onychomycosis, oral medications can cause adverse effects and the efficacy of topical agents is not satisfying. Currently, laser treatment has been studied for its efficacy in the treatment of onychomycosis. Our study was aimed to evaluate the efficacy of fractional carbon dioxide (CO 2 ) laser treatment combined with terbinafine cream for 6 months in the treatment of onychomycosis and to analyze the influencing factors. A total of 30 participants (124 nails) with clinical and mycological diagnosis of onychomycosis received fractional CO 2 laser treatment at 2-week interval combined with terbinafine cream once daily for 6 months. The clinical efficacy rate (CER) was assessed from the percentage of fully normal-appearing nails or nails with ≤5% abnormal appearance, and the mycological clearance rate (MCR) was assessed from the percentage of nails with negative fungal microscopy. The CER was evaluated at 3 time points: at the end of treatment (58.9%), at 1 month after the last treatment (63.5%), and at 3 months after the last treatment (68.5%). The MCRs at 1 month and 3 months after the last treatment were 77.4 and 74.2%, respectively. The evaluation of influencing factors showed significantly higher CER (p terbinafine cream for 6 months was an effective and safe method for the treatment of onychomycosis. There were 5 factors that positively influenced the treatment outcome: age, clinical type of onychomycosis, nail thickness, involved nail, and species of fungus.

  8. Use of Zernike polynomials and interferometry in the optical design and assembly of large carbon-dioxide laser systems

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1981-01-01

    This paper describes the need for non-raytracing schemes in the optical design and analysis of large carbon-dioxide lasers like the Gigawatt, Gemini, and Helios lasers currently operational at Los Alamos, and the Antares laser fusion system under construction. The scheme currently used at Los Alamos involves characterizing the various optical components with a Zernike polynomial set obtained by the digitization of experimentally produced interferograms of the components. A Fast Fourier Transform code then propagates the complex amplitude and phase of the beam through the whole system and computes the optical parameters of interest. The analysis scheme is illustrated through examples of the Gigawatt, Gemini, and Helios systems. A possible way of using the Zernike polynomials in optical design problems of this type is discussed. Comparisons between the computed values and experimentally obtained results are made and it is concluded that this appears to be a valid approach. As this is a review article, some previously published results are also used where relevant

  9. Comparison of Carbon Dioxide Laser With Surgical Blade for Removal of Epulis Fissuratum. A Randomized Clinical Trial

    Science.gov (United States)

    Karimi, Abbas; Sobouti, Farhad; Torabi, Sara; Bakhshandehfard, Ali; Amirian, Armaghan; Shariati, Mahsa; Morshedi, Ehsan; Barati, Maryam

    2016-01-01

    Introduction: Epulis fissuratum is often formed as a result of a poor fitting denture. The conventional treatment for this fibrous hyperplastic tissue is to excise it using a scalpel and to close the wound by a continuous or an interrupted suture. The increased utilization of lasers in dentistry also includes the utilization of carbon dioxide (CO2) lasers in place of surgical scalpels in soft tissue surgeries. The objective of this study is to assess the feasibility of utilizing CO2 laser in place of scalpel in surgical treatment of epulis fissuratum. Methods: In this clinical trial research (IRCT code: IRCT2016071124969N2), 19 patients were selected with nearly symmetrical epulis fissuratums in the anterior part of the jaws. The hyperplastic tissue was evenly divided into two sections in each patient. One section was randomly selected and cut by CO2 laser and the other section by a surgical scalpel. The wound created by the scalpel was closed by appropriate number of interrupted sutures. Surgery duration and bleeding as well as vestibular depth, re-epithelialization and edema in both sections were noted and recorded after 7 and 14 days postoperatively. Results: The time of surgery and the amount of bleeding during surgery in the laser section was less and the vestibular depth was more than surgical scalpel section (P < 0.05). Surgical scalpel wound at day seventh healed significantly better than the section treated by the CO2 laser (P < 0.05). Wound in both sections healed similarly on day 14 and no statistical difference was observed. Edema presence was also equal in both sides after 7th and 14th following the surgery. Conclusion: According to the results it could be concluded that the use of CO2 laser may result in less surgery time, less bleeding during surgery, more vestibular depth, better re-epithelialization of the wound and less need for suturing. CO2 laser may be a clinically preferred method for surgical treatment of epulis fissuratum. PMID:28144443

  10. Combination of Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, non-ablative 1450-nm diode laser, and ablative 10 600-nm carbon dioxide fractional laser for enlarged pores.

    Science.gov (United States)

    Cho, Sung Bin; Noh, Seongmin; Lee, Sang Ju; Kang, Jin Moon; Kim, Young Koo; Lee, Ju Hee

    2010-07-01

    Currently, there is no gold standard for the treatment of enlarged facial pores. In this report, we describe a patient with enlarged nasal pores which were treated with a combination of a non-ablative 1450-nm diode laser, a Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, and an ablative 10 600-nm carbon dioxide fractional laser system. Four months after the final treatment, the condition of the patient's pores had markedly improved, and the patient was satisfied with the results.

  11. Promising Option for Treatment of Striae Alba: Fractionated Microneedle Radiofrequency in Combination with Fractional Carbon Dioxide Laser

    Directory of Open Access Journals (Sweden)

    Farahnaz Fatemi Naeini

    2016-01-01

    Full Text Available Background. A consistent treatment has not been proposed for treatment of Striae Alba (SA. The present study was designed to compare the fractionated microneedle radiofrequency (FMR alone and in combination with fractional carbon dioxide laser (FMR + CO2 in the treatment of SA. Methods. Forty-eight pairs of SA from six patients were selected. Right or left SAs were randomly assigned to one of the treatment groups. The surface area of the SA before and after treatment and clinical improvement using a four-point scale were measured at the baseline, after one and three months. Results. The mean age of the patients was 30.17±5.19 years. The mean difference of the surface area between pre- and posttreatment in the FMR + CO2 group was significantly higher than that in the FMR group (p=0.003. Clinical improvement scales showed significantly higher improvement in the FMR + CO2 group than in the FMR group in the first and second follow-up (p=0.002 and 0.004, resp.. There were no major persistence side-effects in both groups. Conclusions. The results showed that FMR + CO2 laser was more effective than FMR alone in the treatment of SA.

  12. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    Science.gov (United States)

    Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario

    2015-01-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  13. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  14. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  15. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Use of a double-wave carbon dioxide laser for determining small concentrations of materials

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P.; Dunaev, V.B.; Prokopov, A.P.

    1985-09-01

    According to this experiment, the smallest detectable concentration of trichloroethylene is C = 2.0/sup -5/ mg/cm/sup 2/. The experiments described were made with an unstabilized laser; it is expected that with an improved radiation recording and a laser with greater stability, the detection limit could be reduced by one or two orders of magnitude.

  17. Generalized eczematous reaction after fractional carbon dioxide laser therapy for tattoo allergy.

    Science.gov (United States)

    Meesters, Arne A; De Rie, Menno A; Wolkerstorfer, Albert

    2016-12-01

    Allergic tattoo reactions form a therapeutically difficult entity. Treatment with conventional quality-switched lasers does not completely remove the allergenic particles and may lead to generalized hypersensitivity reactions. Recently, ablative fractional laser therapy was introduced as a treatment for allergic tattoo removal. We present two cases of allergic reactions to red tattoo ink treated with 10,600-nm fractional CO 2 laser. At the end of treatment, almost complete removal of red ink accompanied by a significant reduction of symptoms was observed in the first patient, whereas the second patient developed an acute generalized eczematous reaction after five treatments. These findings confirm that ablative fractional laser therapy is capable of significant removal of tattoo ink in an allergic tattoo reaction. However, it implies a risk of generalized hypersensitivity reactions. To our knowledge, this is the first case of a generalized hypersensitivity reaction following treatment of tattoo allergy with the fractional CO 2 laser.

  18. Design of a high pulse repitition frequency carbon dioxide laser for processing high damage threshold materials

    Science.gov (United States)

    Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.

    1989-07-01

    The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.

  19. Carbon dioxide and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J M

    1977-03-01

    The addition of carbon dioxide to the atmosphere due to burning fossil fuel is discussed. The release rate of carbon dioxide has been growing since at least 1950 at an average rate of 4.3% per year. If all known fossil fuel reserves in the world are consumed, a total of between 5 and 14 times the present amount of carbon dioxide in the atmosphere will be released. The oceans would then be unlikely to withdraw the proportion of perhaps 40% which they are believed to have withdrawn up to the present. The increase in the atmosphere would be in excess of 3 times or conceivably ten times the present amount. If the reserves are used up within a few hundred years, more than half the excess carbon dioxide would remain in the atmosphere after a thousand years. The ''greenhouse'' effect of carbon dioxide is explained. The simulation with numerical models of the effects of carbon dioxide on atmospheric radiation fluxes is discussed. An estimated increase in the average annual temperature of the earth of 2.4 to 2.9C is given for doubling the carbon dioxide content; also a 7% increase in global average precipitation. The effect of increasing carbon dioxide on global mean temperature is viewed in the perspective of the glacial-interglacial cycles. The warming effect of carbon dioxide may induce a ''super-interglacial'' on the present interglacial which is expected to decline toward a new ice age in the next several thousand years. Finally it is proposed that it may be necessary to phase out the use of fossil fuels before all the knowledge is acquired which would necessitate such an action.

  20. A low-cost, portable, laser heterodyne radiometer for validating passive satellite observations of column carbon dioxide and methane

    Science.gov (United States)

    Wilson, E. L.; DiGregorio, A.; Villanueva, G. L.; Miletti, K.; Grunberg, C.; Grunberg, M.; Floyd, M.; Menendez, A. R.

    2017-12-01

    We present a low-cost, portable, miniaturized, laser heterodyne radiometer (mini-LHR) capable of measuring column carbon dioxide (CO2) and methane (CH4) in remote locations to validate passive satellite observations. A benefit of the portability is that mini-LHR instruments can be calibrated and compared site-by-side to quantify any internal biases, or any biases in stationary column instruments such as those in the total carbon column observing network (TCCON). This is the latest iteration of an instrument that has been under development by our team since 2009. During our recent Interdisciplinary Science (IDS) effort that involved measuring carbon emissions over thawing permafrost, it became clear that our mini-LHR needed to be redesigned to be significantly smaller, lighter, and to operate from a small solar panel so that it could be easily carried to the field sites located within the Bonanza Creek Research Forest near Fairbanks, AK. The boreal peatland sites at Bonanza Creek have forests that are underlain by cold soils, permafrost, collapse scar thermokarst bogs resulting from permafrost thaw, and rich fens with various underlying sediments and gravels that are not frozen. While these sites are extremely interesting for their role in carbon storage, the practical issue with these sites is that they are very wet (the fen site for example is periodically under several inches of water) and the trails to reach these sites are extremely muddy, narrow, and populated with swarms of biting insects. The soils at these sites are delicate and easily damaged by excessive foot traffic. They are also prone to periodic wild fires - making permanent column instrument installations impractical. Here, we compare data from the permafrost field work as well as data collected as part of the Hawai'i Space Exploration Analog and Simulation (Hi-SEAS) project where crewmembers are currently testing the mini-LHR on an isolated Mars-like site on the Mauna Loa side of the saddle area on

  1. Endoscopic treatment of pharyngeal pouches: electrocoagulation vs carbon dioxide (CO2) laser

    NARCIS (Netherlands)

    Flikweert, D. C.; van der Baan, S.

    1992-01-01

    Endoscopic treatment of a hypopharyngeal diverticulum was performed in 75 patients during the period 1976-1990. Initially electrocoagulation was used to divide the septum between the diverticulum and oesophagus. More recently, the CO2 laser combined with the operating microscope has been used.

  2. A histopathologic evaluation of the Plasma Skin Regeneration System (PSR) versus a standard carbon dioxide resurfacing laser in an animal model.

    Science.gov (United States)

    Fitzpatrick, R; Bernstein, E; Iyer, S; Brown, D; Andrews, P; Penny, K

    2008-02-01

    A variety of high energy, pulsed, and scanned carbon dioxide lasers are available to perform cutaneous resurfacing. Rhytec has developed a device for skin regeneration that utilizes energy delivered via a burst of nitrogen plasma. This study was undertaken to benchmark the energy outputs of the plasma skin regeneration device as compared to an ultra-short pulsed carbon dioxide laser (the control device). The two systems were compared for time to complete healing, and the healing response post-treatment. Three Yucatan mini-pigs were utilized for this study. Following anesthesia, five experimental sites were marked along the skin atop the psoas muscle on each side of the spine. Treatment was applied using either the plasma skin regeneration system or the carbon dioxide laser, with one site remaining untreated as a control. Biopsies were taken from all treatment sites 0, 2, 7, 14, 30, and 60 days following treatment and processed to hematoxylin-eosin staining. Histopathologic examination was performed by observers blinded as to the treatment conditions. Skin treated with the plasma skin regeneration device showed a wider range of tissue effects across the energy settings used as compared to the laser treatment. All treatment sites had clinically regenerated epidermis by 7 days after treatment, with active cellular response below the D/E junction noted at the day 30 time-point at energies ranging from 2 to 4 J. The Rhytec PSR system provides an attractive alternative to standard CO2 laser with good remodeling of tissue architecture. Epidermis regenerated after PSR treatment shows a smoother surface profile than adjacent untreated tissue.

  3. Comparison of Efficacy of Carbon Dioxide (CO2) Laser with Cutting Diathermy in Surgical Excision of Early Carcinoma Tongue.

    Science.gov (United States)

    Rashid, Muhammad; Hashmi, Muhammad Ali; Maqbool, Shahzad; Dastigir, Majid

    2015-10-01

    To compare the efficacy of carbon dioxide (CO(2)) laser with cutting diathermy as a cutting device in surgical excision of early carcinoma tongue. Experimental study. Combined Military Hospital (CMH), Rawalpindi and CMH, Lahore, from July 2008 to July 2011. Twenty two biopsy proven cases of T(1) and early T(2) squamous cell carcinoma of tongue were divided in two equal groups of 11 each labeled as A and B. Tumor was excised by CO(2) laser in group A while cutting diathermy was done in group B. For both groups tumor excision time, per-operative blood loss, postoperative oral swelling and pain was recorded. Excision time of tumor was assessed in minutes and amount of blood loss in milliliters till complete hemostasis after removal of primary tumor. Postoperatively patients were assessed on 12 hourly basis for 48 hours for pain. Pain was analyzed on visual analogue score 1 - 10. Oral swelling was assessed once after 24 hours and labeled as mild, moderate and severe. Independent sample t-test was applied for analysis of excision time, postoperative pain and per-operative blood loss for both groups. Postoperative swelling was analyzed using Fisher's exact test. P-value of < 0.05 was considered significant. The mean age at diagnosis in group A was 49.36 ± 5.27 years, while in group B patients had mean age of 50.73 ± 8.13 years. In group A, 4/11 (36.3%) patients were having tumor stage T(1) while 7/11 (63.6%) had T(2) stage tumor. In group B, 5/11 (45.4%) were having T1 and 6/11 (54.5%) were having stage T(2) tumor. Excision time was significantly shorter for group B (p=0.003), but group A had less postoperative pain (p=0.001), less per-operative blood loss (p=0.001) and less postoperative oral swelling (p=0.021). Early carcinoma tongue is better removed by laser than electrocautery in terms of postoperative morbidity, per-operative blood loss, postoperative pain and oral swelling.

  4. Reducing carbon dioxide to products

    Science.gov (United States)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  5. Method for carbon dioxide sequestration

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2017-12-05

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  6. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  7. In vivo study of necrosis on the liver tissue of Wistar rats: a combination of photodynamic therapy and carbon dioxide laser ablation

    International Nuclear Information System (INIS)

    Rego, R F; Nicolodelli, G; Bagnato, V S; Araujo, M T; Tirapelli, L F; Araujo-Moreira, F M

    2013-01-01

    Photodynamic therapy (PDT) is known to be limited to applications in large volume tumors due to its limited penetration. Therefore, a combination of PDT and carbon dioxide (CO 2 ) laser ablation may constitute a potential protocol to destroy bulk tumors because it involves an association of these two techniques allowing the removal of visible lesions with a high selectivity of destruction of remnant tumors. The main aim of this study is to investigate the most appropriate procedure to combine use of a CO 2 laser and PDT on livers of healthy rats, and to analyze different techniques of this treatment using three types of photosensitizers (PSs). Forty eight animals were separated to form six groups: (1) only CO 2 laser ablation, (2) drug and CO 2 laser ablation, (3) only PDT, (4) drug and light (PDT) followed by CO 2 laser ablation, (5) ablated with CO 2 laser followed by PDT, and (6) drug followed by CO 2 laser ablation and light. For each group, three types of photosensitization were used: topical 5-aminolevulinic acid (ALA), intravenous ALA and intravenous Photogem ® . Thirty hours after the treatments, the animals were sacrificed and the livers removed. The depth of necrosis was analyzed and measured, considering microscopic and macroscopic aspects. The results show that the effects of the PDT were considerably enhanced when combined with CO 2 laser ablation, especially when the PDT was performed before the CO 2 laser ablation. (paper)

  8. Fast- and ultra-fast laser pulse induced reactions between carbon dioxide and methane

    CSIR Research Space (South Africa)

    Kotze, FJ

    2010-03-01

    Full Text Available at 2060 cm?1 is reported to be due to the stretch mode of other organic CO bonds that may have 200 F. Jaco Kotze et al./ Journal of Natural Gas Chemistry Vol. 19 No. 2 2010 formed [13]. Results show that CO2 has been excited by the nanosecond laser...] Zewail A H. J Phys Chem A, 2000, 104: 5660 [13] http://webbook.nist.gov/chemistry:NIST Standard Reference Database Number 69. Accessed November 2008 [14] Silverstein R M, Webster F X, Kiemle D J. Spectrometric iden- tification of organic compounds...

  9. Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser

    Science.gov (United States)

    Mohan, Salil

    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was

  10. THERAPEUTIC OF SKIN AGING WITH CARBON DIOXIDE LASER SKIN RESURFACING AND COMBINATION WITH AIR COOLING

    Directory of Open Access Journals (Sweden)

    NKA Maya Damayanti

    2013-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 So far, a lot of people who want their face skin always looks young though age continued to grow. It cannot be denied that aging will occur in everyone although some faster or later occur. Various ways were developed by scientists to fix this issue. Laser Skin Resurfacing (LSR technique to tighten facial skin is a procedure that is popular among the public and the practice of medicine. CO2 LSR technique is still a gold standard was used. Pain during surgery can be reduced when this technique was combined with air cooling. In addition, the adverse effects of post-operative might be tolerated.   /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  11. Fractional carbon dioxide laser versus low-dose UVA-1 phototherapy for treatment of localized scleroderma: a clinical and immunohistochemical randomized controlled study.

    Science.gov (United States)

    Shalaby, S M; Bosseila, M; Fawzy, M M; Abdel Halim, D M; Sayed, S S; Allam, R S H M

    2016-11-01

    Morphea is a rare fibrosing skin disorder that occurs as a result of abnormal homogenized collagen synthesis. Fractional ablative laser resurfacing has been used effectively in scar treatment via abnormal collagen degradation and induction of healthy collagen synthesis. Therefore, fractional ablative laser can provide an effective modality in treatment of morphea. The study aimed at evaluating the efficacy of fractional carbon dioxide laser as a new modality for the treatment of localized scleroderma and to compare its results with the well-established method of UVA-1 phototherapy. Seventeen patients with plaque and linear morphea were included in this parallel intra-individual comparative randomized controlled clinical trial. Each with two comparable morphea lesions that were randomly assigned to either 30 sessions of low-dose (30 J/cm 2 ) UVA-1 phototherapy (340-400 nm) or 3 sessions of fractional CO 2 laser (10,600 nm-power 25 W). The response to therapy was then evaluated clinically and histopathologically via validated scoring systems. Immunohistochemical analysis of TGF-ß1 and MMP1 was done. Patient satisfaction was also assessed. Wilcoxon signed rank test for paired (matched) samples and Spearman rank correlation equation were used as indicated. Comparing the two groups, there was an obvious improvement with fractional CO 2 laser that was superior to that of low-dose UVA-1 phototherapy. Statistically, there was a significant difference in the clinical scores (p = 0.001), collagen homogenization scores (p = 0.012), and patient satisfaction scores (p = 0.001). In conclusion, fractional carbon dioxide laser is a promising treatment modality for cases of localized morphea, with proved efficacy of this treatment on clinical and histopathological levels.

  12. Carbon dioxide: emissions and effects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1982-01-01

    This review provides a comprehensive guide to work carried out since 1978 in the many disciplines involved in this complex issue. Possible scenarios for carbon dioxide emissions, sources and sinks in the carbon cycle and for climatic changes are examined. The current concensus (by no means unanimous) of specialists on this issue appears to be that a continuation of reduced trends in energy consumption since 1973 is likely to double the atmospheric carbon dioxide concentration to 600 ppmv during the latter part of the next century. However, a higher demand scenario, requiring an upper limit of coal production, would bring forward the doubling to about the middle of the next century. Current climatic models predict that such a concentration of carbon dioxide would cause an average global warming of from 1.0 to 4.5/sup 0/C which might be delayed by the thermal inertia of the oceans. A warming due to estimated increases in carbon dioxide should, if the model results are correct, become apparent at the end of this century. Regional climatic changes are likely to vary considerably and prove disadvantageous to some regions and beneficial to others. Different strategies for dealing with the carbon dioxide issue are considered: no response, alleviation, countermeasures and prevention. It is concluded that uncertainties do not justify either the use of carbon dioxide disposal and other technical fixes at present or a policy of no further growth in fossil fuel consumption. On the other hand, major efforts to conserve energy would give more time to adapt to changes. The alleviation of climatic impacts and other desirable dual-benefit measures are advocated in addition to continuing international, interdisciplinary research on all aspects.

  13. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  14. Efficacy and safety of fractional carbon dioxide laser for treatment of unwanted facial freckles in phototypes II-IV: a pilot study.

    Science.gov (United States)

    El Zawahry, Bakr; Zaki, Naglaa; Hafez, Vanessa; Abdel Hay, Rania; Hay, Rania Abdel; Fahim, Aya

    2014-11-01

    Facial freckles are a cosmetic concern to Egyptians, particularly young females. Several therapeutic lines exist with variable response rates and limitations. Fractional carbon dioxide (FCO2) laser provides minimal ablation and therefore less down time and less side effects. The efficacy and safety of this laser technology have still not been studied in freckles. The aim of this study is to assess the efficacy and safety of FCO2 laser in the treatment of unwanted facial freckles in Egyptians. Twenty patients undergone a single session of FCO2 laser and then were followed up clinically a month later. Photographs were taken before treatment and at follow-up visit and were assessed by three blinded investigators. Percent of global improvement was measured on a 4-point grading scale. Patient's satisfaction and adverse events were recorded. Two patients (10 %) showed grade 1 improvement, while eight patients (40 %) showed grade 2 improvement. Nine patients (45 %) showed grade 3 improvement, and only one patient (5 %) showed grade 4 improvement. FCO2 laser resurfacing is effective and safe in treatment of facial freckles in skin phototypes II-IV. It can offer a more practical alternative to topical treatments, and a cheaper alternative to Q-switched lasers.

  15. Carbon Dioxide Embolism during Laparoscopic Surgery

    Science.gov (United States)

    Park, Eun Young; Kwon, Ja-Young

    2012-01-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery. PMID:22476987

  16. Efficacy of Punch Elevation Combined with Fractional Carbon Dioxide Laser Resurfacing in Facial Atrophic Acne Scarring: A Randomized Split-face Clinical Study

    Science.gov (United States)

    Faghihi, Gita; Nouraei, Saeid; Asilian, Ali; Keyvan, Shima; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen

    2015-01-01

    Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO2) laser resurfacing combined with punch elevation with fractional CO2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18–55) with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56). Their evaluation found that fractional CO2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO2 laser treatment alone, assessed 4 months after treatment (P = 0.02). Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO2 laser treatment was significant on both treatment sides (P < 0.05). Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring. PMID:26538695

  17. Efficacy of punch elevation combined with fractional carbon dioxide laser resurfacing in facial atrophic acne scarring: A randomized split-face clinical study

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2015-01-01

    Full Text Available Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO 2 laser resurfacing combined with punch elevation with fractional CO 2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18-55 with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO 2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO 2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56. Their evaluation found that fractional CO 2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO 2 laser treatment alone, assessed 4 months after treatment (P = 0.02. Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO 2 laser treatment was significant on both treatment sides (P < 0.05. Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring.

  18. In vivo effect of carbon dioxide laser-skin resurfacing and mechanical abrasion on the skin's microbial flora in an animal model.

    Science.gov (United States)

    Manolis, Evangelos N; Tsakris, Athanassios; Kaklamanos, Ioannis; Markogiannakis, Antonios; Siomos, Konstadinos

    2006-03-01

    Although beam-scanning carbon dioxide (CO2) lasers have provided a highly efficient tool for esthetic skin rejuvenation there has been no comprehensive animal studies looking into microbial skin changes following CO2 laser skin resurfacing. To evaluate the in vivo effects of CO2 laser skin resurfacing in an experimental rat model in comparison with mechanical abrasion on the skin microbial flora. Four separate cutaneous sections of the right dorsal surface of 10 Wistar rats were treated with a CO2 laser, operating at 18 W and delivering a radiant energy of 5.76 J/cm2, while mechanical abrasions of the skin were created on four sections of the left dorsal surface using a scalpel. Samples for culture and biopsies were obtained from the skin surfaces of the rats on day 1 of application of the CO2 laser or mechanical abrasion, as well as 10, 30, and 90 days after the procedure. The presence of four microorganisms (staphylococci, streptococci, diphtheroids, and yeasts) was evaluated as a microbe index for the skin flora, and colony counts were obtained using standard microbiological methods. Skin biopsy specimens, following CO2 laser treatment, initially showed epidermal and papillary dermal necrosis and later a re-epithelization of the epidermis as well as the generation of new collagen on the upper papillary dermis. The reduction in microbial counts on day 1 of the CO2 laser-inflicted wound was statistically significant for staphylococci and diphtheroids compared with the baseline counts (p=.004 and pSkin resurfacing using CO2 lasers considerably reduces microbial counts of most microorganisms in comparison with either normal skin flora or a scalpel-inflicted wound. This might contribute to the positive clinical outcome of laser skin resurfacing.

  19. Process for sequestering carbon dioxide and sulfur dioxide

    Science.gov (United States)

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  20. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  1. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    Science.gov (United States)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, William W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; Hoffman, Christine; Garner, Richard M.

    2017-03-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor (H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  2. A 4 U Laser Heterodyne Radiometer for Methane (CH4) and Carbon Dioxide (CO2) Measurements from an Occultation-Viewing CubSat

    Science.gov (United States)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, WIlliam W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; hide

    2017-01-01

    We present a design for a 4 U (20 cm 20 cm 10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor(H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  3. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    International Nuclear Information System (INIS)

    Wilson, Emily L; Oman, Luke D; DiGregorio, A J; Garner, Richard M; Riot, Vincent J; Ammons, Mark S; Bruner, William W; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E; Hoffman, Christine

    2017-01-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH 4 ), carbon dioxide (CO 2 ) and water vapor (H 2 O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO 2 , CH 4 , and H 2 O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone. (paper)

  4. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  5. 21 CFR 582.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  6. Nongovernmental valorization of carbon dioxide

    International Nuclear Information System (INIS)

    Petersen, Gene; Viviani, Donn; Magrini-Bair, Kim; Kelley, Stephen; Moens, Luc; Shepherd, Phil; DuBois, Dan

    2005-01-01

    Carbon dioxide (CO 2 ) is considered the largest contributor to the greenhouse gas effect. Most attempts to manage the flow of CO 2 or carbon into our environment involve reducing net emissions or sequestering the gas into long-lived sinks. Using CO 2 as a chemical feedstock has a long history, but using it on scales that might impact the net emissions of CO 2 into the atmosphere has not generally been considered seriously. There is also a growing interest in employing our natural biomes of carbon such as trees, vegetation, and soils as storage media. Some amelioration of the net carbon emissions into the atmosphere could be achieved by concomitant large withdrawals of carbon. This report surveys the potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon. The outlook for each of these opportunities is also described

  7. A Comparison between the Effects of Glucantime, Topical Trichloroacetic Acid 50% plus Glucantime, and Fractional Carbon Dioxide Laser plus Glucantime on Cutaneous Leishmaniasis Lesions

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2016-01-01

    Full Text Available Background. Cutaneous leishmaniasis is an endemic disease in Iran. Pentavalent antimonial drugs have been the first line of therapy in cutaneous leishmaniasis for many years. However, the cure rate of these agents is still not favorable. This study was carried out to compare the efficacies of intralesional glucantime with topical trichloroacetic acid 50% (TCA 50% + glucantime and fractional carbon dioxide laser + glucantime in the treatment of cutaneous leishmaniasis. Methods. A total of 90 patients were randomly divided into three groups of 30 to be treated with intralesional injection of glucantime, a combination of topical TCA 50% and glucantime, or a combination of fractional laser and glucantime. The overall clinical improvement and changes in sizes of lesions and scars were assessed and compared among three groups. Results. The mean duration of treatment was 6.1±2.1 weeks in all patients (range: 2–12 weeks and 6.8±1.7, 5.2±1.0, and 6.3±3.0 weeks in glucantime, topical TCA plus glucantime, and fractional laser plus glucantime groups, respectively (P=0.011. Complete improvement was observed in 10 (38.5%, 27 (90%, and 20 (87% patients of glucantime, glucantime + TCA, and glucantime + laser groups, respectively (P<0.001. Conclusion. Compared to glucantime alone, the combination of intralesional glucantime and TCA 50% or fractional CO2 laser had significantly higher and faster cure rate in patients with cutaneous leishmaniasis.

  8. Carbon dioxide capture and storage

    International Nuclear Information System (INIS)

    Durand, B.

    2011-01-01

    The author first highlights the reasons why storing carbon dioxide in geological formations could be a solution in the struggle against global warming and climate change. Thus, he comments various evolutions and prospective data about carbon emissions or fossil energy consumption as well as various studies performed by international bodies and agencies which show the interest of carbon dioxide storage. He comments the evolution of CO 2 contributions of different industrial sectors and activities, notably in France. He presents the different storage modes and methods which concern different geological formations (saline aquifers, abandoned oil or gas fields, not exploitable coal seams) and different processes (sorption, carbonation). He discusses the risks associated with these storages, the storable quantities, evokes some existing installations in different countries. He comments different ways to capture carbon dioxide (in post-combustion, through oxy-combustion, by pre-combustion) and briefly evokes some existing installations. He evokes the issue of transport, and discusses efficiency and cost aspects, and finally has few words on legal aspects and social acceptability

  9. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  10. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2016-01-01

    Full Text Available Background: Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. Aims: This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Methods: Sixteen patients (12 women and 4 men who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Results: Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15 or 4 months after the second (P = 0.23. In addition, adverse effects (erythema and edema on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Limitations: Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. Conclusion: This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects

  11. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial.

    Science.gov (United States)

    Faghihi, Gita; Keyvan, Shima; Asilian, Ali; Nouraei, Saeid; Behfar, Shadi; Nilforoushzadeh, Mohamad Ali

    2016-01-01

    Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15) or 4 months after the second (P = 0.23). In addition, adverse effects (erythema and edema) on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects and also resulted in more severe side effects and longer downtime.

  12. Perspectives in the use of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Aresta Michele

    1999-01-01

    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  13. Fractional carbon dioxide laser for the treatment of facial atrophic acne scars: prospective clinical trial with short and long-term evaluation.

    Science.gov (United States)

    Elcin, Gonca; Yalici-Armagan, Basak

    2017-12-01

    The aim of this study was to evaluate the efficacy and safety of fractional carbon dioxide laser for the treatment of acne scars. Thirty-one participants, 15 female and 16 male, whose mean age was 34.84 ± 10.94 years, were included in this prospective study. The study took place between 2012 and 2016. Participants were evaluated with the "ECCA Grading Scale" before the first session, 3 months (short-term evaluation) and 3 years after the last session (long-term evaluation). Participants received two or three treatment sessions at 4-week intervals, with a 10,600 nm fractional carbon dioxide laser with pulse energies ranging between 100 and 160 mJ, 120 spot type, 75-100 spot/cm 2 density, and 30 W power. Self-assessments by the participants were done 3 months and 3 years after the last session. The mean ECCA score was 107.90 ± 39.38 before the first session, and 82.17 ± 36.23 at the time of short-term evaluation (p = 0.000). The grade of improvement at the short-term evaluation was as follows: no improvement, mild, moderate, and significant improvement for 7 (22.6%), 11 (35.5%), 9 (29%), and 4 (12.9%) of the participants, respectively. Regarding self-assessments, 80.6 and 61.3% of the participants rated themselves as having at least mild improvement at the short-term and the long-term follow-up periods, respectively. The results of this study suggest that fractional carbon dioxide laser is an efficient treatment option for acne scars. Furthermore, self-assessment results show that more than half of the participants still experience at least mild improvement at the end of 3 years.

  14. Carbon isotope ratios of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Sakai, Hitoshi; Kishima, Noriaki; Tsutaki, Yasuhiro.

    1982-01-01

    The delta 13 C values relative to PDB were measured for carbon dioxide in air samples collected at various parts of Japan and at Mauna Loa Observatory, Hawaii in the periods of 1977 and 1978. The delta 13 C values of the ''clean air'' are -7.6 % at Hawaii and -8.1 per mille Oki and Hachijo-jima islands. These values are definitely lighter than the carbon isotope ratios (-6.9 per mille) obtained by Keeling for clean airs collected at Southern California in 1955 to 1956. The increase in 12 C in atmospheric carbon dioxide is attributed to the input of the anthropogenic light carbon dioxides (combustion of fossil fuels etc.) Taking -7.6 per mille to be the isotope ratio of CO 2 in the present clean air, a simple three box model predicts that the biosphere has decreased rather than increased since 1955, implying that it is acting as the doner of carbon rather than the sink. (author)

  15. Oxygen and carbon dioxide sensing

    Science.gov (United States)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  16. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  17. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  18. 21 CFR 184.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  19. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial

    OpenAIRE

    Gita Faghihi; Shima Keyvan; Ali Asilian; Saeid Nouraei; Shadi Behfar; Mohamad Ali Nilforoushzadeh

    2016-01-01

    Background: Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. Aims: This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Methods: Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal ...

  20. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  1. Measurement of atmospheric carbon dioxide and water vapor in built-up urban areas in the Gandhinagar-Ahmedabad region in India using a portable tunable diode laser spectroscopy system.

    Science.gov (United States)

    Roy, Anirban; Sharma, Neetesh Kumar; Chakraborty, Arup Lal; Upadhyay, Abhishek

    2017-11-01

    This paper reports open-path in situ measurements of atmospheric carbon dioxide at Gandhinagar (23.2156°N, 72.6369°E) and Ahmedabad (23.0225°N, 72.5714°E) in the heavily industrialized state of Gujarat in western India. Calibration-free second harmonic wavelength modulation spectroscopy (2f WMS) is used to carry out accurate and fully automated measurements. The mean values of the mole fraction of carbon dioxide at four locations were 438 ppm, 495 ppm, 550 ppm, and 740 ppm, respectively. These values are much higher than the current global average of 406.67 ppm. A 1 mW, 2004-nm vertical cavity surface-emitting laser is used to selectively interrogate the R16 transition of carbon dioxide at 2003.5 nm (4991.2585 cm -1 ). The 2f WMS signal corresponding to the gas absorption line shape is simulated using spectroscopic parameters available in the HITRAN database and relevant laser parameters that are extracted in situ from non-absorbing spectral wings of the harmonic signals. The mole fraction of carbon dioxide is extracted in real-time by a MATLAB program from least-squares fit of the simulated 2f WMS signal to the corresponding experimentally obtained signal. A 10-mW, 1392.54-nm distributed feedback laser is used at two of the locations to carry out water vapor measurements using direct absorption spectroscopy. This is the first instance of a portable tunable diode laser spectroscopy system being deployed in an urban location in India to measure atmospheric carbon dioxide and water vapor under varying traffic conditions. The measurements clearly demonstrate the need to adopt tunable diode laser spectroscopy for precise long-term monitoring of greenhouse gases in the Indian subcontinent.

  2. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  3. Forest response to carbon dioxide

    International Nuclear Information System (INIS)

    Pitelka, L.

    1992-01-01

    It has been suggested that planting trees could help slow the buildup of carbon dioxide in the atmosphere. Since elevated levels of CO 2 are known to enhance photosynthesis and growth in many plants, it is possible that trees could become progressively more effective in storing carbon as atmospheric CO 2 increases. However, early results from experiments with ponderosa and loblolly pines indicate that the relationship between tree growth and rising CO 2 concentrations may be more complex than scientists once thought. In these experiments, the response to elevated CO 2 has been highly dependent both on species and on mineral nutrient levels in the soil. Further work is necessary to clarify the mechanisms involved. This research will ultimately contribute to an integrated model for predicting forest ecosystem response to elevated CO 2

  4. Carbon Dioxide for pH Control

    Energy Technology Data Exchange (ETDEWEB)

    Wagonner, R.C.

    2001-08-16

    Cardox, the major supplier of carbon dioxide, has developed a diffuser to introduce carbon dioxide into a water volume as small bubbles to minimize reagent loss to the atmosphere. This unit is integral to several configurations suggested for treatment to control alkalinity in water streams.

  5. Trading coalbed methane for carbon dioxide

    International Nuclear Information System (INIS)

    Greenberger, L.S.

    1991-01-01

    This article discusses a proposal for reducing methane emissions in coal mining activities and at the same time reducing the burden on utilities to cut carbon dioxide emissions. Emission credits would be issued to mines that recover the methane for use. These credits could then be bought by utilities and exchanged for the right to emit carbon dioxide

  6. Pressure pumping of carbon dioxide from soil

    Science.gov (United States)

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  7. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    cellars are emptied regularly in a four weeks interval. Due to a high and variable carbon dioxide production in deep straw litter houses and houses with indoor storage of manure longer than four weeks, we do not recommend to calculate the ventilation flow based on the carbon dioxide concentration......This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o...

  8. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    Science.gov (United States)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio

  9. Electrochemical processing of carbon dioxide.

    Science.gov (United States)

    Oloman, Colin; Li, Hui

    2008-01-01

    With respect to the negative role of carbon dioxide on our climate, it is clear that the time is ripe for the development of processes that convert CO(2) into useful products. The electroreduction of CO(2) is a prime candidate here, as the reaction at near-ambient conditions can yield organics such as formic acid, methanol, and methane. Recent laboratory work on the 100 A scale has shown that reduction of CO(2) to formate (HCO(2)(-)) may be carried out in a trickle-bed continuous electrochemical reactor under industrially viable conditions. Presuming the problems of cathode stability and formate crossover can be overcome, this type of reactor is proposed as the basis for a commercial operation. The viability of corresponding processes for electrosynthesis of formate salts and/or formic acid from CO(2) is examined here through conceptual flowsheets for two process options, each converting CO(2) at the rate of 100 tonnes per day.

  10. Reaction of yttrium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Khokhlov, A.D.; Reznikova, N.F.

    1986-01-01

    It has been proved that heating of yttrium and tantalum in carbon dioxide to 500 and 800 0 C alters the gas phase composition, causing formation of carbon monoxide and reduction of oxygen content. A study of the thermal stability of yttrium polonides in carbon dioxide showed that yttrium sesqui- and monopolonides decompose at 400-430 0 C. The temperature dependence of the vapor pressure of polonium obtained upon decomposition of the referred polonides has been determined in a carbon dioxide environment radiotensometrically. The enthalpy of the process calculated from this dependence is close to the enthalpy of vaporization of elemental polonium in vacuo. The mechanism of the reactions has been suggested

  11. Carbon dioxide cleaning pilot project

    International Nuclear Information System (INIS)

    Knight, L.; Blackman, T.E.

    1994-01-01

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  12. More bad news about carbon dioxide emissions

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2000-01-01

    The affect that increased carbon dioxide concentrations has on plants and animals was discussed. Most research focuses on the impacts that carbon dioxide concentrations has on climatic change. Recent studies, however, have shown that elevated levels of carbon dioxide in the atmosphere caused by burning fossils fuels changes the chemical structure of plants and could lead to significant disruptions in ecological food chains. High carbon dioxide levels cause plants to speed up photosynthesis, take in the gas, and use the carbon to produce more fibre and starch while giving off oxygen as a byproduct. As plants produce more carbon, their levels of nitrogen diminish making them less nutritious for the insects and animals that feed on them. This has serious implications for farmers, as pests would have to eat more of their crops to survive. In addition, farmers would have to supplement livestock with nutrients

  13. Fixation of carbon dioxide into dimethyl carbonate over ...

    Science.gov (United States)

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydrating agent or requirement for azeotropic distillation. Prepared for submission to Nature Scientific reports.

  14. Flexible omnidirectional carbon dioxide laser as an effective tool for resection of brainstem, supratentorial, and intramedullary cavernous malformations.

    Science.gov (United States)

    Choudhri, Omar; Karamchandani, Jason; Gooderham, Peter; Steinberg, Gary K

    2014-03-01

    Lasers have a long history in neurosurgery, yet bulky designs and difficult ergonomics limit their use. With its ease of manipulation and multiple applications, the OmniGuide CO2 laser has reintroduced laser technology to the microsurgical resection of brain and spine lesions. This laser, delivered through a hollow-core fiber lined with a unidirectional mirror, minimizes energy loss and allows precise targeting. To analyze resections performed by the senior author from April 2009 to March 2013 of 58 cavernous malformations (CMs) in the brain and spine with the use of the OmniGuide CO2 laser, to reflect on lessons learned from laser use in eloquent areas, and to share data on comparisons of laser power calibration and histopathology. Data were collected from electronic medical records, radiology reports, operative room records, OmniGuide CO2 laser case logs, and pathology records. Of 58 CMs, approximately 50% were in the brainstem (30) and the rest were in supratentorial (26) and intramedullary spinal locations (2). Fifty-seven, ranging from 5 to 45 mm, were resected, with a subtotal resection in 1. Laser power ranged from 2 to 10 W. Pathology specimens showed minimal thermal damage compared with traditionally resected specimens with bipolar coagulation. The OmniGuide CO2 laser is safe and has excellent precision for the resection of supratentorial, brainstem, and spinal intramedullary CMs. No laser-associated complications occurred, and very low energy was used to dissect malformations from their surrounding hemosiderin-stained parenchymas. The authors recommend its use for deep-seated and critically located CMs, along with traditional tools.

  15. Comparison of a fractional microplasma radio frequency technology and carbon dioxide fractional laser for the treatment of atrophic acne scars: a randomized split-face clinical study.

    Science.gov (United States)

    Zhang, Zhen; Fei, Ye; Chen, Xiangdong; Lu, Wenli; Chen, Jinan

    2013-04-01

    No studies have compared fractional microplasma radio frequency (RF) technology with the carbon dioxide fractional laser system (CO2 FS) in the treatment of atrophic acne scars in the same patient. To compare the efficacy and safety of fractional microplasma RF with CO2 FS in the treatment of atrophic acne scars. Thirty-three Asian patients received three sessions of a randomized split-face treatment of fractional microplasma RF or CO2 FS. Both modalities had a roughly equivalent effect. Échelle d'Évaluation Clinique Des Cicatrices d'Acné scores were significantly lower after fractional microplasma RF (from 51.1 ± 14.2 to 22.3 ± 8.6, 56.4% improvement) and CO2 FS (from 48.8 ± 15.1 to 19.9 ± 7.9, 59.2% improvement) treatments. There was no statistically significant difference between the two therapies. Twelve subjects (36.4%) experienced postinflammatory hyperpigmentation (PIH) after 30 of 99 treatment sessions (30.3%) on the CO2 FS side and no PIH was observed on the fractional microplasma RF sides. Both modalities have good effects on treating atrophic scars. PIH was not seen with the fractional microplasma RF, which might make it a better choice for patients with darker skin. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  16. Treatment of acne scars and wrinkles in asian patients using carbon-dioxide fractional laser resurfacing: its effects on skin biophysical profiles.

    Science.gov (United States)

    Hwang, Young Ji; Lee, Yu Na; Lee, Yang Won; Choe, Yong Beom; Ahn, Kyu Joong

    2013-11-01

    Although ablative fractional resurfacing is known to be effective against photoaging and acne scars, studies on its efficacy, safety and changes in the skin characteristics of Asians are limited. The aim of this study is to assess the efficacy and safety of carbon dioxide fractional laser (CO2FL) in Koreans treated for wrinkles and acne scars, and to define the changes in skin characteristics during recovery period. We administered one session of CO2FL on 10 acne scar patients and 14 wrinkles patients with skin types IV and V. The surveillance of efficacy and side effects along with the measurement of biophysical properties was carried out before 1 day, 1 week, 1 month and 3 months after treatment. Using a non-invasive method, skin barrier damage, erythema and bronzing of skin during the recovery period were assessed, and all of the items eventually returned to the pre-treatment level. Skin elasticity was measured in the wrinkle group, and the statistically significant effect was sustained throughout the next three months. The outcome of treatment was found to be better than 'moderate improvement' in both the acne scar and wrinkle groups. Further, there were no serious side effects three months post-procedure. CO2 FL is thought to be an effective and safe method for treating moderate to severe acne scars and wrinkles in Asians.

  17. The Effect of Conditioned Media of Adipose-Derived Stem Cells on Wound Healing after Ablative Fractional Carbon Dioxide Laser Resurfacing

    Science.gov (United States)

    Zhou, Bing-Rong; Xu, Yang; Guo, Shi-Lei; Xu, Yan; Wang, Ying; Zhu, Fen; Wu, Di; Yin, Zhi-Qiang; Luo, Dan

    2013-01-01

    Objective. To evaluate the benefits of conditioned medium of Adipose-derived stem cells (ADSC-CM) on wound healing after fractional carbon dioxide laser resurfacing (FxCR) on human skin. Materials and Methods. Nineteen subjects were treated with FxCR on the bilateral inner arms. ADSC-CM was applied on FxCR site of one randomly selected arm. Transepidermal water loss (TEWL), skin color, and gross-elasticity of FxCR site on both arms were measured. Skin samples were taken by biopsy from three subjects 3 weeks after treatment for histopathological manifestations and mRNA expressions of procollagen types I and III, elastin genes were noted. Results. The index of erythema, melanin, and TEWL of the ADSC-CM-treated skin were significantly lower than those of the control side. The mRNA expression of type III procollagen in ADSC-CM-treated group at 3 weeks posttreatment was 2.6 times of that of the control group. Conclusion. Application of allograft ADSC-CM is an effective method for enhancing wound healing after FxCR, by reducing transient adverse effects such as erythema, hyperpigmentation, and increased TEWL. PMID:24381938

  18. The Effect of Conditioned Media of Adipose-Derived Stem Cells on Wound Healing after Ablative Fractional Carbon Dioxide Laser Resurfacing

    Directory of Open Access Journals (Sweden)

    Bing-Rong Zhou

    2013-01-01

    Full Text Available Objective. To evaluate the benefits of conditioned medium of Adipose-derived stem cells (ADSC-CM on wound healing after fractional carbon dioxide laser resurfacing (FxCR on human skin. Materials and Methods. Nineteen subjects were treated with FxCR on the bilateral inner arms. ADSC-CM was applied on FxCR site of one randomly selected arm. Transepidermal water loss (TEWL, skin color, and gross-elasticity of FxCR site on both arms were measured. Skin samples were taken by biopsy from three subjects 3 weeks after treatment for histopathological manifestations and mRNA expressions of procollagen types I and III, elastin genes were noted. Results. The index of erythema, melanin, and TEWL of the ADSC-CM-treated skin were significantly lower than those of the control side. The mRNA expression of type III procollagen in ADSC-CM-treated group at 3 weeks posttreatment was 2.6 times of that of the control group. Conclusion. Application of allograft ADSC-CM is an effective method for enhancing wound healing after FxCR, by reducing transient adverse effects such as erythema, hyperpigmentation, and increased TEWL.

  19. Report of the Carbon Dioxide Committee II

    International Nuclear Information System (INIS)

    1994-01-01

    The Carbon Dioxide Committee was given the task of preparing a suggestion of the acts aimed at reducing the greenhouse gas emissions and increasing the sinks of carbon in Finland. Emissions of all greenhouse gases were in 1990 80 million tons. calculated as carbon dioxide. The carbon dioxide emissions were about 58 million tons of the total. The increase of forest resources binds carbon from the atmosphere and reduces thereby net emissions of Finland at present by nearly 30 million tons of carbon dioxide. Carbon dioxide emissions will grow during the next decades, unless strong measures to control them will not be taken. As a result of the Commissions examination, acts will be needed both in the production of energy and in its consumption. Emissions can be reduced by replacing fossil fuels with nuclear energy, bioenergy and other renewable energy sources. Saving of energy and improvement of energy efficiency will limit carbon dioxide emissions. The Commission has made suggestions both to change the structure of energy production and to control the consumption of energy. (orig.)

  20. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  1. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b) [Reserved] ...

  2. 46 CFR 169.732 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  3. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  4. 46 CFR 108.627 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next to...

  5. Carbon dioxide: making the right connection

    African Journals Online (AJOL)

    This highlights safety issues concerning pipeline provision of carbon dioxide, and that it is of utmost ... capnograph sample line, gas analysis unit, water trap and soda .... The heat generated by the chemical reaction between soda lime.

  6. integrated vertical photobioreactor system for carbon dioxide

    African Journals Online (AJOL)

    Astri Nugroho

    2013-07-02

    Jul 2, 2013 ... efficient system for converting carbon dioxide (CO2) into biomass. The use of ... often been thought to achieve the most efficient mixing and the best ... such process a photobioreactor is designed. Photobioreactor is a device ...

  7. Supercritical carbon dioxide hop extraction

    Directory of Open Access Journals (Sweden)

    Pfaf-Šovljanski Ivana I.

    2005-01-01

    Full Text Available The hop of Magnum cultivar was extracted using supercritical carbon dioxide (SFE-as extractant. Extraction was carried out in the two steps: the first one being carried out at 150 bar and 40°C for 2.5 h (Extract A, and the second was the extraction of the same hop sample at 300 bar and 40°C for 2.5 h (Extract B. Extraction kinetics of the system hop-SFE-CO2 was investigated. Two of four most common compounds of hop aroma (α-humulene and β-caryophyllene were detected in Extract A. Isomerised α-acids and β-acids were detected too. a-Acid content in Extract B was high (that means it is a bitter variety of hop. Mathematical modeling using empirical model characteristic time model and simple single sphere model has been performed on Magnum cultivar extraction experimental results. Characteristic time model equations, best fitted experimental results. Empirical model equation, fitted results well, while simple single sphere model equation poorly approximated the results.

  8. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  9. Comparison of efficacy of carbon dioxide (CO/sub 2/) laser with cutting diathermy in surgical excision of early carcinoma tongue

    International Nuclear Information System (INIS)

    Rashid, M.; Hashmi, M.A.; Dastigir, M.

    2015-01-01

    To compare the efficacy of carbon dioxide (CO/sub 2/) laser with cutting diathermy as a cutting device in surgical excision of early carcinoma tongue. Study Design: Experimental study. Place and Duration of Study: Combined Military Hospital (CMH), Rawalpindi and CMH, Lahore, from July 2008 to July 2011. Methodology: Twenty two biopsy proven cases of T1 and early T2 squamous cell carcinoma of tongue were divided in two equal groups of 11 each labeled as A and B. Tumor was excised by CO/sub 2/ laser in group A while cutting diathermy was done in group B. For both groups tumor excision time, per-operative blood loss, postoperative oral swelling and pain was recorded. Excision time of tumor was assessed in minutes and amount of blood loss in milliliters till complete hemostasis after removal of primary tumor. Postoperatively patients were assessed on 12 hourly basis for 48 hours for pain. Pain was analyzed on visual analogue score 1 - 10. Oral swelling was assessed once after 24 hours and labeled as mild, moderate and severe. Independent sample t-test was applied for analysis of excision time, postoperative pain and per-operative blood loss for both groups. Postoperative swelling was analyzed using Fisher exact test. P-value of < 0.05 was considered significant. Results: The mean age at diagnosis in group A was 49.36 ± 5.27 years, while in group B patients had mean age of 50.73 ± 8.13 years. In group A, 4/11 (36.3%) patients were having tumor stage T1 while 7/11 (63.6%) had T2 stage tumor. In group B, 5/11 (45.4%) were having T1 and 6/11 (54.5%) were having stage T2 tumor. Excision time was significantly shorter for group B (p=0.003), but group A had less postoperative pain (p=0.001), less per-operative blood loss (p=0.001) and less postoperative oral swelling (p=0.021). Conclusion: Early carcinoma tongue is better removed by laser than electrocautery in terms of postoperative morbidity, per-operative blood loss, postoperative pain and oral swelling. (author)

  10. Therapeutic benefits of carbon dioxide (CO2) laser on single-site HPV lesions in the lower female genital tract

    Science.gov (United States)

    Urru, Giovanni; Moretti, Gianfranco

    1998-01-01

    Numerous studies have shown contradictory variable percentages of recurrent HPV lesions, after various therapies. The present study therefore evaluates the effectiveness of CO2 laser vaporization in the treatment of single-site HPV lesions of the lower female genital tract in order to confirm the conviction that physical therapy alone, in agreement with some findings reported in the literature, is capable of guaranteeing a high cure rate in selected patients. From January 1995 to June 1996, seventy- five female patients were treated with CO2 laser vaporization for single-site genital HPV lesions, some of which were associated with low-grade intra-epithelial neoplasia. The success rate after 12 months proved to be 97%. The pre-existing clinical symptoms disappeared in all the patients treated. No complication in the vaporization procedure was encountered.

  11. Safe and effective one-session fractional skin resurfacing using a carbon dioxide laser device in super-pulse mode: a clinical and histologic study.

    Science.gov (United States)

    Trelles, Mario A; Shohat, Michael; Urdiales, Fernando

    2011-02-01

    Carbon dioxide (CO(2)) laser ablative fractional resurfacing produces skin damage, with removal of the epidermis and variable portions of the dermis as well as associated residual heating, resulting in new collagen formation and skin tightening. The nonresurfaced epidermis helps tissue to heal rapidly, with short-term postoperative erythema. The results for 40 patients (8 men and 32 women) after a single session of a fractional CO(2) resurfacing mode were studied. The treatments included resurfacing of the full face, periocular upper lip, and residual acne scars. The patients had skin prototypes 2 to 4 and wrinkle degrees 1 to 3. The histologic effects, efficacy, and treatment safety in various clinical conditions and for different phototypes are discussed. The CO(2) laser for fractional treatment is used in super-pulse mode. The beam is split by a lens into several microbeams, and super-pulse repetition is limited by the pulse width. The laser needs a power adaptation to meet the set fluence per microbeam. Laser pulsing can operate repeatedly on the same spot or be moved randomly over the skin, using several passes to achieve a desired residual thermal effect. Low, medium, and high settings are preprogrammed in the device, and they indicate the strength of resurfacing. A single treatment was given with the patient under topical anesthesia. However, the anesthesia was injected on areas of scar tissue. Medium settings (2 Hz, 30 W, 60 mJ) were used, and two passes were made for dark skins and degree 1 wrinkles. High settings (2 Hz, 60 W, 120 mJ) were used, and three passes were made for degree 3 wrinkles and scar tissue. Postoperatively, resurfaced areas were treated with an ointment of gentamycin, Retinol Palmitate, and DL-methionine (Novartis; Farmaceutics, S.A., Barcelona, Spain). Once epithelialization was achieved, antipigment and sun protection agents were recommended. Evaluations were performed 15 days and 2 months after treatment by both patients and

  12. Treatment of acne scarring using a dual-spot-size ablative fractionated carbon dioxide laser: review of the literature.

    Science.gov (United States)

    Tierney, Emily P

    2011-07-01

    Fractional photothermolysis has been reported in the literature to improve pigmentary and textural changes associated with acne scarring. To review the literature for the treatment of acne scarring using nonablative fractional laser (NAFL) and ablative fractional laser (AFL) resurfacing. Review of the Medline literature evaluating NAFL and AFL for acne scarring. NAFL and AFL are safe and effective treatments for acne scarring. It is likely that the controlled, limited dermal heating of fractional resurfacing initiates a cascade of events in which normalization of the collagenesis-collagenolysis cycle occurs. We present the results of a patient treated using a novel dual-spot-size AFL device. Three months after the final treatment, the patient reported 75% improvement in acne scarring and 63% overall improvement in photoaging. Fractionated resurfacing for the treatment of acne scarring is associated with lesser risks of side effects of prolonged erythema and risks of delayed-onset dyspigmentation and scarring which complicate traditional ablative laser resurfacing approaches. We present herein preliminary data suggesting that a dual-spot-size AFL device presents novel advantages of improving texture and pigmentation in acne scarring and photoaging. © 2011 by the American Society for Dermatologic Surgery, Inc.

  13. Problems and complications of full-face carbon dioxide laser resurfacing for pathological lesions of the skin.

    Science.gov (United States)

    Read-Fuller, Andrew M; Yates, David M; Vu, David D; Hoopman, John E; Finn, Richard A

    2017-01-01

    Facial resurfacing with a CO 2 laser has been used for treatment of pathologic lesions and for cosmetic purposes. Postoperative complications and problems after laser resurfacing include infections, acneiform lesions, and pigment changes. This retrospective study describes the most common problems and complications in 105 patients and assesses postoperative pain in 38 patients. All patients received CO 2 laser resurfacing for treatment of malignant/premalignant lesions and had postoperative follow-up to assess problems and complications. Some had follow-up to assess postoperative pain. All patients had Fitzpatrick I-III skin types and underwent the same perioperative care regimen. There were 11 problems and 2 complications. Problems included infection, acneiform lesion/milia, and uncontrolled postoperative pain. Complications included hyperpigmentation. Among the postoperative pain group, 53% reported no pain and the rest had mild or moderate pain. Complications are rare. Infection and acneiform lesions/milia were the most common problems, as previously reported. Most patients do not experience postoperative pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Understanding the carbon dioxide gaps.

    Science.gov (United States)

    Scheeren, Thomas W L; Wicke, Jannis N; Teboul, Jean-Louis

    2018-06-01

    The current review attempts to demonstrate the value of several forms of carbon dioxide (CO2) gaps in resuscitation of the critically ill patient as monitor for the adequacy of the circulation, as target for fluid resuscitation and also as predictor for outcome. Fluid resuscitation is one of the key treatments in many intensive care patients. It remains a challenge in daily practice as both a shortage and an overload in intravascular volume are potentially harmful. Many different approaches have been developed for use as target of fluid resuscitation. CO2 gaps can be used as surrogate for the adequacy of cardiac output (CO) and as marker for tissue perfusion and are therefore a potential target for resuscitation. CO2 gaps are easily measured via point-of-care analysers. We shed light on its potential use as nowadays it is not widely used in clinical practice despite its potential. Many studies were conducted on partial CO2 pressure differences or CO2 content (cCO2) differences either alone, or in combination with other markers for outcome or resuscitation adequacy. Furthermore, some studies deal with CO2 gap to O2 gap ratios as target for goal-directed fluid therapy or as marker for outcome. CO2 gap is a sensitive marker of tissue hypoperfusion, with added value over traditional markers of tissue hypoxia in situations in which an oxygen diffusion barrier exists such as in tissue oedema and impaired microcirculation. Venous-to-arterial cCO2 or partial pressure gaps can be used to evaluate whether attempts to increase CO should be made. Considering the potential of the several forms of CO2 measurements and its ease of use via point-of-care analysers, it is recommendable to implement CO2 gaps in standard clinical practice.

  15. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  16. Fractional carbon dioxide laser resurfacing of rhytides and photoaged skin--a prospective clinical study on patient expectation and satisfaction.

    Science.gov (United States)

    Kohl, Elisabeth; Meierhöfer, Julia; Koller, Michael; Zeman, Florian; Groesser, Leopold; Karrer, Sigrid; Hohenleutner, Ulrich; Landthaler, Michael; Hohenleutner, Silvia

    2015-02-01

    Fractional CO2 -laser resurfacing is increasingly used for treating rhytides and photoaged skin because of its favorable benefit-risk ratio. A key outcome measure and treatment goal in aesthetic laser therapy is patient satisfaction. However, few data are available on patient-reported outcomes after fractional ablative skin-resurfacing. To compare patient expectations before and patient satisfaction after three fractional CO2 -laser treatments and to correlate objectively measured wrinkle reduction with patient satisfaction after treatment. We investigated patient expectation and satisfaction using a 14-item questionnaire in 24 female patients. We assessed the skin-related quality of life and patient satisfaction with skin appearance. We profilometrically measured wrinkle size in four facial areas before and three months after treatment and investigated correlations between wrinkle reduction and patient satisfaction. The high patient expectations before treatment (ceiling effect) were actually slightly exceeded. The average score of 14 items delineating patient satisfaction with laser treatment was higher (4.64 ± 0.82; n = 24) than the respective expectations before treatment (4.43 ± 0.88; n = 24). Skin-related quality of life and patient satisfaction with skin appearance had significantly improved after the last treatment. Patients dissatisfied with their skin appearance before treatment (mean 2.1 ± 1.5; evaluated on a scale ranging from 0-6) were satisfied (mean 5.1 ± 1.2) (P skin appearance at the follow-up. Patient satisfaction with skin appearance was not correlated to the profilometrically measured reduction of wrinkle size of any facial area. Our results show high patient satisfaction with ablative fractional skin resurfacing, also regarding improved self-esteem and self-satisfaction despite high pre-treatment expectations. Skin-specific quality of life had significantly improved. Thus, this treatment modality can be recommended

  17. Reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1987-01-01

    It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800 0 C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350 0 C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo

  18. Method for Extracting and Sequestering Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  19. Apparatus for extracting and sequestering carbon dioxide

    Science.gov (United States)

    Rau, Gregory H [Castro Valley, CA; Caldeira, Kenneth G [Livermore, CA

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  20. Absorption spectroscopic studies of carbon dioxide conversion in a low pressure glow discharge using tunable infrared diode lasers

    International Nuclear Information System (INIS)

    Hempel, F; Roepcke, J; Miethke, F; Wagner, H-E

    2002-01-01

    The time and spatial dependence of the chemical conversion of CO 2 to CO were studied in a closed glow discharge reactor (p = 50 Pa, I = 2-30 mA) consisting of a small plasma zone and an extended stationary afterglow. Tunable infrared diode laser absorption spectroscopy has been applied to determine the absolute ground state concentrations of CO and CO 2 . After a certain discharge time an equilibrium of the concentrations of both species could be observed. The spatial dependence of the equilibrium CO concentration in the afterglow was found to be varying less than 10%. The feed gas was converted to CO more predominantly between 43% and 60% with increasing discharge current, forming so-called quasi-equilibrium states of the stable reaction products. The formation time of the stable gas composition also decreased with the current. For currents higher than 10 mA the conversion rate of CO 2 to CO was estimated to be 1.2x10 13 molecules J -1 . Based on the experimental results, a plasma chemical modelling has been established

  1. Rapid vibrational and rotational energy-transfer rates in heated carbon dioxide collisions by double-resonance laser spectroscopy

    International Nuclear Information System (INIS)

    Thomason, M.D.

    1982-07-01

    Rates for resonant vibrational and rotational energy transfer from the 001 state by CO 2 + CO 2 collisions have been measured. All data were obtained by double resonance spectroscopy with CO 2 lasers in a 2.5 meter absorption cell at 700 0 K. Results for rotation transfer include pumped-level relaxation and the response of other 001 levels with ΔJ up to 18. These data are compared to four relevant collision models via a 35-level rate equation analysis. Sequence-band (002 → 101) and hot-band (011 → 110) lasting have been used to observe resonant nu 3 -transfer relaxation involving 001 + 001 reversible 002 + 000, 001 + 100 reversible 101 + 000, and 001 + 010 reversible 011 + 000. A multilevel rate analysis has been utilized to determine the rate coefficients for 001 going to the 002, the 101, and the 011 levels. Part of the hot-band data has been interpreted as due to 110 + 000 reversible 100 + 010, and the associated rate constant has been estimated. The results of the study are compared to the theory and to other experiments

  2. Bartholin's gland cysts: management with carbon-dioxide laser vaporization Cistos da glândula de Bartholin: tratamento com vaporização laser com CO2

    Directory of Open Access Journals (Sweden)

    Ana Cristina Neves Figueiredo

    2012-12-01

    Full Text Available PURPOSE: To evaluate the effectiveness, recurrence rate, and complications of carbon-dioxide laser vaporization in the treatment of Bartholin's gland cysts. METHODS: A retrospective study including 127 patients with symptomatic Bartholin' gland cysts submitted to carbon-dioxide laser vaporization at our institution from January 2005 to June 2011. Patients with Bartholin's gland abscesses and those suspected of having neoplasia were excluded. All procedures were performed in an outpatient setting under local anaesthesia. Clinical records were reviewed for demographic characteristics, anatomic parameters, intraoperative and postoperative complications, and follow-up data. Data were stored and analyzed in Microsoft Excel® 2007 software. A descriptive statistical analysis was performed, and its results were expressed as frequency (percentage or mean±standard deviation. Complication, recurrence, and cure rates were calculated. RESULTS: The mean age of the patients was 37.3±9.5 years-old (range from 18 to 61 years-old. Seventy percent (n=85 of them were multiparous. The most common symptom was pain and 47.2% (n=60 of patients had a history of previous medical and/or surgical treatment for Bartholin's gland abscesses. Mean cyst size was 2.7±0.9 cm. There were three (2.4% cases of minor intraoperative bleeding. Overall, there were 17 (13.4% recurrences within a mean of 14.6 months (range from 1 to 56 months: ten Bartholin's gland abscesses and seven recurrent cysts requiring reintervention. The cure rate after single laser treatment was 86.6%. Among the five patients with recurrent disease that had a second laser procedure, the cure rate was 100%. CONCLUSIONS: At this institution, carbon-dioxide laser vaporization seems to be a safe and effective procedure for the treatment of Bartholin's gland cysts.OBJETIVO: Avaliar a eficácia, a taxa de recorrência e as complicações da vaporização laser com CO2 no tratamento dos cistos da glândula de

  3. Carbon dioxide problem: solution by technical countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Bach, W

    1978-02-15

    A rough assessment indicates that anthropogenic influences might raise the mean global surface temperature by 0.8 to 1.2 C in 2000 AD and by 2 to 4 C in 2050 AD. The rapidly increasing levels of atmospheric carbon dioxide are largely responsible for this warming trend. A variety of measures for the reduction of carbon dioxide emissions is presented. One promising approach is to work out a world-wide energy mix that can counteract a temperature increase. (In German)

  4. Environmental effects of increased atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Soon, W.; Baliunas, S.L.; Robinson, A.B.; Robinson, Z.W.

    1999-01-01

    A review of the literature concerning the environmental consequences of increased levels of atmospheric carbon dioxide leads to the conclusion that increases during the 20th century have produced no deleterious effects upon global climate or temperature. Increased carbon dioxide has, however, markedly increased plant growth rates as inferred from numerous laboratory and field experiments. There is no clear evidence, nor unique attribution, of the global effects of anthropogenic CO 2 on climate. Meaningful integrated assessments of the environmental impacts of anthropogenic CO 2 are not yet possible because model estimates of global and regional climate changes on interannual, decadal and centennial timescales remain highly uncertain.(author)

  5. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  6. Catalyst retention in continuous flow with supercritical carbon dioxide

    NARCIS (Netherlands)

    Stouten, S.C.; Noel, T.; Wang, Q.; Hessel, V.

    2014-01-01

    This review discusses the retention of organometallic catalysts in continuous flow processes utilizing supercritical carbon dioxide. Due to its innovative properties, supercritical carbon dioxide offers interesting possibilities for process intensification. As a result of safety and cost

  7. Human population and carbon dioxide

    International Nuclear Information System (INIS)

    Schaffer, W.M.

    2008-01-01

    A recently proposed model of human population and carbon utilization is reviewed. Depending on parameter values, one of three possible long-term outcomes is obtained. (1) Atmospheric carbon, (CO 2 ) atm , and human populations equilibrate at positive values. (2) The human population stabilizes, while (CO 2 ) atm increases without bound. (3) The human population goes extinct and atmospheric carbon declines to 0. The final possibility is qualitatively compatible with both 'consensus' views of climate change and the opinions of those who are more impressed with the manifestly adverse consequences of carbon-mitigation to human reproduction and survival

  8. Carbon dioxide capture and air quality

    NARCIS (Netherlands)

    Horssen, A. van; Ramirez, C.A.; Harmelen, T. van; Koornneef, J.

    2011-01-01

    Carbon dioxide (CO2) is one of the most important greenhouse gases (GHG). The most dominant source of anthropogenic CO2 contributing to the rise in atmospheric concentration since the industrial revolution is the combustion of fossil fuels. These emissions are expected to result in global climate

  9. Electrocatalytic carbon dioxide reduction - a mechanistic study

    NARCIS (Netherlands)

    Schouten, Klaas Jan Schouten

    2013-01-01

    This thesis presents new insights into the reduction of carbon dioxide to methane and ethylene on copper electrodes. This electrochemical process has great potential for the storage of surplus renewable electrical energy in the form of hydrocarbons. The research described in this thesis focuses on

  10. Carbon dioxide enhances fragility of ice crystals

    International Nuclear Information System (INIS)

    Qin Zhao; Buehler, Markus J

    2012-01-01

    Ice caps and glaciers cover 7% of the Earth, greater than the land area of Europe and North America combined, and play an important role in global climate. The small-scale failure mechanisms of ice fracture, however, remain largely elusive. In particular, little understanding exists about how the presence and concentration of carbon dioxide molecules, a significant component in the atmosphere, affects the propensity of ice to fracture. Here we use atomic simulations with the first-principles based ReaxFF force field capable of describing the details of chemical reactions at the tip of a crack, applied to investigate the effects of the presence of carbon dioxide molecules on ice fracture. Our result shows that increasing concentrations of carbon dioxide molecules significantly decrease the fracture toughness of the ice crystal, making it more fragile. Using enhanced molecular sampling with metadynamics we reconstruct the free energy landscape in varied chemical microenvironments and find that carbon dioxide molecules affect the bonds between water molecules at the crack tip and decrease their strength by altering the dissociation energy of hydrogen bonds. In the context of glacier dynamics our findings may provide a novel viewpoint that could aid in understanding the breakdown and melting of glaciers, suggesting that the chemical composition of the atmosphere can be critical to mediate the large-scale motion of large volumes of ice.

  11. Diiodination of Alkynes in supercritical Carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香; 尹笃林; 江焕峰

    2003-01-01

    A general,green and efficient method for the synthesis of transdiiodoalkenes in CO2(sc) has been developed.Trans-diiodoalkenes were obtained stereospecifically in quantitative yields via diiodination of both electron-rich and electron-deficient alkynes in the presence of KI,Ce(SO4)2 and water in supercritical carbon dioxide [CO2(sc)]at 40℃.

  12. Tourism Transport, Technology, and Carbon Dioxide Emissions

    NARCIS (Netherlands)

    Peeters, P.M.

    2010-01-01

    Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left

  13. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  14. Conductive polymers for carbon dioxide sensing

    NARCIS (Netherlands)

    Doan, T.C.D.

    2012-01-01

    Augmented levels of carbon dioxide (CO2) in greenhouses stimulate plant growth through photosynthesis. Wireless sensor networks monitoring CO2 levels in greenhouses covering large areas require preferably low power sensors to minimize energy consumption. Therefore, the main

  15. Transport properties of supercritical carbon dioxide

    NARCIS (Netherlands)

    Lavanchy, F.; Fourcade, E.; de Koeijer, E.A.; Wijers, J.G.; Meyer, T.; Keurentjes, J.T.F.; Kemmere, M.F.; Meyer, T.

    2005-01-01

    Recently, supercritical fluids have emerged as more sustainable alternatives for the organic solvents often used in polymer processes. This is the first book emphasizing the potential of supercritical carbon dioxide for polymer processes from an engineering point of view. It develops a

  16. Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during ...

    African Journals Online (AJOL)

    Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during laparoscopic surgery: changes in pH, arterial partial Pressure of Carbon Dioxide (PaCo 2 ) and End Tidal Carbon Dioxide (EtCO 2 ) ... Respiratory adjustments were done for EtCO2 levels above 60mmHg or SPO2 below 92% or adverse haemodynamic changes.

  17. 27 CFR 24.319 - Carbon dioxide record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  18. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...

  19. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except...

  20. Integrated Assessment of Carbon Dioxide Removal

    Science.gov (United States)

    Rickels, W.; Reith, F.; Keller, D.; Oschlies, A.; Quaas, M. F.

    2018-03-01

    To maintain the chance of keeping the average global temperature increase below 2°C and to limit long-term climate change, removing carbon dioxide from the atmosphere (carbon dioxide removal, CDR) is becoming increasingly necessary. We analyze optimal and cost-effective climate policies in the dynamic integrated assessment model (IAM) of climate and the economy (DICE2016R) and investigate (1) the utilization of (ocean) CDR under different climate objectives, (2) the sensitivity of policies with respect to carbon cycle feedbacks, and (3) how well carbon cycle feedbacks are captured in the carbon cycle models used in state-of-the-art IAMs. Overall, the carbon cycle model in DICE2016R shows clear improvements compared to its predecessor, DICE2013R, capturing much better long-term dynamics and also oceanic carbon outgassing due to excess oceanic storage of carbon from CDR. However, this comes at the cost of a (too) tight short-term remaining emission budget, limiting the model suitability to analyze low-emission scenarios accurately. With DICE2016R, the compliance with the 2°C goal is no longer feasible without negative emissions via CDR. Overall, the optimal amount of CDR has to take into account (1) the emission substitution effect and (2) compensation for carbon cycle feedbacks.

  1. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Peng, Tsung-Hung; Takahashi, Taro

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  2. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

    DEFF Research Database (Denmark)

    Bjerregård, Asger; Jansen, Erik

    2012-01-01

    Measurement of the arterial carbon dioxide (P(a)CO(2)) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P(ET)CO(2)) and transcutaneous carbon dioxide (PTCCO2......). Carbon dioxide in the blood and cerebral tissue has great influence on vasoactivity and thereby blood volume of the brain. We have found no studies on the correlation between P(ET)CO(2) or P(TC)CO(2), and P(a)CO(2) during hyperbaric oxygen therapy (HBOT)....

  3. Energy efficient solvent regeneration process for carbon dioxide capture

    Science.gov (United States)

    Zhou, Shaojun; Meyer, Howard S.; Li, Shiguang

    2018-02-27

    A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.

  4. Materials for carbon dioxide separation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingqing

    2014-10-01

    The CO{sub 2} adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO{sub 2} adsorption ability. Another promising class of materials for CO{sub 2} capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO{sub 3} and the relationship between physisorption and chemisorption properties of CaO-based materials.

  5. Materials for carbon dioxide separation

    International Nuclear Information System (INIS)

    Xu, Qingqing

    2014-01-01

    The CO 2 adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO 2 adsorption ability. Another promising class of materials for CO 2 capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO 3 and the relationship between physisorption and chemisorption properties of CaO-based materials.

  6. Carbon dioxide research conference: carbon dioxide, science and consensus

    International Nuclear Information System (INIS)

    1983-02-01

    The DOE program focuses on three areas each of which requires more research before the many CO 2 -related questions can be answered. These areas include the global carbon cycle, climate effects, and vegetation effects. Additional information is needed to understand the sources and sinks of CO 2 . Research efforts include an attempt to estimate regional and global changes in temperature and precipitation. Increased atmospheric CO 2 may be a potential benefit to vegetation and crops because it is an essential element required for plant growth. Eight separate papers are included

  7. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    Science.gov (United States)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  8. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, Sander; Clauson-Kaas, Anne Sofie Kjærulff; Bobuľská, L.

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application....... This study investigated the nature of the early release of CO2 and the degree to which stabilizing mechanisms protect biochar from microbial attack. Incubations of 14C-labelled biochar produced at different temperatures were performed in soils with different clay contents and in sterilized and non......-sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over...

  9. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  10. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  11. Recycling technology of emitted carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hironori [National Inst. of Materials and Chemical Research (NIMC), Ibaraki (Japan)

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  12. Carbon dioxide may become a resource

    International Nuclear Information System (INIS)

    Haugneland, Petter; Areklett, Ivar

    2002-01-01

    The greenhouse gas CO 2 may become a product that the oil companies would pay for. In an extensive international resource project methods for CO 2 capture, transport and storage are being investigated. CO 2 capture means that carbon dioxide that is formed in the combustion of fossil fuels is separated out from the process, either from the fuel (decarbonization), or from the flue gas, and then stored. The article briefly describes the international joint project CO 2 Capture Project (CCP), in which eight oil companies are participating. If one can find a method for injecting CO 2 into oil reservoirs that leads to increased oil production, then part of the extra cost of removing the carbon dioxide from flue gas may be repaid

  13. Direct carbon dioxide emissions from civil aircraft

    OpenAIRE

    Grote, Matt; Williams, Ian; Preston, John

    2014-01-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories – policy and legal-related measures, and technological and operational measures. Results of the review are used to develop sever...

  14. Dependence of carbon dioxide concentration on microalgal carbon dioxide fixation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yeoung Sang; Park, Song Moon [Department of Chemical Engineering, School of Environmental Engineering, Pohang University of Science and Technology, Pohang (Korea); Bolesky, Bohumil [Department of Chemical Engineering, McGill University (Canada)

    1999-10-01

    Batch cultivation of chlorella vulgaris was carried out under various CO{sub 2} concentrations in order to understand and describe mathematically the CO{sub 2} inhibition of microalgal CO{sub 2} fixation. The volumetric CO{sub 2} transfer coefficient from mixture gas to culture medium was estimated from the volumetric O{sub 2} transfer coefficient obtained experimentally. Using this transfer coefficient and aquatic equilibrium relationship between dissolved inorganic carbons, the behavior of dissolved CO{sub 2} was calculated during microalgal culture. When air containing 0.035%(v/v) CO{sub 2} was supplied into microalgal culture, the fixation rate was limited by CO{sub 2} transfer rate. However, the limitation was disappeared by supplying mixture gas containing above 2%(v/v) CO{sub 2} and the dissolved CO{sub 2} concentration was maintained at the saturated value. In the range of CO{sub 2} partial pressure in the flue gases from thermal power sations and steel-making plants, the microalgal CO{sub 2} fixation rate was inhibited. The CO{sub 2} fixation rate was successfully formulated by a new empirical equation as a function of dissolved CO{sub 2} concentration, which could be useful for modeling and simulating the performance of photobioreaction with enriched CO{sub 2}. Also, it was found that the CO{sub 2} inhibition of microalgal CO{sub 2} fixation was reversible and that microalgal CO{sub 2} fixation process could be stable against a shock of unusually high CO{sub 2} concentration. 29 refs., 8 figs.

  15. Electrocatalytic process for carbon dioxide conversion

    Science.gov (United States)

    Masel, Richard I.; Salehi-Khojin, Amin; Kutz, Robert

    2017-11-14

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and a Helper Polymer in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said carbon dioxide reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.

  16. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  17. Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.

    Science.gov (United States)

    Lamb, Katie J; Dowsett, Mark R; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D; Aguiar, Pedro M; North, Michael; Parkin, Alison

    2018-01-10

    An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  19. Carbon Dioxide Separation Using Thermally Optimized Membranes

    Science.gov (United States)

    Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.

    2002-05-01

    The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique

  20. The carbon dioxide thermometer and the cause of global warming

    International Nuclear Information System (INIS)

    Calder, Nigel

    1999-01-01

    Carbon dioxide in the air may be increasing because the world is warming. This possibility, which contradicts the hypothesis of an enhanced greenhouse warming driven by manmade emissions, is here pursued in two ways. First, increments in carbon dioxide are treated as readings of a natural thermometer that tracks global and hemispheric temperature deviations, as gauged by meteorologists' thermometers. Calibration of the carbon dioxide thermometer to conventional temperatures then leads to a history of carbon dioxide since 1856 that diverges from the ice-core record. Secondly, the increments of carbon dioxide can also be accounted for, without reference to temperature, by the combined effects of cosmic rays, El Nino and volcanoes. The most durable effect is due to cosmic rays. A solar wind history, used as a long-term proxy for the cosmic rays, gives a carbon dioxide history similar to that inferred from the global temperature deviations. (author)

  1. Amperometric sensor for carbon dioxide: design, characteristics, and perforance

    International Nuclear Information System (INIS)

    Evans, J.; Pletcher, D.; Warburton, P.R.G.; Gibbs, T.K.

    1989-01-01

    A new sensor for atmospheric carbon dioxide is described. It is an amperometric device based on a porous electrode in a three-electrode cell and the electrolyte is a copper diamine complex in aqueous potassium chloride. The platinum cathode, held at constant potential, is used to detect the formation of Cu 2+ following the change in the pH of the solution when the sensor is exposed to an atmosphere containing carbon dioxide. The sensor described is designed to monitor carbon dioxide concentrations in the range 0-5%, although with some modifications, other ranges would be possible. The response to a change in the carbon dioxide content of the atmosphere is rapid (about 10s) while the monitored current is strongly (but nonlinearly) dependent on carbon dioxide concentration. Unlike other amperometric devices for carbon dioxide, there is no interference from oxygen although other acid gases would lead to an interfering response

  2. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    International Nuclear Information System (INIS)

    Edwards, A.G.; Ho, C.S.

    1988-01-01

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur

  3. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Pendergast, D.R.

    1999-01-01

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  4. Adverse effects of the automotive industry on carbon dioxide emissions

    OpenAIRE

    Mpho Bosupeng

    2016-01-01

    This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japa...

  5. On reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1986-01-01

    The reaction between titanium polonides and carbon dioxide has been studied by comparing titanium polonide thermal resistance in vacuum and in carbon dioxide. The investigation has shown that titanium mono- and semipolonides fail at temperatures below 350 deg C. Temperature dependence of polonium vapor pressure prepared at failure of the given polonides is determined by the radiotensiometry in carbon dioxide. Enthalpy calculated for this dependence is close to the enthalpy of elementary polonium evaporation in vacuum

  6. Supercritical carbon dioxide: a solvent like no other

    Directory of Open Access Journals (Sweden)

    Jocelyn Peach

    2014-08-01

    Full Text Available Supercritical carbon dioxide (scCO2 could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs. Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity.

  7. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  8. Selective free radical reactions using supercritical carbon dioxide.

    Science.gov (United States)

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  9. Carbon dioxide absorbent and method of using the same

    Science.gov (United States)

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  10. Carbon dioxide absorbent and method of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Robert James; O' Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  11. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...... between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's....

  12. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mijeong Lee; Gillis, James M.; Hwang, Jiann Yang [Michigan Technological University, Houghton (United States)

    2003-12-15

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO{sub 2}/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

  13. Nuclear energy significantly reduces carbon dioxide emissions

    International Nuclear Information System (INIS)

    Koprda, V.

    2006-01-01

    This article is devoted to nuclear energy, to its acceptability, compatibility and sustainability. Nuclear energy is non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy, radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously adjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  14. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO 2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO 2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO 2 transport options, the geological storage of the CO 2 and Total commitments in the domain. (A.L.B.)

  15. INTERACTION OF CARBON DIOXIDE WITH CARBON ADSORBENTS BELOW 400 C

    Energy Technology Data Exchange (ETDEWEB)

    Deitz, V R; Carpenter, F G; Arnold, R G

    1963-06-15

    The adsorption of carbon dioxide on carbon adsorbents (FT carbon, coconut charcoal, acid-washed bone char) and adsorbents containing basic calcium phosphate (hydroxylapatite, bone char, ash of bone char) was studied. Special consideration was given to the pretreatment of the materials. The carbons equilibrated as rapidly as the temperature; the basic calcium phosphates showed a rapid initial adsorption followed by a very slow rate which continued for days. Linear adsorption isotherms were found on FT carbon and the isosteric heats varied slightiy with coverage. The isotherms for the remaining materials had varying curvature and were for the most part in the same sequence as the estimated surface areas. The isosteric heats of carbon dioxide correlated very well with the magnitude of surface hydroxyl groups, an estimate of which was made from the chemical composition. There appeared to be three increasing levels of interaction: (1) pure physical adsorption; (2) an adsorption complex having 'bicarbonate structure'; and (3) an adsorption complex having 'carbonate structure'. (auth)

  16. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  17. Use of supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masayuki (Niigata Univ., Faculty of Engineering, Niigata, (Japan))

    1989-09-25

    Supercritical fluid extraction is a novel diffusion and separation technique which exploits simultaneously the increase of vapor pressure and the difference of chemical affinities of fluids near the critical point. A solvent which is used as the supercritical fluid has the following features: the critical point exists in the position of relatively ease of handling, the solvent is applicable to the extraction of a physiological active substance of thermal instability. Carbon dioxide as the solvent is non-flammable, non-corrosive, non-toxic, cheap, and readily available of high purity. The results of studies on the use of supercritical carbon dioxide (SC-CO{sub 2}) as a solvent for natural products in the fermentation and food industries, were collected. SC-CO{sub 2} extraction are used in many fields, examples for the application are as follows: removal of organic solvents from antibiotics; extraction of vegetable oils contained in wheat germ oil, high quality mustard seeds, rice bran and so on; brewing of sake using rice and rice-koji; use as a non-aqueous medium for the synthesis of precursors of the Aspartame; and use in sterilization. 66 refs., 17 figs., 21 tabs.

  18. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  19. Studies on carbon dioxide power plant, (3)

    International Nuclear Information System (INIS)

    Akagawa, Koji; Fujii, Terushige; Sakaguchi, Tadashi; Kawabata, Yasusuke; Kuroda, Toshihiro.

    1980-01-01

    A power generating plant using carbon dioxide instead of water has been studied by the authors, as high efficiency can be obtained in high temperature range (higher than 650 deg C) and turbines become compact as compared with the Rankine steam cycle. In this paper, the theoretical analysis of the dynamic characteristics of this small power generating plant of supercritical pressure and the comparison with the experimental results are reported. In the theoretical analysis, the linear approximation method using small variation method was adopted for solution. Every component was modeled as the concentrated constant system, and the transfer function for each component was determined, then simulation was carried out for the total system synthesizing these components. The approximation of physical values, and the analysis of a plunger pump, a regenerator, a heater, a vapor valve, a turbine and a blower, piping, and pressure drop are described. The response to the stepwise changes of heating, flow rate, opening of a vapor valve and a load control valve for a blower was investigated. The theoretical anaysis and the experimental results were in good agreement, and this analysis is applicable to the carbon dioxide plant of practical scale. (Kako, I.)

  20. Adaptation to carbon dioxide tax in shipping

    International Nuclear Information System (INIS)

    Olsen, Kristian

    2000-01-01

    This note discusses the consequences for the sea transport sector between Norway and continental Europe of levying a carbon dioxide tax on international bunker. The influence of such a tax on the operational costs of various types of ship and various transport routes is calculated. The profit obtainable from the following ways of adapting to an increased tax level is assessed: (1) Reducing the speed, (2) Rebuilding the engine to decrease fuel consumption, (3) Changing the design speed for new ships. It is found that a carbon dioxide tax of NOK 200 per tonne of CO 2 will increase the transport costs by 3 - 15 percent. In the long run much of this may be transferred to the freight rates since so much of the sea transport are in segments in which the demand for the service is not sensitive to the prices. Even if the freight rates are not changed, a tax this size will not make it necessary to reduce the speed of the existing fleet. The income lost by taking fewer trips will exceed the costs saved in reducing the speed. However, the optimum design speed for new ships may be somewhat reduced (0.5 knots). Rebuilding engines to reduce the fuel consumption would pay off were it not for the fact that the remaining life of the present fleet is probably too short for this to be interesting

  1. The effect of cutting on carbon dioxide absorption and carbohydrate ...

    African Journals Online (AJOL)

    grass) and Osteospermun sinuatum (Karoo-bush) plants during the flag leaf and flower bud stages respectively resulted in a sharp decline in net carbon dioxide absorption. As new photosynthetic material was produced the total carbon ...

  2. Robust optical carbon dioxide isotope analyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  3. Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters

    Science.gov (United States)

    Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.

    2013-12-01

    Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity

  4. Carbon monoxide and carbon dioxide interaction with tantalum

    International Nuclear Information System (INIS)

    Belov, V.D.; Ustinov, Yu.K.; Komar, A.P.

    1978-01-01

    The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T >= 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (α and β' 1 ) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal. For the β' 1 state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 X 10 12 sec -1 , and γ = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively. (Auth.)

  5. Carbon monoxide and carbon dioxide interaction with tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Belov, V D; USTINOV, YU K; KOMAR, A P [AN SSSR, LENINGRAD. FIZIKO-TEKHNICHESKIJ INST.

    1978-03-01

    The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T >= 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (..cap alpha.. and ..beta..'/sub 1/) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal. For the ..beta..'/sub 1/ state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 X 10/sup 12/ sec/sup -1/, and ..gamma.. = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively.

  6. Flexible substrates as basis for photocatalytic reduction of carbon dioxide

    DEFF Research Database (Denmark)

    Jensen, Jacob; Mikkelsen, Mette; Krebs, Frederik C

    2011-01-01

    A photocatalytic system for converting carbon dioxide into carbon monoxide was designed and constructed. The system relies on thin films of the photocatalyst prepared at low temperature using spray coating. We formulated inks based on the well-known photocatalyst titanium dioxide and characterized...

  7. Carbon Dioxide and Global Warming: A Failed Experiment

    Science.gov (United States)

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  8. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  9. Model studies of limitation of carbon dioxide emissions reduction

    International Nuclear Information System (INIS)

    1992-01-01

    The report consists of two papers concerning mitigation of CO 2 emissions in Sweden, ''Limitation of carbon dioxide emissions. Socio-economic effects and the importance of international coordination'', and ''Model calculations for Sweden's energy system with carbon dioxide limitations''. Separate abstracts were prepared for both of the papers

  10. Balance and forecasts of french carbon dioxide emissions

    International Nuclear Information System (INIS)

    1992-11-01

    This paper strikes the balance of carbon dioxide emissions in France between 1986 and 1991 and gives forecasts till 2010. Since 1986, France has reduced its efforts for energy conservation and air pollution by carbon dioxide begins to growth again in connection with consumption growth in transport area, development of computer and simulation needs

  11. Adverse effects of the automotive industry on carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    Mpho Bosupeng

    2016-05-01

    Full Text Available This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japan. In addition, significant relations were observed between output and carbon dioxide discharges in Spain, Canada, India and Japan. Changes in output had substantial impact on emissions in Germany, Canada and India. The results also show that the number of passenger cars influences the magnitude of emissions in multiple economies. In conclusion, the automotive industry has to be considered in policies that aim to reduce carbon dioxide emissions.

  12. Carbon dioxide for enhanced oil recovery in Canada

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S.; Manbybura, F.; Sparks, N.

    1985-01-01

    This paper examines the potential for carbon dioxide as a major miscible solvent in Canada and describes Shell Canada's carbon dioxide exploration efforts over the last few years. Enhanced oil recovery, specifically miscible flooding, has been recognized as a technically and economically feasible method for adding reserves and productive capacity to Canada's light and medium oil. The fiscal regime has been altered by both the federal and provincial governments to encourage miscible flooding development. As a result many projects have been initiated with others being evaluated and designed. This paper analyzes the history and the direction of miscible flooding in the United States, where carbon dioxide is becoming the predominant miscible solvent. The potential for future use of carbon dioxide in Canada is specifically addressed: potential oil recovery solvent supply, and economics. Shell's carbon dioxide exploration play currently underway is also discussed.

  13. Carbon dioxide from fossil fuels: adapting to uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K; Winter, R C; Bergman, M K

    1980-12-01

    If present scientific information is reasonable, the world is likely to experience noticeable global warming by the beginning of the next century if high annual growth rates of fossil-fuel energy use continue. Only with optimistic assumptions and low growth rates will carbon-dioxide-induced temperature increases be held below 2/sup 0/C or so over the next century. Conservation, flexible energy choices, and control options could lessen the potential effects of carbon dioxide. Though perhaps impractical from the standpoint of costs and efficiency losses, large coastal centralized facilities would be the most amenable to carbon dioxide control and disposal. Yet no country can control carbon dioxide levels unilaterally. The USA, however, which currently contributes over a quarter of all fossil-fuel carbon dioxide emissions and possesses a quarter of the world's coal resources, could provide a much needed role in leadership, research and education. 70 references.

  14. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.

  15. Carbon dioxide absorbent and method of using the same

    Science.gov (United States)

    Perry, Robert James [Niskayuna, NY; Lewis, Larry Neil [Scotia, NY; O'Brien, Michael Joseph [Clifton Park, NY; Soloveichik, Grigorii Lev [Latham, NY; Kniajanski, Sergei [Clifton Park, NY; Lam, Tunchiao Hubert [Clifton Park, NY; Lee, Julia Lam [Niskayuna, NY; Rubinsztajn, Malgorzata Iwona [Ballston Spa, NY

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  16. Carbon Dioxide Detection and Indoor Air Quality Control.

    Science.gov (United States)

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  17. Difficult colonoscopy: air, carbon dioxide, or water insufflation?

    Science.gov (United States)

    Chaubal, Alisha; Pandey, Vikas; Patel, Ruchir; Poddar, Prateik; Phadke, Aniruddha; Ingle, Meghraj; Sawant, Prabha

    2018-04-01

    This study aimed to compare tolerance to air, carbon dioxide, or water insufflation in patients with anticipated difficult colonoscopy (young, thin, obese individuals, and patients with prior abdominal surgery or irradiation). Patients with body mass index (BMI) less than 18 kg/m 2 or more than 30 kg/m 2 , or who had undergone previous abdominal or pelvic surgeries were randomized to air, carbon dioxide, or water insufflation during colonoscopy. The primary endpoint was cecal intubation with mild pain (less than 5 on visual analogue scale [VAS]), without use of sedation. The primary end point was achieved in 32.7%, 43.8%, and 84.9% of cases with air, carbon dioxide and water insufflation ( P carbon dioxide, and water insufflation ( P carbon dioxide for pain tolerance. This was seen in the subgroups with BMI 30 kg/m 2 .

  18. New technology for carbon dioxide at high pressure

    International Nuclear Information System (INIS)

    Hassina, Bazaze; Raouf, Zehioua; Menial, A. H.

    2006-01-01

    Carbon dioxide has long been the nemesis of environmentalists because of its role in global warming, but under just the right conditions-namely, high pressure and high temperature its one of nature's best and most environmentally benign solvents. Decaf-coffee lovers, for instance, benefit from its ability to remove caffeine from coffee beans.During the last few years, carbon dioxide has also made inroads in the dry-cleaning industry, providing a safe cleaning alternative to the chemical perchloroethylene. But it's on the high-tech front that carbon dioxide may make its biggest impact. T here are huge opportunities. Scientists have known for more than a century that at 75 times atmospheric pressure and 31 degree centigrade, carbon dioxide goes into and odd state that chemists called s upercritical . What's interesting to industry is that supercritical carbon dioxide may be an enabling technology for going to smaller dimensions.(Author)

  19. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  20. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    Directory of Open Access Journals (Sweden)

    Diana S. Raie

    2018-01-01

    Full Text Available The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.

  1. Carbon dioxide emission from bamboo culms.

    Science.gov (United States)

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    information-data on various carbon dioxide emission sources and available capture-utilization technologies; the model and solution libraries [2]; and the generic 3-stage approach for determining more sustainable solutions [3] through superstructure (processing networks) based optimization – adopted for global...... need to provide, amongst other options: useful data from in-house databases on carbon dioxide emission sources; mathematical models from a library of process-property models; numerical solvers from library of implemented solvers; and, work-flows and data-flows for different benefit scenarios...... to be investigated. It is useful to start by developing a prototype framework and then augmenting its application range by increasing the contents of its databases, libraries and work-flows and data-flows. The objective is to present such a prototype framework with its implemented database containing collected...

  3. Miniaturized remission sensor for carbon dioxide detection

    International Nuclear Information System (INIS)

    Martan, T; Will, M

    2010-01-01

    Recently, optical sensors for detection of carbon dioxide (CO 2 ) have been explored for variety of applications in chemistry, industry, and medicine. This paper deals with the development of a planar optical remission sensor employing a dye immobilized in a polymer layer designed for gaseous CO 2 detection. The principle of CO 2 detection was based on colour changes of Tetraethylammonium Cresol red immobilized in a special composed polymer layer that was irradiated by LED diodes. Absorption properties of the dye were changed due to its chemical reaction with CO 2 and corresponding colour changes were detected by PIN diodes. These changes were analyzed by using a PC-controlled board connected by USB. The sensitivity, response time, and the detection limit of the remission sensor were characterized.

  4. Carbon dioxide: Global warning for nephrologists.

    Science.gov (United States)

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-06

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle.

  5. Carbon dioxide neutral, integrated biofuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2010-12-15

    Algae are efficient biocatalysts for both capture and conversion of carbon dioxide in the environment. In earlier work, we have optimized the ability of Chlorella vulgaris to rapidly capture CO{sub 2} from man-made emission sources by varying environmental growth conditions and bioreactor design. Here we demonstrate that a coupled biodiesel-bioethanol facility, using yeast to produce ethanol and photosynthetic algae to produce biodiesel, can result in an integrated, economical, large-scale process for biofuel production. Each bioreactor acts as an electrode for a coupled complete microbial fuel cell system; the integrated cultures produce electricity that is consumed as an energy source within the process. Finally, both the produced yeast and spent algae biomass can be used as added value byproducts in the feed or food industries. Using cost and revenue estimations, an IRR of up to 25% is calculated using a 5 year project lifespan. (author)

  6. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  7. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...... transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has...

  8. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    on the comparability of results obtained using different methods is limited. We therefore aimed to compare the dynamics in soil CO2 concentrations obtained from an automated system (GMP343 sensors) to those from a manually operated measurement system (i.e., soil gas sampled using stainless steel needles and rods......Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding...... systems. Within the measurement range for the GMP343 sensors (0-20,000 ppm), mean results from the two systems were similar within the plough layer at the upslope (P = 0.060) and footslope (P = 0.139) position, and also below the plough layer at the upslope position (P = 0.795). However, results from...

  9. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  10. Carbon Dioxide Mitigation Benefit of High-Speed Railway in Terms of Carbon Tax

    Directory of Open Access Journals (Sweden)

    Fu Yanbing

    2013-01-01

    Full Text Available This paper calculates the carbon dioxide mitigation benefit of high-speed railway based on the carbon dioxide tax policy. We define the carbon dioxide emission system boundary for high-speed railway in its whole life cycle and estimate the life cycle carbon dioxide inventories during its construction, application, and recovery stages. And then we establish a theoretical model to calculate the life cycle carbon dioxide mitigation quantity for high-speed railway when compared with road transport and then calculate its carbon dioxide mitigation benefit. The numerical example shows that the carbon dioxide mitigation benefit of high-speed railway is better than that of road transport from the whole life cycle perspective.

  11. Intraosseous Venography with Carbon Dioxide in Percutaneous Vertebroplasty: Carbon Dioxide Retention in Renal Veins

    International Nuclear Information System (INIS)

    Komemushi, Atsushi; Tanigawa, Noboru; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo; Tokuda, Takanori; Nomura, Motoo; Terada, Jiro; Kamata, Minoru; Sawada, Satoshi

    2008-01-01

    The objective of the present study was to determine the frequency of gas retention in the renal vein following carbon dioxide intraosseous venography in the prone position and, while citing references, to examine its onset mechanisms. All percutaneous vertebroplasties performed at our hospital from January to December 2005 were registered and retrospectively analyzed. Of 43 registered procedures treating 79 vertebrae, 28 procedures treating 54 vertebrae were analyzed. Vertebral intraosseous venography was performed using carbon dioxide as a contrast agent in all percutaneous vertebroplasty procedures. In preoperative and postoperative vertebral CT, gas retention in the renal vein and other areas was assessed. Preoperative CT did not show gas retention (0/28 procedures; 0%). Postoperative CT confirmed gas retention in the renal vein in 10 of the 28 procedures (35.7%). Gas retention was seen in the right renal vein in 8 procedures (28.6%), in the left renal vein in 5 procedures (17.9%), in the left and right renal veins in 3 procedures (10.7%), in vertebrae in 22 procedures (78.6%), in the soft tissue around vertebrae in 14 procedures (50.0%), in the spinal canal in 12 procedures (42.9%), and in the subcutaneous tissue in 5 procedures (17.9%). In conclusion, in our study, carbon dioxide gas injected into the vertebra frequently reached and remained in the renal vein.

  12. Amazon River carbon dioxide outgassing fuelled by wetlands

    NARCIS (Netherlands)

    Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.-H.; Bernardes, M.C.; Savoye, N.; Deborde, J.; Souza, E.L.; Alberic, P.; de Souza, M.F.L.; Roland, F.

    2014-01-01

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial

  13. Absorption of carbon dioxide and isotope exchange rate of carbon in a reaction system between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1985-01-01

    The performance of isotope separation of carbon-13 by chemical exchange between carbon dioxide and carbamic acid was studied. The working fluid used in the study was a solution of DNBA, (C 4 H 9 ) 2 NH and n-octane mixture. Factors related to the isotope exchange rate were measured, such as the absorption rate of carbon dioxide into the solution of DNBA and n-octane, the isotope exchange rate and the separation factor in the reaction between CO 2 and carbamic acid. The absorption of CO 2 into the working fluid was the sum of chemical absorption by DNBA and physical absorption by n-octane. The absorption of carbon dioxide into the working fluid was negligible at temperatures over 90 0 C, but increased gradually at lower temperatures. Carbon dioxide was absorbed into DNBA by chemical absorption, and DNBA was converted to carbamic acid by the reaction. The reaction for synthesis and decomposition of carbamic acid was reversible. The separation factor in equilibrium reached a large value at lower temperatures. The isotope exchange rate between gas and liquid was proportional to the product of the concentration of carbamic acid and the concentration of CO 2 by physical absorption. The isotope separation of carbon by chemical exchange reaction is better operated under the conditions of lower temperature and higher pressure. (author)

  14. Air-sea exchange of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, D C.E.; De Baar, H J.W.; De Jong, E; Koning, F A [Netherlands Institute for Sea Research NIOZ, Den Burg Texel (Netherlands)

    1996-12-31

    The greenhouse gas carbon dioxide is emitted by anthropogenic activities. The oceans presumably serve as a net sink for 17 to 39% of these emissions. The objective of this project is to quantify more accurately the locality, seasonality and magnitude of the net air-sea flux of CO2 with emphasis on the South Atlantic Ocean. In situ measurements of the fugacity of CO2 in surface water and marine air, of total dissolved inorganic carbon, alkalinity and of air-sea exchange of CO2 have been made at four Atlantic crossings, in the Southern Ocean, in a Norwegian fjord and in the Dutch coastal zone. Skin temperature was detected during several of the cruises. The data collected in the course of the project support and refine previous findings. Variability of dissolved CO2 in surface water is related in a complex way to biological and physical factors. The carbonate equilibria cause dissolved gaseous CO2 to react in an intricate manner to disturbances. Dissolved gaseous CO2 hardly ever attains equilibrium with the atmospheric CO2 content by means of air-sea exchange, before a new disturbance occurs. Surface water fCO2 changes could be separated in those caused by seasonal warming and those by biological uptake in a Southern Ocean spring. Incorporation of a thermal skin effect and a change of the wind speed interval strongly increased the small net oceanic uptake for the area. The Atlantic crossings point to a relationship between water mass history and surface water CO2 characteristics. In particular, current flow and related heat fluxes leave their imprint on the concentration dissolved gaseous CO2 and on air-sea exchange. In the Dutch coastal zone hydrography and inorganic carbon characteristics of the water were heterogeneous, which yielded variable air-sea exchange of CO2. figs., tabs., refs.

  15. Formic Acid Manufacture: Carbon Dioxide Utilization Alternatives

    Directory of Open Access Journals (Sweden)

    Marta Rumayor

    2018-06-01

    Full Text Available Carbon dioxide (CO2 utilization alternatives for manufacturing formic acid (FA such as electrochemical reduction (ER or homogeneous catalysis of CO2 and H2 could be efficient options for developing more environmentally-friendly production alternatives to FA fossil-dependant production. However, these alternatives are currently found at different technological readiness levels (TRLs, and some remaining technical challenges need to be overcome to achieve at least carbon-even FA compared to the commercial process, especially ER of CO2, which is still farther from its industrial application. The main technical limitations inherited by FA production by ER are the low FA concentration achieved and the high overpotentials required, which involve high consumptions of energy (ER cell and steam (distillation. In this study, a comparison in terms of carbon footprints (CF using the Life Cycle Assessment (LCA tool was done to evaluate the potential technological challenges assuring the environmental competitiveness of the FA production by ER of CO2. The CF of the FA conventional production were used as a benchmark, as well as the CF of a simulated plant based on homogeneous catalysts of CO2 and H2 (found closer to be commercial. Renewable energy utilization as PV solar for the reaction is essential to achieve a carbon-even product; however, the CF benefits are still negligible due to the enormous contribution of the steam produced by natural gas (purification stage. Some ER reactor configurations, plus a recirculation mode, could achieve an even CF versus commercial process. It was demonstrated that the ER alternatives could lead to lower natural resources consumption (mainly, natural gas and heavy fuel oil compared to the commercial process, which is a noticeable advantage in environmental sustainability terms.

  16. Grasland Stable Isotope Flux Measurements: Three Isotopomers of Carbon Dioxide Measured by QCL Spectroscopy

    Science.gov (United States)

    Zeeman, M. J.; Tuzson, B.; Eugster, W.; Werner, R. A.; Buchmann, N.; Emmenegger, L.

    2007-12-01

    To improve our understanding of greenhouse gas dynamics of managed ecosystems such as grasslands, we not only need to investigate the effects of management (e.g., grass cuts) and weather events (e.g., rainy days) on carbon dioxide fluxes, but also need to increase the time resolution of our measurements. Thus, for the first time, we assessed respiration and assimilation fluxes with high time resolution (5Hz) stable isotope measurements at an intensively managed farmland in Switzerland (Chamau, 400m ASL). Two different methods were used to quantify fluxes of carbon dioxide and associated fluxes of stable carbon isotopes: (1) the flux gradient method, and (2) the eddy covariance method. During a week long intensive measurement campaign, we (1) measured mixing ratios of carbon dioxide isotopomers (12C16O2, 12C16O18O, 13C16O2) with a Quantum Cascade Laser (QCL, Aerodyne Inc.) spectroscope and (2) collected air samples for isotope analyses (13C/12C) and (18O/16O) of carbon dioxide by Isotope Ratio Mass Spectrometry (IRMS, Finnigan) every two hours, concurrently along a height profile (z = 0.05; 0.10; 0.31; 2.15m). In the following week, the QCL setup was used for closed-path eddy covariance flux measurement of the carbon dioxide isotopomers, with the air inlet located next to an open-path Infra Red Gas Analyzers (IRGA, LiCor 7500) used simultaneously for carbon dioxide measurements. During this second week, an area of grass inside the footprint was cut and harvested after several days. The first results of in-field continuous QCL measurements of carbon dioxide mixing ratios and their stable isotopic ratios show good agreement with IRGA measurements and isotope analysis of flask samples by IRMS. Thus, QCL spectroscopy is a very promising tool for stable isotope flux investigations.

  17. Modeling and calculation of open carbon dioxide refrigeration system

    International Nuclear Information System (INIS)

    Cai, Yufei; Zhu, Chunling; Jiang, Yanlong; Shi, Hong

    2015-01-01

    Highlights: • A model of open refrigeration system is developed. • The state of CO 2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO 2 has little relation to the state of CO 2 . • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration

  18. The formation of ethane from carbon dioxide under cold plasma

    International Nuclear Information System (INIS)

    Zhang Xiuling; Zhang Lin; Dai Bin; Gong Weimin; Liu Changhou

    2001-01-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increasing in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increasing in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well

  19. Forest management techniques for carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Takao [Forestry and Forest Products Research Inst., Tsukuba, Ibaraki (Japan)

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  20. Carbon dioxide warming of the early Earth

    Science.gov (United States)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  1. Kinetics of absorption of carbon dioxide in aqueous amine and carbonate solutions with carbonic anhydrase

    NARCIS (Netherlands)

    Penders-van Elk, Nathalie J. M. C.; Hamborg, Espen S.; Huttenhuis, Patrick J. G.; Fradette, Sylvie; Carley, Jonathan A.; Versteeg, Geert F.

    In the present work the absorption of carbon dioxide in aqueous N-methyldiethanolamine (MDEA) and aqueous sodium carbonate with and without carbonic anhydrase (CA) was studied in a stirred cell contactor in the temperature range 298-333 K. The CA was present as free enzyme and is compared to the

  2. Chemoselective alternating copolymerization of limonene dioxide and carbon dioxide : a new highly functional aliphatic epoxy polycarbonate

    NARCIS (Netherlands)

    Li, C.; Sablong, R.J.; Koning, C.E.

    The alternating copolymerization of biorenewable limonene dioxide with carbon dioxide (CO2) catalyzed by a zinc β-diiminate complex is reported. The chemoselective reaction results in linear amorphous polycarbonates that carry pendent methyloxiranes and exhibit glass transition temperatures (Tg) up

  3. Carbon dioxide fluid-flow modeling and injectivity calculations

    Science.gov (United States)

    Burke, Lauri

    2011-01-01

    At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.

  4. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...... for cultures in CO2. This synergism between nisin and CO2 was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO2 and nisin occurs at the cytoplasmic membrane...

  5. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Chouinard, Y.

    2003-01-01

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  6. Interaction of titanium and vanadium with carbon dioxide under heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskij, V.Ya.; Lyapunov, V.P.; Radomysel'skij, I.D.

    1986-01-01

    The methods of gravitmetric and X-ray phase analysis as well as analysis of composition of gases in the heating chamber have been used to investigate the mechanism of titanium and vanadium interaction with carbon dioxide in the 300-1000 deg C temperature range. The analogy of mechanisms of the interaction of titanium and vanadium with carbon dioxide in oxides production on the metal surface with subsequent carbidizing treatment at temperatures above 800 deg C is shown. Temperature limits of material operation on the base of titanium or vanadium in carbon dioxide must not exceed 400 or 600 deg C, respectively

  7. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)

    2012-06-15

    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  8. Synthesis pf dimethyl carbonate in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ballivet-Tkatchenko, D.; Plasseraud, L. [Universite de Bourgogne-UFR Sciences et Techniques, Dijon (France). Lab. de Synthese et Electrosynthese Organometalliques]. E-mail: ballivet@u-bourgogne.fr; Ligabue, R.A. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Dept. de Quimica Pura

    2006-01-15

    The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu{sub 3}SnOCH{sub 3}, n-Bu{sub 2}Sn(OCH{sub 3}){sub 2}, and [n-Bu{sub 2}(CH{sub 3}O)Sn]{sub 2}O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO{sub 2} pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO{sub 2} pressure higher than 16 MPa. Under these conditions, CO{sub 2} acted as a reactant and a solvent. (author)

  9. Membranes for separation of carbon dioxide

    Science.gov (United States)

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  10. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  11. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  12. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  13. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  14. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Science.gov (United States)

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with both...

  15. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  16. Carbon dioxide inhalation treatments of neurotic anxiety. An overview.

    Science.gov (United States)

    Wolpe, J

    1987-03-01

    A lucky chance more than 30 years ago revealed the remarkable efficacy of single inhalations of high concentrations of carbon dioxide in eliminating or markedly reducing free-floating anxiety. The reduction of anxiety lasts for days, weeks, or longer--well beyond the persistence of carbon dioxide in the body. The effects are explicable on the hypothesis that free-floating anxiety is anxiety conditioned to continuously present sources of stimulation, such as background noise or the awareness of space or time, and that the anxiety response habit is weakened when the anxiety is inhibited by the competition of responses that carbon dioxide induces. More recently, it has become apparent that inhalations of carbon dioxide, applied in a different manner, are effective in overcoming maladaptive anxiety responses to specific stimuli, e.g., social stimuli. The substance is also proving to be a valuable resource in the treatment of the common variety of panic attacks.

  17. Monthly Carbon Dioxide in Troposphere (AIRS on AQUA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon dioxide (CO2) is an important greenhouse gas released through natural processes such as respiration and volcano eruptions and through huma activities such as...

  18. Studies on carbon dioxide system in central Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Singbal, S.Y.S.

    significantly with depth Bicarbonate ion is quantitatively the major component of the carbon dioxide system The observed vertical distributions are discussed in terms of biological and geochemical processes in the sea...

  19. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Beardall, J.; Giordano, Mario

    2014-01-01

    Roč. 121, 2-3 (2014), s. 111-124 ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : carbon dioxide * environmental change * radiation Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  20. Quantitative aspects of oxygen and carbon dioxide exchange ...

    African Journals Online (AJOL)

    Quantitative aspects of oxygen and carbon dioxide exchange through the ... ceratophthalmus (Crustacea: Decapoda) during rest and exercise in water and ... intersects zero time on the x-axis, indicating rapid gas exchange at the lung surface.

  1. Carbon dioxide and water vapour characteristics on the west coast ...

    Indian Academy of Sciences (India)

    Carbon dioxide, water vapour, air temperature and wind measurements at 10 Hz sampling rate were carried out over the ... seasonal and annual variations in the CO2 bal- ance. Hence, it is .... motion below produced by shear stress near the.

  2. Gas flaring: Carbon dioxide contribution to global warming ...

    African Journals Online (AJOL)

    Journal Home > Vol 20, No 2 (2016) > ... The quantitative method of analysis showed that carbon dioxide from gas ... gas flaring cause environmental degradation, health risks and constitute financial loss to the local oil producing communities.

  3. ISLSCP II Air-Sea Carbon Dioxide Gas Exchange

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the calculated net ocean-air carbon dioxide (CO2) flux and sea-air CO2 partial pressure (pCO2) difference. The estimates are based on...

  4. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A; Jayakumar, D.A; George, M.D.; Narvekar, P.V.; DeSousa, S

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  5. Gas Flaring: Carbon dioxide Contribution to Global Warming ...

    African Journals Online (AJOL)

    PROF HORSFALL

    emissions resulting from high consumption of fossil fuels. Flaring been a ... method of analysis showed that carbon dioxide from gas flaring constitute 1% of the total ... Although of these, methane is potentially the most .... in some gas plants.

  6. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata; Benes, Nieck Edwin; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate

  7. Elevated carbon dioxide: impacts on soil and plant water relations

    National Research Council Canada - National Science Library

    Kirkham, M. B

    2011-01-01

    .... Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2...

  8. Precision remote sensor for oxygen and carbon dioxide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes development of a passive optical sensor for simultaneous high-precision measurement of oxygen and carbon dioxide profiles within the full...

  9. Comparative study of the efficacy of Platelet-rich plasma combined with carboxytherapy vs its use with fractional carbon dioxide laser in atrophic acne scars.

    Science.gov (United States)

    Al Taweel, Abdul-Aziz Ibrahim; Al Refae, Abdul-Aziz Abdul-Salam; Hamed, Ahmed Mohamed; Kamal, Asmaa Mostafa

    2018-04-22

    Acne scars are a major concerning problem to all acne patients affecting their quality of life. Platelet-rich plasma (PRP) and fractional CO 2 laser are innovative treatment modalities for acne scars. Carboxytherapy can also be used to improve scar tissue through the increase in collagen deposition and reorganization, and the improvement in skin texture and tone. The aim of this work was to compare the efficacy, safety, and complications of the intradermal injection of PRP combined with carboxytherapy and PRP combined with fractional CO 2 laser, in the treatment of atrophic acne scars. Forty patients with atrophic acne scars were divided into 2 groups. Group A included 20 patients and was subjected to three fractional CO 2 laser sessions combined with PRP injection. Group B included 20 patients and was subjected to three sessions of carboxytherapy combined with PRP injection. Both fractional CO 2 laser and carboxytherapy combined with PRP showed improvement in acne scars and patients' satisfaction but the improvement with fractional CO 2 laser was significantly better than carboxytherapy but with more side effects. Improvement of acne scars was noted in both treatment modalities with obvious higher and statistically significant results in favor of fractional CO 2 laser but with more side effects. Carboxytherapy is a promising tool in treatment of acne scars with less complication. © 2018 Wiley Periodicals, Inc.

  10. Carbon dioxide removal in gas treating processes

    International Nuclear Information System (INIS)

    Lidal, H.

    1992-06-01

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO 2 in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140 o C, for CO 2 loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO 2 into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO 2 in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO 2 /TEG/MEA system for estimation of CO 2 partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs

  11. Suppressing bullfrog larvae with carbon dioxide

    Science.gov (United States)

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  12. Euthanasia of neonatal mice with carbon dioxide

    Science.gov (United States)

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  13. Periorbital area rejuvenation using carbon dioxide therapy.

    Science.gov (United States)

    Paolo, Fioramonti; Nefer, Fallico; Paola, Parisi; Nicolò, Scuderi

    2012-09-01

    Different conservative and surgical approaches are used for periorbital region rejuvenation, but none of them is effective in the treatment of the medial third of the lower eyelid. The present study is designed to assess the effectiveness of carboxytherapy in the treatment of wrinkles on the median and medial region of the lower eyelid and dark circles around the eyes. From January 2008 to December 2010, 90 patients with moderate to severe periorbital wrinkles and/or dark circles underwent subcutaneous injections of CO(2) once a week for 7 weeks. Patients were assessed before and 2 months after the treatment through photographic documentation and the compilation of visual analog scales. At the end of the study period, patients reported a reduction of facial fine lines and wrinkles as well as a decrease in periorbital hyperpigmentation. A few side effects were observed but they were all transient and did not require discontinuation of treatment. Carbon dioxide therapy results as an effective noninvasive modality for the rejuvenation of the periorbital area. © 2012 Wiley Periodicals, Inc.

  14. Carbon dioxide removal in gas treating processes

    Energy Technology Data Exchange (ETDEWEB)

    Lidal, H

    1992-06-01

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO{sub 2} in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140{sup o}C, for CO{sub 2} loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO{sub 2} into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO{sub 2} in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO{sub 2}/TEG/MEA system for estimation of CO{sub 2} partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs.

  15. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

  16. Medium temperature carbon dioxide gas turbine reactor

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi; Nitawaki, Takeshi; Muto, Yasushi

    2004-01-01

    A carbon dioxide (CO 2 ) gas turbine reactor with a partial pre-cooling cycle attains comparable cycle efficiencies of 45.8% at medium temperature of 650 deg. C and pressure of 7 MPa with a typical helium (He) gas turbine reactor of GT-MHR (47.7%) at high temperature of 850 deg. C. This higher efficiency is ascribed to: reduced compression work around the critical point of CO 2 ; and consideration of variation in CO 2 specific heat at constant pressure, C p , with pressure and temperature into cycle configuration. Lowering temperature to 650 deg. C provides flexibility in choosing materials and eases maintenance through the lower diffusion leak rate of fission products from coated particle fuel by about two orders of magnitude. At medium temperature of 650 deg. C, less expensive corrosion resistant materials such as type 316 stainless steel are applicable and their performance in CO 2 have been proven during extensive operation in AGRs. In the previous study, the CO 2 cycle gas turbomachinery weight was estimated to be about one-fifth compared with He cycles. The proposed medium temperature CO 2 gas turbine reactor is expected to be an alternative solution to current high-temperature He gas turbine reactors

  17. Carbon dioxide removal and the futures market

    Science.gov (United States)

    Coffman, D.'Maris; Lockley, Andrew

    2017-01-01

    Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for later performance on a contract. Forward contracts also entail future settlement, but they are traded directly between two parties. Futures and forwards are used in commodities trading, as producers seek financial security when planning production. We discuss the potential use of futures contracts in Carbon Dioxide Removal (CDR) markets; concluding that they have one principal advantage (near-term price security to current polluters), and one principal disadvantage (a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge caution about the prospects for market failure. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. While regulation offers increased assurances, we identify major insufficiencies with this approach—finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.

  18. Carbon dioxide balneotherapy and cardiovascular disease

    Science.gov (United States)

    Pagourelias, Efstathios D.; Zorou, Paraskevi G.; Tsaligopoulos, Miltiadis; Athyros, Vasilis G.; Karagiannis, Asterios; Efthimiadis, Georgios K.

    2011-09-01

    Carbon dioxide (CO2) balneotherapy is a kind of remedy with a wide spectrum of applications which have been used since the Middle Ages. However, its potential use as an adjuvant therapeutic option in patients with cardiovascular disease is not yet fully clarified. We performed a thorough review of MEDLINE Database, EMBASE, ISI WEB of Knowledge, COCHRANE database and sites funded by balneotherapy centers across Europe in order to recognize relevant studies and aggregate evidence supporting the use of CO2 baths in various cardiovascular diseases. The three main effects of CO2 hydrotherapy during whole body or partial immersion, including decline in core temperature, an increase in cutaneous blood flow, and an elevation of the score on thermal sensation, are analyzed on a pathophysiology basis. Additionally, the indications and contra-indications of the method are presented in an evidence-based way, while the need for new methodologically sufficient studies examining the use of CO2 baths in other cardiovascular substrates is discussed.

  19. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  20. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  1. POSSIBILITIES OF CARBON DIOXIDE FIXATION BY MICROALGAE IN REFINERY

    OpenAIRE

    Šingliar, Michal; Mikulec, Jozef; Kušnir, Patrik; Polakovičova, Gabriela

    2013-01-01

    Capture and sequestration of carbon dioxide is one of the most critical challenges today for businesses and governments worldwide. Thousands of emitting power plants and industries worldwide face this costly challenge – reduce the CO2 emissions or pay penalties. One possibility for carbon dioxide sequestration is its fixation in microalgae. Microalgae can sequester CO2 from flue gases emitted from fossil fuel-fired refinery plants and units, thereby reducing emissions of a major greenhouse ga...

  2. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon [Kyunghee Univ., Seoul (Korea, Republic of); Yim, Sanghak; Yoon, Weonseob [Ulchin Nuclear Power Site, Ulchin (Korea, Republic of)

    2006-07-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 {approx} 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  3. Carbon dioxide efflux from leaves in light and darkness

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, P; Jarvis, P G

    1967-01-01

    The efflux of carbon dioxide in light and darkness was measured at low ambient CO/sub 2/ concentrations in leaves of Rumex acetosa. Light carbon dioxide production (photorespiration) was found to depend on irradiance and to differ from dark production as to the response to temperature and ambient concentrations of O/sub 2/ and CO/sub 2/. These observations support previously made suggestions that photorespiration follows a different metabolic pathway to dark respiration.

  4. Tethered catalysts for the hydration of carbon dioxide

    Science.gov (United States)

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  5. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    International Nuclear Information System (INIS)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Yim, Sanghak; Yoon, Weonseob

    2006-01-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 ∼ 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  6. The Greenness of Cities: Carbon Dioxide Emissions and Urban Development

    OpenAIRE

    Glaeser, Edward L.; Kahn, Matthew E.

    2008-01-01

    Carbon dioxide emissions may create significant social harm because of global warming, yet American urban development tends to be in low density areas with very hot summers. In this paper, we attempt to quantify the carbon dioxide emissions associated with new construction in different locations across the country. We look at emissions from driving, public transit, home heating, and household electricity usage. We find that the lowest emissions areas are generally in California and that the h...

  7. Carbon Dioxide Leaser For The Treatment Of Keloids

    Directory of Open Access Journals (Sweden)

    Verma Kaushal K

    2002-01-01

    Full Text Available Keloids are difficult to treat medically or surgically. Carbon dioxide (CO2 laser is considered to be a better therapeutic option due to less chances of recurrence with this modality. Fourteen patients, 4 males and 10 females, between 9 and 36 years of age having keloids for 1 to 10 years were included in this study. The lesions were present on chest, ear lobes, nape of neck, forearm, arm and shoulder. CO2 laser with a power setting of 10 to 20 watts was used in continuous mode to vaporize/excise the lesions. The patients were followed up at the end of last week, 2nd week and then every 4 weeks for 3 months to evaluate the response to treatment. Twelve patients followed up regularly and completed this study. Six patients with keliods on chest had 50 to 70% response. Remaining 6 patients with keliods on chest had 50 to 70% response. Remaining 6 patients with lesions on the ear lobes (3, showed 50 to 90% response. Nape of neck (1, shoulder, arm and forearm (2 lesions had 50 to 90% response. In all, except one patient the healing started by 4 weeks and complete healing of the treatment area occurred within 8 weeks. Four patients with poor response to CO2 laser alone were given in addition intralesional triaminolone acetonide 40mg/ml, which resulted in a better response in these patients. One patient had depigmentation of the treated area. There were no side effects in other patients. We therefore conclude that CO2 laser is a good therapeutic modality for the treatment of keloids: however recurrence on long term follow up needs to be observed.

  8. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

    NARCIS (Netherlands)

    Shen, J.; Kortlever, R.; Kas, Recep; Mul, Guido; Koper, M.T.M.

    2015-01-01

    The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low

  9. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  10. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  11. Supercritical carbon dioxide for textile applications and recent developments

    Science.gov (United States)

    Eren, H. A.; Avinc, O.; Eren, S.

    2017-10-01

    In textile industry, supercritical carbon dioxide (scCO2), possessing liquid-like densities, mostly find an application on textile dyeing processes such as providing hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can result in shorter dyeing periods in comparison with the conventional water dyeing process. Supercritical carbon dioxide dyeing is an anhydrous dyeing and this process comprises the usage of less energy and chemicals when compared to conventional water dyeing processes leading to a potential of up to 50% lower operation costs. The advantages of supercritical carbon dioxide dyeing method especially on synthetic fiber fabrics hearten leading textile companies to alter their dyeing method to this privileged waterless dyeing technology. Supercritical carbon dioxide (scCO2) waterless dyeing is widely known and applied green method for sustainable and eco-friendly textile industry. However, not only the dyeing but also scouring, desizing and different finishing applications take the advantage of supercritical carbon dioxide (scCO2). In this review, not only the principle, advantages and disadvantages of dyeing in supercritical carbon dioxide but also recent developments of scCO2 usage in different textile processing steps such as scouring, desizing and finishing are explained and commercial developments are stated and summed up.

  12. Phase equilibrium condition of marine carbon dioxide hydrate

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang

    2013-01-01

    Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  13. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  14. Comparison of first-intention healing of carbon dioxide laser, 4.0-MHz radiosurgery, and scalpel incisions in ball pythons (Python regius).

    Science.gov (United States)

    Hodshon, Rebecca T; Sura, Patricia A; Schumacher, Juergen P; Odoi, Agricola; Steeil, James C; Newkirk, Kim M

    2013-03-01

    To evaluate first-intention healing of CO(2) laser, 4.0-MHz radiowave radiosurgery (RWRS), and scalpel incisions in ball pythons (Python regius). 6 healthy adult ball pythons. A skin biopsy sample was collected, and 2-cm skin incisions (4/modality) were made in each snake under anesthesia and closed with surgical staples on day 0. Incision sites were grossly evaluated and scored daily. One skin biopsy sample per incision type per snake was obtained on days 2, 7, 14, and 30. Necrotic and fibroplastic tissue was measured in histologic sections; samples were assessed and scored for total inflammation, histologic response (based on the measurement of necrotic and fibroplastic tissues and total inflammation score), and other variables. Frequency distributions of gross and histologic variables associated with wound healing were calculated. Gross wound scores were significantly greater (indicating greater separation of wound edges) for laser incisions than for RWRS and scalpel incisions at all evaluated time points. Necrosis was significantly greater in laser and RWRS incisions than in scalpel incision sites on days 2 and 14 and days 2 and 7, respectively; fibroplasia was significantly greater in laser than in scalpel incision sites on day 30. Histologic response scores were significantly lower for scalpel than for other incision modalities on days 2, 14, and 30. In snakes, skin incisions made with a scalpel generally had less necrotic tissue than did CO(2) laser and RWRS incisions. Comparison of the 3 modalities on the basis of histologic response scores indicated that use of a scalpel was preferable, followed by RWRS and then laser.

  15. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  16. Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere

    Science.gov (United States)

    Boyd, Philip W.

    The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1

  17. Clinical and Histological Evaluations of Enlarged Facial Skin Pores After Low Energy Level Treatments With Fractional Carbon Dioxide Laser in Korean Patients.

    Science.gov (United States)

    Kwon, Hyuck Hoon; Choi, Sun Chul; Lee, Won-Yong; Jung, Jae Yoon; Park, Gyeong-Hun

    2018-03-01

    Enlarged facial pores can be an early manifestation of skin aging and they are a common aesthetic concern for Asians. However, studies of improving the appearance of enlarged pores have been limited. The authors aimed to study the application of CO2 fractional laser treatment in patients with enlarged facial pores. A total of 32 patients with dilated facial pores completed 3 consecutive sessions of low energy level treatments with a fractional CO2 laser at 4-week intervals. Image analysis was performed to calculate the number of enlarged pores before each treatment session and 12 weeks after the final treatment. After application of laser treatments, there was a significant decrease in the number of enlarged pores. The mean number of enlarged pores was decreased by 28.8% after the second session and by 54.5% at post-treatment evaluation. Post-treatment side effects were mild and transitory. Histological and immunohistochemical analyses demonstrated clear increases in the number of collagen fibers and the expression of transforming growth factor-β1. The short-term results showed that treatment with low energy level CO2 fractional laser therapy could be a safe and effective option for patients with Fitzpatrick skin Types III and IV who are concerned with enlarged pores.

  18. Stabilization of carbon dioxide and chromium slag via carbonation.

    Science.gov (United States)

    Wu, Xingxing; Yu, Binbin; Xu, Wei; Fan, Zheng; Wu, Zucheng; Zhang, Huimin

    2017-08-01

    As the main greenhouse gas, CO 2 is considered as a threat in the context of global warming. Many available technologies to reduce CO 2 emission was about CO 2 separation from coal combustion and geological sequestration. However, how to deal with the cost-effective storage of CO 2 has become a new challenge. Moreover, chromium pollution, the treatment of which requires huge energy consumption, has attracted people's widespread attention. This study is aimed to develop the sequestration of CO 2 via chromium slag. A dynamic leaching experiment of chromium slag was designed to testify the ability of CO 2 adsorption onto chromium slag and to release Cr(VI) for stabilization. The results showed that the accumulative amounts of Cr(VI) were ca. 2.6 mg/g released from the chromium slag after 24 h of leaching. In addition, ca. 89 mg/g CO 2 was adsorbed by using pure CO 2 in the experiment at 12 h. Calcite is the only carbonate species in the post-carbonated slag analyzed by powder X-ray diffraction and thermal analysis. The approach provides the feasibility of the utilization of chromium slag and sequestration of the carbon dioxide at the same time at ordinary temperatures and pressures.

  19. It is time to put carbon dioxide to work

    Energy Technology Data Exchange (ETDEWEB)

    Lipinsky, E.S. [Battelle, Columbus, OH (United States)

    1993-12-31

    The need to control emissions of carbon dioxide into the atmosphere is the subject of vigorous debate at this time. There is growing evidence that rising levels of carbon dioxide increase global warming, with perhaps highly adverse impacts for the human economy. There are calls for carbon taxes and other harsh measures. Japan has established a national goal of holding carbon dioxide emissions in the year 2000 to 1990 levels. I hope that this conference will be a turning point in the United States position on this issue. The current major end uses for CO{sub 2} include refrigeration, beverage carbonation, soda ash production, fire fighting, and urea fertilizer production. They are all based on chemistry that would not surprise a good chemist of the 19th century. Consumption of carbon dioxide in synthesis of industrial chemicals is limited. Usually one explains low production of chemicals from a candidate feedstock in terms of poor availability, price, purity, or reactivity. We can eliminate the first three as the causes of the underutilization of carbon dioxide.

  20. Nuclear power and the carbon dioxide problem

    International Nuclear Information System (INIS)

    Bijlsma, J.J.; Blok, K.; Turkenburg, W.C.

    1989-05-01

    This study deals with the question, which contribution can be delivered by nuclear power to the redution of the emission of carbon dioxide (CO 2 ) from the power supply. The emphasis lays upon the following aspects: the emissions of CO 2 which occur in the nuclear-power cycle (the so-called indirect emission of CO 2 power plants); the amount of uranium stocks; the change of CO 2 emission caused by replacement of fossil fuels, in particular coal, by nuclear power. First an energy-analysis of the nuclear power cycle is presented. On the base of this analysis the CO 2 uranium can be calculated. The role of nuclear power in the reduction of CO 2 emission depends on the development of the final power demand. Therefore in this study two scenarios derived from the 'IIASA-low' scenario; 'low-energy'-scenario in which the world-energy consumption remains at about the same level. In the calculations the indirect emissions of CO 2 , also dependent on the ore richness and the technology used, have always been taken into account. In the calculations two uranium-reserve variants of resp. 5.7 and 30 mln. tons have been assumed. From the results of the calculations it can be concluded that whether or not taking account of the indirect emissions of CO 2 in the nuclear power cycle, has only limited effect on the calculated contribution of nuclear power to the solution of the greenhouse effect. The uranium reserves turn out to be determining for the potential contribution of nuclear power. By putting on the surely available reserve of 5.7 mln. tons, or the speculative reserve of 30 mln. tons, with the actual technology, an emission of resp. 130-140 billion and 880 billion tons CO 2 can be avoided in replacing coal. With maximal employment of improved conversion techniques these contributions may be doubled. (H.W.). 40 refs.; 13 figs.; 10 tabs

  1. Carbon Dioxide Physiological Training at NASA.

    Science.gov (United States)

    Law, Jennifer; Young, Millennia; Alexander, David; Mason, Sara S; Wear, Mary L; Méndez, Claudia M; Stanley, David; Ryder, Valerie Meyers; Van Baalen, Mary

    2017-10-01

    Astronauts undergo CO2 exposure training to recognize their symptoms that can arise acutely both on the ground and in spaceflight. This article describes acute CO2 exposure training at NASA and examines the symptoms reported by astronauts during training. In a controlled training environment, astronauts are exposed to up to 8% CO2 (60 mmHg) by a rebreathing apparatus. Symptoms are reported using a standard form. Symptom documentation forms between April 1994 and February 2012 were obtained for 130 astronauts. The number of symptoms reported per session out of the possible 24 was related to age and sex, with those older slightly more likely to report symptoms. Women reported more symptoms on average than men (men: 3.7, women: 4.7). Respiratory symptoms (90%), flushing sensation/sweating (56%), and dizziness/feeling faint/lightheadedness (43%) were the top symptoms. Only headache reached statistical significance in differences between men (13%) and women (37%) after adjustment for multiple testing. Among those with multiple training sessions, respiratory symptoms were the most consistently reported. CO2 exposure training is an important tool to educate astronauts about their potential acute CO2 symptoms. Wide interindividual and temporal variations were observed in symptoms reported during astronaut CO2 exposure training. Headache could not be relied on as a marker of acute exposure during testing since fewer than half the subjects reported it. Our results support periodic refresher training since symptoms may change over time. Further study is needed to determine the optimal interval of training to maximize symptom recognition and inform operational decisions.Law J, Young M, Alexander D, Mason SS, Wear ML, Méndez CM, Stanley D, Meyers Ryder V, Van Baalen M. Carbon dioxide physiological training at NASA. Aerosp Med Hum Perform. 2017; 88(10):897-902.

  2. Carbon dioxide and climate: an astrophysical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, R S

    1979-01-01

    In this survey the earth is viewed from the astrophysical perspective, i.e. using global mean values of environmental parameters. The role of carbon dioxide is described in the processes of energy transfer from the earth's surface to space, which determine global climate as measured by the mean surface temperature. Analogies and differences between the problems of the terrestrial atmosphere and those of the solar and stellar atmospheres are examined, both in the computation of model atmospheres and in remote sensing of atmospheric temperature and composition. Subsequently, the temporal astrophysical perspective, with a review of the evolution of CO/sub 2/ abundance and climate on astrophysical or geological time scales, on earth as an Venus (the runaway greenhouse) and on Mars is introduced. Variation of CO/sub 2/ may have been critical to the maintenance of an environment in which life could originate and evolve, and may itself have been affected by life. On human time scales, the recent and continuing increase in atmospheric CO/sub 2/ raises new problems, which are briefly surveyed. It is argued, that the differential greenhouse effect of increased CO/sub 2/ in the earth's atmosphere is essentially identifical to the blanketing effect of spectral lines on the temperature structure of stellar atmospheres. The methods used by astrophysicists in such studies are reviewed and compared with those used to evaluate the differential greenhouse effect of CO/sub 2/ in radiative-convective models of the earth's atmosphere. The latter methods remain relatively crude, but recent results by different authors are in reasonably good agreement; however, the astrophysical perspective, i.e. the use of one-dimensional global mean models, remains a gross simplification of the real complexity of the earth's climate system, which is also true in stellar atmospheres.

  3. Detection of salts in soil using transversely excited atmospheric (TEA) carbon dioxide (CO2) laser-induced breakdown spectroscopy (LIBS) by the aid of a metal mesh

    Science.gov (United States)

    Idris, N.; Ramli, M.; Khumaeni, A.; Kurihara, K.

    2018-04-01

    In this work, a nickel metal mesh was used to allow a direct detection of salt in soil sample by LIBS utilizing unique characteristics of a TEA CO2. The metal mesh is placed in the front of the soil sample to prevent the soil sample from blowing off upon focusing the high pulsed laser beam irradiation. LIBS apparatus used in this work is a TEA CO2 laser operated at wavelength of 10.6 μm with pulse energy and duration of 3J and 200 ns, respectively. The laser beam was focused using a ZnSe lens (f = 200 mm) onto soil sample after passing through the metal mesh. The emission spectrum from the induced plasma was detected using an optical multichannel analyzer (OMA) system consisting of a 0.32-m-focal length spectrograph with a grating of 1200 graves/mm and a 1024-channel photodiode detector array with a micro-channel plate intensifier. The soil sample used is a standard soil and ordinary soil containing several salts such as Ca, Mg at high concentration. The LIBS experiment was carried out at high pressure surrounding gas of 1 atmosphere. It was observed that by the aid of the metal mesh, strong breakdown gas plasma can be produced just after TEA CO2 laser irradiation on soil sample without significant sample blowing off. It was found that emission lines from salts, Ca (Ca II 393. 3 nm, Ca II 396.3 nm, Ca I 422.5 nm), and also other salts including Mg and Na can clearly be detected with strong emission intensity and narrow spectral width. This result implies that a TEA CO2 LIBS assisted by the metal mesh (metal mesh method) can be used for direct analysis several salts such as Ca, Mg, and Na in soil sample.

  4. Reactor design considerations in mineral sequestration of carbon dioxide

    International Nuclear Information System (INIS)

    Ityokumbul, M.T.; Chander, S.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.

    2001-01-01

    One of the promising approaches to lowering the anthropogenic carbon dioxide levels in the atmosphere is mineral sequestration. In this approach, the carbon dioxide reacts with alkaline earth containing silicate minerals forming magnesium and/or calcium carbonates. Mineral carbonation is a multiphase reaction process involving gas, liquid and solid phases. The effective design and scale-up of the slurry reactor for mineral carbonation will require careful delineation of the rate determining step and how it changes with the scale of the reactor. The shrinking core model was used to describe the mineral carbonation reaction. Analysis of laboratory data indicates that the transformations of olivine and serpentine are controlled by chemical reaction and diffusion through an ash layer respectively. Rate parameters for olivine and serpentine carbonation are estimated from the laboratory data

  5. Dissolved Carbon Dioxide in Tropical East Atlantic Surface Waters

    NARCIS (Netherlands)

    Bakker, D.C.E.; Baar, H.J.W. de; Jong, E. de

    1999-01-01

    Variability of dissolved inorganic carbon (DIC) and the fugacity of carbon dioxide (fCO2) is discussed for tropical East Atlantic surface waters in October–November 1993 and May–June 1994. High precipitation associated with the Intertropical Convergence Zone, river input and equatorial upwelling

  6. Regional carbon dioxide implications of forest bioenergy production

    NARCIS (Netherlands)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest

  7. Assessing Carbon Dioxide Emissions from Energy Use at a University

    Science.gov (United States)

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  8. Ions in carbon dioxide at an atmospheric pressure

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Onuki, Kaoru; Shimizu, Saburo; Nakajima, Hayato; Sato, Shoichi; Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki

    1985-01-01

    The formation and the subsequent reactions of positive and negative ions were observed by a time resolved atmospheric pressure ionization mass spectrometer (TRAPI) in an atmospheric pressure carbon dioxide added with small amounts of carbon monoxide and oxygen. A relatively stable ion of (44 x n) + (n >= 2) having a different reactivity from that of (CO 2 ) + sub(n) was found to be one of major ionic species in this gas system. This species was tentatively assigned as [O 2 (CO) 2 ] + (CO 2 )sub(n-2). A new reaction sequence of positive ions is proposed which can be operative in the radiolysis of carbon dioxide at 1 atm. (author)

  9. 27.12 MHz plasma generation in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Toyota, Hiromichi; Nomura, Shinfuku; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro; Yamashita, Hiroshi

    2007-01-01

    An experiment was conducted for generating high-frequency plasma in supercritical carbon dioxide; it is expected to have the potential for applications in various types of practical processes. It was successfully generated at 6-20 MPa using electrodes mounted in a supercritical cell with a gap of 1 mm. Emission spectra were then measured to investigate the physical properties of supercritical carbon dioxide plasma. The results indicated that while the emission spectra for carbon dioxide and carbon monoxide could be mainly obtained at a low pressure, the emission spectra for atomic oxygen could be obtained in the supercritical state, which increased with the pressure. The temperature of the plasma in supercritical state was estimated to be approximately 6000-7000 K on the assumption of local thermodynamic equilibrium and the calculation results of thermal equilibrium composition in this state showed the increase of atomic oxygen by the decomposition of CO 2

  10. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  11. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized for temperatures in the region of 300 to 900 0 C and partial pressure of carbon dioxide near 5 x 10 -7 Torr. Dynamic film pumping speeds were measured against a mercury diffusion pump of known pumping speed and conductance. A quadrupole mass spectrometer was used to monitor the carbon dioxide flow which originated from a calibrated leak in the 10 -6 standard cm 3 /s range. Data reduction was via a dedicated minicomputer with associated printer/plotter. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C. The reaction was preceded by the desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface

  12. Biomass combustion for greenhouse carbon dioxide enrichment

    International Nuclear Information System (INIS)

    Roy, Yves; Lefsrud, Mark; Orsat, Valerie; Filion, Francis; Bouchard, Julien; Nguyen, Quoc; Dion, Louis-Martin; Glover, Antony; Madadian, Edris; Lee, Camilo Perez

    2014-01-01

    Greenhouses in northern climates have a significant heat requirement that is mainly supplied by non-renewable fuels such as heating oil and natural gas. This project's goal was the development of an improved biomass furnace able to recover the heat and the CO 2 available in the flue gas and use them in the greenhouse. A flue gas purification system was designed, constructed and installed on the chimney of a wood pellet furnace (SBI Caddy Alterna). The purification system consists of a rigid box air filter (MERV rating 14, 0.3 μm pores) followed by two sets of heating elements and a catalytic converter. The air filter removes the particulates present in the flue gas while the heating elements and catalysers transform the noxious gases into less harmful gases. Gas analysis was sampled at different locations in the system using a TESTO 335 flue gas analyzer. The purification system reduces CO concentrations from 1100 cm 3  m −3 to less than 1 cm 3  m −3 NO x from 70 to 5.5 cm 3  m −3 SO 2 from 19 cm 3  m −3 to less than 1 cm 3  m −3 and trapped particulates down to 0.3 μm with an efficiency greater than 95%. These results are satisfactory since they ensure human and plant safety after dilution into the ambient air of the greenhouse. The recuperation of the flue gas has several obvious benefits since it increases the heat usability per unit biomass and it greatly improves the CO 2 recovery of biomass heating systems for the benefit of greenhouse grown plants. - Highlights: • Biomass furnace shows high potential for greenhouse carbon dioxide enrichment. • Flue gas recuperation significantly increases the thermal efficiency of a furnace. • Catalytic converter can reduce CO and NOx below humans and plants exposure limit. • Particulates control is essential to maintain the efficiency of the catalytic conversion. • CO 2 recovery from biomass heating systems reduces farmer's reliance on fossil fuel

  13. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  14. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  15. Carbon dioxide and the greenhouse effect: an unresolved problem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1978-01-01

    This paper evaluates current scientific literature concerned with the accumulation of carbon dioxide in the atmosphere. The extent and possible causes of natural variations in global climate are outlined as a background to potential variations due to human activity. Estimates are given on relative contributions of carbon dioxide to the atmosphere due to fossil fuel combustion, deforestation and other land modifications. The possibility of a rise in global temperature as a result of increasing the amount of carbon dioxide in the atmosphere is discussed including model predictions, natural factors which could compensate for or emphasize a warming effect, and the implications if extensive warming actually occurred. Carbon dioxide disposal is discussed but there appears to be no practicable long-term means of accomplishing this. It is concluded that there is no evidence of a rise in global temperature due to carbon dioxide at present. Predictions, which involve a high degree of uncertainty, indicate that the global temperature could rise appreciably in the next century. An increase in precipitation rate is also expected.

  16. Carbon dioxide and the 'greenhouse effect': an unresolved problem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I

    1978-01-01

    This executive review evaluates current scientific literature concerned with the accumulation of carbon dioxide in the atmosphere. The extent and possible causes of natural variations in global climate are outlined as a background to potential variations due to human activity. Estimates are given on relative contributions of carbon dioxide to the atmosphere due to fossil fuel combustion, deforestation and other land modifications. The possibility of a rise in global temperature as a result of increasing the amount of carbon dioxide in the atmosphere is dicusssed including model predictions, natural factors which could compensate for or emphasize a warming effect, and the implications if extensive warming actually occurred. Carbon dioxide disposal is discussed, but there appears to be no practicable long-term means of accomplishing this. It is concluded that there is no evidence of a rise in global temperature due to carbon dioxide at present. Predictions, which involve a high degree of uncertainty, indicate that the global temperature could rise appreciably in the next century. An increase in precipitation rate is also expected. If these changes result in a redistribution of climatic zones, there may be problems in adapting agricultural belts in some regions. Complete melting of all the ice sheets would take several millenia. A partial melting of continental ice sheets would not necessarily occur in view of the increase in precipitation rates, but if it did, there would be a rise in sea level of a few metres. Melting of the Arctic sea ice would affect climate, but not sea level.

  17. Carbon dioxide, the feedstock for using renewable energy

    Science.gov (United States)

    Hashimoto, K.; Kumagai, N.; Izumiya, K.; Kato, Z.

    2011-03-01

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  18. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; hide

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  19. Measures for carbon dioxide problem and utilization of energy

    International Nuclear Information System (INIS)

    Kojima, Toshinori

    1992-01-01

    As global environment problems, there are water, expansion of deserts, weather, tropical forests, wild animals, ocean pollution, nuclear waste contamination, acid rain, ozone layer and so on, and population, foods, energy, and resources are the problems surrounding them. It is clear that these origins are attributed to the development and consumption largely dependent on the intention of developed countries and the population problem of developing countries. In this report, the discharge of carbon dioxide that causes greenhouse effect and its relation with energy are discussed. The increase of carbon dioxide concentration, its release from fossil fuel, the destruction of forests, the balance of carbon on the earth, the development of new energy such as solar energy, the transport of new energy, secondary energy system and the role of carbon dioxide, the transfer to low carbon fuel and the carbon reduction treatment of fuel, the utilization of unused energy and energy price, the efficiency of energy utilization, the heightening of efficiency of energy conversion, energy conservation and the breakaway from energy wasteful use culture, and the recovery, preservation and use of discharged carbon dioxide are described. (K.I.)

  20. Ablative fractional carbon dioxide laser combined with intense pulsed light for the treatment of photoaging skin in Chinese population: A split-face study.

    Science.gov (United States)

    Mei, Xue-Ling; Wang, Li

    2018-01-01

    Intense pulsed light (IPL) is effective for the treatment of lentigines, telangiectasia, and generalized erythema, but is less effective in the removal of skin wrinkles. Fractional laser is effective on skin wrinkles and textural irregularities, but can induce postinflammatory hyperpigmentation (PIH), especially in Asians. This study evaluated the safety and efficacy of ablative fractional laser (AFL) in combination with IPL in the treatment of photoaging skin in Asians.This study included 28 Chinese women with Fitzpatrick skin type III and IV. The side of the face to be treated with IPL alone (3 times) or AFL in combination with IPL (2 IPL treatments and 1 AFL treatment) was randomly selected. Skin conditions including hydration, transepidermal water loss, elasticity, spots, ultraviolet spots, brown spots, wrinkle, texture, pore size and red areas, as well as adverse effects were evaluated before the treatment and at 30 days after the treatment.Compared with IPL treatment alone, AFL in combination with IPL significantly increased elasticity, decreased pore size, reduced skin wrinkles, and improved skin texture (P = .004, P = .039, P = .015, and P = .035, respectively). Both treatment protocols produced similar effects in relation to the improvement of photoaging-induced pigmentation. The combined therapy did not impair epidermal barrier function. No postoperative infection, hypopigmentation, or scarring occurred after IPL and AFL treatments. PIH occurred at 1 month after AFL treatment and disappeared at 30 days after completion of the combined therapy.AFL in combination with IPL is safe and effective for photoaging skin in Asians. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  1. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  2. Method and aparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide

    International Nuclear Information System (INIS)

    Abdelmalek, F.T.

    1992-01-01

    This patent describes a method for recovering sulfur dioxide, carbon dioxide, and cleaning flue gases emitted from power plants. It comprises: electronically treating the flue gases to neutralize its electrostatic charges and to enhance the coagulation of its molecules and particles; exchanging sensible and latent heat of the neutralized flue gases to lower its temperature down to a temperature approaching the ambient temperature while recovering its separating the flue gas in a first stage; cooling the separated enriched carbon dioxide gas fraction, after each separation stage, while removing its vapor condensate, then compressing the enriched carbon dioxide gas fraction and simultaneously cooling the compressed gas to liquefy the sulfur dioxide gas then; allowing the sulfur dioxide gas to condense, and continuously removing the liquefied sulfur dioxide; compressing he desulfurized enriched carbon dioxide fraction to further increase its pressure, and simultaneously cooling he compressed gas to liquefy the carbon dioxide gas, then; allowing the carbon dioxide gas to condense and continuously removing the liquefied carbon dioxide; allowing the light components of the flue gas to be released in a cooling tower discharge plume

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry

  4. The carbon dioxide problem - a challenge to environmental protection

    International Nuclear Information System (INIS)

    Hlubek, W.; Spalthoff, F.J.

    1989-01-01

    Over the last century, man's activities on earth have sent off trace gases into the planet's atmosphere that have been concentrating to a level posing a threat to the global climate. Since scientists particularly spotted carbon dioxide as the main contributor to what we now call the greenhouse effect, there is urgent need for measures reducing carbon dioxide emission worldwide, may be on the basis of a global convention to be signed by both the industrialised and the developing countries. The industrialised countries, which certainly are the main pollutors, also will have the technological and financial resources to respond to the challenge of global warning more directly and faster than the developing countries. The power industry's management in the FRG is taking the problem seriously and has already come out with strategies for curbing carbon dioxide emissions from fossil-fuel power plant. (orig.) [de

  5. Interaction of titanium and vanadium with carbon dioxide in heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskii, V.Y.; Lyapunov, A.P.; Radomysel'skii, I.D.

    1986-01-01

    To obtain prediction data on the change in properties of titaniumand vanadium-base powder metallurgy materials operating in a carbon dioxide atmosphere, and also to clarify the mechanism of their interaction with the gas in this work, gravimetric investigations of specimens heated at temperatures of 300-1000 C and an x-ray diffraction analysis of their surface were made and the composition of the gas in the heating chamber was studied. The results of the investigations indicate a similarity between the mechanisms of interaction of titanium and vanadium with carbon dioxide including the formation of oxides on the surface of the metal with subsequent carbidization at temperatures above 800 C. On the basis of the data obtained, it may be concluded that the operating temperature limits of titanium- or vanadium-base materials in carbon dioxide must not exceed 400 and 600 C, respectively

  6. Carbonic acid as a reserve of carbon dioxide on icy moons: The formation of carbon dioxide (CO2) in a polar environment

    International Nuclear Information System (INIS)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-01-01

    Carbon dioxide (CO 2 ) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν 3 band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO 2 band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H 2 O)-carbon dioxide (CO 2 ) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν 3 band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  7. Method and apparatus for producing food grade carbon dioxide

    International Nuclear Information System (INIS)

    Nobles, J.E.; Swenson, L.K.

    1984-01-01

    A method is disclosed of producing food grade carbon dioxide from an impure carbon dioxide source stream containing contaminants which may include light and heavy hydrocarbons (at least C 1 to C 3 ) and light sulfur compounds such as hydrogen sulfide and carbonyl sulfide as well as heavier sulfur constituents in the nature of mercaptans (RSH) and/or organic mono and disulfides (RSR and RSSR). Nitrogen, water and/or oxygen may also be present in varying amounts in the impure feed stream. The feed gas is first rectified with liquid carbon dioxide condensed from a part of the feed stream to remove heavy hydrocarbons and heavy sulfur compounds, then passed through an absorber to effect removal of the light sulfur compounds, next subjected to an oxidizing atmosphere capable of converting all of the C 2 hydrocarbons and optionally a part of the methane to carbon oxides and water, chilled to condense the water in the remaining gas stream without formation of hydrates, liquefied for ease of handling and storage and finally stripped to remove residual contaminants such as methane, carbon monoxide and nitrogen to produce the final food grade carbon dioxide product

  8. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Roč. 41, č. 6 (2012), s. 1931-1938 ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevat e carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  9. BOREAS TGB-12 Isotropic Carbon Dioxide Data over the NSA

    Science.gov (United States)

    Trumbore, Susan; Hall, Forrest G. (Editor); Sundquist, Eric; Winston, Greg; Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. This data set contains information on the carbon isotopic content of carbon dioxide sampled from soils in the NSA-OBS, NSA-YJP, and NSA-OJP sites. Data were collected from 14-Nov-1993 to 10-Oct-1996. The data are stored in tabular ASCII files.

  10. Interaction of carbon dioxide with Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, N.; Andersson, Klas Jerker; Grabow, L.C.

    2008-01-01

    Experimental and theoretical studies on the interaction of carbon dioxide with pseudomorphic and rough copper layers deposited on a platinum (111) single crystal are reported. Evidence for carbon dioxide dissociation and carbonate formation is presented and the relevance to methanol synthesis......) reveals a broad high temperature desorption state for CO2 with peak maximum around 450 K. X-ray photoelectron spectroscopy (XPS) shows that approximately one third of the oxygen accumulated on the surface upon CO2 exposure remains after TPD, indicative of carbonate formation via CO2 dissociation supplying...... O-ads and then facile CO2 + O-ads association, as well as subsequent decomposition at higher temperatures. Density functional theory studies of stepped Cu and Cu/Pt slabs reproduce vibrational frequencies of the carbonate, suggesting a nearly flat tridentate configuration at steps/defect sites....

  11. Influence of shielding gas composition on weld profile in pulsed Nd:YAG laser welding of low carbon steel

    Directory of Open Access Journals (Sweden)

    M Jokar

    2014-12-01

    Full Text Available Weld area and weld depth/width ratio can be considered to be of the most important geometrical factors in pulsed laser welding. The effects of carbon dioxide and oxygen additions to the argon shielding gas on the weld properties in pulsed laser welding of low carbon steel is investigated. Presence of carbon dioxide and oxygen up to 10 and 15 percent respectively decreases the weld geometrical factors. But, at higher levels of additions, the weld geometrical factors will increase. It is observed that the plasma plume temperature decreases from 6000K to 5500K with the addition of 15% carbon dioxide but increases to 7700K with 25% carbon dioxide addition. Increase in laser absorption coefficient, laser energy absorption, formation of oxide layer on the work-piece surface, exothermic reactions and their competitive effects can be considered as the competing phenomena involved in such a behavior in the weld profile

  12. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  13. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  14. Historic and projected vehicle use and carbon dioxide emissions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Data are presented in this chapter that show a decline in total carbon dioxide emissions per vehicle of about 20 between 1970 and 1987. However, it is also shown that the fuel economy gains of the 1970s and early 1980s in many countries have begun to erode. In the US, low fuel prices combined with a failure to strengthen fuel efficiency standards have led to recent declines in new-car fuel efficiency. Even if these trends are reversed carbon dioxide in the transport sector will not be reduced if over all motor vehicle use continues along present lines

  15. Visual and reversible carbon dioxide sensing enabled by doctor blade coated macroporous photonic crystals.

    Science.gov (United States)

    Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta

    2017-11-15

    With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Laser Spectroscopy Monitoring of 13C18O16O and 12C17O16O of Atmospheric Carbon Dioxide

    Science.gov (United States)

    Shorter, J. H.; Nelson, D. D.; Ono, S.; McManus, J. B.; Zahniser, M. S.

    2017-12-01

    One of the main challenges to making accurate predictions of future changes in CO2 concentration is the capability to determine what fraction of human produced CO2 remains in the atmosphere. We present our progress in the application of Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) to the measurement of the primary clumped (13C18O16O) as well as 17O (12C17O16O) isotopologues of atmospheric CO2, as a tracer of its sources and sinks. We expect unique isotopologue signals in CO2 from high-temperature combustion sources, plants, soils, and air-sea exchange processes. High sampling frequency (a few minutes for each sample vs. reference cycle) achieved by a TILDAS instrument is expected to enable us to document local heterogeneous sources and temporal variations. The TILDAS is equipped with a newly developed 400-meter absorption cell. We designed a dual pressure measurement technique in which the clumped isotopologue, 13C18O16O, and 13C16O16O are first measured at 30 torr cell pressure. This is followed by measurement of 12C17O16O, 12C18O16O and 12C16O16O at lower ( 5 torr) cell pressure. Isotopologue ratios are compared between reference and sample gases. Preliminary tests demonstrated a precision approaching 0.03 ‰ for the ratio 13C18O16O/13C16O16O and 0.08‰ for Δ13C18O16O value (1σ repeatability for 4 min sample vs. reference cycle). Sample size for a single analysis is approximately 100 mL of air (1.6μmol of CO2). Given the previously observed range of variations for Δ13C18O16O and Δ17O values as large as 0.6 to 0.3 ‰, respectively, TILDAS offers a novel approach for real time monitoring of atmospheric CO2 isotopologues. It was found that achieving better than 0.1‰ requires careful matching of CO2 mixing ratios between reference and sample air. A primary cause of pressure and mixing ratio dependence is inaccurate baseline fitting (analogous to abundance sensitivity or pressure baseline for IRMS). Given that mixing ratios of atmospheric

  17. Plant growth and physiology of vegetable plants as influenced by carbon dioxide environment

    International Nuclear Information System (INIS)

    Ito, Tadashi

    1973-01-01

    In order to obtain basic knowledge on the increased giving of carbon dioxide to vegetables, the carbon dioxide environment in growing houses was analyzed, and the physiological and ecological properties of vegetables cultivated in carbon dioxide environment were elucidated. To improve the carbon dioxide environment, giving increased quantity of carbon dioxide, air flow, ventilation, and others were examined. The concentration of carbon dioxide began to decrease when the illumination intensity on growing layer reached 1 -- 1.5 lux, owing to the photo-synthetic activity of vegetables, and decreased rapidly at 3 -- 5 lux. The lowering of carbon dioxide concentration lowered the photo-synthesis of vegetables extremely, and the transfer of synthesized carbohydrate to roots was obstructed. The effect suffered in low carbon dioxide concentration left some aftereffect even after ventilation and the recovery of carbon dioxide concentration. But this aftereffect was not observed in case of cucumber. To improve carbon dioxide environment, the air flow or ventilation required for minimizing the concentration lowering was determined, but giving increased quantity of carbon dioxide was most effective. The interaction of carbon dioxide concentration and light was examined regarding the effect on photo-synthesis, and some knowledge of practical application was obtained. The effect of giving more carbon dioxide was more remarkable as the treatment was given to younger seedlings and in the period when the capacity of absorbing assimilation products was higher. (Kako, I.)

  18. Industrial structural transformation and carbon dioxide emissions in China

    International Nuclear Information System (INIS)

    Zhou, Xiaoyan; Zhang, Jie; Li, Junpeng

    2013-01-01

    Using provincial panel data from the period 1995–2009 to analyze the relationship between the industrial structural transformation and carbon dioxide emissions in China, we find that the first-order lag of industrial structural adjustment effectively reduced the emissions; technical progress itself did not reduce the emissions, but indirectly led to decreasing emissions through the upgrading and optimization of industrial structure. Foreign direct investment and intervention by local governments reduced carbon dioxide emissions, but urbanization significantly increased the emissions. Thus, industrial structural adjustment is an important component of the development of a low-carbon economy. In the context of industrial structural transformation, an effective way to reduce a region’s carbon dioxide emissions is to promote the upgrading and optimization of industrial structure through technical progress. Tighter environmental access policies, selective utilization of foreign direct investment, and improvements in energy efficiency can help to reduce carbon dioxide emissions. - Highlights: ► Relationship between the transformation of industrial structure and CO 2 emissions in China. ► Dynamic panel data model. ► Industrial structural adjustments can effectively reduce current CO 2 emissions. ► Technical progress leads to decreasing CO 2 emissions through upgrading of industrial structure

  19. Carbon Dioxide Effects Research and Assessment Program: Proceedings of the carbon dioxide and climate research program conference

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, L E [ed.

    1980-12-01

    Papers presented at the Carbon Dioxide and Climate Research Program Conference are included in this volume. Topics discussed are: the carbon cycle; modeling the carbon system; climatic response due to increased CO2; climate modeling; the use of paleoclimatic data in understanding climate change; attitudes and implications of CO2; social responses to the CO2 problem; a scenario for atmospheric CO2 to 2025; marine photosynthesis and the global carbon cycle; and the role of tropical forests in the carbon balance of the world. Separate abstracts of nine papers have been prepared for inclusion in the Energy Data Base. (RJC)

  20. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takahiro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Maekawa, Toru [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hasumura, Takashi [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Rantonen, Nyrki [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Ishii, Koji [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Nakajima, Yoshikata [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Yoshida, Yoshikazu [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Whitby, Raymond [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom); Mikhalovsky, Sergey [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2007-09-15

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO{sub 2}), the critical temperature and pressure of which are 31.0{sup 0}C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO{sub 2} is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO{sub 2} during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  1. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Science.gov (United States)

    Fukuda, Takahiro; Maekawa, Toru; Hasumura, Takashi; Rantonen, Nyrki; Ishii, Koji; Nakajima, Yoshikata; Hanajiri, Tatsuro; Yoshida, Yoshikazu; Whitby, Raymond; Mikhalovsky, Sergey

    2007-09-01

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO2), the critical temperature and pressure of which are 31.0°C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO2 is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO2 during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  2. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    International Nuclear Information System (INIS)

    Fukuda, Takahiro; Maekawa, Toru; Hasumura, Takashi; Rantonen, Nyrki; Ishii, Koji; Nakajima, Yoshikata; Hanajiri, Tatsuro; Yoshida, Yoshikazu; Whitby, Raymond; Mikhalovsky, Sergey

    2007-01-01

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO 2 ), the critical temperature and pressure of which are 31.0 0 C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO 2 is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO 2 during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon

  3. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    Science.gov (United States)

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  4. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    Science.gov (United States)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  5. Energy Saving High-Capacity Moderate Pressure Carbon Dioxide Storage System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach to high-pressure carbon dioxide storage will directly address the challenges associated with storage of compressed carbon dioxide - the need to reduce...

  6. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions,...

  7. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  9. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-01-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C

  10. Somewhere beyond the sea? The oceanic - carbon dioxide - reactions

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2014-05-01

    In correlation to climate change and CO2 emission different campaigns highlight the importance of forests and trees to regulate the concentration of carbon dioxide in the earths' atmosphere. Seeing millions of square miles of rainforest cut down every day, this is truly a valid point. Nevertheless, we often tend to forget what scientists like Spokes try to raise awareness for: The oceans - and foremost deep sea sections - resemble the second biggest deposit of carbon dioxide. Here carbon is mainly found in form of carbonate and hydrogen carbonate. The carbonates are needed by corals and other sea organisms to maintain their skeletal structure and thereby to remain vital. To raise awareness for the protection of this fragile ecosystem in schools is part of our approach. Awareness is achieved best through understanding. Therefore, our approach is a hands-on activity that aims at showing students how the carbon dioxide absorption changes in relation to the water temperature - in times of global warming a truly sensitive topic. The students use standard syringes filled with water (25 ml) at different temperatures (i.e. 10°C, 20°C, 40°C). Through a connector students inject carbon dioxide (25ml) into the different samples. After a fixed period of time, students can read of the remaining amount of carbon dioxide in relation to the given water temperature. Just as with every scientific project, students need to closely monitor their experiments and alter their setups (e.g. water temperature or acidity) according to their initial planning. A digital template (Excel-based) supports the analysis of students' experiments. Overview: What: hands-on, minds -on activity using standard syringes to exemplify carbon dioxide absorption in relation to the water temperature (Le Chatelier's principle) For whom: adjustable from German form 11-13 (age: 16-19 years) Time: depending on the prior knowledge 45-60 min. Sources (extract): Spokes, L.: Wie Ozeane CO2 aufnehmen. Environmental

  11. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    An increase in carbon dioxide (CO2) concentrations in the atmosphere due to ... The changes in land ... the air quality and climate models. 2. ... soon period of 2011 as a part Cloud Aerosol .... density effects due to heat and water vapour trans-.

  12. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  13. Convergence of carbon dioxide emissions in different sectors in China

    International Nuclear Information System (INIS)

    Wang, Juan; Zhang, Kezhong

    2014-01-01

    In this paper, we analyze differences in per capita carbon dioxide emissions from 1996 to 2010 in six sectors across 28 provinces in China and examine the σ-convergence, stochastic convergence and β-convergence of these emissions. We also investigate the factors that impact the convergence of per capita carbon dioxide emissions in each sector. The results show that per capita carbon dioxide emissions in all sectors converged across provinces from 1996 to 2010. Factors that impact the convergence of per capita carbon dioxide emissions in each sector vary: GDP (gross domestic product) per capita, industrialization process and population density impact convergence in the Industry sector, while GDP per capita and population density impact convergence in the Transportation, Storage, Postal, and Telecommunications Services sector. Aside from GDP per capita and population density, trade openness also impacts convergence in the Wholesale, Retail, Trade, and Catering Service sector. Population density is the only factor that impacts convergence in the Residential Consumption sector. - Highlights: • Analyze differences in CO 2 emissions in six sectors among 28 provinces in China. • Examine the convergence of CO 2 emissions in six sectors. • Investigate factors impact on convergence of CO 2 emissions in each sector. • Factors impact on convergence of per capita CO 2 emissions in each sector vary

  14. Carbon dioxide (CO 2 ) utilizing strain database | Saini | African ...

    African Journals Online (AJOL)

    Culling of excess carbon dioxide from our environment is one of the major challenges to scientific communities. Many physical, chemical and biological methods have been practiced to overcome this problem. The biological means of CO2 fixation using various microorganisms is gaining importance because database of ...

  15. Intravenous carbon dioxide as an echocardiographic contrast agent

    NARCIS (Netherlands)

    R.S. Meltzer (Richard); P.W.J.C. Serruys (Patrick); P.G. Hugenholtz (Paul); J.R.T.C. Roelandt (Jos)

    1981-01-01

    textabstractIntravenous carbon dioxide (CO2) was employed to cause echocardiographic contrast in 40 patients. One to 3 cc of medically pure CO2 were agitated with 5 to 8 cc of 5% dextrose in water and rapidly injected into an upper extremity vein. Contrast was obtained in all patients. In 33

  16. 2001-2002 carbon dioxide emissions in OECD

    International Nuclear Information System (INIS)

    2004-11-01

    This document provides carbon dioxide emissions data, from energy uses and production, from 2001 to 2002 in the OECD. It concerns the climate corrected CO 2 emissions in France, the non corrected CO 2 emissions (M tons), the emissions intensity / the Gross Domestic Product and the emissions intensity / the population (tons per inhabitant). (A.L.B.)

  17. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    NARCIS (Netherlands)

    Beurskens, Charlotte J.; Brevoord, Daniel; Lagrand, Wim K.; van den Bergh, Walter M.; Vroom, Margreeth B.; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P.

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical

  18. Cavitation-induced reactions in high-pressure carbon dioxide

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; van Eck, D.; Kemmere, M.F.; Keurentjes, J.T.F.

    2002-01-01

    The feasibility of ultrasound-induced in situ radical formation in liquid carbon dioxide was demonstrated. The required threshold pressure for cavitation could be exceeded at a relatively low acoustic intensity, as the high vapor pressure of CO2 counteracts the hydrostatic pressure. With the use of

  19. Removing carbon dioxide from a stationary source through co ...

    African Journals Online (AJOL)

    Except temperature of solvent, all study variables showed strong relation with the amount of carbon dioxide absorbed (with a P-value < 0.05). Uniquely, this study has evaluated the potential for sodium bicarbonate production from the CO2 absorbed using gravimetric analysis. It is also possible to recover over 28% crystal ...

  20. Carbon dioxide angiography: a simple and safe system of delivery

    International Nuclear Information System (INIS)

    Cronin, P.; Patel, J.V.; Kessel, D.O.; Robertson, I.; McPherson, S.J.

    2005-01-01

    Carbon dioxide (CO 2 ) is an established alternate angiographic contrast agent, which can be delivered by pump or hand injection. We describe a simple, safe and inexpensive hand injection system that delivers a known volume of CO 2 at atmospheric pressure and prevents contamination with room air

  1. Intertidal zones as carbon dioxide sources to coastal oceans

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; Rajagopal, M.D.

    To understand the factors controlling carbon dioxide (CO sub(2)) exchanges near land-sea boundary diurnal observations have been made twice on CO sub(2) in the air and water in a coastal region. The results suggest that CO sub(2) enrichment...

  2. Extended-length fiber optic carbon dioxide monitoring

    Science.gov (United States)

    Delgado-Alonso, Jesus; Lieberman, Robert A.

    2013-05-01

    This paper discusses the design and performance of fiber optic distributed intrinsic sensors for dissolved carbon dioxide, based on the use optical fibers fabricated so that their entire lengths are chemically sensitive. These fibers use a polymer-clad, silica-core structure where the cladding undergoes a large, reversible, change in optical absorbance in the presence of CO2. The local "cladding loss" induced by this change is thus a direct indication of the carbon dioxide concentration in any section of the fiber. To create these fibers, have developed a carbon dioxide-permeable polymer material that adheres well to glass, is physically robust, has a refractive index lower than fused silica, and acts as excellent hosts for a unique colorimetric indicator system that respond to CO2. We have used this proprietary material to produce carbon-dioxide sensitive fibers up to 50 meters long, using commercial optical fiber fabrication techniques. The sensors have shown a measurement range of dissolved CO2 of 0 to 1,450 mg/l (0 to 100% CO2 saturation), limit of detection of 0.3 mg/l and precision of 1.0 mg/l in the 0 to 50 mg/l dissolved CO2 range, when a 5 meter-long sensor fiber segment is used. Maximum fiber length, minimum detectable concentration, and spatial resolution can be adjusted by adjusting indicator concentration and fiber design.

  3. Electrochemical carbon dioxide reduction on rough copper surfaces

    NARCIS (Netherlands)

    Kas, Recep

    2016-01-01

    Sustainable development and climate change is considered to be one of the top challenges of humanity. Electrochemical carbon dioxide (CO2) reduction to fuels or fuel precursor using renewable electricity is a very promising way to recycle CO2 and store the electricity. This would also provide

  4. Distribution of Carbon Dioxide Produced by People in a Room:

    DEFF Research Database (Denmark)

    Naydenov, Kiril Georgiev; Baránková, Petra; Sundell, Jan

    2004-01-01

    Carbon dioxide exhaled by people can be used as a tracer gas for air change measurements in homes. Good mixing of tracer gas with room air is a necessary condition to obtain accurate results. However, the use of fans to ensure mixing is inconvenient. The natural room distribution of metabolic CO2...

  5. The effect of carbon dioxide at high pressure under different ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... the pulse beetle, Callosobruchus maculates. J. Insect Sci. 9: 58-61. George NM, Sonny BR (1998). Comparative effect of short term exposures of Callosobruchus subinnotatus to carbon dioxide, nitrogen, or low temperature on behaviour and fecundity. Entomologia Experimentalis et Applicata Vol. 89, No.

  6. Integrated biofuel facility, with carbon dioxide consumption and power generation

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering

    2009-07-01

    This presentation provided details of an economical design for a large-scale integrated biofuel facility for coupled production of bioethanol and biodiesel, with carbon dioxide capture and power generation. Several designs were suggested for both batch and continuous culture operations, taking into account all costs and revenues associated with the complete plant integration. The microalgae species Chlorella vulgaris was cultivated in a novel photobioreactor (PBR) in order to consume industrial carbon dioxide (CO{sub 2}). This photosynthetic culture can also act as a biocathode in a microbial fuel cell (MFC), which when coupled to a typical yeast anodic half cell, results in a complete biological MFC. The photosynthetic MFC produces electricity as well as valuable biomass and by-products. The use of this novel photosynthetic microalgae cathodic half cell in an integrated biofuel facility was discussed. A series of novel PBRs for continuous operation can be integrated into a large-scale bioethanol facility, where the PBRs serve as cathodic half cells and are coupled to the existing yeast fermentation tanks which act as anodic half cells. These coupled MFCs generate electricity for use within the biofuel facility. The microalgae growth provides oil for biodiesel production, in addition to the bioethanol from the yeast fermentation. The photosynthetic cultivation in the cathodic PBR also requires carbon dioxide, resulting in consumption of carbon dioxide from bioethanol production. The paper also discussed the effect of plant design on net present worth and internal rate of return. tabs., figs.

  7. Dry-cleaning with high-pressure carbon dioxide

    NARCIS (Netherlands)

    Van Roosmalen, M.J.E.

    2003-01-01

    Dry-cleaning is a process for removing soils and stains from fabrics and garments which uses a non-aqueous solvent with detergent added. The currently most used dry-cleaning solvent is perchloroethylene (PER), which is toxic, environmentally harmful and suspected to be carcinogenic. Carbon dioxide

  8. Carbon dioxide hydrate formation in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Lang, X. [South China Univ. of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conservation; Wang, Y.; Liang, D. [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Energy Conversion and Guangzhou Center of Natural Gas Hydrate; Sun, X.; Jurcik, B. [Air Liquide Laboratories, Tsukuba (Japan)

    2008-07-01

    Gas hydrates are thermodynamically stable at high pressures and near the freezing temperature of pure water. Methane hydrates occur naturally in sediments in the deep oceans and permafrost regions and constitute an extensive hydrocarbon reservoir. Carbon dioxide (CO{sub 2}) hydrates are of interest as a medium for marine sequestration of anthropogenic carbon dioxide. Sequestering CO{sub 2} as hydrate has potential advantages over most methods proposed for marine CO{sub 2} sequestration. Because this technique requires a shallower depth of injection when compared with other ocean sequestration methods, the costs of CO{sub 2} hydrate sequestration may be lower. Many studies have successfully used different continuous reactor designs to produce CO{sub 2} hydrates in both laboratory and field settings. This paper discussed a study that involved the design and construction of a fixed-bed reactor for simulation of hydrate formation system. Water, river sands and carbon dioxide were used to simulate the seep kind of hydrate formation. Carbon dioxide gas was distributed as small bubbles to enter from the bottom of the fixed-bed reactor. The paper discussed the experimental data and presented a diagram of the gas hydrate reactor system. The morphology as well as the reaction characters of CO{sub 2} hydrate was presented in detail. The results were discussed in terms of experimental phenomena and hydrate formation rate. A mathematical model was proposed for describing the process. 17 refs., 7 figs.

  9. 46 CFR 169.565 - Fixed carbon dioxide system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS... cylinder storage area must be properly ventilated and the temperature inside must not exceed 130 °F. (g...

  10. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes

    NARCIS (Netherlands)

    Patil, V.E.; Broeke, van den L.J.P.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Permeation of carbon dioxide was measured for two types of composite polymeric hollow fiber membranes for feed pressures up to 18 MPa at a temp. of 313 K. support membrane. The membranes consist of a polyamide copolymer (IPC) layer or a poly(vinyl alc.) (PVA) layer on top of a polyethersulfone

  11. Kinetics of absorption of carbon dioxide in aqueous ammonia solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Versteeg, G. F.

    2009-01-01

    In the present work the absorption of carbon dioxide into aqueous ammonia solutions has been studied in a stirred cell reactor, at low temperatures and ammonia concentrations ranging from 0.1 to about 7 kmol m-3. The absorption experiments were carried out at conditions where the so-called pseudo

  12. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment

    Science.gov (United States)

    Gaihre, Santosh; Semple, Sean; Miller, Janice; Fielding, Shona; Turner, Steve

    2014-01-01

    Background: We tested the hypothesis that classroom carbon dioxide (CO[subscript 2]) concentration is inversely related to child school attendance and educational attainment. Methods: Concentrations of CO[subscript 2] were measured over a 3-5?day period in 60 naturally ventilated classrooms of primary school children in Scotland. Concentrations of…

  13. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    Science.gov (United States)

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  14. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  15. Catalytic polymerization of olefins in supercritical carbon dioxide

    NARCIS (Netherlands)

    Kemmere, M.F.; Vries, de T.J.; Keurentjes, J.T.F.

    2004-01-01

    A novel process is being developed for the catalytic polymerization of olefins in supercritical carbon dioxide (sc CO2), for which potential applications will mainly be in the production of EPDM and other elastomers. For this purpose, the Brookhart catalyst has been tested for the homopolymerization

  16. Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations

    Czech Academy of Sciences Publication Activity Database

    Colina, C. M.; Olivera-Fuentes, C. G.; Siperstein, F. R.; Lísal, Martin; Gubbins, K. E.

    2003-01-01

    Roč. 29, 6-7 (2003), s. 405-412 ISSN 0892-7022 R&D Projects: GA ČR GA203/02/0805 Grant - others:NSF(US) CHE-9876674291 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluctuations * carbon dioxide * 2CLJQ Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.721, year: 2003

  17. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    Science.gov (United States)

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  18. Solubilities of ferrocene and acetylferrocene in supercritical carbon dioxide

    DEFF Research Database (Denmark)

    Kazemi, Somayeh; Belandria, Veronica; Janssen, Nico

    2012-01-01

    In this work, the solubilities of ferrocene and acetylferrocene in supercritical carbon dioxide (scCO2) were measured using an analytical method in a quasi-flow apparatus. High-performance liquid chromatography was applied through an online sampling procedure to determine the concentration...

  19. The thermodynamics of direct air capture of carbon dioxide

    International Nuclear Information System (INIS)

    Lackner, Klaus S.

    2013-01-01

    An analysis of thermodynamic constraints shows that the low concentration of carbon dioxide in ambient air does not pose stringent limits on air capture economics. The thermodynamic energy requirement is small even using an irreversible sorbent-based process. A comparison to flue gas scrubbing suggests that the additional energy requirement is small and can be supplied with low-cost energy. In general, the free energy expended in the regeneration of a sorbent will exceed the free energy of mixing, as absorption is usually not reversible. The irreversibility, which grows with the depth of scrubbing, tends to affect flue gas scrubbing more than air capture which can successfully operate while extracting only a small fraction of the carbon dioxide available in air. This is reflected in a significantly lower theoretical thermodynamic efficiency for a single stage flue gas scrubber than for an air capture device, but low carbon dioxide concentration in air still results in a larger energy demand for air capture. The energy required for capturing carbon dioxide from air could be delivered in various ways. I analyze a thermal swing and also a previously described moisture swing which is driven by the evaporation of water. While the total amount of heat supplied for sorbent regeneration in a thermal swing, in accordance with Carnot's principle, exceeds the total free energy requirement, the additional free energy required as one moves from flue gas scrubbing to air capture can be paid with an amount of additional low grade heat that equals the additional free energy requirement. Carnot's principle remains satisfied because the entire heat supplied, not just the additional amount, must be delivered at a slightly higher temperature. Whether the system is driven by water evaporation or by low grade heat, the cost of the thermodynamically-required energy can be as small as $1 to $2 per metric ton of carbon dioxide. Thermodynamics does not pose a practical constraint on the

  20. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized at 300 to 900 0 C and 5 x 10 -7 torr. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C, preceded by desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface. The sticking coefficients were plotted as a function of Langmuirs of carbon dioxide exposure. Between 400 and 600 0 C, the length of the exposure was found to be more important than the temperature of the exposure in determining the sticking coefficient. Some evolution of carbon monoxide was noted particularly in the 400 to 500 0 C region. An 80% conversion of carbon dioxide to carbon monoxide was measured at 500 0 C. The film pumping speeds were compared with published vapor pressure data for erbium. This comparison indicated that a significant portion of the pumping action observed at temperatures of 800 0 C and above was due to evaporation of erbium metal

  1. Practical modeling approaches for geological storage of carbon dioxide.

    Science.gov (United States)

    Celia, Michael A; Nordbotten, Jan M

    2009-01-01

    The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.

  2. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    than carbon capture and storage. To achieve this a methodology is developed to design sustainable carbon dioxide utilization processes. First, the information on the possible utilization alternatives is collected, including the economic potential of the process and the carbon dioxide emissions...... emission are desired in order to reduce the carbon dioxide emissions. Using this estimated preliminary evaluation, the top processes, with the most negative carbon dioxide emission are investigated by rigorous detailed simulation to evaluate the net carbon dioxide emissions. Once the base case design...

  3. Extraction of Carbon Dioxide and Hydrogen from Seawater and Hydrocarbon Production Therefrom

    Science.gov (United States)

    2016-04-05

    acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H.sup. ions for Na.sup. ions. Carbon dioxide may be...extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide . The carbon dioxide and hydrogen may be used to produce hydrocarbons.

  4. Carbon Dioxide (CO2) in Blood: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/carbondioxideco2inblood.html Carbon Dioxide (CO2) in Blood To use the sharing features ... this page, please enable JavaScript. What is a Carbon Dioxide (CO2) Blood Test? Carbon dioxide (CO2) is an ...

  5. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register... Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide AGENCY... greenhouse gas monitoring and reporting from facilities that conduct geologic sequestration of carbon dioxide...

  6. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 27.42a Section 27.42a Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... On Imported Distilled Spirits, Wines, and Beer Wines § 27.42a Still wines containing carbon dioxide. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except...

  7. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve

  8. Carbon dioxide euthanasia in rats: Oxygen supplementation minimizes signs of agitation and asphyxia

    NARCIS (Netherlands)

    Coenen, A.M.L.; Drinkenburg, W.H.I.M.; Hoenderken, R.; Luijtelaar, E.L.J.M. van

    1995-01-01

    This paper records the effects of carbon dioxide when used for euthanasia, on behaviour, electrical brain activity and heart rate in rats. Four different methods were used. Animals were placed in a box (a) that was completely filled with carbon dioxide; (b) into which carbon dioxide was streamed at

  9. Methane and Carbon Dioxide Emissions from Different Composting Periods

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Chang

    2009-01-01

    Full Text Available To investigate green house gas emissions from compost preparations, methane and carbon dioxide concentrations and emission rates at different accumulative times and composting periods were determined. While the accumulative time was less than 10 min with a closed acrylic chamber, meth ane and carbon dioxide emissions in creased slightly but with high fluntuation in the sampling e ror, and these values decreased significantly when the accumulative time was more than 20 min. During the 8 weeks of composting, the methane emission rate reaches its peak near the end of the second week and the carbon dioxide emission rate does the same near the end of third week. Meth ane and carbon dioxide emissions had high val ues at the first stage of com post ing and then de creased grad u ally for the ma tu rity of com post. Carbon dioxide emission (y was significantly related to temperature (x1, moisture content (x2, and total or ganiccarbon (x3; and there gression equation is: y = 3.11907x1 + 6.19236x2 - 6.63081x3 - 50.62498. The re gres sion equa tion be tween meth ane emis sion (y? and mois ture con tent (x2, pH (x4, C/N ra tio (x5, and ash con tent (x6 is: y?= 0.13225x2 - 0.97046x4 - 1.10599x5 - 0.55220x6 + 50.77057 in the ini tial com post ing stage (weeks 1 to 3; while, the equa tion is: y?= 0.02824x2 - 0.0037x4 - 0.1499x5 - 0.07013x6 + 4.13589 in the later compost ing stage (weeks 4 to 8. Dif ferent stage composts have significant variation of properties and greenhouse gas emissions. Moreover, the emissions may be reduced by manipulating the proper factors.

  10. urbanization and climate chang carbon dioxide emission

    African Journals Online (AJOL)

    userpc

    t efficient public urban mass transit that involves low carbon emissi individual car usage should be discouraged. ent, automobile density, climate change, global warming, greenhou e change .... Lagos, Port Harcourt, Abuja and Kano (Federal.

  11. Mineralization of Carbon Dioxide: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O' Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  12. Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Xiao Wu

    2016-01-01

    Full Text Available The catalytic synthesis of cyclic carbonates using carbon dioxide as a C1-building block is a highly active area of research. Here, we review the catalytic production of enantiomerically enriched cyclic carbonates via kinetic resolution of racemic epoxides catalysed by metal-containing catalyst systems.

  13. Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2013-01-01

    This paper reports on a source of past carbon dioxide accidents which so far has only been sporadically mentioned in the literature. Violent and highly destructive outbursts of hundreds of tons of CO2 occurred regularly, if not routinely, in the now closed salt mines of the former DDR. The Menzen...

  14. The carbon dioxide content in ice cores - climatic curves of carbon dioxide. Zu den CO sub 2 -Klimakurven aus Eisbohrkernen

    Energy Technology Data Exchange (ETDEWEB)

    Heyke, H.E.

    1992-05-01

    The 'greenhouse effect', which implies a temperature of 15 deg C as against -18 deg C, owes its effect to 80% from water (clouds and gaseous phase) and to 10% from carbon dioxide, besides other components. Whereas water is largely unaccounted for, carbon dioxide has been postulated as the main cause of anticipated climatic catastrophe. The carbon dioxide concentration in the atmosphere has risen presently to such levels that all previous figures seem to have been left far behind. The reference point is the concentration of carbon dioxide in the air bubbles trapped in ice cores of Antartic and Greenland ice dated 160 000 years ago, which show much lower values than at present. A review of the most relevant publications indicates that many basic laws of chemistry seem to have been left largely unconsidered and experimental errors have made the results rather doubtful. Appropriate arguments have been presented. The investigations considered should be repeated under improved and more careful conditions. (orig.).

  15. Do we need to sequester carbon dioxide?

    International Nuclear Information System (INIS)

    Delbecq, D.

    2011-01-01

    Carbon sequestration may be the solution to face our difficulty to cut down the use of fossil energies. CO 2 has to be separated from other gases released by thermal power plants before being stored in deep geological layers, there it can stay as a gas, or it can be dissolved in a fluid phase, or it can react with minerals and be integrated to a solid phase. Oil fields and deep saline water reservoirs are natural candidates for carbon sequestration. Carbon sequestration implies the installation of a network of pipelines to transport CO 2 from the place of production to the place of sequestration. The high cost of carbon sequestration implies the implementation of financial incentives from governments. Some economists foresee a raise of the electricity cost up to 50% if carbon sequestration is used. Other economists see a contradiction: sequestration techniques will not be available in a short term range while numerous thermal power plants are planned to be built in the decade. So carbon sequestration may arrive too late and at a cost that may be not competitive with some renewable energies like off-shore wind energy or thermal solar energy which will be full-grown at that time. (A.C.)

  16. Carbon dioxide effects research and assessment program

    International Nuclear Information System (INIS)

    Jacoby, G.

    1980-12-01

    Information about the past and present concentrations of CO 2 in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis

  17. Fugitive carbon dioxide: It's not hiding in the ocean

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1992-01-01

    The fugitive carbon is the difference between the 7 billion or so tons that spew as carbon dioxide from smokestacks and burning tropical forests and the 3.4 billion tons known to stay in the atmosphere. Finding the other 3 billion or 4 billion tons has frustrated researchers for the past 15 years. The oceans certainly take up some of it. Any forecast of global warming has to be based on how much of the carbon dioxide released by human activity will remain in the atmosphere, and predictions vary by 30% depending on the mix of oceanic and terrestrial processes assumed to be removing the gas. What's more, those predictions assume that the processes at work today will go on operating. But not knowing where all the carbon is going raises the unnerving possibility that whatever processes are removing it may soon fall down on the job without warning, accelerating any warming. Such concerns add urgency to the question of whether the ocean harbors the missing carbon. But there's no simple way to find out. The obvious strategy might seem to be to measure the carbon content of the ocean repeatedly to see how much it increases year by year. The trouble is that several billion tons of added carbon, though impressive on a human scale, are undetectable against the huge swings in ocean carbon that occur from season to season, year to year, and place to place

  18. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch

    International Nuclear Information System (INIS)

    Uhm, Han S.; Kwak, Hyoung S.; Hong, Yong C.

    2016-01-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO_2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. - Highlights: • Carbon dioxide gas produces a plasma-torch by making use of 2.45 GHz microwaves. • The temperature measurement of torch flame by optical spectroscopy. • Disintegration of carbon dioxide into carbon monoxide and oxygen atom. • Emission profiles of carbon monoxide confirm disintegration theory. • Conversion of carbon dioxide into carbon monoxide in the plasma torch. - This article presents carbon-dioxide plasma torch operated by microwaves and its applications to regeneration of new resources, eliminating carbon dioxide molecules.

  19. Titanium dioxide modified with various amines used as sorbents of carbon dioxide

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Pirog, Ewa; Kusiak-Nejman, Ewelina; Wrobel, Rafal J.; Gesikiewicz-Puchalska, Andzelika; Morawski, Antoni W.; Narkiewicz, Urszula; Michalkiewicz, Beata

    2017-01-01

    In this study, titanium dioxide was modified with various amines through hydrothermal treatment for adsorption of CO_2. The carbon dioxide adsorption performance of the prepared samples was measured using an STA 449 C thermo-balance (Netzsch Company, Germany). The morphological structures, functional groups and elemental compositions of the unmodified and amine-modified titanium dioxide sorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR/DR) and scanning electron microscopy (SEM), respectively. The results showed that modification of TiO_2 with amines through hydrothermal treatment is a simple method to prepare CO_2 sorbents with high adsorption capacities. Moreover, the results revealed that TEPA-modified titanium dioxide shoved the highest adsorption capacity, enabling an increase in CO_2 uptake from 0.45 mmol CO_2 g"-"1 in the case of raw TiO_2 to 1.63 mmol CO_2 g"-"1. This result could be indirectly related to the fact that TEPA has the highest amino group content among the three amines used in our research. Additionally, durability tests performed by cyclic adsorption-desorption revealed that TEPA modified titanium dioxide also possesses excellent stability, despite a slight decrease in adsorption capacity over time. (authors)

  20. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  1. Incentives of carbon dioxide regulation for investment in low-carbon electricity technologies in Texas

    International Nuclear Information System (INIS)

    Castillo, Anya; Linn, Joshua

    2011-01-01

    This paper compares the incentives a carbon dioxide emissions price creates for investment in low carbon dioxide-emitting technologies in the electricity sector. We consider the extent to which operational differences across generation technologies - particularly, nuclear, wind and solar photovoltaic - create differences in the incentives for new investment, which is measured by the operating profits of a potential entrant. First, astylized model of an electricity system demonstrates that the composition of the existing generation system may cause electricity prices to increase by different amounts over time when a carbon dioxide price is imposed. Differences in operation across technologies therefore translate to differences in the operating profits of a potential entrant. Then, a detailed simulation model is used to consider a hypothetical carbon dioxide price of $10-$50 per metric ton for the Electric Reliability Council of Texas (ERCOT) market. The simulations show that, for the range of prices considered, the increase in electricity prices is positively correlated with output from a typical wind unit, but the correlation is much weaker for nuclear and photovoltaic. Consequently, a carbon dioxide price creates much stronger investment incentives for wind than for nuclear or photovoltaic technologies in the Texas market. - Highlights: → Compare incentives for new investment in low-emission electricity technologies created by carbon dioxide price. → Focus on ERCOT power system using stochastic unit commitment model. →Find a greater incentive for wind than solar or nuclear because of correlation between wind generation and increase in electricity prices.

  2. Carbon dioxide emissions from Indian monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Viswanadham, R.; Rao, G.D.; Prasad, V.R.; Kumar, B.S.K.; Naidu, S.A.; Kumar, N.A.; Rao, D.B.; Sridevi, T.; Krishna, M.S.; Reddy, N.P.C.; Sadhuram, Y.; Murty, T.V.R.

    estuaries. The mean pCO sub(2) and particulate organic carbon (POC) showed positive relation with rate of discharge suggesting availability of high quantities of organic matter that led to enhanced microbial decomposition. The annual CO sub(2) fluxes from...

  3. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  4. Combination of platelet rich plasma in fractional carbon dioxide laser treatment increased clinical efficacy of for acne scar by enhancement of collagen production and modulation of laser-induced inflammation.

    Science.gov (United States)

    Min, Seonguk; Yoon, Ji Young; Park, Seon Yong; Moon, Jungyoon; Kwon, Hyuck Hoon; Suh, Dae Hun

    2018-04-01

    Platelet-rich plasma (PRP) which contains large amounts of growth factors has been tried to enhance therapeutic efficacy of laser treatment for acne scar with unknown underlying mechanism. The present study was conducted to investigate the molecular mechanism of increased clinical efficacy of PRP when combined with fractional laser treatment for treating acne scars. Subjects with mild to moderate acne scars were treated with two sessions of fractional CO 2 laser therapy given with and without co-administration of PRP. Skin biopsy specimens were obtained at baseline, 1, 3, 7, and 28 days for investigation of molecular profiles associated with skin changes produced by laser plus PRP treatment. The PRP treatment increased clinical efficacy with decreased severity of adverse effects such as erythema, swelling and oozing. Productions of TGFβ1 and TGFβ3 proteins were more highly elevated on the PRP-treated side of the face compared to the control side at day 28. Furthermore, PRP-treated side showed significant increase of c-myc, TIMP, and HGF expression. Experimental fibroblast culture model was also used. PRP administration after laser irradiation increased expressions of p-Akt, TGFβ1, TGFβ3, β-catenin, collagen 1, and collagen 3 in both dose-dependent and time dependent manners in fibroblast. Moreover, we acquired clinical and histological data through randomized control clinical trial. Taken together with human study results combined with the data from cell experiments we suggest that PRP treatment increased fibrogenetic molecules induced by fractional CO 2 laser, which have association with clinical effect. Lasers Surg. Med. 50:302-310, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. COCAP: a carbon dioxide analyser for small unmanned aircraft systems

    Science.gov (United States)

    Kunz, Martin; Lavric, Jost V.; Gerbig, Christoph; Tans, Pieter; Neff, Don; Hummelgård, Christine; Martin, Hans; Rödjegård, Henrik; Wrenger, Burkhard; Heimann, Martin

    2018-03-01

    Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 µmol mol-1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.

  6. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO(sub 2) capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO(sub 2) and H(sub 2)O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  9. An Optimal Centralized Carbon Dioxide Repository for Florida, USA

    Directory of Open Access Journals (Sweden)

    Brandon Poiencot

    2011-03-01

    Full Text Available For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration. Numerous reports exist analyzing the potential for sequestering carbon dioxide at various sites around the globe, but none have identified the potential for a statewide system in Florida, USA. In 2005, 83% of Florida’s electrical energy was produced by natural gas, coal, or oil (e.g., fossil fuels, from power plants spread across the state. In addition, only limited research has been completed on evaluating optimal pipeline transportation networks to centralized carbon dioxide repositories. This paper describes the feasibility and preliminary locations for an optimal centralized Florida-wide carbon sequestration repository. Linear programming optimization modeling is used to plan and route an idealized pipeline network to existing Florida power plants. Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites. The identification of the most favorable site(s is also presented.

  10. Uranium tetracyclopentadienyl interaction with carbon oxide and dioxide

    International Nuclear Information System (INIS)

    Leonov, M.R.; Solov'eva, G.V.; Kozina, I.Z.; Bolotova, G.T.

    1983-01-01

    Using the methods of gas-liquid chromatography, IR and UV spectroscopy and element analysis, the reactions of tetracyclogentadienyluranium with carbon oxide and dioxide have been studied. It is shown that complete uranium cyclopentadienyl π-complex-tetracyclopentadienyluranium - in pentane under normal conditions for 100 hr reacts with carbon oxide and dioxide with the formation of polymeric complex ([(etasup(5)-Csub(5)Hsub(5))x(-CO-)U(etasup(5)-Csub(5)Hsub(4))(-CO-)]sub(2)]sub(n), in which two uranium atoms are bonded with two bridge fragments (eta 5 -C 5 H 4 -CO-), and dimeric complex [(eta 5 -C 5 H 5 ) 2 UH 2 xCO 2 ] 2 respectively

  11. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    In this PhD-study the different areas of chemical engineering, heterogeneous catalysis, supercritical fluids, and phase equilibrium thermodynamics have been brought together for selected reactions. To exploit the beneficial properties of supercritical fluids in heterogeneous catalysis, experimental...... studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap......, and widely available reaction medium for many practical and industrial applications has drastically increased. Particularly attractive are heterogeneously catalysed chemical reactions. The beneficial use of CO2 is attributed to its unique properties at dense and supercritical states (at temperatures...

  12. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    Science.gov (United States)

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  13. Climatic response to a gradual increase of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Stouffer, R.J.; Manabe, S.; Bryan, K.

    1990-01-01

    The transient response of a coupled ocean-atmosphere model to an increase of carbon dioxide has been the subject of several studies. The models used in these studies explicitly incorporate the effect of heat transport by ocean currents and are different from the model used by Hansen et al. Here the authors evaluate the climatic influence of increasing atmospheric carbon dioxide using a coupled model recently developed at the NOAA Geophysical Fluid Dynamics Laboratory. The model response exhibits a marked and unexpected interhemispheric asymmetry. In the circumpolar ocean of the southern hemisphere, a region of deep vertical mixing, the increase of surface air temperature is very slow. In the Northern hemisphere of the model, the rise of surface air temperature is faster and increases with latitude, with the exception of the northern North Atlantic, where it is relatively slow because of the weakening of the thermohaline circulation

  14. The underground storages of carbon dioxide. Juridical aspects

    International Nuclear Information System (INIS)

    Bersani, F.

    2006-04-01

    In the framework of the reduction of the carbon dioxide emissions in the air, the underground storage of the CO 2 is studied. Some experimentation are already realized in the world and envisaged in France. This document aims to study the juridical aspects of these first works in France. After a presentation of the realization conditions and some recalls on the carbon dioxide its capture and storage, the natural CO 2 underground storages and the first artificial storages are discussed. The CO 2 waste qualification, in the framework of the environmental legislation is then detailed with a special task on the Lacq region. The problem of the sea underground storages is also presented. (A.L.B.)

  15. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    equilibrium and associated property models are used. Simulations are performed to investigate the sensitivity of the process variables to change in the design variables including process inputs and disturbances in the property model parameters. Results of the sensitivity analysis on the steady state...... performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made.......Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  16. Carbon dioxide fixation in isolated Kalanchoe chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Levi, C.; Gibbs, M.

    1975-07-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 ..mu..moles of CO/sub 2/ per milligram of chlorophyll per hour. The dark rate of fixation was about 1 percent of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1, 6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO/sub 2/ fixation were primarily those of the photosynthetic carbon reduction cycle. (auth)

  17. Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1984-01-01

    The Calvin cycle of carbon dioxide fixation constitutes a biosynthetic pathway for the generation of (multi-carbon) intermediates of central metabolism from the one-carbon compound carbon dioxide. The product of this cycle can be used as a precursor for the synthesis of all components of cell

  18. Inhibition of Weld Corrosion in Flowing Brines Containing Carbon Dioxide

    OpenAIRE

    Alawadhi, Khaled

    2009-01-01

    The aim of this research was to study the effectiveness of a typical oilfield corrosion inhibitor, which is considered to be a green inhibitor (non toxic to the environment) in controlling internal corrosion of welded X65 pipeline steel in brines saturated with carbon dioxide at one bar pressure, under dynamic flowing conditions, over a range of temperatures. Several experimental configurations were used ranging from a simple flat plate design to a novel rotating cylinder electrode, to all...

  19. Remote operated vehicle with carbon dioxide blasting (ROVCO2)

    International Nuclear Information System (INIS)

    Resnick, A.M.

    1995-01-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO 2 ), as shown in a front view, is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO 2 xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. Figure 2 shows a block diagram with the various subsystems labeled

  20. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  1. Production of Solar Fuels by Photoelectrochemical Conversion of Carbon Dioxide

    OpenAIRE

    Irtem, Ibrahim Erdem

    2017-01-01

    Growing global emission of carbon dioxide gas (CO2) reflects the world’s energy dependence on fossil fuels. The conversion of CO2 emission into value-added products, like fuels completes a circular CO2 economy which requires a renewable energy conversion and storage system. Amongst a few, photo/electrochemistry has been particularly appealing thanks to its energy efficiency and enormous potential for industrial applications. Formic acid (HCOOH) production from CO2 reduction appears as an al...

  2. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    OpenAIRE

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arr...

  3. Effect Of Geothermal Heat Pump On Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Ahmed F. Atwan

    2015-08-01

    Full Text Available In this research the calculations of carbon dioxide emissions CO2 in summer May to September 150 day and winter seasons December to February 90 day were performed by using the coefficient of performance for each air and ground source heat pump. The place of study case take relative to solar path in to account and the study case was three halls men women and surgery halls in Al-Musayyib hospital in Babylon.

  4. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  5. The effect of carbon dioxide therapy on composite graft survival

    OpenAIRE

    Durães, Eliana Ferreira Ribeiro; Durães, Leonardo de Castro; Carneiro, Fabiana Pirani; Lino Júnior, Ruy de Souza; Sousa, João Batista de

    2013-01-01

    PURPOSE: To investigate the effect of carboxytherapy in auricular composite grafts in rabbits. METHODS: An experimental study was conducted using 20 rabbits randomly assigned to a treatment group of carboxytherapy or a control group of saline solution. In each ear, a circular graft with 1.5 cm or 2 cm of diameter was amputated and reattached. Animals underwent carbon dioxide or saline injection four times during the experiment. We analyzed clinical evolution of the animals, grafts survival, h...

  6. Collision and radiative processes in emission of atmospheric carbon dioxide

    Science.gov (United States)

    Smirnov, B. M.

    2018-05-01

    The peculiarities of the spectroscopic properties of CO2 molecules in air due to vibration-rotation radiative transitions are analyzed. The absorption coefficient due to atmospheric carbon dioxide and other atmospheric components is constructed within the framework of the standard atmosphere model, on the basis of classical molecular spectroscopy and the regular model for the spectroscopy absorption band. The radiative flux from the atmosphere toward the Earth is represented as that of a blackbody, and the radiative temperature for emission at a given frequency is determined with accounting for the local thermodynamic equilibrium, a small gradient of the tropospheric temperature and a high optical thickness of the troposphere for infrared radiation. The absorption band model with an absorption coefficient averaged over the frequency and line-by-line model are used for evaluating the radiative flux from the atmosphere to the Earth which values are nearby for these models and are equal W m‑2 for the contemporary concentration of atmospheric CO2 molecules and W m‑2 at its doubled value. The absorption band model is not suitable to calculate the radiative flux change at doubling of carbon dioxide concentration because averaging over oscillations decreases the range where the atmospheric optical thickness is of the order of one, and just this range determines this change. The line-by-line method gives the change of the global temperature K as a result of doubling the carbon dioxide concentration. The contribution to the global temperature change due to anthropogenic injection of carbon dioxide in the atmosphere, i.e. resulted from combustion of fossil fuels, is approximately 0.02 K now.

  7. Renewable Methane Generation from Carbon Dioxide and Sunlight.

    Science.gov (United States)

    Steinlechner, Christoph; Junge, Henrik

    2018-01-02

    The direct approach: Methane is a potential key player in the world's transition to a more sustainable energy future. The direct conversion of carbon dioxide into methane is highly desirable to lower the concentration of CO 2 in the atmosphere and also to store renewable energy. This Highlight describes the first homogeneous system for the light-driven conversion of CO 2 into CH 4 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spontaneous oxygen isotope exchange between carbon dioxide and\

    Czech Academy of Sciences Publication Activity Database

    Knížek, Antonín; Zukalová, Markéta; Kavan, Ladislav; Zukal, Arnošt; Kubelík, Petr; Rojík, P.; Skřehot, P.; Ferus, Martin; Civiš, Svatopluk

    2017-01-01

    Roč. 137, MAR 2017 (2017), s. 6-10 ISSN 0169-1317 R&D Projects: GA MŠk LD14115; GA ČR(CZ) GA14-12010S; GA ČR GA13-07724S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388955 Keywords : clay * carbon dioxide * FTIR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.101, year: 2016

  9. Determination of carbon chlorine and fluorine in uranium dioxide

    International Nuclear Information System (INIS)

    Kijko, N.I.; Timofeev, G.A.

    1983-01-01

    Techniques of chlorine and fluorine determination and simultaneous determination of carbon and chlorine in electrolytic uranium dioxide are described. The method of chlorine and fluorine determination is based on their separation during oxide pyrohydrolysis with subsequent spectrophotometric analysis of condensate. Lower determination limits constitute 1 μg for chlorine, 0.5 μg for fluorine. Relative standard deviation when the content of impurities analyzed is 10 -3 % constitutes 0.05-0.07

  10. Study on carbon dioxide conversion by radiation

    International Nuclear Information System (INIS)

    Cho, Young Hyun; Park, Geun Il; Cho, Il Hoon; Choi, Sang Do; Hong, Kwang Hee; Lee, Chang Woo

    1999-09-01

    This study was carried out to investigate the synergistic effects on the CO 2 conversion by the application of semiconductor in the field of gamma-ray. Gamma-ray irradiation was performed to examine the effects of semiconductor application on CO 2 conversion in water and the formation of organic material from carbonate solution. From experimental results it is clear that the supplication of semiconductor in the field of gamma-ray increases the efficiency for CO 2 conversion to organic matter. Based on the obtained experimental results it is obvious that the synergistic effects of semiconductor materials in the gamma-ray field leads to increase of the CO 2 conversion yield to organic matter up to 50 percent compared to the gamma-ray irradiation. The way of achieving higher activity is due to the catalytic action of semiconductor by gamma-ray irradiation. Zr-doped TiO 2 catalyst prepared by sol-gel method exhibits the higher efficiency for CO 2 conversion in aqueous solution and carbonate containing solution. This effect of Zr-doping can be explained by the formation of additional defects in surface of TiO 2 film. (author)

  11. Exponential growth and atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Laurmann, J.A.; Rotty, R.M.

    1983-01-01

    The adequacy of assumptions required to project atmospheric CO 2 concentrations in time frames of practical importance is reviewed. Relevant issues concern the form assumed for future fossil fuel release, carbon cycle approximations, and the implications of revisions in fossil fuel patterns required to maintain atmospheric CO 2 levels below a chosen threshold. In general, we find that with a judiciously selected exponential fossil fuel release rate, and with a constant airborn fraction, we can estimate atmospheric CO 2 growth over the next 50 years based on essentially surprise free scenarios. Resource depletion effects must be included for projections beyond about 50 years, and on this time frame the constant airborne fraction approximation has to be questioned as well (especially in later years when the fossil fuel use begins to taper off). For projections for over 100 years, both energy demand scenarios and currently available carbon cycle models have sufficient uncertainties that atmospheric CO 2 levels derived from them are not much better than guesses

  12. Minimizing emission of carbon dioxide in the coconut processing

    International Nuclear Information System (INIS)

    Lozada, Ernesto P.

    1998-01-01

    About 90% of the world's coconut production is made into copra. There are 2-3 million smoke kilns which are used by the coconut farmers for making copra. It is estimated that these kilns emit carbon dioxide from 247 to 366 gram of carbon per kg of copra produced. From the world copra production of 10 M tons, the total carbon released in copra making range is 2-3 Tg(telegram=10 12 grams) or 2-3M tons of carbon per year. To minimize carbon dioxide emission in copra making, kilns with better combustion characteristics and heat utilization efficiencies must be used. One of the most promising alternative dryers is a direct-fired, natural draft dryer known as the Los Banos (Lozada) Dryer. Developed at the University of the Philippines Los Banos, the dryer consist of a simple burner, a heat distributor and a drying bin. The burner combust coconut shell, corn cob, and wood pieces with extremely high efficiency thus minimizing fuel consumption and dramatically reducing the release of airborne pollutants. The resulting copra is practically smoke free. Tests have shown that carbon dioxide emissions from the Los Banos (Lozada) Dryer are about half of that released by the traditional smoke kilns. Furthermore, the dryer emits lower concentrations of CO (50 ppm vs 2000-3000 ppm), of NO x (5 ppm vs 400 ppm), and SO x (5 ppm vs 400 ppm). When used widely, significant reductions in the emissions of greenhouse and acid rain gases from biomass combustion will be attained. (About 500 units of the Los Banos (Lozada) Dryer are now in use in the Philippines and Papua New Guinea). (Author)

  13. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Peinemann, Klaus-Viktor

    2010-01-01

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  14. Irreversible climate change due to carbon dioxide emissions

    Science.gov (United States)

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-01-01

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  15. The effect of carbon dioxide therapy on composite graft survival.

    Science.gov (United States)

    Durães, Eliana Ferreira Ribeiro; Durães, Leonardo de Castro; Carneiro, Fabiana Pirani; Lino, Ruy de Souza; Sousa, João Batista de

    2013-08-01

    To investigate the effect of carboxytherapy in auricular composite grafts in rabbits. An experimental study was conducted using 20 rabbits randomly assigned to a treatment group of carboxytherapy or a control group of saline solution. In each ear, a circular graft with 1.5 cm or 2 cm of diameter was amputated and reattached. Animals underwent carbon dioxide or saline injection four times during the experiment. We analyzed clinical evolution of the animals, grafts survival, histopathology features and histomorphometry of collagen. The treated group had a significantly lower weight gain (p=0.038). Histopathology was not significantly different between groups. There was an increase in amount of collagen in 2 cm grafts submitted to carbon dioxide therapy (p=0.003). Carboxytherapy didn't influence graft survival rate for 1.5 cm grafts or 2 cm grafts (p=0.567 and p=0.777, respectively). Carbon dioxide therapy increased the amount of collagen in 2 cm grafts. CO2 was not significantly different from saline infusion on composite grafts survival, but this study suggests that there is a mechanical effect caused by distension which favored graft survival.

  16. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo

    2010-03-15

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  17. Balance of emissions and consumptions of carbon dioxide in Spain

    International Nuclear Information System (INIS)

    Valero, A.; Subiela, V.; Cortes, C.

    1994-01-01

    The amount of carbon dioxide in atmosphere increase due to deforestation and anthropogenic emissions. The consumption of this gas in vegetal ecosystems must also be considered to know the net mass of CO 2 that gets into the atmosphere. This article summarizes the methodology, results and conclusions of the carbon dioxide balance in Spain by autonomous communities. The different fossil fuel consumer sectors (Thermal power plants, industry, transport, domestic and agricultural), forest biomass reduction due to fires and wood extractions for firewood are considered as sources. As sinks, natural and reforested forests, and the equivalent sea are noticed. Basically, the article presents a new methodology to estimate carbon dioxide consumption in forest biomass. The average emissions for 1981 to 1990 are presented. A per capita value of 5 t(CO 2 /year is obtained in contrast to the EC average of 8,6 t(CO 2 ) year. The resulting net balance shows that it is only consumed between 20 and 50% of the emitted CO 2 . (Author) 47 refs

  18. Modeling the dynamics of carbon dioxide removal in the atmosphere

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2014-12-01

    Full Text Available The temperature of Earth's surface is increasing over the past few years due to emission of global warming gases such as CO2, CH4 and NOx from industries, power plants, etc., leading to several adverse effects on human and his environment. Therefore, the question of their removal/reduction from the atmosphere is very important. In this paper, a nonlinear mathematical model to study the removal/reduction of carbon dioxide by using suitable absorbent (such as aqueous ammonia solution, amines, sodium hydroxide, etc. near the source of emission and externally introducing liquid species in the atmosphere is presented. Dynamical properties of the model which include local and global stabilities for the equilibrium are analyzed carefully. Model analysis is performed by considering three physical situations i.e. when both absorbent and the liquid species are used, only absorbent is used and only liquid species is used. It is shown that the concentration of carbon dioxide decreases as the rate of introduction of absorbent in the absorber increases. It decreases further as the rate of introduction of liquid species. Thus, the concentration of carbon dioxide would be reduced by a large amount if adequate amount of absorbent is used near the source of emission. The remaining amount can be reduced further by infusing liquid drops in the atmosphere. Numerical simulations are also carried out to support the analytical results.

  19. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy.

    Science.gov (United States)

    Baubron, J C; Allard, P; Toutain, J P

    1990-03-01

    RECENT investigations on Mount Etna (Sicily)(1-3) have revealed that volcanoes may release abundant carbon dioxide not only from their active craters, but also from their flanks, as diffuse soil emanations. Here we present analyses of soil gases and air in water wells on Vulcano Island which provide further evidence of such lateral degassing. Nearly pure carbon dioxide, enriched in helium and radon, escapes from the slopes of the Fossa active cone, adding a total output of 30 tonnes per day to the fumarolic crater discharge ( 180 tonnes CO(2) per day). This emanation has similar He/CO(2) and (13)C/(12)C ratios to those of the crater fumaroles (300%ndash;500 degrees C) and therefore a similar volcanic origin. Gases rich in carbon dioxide also escape at sea level along the isthmus between the Fossa and Vulcanello volcanic cones, but their depletion in both He and (13)C suggests a distinct source. Diffuse volcanic gas emanations, once their genetic link with central fumarole degassing has been demonstrated, can be used for continuous volcano monitoring, at safe distances from active craters. Such monitoring has been initiated at Vulcano, where soil and well emanations of nearly pure CO(2) themselves represent a threat to the local population.

  20. [Thoracoscopic thymectomy with carbon dioxide insufflation in the mediastinum].

    Science.gov (United States)

    Ferrero-Coloma, C; Navarro-Martinez, J; Bolufer, S; Rivera-Cogollos, M J; Alonso-García, F J; Tarí-Bas, M I

    2015-02-01

    The case is presented of a 71 year-old male, diagnosed with a thymoma. A thoracoscopic thymectomy was performed using the carbon dioxide insufflation technique in the mediastinum. During the procedure, while performing one-lung ventilation, the patient's respiration worsened. The contralateral lung had collapsed, as carbon dioxide was travelling from the mediastinum to the thorax through the opened pleura. Two-lung ventilation was decided upon, which clearly improved oxygenation in the arterial gases and airway pressures. Both pH and pCO2 stabilized. The surgical approach and the carbon dioxide technique were continued because 2-lung ventilation did not affect the surgical procedure. This technique has many serious complications and it should always be performed using 2-lung ventilation. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia

    International Nuclear Information System (INIS)

    Feng, Z; Flessa, H.; Dyckmans, J.

    2004-01-01

    The effects of elevated carbon dioxide concentration on carbon and nitrogen uptake and nitrogen source partitioning were determined in one year-old locust trees using a dual 13 C and 15 N continuous labelling experiment. Elevated carbon dioxide increased the fraction of new carbon in total carbon, but it did not alter carbon partitioning among plant compartments. Elevated carbon dioxide also increased the fraction of new nitrogen in total nitrogen. This was coupled with a shift in nitrogen source partitioning toward nitrogen fixation. Soil nitrogen uptake was not affected, but nitrogen fixation was markedly increased by elevated carbon dioxide treatment. The increased nitrogen fixation tended to decrease the C/N ratio in the presence of elevated carbon dioxide. Total dry mass of root nodules doubled in response to elevated carbon dioxide, however, this effect was not considered significant because of the great variability in root nodule formation. Overall, it was concluded that the growth of locust trees in an elevated carbon dioxide environment will not primarily be limited by nitrogen availability, giving the R. pseudoacacia species a competitive advantage over non-nitrogen-fixing tree species. It was also suggested that the increase in nitrogen fixation observed in response to elevated carbon dioxide treatment may play a key role in the growth response of forest ecosystems to elevated carbon dioxide by improving nitrogen availability for non-nitrogen-fixing trees. 51 refs., 1 tab., 4 figs

  2. Developing a molecular platform for potential carbon dioxide fixing

    DEFF Research Database (Denmark)

    Mikkelsen, Mette; Jørgensen, Mikkel; Krebs, Frederik C

    2010-01-01

    This paper presents an attempt to develop a new system for fixing carbon dioxide from the atmosphere. The proposed molecular system has been designed to have the capacity to spontaneously bind CO2 from the atmosphere with high affinity. The molecular system is furthermore designed to have...... the ability to liberate CO2 at a later stage in the process, i.e., in a separate compartment. The liberated CO2 presents a carbon neutral way of obtaining pure CO2. The proposed molecular system is based on a small stable organic molecule that potentially have two forms: one without bound CO2 and one...

  3. Biotransformations of carbon dioxide in photobioreactors

    International Nuclear Information System (INIS)

    Jacob-Lopes, Eduardo; Gimenes Scoparo, Carlos Henrique; Queiroz, Maria Isabel; Franco, Telma Teixeira

    2010-01-01

    Laboratory experiments were performed to study the capacity of CO 2 sequestration and carbon fixation into biomass during the cultivation of the cyanobacteria Aphanothece microscopica Naegeli in refinery wastewater. The influence of the photoperiod (day/night) on the rates of CO 2 sequestration and O 2 release was also determined. Rates of CO 2 sequestration were measured both in the liquid and gaseous phases. The results showed that the capacity of CO 2 sequestration and O 2 release during the day/night experiment was about one-fourth less than that achieved in the continuously illuminated experiment. Equivalence was found between rates of CO 2 sequestration measured in the two phases. Despite large amounts of CO 2 that were sequestered during the cultivation, it is demonstrated that only a small fraction (about 3%) was effectively fixed as microalgae biomass, indicating the existence of other routes of CO 2 conversion in the photobioreactor.

  4. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia

    International Nuclear Information System (INIS)

    Jung, Kyeong Taek; Bell, Alexis T.

    2001-01-01

    The mechanism of dimethyl carbonate (DMC) synthesis from methanol and carbon dioxide over monoclinic zirconia has been investigated using in situ infrared spectroscopy. The dissociative adsorption of methanol occurs more slowly than the adsorption of carbon dioxide, but the species formed from methanol are bound more strongly. Upon adsorption, the oxygen atom of methanol binds to coordinately unsaturated Zr4+ cations present at the catalyst surface. Rapid dissociation of the adsorbed methanol leads to the formation of a methoxide group (Zr-OCH3) and the release of a proton, which reacts with a surface hydroxyl group to produce water. Carbon dioxide inserts in the Zr-O bond of the methoxide to form a mondentate methyl carbonate group (Zr-OC(O)OCH3). This process is facilitated by the interactions of C and O atoms in CO2 with Lewis acid-base pairs of sites (Zr4+O2-) on the surface of the catalyst. Methyl carbonate species can also be produced via the reaction of methanol with carbon dioxide adsorbed in the form of bicarbonate species with methanol, a process that results in the transfer of a methyl group to the carbonate and restores a hydroxyl group to the zirconia surface. The decomposition of DMC on monoclinic zirconia has also been investigated and has been observed to occur via the reverse of the processes described for the synthesis of DMC

  5. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated carbon dioxide

    Science.gov (United States)

    A major goal of climate change research is to understand whether and how terrestrial ecosystems can sequester more carbon to mitigate rising atmospheric carbon dioxide (CO2) levels. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric CO2 has been assumed to be a major mecha...

  6. Modelling interactions of carbon dioxide, forests, and climate

    International Nuclear Information System (INIS)

    Luxmoore, R.J.; Baldocchi, D.D.

    1994-01-01

    Atmospheric carbon dioxide is rising and forests and climate is changing exclamation point This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken

  7. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    International Nuclear Information System (INIS)

    Amouroux, Jacques; Cavadias, Simeon

    2017-01-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO 2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C–400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO 2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C–400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO 2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO 2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst. (paper)

  8. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    Science.gov (United States)

    Amouroux, Jacques; Cavadias, Simeon

    2017-11-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C-400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C-400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst.

  9. End-tidal carbon dioxide (ETCO2) can replace methods for measuring partial pressure of carbon dioxide (PCO2) in pigs

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen

    2017-01-01

    We compared end-tidal carbon dioxide (ETCO2) with partial pressure of carbon dioxide (PCO2) in domestic pigs anesthetized for neuroscience. There was good agreement between ETCO2 and PCO2 under both hypocapnia, normocapnia, and hypercapnia conditions. ETCO2 saves time by continually providing...

  10. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution

    NARCIS (Netherlands)

    Sabil, K.M.; Duarte, A.R.C.; Zevenbergen, J.F.; Ahmad, M.M.; Yusup, S.; Omar, A.A.; Peters, C.J.

    2010-01-01

    A laboratory-scale reactor system is built and operated to measure the kinetic of formation for single and mixed carbon dioxide-tetrahydrofuran hydrates. The T-cycle method, which is used to collect the kinetic data, is briefly discussed. For single carbon dioxide hydrate, the induction time

  11. Fluxes of Methane and Carbon Dioxide from a Subarctic Lake

    DEFF Research Database (Denmark)

    Jammet, Mathilde Manon

    ) and carbon dioxide (CO2) with the atmosphere. Yet uncertainties in the magnitude and drivers of these fluxes remain, partly due to a lack of direct observations covering all seasons of the year, but also because of the diversity in measurement methods that often miss components of the transport processes......Ongoing climate warming is expected to affect the carbon functioning of subarctic ecosystems. Lakes and wetlands, which are common ecosystems of the high northern latitudes, are of utmost interest in this context because they exchange large amounts of the climate-forcing gases methane (CH4......-out and the release of CH4 and CO2 was established. These results underline the crucial importance of shoulder seasons in the annual carbon emissions from seasonally frozen lakes. Overall, the lake was an important annual source of carbon to the atmosphere, partially compensating the higher, annual sink function...

  12. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed.

  13. Amazon River carbon dioxide outgassing fuelled by wetlands.

    Science.gov (United States)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  14. Dissolution of uranium dioxide in supercritical carbon dioxide modified with tri-n-butyl phosphate-hydrogen peroxide

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct dissolution of uranium dioxide in supercritical carbon dioxide modified with tri-n-butyl phosphate (TBP) has been attempted. The effects of TBP concentration and pressure on the extraction of uranium have been studied. Addition of hydrogen peroxide in the modifier enhances the dissolution/extraction of uranium. (author)

  15. Biomass fuels - effects on the carbon dioxide budget

    International Nuclear Information System (INIS)

    Eriksson, H.; Hallsby, G.

    1992-02-01

    It is highly desirable that the effects on the carbon dioxide balance of alternative energy sources are evaluated. Two important alternatives studied in Sweden are the extraction of logging residues left in the forest and willow production on farmland. Considered in isolation, a conversion from stem-wood harvest to whole-tree harvest has a negative effect on the carbon dioxide balance, because the amount of soil organic matter decreases. With the assumption that it takes 20 years for the logging residues to decompose, the net decrease in emissions that would result from the replacement of fossil fuels by logging residues appear moderate after 20 years. However, it will grow significantly as time passes. After 100 years with an annual combustion of logging residues the emissions are 12% of those associated with the production of an equivalent amount of energy through oil combustion. Corresponding values for 300 and 500 years are 4% and 2.5% respectively. In less than 100 years there should be a considerable reduction in the Swedish CO 2 -C emissions even if only every second new logging residue-produced TWH replaces a fossil-fuel-produced TWh. From a long-term perspective, effects on carbon reservoirs in Sweden, caused by conversions to whole-tree harvesting in forestry and to willow production on redundant farmland, can be considered negligible in terms of their influence on the carbon dioxide budget of Sweden. The orders of magnitude of influencing fluxes is exemplified in the following: The annual production of 50 TWh, whereof 40 TWh from logging residues, 8 TWh from willow and 2 TWh from annual crops is estimated to cause a total net decrease of the carbon reservoirs within Sweden corresponding to 32 Tg CO 2 -C, whereas the annual production of 50 TWh from oil combustion should emit 1200 Tg CO 2 -C in 300 years, 2000 Tg CO 2 -C in 500 years and so on. (au). 17 refs., 4 tabs

  16. Indoor air pollution produced by man (carbon dioxide, odors)

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, H U

    1982-01-01

    Man contributes to indoor air pollution by the release of heat, humidity, carbon dioxide, particles, micro-organisms and body odours. The rise in temperature and the concentrations of the different pollutants depend on the number of persons in a room, the utilization of the room and the activities of the persons. Current parameters for the evaluation of man-made pollution in indoor air are carbon monoxide and odours. Experiments have been carried out in a test chamber under controlled conditions in order to determine the relations between carbon monoxide and odours, since these are two current parameters for the evaluation of man-made pollution in indoor air. In these experiments the variables were the number of persons in the room, the activity of the persons and the ventilation rate. For the measurement of odours a special method has been developed in which the undiluted air is tested by a test panel and compared with air containing two different pyridine concentrations. A significant relationship has been observed between the odour intensity and the carbon dioxide content of the air, and the correlation did not depend on the number of persons and the ventilation rate. At ventilation rates of 12 to 15 m3 per person and hour the carbon dioxide concentration was below 0.15% and the odour intensity was characterized as being only little annoying. Higher ventilation rates are necessary during physical activity and in rooms with tobacco smoke. The minimum ventilation rates as deduced from the laboratory experiments are compared to known standards.

  17. Reactivity of Criegee Intermediates toward Carbon Dioxide.

    Science.gov (United States)

    Lin, Yen-Hsiu; Takahashi, Kaito; Lin, Jim Jr-Min

    2018-01-04

    Recent theoretical work by Kumar and Francisco suggested that the high reactivity of Criegee intermediates (CIs) could be utilized for designing efficient carbon capture technologies. Because the anti-CH 3 CHOO + CO 2 reaction has the lowest barrier in their study, we chose to investigate it experimentally. We probed anti-CH 3 CHOO with its strong UV absorption at 365 nm and measured the rate coefficient to be ≤2 × 10 -17 cm 3 molecule -1 s -1 at 298 K, which is consistent with our theoretical value of 2.1 × 10 -17 cm 3  molecule -1 s -1 at the QCISD(T)/CBS//B3LYP/6-311+G(2d,2p) level but inconsistent with their results obtained at the M06-2X/aug-cc-pVTZ level, which tends to underestimate the barrier heights. The experimental result indicates that the reaction of a Criegee intermediate with atmospheric CO 2 (400 ppmv) would be inefficient (k eff < 0.2 s -1 ) and cannot compete with other decay processes of Criegee intermediates like reactions with water vapor (∼10 3 s -1 ) or thermal decomposition (∼10 2 s -1 ).

  18. Biotransformations of carbon dioxide in photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Jacob-Lopes, Eduardo [School of Agricultural Engineering, Federal University of Pelotas, UFPel, 96010-900 Pelotas-RS (Brazil); Gimenes Scoparo, Carlos Henrique; Franco, Telma Teixeira [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Queiroz, Maria Isabel [School of Chemistry and Food, Federal University of Rio Grande, FURG, 96201-900 Rio Grande-RS (Brazil)

    2010-05-15

    Laboratory experiments were performed to study the capacity of CO{sub 2} sequestration and carbon fixation into biomass during the cultivation of the cyanobacteria Aphanothece microscopica Naegeli in refinery wastewater. The influence of the photoperiod (day/night) on the rates of CO{sub 2} sequestration and O{sub 2} release was also determined. Rates of CO{sub 2} sequestration were measured both in the liquid and gaseous phases. The results showed that the capacity of CO{sub 2} sequestration and O{sub 2} release during the day/night experiment was about one-fourth less than that achieved in the continuously illuminated experiment. Equivalence was found between rates of CO{sub 2} sequestration measured in the two phases. Despite large amounts of CO{sub 2} that were sequestered during the cultivation, it is demonstrated that only a small fraction (about 3%) was effectively fixed as microalgae biomass, indicating the existence of other routes of CO{sub 2} conversion in the photobioreactor. (author)

  19. Social acceptance of carbon dioxide storage

    International Nuclear Information System (INIS)

    Huijts, Nicole M.A.; Midden, Cees J.H.; Meijnders, Anneloes L.

    2007-01-01

    This article discusses public acceptance of carbon capture and storage (CCS). Responses by citizens are described in relation to responses by professionally involved actors. Interviews with members of the government, industry and environmental NGOs showed that these professional actors are interested in starting up storage projects, based on thorough evaluation processes, including discussions on multi-actor working groups. As appeared from a survey among citizens living near a potential storage site (N=103), public attitudes in general were slightly positive, but attitudes towards storage nearby were slightly negative. The general public appeared to have little knowledge about CO 2 -storage, and have little desire for more information. Under these circumstances, trust in the professional actors is particularly important. NGOs were found to be trusted most, and industry least by the general public. Trust in each of the three actors appeared to depend on perceived competence and intentions, which in turn were found to be related to perceived similarity of goals and thinking between trustee and trustor. Implications for communication about CCS are discussed. (author)

  20. Carbon nanotube formation by laser direct writing

    International Nuclear Information System (INIS)

    Wu, Y.-T.; Su, H.-C.; Tsai, C.-M.; Liu, K.-L.; Chen, G.-D.; Huang, R.-H.; Yew, T.-R.

    2008-01-01

    This letter presents carbon nanotube (CNT) formation by laser direct writing using 248 nm KrF excimer pulsed laser in air at room temperature, which was applied to irradiate amorphous carbon (a-C) assisted by Ni catalysts underneath for the transformation of carbon species into CNTs. The CNTs were synthesized under appropriate combination of laser energy density and a-C thickness. The growth mechanism and key parameters to determine the success of CNT formation were also discussed. The demonstration of the CNT growth by laser direct writing in air at room temperature opens an opportunity of in-position CNT formation at low temperatures

  1. Efeitos da radiação laser de dióxido de carbono em tecido ósseo: estudo macroscópico em ratos Effect of carbon dioxide laser radiation on osseous tissue: macroscopic study in rats

    Directory of Open Access Journals (Sweden)

    Walter NICCOLI-FILHO

    2001-06-01

    Full Text Available O laser de dióxido de carbono (CO2, pelas suas propriedades intrínsecas, tem se tornado um instrumento cirúrgico importante; entre estas podemos citar: hemostasia, redução do edema e da dor pós-operatória e esterilização do campo cirúrgico. Seu uso em tecido ósseo para realização de osteotomias ainda é questionável, principalmente devido à possibilidade de iatrogenias causadas pelo aumento da temperatura tecidual, bem como destes efeitos na área paraincisional. O propósito deste estudo foi proporcionar a confecção de um plano piloto visando analisar macroscopicamente os efeitos da radiação laser de CO2 em tíbia de rato a fim de estabelecerem-se parâmetros de segurança quanto a potência. Foram utilizados 12 ratos. Após anestesia, os ossos foram submetidos a radiação com potência de 1, 3 e 5 watts. Os animais foram sacrificados nos tempos imediatamente após, 3, 7 e 14 dias após a irradiação, visando à remoção do osso tratado. Os espécimes obtidos foram observados através de lupa estereoscópica com aumentos de 14, 25 e 40 vezes e fotografados para posterior análise. Os resultados permitiram concluir que a potência de 1 watt proporciona uma melhor qualidade de resposta à reparação e que as potências de 3 e 5 watts provocaram o atraso na cronologia de reparo.The use of CO2 laser in osseous tissue to execute osteotomies is still questionable, mainly due to the increase of temperature in the site of irradiation. The purpose of this research was to carry out a pilot study in order to analyze macroscopically the effect of CO2 laser irradiation on rat tibia and to establish security parameters regarding power. Twelve rats were submitted to irradiation with 1, 3 and 5 watts of power and were examined immediately, 3, 7 and 14 days after irradiation. The results showed better healing when irradiation was carried out with the power of 1 watt; the 3- and 5-watt powers caused delay in the chronology of healing.

  2. Carbon dioxide and methane dynamics in estuaries

    Science.gov (United States)

    Borges, Alberto V.; Abril, Gwenaël.

    2010-05-01

    We carried out a literature overview to synthesize current knowledge on CO2 and CH4 dynamics and fluxes with the atmosphere in estuarine environments. Estuarine systems are highly dynamic in terms of carbon cycling and emit CO2 to the atmosphere at rates that are quantitatively significant for the global C cycle. This emission of CO2 to the atmosphere is strongly supported by the net heterotrophic nature of these ecosystems. The robustness of the evaluation of the emission of CO2 from estuarine ecosystems has increased in last years due to increasing data availability and improvements in the surface area estimates by types. At present, the lack of sufficient data is the major limitation in the quantification of the spatial and temporal variability of CO2 fluxes in estuarine environments. Regarding future observations, there is also a need for sustained measurements to unravel inter-annual variability and long-term trends of CO2 and CH4 in estuarine environments. Indeed, due to the strong linkage with river catchements, inter-annual variability of CO2 and CH4 in estuarine environments is expected to be strong. Data used in the present synthesis were either obtained by the authors, data mined from publications or communicated by colleagues. There is a need for publicly available and quality checked data-bases for CO2 and CH4 in estuarine environments. Not only cross-system meta-analysis of data (CO2, CH4, O2, …) can be enlightening as explored in the present work, but also considering the uncertainties in the evaluation of the gas transfer velocity, there could be a need for future re-evaluations of air-water CO2 and CH4 fluxes, requiring access to the raw pCO2 and [CH4] data.

  3. Modulation of magmatic processes by carbon dioxide

    Science.gov (United States)

    Caricchi, L.; Sheldrake, T. E.; Blundy, J. D.

    2017-12-01

    Volatile solubility in magmas increases with pressure, although the solubility of CO2 is much lower than that of H2O. Consequently, magmas rising from depth release CO2-rich fluids, which inevitably interact with H2O-poor magmas in the upper crust (CO2-flushing). CO2-flushing triggers the exsolution of H2O-rich fluids, leading to an increase of volume and magma crystallisation. While the analyses of eruptive products demonstrates that this process operates in virtually all magmatic system, its impact on magmatic and volcanic processes has not been quantified. Here we show that depending on the initial magma crystallinity, and the depth of magma storage, CO2-flushing can lead to volcanic eruptions or promote conditions that favour the impulsive release of mineralising fluids. Our calculations show that the interaction between a few hundred ppm of carbonic fluids, and crystal-poor magmas stored at shallow depths, produces rapid pressurisation that can potentially lead to an eruption. Further addition of CO2 increases magma compressibility and crystallinity, reducing the potential for volcanic activity, promoting the formation of ore deposits. Increasing the depth of fluid-magma interaction dampens the impact of CO2-flushing on the pressurisation of a magma reservoir. CO2-flushing may result in surface inflation and increases in surface CO2 fluxes, which are commonly considered signs of an impending eruption, but may not necessarily result in eruption depending on the initial crystallnity and depth of the magmatic reservoir. We propose that CO2-flushing is a powerful agent modulating the pressurisation of magma reservoirs and the release of mineralising fluids from upper crustal magma reservoirs.

  4. Carbon dioxide emissions from Indian monsoonal estuaries

    Science.gov (United States)

    Sarma Vedula, VSS

    2012-07-01

    The oceans act as a net sink for atmospheric CO2, however, the role of coastal bodies on global CO2 fluxes remains unclear due to lack of data. The estimated absorption of CO2 from the continental shelves, with limited data, is 0.22 to 1.0 PgC/y, and of CO2 emission by estuaries to the atmosphere is 0.27 PgC/y. The estimates from the estuaries suffer from large uncertainties due to large variability and lack of systematic data collection. It is especially true for Southeast Asian estuaries as the biogeochemical cycling of material are different due to high atmospheric temperature, seasonality driven by monsoons, seasonal discharge etc. In order to quantify CO2 emissions from the Indian estuaries, samples were collected at 27 estuaries all along the Indian coast during discharge wet and dry periods. The emissions of CO2 to the atmosphere from Indian estuaries were 4-5 times higher during wet than dry period. The pCO2 ranged between ~300 and 18492 microatm which were within the range of world estuaries. The mean pCO2 and particulate organic carbon (POC) showed positive relation with rate of discharge suggesting availability of high quantities of organic matter that led to enhanced microbial decomposition. The annual CO2 fluxes from the Indian estuaries, together with dry period data available in the literature, amounts to 1.92 TgC which is >10 times less than that from the European estuaries. The low CO2 fluxes from the Indian estuaries are attributed to low flushing rates and less human settlements along the banks of the Indian estuaries.

  5. Kinetics of the exchange of oxygen between carbon dioxide and carbonate in aqueous solution

    International Nuclear Information System (INIS)

    Tu, C.K.; Silverman, D.N.

    1975-01-01

    A kinetic analysis of the exchange of oxygen between carbon dioxide and carbonate ion in alkaline, aqueous solutions is presented. The exchange was observed by placing 18 O-labeled carbonate, not enriched in 13 C, into solution with 13 C-enriched carbonate, not enriched in 18 O. The rate of depletion of 18 O from the 12 C-containing species and the rate of appearance of 18 O in the 13 C-containing species was measured by mass spectrometry. From these data, the second-order rate constant for the reaction between carbon dioxide and carbonate which results in the exchange of oxygen at 25 0 is 114 +- 11 M -1 sec -1 . It is emphasized that this exchange of oxygen between species of CO 2 in solution must be recognized in studies using 18 O labels to determine the fate of CO 2 in biochemical and physiological processes. (auth)

  6. Selected constituents in the smokes of foreign commercial cigaretts: tar, nicotine, carbon monoxide, and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.

    1979-05-01

    The tar, nicotine, carbon monoxide, and carbon dioxide contents of the smokes of 220 brands of foreign commercial cigarettes are reported. In some instances, filter cigarettes of certain brands were found to deliver as much or more smoke constituents than their nonfilter counterparts. Also, data indicated that there can be a great variation in the tar, nicotine, or carbon monoxide content of the smoke of samples of a given brand of cigarettes, depending on the nation in which they are purchased. 24 tables.

  7. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    Science.gov (United States)

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO(sub 2) from fossil-fired power plants by growing organisms capable of converting CO(sub 2) to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO(sub 2) from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO(sub 2) concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO(sub 2) levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  9. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  10. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  11. Oxidation suppressing device for steel materials in carbon dioxide cooled reactors

    International Nuclear Information System (INIS)

    Kawakami, Haruo

    1986-01-01

    Purpose: To effectively reduce impurity hydrogens in carbon dioxide. Constitution: At least three gas chambers are arranged serially each by way of a valve in a gas flow channel branched from a primary carbon dioxide coolant circuits. Then, a polymeric partition membrane having higher permeation rate for hydrogen than for carbon dioxide, e.g., made of polytrifluorochloroethylene is disposed between first and second gas chambers and, further, the first and the third gas chambers are connected each by way of a valve to the primary carbon dioxide coolant circuit to constitute a gas recovery channel. Carbon dioxide is caused to flow through the channel by means of a pump disposed between the second and third gas chambers, hydrogen as impurity passed through the partition walls is concentrated and discharged out of the channel, while the carbon dioxide with reduced hydrogen content is returned from the first and the third gas chambers to the circuit. (Sekiya, K.)

  12. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.

    Science.gov (United States)

    Pang, Hong; Masuda, Takuya; Ye, Jinhua

    2018-01-18

    The photoelectrochemical (PEC) carbon dioxide reduction process stands out as a promising avenue for the conversion of solar energy into chemical feedstocks, among various methods available for carbon dioxide mitigation. Semiconductors derived from cheap and abundant elements are interesting candidates for catalysis. Whether employed as intrinsic semiconductors or hybridized with metallic cocatalysts, biocatalysts, and metal molecular complexes, semiconductor photocathodes exhibit good performance and low overpotential during carbon dioxide reduction. Apart from focusing on carbon dioxide reduction materials and chemistry, PEC cells towards standalone devices that use photohybrid electrodes or solar cells have also been a hot topic in recent research. An overview of the state-of-the-art progress in PEC carbon dioxide reduction is presented and a deep understanding of the catalysts of carbon dioxide reduction is also given. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  14. Atmospheric carbon dioxide and the global carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Trabalka, J R [ed.

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  15. Blended polymer materials extractable with supercritical carbon dioxide

    Science.gov (United States)

    Cai, Mei

    Supercritical carbon dioxide is drawing more and more attention because of its unique solvent properties along with being environmentally friendly. Historically most of the commercial interests of supercritical carbon dioxide extraction are in the food industry, pharmaceutical industry, environmental preservation and polymer processing. Recently attention has shifted from the extraction of relatively simple molecules to more complex systems with a much broader range of physical and chemical transformations. However the available data show that a lot of commercially valuable substances are not soluble in supercritical carbon dioxide due to their polar structures. This fact really limits the application of SCF extraction technology to much broader industrial applications. Therefore, the study of a polymer's solubility in a given supercritical fluid and its thermodynamic behavior becomes one of the most important research topics. The major objective of this dissertation is to develop a convenient and economic way to enhance the polymer's solubility in supercritical carbon dioxide. Further objective is to innovate a new process of making metal casting parts with blended polymer materials developed in this study. The key technique developed in this study to change a polymer's solubility in SCF CO2 is to thermally blend a commercially available and CO2 non-soluble polymer material with a low molecular weight CO2 soluble organic chemical that acts as a co-solute. The mixture yields a plastic material that can be completely solubilized in SCF CO2 over a range of temperatures and pressures. It also exhibits a variety of physical properties (strength, hardness, viscosity, etc.) depending on variations in the mixture ratio. The three organic chemicals investigated as CO2 soluble materials are diphenyl carbonate, naphthalene, and benzophenone. Two commercial polymers, polyethylene glycol and polystyrene, have been investigated as CO2 non-soluble materials. The chemical

  16. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... carbon dioxide (CO 2 ) streams that are hazardous from the definition of hazardous waste, provided these... management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude carbon dioxide... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon...

  17. Life cycle study. Carbon dioxide emissions lower in electric heating than in oil heating

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, A.; Jaervinen, P.; Nikula, A.

    1996-11-01

    A primary objective of energy conservation is to cut carbon dioxide emissions. A comparative study on the various heating forms, based on the life cycle approach, showed that the carbon dioxide emissions resulting form heating are appreciably lower now that electric heating has become more common. The level of carbon dioxide emissions in Finland would have been millions of tonnes higher had oil heating been chosen instead of electric heating. (orig.)

  18. Utilisation of flue gases from biofuels in greenhouses as carbon dioxide source

    International Nuclear Information System (INIS)

    Kuopanportti, H.; Rissanen, R.; Vuollet, A.; Kanniainen, T.; Tikka, A.; Ramm-Chmidt, L.; Seppaelae, R.; Piira, T.

    2006-01-01

    The objectives of the project is to develop technologies by which the flue gases from burning bio fuels and peat can be purified for used in green houses as a low cost source of carbon dioxide. Traditionally carbon dioxide has been produced by burning propane or natural gas or by injecting bottled carbon dioxide gas directly into the green house. The new methods should be more affordable than the present ones. (orig.)

  19. Process systems engineering issues and applications towards reducing carbon dioxide emissions through conversion technologies

    DEFF Research Database (Denmark)

    Roh, Kosan; Frauzem, Rebecca; Gani, Rafiqul

    2016-01-01

    This paper reviews issues and applications for design of sustainable carbon dioxide conversion processes, specifically through chemical conversion, and the integration of the conversion processes with other systems from a process systems engineering (PSE) view-point. Systematic and computer......-aided methods and tools for reaction network generation, processing route generation, process design/optimization, and sustainability analysis are reviewed with respect to carbon dioxide conversion. Also, the relevant gaps and opportunities are highlighted. In addition, the integration of carbon dioxide...

  20. Relationship between Sampling Distance and Carbon Dioxide Emission under Oil Palm Plantation

    Directory of Open Access Journals (Sweden)

    Ai Dariah

    2013-05-01

    Full Text Available A carbon dioxide emission on peatland under oil palm plantation was highly varied due to many factors involved. The objectives of the research were to evaluate the effect of sampling distance from center of oil palm tree on Carbon dioxide flux, and to study the factors that cause variability of carbon dioxide flux on peatland under oil palm plantation. The study was conducted on peatland at Arang-Arang Village, Kumpek Ulu Sub-District, Muaro Jambi District, Jambi Province, on six-years old oil palm plantation. The study was conducted in the form of observational exploratory. Emission measurements were performed on 5 selected oil palm trees at points within 100, 150, 200, 250, 300, 350, and 400 cm from the center of trunk. Carbon dioxide flux was measured using (IRGA, Li-COR 820. The results showed that there was significant correlation between the distance of sampling from center of oil palm tree and Carbon dioxide flux. The farther distance from the tree, the more decreased of Carbon dioxide flux . Before applying fertilizer, variability of soil fertility was not significantly correlated with the flux of Carbon dioxide, so the difference of Carbon dioxide flux based on distance sampling can be caused by root distribution factor. After fertilizer application, variability of Carbon dioxide flux under the oil palm tree were not only affected by differences in root distribution but also greatly influenced by fertilization.