WorldWideScience

Sample records for carbon dioxide gas

  1. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  2. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  4. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    Science.gov (United States)

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

    2005-07-01

    This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

  6. Carbon dioxide removal in gas treating processes

    International Nuclear Information System (INIS)

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO2 in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140oC, for CO2 loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO2 into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO2 in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO2/TEG/MEA system for estimation of CO2 partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas Nelson; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta

    2005-04-01

    This report describes research conducted between January 1, 2005 and March 31, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Engineered sorbents composed of sodium carbonate on a ceramic support were tested in a laboratory fluidized bed reactor system and found to be capable of essentially complete removal of carbon dioxide at 60 C in a short residence time. Upon breakthrough the sorbents can be thermally regenerated to recover essentially all of the absorbed carbon dioxide. An optimized supported sorbent tested in a pilot-scale entrained bed absorber retained its reactivity in multicycle tests and experienced no attrition. Removal of >90% of carbon dioxide in simulated flue gas was achieved in an entrained bed reactor.

  9. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  11. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  12. Capturing carbon dioxide as a polymer from natural gas.

    Science.gov (United States)

    Hwang, Chih-Chau; Tour, Josiah J; Kittrell, Carter; Espinal, Laura; Alemany, Lawrence B; Tour, James M

    2014-06-03

    Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and (13)C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-04-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

  14. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  15. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-04-01

    This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

  17. Simulation research on carbon dioxide as cushion gas in gas underground reservoirs

    Institute of Scientific and Technical Information of China (English)

    TAN Yu-fei; LIN Tao

    2009-01-01

    Aimed at the problem of mixing working gas and cushion gas in carbon sequestration technology, the feasibility of using cation dioxide as the cushion gas in reservoirs is discussed firstly. At the usual condition of reservoirs, carbon dioxide is a kind of supercritieal fluid with high condensability, high viscosity and high density. Secondly, this article studies the laws of formation and development of mixing zone by numerical simulation and analyses the impact on mixing zone brought by different injection modes and rational ratios of cushion gas in reservoirs. It is proposed that the appropriate injection ratio of cushion gas is 20% - 30%. Using carbon dioxide as cushion gas in gas reservoirs is able to make the running of natural gas reservoirs economical and efficient.

  18. Sustainable catalyst supports for carbon dioxide gas adsorbent

    Science.gov (United States)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  19. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  20. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed

  1. Non-isothermal compositional gas flow during carbon dioxide storage and enhanced gas recovery

    DEFF Research Database (Denmark)

    Singh, Ashok; Böettcher, N.; Wang, W.;

    2011-01-01

    In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme to ...

  2. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2003-01-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

  3. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the

  4. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Liang Hu

    2006-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer (transportation layer phase) is used for the increase of absorption rate. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the liquid mass transfer

  5. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson; Santosh Gangwal; Ya Liang; Tyler Moore; Margaret Williams; Douglas P. Harrison

    2004-09-30

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-11-01

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC(numbersign)3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO(sub 2). Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO(sub 2)/20% H(sub 2)O, and lowest subsequent to calcination in pure CO(sub 2) at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO(sub 2) in the simulated flue gas. CO(sub 2) evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC(numbersign)3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  8. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that

  9. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-10-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first

  11. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2016-09-06

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  12. Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.

  13. Removal of Carbon Dioxide Gas From the Exhaust Gases Generated at the Takoradi Thermal Power Station

    Directory of Open Access Journals (Sweden)

    M. Charles

    2010-10-01

    Full Text Available Takoradi Thermal Power Station (TTPS generates electricity by burning fossil-fuel and hence it also generates greenhouse gases especially carbon dioxide, which is vented into the atmosphere. These greenhouse gases are pollutants known to cause global warming. A method for the removal of carbon dioxide gas from the exhaust gases generated at TTPS is proposed in this research. It aims at reducing the plant’s carbon dioxide emission into the atmosphere and hence reducing the plant’s rate of pollution into the atmosphere. The method employed is a modification of a method known as the Fluor Daniel ECONAMINE FG process. This method removes carbon dioxide from exhaust gas by using an amine solution which comes into “contact” with the exhaust gas in a counter-current manner. This method has been applied by 23 companies which produce CO2 on a large scale. However, before TTPS apply this method a cost feasibility study is recommended.

  14. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    Science.gov (United States)

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  15. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production

  16. Development of a new gas sensor for binary mixtures based on the permselectivity of polymeric membranes. Application to carbon dioxide/methane and carbon dioxide/helium mixtures

    OpenAIRE

    Rosa Rego; Nídia Caetano; Adélio Mendes

    2004-01-01

    Membrane-based gas sensors were developed and used for determining the composition on bi-component mixtures in the 0100% range, such as oxygen/nitrogen and carbon dioxide/methane (biogas). These sensors are low cost and are aimed at a low/medium precision market.The paper describes the use of this sensor for two gas mixtures: carbon dioxide/methane and carbon dioxide/helium. The membranes used are poly(dimethylsiloxane) (PDMS) and Teflon-AF hollow fibers. The response curves for both sensors ...

  17. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  18. Carbon dioxide capture strategies from flue gas using microalgae: a review.

    Science.gov (United States)

    Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V

    2016-09-01

    Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective. PMID:27397026

  19. Carbon dioxide capture strategies from flue gas using microalgae: a review.

    Science.gov (United States)

    Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V

    2016-09-01

    Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.

  20. Electrically assisted conversion of carbon dioxide into synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski, A. [Faculte des Sciences, Orleans, 45 (France)

    1999-07-01

    CO{sub 2} is converted with the methane into a mixture of H{sub 2} and CO in a transferred arc or in a gliding discharge (GlidArc) reactor. Both electric devices generate very unstable but well controllable plasmas which show a high catalytic activity under relatively low (<700degC) gas temperature. In such conditions we obtain a non equilibrium and fast mixing conditions for the synthesis gas (SynGas) production. Experiments were performed under 1 -2 atm and at the gas flow rate of about 1 m{sup 3}(n)/h. A steam added into the biogas, high-CO{sub 2} natural gas or other CO{sub 2}/CH{sub 4} feed stock allows us to perform a mixed CO{sub 2}/H{sub 2}O conversion of light hydrocarbons (mainly methane) in order to obtain an ideal H{sub 2}/CO ({approx}) 2 molar ratio for further SynGas conversion into ultra clean hydrocarbon fuels through the Fischer-Tropsch synthesis. The energetic costs of such a SynGas produced in a laboratory prototype scale is already as low as 3 k Wh/m{sup 3}(n). Further improvements are expected in a demonstration SynGen reactor feeding a FT plant at the level of 4 barrels of liquid hydrocarbons a day, both units being under construction by Carbon Resources Ltd., Houston, TX. (Author)

  1. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    Directory of Open Access Journals (Sweden)

    Raúl O. Cadena-Pereda

    2012-08-01

    Full Text Available Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  2. Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens;

    2014-01-01

    accurate descriptions of both fluid- and hydrate phase equilibria in the studied system and its subsystems. The developed model is applied to simulate two simplified, gas hydrate-based processes for post-combustion carbon dioxide capture from power station flue gases. The first process, an unpromoted...... hydrate process, operates isothermally at a temperature of 280. K. Applying three consecutive hydrate formation/dissociation stages (three-stage capture process), a carbon dioxide-rich product (97. mol%) is finally delivered at a temperature of 280. K and a pressure of 3.65. MPa. The minimum pressure...... requirement of the first stage is estimated to be 24.9. MPa, corresponding to the incipient hydrate dissociation pressure at 280. K for the considered flue gas. A second simulated carbon dioxide capture process uses tetrahydrofuran as a thermodynamic promoter to reduce the pressure requirements. By doing so...

  3. ECOLOGICAL, ECONOMIC AND SOCIAL ISSUES OF IMPLEMENTING CARBON DIOXIDE SEQUESTRATION TECHNOLOGIES IN THE OIL AND GAS INDUSTRY IN RUSSIA

    OpenAIRE

    Alexey Cherepovitsyn; Alina Ilinova

    2016-01-01

    The objective of this paper is to define the main approaches to the implementation of carbon dioxide sequestration technologies in the oil and gas industry in Russia, and also to identify ecological, economic and social issues of their usage. Promotion of the technology of carbon dioxide (CO2) sequestration by means of capturing and injecting it into underground reservoirs is a promising mechanism of reducing carbon dioxide concentration. Carbon capture and storage (CCS) technologies might be...

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  5. Gas enhanced magnetic resonance angiography of the cerebrum using carbon dioxide and oxygen - preliminary results

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Hansen, Kristoffer Lindskov; Ohlhues, Anders;

    meninges may obscure the signal from the arteries of interest. It is known that oxygen enhances the T1-weighted signal and that carbon dioxide increases the arterial blood flow. This paper presents preliminary results of gas enhanced MRA using combinations of atmospheric air, O2 and CO2. Subjects and...

  6. Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens;

    2014-01-01

    is incorporated as a thermodynamic hydrate promoter is simulated. At the presence of cyclopentane the minimum pressure requirement of the first stage (operating at 285. K) is lowered to 1.04. MPa. This process needs four consecutive hydrate formation/dissociation stages to produce a 95. mol% carbon dioxide...... study suggests the hydrate-based separation technology to be unsuitable for the specific case of post-combustion carbon dioxide capture from power station flue gases, where operating pressures should preferably remain close to atmospheric. Even though the hydrate structure becomes available at low......A thermodynamic model based on the Cubic-Plus-Association equation of state and the van der Waals-Platteeuw hydrate model is applied to perform a thermodynamic evaluation of gas hydrate forming systems relevant for post-combustion carbon dioxide capture.A modelling study of both fluid phase...

  7. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  8. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  9. Plasma-assisted reduction of carbon dioxide in the gas phase

    International Nuclear Information System (INIS)

    The reduction of carbon dioxide by hydrogen, which constitutes the reverse water-gas shift reaction, is an active area of research because of its connection with the production of methanol and other fuels. Representative references are given, that have been reported in the catalysis literature where most of this research is described. In contrast with this, studies dealing with the plasma-assisted reduction of carbon dioxide, as a subset of the subject, are rather limited. A variety of products such as diamond, oxalic acid or fuel species have been obtained depending on the conditions. The present study was undertaken to explore the possibility of obtaining formic acid through the plasma-assisted reduction of carbon dioxide given the precedent that even a more complex molecule such as oxalic has been obtained. The production of formic acid was not anticipated to take place cleanly given the mechanistic complexity of such a process. The study was conducted nevertheless to seek an alternative to an electrochemical pathway to reduce carbon dioxide that has obvious shortcomings because of the requirement to dissolve the gas in a solvent, in addition to the limited concentration of reactant and products that might be obtained. Formic acid in the form of formate is a component of a cycle conceived to trap tritium from contaminated ground water that uses carbon dioxide from a selective oxidation step and hydrogen/tritium from the electrochemical reduction of the contaminated water. The electrochemical oxidation of formate is catalyzed by means of terpyridine bipyridine oxo ruthenium (IV), a complex that shows remarkable isotope effects so that tritiated formate is selectively enriched and may be separated by ion exchange. (c) 2000 American Vacuum Society

  10. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin

    Energy Technology Data Exchange (ETDEWEB)

    Rebscher, Dorothee; Oldenburg, Curtis M.

    2005-10-12

    Geologic carbon dioxide storage is one strategy for reducingCO2 emissions into the atmosphere. Depleted natural gas reservoirs are anobvious target for CO2 storage due to their proven record of gascontainment. Germany has both large industrial sources of CO2 anddepleting gas reservoirs. The purpose of this report is to describe theanalysis and modeling performed to investigate the feasibility ofinjecting CO2 into nearly depleted gas reservoirs in the Altmark area inNorth Germany for geologic CO2 storage with enhanced gasrecovery.

  11. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Science.gov (United States)

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  12. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Science.gov (United States)

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  13. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Science.gov (United States)

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the... carbon dioxide monitor. (b) Conduct at least three test runs for oxygen. Make sure each test...

  14. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    Science.gov (United States)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  15. Optimization of carbon dioxide supply in raceway reactors: Influence of carbon dioxide molar fraction and gas flow rate.

    Science.gov (United States)

    Duarte-Santos, T; Mendoza-Martín, J L; Acién Fernández, F G; Molina, E; Vieira-Costa, J A; Heaven, S

    2016-07-01

    Influence of CO2 composition and gas flow rate to control pH in a pilot-scale raceway producing Scenedesmus sp. was studied. Light and temperature determined the biomass productivity whereas neither the CO2 molar fraction nor the gas flow rate used influenced it; because pH was always controlled and carbon limitation did not take place. The CO2 molar fraction and the gas flow rate influenced carbon loss in the system. At low CO2 molar fraction (2-6%) or gas flow rate (75-100l·min(-1)) the carbon efficiency in the sump was higher than 95%, 85% of the injected carbon being transformed into biomass. Conversely, at high CO2 molar fraction (14%) or gas flow rate (150l·min(-1)) the carbon efficiency in the sump was lower than 67%, 32% of the carbon being fixed as biomass. Analysis here reported allows the pH control to be optimized and production costs to be reduced by optimizing CO2 efficiency.

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-07-01

    Fossil fuels used for power generation, transportation, and by industry are the primary source of anthropogenic CO{sub 2} emissions to the atmosphere. Much of the CO{sub 2} emission reduction effort will focus on large point sources, with fossil fuel fired power plants being a prime target. The CO{sub 2} content of power plant flue gas varies from 4% to 9% (vol), depending on the type of fossil fuel used and on operating conditions. Although new power generation concepts that may result in CO{sub 2} control with minimal economic penalty are under development, these concepts are not generally applicable to the large number of existing power plants.

  17. Capture and mineralization of carbon dioxide from coal combustion flue gas emissions

    Science.gov (United States)

    Attili, Viswatej

    (Proprietary information: PCT/US/2006/49411 and WO/2007/ 081561A) Enormous amounts of carbon dioxide (CO2) released by human activity (anthropogenic), may lead to climate changes that could spread diseases, ruin crops, cause intense droughts and floods, and dramatically raise the sea levels, thereby submerging the low lying coastal regions. The objective of this study was to test whether CO2 and sulfur dioxide (SO2) from flue gases can be directly captured and converted into carbonate and sulfate minerals respectively through the mineralization process of alkaline solid wastes. A flow-through carbonation process was designed to react flue gases directly with alkaline fly ash, under coal combustion power plant conditions. For the first time, CO2 levels in the flue gas were reduced from 13.6% to 9.7% after the reaction with alkaline fly ash in a reaction time of less than 1 minute. Using a combination of Orion RTM plus multi-gas detector, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) techniques, flue gas CO2 mineralization on fly ash particles was detected. This method can simultaneously help in separate, capture, and mineralize anthropogenic CO2 and SO2. Moreover, this process may be environmentally safe and a stable storage for anthropogenic CO2. Capturing anthropogenic CO2 using this mineralization process is an initial step towards developing more efficient methods of reducing industrial point source CO2 emissions into the atmosphere.

  18. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  19. Gas transfer rates from airlifts used for concurrent aeration, carbon dioxide stripping, and recirculation

    Science.gov (United States)

    Airlifts simplify recirculating aquaculture systems and can potentially reduce capital costs and minimize maintenance issues. Airlifts have the ability to move and aerate water as well as degass the water of any carbon dioxide. This study evaluated the oxygen transfer and carbon dioxide removal abil...

  20. Gas solubility of carbon dioxide and of oxygen in cyclohexanol by experiment and molecular simulation

    International Nuclear Information System (INIS)

    Highlights: ► Gas solubility measurements of carbon dioxide in liquid cyclohexanol are reported. ► Gas solubility measurements of oxygen in liquid cyclohexanol are reported. ► Henry’s law constant data is determined from the present experimental results. ► Very good agreement between experiment and molecular simulation is achieved. ► Ambiguity for the Henry’s law constant of oxygen in cyclohexanol is resolved. - Abstract: Henry’s law constant data of carbon dioxide and of oxygen in liquid cyclohexanol are determined at temperatures between (303 and 392) K by means of a precise experimental high-pressure view-cell technique with a synthetic method. Furthermore, molecular simulations are carried out with a molecular mixture model, based on the modified Lorentz–Berthelot combination rule that contains one binary interaction parameter which is adjusted to one experimental Henry’s law constant for each binary mixture. The molecular model yields good results for the Henry’s law constant over the entire temperature range.

  1. ECOLOGICAL, ECONOMIC AND SOCIAL ISSUES OF IMPLEMENTING CARBON DIOXIDE SEQUESTRATION TECHNOLOGIES IN THE OIL AND GAS INDUSTRY IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Alexey Cherepovitsyn

    2016-04-01

    Full Text Available The objective of this paper is to define the main approaches to the implementation of carbon dioxide sequestration technologies in the oil and gas industry in Russia, and also to identify ecological, economic and social issues of their usage. Promotion of the technology of carbon dioxide (CO2 sequestration by means of capturing and injecting it into underground reservoirs is a promising mechanism of reducing carbon dioxide concentration. Carbon capture and storage (CCS technologies might be used to enhance oil recovery (EOR-CO2 and production by means of oil extraction and decreasing oil viscosity. Conceptual view of the potential of EOR-СО2 technologies within the context of oil and gas industry sustainable development are presented. Incentives of the CCS projects implementation are identified. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are presented.

  2. HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane

    International Nuclear Information System (INIS)

    The effect of CP (cyclopentane) as a promoter/additive, in the HBGS (hydrate based gas separation) process for pre-combustion gas mixture was investigated by employing an unstirred reactor configuration. Gas uptake measurements were performed at two different temperatures (275.7 K and 285.7 K) and at an experimental pressure of 6.0 MPa to determine the kinetics of hydrate formation. Experiments were conducted with three different volumes (7.5, 15 and 22 ml) of CP and based on induction time and the rate of hydrate growth, 15 ml of CP was determined to be the optimal volume for carbon dioxide capture at 6.0 MPa and 275.7 K. In addition, the effect of a kinetic promoter, SDS (sodium dodecyl sulfate), was investigated. Surprisingly, no improvement in kinetic performance was observed at 6.0 MPa and 275.7 K in the presence of SDS and CP. From the study, it was found that at the optimal 15 ml CP (CP layer thickness of 1.8 mm), the average composition of carbon dioxide in the hydrate phase was 90.36 mol% with a separation factor of 17.82. Furthermore, the unstirred reactor also yielded better kinetic performance over the stirred tank reactor with the unstirred reactor having a 2.28 times higher average gas uptake. - Highlights: • HBGS process for pre-combustion capture in an unstirred reactor is presented. • Effect of cyclopentane as a thermodynamic promoter and sodium dodecyl sulfate as a kinetic promoter is investigated. • Cyclopentane significantly reduces the operating conditions and improves the kinetics for the HBGS process. • In this study, kinetic performance in an unstirred reactor is better than stirred tank reactor

  3. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  4. Thermodynamic analysis of gas – steam combined cycle with carbon dioxide (CO2 emissions saving

    Directory of Open Access Journals (Sweden)

    Alka Gupta, Om Prakash, S.K. Shukla

    2011-03-01

    Full Text Available In this paper, cogeneration or combined heat and power (CHP cycle has been analyzed in order to improve the efficiency of the gas – steam combined cycle and utilization of waste heat. The efficiency of the combined cycle is improved by decreasing the compressor inlet temperature (CIT and increasing the turbine inlet temperature (TIT. It is observed that the cycle offers the advantage of making efficient use of the energy available in the fuel and in turn, eliminate some portion of pollution associated with the power generation. The study also reveals that if this cycle is being employed for cogeneration, there is a significant saving (11.60% in the amount of Carbon dioxide (CO2 emitted by the coal-fired thermal power plants.

  5. Comparison of water-based foam and carbon dioxide gas emergency depopulation methods of turkeys.

    Science.gov (United States)

    Rankin, M K; Alphin, R L; Benson, E R; Johnson, A L; Hougentogler, D P; Mohankumar, P

    2013-12-01

    Recommended response strategies for outbreaks of avian influenza and other highly contagious poultry diseases include surveillance, quarantine, depopulation, disposal, and decontamination. The best methods of emergency mass depopulation should maximize human health and safety while minimizing disease spread and animal welfare concerns. The goal of this project was to evaluate the effectiveness of 2 mass depopulation methods on adult tom turkeys. The methods tested were carbon dioxide gassing and water-based foam. The time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity were recorded for each bird through the use of an electroencephalogram, accelerometer, and electrocardiogram. Critical times for physiological events were extracted from sensor data and compiled in a spreadsheet for statistical analysis. A statistically significant difference was observed in time to brain death, with water-based foam resulting in faster brain death (µ = 190 s) than CO2 gas (µ = 242 s). Though not statistically significant, differences were found comparing the time to unconsciousness (foam: µ = 64 s; CO2 gas: µ = 90 s), motion cessation (foam: µ = 182 s; CO2 gas: µ = 153 s), and altered terminal cardiac activity (foam: µ = 208 s; CO2 gas µ = 242 s) between foam and CO2 depopulation treatments. The results of this study demonstrate that water-based foam can be used to effectively depopulate market size male turkeys.

  6. Carbon Dioxide Fountain

    Science.gov (United States)

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  7. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    Science.gov (United States)

    Sorey, M.L.; Evans, William C.; Kennedy, B.M.; Farrar, C.D.; Hainsworth, L.J.; Hausback, B.

    1998-01-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source (??13C = -4.5 to -5???, 3He/4He = 4.5 to 6.7 RA) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO2 discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills are associated with CO2 concentrations of 30-90% in soil gas and gas flow rates of up to 31,000 g m-2 d-1 at the soil surface. Each of the tree-kill areas and one area of CO2 discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO2 flux from the mountain is approximately 520 t/d, and that 30-50 t/d of CO2 are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO2 and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N2/Ar ratios and nitrogen isotopic values

  8. Notched Long-Period Fiber Grating with an Amine-Modified Surface Nanostructure for Carbon Dioxide Gas Sensing

    OpenAIRE

    Janw-Wei Wu; Chia-Chin Chiang

    2015-01-01

    This paper presents the fabrication and application of a notched long-period fiber grating (NLPFG) with an amine-modified surface nanostructure for carbon dioxide (CO2) gas sensing. The NLPFG with the modified surface nanostructure was fabricated by using inductively coupled plasma (ICP) etching with an Ag nanoparticle etching barrier. The experimental results show that the spectra were changed with the CO2 gas flow within 12 min. Thereafter, the spectra of the NLPFG remained steady and uncha...

  9. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Science.gov (United States)

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  10. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki

    2011-01-01

    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  11. An evaluation of autotrophic microbes for the removal of carbon dioxide from combustion gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Walton, M.R.; Dugan, P.R. (EG G Idaho, Inc., Idaho Falls, ID (United States). Center for Biological Processing Technology)

    1994-11-01

    Carbon dioxide is a greenhouse gas that is believed to be a major contributor to global warming. Studies have shown that significant amounts of CO[sub 2] are released into the atmosphere as a result of fossil fuels combustion. Therefore, considerable interest exists in effective and economical technologies for the removal of CO[sub 2] from fossil fuel combustion gas streams. This work evaluated the use of autotrophic microbes for the removal of CO[sub 2] from coal fired power plant combustion gas streams. The CO[sub 2] removal rates of the following autotrophic microbes were determined: [ital Chlorella pyrenoidosa], [ital Euglena gracilis], [ital Thiobacillus ferrooxidans], [ital Aphanocapsa delicatissima], [ital Isochrysis galbana], [ital Phaodactylum tricornutum], [ital Navicula tripunctata schizonemoids], [ital Gomphonema parvulum], [ital Surirella ovata ovata], and four algal consortia. Of those tested, [ital Chlorella pyrenoidosa] exhibited the highest removal rate with 2.6 g CO[sub 2] per day per g dry weight of biomass being removed under optimized conditions. Extrapolation of these data indicated that to remove CO[sub 2] from the combustion gases of a coal fired power plant burning 2.4 x 10[sup 4] metric tons of coal per day would require a bioreactor 386 km[sup 2] x 1m deep and would result in the production of 2.13 x 10[sup 5] metric tons (wet weight) of biomass per day. Based on these calculations, it was concluded that autotrophic CO[sub 2] removal would not be feasible at most locations, and as a result, alternate technologies for CO[sub 2] removal should be explored. 14 refs., 7 figs., 2 tabs.

  12. High capacity carbon dioxide sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  13. Carbon dioxide sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  14. Carbon Dioxide Capture from Flue Gas: Development and Evaluation of Existing and Novel Process Concepts

    NARCIS (Netherlands)

    Abu Zahra, M.R.M.

    2009-01-01

    One of the main global challenges in the years to come is to reduce the CO2 emissions in view of the apparent contribution to global warming. Carbon dioxide capture, transport, and storage (CCS) from fossil fuel fired power plants is drawing increased interest as an intermediate solution towards sus

  15. Nongovernmental valorization of carbon dioxide

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) is considered the largest contributor to the greenhouse gas effect. Most attempts to manage the flow of CO2 or carbon into our environment involve reducing net emissions or sequestering the gas into long-lived sinks. Using CO2 as a chemical feedstock has a long history, but using it on scales that might impact the net emissions of CO2 into the atmosphere has not generally been considered seriously. There is also a growing interest in employing our natural biomes of carbon such as trees, vegetation, and soils as storage media. Some amelioration of the net carbon emissions into the atmosphere could be achieved by concomitant large withdrawals of carbon. This report surveys the potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon. The outlook for each of these opportunities is also described

  16. Computational Analysis of Supercritical Carbon Dioxide Gas Turbine for Liquid Metal Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wi S.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Energy demands at a remote site are increased as the world energy requirement diversifies so that they should generate power on their own site. A Small Modular Reactor (SMR) becomes a viable option for these sites. Generally, the economic feasibility of a high power reactor is greater than that for SMR. As a result the supercritical fluid driven Brayton cycle is being considered for a power conversion system to increase economic competitiveness of SMR. The Brayton cycle efficiency is much higher than that for the Rankine cycle. Moreover, the components of the Brayton cycle are smaller than Rankine cycle's due to high heat capacity when a supercritical fluid is adopted. A lead (Pb) cooled SMR, BORIS, and a supercritical fluid driven Brayton cycle, MOBIS, are being developed at the Seoul National University (SNU). Dostal et al. have compared some advanced power cycles and proposed the use of a supercritical carbon dioxide (SCO{sub 2}) driven Brayton cycle. According to their suggestion SCO{sub 2} is adopted as a working fluid for MOBIS. The turbo machineries are most important components for the Brayton cycle. The turbo machineries of Brayton cycle consists of a turbine to convert kinetic energy of the fluid into mechanical energy of the shaft, and a compressor to recompress and recover the driving force of the working fluid. Therefore, turbine performance is one of the pivotal factors in increasing the cycle efficiency. In MOBIS a supercritical gas turbine is designed in the Gas Advanced Turbine Operation (GATO) and analyzed in the Turbine Integrated Numerical Analysis (TINA). A three-dimensional (3D) numerical analysis is employed for more detailed design to account for the partial flow which the one-dimensional (1D) analysis cannot consider.

  17. Carbon dioxide recycling

    Science.gov (United States)

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  18. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  19. Carbon dioxide reducing processes; Koldioxidreducerande processer

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Fredrik

    1999-12-01

    This thesis discusses different technologies to reduce or eliminate the carbon dioxide emissions, when a fossil fuel is used for energy production. Emission reduction can be accomplished by separating the carbon dioxide for storage or reuse. There are three different ways of doing the separation. The carbon dioxide can be separated before the combustion, the process can be designed so that the carbon dioxide can be separated without any energy consumption and costly systems or the carbon dioxide can be separated from the flue gas stream. Two different concepts of separating the carbon dioxide from a combined cycle are compared, from the performance and the economical point of view, with a standard natural gas fired combined cycle where no attempts are made to reduce the carbon dioxide emissions. One concept is to use absorption technologies to separate the carbon dioxide from the flue gas stream. The other concept is based on a semi-closed gas turbine cycle using carbon dioxide as working fluid and combustion with pure oxygen, generated in an air-separating unit. The calculations show that the efficiency (power) drop is smaller for the first concept than for the second, 8.7 % points compared to 13.7 % points, when power is produced. When both heat and power are produced, the relation concerning the efficiency (power) remains. Regarding the overall efficiency (heat and power) the opposite relation is present. A possible carbon dioxide tax must exceed 0.21 SEK/kg CO{sub 2} for it to be profitable to separate carbon dioxide with any of these technologies.

  20. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.

    Science.gov (United States)

    Ha, Kyoung-Su; Bae, Jong Wook; Woo, Kwang-Jae; Jun, Ki-Won

    2010-02-15

    A process model for a gas-to-liquids (GTL) process mainly producing Fischer-Tropsch (FT) synthetic oils has been developed to assess the effects of reforming methods, recycle ratio of unreacted syngas mixture on the process efficiency and the greenhouse gas (GHG) emission. The reforming unit of our study is composed of both steam reforming of methane (SRM) and carbon dioxide reforming of methane (CDR) to form syngas, which gives composition flexibility, reduction in GHG emission, and higher cost-competitiveness. With recycling, it is found that zero emission of CO(2) from the process can be realized and the required amount of natural gas (NG) can be significantly reduced. This GTL process model has been built by using Aspen Plus software, and it is mainly composed of a feeding unit, a reforming unit, an FT synthesis unit, several separation units and a recycling unit. The composition flexibility of the syngas mixture due to the two different types of reforming reactions raises an issue that in order to attain the optimized feed composition of FT synthesis the amount of flow rate of each component in the fresh feed mixture should be determined considering the effects of the recycle and its split ratio. In the FT synthesis unit, the 15 representative reactions for the chain growth and water gas shift on the cobalt-based catalyst are considered. After FT synthesis, the unreacted syngas mixture is recycled to the reforming unit or the FT synthesis unit or both to enhance process efficiency. The effect of the split ratio, the recycle flow rate to the FT reactor over the recycle flow rate to the reforming unit, on the efficiency of the process was also investigated. This work shows that greater recycle to the reforming unit is less effective than that to the FT synthesis unit from the standpoint of the net heat efficiency of the process, since the reforming reactions are greatly endothermic and greater recycle to the reformer requires more energy. PMID:20078033

  1. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  2. Absorber Models for absorption of Carbon dioxide from sour natural gas byMethyl-diethanol Amine (MDEA

    Directory of Open Access Journals (Sweden)

    Akpa

    2014-12-01

    Full Text Available Mathematical models of the absorber for the absorption of carbon dioxide (CO2from sour natural gas in Methyl-diethanol Amine (MDEAsolution were developed. The resulting ordinary differential model equations were solved numerically using theode45 solver of MATLAB 7.5. The accuracy of the models was ascertained using industrial plant data from the carbon dioxide absorber of the Obiafu/Obrikom Gas Treatment plant in Rivers State, Nigeria. The models predicted the CO2 concentration in the sweet gas, gas and solvent (MDEA temperature progressions along the packed absorber. The results obtained from solutions to the models compared favorably with the plant outputs with a maximum deviation between models predictions and industrial plant outputs of 0.44%. The models were used to simulate the influence of sour gas flow rates and solvent (MDEA concentration in solution on the performance (absorption rates of CO2 of the absorber.The results show that the absorption rate of CO2 increases with increasing gas flow rate and solvent concentration.

  3. Determination of populations of vibrational levels of carbon dioxide molecules in gas dynamic lasers by ir spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bakhir, L.P.; Overchenko, Yu.V.

    1979-01-01

    The absorption and emission spectra of some vibrational and rotational transitions of the carbon dioxide molecule in the range of 4.3, 10, and 15 ..mu.. m are analyzed under non-equilibrium conditions at the outlet of a gas-dynamic laser; and an examination is made of the possibility of their use to determine the populations of lower vibrational levels of carbon dioxide at different degrees of expansion. In view of the sharp distinction of relaxation rates for various degrees of freedom in a gas-dynamic laser, the vibrational temperatures of various levels of CO/sub 2/ may differ significantly from each other, as well as from rotational and translational temperatures. In describing populations in terms of the length of a jet, vibrational and rotational energies are separated and population temperatures equal to mode temperatures are assumed for purely symmetric deformation and asymmetric vibrations. A method for determining the absolute populations of low vibrational levels of the carbon dioxide molecule is developed according to measurements of absorption and brightness of a non-equilibrium jet near given frequencies.

  4. Numerical Simulation and Analysis of Migration Law of Gas Mixture Using Carbon Dioxide as Cushion Gas in Underground Gas Storage Reservoir

    Institute of Scientific and Technical Information of China (English)

    ChuanKai Niu; YuFei Tan

    2014-01-01

    One of the major technical challenges in using carbon dioxide ( CO2 ) as part of the cushion gas of the underground gas storage reservoir ( UGSR) is the mixture of CO2 and natural gas. To decrease the mixing extent and manage the migration of the mixed zone, an understanding of the mechanism of CO2 and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper, a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City, China. Using the validated model, the mixed characteristic of CO2 and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly, the impacts of the following factors on the migration mechanism are studied:the ratio of CO2 injection, the reservoir porosity and the initial operating pressure. Based on the results, the optimal CO2 injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2 as cushion gas for UGSR in real projects.

  5. Improved breath alcohol analysis with use of carbon dioxide as the tracer gas

    OpenAIRE

    Kaisdotter Andersson, Annika

    2010-01-01

    State-of-the-art breath analysers require a prolonged expiration into a mouthpiece to obtain the accuracy required for evidential testing and screening of the alcohol concentration. This requirement is unsuitable for breath analysers used as alcolock owing to their frequent use and the fact that the majority of users are sober drivers; as well as for breath testing in uncooperative persons. This thesis presents a method by which breath alcohol analysis can be improved, using carbon dioxide (C...

  6. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence J. Pekot; Ron Himes

    2004-05-31

    Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  7. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.

    Science.gov (United States)

    Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy

    2015-09-01

    Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor. PMID:25940479

  8. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    Science.gov (United States)

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward. PMID:21112151

  9. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  10. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  11. Notched Long-Period Fiber Grating with an Amine-Modified Surface Nanostructure for Carbon Dioxide Gas Sensing

    Directory of Open Access Journals (Sweden)

    Janw-Wei Wu

    2015-07-01

    Full Text Available This paper presents the fabrication and application of a notched long-period fiber grating (NLPFG with an amine-modified surface nanostructure for carbon dioxide (CO2 gas sensing. The NLPFG with the modified surface nanostructure was fabricated by using inductively coupled plasma (ICP etching with an Ag nanoparticle etching barrier. The experimental results show that the spectra were changed with the CO2 gas flow within 12 min. Thereafter, the spectra of the NLPFG remained steady and unchanged. During the absorption process, the transmission loss was decreased by approximately 2.019 dB, and the decreased rate of transmission loss was 0.163 dB/min. The sensitivity was about −0.089 dB/%. These results demonstrate that the NLPFG CO2 gas sensor has the advantages of steady performance, repeatability, and low cost. Therefore, the NLPFG can be utilized as a reliable CO2 gas sensor.

  12. Basic aspects of the carbon dioxide corrosion in oil and gas production; Aspectos basicos de la corrosion por dioxido de carbono en la produccion de petroleo y gas

    Energy Technology Data Exchange (ETDEWEB)

    Angulo Macias, J.

    2010-07-01

    Carbon dioxide (CO{sub 2}) is a non-corrosive gas within the driven conditions in the oil and gas industry, but the presence of water converts it, maybe, in the most important component in the corrosive processes in this industry. Corrosion has an important impact inside the oil and gas companies, no only in economics but also in safety, environmental and social aspects. After several decades of investigation of these corrosion processes, there are still several mechanisms not fully understood. (Author) 19 refs.

  13. Encapsulated liquid sorbents for carbon dioxide capture.

    Science.gov (United States)

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  14. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  15. 9 CFR 313.5 - Chemical; carbon dioxide.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  16. Tungsten Promoted Ni/Al2O3 Catalysts for Carbon Dioxide Reforming of Methane to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    XIAO Tian-cun; Thomas Suhartanto; Andrew P. E. York; Malcolm L. H. Green

    2004-01-01

    A series of tungsten promoted alumina supported nickel catalysts has been prepared for the carbon dioxide reforming of methane to synthesis gas. The catalysts have been characterized by means of XRD, TEM,and Laser Raman spectroscopy. It is shown that the addition of tungsten to the nickel catalyst can stabilize the catalyst and increase the resistance to carbon deposition. Adding a suitable amount of tungsten can also increase the catalyst activity to be close to that of supported noble metal catalysts. The carburisation of the tungsten modified nickel catalyst decreases the catalyst activity at lower reaction temperatures(<1123K),but has no effect on the catalyst performance at higher reaction temperatures. The alumina supported nickel catalyst modified by 0. 67 % (mass fraction)WOs has the equivalent equilibrium constant of the dry reforming reaction to that of alumina supported 5% (mass fraction) Ru at 873 K, and also has a lower activation energy for dry reforming than the latter.

  17. Aspects of carbon dioxide utilization

    Energy Technology Data Exchange (ETDEWEB)

    Omae, Iwao [Omae Research Laboratories, 335-23 Mizuno, Sayama, Saitama 350-1317 (Japan)

    2006-06-30

    Carbon dioxide reacts with hydrogen, alcohols, acetals, epoxides, amines, carbon-carbon unsaturated compounds, etc. in supercritical carbon dioxide or in other solvents in the presence of metal compounds as catalysts. The products of these reactions are formic acid, formic acid esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, polycarbonate (bisphenol-based engineering polymer), aliphatic polycarbonates, etc. Especially, the productions of formic acid, formic acid methyl ester and dimethylformamide with a ruthenium catalyst; dimethyl carbonate and urethanes with a dialkyltin catalyst; 2-pyrone with a nickel-phosphine catalyst; diphenyl carbonate with a lead phenoxide catalyst; the alternating copolymerization of carbon dioxide and epoxides with a zinc catalyst has attracted attentions as the industrial utilizations of carbon dioxide. The further development of these production processes is expected. (author)

  18. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  19. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  20. Application of the carbon dioxide-barium hydroxide hydrate gas-solid reaction for the treatment of dilute carbon dioxide-bearing gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Haag, G.L.

    1983-09-01

    The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH)/sub 2/ hydrate flakes for the removal of an acid gas, CO/sub 2/, from air that contains approx. 330 ppM/sub v/ CO/sub 2/. Areas of investigation encompassed: (1) an extensive literature review of Ba(OH)/sub 2/ hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH)/sub 2/.8H/sub 2/O flakes at ambient temperatures to be capable of high CO/sub 2/-removal efficiencies (effluent concentrations <100 ppB), high reactant utilization (>99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH)/sub 2/.8H/sub 2/O was determined to be more reactive toward CO/sub 2/ than either Ba(OH)/sub 2/.3H/sub 2/O or Ba(OH)/sub 2/.1H/sub 2/O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems.

  1. Application of the carbon dioxide-barium hydroxide hydrate gas-solid reaction for the treatment of dilute carbon dioxide-bearing gas streams

    International Nuclear Information System (INIS)

    The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH)2 hydrate flakes for the removal of an acid gas, CO2, from air that contains approx. 330 ppM/sub v/ CO2. Areas of investigation encompassed: (1) an extensive literature review of Ba(OH)2 hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH)2.8H2O flakes at ambient temperatures to be capable of high CO2-removal efficiencies (effluent concentrations 99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH)2.8H2O was determined to be more reactive toward CO2 than either Ba(OH)2.3H2O or Ba(OH)2.1H2O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems

  2. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil

    International Nuclear Information System (INIS)

    Nitrous oxide (N2O) and carbon dioxide (CO2) fluxes were measured in a boreal forest during two growing seasons with soil gradient and chamber methods. N2O fluxes obtained by these two techniques varied from small emission to small uptake. N2O fluxes were of the same order of magnitude, however, the fluxes measured by the soil gradient method were higher and more variable than the fluxes measured with chambers. The highest soil gradient N2O fluxes were measured in the late summer and the lowest in the autumn and spring. In the autumn, litter fall induced a peak in N2O concentration in the organic O-horizon, whereas in the spring N2O was consumed in the O-horizon. Overall, the uppermost soil layer was responsible for most of the N2O production and consumption. Soil gradient and chamber methods agreed well with CO2 fluxes. Due to the very small N2O fluxes and the sensitivity of the flux to small concentration difference between the soil and the ambient air, the flux calculations from the O-horizon to the atmosphere were considered unreliable. N2O fluxes calculated between the soil A- and O-horizons agreed relatively well with the chamber measurements

  3. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence J. Pekot

    2004-06-30

    Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  4. A gas extraction system for the measurement of carbon dioxide and carbon isotopes in polar ice cores

    International Nuclear Information System (INIS)

    Knowledge of the distribution of Carbon 13 in the glacial ocean, atmosphere, and biosphere is important to understanding the causes of glacial/interglacial changes in atmospheric CO2 levels. Although deep-ocean Carbon 13 values are well-constrained by ocean sediment studies, model-based estimates of changes in the carbon budget for the biosphere and atmosphere vary considerably. Measurement of atmospheric Carbon 13 in CO2 in ice cores will provide additional constraints on this budget and will also improve estimates of changes in the ocean surface layer Carbon 13. Direct measurement of ancient atmospheric Carbon 13 can be accomplished through polar ice core studies. A gas-extraction line for ice cores has been designed and constructed with particular attention to the specific difficulties of measuring Carbon 13 in CO2. The ice is shaved, rather than crushed, to minimize fractionation effects resulting from gas travel through long air-paths in the ice. To minimize the risk of isotopic contamination and fractionation within the vacuum line, CO2 is separated immediately from the air; the CO2 concentration is then measured by a simple pressure/volume comparison rather than by gas chromatography or spectroscopy. Measurements from Greenland ice core samples give an average value of 280±2 ppM CO2 for preindustrial samples, demonstrating that the extraction system gives accurate, precise determinations Of CO2 concentrations. Measurement of δ13C from polar ice samples has not been achieved at this time. However, results on standard air samples demonstrate a precision for δ13C of less than 0.2 per-thousand at the 95% confidence level

  5. Nonthermal inactivation of Escherichia coli K12 in buffered peptone water using a pilot-plant scale supercritical carbon dioxide system with gas-liquid porous metal contractor

    Science.gov (United States)

    This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas-liquid CO2 contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 con...

  6. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy.

  7. Carbon dioxide sequestration by mineral carbonation

    OpenAIRE

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  8. Carbon dioxide and methane emissions from estuaries

    OpenAIRE

    Abril, G.; Borges, Alberto

    2005-01-01

    Carbon dioxide and methane emissions from estuaries are reviewed in relationwith biogeochemical processes and carbon cycling. In estuaries, carbondioxide and methane emissions show a large spatial and temporalvariability, which results from a complex interaction of river carbon inputs,sedimentation and resuspension processes, microbial processes in watersand sediments, tidal exchanges with marshes and flats and gas exchangewith the atmosphere. The net mineralization of land-derived organic ca...

  9. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    Science.gov (United States)

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  10. The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2014-03-01

    Full Text Available The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reservedReceived: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014. The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 1-15. (doi:10.9767/bcrec.9.1.4899.1-15[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15

  11. Method for Extracting and Sequestering Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  12. On the Utilization of Carbon Dioxide From the Flue Gas%烟道气中二氧化碳矿化利用研究

    Institute of Scientific and Technical Information of China (English)

    韩秀峰

    2015-01-01

    With the agglomerating agent with lime , controlling the reaction temperature in the range of 4 DEG -128 DEG C, people can capture the low concentration of flue gas__carbon dioxide , sulfur dioxide , nitrogen dioxide , nitric oxide , and the exist-ence of solid molding materials, CO2,SO2,a variety of early strong lime gas rigid products.The carbon dioxide, sulfur dioxide, ni-trogen dioxide , nitric oxide depletion can be used for coal -fired power plant carbon dioxide , sulfur dioxide , nitrogen oxide , two ni-tric oxide emission reduction .The utilization of solid wastes can make the finished product with lime molding material .%通过用白灰做胶凝剂的成型材料,控制反应温度在4℃-128℃的范围内,来捕集烟道气中低浓度的二氧化碳、二氧化硫、二氧化氮、一氧化氮,并将其固存在成型材料中,使二氧化碳、二氧化硫矿化成为产品的组成部分,得到多种早强的白灰气硬性产成品,并由此得到二氧化碳、二氧化硫、二氧化氮、一氧化氮枯竭的烟道气。其主要用途是:可用于燃煤发电厂的二氧化碳、二氧化硫、二氧化氮、一氧化氮的减排,并使其固体排放物得到综合利用,得到早强的白灰成型材料产成品。

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  16. Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)

    2014-01-01

    A gas sensor comprises a substrate layer; a pair of interdigitated metal electrodes, said electrodes include upper surfaces, the electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, Os, and their alloys. A first layer of solid electrolyte staying in between electrode fingers and partially on said upper surfaces of said electrodes, said first layer selected from NASICON, LISICON, KSICON and.beta.''-Alumina. A second layer of metal carbonate(s) as an auxiliary electrolyte engaging said upper surfaces of the electrodes and the first solid electrolyte. The metal carbonates selected from the group consisting of the following ions Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+, Ba.sup.2+, and any combination thereof. An extra layer of metal oxide selected from the group consisting of SnO.sub.2, In.sub.2O.sub.3, TiO.sub.2, WO.sub.3, ZnO, Fe.sub.2O.sub.3, ITO, CdO, U.sub.3O.sub.8, Ta.sub.2O.sub.5, BaO, MoO.sub.2, MoO.sub.3, V.sub.2O.sub.5, Nb.sub.2O.sub.5, CuO, Cr.sub.2O.sub.3, La.sub.2O.sub.3, RuO.sub.3, RuO.sub.2, ReO.sub.2, ReO.sub.3, Ag.sub.2O, CoO, Cu.sub.2O, SnO, NiO, Pr.sub.2O.sub.3, BaO, PdO.sub.2, HfO.sub.3, HfO.sub.3 or other metal oxide and their mixtures residing above and in engagement with the second electrolyte to improve sensor performance and/or to reduce sensor heating power consumption.

  17. Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography–mass spectrometry and stable labeled isotope as internal standard

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •We developed a method for CO2 analysis in cardiac samples and quantification by 13CO2. •This method was fully validated by accuracy profile. •We have applied this method to perform CO2 precise quantification for forensic applications. •Context of the death could be documented following CO2 concentrations. -- Abstract: A novel approach to measure carbon dioxide (CO2) in gaseous samples, based on a precise and accurate quantification by 13CO2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography–mass spectrometry (HS-GC–MS) method applicable in the routine determination of CO2. The main drawback of the GC methods discussed in the literature for CO2 measurement is the lack of a specific internal standard necessary to perform quantification. CO2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas (13CO2) on the basis of the stoichiometric formation of CO2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH13CO3). This method allows a precise measurement of CO2 concentration and was validated on various human postmortem gas samples in order to study its efficiency

  18. 75 FR 29534 - Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft...

    Science.gov (United States)

    2010-05-26

    ... AGENCY Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft... draft ecological risk assessment for the registration review of inorganic nitrates - nitrites, carbon... occur for all inorganic nitrates- nitrites, carbon and carbon dioxide uses, as well as gas...

  19. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  20. 21 CFR 184.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    .... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a byproduct of the manufacture of lime during the “burning” of limestone, from the... processing aid as defined in § 170.3(o)(24) of this chapter; and a propellant, aerating agent, and gas...

  1. Clinical evaluation of an instrument to measure carbon dioxide tension at the oxygenator gas outlet in cardiopulmonary bypass.

    Science.gov (United States)

    Kristiansen, Frode; Høgetveit, Jan Olav; Pedersen, Thore H

    2006-01-01

    This paper presents the clinical testing of a new capnograph designed to measure the carbon dioxide tension at the oxygenator exhaust outlet in cardiopulmonary bypass (CPB). During CPB, there is a need for reliable, accurate and instant estimates of the arterial blood CO2 tension (PaCO2) in the patient. Currently, the standard practice for measuring PaCO2 involves the manual collection of intermittent blood samples, followed by a separate analysis performed by a blood gas analyser. Probes for inline blood gas measurement exist, but they are expensive and, thus, unsuitable for routine use. A well-known method is to measure PexCO2, ie, the partial pressure of CO2 in the exhaust gas output from the oxygenator and use this as an indirect estimate for PaCO2. Based on a commercially available CO2 sensor circuit board, a laminar flow capnograph was developed. A standard sample line with integrated water trap was connected to the oxygenator exhaust port. Fifty patients were divided into six different groups with respect to oxygenator type and temperature range. Both arterial and venous blood gas samples were drawn from the CPB circuit at various temperatures. Alfa-stat corrected pCO2 values were obtained by running a linear regression for each group based on the arterial temperature and then correcting the PexCO2 accordingly. The accuracy of the six groups was found to be (+/- SD): +/- 4.3, +/- 4.8, +/- 5.7, +/- 1.0, +/- 3.7 and +/- 2.1%. These results suggest that oxygenator exhaust capnography is a simple, inexpensive and reliable method of estimating the PaCO2 in both adult and pediatric patients at all relevant-temperatures. PMID:16485695

  2. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    Science.gov (United States)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  3. Experimental Measurement and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Aqueous Alkanolamine Solutions in the High Gas Loading Region

    Science.gov (United States)

    Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria

    2016-09-01

    The solubility of carbon dioxide in aqueous alkanolamine solutions was investigated in the high gas loading region based on experimental measurements and thermodynamic modeling. An experimental phase equilibrium study was performed to evaluate the absorption of carbon dioxide in aqueous solutions of five representative alkanolamines, including monoethanolamine, diethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-1-propanol and piperazine. The carbon dioxide loadings of these solutions were determined for a wide range of pressures (62.5 kPa to 4150 kPa), temperatures (303.15 K to 343.15 K) and alkanolamine concentrations (2 M to 4 M). The results were found to be largely consistent with those previously reported in the literature. Furthermore, a hybrid Kent-Eisenberg model was developed for the correlation of the experimental data points. This new model incorporated an equation of state/excess Gibbs energy model for determining the solubility of carbon dioxide in the high-pressure-high gas loading region. This approach also used a single correction parameter, which was a function of the alkanolamine concentration. The results of this model were in excellent agreement with our experimental results. Most notably, this model was consistent with other reported values from the literature.

  4. Recuperative supercritical carbon dioxide cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O' Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the

  6. CHARACTERISTICS OF HUANGQIAO CARBON DIOXIDE GAS FIELD AND ITS EXPLORATION POTENTIAL%黄桥CO2气田特征及其勘探远景

    Institute of Scientific and Technical Information of China (English)

    郭念发; 尤孝忠; 雷一心; 徐俊

    2000-01-01

    Subei Basin is of the geological conditions of forming large-sized carbon dioxide gas fields. Huangqiao carbon dioxide gas field is one of the largest carbon dioxide gas fields developed and utilized in the land of our country at present, be ing of the properties that its reservoirs are composed of marine strata and continental strata and the deep-lying gas reservoir is interconnected with the shallow one. The former is mainly car bon dioxide and the latter nitrogen, containing high-concentra tion helium,therefore the latter is the product derived from the former. The carbon dioxide gas reservoirs are trapped in a large sized anticline being composed of marine strata of Mesozoic-Pa leczoic. The marine carbonate rocks(including a part of dastic rocks)are the major reservoir rocks of forming the carbon diox ide gas reservoirs because of their developed fractures and excel lent porosity and permeability conditions. The top of the carbon dioxide gas reservoirs is covered by Cenozoic-Mesozoic with a tremendous thickness which constitutes a regional cap formation over the gas reservoirs. Although the gas constituents in various gas reservoirs are obviously different from each other, all the constituents in various gas reservoirs and their isotope properties show that the gases in the reservoirs originated from magma mantle basically. According to such a genetic mode, considerable carbon dioxide gas prospective reserves may be provided for ex ploration in Huangqiao region.%苏北盆地具有形成大型CO2气田的地质条件,黄桥CO2气田是目前我国陆地开发利用最大的CO2气田之一,它具有海相层系与陆相层系共同成藏、深层气藏和浅层气藏互相沟通的特点。深层气藏以高纯度CO2为主,浅层气藏以含N2为主,并含有高浓度的He。浅层气藏是深层气藏衍生的产物。CO2气藏圈闭于由海相中CO2古生界层系组成的大型背斜中,海相碳酸盐岩(包括部分碎屑岩)裂隙发育、孔

  7. Carbon dioxide-krypton separation and radon removal from nuclear-fuel-reprocessing off-gas streams

    International Nuclear Information System (INIS)

    General Atomic Company (GA) is conducting pilot-plant-scale tests that simulate the treatment of radioactive and other noxious volatile and gaseous constituents of off-gas streams from nuclear reprocessing plants. This paper reports the results of engineering-scale tests performed on the CO2/krypton separation and radon holdup/decay subsystems of the GA integrated off-gas treatment system. Separation of CO2 from krypton-containing gas streams is necessary to facilitate subsequent waste processing and krypton storage. Molecular sieve 5A achieved this separation in dissolver off-gas streams containing relatively low krypton and CO2 concentrations and in krypton-rich product streams from processes such as the krypton absorption in liquid carbon dioxide (KALC) process. The CO2/krypton separation unit is a 30.5-cm-diameter x 1.8-m-long column containing molecular sieve 5A. The loading capacity for CO2 was determined for gas mixtures containing 250 ppM to 2.2% CO2 and 170 to 750 ppM krypton in either N2 or air. Gas streams rich in CO2 were diluted with N2 to reduce the temperature rise from the heat of adsorption, which would otherwise affect loading capacity. The effluent CO2 concentration prior to breakthrough was less than 10 ppM, and the adsorption capacity for krypton was negligible. Krypton was monitored on-line with a time-of-flight mass spectrometer and its concentration determined quantitatively by a method of continuous analysis, i.e., selected-ion monitoring. Radon-220 was treated by holdup and decay on a column of synthetic H-mordenite. The Rn-220 concentration was monitored on-line with flow-through diffused-junction alpha detectors. Single-channel analyzers were utilized to isolate the 6.287-MeV alpha energy band characteristic of Rn-220 decay from energy bands due to daughter products

  8. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  9. Potential Flue Gas Impurities in Carbon Dioxide Streams Separated from Coal-fired Power Plants

    Science.gov (United States)

    For geological sequestration of CO2 separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This s...

  10. MATHEMATIC MODELING IN ANALYSIS OF BIO-GAS PURIFICATION FROM CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    Y. A. Losiouk

    2009-01-01

    Full Text Available The paper considers a possibility to involve bio-gas generated at testing grounds of hard domestic garbage in power supply system in the Republic of Belarus. An example of optimization using mathematical modeling of plant operation which is used for bio-gas enrichment is given in the paper. 

  11. MATHEMATIC MODELING IN ANALYSIS OF BIO-GAS PURIFICATION FROM CARBON DIOXIDE

    OpenAIRE

    Y. A. Losiouk; Pleskach, A. V.

    2014-01-01

    The paper considers a possibility to involve bio-gas generated at testing grounds of hard domestic garbage in power supply system in the Republic of Belarus. An example of optimization using mathematical modeling of plant operation which is used for bio-gas enrichment is given in the paper. 

  12. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition

    International Nuclear Information System (INIS)

    In this study, silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine (PEI) were prepared via a two-step process: (i) hydrolysis of tetraethylorthosilicate onto multi-walled carbon nanotubes, and (ii) impregnation of PEI. The adsorption properties of CO2 were investigated using CO2 adsorption–desorption isotherms at 298 K and thermogravimetric analysis under the flue gas condition (15% CO2/85% N2). The results obtained in this study indicate that CO2 adsorption increases after impregnation of PEI. The increase in CO2 capture was attributed to the affinity between CO2 and the amine groups. CO2 adsorption–desorption experiments, which were repeated five times, also showed that the prepared adsorbents have excellent regeneration properties. - Graphical abstract: Fabrication and CO2 adsorption process of the S-MWCNTs impregnated with PEI. - Highlights: • Silica coated-MWCNT impregnated with PEI was synthesized. • Amine groups of PEI gave CO2 affinity sites on MWCNT surfaces. • The S-MWCNT/PEI(50) exhibited the highest CO2 adsorption capacity

  13. A miniaturized carbon dioxide gas sensor based on sensing of pH-sensitive hydrogel swelling with a pressure sensor

    NARCIS (Netherlands)

    Herber, S.; Bomer, J.; Olthuis, W.; Bergveld, P.; Berg, van den A.

    2005-01-01

    A measurement concept has been realized for the detection of carbon dioxide, where the CO2 induced pressure generation by an enclosed pH-sensitive hydrogel is measured with a micro pressure sensor. The application of the sensor is the quantification of the partial pressure of CO2 (Pco2) in the stoma

  14. A Review of the Utilisation of Natural Gas with High Carbon Dioxide Content as Automotive Fuel in an Indirect Injection Diesel Engine

    OpenAIRE

    Opatola Rasheed Adewale; Aziz A. Rashid A.; Heikal Morgan Raymond; Said Mior Azman Meor

    2014-01-01

    The persistent consumption of fossil fuels by modern transportation tends toward feared depletion in crude oil and infliction of health risks on human beings and the environment due to the noxious emissions from the combustion of fossil fuels. This work examines the prospects of fuel modification in improving engine performance by utilising compressed natural gas (CNG) mixed with varying proportions of carbon dioxide (CO2) as fuel in Diesel engines. The extent to which the addition of CO2 to ...

  15. The kinetics of Scenedesmus obliquus microalgae growth utilizing carbon dioxide gas from biogas

    International Nuclear Information System (INIS)

    Microalgae Scenedesmus obliquus was cultured in a laboratory photobioreactor to determine the efficacy of using biogas as a carbon source for the microalgae's growth. The biogas contained ∼60% CH4 and ∼40% CO2, and was derived from an anaerobic digester operating from animal wastes, and an anaerobic reactor utilizing high strength wastewater. The results showed that biogas is a viable carbon source for microalgae growth and that significant portions of the biogas' CO2 can be utilized for algae growth, resulting in a biogas having a high concentration of methane. This paper develops the kinetic expressions for the algae's growth by assuming an autocatalytic reaction between carbon substrate and microalgae. The maximum specific growth rate and biomass productivity of S. obliquus were 0.56 d−1 and 0.145 g L−1d−1 respectively. The biomass contained 51.8% carbon and higher heating value (HHV) was 22.9 MJ kg−1. - Highlights: • Biogas is a viable carbon source for microalgae growth. • Biomass production rate and characteristics were assessed. • Scenedesmus obliquus can adjust to grow with high concentration of CO2 in the carbon source

  16. Preparation of perlite-based carbon dioxide absorbent.

    Science.gov (United States)

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  17. Carbon dioxide in vascular imaging and intervention

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoming [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland); Manninen, H. [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland); Soimakallio, S. [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland)

    1995-07-01

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO{sub 2}) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO{sub 2}-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO{sub 2}-DSA as well as some clinical trials. Applications of CO{sub 2} gas in vascular interventions and other imagings, and the advantages and limitations of using CO{sub 2} gas in DSA are also discussed. (orig.).

  18. Carbon dioxide in vascular imaging and intervention.

    Science.gov (United States)

    Yang, X; Manninen, H; Soimakallio, S

    1995-07-01

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO2) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO2-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO2-DSA as well as some clinical trials. Applications of CO2 gas in vascular interventions and other imagings, and the advantages and limitations of using CO2 gas in DSA are also discussed. PMID:7619608

  19. Supercritical carbon dioxide decontamination of PAH contaminants

    International Nuclear Information System (INIS)

    Before the 1940's, more than 2,000 manufactured gas plant sites existed across North America for the production of a low Btu gas for heating and lighting. These sites, now abandoned, are contaminated with polycyclic aromatic hydrocarbons (PAHs), a coal gasification byproduct that was dumped on-site into unlined pits. The potential for ground water contamination of PAHs has made these sites an environmental concern. The remediation of PAH contaminated sites is difficult to achieve by conventional cleaning methods. In this work, supercritical carbon dioxide extraction has been investigated on a town gas soil containing 3.37 wt% contamination. The soil has been remediated in a 300 cm3 semi-continuous extraction vessel and the effects of solvent temperature, pressure, and density will be discussed. Supercritical carbon dioxide extraction is an emerging technology that can extract compounds that are difficult or impossible by conventional processes

  20. Carbon dioxide in vascular imaging and intervention

    International Nuclear Information System (INIS)

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO2) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO2-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO2-DSA as well as some clinical trials. Applications of CO2 gas in vascular interventions and other imagings, and the advantages and limitations of using CO2 gas in DSA are also discussed. (orig.)

  1. Adsorption separation of carbon dioxide from flue gas by a molecularly imprinted adsorbent.

    Science.gov (United States)

    Zhao, Yi; Shen, Yanmei; Ma, Guoyi; Hao, Rongjie

    2014-01-01

    CO2 separation by molecularly imprinted adsorbent from coal-fired flue gas after desulfurization system has been studied. The adsorbent was synthesized by molecular imprinted technique, using ethanedioic acid, acrylamide, and ethylene glycol dimethacrylate as the template, functional monomer, and cross-linker, respectively. According to the conditions of coal-fired flue gas, the influencing factors, including adsorption temperature, desorption temperature, gas flow rate, and concentrations of CO2, H2O, O2, SO2, and NO, were studied by fixed bed breakthrough experiments. The experimental conditions were optimized to gain the best adsorption performance and reduce unnecessary energy consumption in future practical use. The optimized adsorption temperature, desorption temperature, concentrations of CO2, and gas flow rate are 60 °C, 80 °C, 13%, and 170 mL/min, respectively, which correspond to conditions of practical flue gases to the most extent. The CO2 adsorption performance was nearly unaffected by H2O, O2, and NO in the flue gas, and was promoted by SO2 within the emission limit stipulated in the Chinese emission standards of air pollutants for a thermal power plant. The maximum CO2 adsorption capacity, 0.57 mmol/g, was obtained under the optimized experimental conditions, and the SO2 concentration was 150 mg/m(3). The influence mechanisms of H2O, O2, SO2, and NO on CO2 adsorption capacity were investigated by infrared spectroscopic analysis. PMID:24410306

  2. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review

    Institute of Scientific and Technical Information of China (English)

    Zee Ying Yeo; Thiam Leng Chew; Peng Wei Zhu; Abdul Rahman Mohamed; Siang-Piao Chai

    2012-01-01

    Membrane technology is becoming more important for CO2 separation from natural gas in the new era due to its process simplicity,relative ease of operation and control,compact,and easy to scale up as compared with conventional processes.Conventional processes such as absorption and adsorption for CO2 separation from natural gas are generally more energy demanding and costly for both operation and maintenance.Polymeric membranes are the current commercial membranes used for CO2 separation from natural gas.However,polymeric membranes possess drawbacks such as low permeability and selectivity,plasticization at high temperatures,as well as insufficient thermal and chemical stability.The shortcomings of commercial polymeric membranes have motivated researchers to opt for other alternatives,especially inorganic membranes due to their higher thermal stability,good chemical resistance to solvents,high mechanical strength and long lifetime.Surface modifications can be utilized in inorganic membranes to further enhance the selectivity,permeability or catalytic activities of the membrane.This paper is to provide a comprehensive review on gas separation,comparing membrane technology with other conventional methods of recovering CO2 from natural gas,challenges of current commercial polymeric membranes and inorganic membranes for CO2 removal and membrane surface modification for improved selectivity.

  3. Carbon Dioxide - Our Common "Enemy"

    Science.gov (United States)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  4. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 1: Carbon dioxide

    Directory of Open Access Journals (Sweden)

    R. Macatangay

    2008-03-01

    Full Text Available Carbon dioxide (CO2 and methane (CH4 are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003–2005 of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band, CH4 (1.66 μm and oxygen (O2 A-band at 0.76 μm using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 minute per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC. The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm and XCH4 (in ppb, by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCO2 data set. The XCH4 data set is discussed in a separate paper (Part 2. In order to assess the quality of the retrieved XCO2 we present comparisons with Fourier Transform Spectroscopy (FTS XCO2 measurements at two northern hemispheric mid-latitude ground stations. To assess the quality globally, we present detailed comparisons with global XCO2 fields obtained from NOAA's CO2 assimilation system CarbonTracker. For the Northern Hemisphere we find good agreement with the reference data for the CO2 seasonal cycle and the CO2

  5. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    OpenAIRE

    Mohammad Songolzadeh; Mansooreh Soleimani; Maryam Takht Ravanchi; Reza Songolzadeh

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion c...

  6. Carbon dioxide emission from bamboo culms.

    Science.gov (United States)

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.

  7. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A

    2010-06-30

    UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs

  8. Carbon Dioxide Corrosion::Modelling and Experimental Work Applied to Natural Gas Pipelines

    OpenAIRE

    Fosbøl, Philip Loldrup; Stenby, Erling Halfdan; Thomsen, Kaj

    2008-01-01

    Karbondioxid (CO2) korrosion er et udbredt og dyrt problem for industrien. I dette arbejde sættes fokus på et olie og gas relateret produktionsproblem, som findes i offshore naturgasrør. I fremtiden vil dette arbejde have stor betydning for CO2 transport i relation til CO2 capture i den danske energisektor. Problemet med CO2 korrosion i naturgasrør præsenteres. Det vises hvordan vand kondenserer fra den fugtige naturgas og danner en væske i rørene. Fra industriens side pH-stabiliserer man ved...

  9. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.

  10. The effect of coal rank on the wettability behavior of wet coal system with injection of carbon dioxide and flue gas

    OpenAIRE

    Shojaikaveh, N.; Rudolph, E.S.J.; Wolf, K.H.A.A.; Ashrafizadeh, S.N.

    2012-01-01

    The injection of carbon dioxide (CO2) or flue gas into coal layers enhances the coal bed methane production (ECBM) and is also an option for CO2-storage. The success of this combined process depends strongly on the wetting behavior of the coal, which is a function of coal rank, ash content, pressure, temperature and composition of the gas. Two coal samples have been used for this study representing different ranks: hvBb and semi-anthracite rank. The wettability behaviour of the wet coal sampl...

  11. A Review of the Utilisation of Natural Gas with High Carbon Dioxide Content as Automotive Fuel in an Indirect Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Opatola Rasheed Adewale

    2014-07-01

    Full Text Available The persistent consumption of fossil fuels by modern transportation tends toward feared depletion in crude oil and infliction of health risks on human beings and the environment due to the noxious emissions from the combustion of fossil fuels. This work examines the prospects of fuel modification in improving engine performance by utilising compressed natural gas (CNG mixed with varying proportions of carbon dioxide (CO2 as fuel in Diesel engines. The extent to which the addition of CO2 to CNG could help simulate the effects of exhaust gas recirculation (EGR as employed in modern engine technology will be established.

  12. Degradation products of different water content sevoflurane in carbon dioxide absorbents by gas chromatogpy-mass spectromerty analysis

    Institute of Scientific and Technical Information of China (English)

    LI Yue; LI Yi-cong; ZHANG Yi-nan; LIU Shu-jie; ZHOU Yan-mei; WANG Chang-song; GONG Yu-lei; LI En-you

    2011-01-01

    Background Sevoflurane is currently used as a volatile inhalation anesthetic with many clinical advantages. A representative degradation product,compound A,was quantitatively measured to investigate whether there are different reactions between two kinds of water content sevoflurane formulations with different carbon dioxide (CO2) absorbents.Methods A closed-circle breathe bag with the Dr(a)ger Fabius GS anesthesia apparatus was used as an artificial rubber lung. The experiments were grouped according to different sevoflurane formulations:group A:higher-water sevoflurane (Ultane);group B:lower-water sevoflurane (Sevoness). During the experiment,CO2 (200 ml/min) was continually perfused to keep the end-tidal pressure of CO2 (PETCO2)at 35-45 mmHg. The artificial ventilation was set to 6 L/min,and the breathing rate at 12 breaths/min. The circuit was operated with constant fresh gas flow rate (1 L/min) and the sevoflurane concentration was kept at 1.0 minimum alveolar concentration (MAC) for 240 minutes. At 0,10,20,30,60,90,120,180 and 240 minutes,gas was collected from the Y-piece. Gas chromatography/mass spectrometry (GC/MS)was used to quantify the major degradation product,compound A,with different water content sevoflurane. PETCO2 and sevoflurane concentration,and the temperature of the canister were continuously monitored during the experiment.Results There were no significant differences in PETCO2 and sevoflurane concentrations between the two groups.Dr(a)gersorb 800 plus produced the highest concentrations of compound A compared with other sodalimes,and Sevoness in Dr(a)gersorb 800 plus generated more compound A than Ultane (P <0.05). There were significant differences in the peak and average compound A concentrations between Ultane and Sevoness with Dr(a)gersorb 800 plus (P <0.05),while the compound A concentration produced by Sodasorb grase and sofonolime in the two groups showed no significant difference (P >0.05). In the same group,the peak and

  13. Experimental investigation of a molecular gate membrane for separation of carbon dioxide from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, S. (RITE, Kyoto, Japan); Kai, T. (RITE, Kyoto, Japan); Kouketsu, T. (RITE, Kyoto, Japan); Matsui, S. (RITE, Kyoto, Japan); Yamada, K. (RITE, Kyoto, Japan); Hoffman, J.S.; Pennline, H.W.

    2006-09-01

    Commercial-sized modules of the PAMAM dendrimer composite membrane with high CO2/N2 selectivity and CO2 permeance were developed according to the In-situ Modification (IM) method. This method utilizes the interfacial precipitation of membrane materials on the surface of porous, commercially available polysulfone (PSF) ultrafiltration hollow fiber membrane substrates. A thin layer of amphiphilic chitosan, which has a potential affinity for both hydrophobic PSF substrates and hydrophilic PAMAM dendrimers, was employed as a gutter layer directly beneath the inner surface of the substrate by the IM method. PAMAM dendrimers were then impregnated into the chitosan gutter layer to form a hybrid active layer for CO2 separation. Permeation experiments of the PAMAM dendrimer composite membrane were carried out using a humidified mixed CO2 / N2 feed gas at a pressure difference up to 97 kPa at ambient temperature. When conducted with CO2 (5%) / N2 (95%) feed gas at a pressure difference of 97 kPa, the PAMAM composite membrane exhibited an excellent CO2/N2 selectivity of 150 and a CO2 permeance of 1.7×10-7 m3(STP) m-2 s-1 kPa-1. The impact of various process parameters on the permeability and selectivity was also examined.

  14. Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers.

    Science.gov (United States)

    Islamoglu, Timur; Behera, Swayamprabha; Kahveci, Zafer; Tessema, Tsemre-Dingel; Jena, Puru; El-Kaderi, Hani M

    2016-06-15

    Tuning the binding affinity of small gases and their selective uptake by porous adsorbents are vital for effective CO2 removal from gas mixtures for environmental protection and fuel upgrading. In this study, an amine-functionalized benzimidazole-linked polymer (BILP-6-NH2) was synthesized by a combination of pre- and postsynthetic modification techniques in two steps. Presynthetic incorporation of nitro groups resulted in stoichiometric functionalization (1 nitro/phenyl) in addition to noninvasive functionalization, where more than 80% of the surface area maintained compared to BILP-6. Experimental studies presented enhanced CO2 uptake and CO2/CH4 selectivity in BILP-6-NH2 compared to BILP-6, which are governed by the synergetic effect of benzimidazole and amine moieties. DFT calculations were used to understand the interaction modes of CO2 with BILP-6-NH2 and confirmed the efficacy of amine groups. Encouraged by the enhanced uptake and selectivity in BILP-6-NH2, we have evaluated its performance in landfill gas separation under vacuum swing adsorption (VSA) settings, which resulted in very promising working capacity and sorbent selection parameters outperforming most of the best solid adsorbent in the literature. PMID:27228220

  15. Gas transfer velocities of methane and carbon dioxide in a subtropical shallow pond

    Science.gov (United States)

    Xiao, Shangbin

    2015-04-01

    Two diel field campaigns under different weather patterns were carried out in the summer and autumn of 2013 to measure CO2 and CH4 fluxes and to probe the rates of gas exchange across the air-water interface in a subtropical eutrophic pond in China. Bubble emissions of CH4 accounted for 99.7% and 91.67% of the total CH4 emission measured at two sites in the summer; however, no bubble was observed in the autumn. The pond was supersaturated with CO2 and CH4 during the monitoring period, and the saturation ratios (i.e., observed concentration / equilibrium concentration) of CH4 were much higher than that of CO2. Although the concentration of dissolved CO2 in the surface water collected in the autumn was 1.24 times of that in the summer, the mean diffusive CO2 flux across the water-air interface measured in the summer is almost twice compared with that in the autumn. The mean concentration of dissolved CH4 in the surface water in the autumn was around half of that in the summer, but the mean diffusive CH4 flux in the summer is 4-5 times of that in the autumn. Our data showed that the variation in gas exchange rate was dominated by differences in weather patterns and primary production. Averaged k600-CO2 and k600-CH4 (the gas transfer velocity normalized to a Schmidt number of 600) were 0.65 and 0.55 cm/h in the autumn, and 2.83 and 1.64 cm/h in the summer respectively. No statistically significant correlation was found between k600 and U10 (wind speed at 10 m height) in the summer at low wind speeds in clear weather. Diffusive gas fluxes increased during the nights, which resulted from the nighttime cooling effect of water surface and stronger turbulent mixing in the water column. The chemical enhancements for CO2 was estimated up to 1.94-fold in the hot and clear summer with low wind speeds, which might have been resulted from the increasing hydration reactions in water due to the high water temperature and active metabolism in planktonic algae. However, both the air

  16. Sequestering ADM ethanol plant carbon dioxide

    Science.gov (United States)

    Finley, R.J.; Riddle, D.

    2008-01-01

    Archer Daniels Midland Co. (ADM) and the Illinois State Geological Survey (ISGS) are collaborating on a project in confirming that a rock formation can store carbon dioxide from the plant in its pores. The project aimed to sequester the gas underground permanently to minimize release of the greenhouse gas into the atmosphere. It is also designed to store one million tons of carbon dioxide over a three-year period. The project is worth $84.3M, funded by $66.7M from the US Department Energy, supplemented by co-funding from ADM and other corporate and state resources. The project will start drilling of wells to an expected depth over 6500 feet into the Mount Simon Sandstone formation.

  17. Carbon dioxide corrosion: Modelling and experimental work applied to natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Loldrup Fosboel. P.

    2007-10-15

    CO{sub 2} corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO{sub 2} corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system consists mainly of CO{sub 2}-Na{sub 2}CO{sub 3}-NaHCO{sub 3}-MEG-H{sub 2}O. Sodium is injected in the pipelines as NaOH in order to pH-stabilize the pipeline to avoid corrosion and MEG is injected in order to prevent gas hydrates. There are a great number of models available in the literature which may predict CO{sub 2} corrosion. These models are not very accurate and assume ideality in the main part of the equation. This thesis deals with aspect of improving the models to account for the non-ideality. A general overview and extension of the theory behind electrochemical corrosion is presented in chapter 2 to 4. The theory deals with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO{sub 2} corrosion is shown in chapter 5 and possible extensions of the models are discussed. A list of literature cites is given in chapter 6. The literature review in chapter 5 shows how FeCO{sub 3} plays a main part in the protection of steel. Especially the solubility of FeCO{sub 3} is an important factor. Chapter 7 discusses and validates the thermodynamic properties of FeCO{sub 3}. The study shows that there is a discrepancy in the properties of FeCO{sub 3}. Sets of consistent thermodynamic properties of FeCO{sub 3} are given. A mixed solvent electrolyte model is regressed in chapter 8 for the CO{sub 2}-Na{sub 2}CO{sub 3}-NaHCO{sub 3}-MEG-H{sub 2}O system. Parameters of the extended UNIQUAC model is fitted to literature data of VLE, SLE, heat excess and validated against heat capacity data. The model is also

  18. Continuous flow PSA system carbon dioxide gas sep aration Process. Renzoku ryu PSA hoshiki tansan gas bunri process

    Energy Technology Data Exchange (ETDEWEB)

    Kanamaru, T.; Urano, S.; Kinoshita, N.; Ota, K. (Seibu Gas Kabushiki Kaisha, Fukuoka (Japan)); Nishino, K. (Mitsubishi Petrochemical Engineering Co. Ltd., Tokyo (Japan))

    1990-10-10

    During the production process of substitute natural gas (SNG), CO {sub 2} and moisture is removed which is contained in the wet mixed gas consisting of H {sub 2}, CH {sub 4} and CO {sub 2}, etc. generated in the gas generator. As the methods to separate and remove the CO {sub 2} above, there are the liquid absorption system as the wet decarbonation technique and the pressure swing adsorption (PSA) system as the dry decarbonation technique, but either of them has various problems. The process introduced in this article is the technique which has been developed in order to solve the various problems above and separates the contunuous wet mixed gas flow (generated gas before the treatment) consisting of H {sub 2}, CH {sub 4} and CO {sub 2}, etc. generated in the gas generator into the combustible component gas flow with purity of 99% or more and the CO {sub 2} gas flow with purity of 99%, both flows being the continuous flows without fluctuation of flow rate, pressure and component, and recovers 99% of the conbustible component and CO {sub 2} both. The above process was developed by Seibu Gas Co.. Starting, stopping and load change of the plant using this system is done quickly, accurately and easily with a high degree of safety, and the one touch operation is also possible. 6 figs., 3 tabs.

  19. Monthly Carbon Dioxide in Troposphere (AIRS on AQUA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon dioxide (CO2) is an important greenhouse gas released through natural processes such as respiration and volcano eruptions and through huma activities such as...

  20. The applicability of C-14 measurements in the soil gas for the assessment of leakage out of underground carbon dioxide reservoirs

    Directory of Open Access Journals (Sweden)

    Chałupnik Stanisław

    2014-03-01

    Full Text Available Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage. Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to know if there is any escape of CO2 from underground gas reservoirs, created as a result of sequestration. Such information is crucial to ensure safety of the population in areas located above geological reservoirs. It is possible to assess the origin of carbon dioxide, if the measurement of radiocarbon 14C concentration in this gas is done. If CO2 contains no 14C, it means, that the origin of the gas is either geological or the gas has been produced as a result of combustion of fossil fuels, like coal. A lot of efforts are focused on the development of monitoring methods to ensure safety of CO2 sequestration in geological formations. A radiometric method has been tested for such a purpose. The main goal of the investigations was to check the application possibility of such a method. The technique is based on the liquid scintillation counting of samples. The gas sample is at first bubbled through the carbon dioxide adsorbent, afterwards the adsorbent is mixed with a dedicated cocktail and measured in a low-background liquid scintillation spectrometer Quantulus. The described method enables measurements of 14C in mine and soil gas samples.

  1. Production of biopolymers from carbon dioxide. Tansan gas kara no bio polymer no seisan

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, A. (Kyushu University, Fukuoka (Japan). Faculty of Agriculture)

    1993-11-01

    This paper describes biopolymers made from CO2 that contribute to global preservation. PHB that is generated in the processes of CO2 fermentation and protein production from microorganisms draws attention as a useful biopolymer. Biological synthesis requires energy to synthesize the composing materials therein. Organisms are divided into the independent type and the subordinate type depending on how the energy is acquired. The independent type organism is of CO2 self-reducing type, so to speak, and produces organic matters. When hydrogen oxidizing bacteria, A. eutrophus, is cultured under an independent nutrient condition, energy derived from the hydrogen oxidation proliferates the bacteria and produces PHB. However, this fermentation method has a substantially different difficulty. It requires a huge reactor with a large gas migration capacity coefficient, on which the PHB production depends entirely. Other CO2 biopolymer production methods under study include effective utilization of biomass during photosynthetic processes by using plants incorporated with PHB biosynthesized genes, and production of polylactic acid, a biodegradable polymer. 9 refs., 3 figs.

  2. Pulsed discharge plasmas in supercritical carbon dioxide

    OpenAIRE

    Kiyan, Tsuyoshi; Uemura, A.; Tanaka, K.; Zhang, C. H.; Namihira, Takao; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Roy, B.C; Sasaki, M.; Goto, M; キヤン, ツヨシ; ナミヒラ, タカオ; サクガワ, タカシ; カツキ, スナオ

    2005-01-01

    In recent years, several studies about electrical discharge plasma in supercritical carbon dioxide (CO2) have been carried out. One of the unique characteristics of supercritical fluid is a large density fluctuation near the critical point that can result in marked dramatic changes of thermal conductivity. Therefore, the electrical discharge plasma produced in supercritical fluid has unique features and reactions unlike those of normal plasma produced in gas phase. In our experiments, two typ...

  3. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  4. Hydrogenation of carbon dioxide towards synthetic natural gas. A route to effective future energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schoder, M. [Hochschule Lausitz, Cottbus (Germany); Armbruster, U.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis

    2012-07-01

    Ni- and Ru-based catalysts are best suited for the so-called Sabatier reaction, i.e., the hydrogenation of CO{sub 2} to synthetic natural gas (SNG). Besides using commercial materials, catalyst syntheses (5 wt% Ru or Ni) were carried out by incipient wetness impregnation of four carriers (TiO{sub 2}, SiO{sub 2}, ZrO{sub 2} and {gamma}-Al{sub 2}O{sub 3}). Some pre-tests revealed that catalysts supported on TiO{sub 2} and SiO{sub 2} mostly produced CO, and therefore, they were not studied in detail. The catalyst tests were carried out in a continuously operated tube reactor at 623-723 K and 1-20 bar. Ru/ZrO{sub 2} and Ni/{gamma}-Al{sub 2}O{sub 3} revealed best catalytic performance at ambient pressure. Methane selectivities of 99.9% at 81.2% CO{sub 2} conversion for Ru/ZrO{sub 2} (623 K) and of 98.9% at 73.8% CO{sub 2} conversion for Ni/{gamma}-Al{sub 2}O{sub 3} (673 K) were obtained. The conversion increased significantly with raising reaction pressure above 10 bar to reach more than 93% for the Ni-containing catalyst and more than 96% for the Zr catalysts. Methane as the target product was formed with a selectivity of 100%. In addition, the catalysts were characterized by various solid-state techniques such as BET, TPR, ICP-OES, XRD, XPS and TEM. (orig.)

  5. Continuous measurements of atmospheric oxygen and carbon dioxide on a North Sea gas platform

    Directory of Open Access Journals (Sweden)

    I. T. Luijkx

    2009-07-01

    Full Text Available A new atmospheric measurement station has been established on the North Sea oil and gas production platform F3, 200 km north off the Dutch coast (54°51' N, 4°44' E. Atmospheric mixing ratios of O2 and CO2 are continuously measured using fuel cell technology and compact infrared absorption instruments, respectively. Furthermore, the station includes an automated air flask sampler for laboratory analysis of the atmospheric mixing ratios of CO2, CH4, CO and O2 and isotope measurements of δ13C, δ18O and Δ14C from CO2. This station is – to our knowledge – the first fixed sea based station with on-site continuous O2 and CO2 measurements and therefore yields valuable additional information about the CO2 uptake in coastal marine regions, specifically the North Sea. This paper presents the measurement station and the used methodologies in detail. Additionally, the first data is presented showing the seasonal cycle as expected during August 2008 through June 2009. In comparison to land-based stations, the data show low day-to-day variability, as they are practically free of nightly inversions. Therefore, the data set collected at this measurement station serves directly as background data for the coastal northwest European region. Additionally, some short-term O2 and CO2 signals are presented, including very large (over 200 per meg and fast negative atmospheric O2 excursions.

  6. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    OpenAIRE

    Kwak, Hyoung S.; Uhm, Han S.; Yong C. Hong; Eun H. Choi

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study o...

  7. 21 CFR 582.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  8. Measurement of carbon dioxide diffusion coefficient of concrete

    OpenAIRE

    Villain, G.; PAVOINE, A; Thiery, M.

    2006-01-01

    The carbonation of concrete is a chemical reaction, which can be at the origin of the premature degradation of reinforced concrete structures. In order to predict service life of reinforced concrete structures, many models based on gas diffusion were developed. The carbon dioxide diffusion coefficient of concrete is thus a significant input datum for these models. The objective of this article is to present a simple reliable testing method to quantify the carbon dioxide diffusion coefficient ...

  9. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  10. Gas exchange and the coagulation system of the blood during the effect on the body of high concentrations of oxygen and carbon dioxide

    Science.gov (United States)

    Palosh, L.; Agadzhanyan, N. A.; Davydov, G. A.; Rybakov, B. K.; Sergiyenko, A. S.

    1974-01-01

    Maximum permissible concentrations of oxygen and carbon dioxide in a controlled atmosphere were determined by evaluating their effects on human gas exchange, blood coagulation, and tolerances to acute hypoxia, acceleration, and physical loads. It was found that functional disturbances depend on the concentration of respiratory gases and the length of stay in an altered atmosphere. By changing the atmospheric composition and by bringing the gaseous environment into accordance with the work and rest regimen and energy expenditures, the general reactivity of the body changes favorably.

  11. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system...... consists mainly of CO2-Na2CO3-NaHCO3-MEG-H2O. Sodium is injected in the pipelines as NaOH in order to pH-stabilize the pipeline to avoid corrosion and MEG is injected in order to prevent gas hydrates. There are a great number of models available in the literature which may predict CO2 corrosion...... with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO2 corrosion is shown in chapter 5 and possible extensions of the models...

  12. Characterization of the Spatial Variability of Methane, Ozone, and Carbon Dioxide in Two Oil and Gas Production Basins Via a Spatial Grid of Continuous Measurements

    Science.gov (United States)

    Casey, J. G.; Collier, A. M.; Hannigan, M.; Piedrahita, R.; Vaughn, B. H.; Sherwood, O.

    2015-12-01

    In recent years, aided by the advent of horizontal drilling used in conjunction with hydraulic fracturing, oil and gas production in basins around the United States has increased significantly. A study was conducted in two oil and gas basins during the spring and summer of 2015 to investigate the spatial and temporal variability of several atmospheric trace gases that can be influenced by oil and gas extraction including methane, ozone, and carbon dioxide. Fifteen air quality monitors were distributed across the Denver Julesburg Basin in Northeast Colorado, and the San Juan Basin, which stretches from Southwest Colorado into Northwest New Mexico in Four Corners Region. Spatial variability in ozone was observed across each basin. The presence of dynamic short-term trends observed in the mole fraction of methane and carbon dioxide indicate the extent to which each site is uniquely impacted by local emission sources. Diurnal trends of these two constituents lead toward a better understanding of local pooling of emissions that can be influenced by topography, the planetary boundary layer height, atmospheric stability, as well as the composition and flux of local and regional emissions sources.

  13. Method for carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  14. Oxygen and carbon dioxide sensing

    Science.gov (United States)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  15. Summer Ice and Carbon Dioxide

    Science.gov (United States)

    Kukla, G.; Gavin, J.

    1981-10-01

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and research ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55 degrees and 80 degrees N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  16. Carbon dioxide and water budget of grazed grassland in Grünschwaige (Munich, Bavaria) measured by EC-method with an open path gas analyzer

    Science.gov (United States)

    Vetter, S.; Bernhofer, Ch.; Auerswald, K.

    2009-04-01

    in 2003 and 2006, lowered evapotranspiration and resulted in lower CO2 sinks or even turned the grassland into a source. This study shows the sensitivity of the carbon dioxide and water vapour fluxes quantified by the eddy covariance method to density correction, which can cause substantial changes in the assessment of the influence of environmental factors on fluxes from grassland. Burba, George G.; McDermitt, Dayle K.; Grelle, Achim; Anderson, Daniel J. and Xu, Liukang (2008): Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biology, 14, 1854 - 1876

  17. Greenhouse gas balance of a subarctic tundra - importance of carbon dioxide, methane and nitrous oxide from different land cover types

    Science.gov (United States)

    Marushchak, M. E.; Biasi, C.; Elsakov, V.; Jokinen, S.; Lind, S. E.; Pitkämäki, A.; Virtanen, T.; Martikainen, P. J.

    2012-04-01

    The strong warming predicted for the Arctic has increased the need to understand how carbon (C) balance in tundra will respond to climate change. The large C reservoir of northern permafrost soils (50% of global belowground soil C pool; Tarnocai et al. 2009) may be threatened by warming and associated thawing of permafrost, which might lead to increased release of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Moreover, the recent findings of high nitrous oxide (N2O) emissions from permafrost soils (Repo et al. 2009, Elberling et al. 2010) show that the large nitrogen pool in permafrost soils cannot be neglected anymore when predicting the atmospheric impact of Arctic tundra in a changing climate. Here we report the annual landscape scale (GHG) balance of subarctic tundra including all the three most important GHGs: CO2, CH4 and N2O. The study was conducted in Northeast European Russia in a heterogeneous landscape consisting of upland tundra, fens, willow wetlands and massive peat plateau complexes spotted by thermokarst lakes. Fluxes of CO2, CH4 and N2O were measured during two growing seasons and the cold season between using different chamber techniques at terrestrial ecosystems, and combination of gas gradient method and bubble collectors in thermokarst lakes. The plot scale results were up scaled to the landscape level using a land cover map based on a high-resolution QuickBird satellite image (Hugelius et al. 2011). The land cover types studied represent 97% of the whole area study area of 98.6 km2. On an annual basis the study area acted as a sink of C, but CH4 and N2O emissions caused it to be a net source of GHGs when considering the global warming potential (GWP; 100-year time horizon) of all three gases. Willow wetlands, fens and thermokarst lakes (16% of the landscape) were significant sources of CH4, while CH4 emissions from the rest of the landscape were negligible. Bare peat surfaces on peat plateaus, peat circles, acted as strong hotspots

  18. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  19. Determination of carbon monoxide, methane and carbon dioxide in refinery hydrogen gases and air by gas chromatography.

    Science.gov (United States)

    Kamiński, Marian; Kartanowicz, Rafal; Jastrzebski, Daniel; Kamiński, Marcin M

    2003-03-14

    This paper illustrates a method for determining trace amounts of CO, CH4 and CO2 with the detection limit of 0.15, 0.15 and 0.20 microg/l, respectively, in refinery hydrogen gases or in air. A simple modification of a gas chromatograph equipped with a flame-ionization detector is presented. A Porapak Q column, additionally connected with a short molecular sieve 5A packed column and a catalytic hydrogenation reactor on the Ni catalyst have been applied. The principle of the analytical method proposed is the separation of CO from O2 before the introduction of CO to the methanizer. The analytical procedure and examples of the results obtained have been presented. The modification applied makes it possible to use the GC instrument for other determinations, requiring utilization of the Porapak Q column and the flame-ionization detector. In such cases, the short molecular sieve 5A column and the methanizer can be by-passed.

  20. Turning carbon dioxide into fuel.

    Science.gov (United States)

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  1. Solubility of Carbon Dioxide in Water.

    Science.gov (United States)

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  2. Measurement and Modeling of Carbon Dioxide Solubility in Polar and Nonpolar Solvent

    OpenAIRE

    Hojatollah Ahmadi

    2012-01-01

    The solubility of gases is an important issue in the industries. Carbon Dioxide Through gas transmission line exists as sour gas therefore it is eliminated by solvent in industry. Carbone Dioxide is nonpolar molecule that has lower solubility in liquid solvent. In this study the solubility of carbon dioxide in some polar and nonpolar solvents (include Acetone, Acetic Acid, Benzene, Carbon Tetra Chloride, Chlorobenzene, Chloroform, Cyclo-hexane, Di-Methyl Formamid, Ethanol, Ethyl acetate, Meth...

  3. Transformation and utilization of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bhanage, Bhalchandra M. [Institute of Chemical Technology, Mumbai (India). Dept. of Chemistry; Arai, Masahiko (ed.) [Hokkaido Univ., Sapporo (Japan). Division of Chemical Process Engineering

    2014-04-01

    This book shows the various organic, polymeric and inorganic compounds which result from the transformation of carbon dioxide through chemical, photocatalytic, electrochemical, inorganic and biological processes. The book consists of twelve chapters demonstrating interesting examples of these reactions, depending on the types of reaction and catalyst. It also includes two chapters dealing with the utilization of carbon dioxide as a reaction promoter and presents a wide range of examples of chemistry and chemical engineering with carbon dioxide.

  4. Formation of Amino Acids on the Sonolysis of Aqueous Solutions Containing Acetic Acid, Methane, or Carbon Dioxide, in the Presence of Nitrogen Gas.

    Science.gov (United States)

    Dharmarathne, Leena; Grieser, Franz

    2016-01-21

    The sonolysis of aqueous solutions containing acetic acid, methane, or carbon dioxide in the presence of nitrogen gas was found to produce a number of different amino acids at a rate of ∼1 to 100 nM/min, using ultrasound at an operating power of 70 W and 355 kHz. Gas-phase elementary reactions are suggested, and discussed, to account for the formation of the complex biomolecules from the low molar mass solutes used. On the basis of the results, a new hypothesis is presented to explain the formation of amino acids under primitive atmospheric conditions and how their formation may be linked to the eventual abiotic genesis of life on Earth.

  5. Formation of Amino Acids on the Sonolysis of Aqueous Solutions Containing Acetic Acid, Methane, or Carbon Dioxide, in the Presence of Nitrogen Gas.

    Science.gov (United States)

    Dharmarathne, Leena; Grieser, Franz

    2016-01-21

    The sonolysis of aqueous solutions containing acetic acid, methane, or carbon dioxide in the presence of nitrogen gas was found to produce a number of different amino acids at a rate of ∼1 to 100 nM/min, using ultrasound at an operating power of 70 W and 355 kHz. Gas-phase elementary reactions are suggested, and discussed, to account for the formation of the complex biomolecules from the low molar mass solutes used. On the basis of the results, a new hypothesis is presented to explain the formation of amino acids under primitive atmospheric conditions and how their formation may be linked to the eventual abiotic genesis of life on Earth. PMID:26695890

  6. A carbon dioxide gas sensor by combination of multivalent cation and anion conductors with a water-insoluble oxycarbonate-based auxiliary electrode.

    Science.gov (United States)

    Imanaka, Nobuhito; Kamikawa, Masayuki; Adachi, Gin-ya

    2002-09-15

    A compact and inexpensive carbon dioxide gas sensor was successfully realized by the combination of a divalent magnesium ionic conductor of Mg0.7(Zr0.85Nb0.15)4P6O24 and a divalent oxide anion conducting ZrO2-Y2O3 solid electrolyte with the water-insoluble Li- and Ba-codoped Nd2O2CO3 solid solution as the auxiliary electrode. The sensor response was continuous and reproducible, and the present sensor also demonstrated a theoretical Nernst response in the atmosphere where water vapor, nitrogen oxides, ammonia, etc., coexist. The exposure of the present sensor to water dew and variation in oxygen concentration does not interfere with the sensor response, which will be a great advantage in applying the in situ practical CO2 detection in combustion exhaust gas atmospheres. PMID:12349986

  7. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K. (Scripps Institution of Oceanography, La Jolla, CA (United States)); Sepanski, R.J. (Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center)

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO[sub 2]) and nitrous oxide (N[sub 2]O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO[sub 2] by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  8. Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions

    International Nuclear Information System (INIS)

    Improved energy efficiency is an issue of increasing importance in offshore oil and gas installations. The power on offshore installations is generated by gas turbines operating in a simple cycle. There is an obvious possibility for heat recovery for further power generation from the exhaust heat. However, the limited space and weight available makes the inclusion of bottoming cycles challenging. Due to its high working pressure and thereby compact components CO2 (carbon dioxide) could be a viable solution, combining compactness and efficiency. An in-house simulation tool is used to evaluate the performance of CO2 bottoming cycles at design and off-design conditions. Both a simple recuperated single stage cycle and a more advanced dual stage system are modelled. Results from simulations show a potential for 10–11%-points increase in net plant efficiency at 100% gas turbine load. Also off-design simulations taking the variation in heat exchanger performance into account are performed showing that the bottoming cycle improves the off-design performance compared to the standard gas turbine solution. Even at 60% GT (gas turbine) load, the combined cycle with CO2 bottoming cycle can achieve up to 45% net plant efficiency, compared to 31% for only the gas turbine. - Highlights: • Modeling of CO2 bottoming cycles. • Comparison of single and dual stage CO2 bottoming cycles. • Efficiencies comparable to steam systems. • Good off-design characteristics

  9. Volcanic versus anthropogenic carbon dioxide

    Science.gov (United States)

    Gerlach, T.

    2011-01-01

    Which emits more carbon dioxide (CO2): Earth's volcanoes or human activities? Research findings indicate unequivocally that the answer to this frequently asked question is human activities. However, most people, including some Earth scientists working in fields outside volcanology, are surprised by this answer. The climate change debate has revived and reinforced the belief, widespread among climate skeptics, that volcanoes emit more CO2 than human activities [Gerlach, 2010; Plimer, 2009]. In fact, present-day volcanoes emit relatively modest amounts of CO2, about as much annually as states like Florida, Michigan, and Ohio.

  10. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    Energy Technology Data Exchange (ETDEWEB)

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2003-03-10

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities

  11. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    Energy Technology Data Exchange (ETDEWEB)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing

  12. Carbon dioxide direct cycle modular reactor

    International Nuclear Information System (INIS)

    Recently, as the micro gas-turbine power generation is clean for environment and has high convenience, it is focused as a small size dispersion electric source for super markets, hospitals, factories, and so on. And, a modular high temperature gas reactor (PBMR) adopting the gas turbine is also focused recently, and is progressed on its construction in South Africa and reported on construction plan of the Exelon Inc. in U.S.A. PBMR has specific safety for a small size and pebble-bed reactor and also has some characters on low construction cost similar to that of LWR due to simplification and small size module adoption of its plant. The PBMR uses helium for its coolants, of which exit temperature is set for at 900degC to get higher thermal efficiency. This is because of its adoption of Brayton cycle to fast reduce the efficiency with falling temperature. However, as helium is a costly and easy-emission vapor, it is desired to alternate to cheaper and more difficult-emission vapor. Here were introduced on carbon dioxide (CO2) direct cycle using carbon dioxide with extremely higher thermal efficiency than helium and its applicability to nuclear reactors. (G.K.)

  13. Comparative study of solvent properties for carbon dioxide absorption

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbrenner, O.; Styring, P. [University of Sheffield, Sheffield (United Kingdom)

    2010-07-01

    Several inexpensive and non-toxic solvents with low vapour pressures were investigated for their suitability as alternative solvents for the absorption of carbon dioxide from flue gas. The solvents include poly(ethylene glycol)s, poly(ethylene glycol) ethers, poly(ethylenimine) and glycerol-based substances. Solvent properties such as thermal stability, solubility of carbon dioxide and selectivity over nitrogen were investigated in a systematic study using a thermogravimetric analyser. Absorption results are reported for pure carbon dioxide and nitrogen as well as a mixture of both gases. Desorption and long-term sorption behaviour are also discussed. Glycerol and poly(ethylene glycol)s show a high solubility of carbon dioxide. Due to the high viscosity of the solvent, carbon dioxide absorption in poly(ethylenimine) is very slow in spite of the presence of favourable amine groups. PEG 300 was found to be the best solvent in this study and shows a high carbon dioxide solubility as well as good selectivity over nitrogen. The advantages of high stability, low solvent loss and low desorption energy of PEG 300 may outweigh its lower absorption capacity compared to the state-of-the-art solvent monoethanolamine, making it a potentially advantageous solvent for industrial carbon dioxide absorption processes.

  14. Non-catalytic plasma-arc reforming of natural gas with carbon dioxide as the oxidizing agent for the production of synthesis gas or hydrogen - HTR2008-58023

    International Nuclear Information System (INIS)

    The world's energy consumption is increasing constantly due to the growing population of the world. The increasing energy consumption has a negative effect on the fossil fuel reserves of the world. Hydrogen has the potential to provide energy for all our needs by making use of fossil fuel such as natural gas and nuclear-based electricity. Hydrogen can be produced by reforming methane with carbon dioxide as the oxidizing agent. Hydrogen can be produced in a Plasma-arc reforming unit making use of the heat energy generated by a 500 MWt Pebble Bed Modular Reactor (PBMR). The reaction in the unit takes place stoichiometrically in the absence of a catalyst. Steam can be added to the feed stream together with the Carbon Dioxide, which make it possible to control the H2/CO ratio in the synthesis gas between 1/1 and 3/1. This ratio of H2/CO in the synthesis gas is suitable to be used as feed gas to almost any chemical and petrochemical process. To increase the hydrogen production further, the Water-Gas Shift Reaction can be applied. A techno-economic analysis was performed on the non-catalytic plasma-arc reforming process. The capital cost of the plant is estimated at $463 million for the production of 1 132 million Nm3/year of hydrogen. The production cost of hydrogen is in the order of $12.81 per GJ depending on the natural gas cost and the price of electricity. (authors)

  15. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    Science.gov (United States)

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  16. Assessing Carbon Dioxide Emissions from Energy Use at a University

    Science.gov (United States)

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  17. The kinetics of binding carbon dioxide in magnesium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M. [Los Alamos National Lab., NM (United States); Nomura, Koji [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.]|[Chichibu Onada Cement Co., Tokyo (Japan)

    1998-08-01

    Humans currently consume about 6 Gigatons of carbon annually as fossil fuel. In some sense, the coal industry has a unique advantage over many other anthropogenic and natural emitters of CO{sub 2} in that it owns large point sources of CO{sub 2} from which this gas could be isolated and disposed of. If the increased energy demands of a growing world population are to be satisfied from coal, the implementation of sequestration technologies will likely be unavoidable. The authors` method of sequestration involves binding carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, with minimal environmental impact. The technology is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Realization of a cost effective method requires development of optimal technologies for efficient extraction and thermal carbonation.

  18. Simulation of the interaction of methane, carbon dioxide and coal

    Institute of Scientific and Technical Information of China (English)

    Nie Baisheng; Wang Longkang; Li Xiangchun; Wang Chao; Li Li

    2013-01-01

    Gas adsorption has an important influence on gas flow in a coal body. Research on the characteristics of coal and gas adsorption is the theoretical basis for studying gas flow in coal. In this paper, the interaction between methane, carbon dioxide and surface molecules of anthracite was simulated using the quantum chemistry method. Adsorption energy and adsorption configurations of different quantities of gas mole-cules absorbed on the coal surface were calculated. The results show that adsorption between coal and the two kinds of gas molecules is a physical adsorption process and there is an optimal configuration. Gas molecules are more easily adsorbed in the hydroxyl-containing side chain, while it is difficult for them to be adsorbed at the position of the benzene ring. Besides, carbon dioxide molecules are more readily adsorbed on the coal surface than methane molecules. The findings have an important signifi-cance in revealing the nature of gas adsorption in coal.

  19. Distribution of Carbon Dioxide Produced by People in a Room:

    DEFF Research Database (Denmark)

    Naydenov, Kiril Georgiev; Baránková, Petra; Sundell, Jan;

    2004-01-01

    Carbon dioxide exhaled by people can be used as a tracer gas for air change measurements in homes. Good mixing of tracer gas with room air is a necessary condition to obtain accurate results. However, the use of fans to ensure mixing is inconvenient. The natural room distribution of metabolic CO2...

  20. Distribution of carbon dioxide produced by people in a room:

    DEFF Research Database (Denmark)

    Baránková, Petra; Naydenov, Kiril Georgiev; Melikov, Arsen Krikor;

    2004-01-01

    Carbon dioxide produced by occupants can be used as a natural tracer gas for analysing air change rates in dwellings. However, a high level of concentration uniformity is necessary for tracer gas measurements. Therefore, mixing fans are usually used. The use of such fans in occupied homes...

  1. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    孙艳朋; 聂勇; 吴昂山; 姬登祥; 于凤文; 计建炳

    2012-01-01

    Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

  2. Estimated Carbon Dioxide Emissions in 2008: United States

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS

  3. Separation of carbon dioxide from flue emissions using Endex principles

    CERN Document Server

    Ball, R

    2009-01-01

    In an Endex reactor endothermic and exothermic reactions are directly thermally coupled and kinetically matched to achieve intrinsic thermal stability, efficient conversion, autothermal operation, and minimal heat losses. Applied to the problem of in-line carbon dioxide separation from flue gas, Endex principles hold out the promise of effecting a carbon dioxide capture technology of unprecedented economic viability. In this work we describe an Endex Calcium Looping reactor, in which heat released by chemisorption of carbon dioxide onto calcium oxide is used directly to drive the reverse reaction, yielding a pure stream of carbon dioxide for compression and geosequestration. In this initial study we model the proposed reactor as a continuous-flow dynamical system in the well-stirred limit, compute the steady states and analyse their stability properties over the operating parameter space, flag potential design and operational challenges, and suggest an optimum regime for effective operation.

  4. Use of the electrosurgical unit in a carbon dioxide atmosphere.

    Science.gov (United States)

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J; Eidson, Jack L; Paolino, David V

    2016-01-01

    The electrosurgical unit (ESU) utilizes an electrical discharge to cut and coagulate tissue and is often held above the surgical site, causing a spark to form. The voltage at which the spark is created, termed the breakdown voltage, is governed by the surrounding gaseous environment. Surgeons are now utilizing the ESU laparoscopically with carbon dioxide insufflation, potentially altering ESU operating characteristics. This study examines the clinical implications of altering gas composition by measuring the spark gap distance as a marker of breakdown voltage and use of the ESU on a biologic model, both in room air and carbon dioxide. Paschen's Law predicted a 35% decrease in gap distance in carbon dioxide, while testing revealed an average drop of 37-47% as compared to air. However, surgical model testing revealed no perceivable clinical difference. Electrosurgery can be performed in carbon dioxide environments, although surgeons should be aware of potentially altered ESU performance. PMID:26745650

  5. Carbon dioxide emission from bamboo culms.

    Science.gov (United States)

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. PMID:26802362

  6. Research of fiber carbon dioxide sensing system based laser absorption spectrum

    Science.gov (United States)

    Wei, Yubin; Zhang, Tingting; Li, Yanfang; Zhao, Yanjie; Wang, Chang; Liu, Tongyu

    2012-02-01

    Carbon dioxide is one of the important gas need to be detected in coal mine safety. In the mine limited ventilation environment, Concentration of carbon dioxide directly affects the health of coal miners. Carbon dioxide is also one of important signature Gas in spontaneous combustion forecasting of coal goaf area, it is important to accurately detect concentration of carbon dioxide in coal goaf area. This paper proposed a fiber carbon dioxide online sensing system based on tunable diode laser spectroscopy. The system used laser absorption spectroscopy and optical fiber sensors combined, and a near-infrared wavelength 1608nm fiber-coupled distributed feedback laser (DFB) as a light source and a 7cm length gas cell, to achieve a high sensitivity concentration detection of carbon dioxide gas. The technical specifications of sensing system can basically meet the need of mine safety.

  7. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  8. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  11. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.;

    2008-01-01

    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  15. Feasibility Analysis of Saving up Greenhouse Gas of Carbon Dioxide by Hydrate Method%水合物法储存温室气体二氧化碳的可行性分析

    Institute of Scientific and Technical Information of China (English)

    王林军; 张学民; 张东; 魏国栋

    2011-01-01

    The main cause of global warming is the emission of large amount of greenhouse gases, which led to the greenhouse effect. The main component of greenhouse gas is carbon dioxide. Therefore, reduction of greenhouse gases as carbon dioxide should be the focus of control. This article discussed feasibility and environmental effect of storing up carbon dioxide in ocean and replacement of methane from hydrate with carbon dioxide. In this method, large amounts of carbon dioxide are stored in form of solid carbon dioxide hydrates. This will help significantly reducing carbon dioxide in the atmosphere, maintaining the stability of submarine gas hydrate deposits, and improving the safety of exploitation of methane gas hydrate. This has opened up a new way of storing carbon dioxide by carbon dioxide hydrate. It is a great significant both in environmental protection and sustainable development.%全球变暖的主要原因是由于大量温室气体排放导致了温室效应,而温室气体的主要组成部分就是二氧化碳,因此二氧化碳应作为温室气体削减与控制的重点.论述了海洋储存二氧化碳与二氧化碳置换开采天然气水合物中甲烷的可行性及环境效应.该方法以固态二氧化碳水合物的形式储存大量的二氧化碳,有利于大大降低大气中二氧化碳的含量,有利于维护海底水合物沉积层的稳定性,有利于提高开采天然气水合物中甲烷的安全性,为二氧化碳水合物储存温室气体二氧化碳开辟了一条新的途径,对保护环境和经济社会的可持续发展具有重大的现实意义.

  16. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  17. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions

    International Nuclear Information System (INIS)

    We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH4) emissions were up to 12 mmol m-2 d-1 from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH4 release from lakes to the atmosphere. The carbon dioxide (CO2) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO2 to the atmosphere. The pelagic CH4 emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N2O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N2O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH4 and CO2 production in lakes, also have importance in the greenhouse gas emissions from reservoirs. (Author)

  18. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Factors controlling the capacity of the ocean for taking up anthropogenic C02 include carbon chemistry, distribution of alkalinity, pCO2 and total concentration of dissolved C02, sea-air pCO2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C02 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C02 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C02 fertilization is a potential candidate for such missing carbon sinks

  19. Electrocatalysts for carbon dioxide conversion

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  20. Carbon dioxide cleaning pilot project

    International Nuclear Information System (INIS)

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  1. Six-fold Coordinated Carbon Dioxide VI

    Energy Technology Data Exchange (ETDEWEB)

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  2. Carbon Dioxide As a Raw Material for Biodegradable Plastics

    Institute of Scientific and Technical Information of China (English)

    WANG Xianhong; QIN Yusheng; WANG Fosong

    2011-01-01

    @@ Carbon dioxide is the main greenhouse gas, but it is also a renewable and abundant source of carbon.It has not onlv shown various phvsicai utilization in the manufacturing of food, beverage and other industry areas, but been chemically fixed into urea, salicylic acid, organic and inorganic carbonates (Mikkelsen, Jorgensen & Krebs, 2010).However, developing a high value-added fixation route to CO is badly needed.

  3. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis

    Directory of Open Access Journals (Sweden)

    F. Joos

    2013-03-01

    Full Text Available The responses of carbon dioxide (CO2 and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP and Global Temperature change Potential (GTP, to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%. The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence lies within the range of (68 to 117 × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and

  4. Properties of equilibrium carbon dioxide hydrate in porous medium

    Science.gov (United States)

    Voronov, V. P.; Gorodetskii, E. E.; Podnek, V. E.; Grigoriev, B. A.

    2016-09-01

    Specific heat capacity, dissociation heat and hydration number of carbon dioxide hydrate in porous medium are determined by adiabatic calorimetry method. The measurements were carried out in the temperature range 250-290 K and in pressure range 1-5 MPa. The measured specific heat of the hydrate is approximately 2.7 J/(g K), which is significantly larger than the specific heat of methane hydrate. In particular, at heating, larger value of the specific heat of carbon dioxide hydrate is a result of gas emission from the hydrate. The hydration number at the hydrate-gas coexistence changes from 6.2 to 6.9. The dissociation heat of carbon dioxide hydrate varies from the 55 kJ/mol near the upper quadruple point to the 57 kJ/mol near the lower quadruple point.

  5. Indirect methods for characterization of carbon dioxide levels in fermentation broth.

    Science.gov (United States)

    Frick, R; Junker, B

    1999-01-01

    Various factors which influence dissolved carbon dioxide levels were indirectly evaluated in pilot scale and laboratory studies. For pilot scale studies, off-gas carbon dioxide (percentage in exit air) was measured using a mass spectrometer and then its potential impact on dissolved carbon dioxide concentrations qualitatively examined. Greater volumetric air flowrates reduced off-gas carbon dioxide levels more effectively at lower airflow ranges and thus lowered expected dissolved carbon dioxide levels through gas stripping. Lower broth pH values decreased off-gas carbon dioxide levels but increased expected dissolved carbon dioxide levels due to the pH-dependence of the gas/liquid carbon dioxide equilibrium. While back-pressure increases had an insignificant effect on off-gas carbon dioxide levels, they directly affected expected dissolved carbon dioxide levels according to Henry's law. Laboratory studies, conducted using both uninoculated and inoculated fermentation media, quantified the response of the media to pH changes with bicarbonate addition, specifically its buffering capacity. This effect then was related qualitatively to expected dissolved carbon dioxide levels. Higher dissolved carbon dioxide levels, as demonstrated by reduced pH changes with bicarbonate addition, thus would be expected for salt solutions of increased ionic strength and higher protein content media. In addition, pH changes with greater bicarbonate additions declined for fermentation samples taken over the course of a one week cultivation, most likely due to the higher protein content associated with biomass growth. The presence of weak acids/bases initially in the media or formed as metabolic by products, as well as the concentration of buffering ions such as phosphate, also were believed to be important contributing elements to the buffering capacity of the solution. PMID:16232479

  6. Pharmaceutical applications of supercritical carbon dioxide.

    Science.gov (United States)

    Kaiser, C S; Römpp, H; Schmidt, P C

    2001-12-01

    The appearance of a supercritical state was already observed at the beginning of the 19th century. Nevertheless, the industrial extraction of plant and other natural materials started about twenty years ago with the decaffeination of coffee. Today carbon dioxide is the most common gas for supercritical fluid extraction in food and pharmaceutical industry. Since pure supercritical carbon dioxide is a lipophilic solvent, mixtures with organic solvents, especially alcohols, are used to increase the polarity of the extraction fluid; more polar compounds can be extracted in this way. The main fields of interest are the extraction of vegetable oils from plant material in analytical and preparative scale, the preparation of essential oils for food and cosmetic industry and the isolation of substances of pharmaceutical relevance. Progress in research was made by the precise measurement of phase equilibria data by means of different methods. Apart from extraction, supercritical fluid chromatography was introduced in the field of analytics, as well as micro- and nanoparticle formation using supercritical fluids as solvent or antisolvent. This review presents pharmaceutical relevant literature of the last twenty years with special emphasis on extraction of natural materials.

  7. Global carbon dioxide emissions from inland waters

    Science.gov (United States)

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Rob; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  8. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity. PMID:23901504

  9. 46 CFR 108.627 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  10. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  11. 46 CFR 169.732 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  12. 46 CFR 193.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  13. 46 CFR 95.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  14. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  15. 46 CFR 76.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  16. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  17. A Discovery Experiment: Carbon Dioxide Soap Bubble Dynamics.

    Science.gov (United States)

    Millikan, Roger C.

    1978-01-01

    The observation of soap bubbles in a beaker of carbon dioxide gas helps students to feel the pleasure that comes from understanding nature, from applying that understanding to real problems, and from making unexpected discoveries that yield to analysis. (Author/BB)

  18. Silver oxide sorbent for carbon dioxide

    Science.gov (United States)

    Colombo, G. V.

    1974-01-01

    Material can be regenerated at least 20 times by heating at 250 C. Sorbent is compatible with environment of high humidity; up to 20% by weight of carbon dioxide can be absorbed. Material is prepared from silver carbonate, potassium hydroxide or carbonate, and sodium silicate.

  19. Carbon Dioxide Collection and Pressurization Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reactive Innovations, LLC, proposes a Phase I SBIR program to develop a compact and lightweight electrochemical reactor to separate and pressurize carbon dioxide...

  20. Reactive Capture of Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  1. Calcium Oxide Matrices and Carbon Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    Claudio Nicolini

    2012-05-01

    Full Text Available Homogeneous matrices of calcium oxide (CaO were prepared by mixing this material with polyethylene glycol (PEG acting as malleable inert support in order to obtain processable composites. Preliminary tests were carried out to assess the best concentration of CaO in the composite, individuated in the CaO/PEG weight ratio of 1/4. Experimental data highlighted that the composite was able to selectively detect carbon dioxide (CO2 via a nanogravimetric method by performing the experiments inside an atmosphere-controlled chamber filled with CO2. Furthermore, the composite material showed a linear absorption of CO2 as a function of the gas concentration inside the atmosphere-controlled chamber, thus paving the way for the possible use of these matrices for applications in the field of sensor devices for long-term evaluation of accumulated environmental CO2.

  2. Supercritical carbon dioxide hop extraction

    Directory of Open Access Journals (Sweden)

    Pfaf-Šovljanski Ivana I.

    2005-01-01

    Full Text Available The hop of Magnum cultivar was extracted using supercritical carbon dioxide (SFE-as extractant. Extraction was carried out in the two steps: the first one being carried out at 150 bar and 40°C for 2.5 h (Extract A, and the second was the extraction of the same hop sample at 300 bar and 40°C for 2.5 h (Extract B. Extraction kinetics of the system hop-SFE-CO2 was investigated. Two of four most common compounds of hop aroma (α-humulene and β-caryophyllene were detected in Extract A. Isomerised α-acids and β-acids were detected too. a-Acid content in Extract B was high (that means it is a bitter variety of hop. Mathematical modeling using empirical model characteristic time model and simple single sphere model has been performed on Magnum cultivar extraction experimental results. Characteristic time model equations, best fitted experimental results. Empirical model equation, fitted results well, while simple single sphere model equation poorly approximated the results.

  3. Arterialisation of transcutaneous oxygen and carbon dioxide.

    OpenAIRE

    Broadhurst, E; Helms, P; Vyas, H; Cheriyan, G

    1988-01-01

    We compared previously calculated global correction factors for oxygen and carbon dioxide arterial/transcutaneous ratios with individual in vivo calibrations from the first arterial sample. In infants beyond the neonatal period and older children in vivo calibration confers little benefit over the use of a global calibration correction factor for transcutaneous carbon dioxide, and may reduce the precision with which arterial oxygen can be estimated from transcutaneous oxygen.

  4. Stationary plume induced by carbon dioxide dissolution

    International Nuclear Information System (INIS)

    In this paper, laminar convection flows induced by carbon dioxide absorption are addressed from experimental, numerical and theoretical points of view. A vertical glass tube (of centimetre scale) filled with distilled water is subjected to a sudden increase in the partial pressure of carbon dioxide. As a result of the diffusion of the gas into the unsaturated solution, a thin layer of fluid located underneath the surface becomes heavier. This initial density gradient first destabilizes to form a plume, which goes downwards through the entire cell. After a first transient pulsating regime (periodic succession of such Rayleigh-Benard plumes), a stationary flow settles in the tube, which is maintained by the constant supply of gas at the surface. At late stages, this stationary regime is followed by an aperiodic regime, which lasts until the complete saturation of the solution (thermodynamic equilibrium). The present study only focuses on the stationary regime, whose characteristics appear to be almost independent of the Bond number and the aspect ratio but strongly dependent on the chemical Rayleigh number. Three decades of Rayleigh numbers are explored using particle image velocimetry measurements, which allows for a precise determination of the scaling exponents for the vertical velocity amplitude and the plume width. The assumption that gravity and a constant pressure gradient balance the viscous effects enables us to derive an analytic expression for the stationary vertical velocity on the axis, which scales as Ra2/3 (ln Ra)1/3. As a consequence, the width of the plume scales as Ra-1/6 (ln Ra)-1/3 and the mass Nusselt number as (Ra= ln Ra)1/3. These scalings are in excellent agreement with the experimental and numerical results. The multiplicative constants of these scalings can also be calculated and show a fairly good agreement if a rigid boundary condition (no-slip) is assumed at the free surface. (authors)

  5. Effect of Solid Loading on Carbon Dioxide Absorptionin Bubble Column

    Directory of Open Access Journals (Sweden)

    Alyaa Khadhier Mageed

    2011-01-01

    Full Text Available In the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.% on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h and absorbent concentration (caustic soda( 0.1,0.5 and 1 M . Activated carbon and alumina oxide (Al2O3 are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfacial area were increased with increasing volumetric gas flow rate, and solid loading.

  6. Thermodynamical effects during carbon dioxide release

    Science.gov (United States)

    Singh, A. K.; Böttcher, N.; Görke, U.-J.; Kolditz, O.

    2012-04-01

    Pruess [1] investigated the risk of carbon dioxide leakage from shallow storage sites by modeling scenarios. Such a fluid release is associated with mechanical work performed by formation fluid against expansion without taking heat from ambient environment. Understanding of heat related to mechanical work is essential to predict the temperature at the leak. According to the first law of thermodynamics, internal energy of working fluid decreases with an amount which is equivalent to this work hence, working fluid lost its own heat. Such kind of heat loss depends strongly on whether the expansion process is adiabatic or isothermal. Isothermal expansion allows the working fluid to interact thermally with the solid matrix. Adiabatic expansion is an isenthalpic process that takes heat from the working fluid and the ambient environment remains unchanged. This work is part of the CLEAN research project [6]. In this study, thermodynamic effects of mechanical work during eventual carbon dioxide leakage are investigated numerically. In particular, we are interested to detect the temperature at leakage scenarios and its deviation with different thermodynamic processes. Finite element simulation is conducted with a two-dimensional rectangular geometry representing a shallow storage site which bottom was located at -300m below the land surface. A fully saturated porous medium is assumed where the pore space is filled completely with carbon dioxide. Carbon dioxide accumulated in the secondary trap at 30 Bar and 24 °C is allowed to leak from top right point of rectangle with atmospheric pressure. With (i) adiabatic and (ii) isothermal compressibility factors, temperature around leakage area has been calculated which show a significant difference. With some simplification, this study detects leak temperature which is very close with [1]. Temporal evaluation at the leaky area shows that the working fluid temperature can be reduced to -20 °C when the leakage scenario is performed

  7. Carbon dioxide, the feedstock for using renewable energy

    International Nuclear Information System (INIS)

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  8. Carbon dioxide, the feedstock for using renewable energy

    Science.gov (United States)

    Hashimoto, K.; Kumagai, N.; Izumiya, K.; Kato, Z.

    2011-03-01

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  9. Carbon dioxide, the feedstock for using renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, K; Kato, Z [Tohoku Institute of Technology, Sendai, 982-8577 (Japan); Kumagai, N; Izumiya, K, E-mail: koji@imr.tohku.ac.jp [Daiki Ataka Engineering Co. Ltd. Kashiwa, 277-8515 (Japan)

    2011-03-15

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  10. Six-fold coordinated carbon dioxide VI

    Energy Technology Data Exchange (ETDEWEB)

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae (LLNL)

    2008-06-16

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO{sub 2}) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of an extended-solid phase of CO{sub 2}: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50 GPa at 530-650 K. Together with the previously reported CO{sub 2}-V and a-carbonia, this extended phase indicates a fundamental similarity between CO{sub 2} (a prototypical molecular solid) and SiO{sub 2} (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO{sub 2}-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III and IV. The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  11. Six-fold coordinated carbon dioxide VI.

    Science.gov (United States)

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae

    2007-01-01

    Under standard conditions, carbon dioxide (CO2) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO2) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO2 transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO2 tridymite. Here, we present the discovery of an extended-solid phase of CO2: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO2-II (refs 1,2) above 50 GPa at 530-650 K. Together with the previously reported CO2-V (refs 3-5) and a-carbonia, this extended phase indicates a fundamental similarity between CO2 (a prototypical molecular solid) and SiO2 (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO2-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II (refs 1,2), III (refs 7,8) and IV (refs 9,10). The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P42/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp3 hybridization. PMID:17160005

  12. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas-liquid metal contactor

    Science.gov (United States)

    To evaluate the effect of pilot-plant scale, non-thermal supercritical carbon dioxide (SCCO2) processing on the safety and the quality of orange juice (OJ), SCCO2 processed juice was compared with untreated fresh juice and equivalently thermal processed juice in terms of lethality. SCCO2 processing ...

  13. Facilitating Conceptual Understanding of Gas-Liquid Mass Transfer Coefficient through a Simple Experiment Involving Dissolution of Carbon Dioxide in Water in a Surface Aeration Reactor

    Science.gov (United States)

    Utgikar, Vivek P.; MacPherson, David

    2016-01-01

    Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…

  14. Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography-corona discharge ion mobility spectrometric detection.

    Science.gov (United States)

    Saraji, Mohammad; Jafari, Mohammad Taghi; Mossaddegh, Mehdi

    2016-01-15

    A high efficiency solid-phase microextraction (SPME) fiber coated with porous carbon nanotubes-silicon dioxide (CNTs-SiO2) nanohybrids was synthesized and applied for the determination of some organophosphorus pesticides (OPPs) in vegetables, fruits and water samples. Gas chromatography-corona discharge ion mobility spectrometry was used as the detection system. Glucose, as a biocompatible compound, was used for connecting CNT and SiO2 during a hydrothermal process. The electrospinning technique was also applied for the fiber preparation. The parameters affecting the efficiency of extraction, including stirring rate, salt effect, extraction temperature, extraction time, desorption temperature and desorption time, were investigated and optimized. The developed CNTs@SiO2 fiber presented better extraction efficiency than the commercial SPME fibers (PA, PDMS, and PDMS-DVB). The intra- and inter-day relative standard deviations were found to be lower than 6.2 and 9.0%, respectively. For water samples, the limits of detection were in the range of 0.005-0.020 μg L(-1) and the limits of quantification were between 0.010 and 0.050 μg L(-1). The results showed a good linearity in the range of 0.01-3.0 μg L(-1) for the analytes. The spiking recoveries ranged from 79 (± 9) to 99 (± 8). The method was successfully applied for the determination of OPPs in real samples. PMID:26709024

  15. Syngas and hydrogen production from the natural gas reforming with carbon dioxide; Producao de gas de sintese e hidrogenio a partir da reforma do gas natural com dioxido de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Pacifico, Jose Adair; Silva, Hollyson William da; Moura, Diego de Lima; Soares, Cicero Henrique Macedo; Abreu, Cesar Augusto Moraes de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)]. E-mail: adairpacifico@hotmail.com

    2008-07-01

    In order to establish operational previews for the catalytic reforming of methane with carbon dioxide process a unidimensional Kunii-Levenspiel heterogeneous model was elaborated for the fluidized bed reaction system. Simulations showing the reactants (CH{sub 4} + CO{sub 2}) and products (CO + H{sub 2}) concentration outlines are accomplished, showing the effect of temperature. The operational system composed by the fluidized bed reactor has the following dimensions: (Ht 1,180 mm, Dint = 56 mm) and a 4.98 wt.% Ni/{gamma}-Al{sub 2}O{sub 3} catalysts (mcat 224.74g), operating at 1,023.15K, 1,073.15K, and 1,123.15K and atmospheric pressure. Under the conditions above and adopting a Langmuir-Hinshelwood kinetic law for catalysts decomposition of methane and not catalytic heterogeneous kinetic law for gas shift and Boudouard reverse reaction. The adopted mathematic model it allowed the establishing of profile concentration for the reactants and products showing. Conversion at 97.89% and 85.45% for the CH{sub 4} and CO{sub 2}, at 1,123.15K. (author)

  16. Uncertainities in carbon dioxide radiative forcing in atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Cess, R.D.; Zhang, M.H. (State Univ. of New York, Stony Brook, NY (United States)); Potter, G.L.; Gates, W.L.; Taylor, K.E. (Lawrence Livermore National Laboratory, CA (United States)); Colman, R.A.; Fraser, J.R.; McAvaney, B.J. (Bureau of Meterorology Research Centre, Victoria (Australia)); Dazlich, D.A.; Randall, D.A. (Colorado State Univ., Fort Collins, CO (United States)); Del Genio, A.D.; Lacis, A.A. (Goddard Institute for Space Studies, New York, NY (United States)); Esch, M.; Roeckner, E. (Max Planck Institute for Meteorology, Hamburg (Germany)); Galin, V. (Russian Academy of Sciences, Moscow (Russian Federation)); Hack, J.J.; Kiehl, J.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Ingram, W.J. (Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)); Le Treut, H.; Lli, Z.X. (Laboratoire de Meteorologie Dynamique, Paris (France)); Liang, X.Z.; Wang, W.C. (State Univ. of New York, Albany, NY (United States)); Mahfouf,

    1993-11-19

    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  17. Experimental studies on removal of carbon dioxide by aqueous ammonia fine spray

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Experimental studies on carbon dioxide capture in a spray scrubber were carried out.Fine spray of aqueous ammonia was used as CO2 absorbent.Effects of different operating and design parameters on CO2 removal efficiency including concentration of aqueous ammonia,liquid flow rate,total gas flow rate,initial temperature and concentration of carbon dioxide were investigated.

  18. Carbon Dioxide Absorbers: An Engaging Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Ticich, Thomas M.

    2011-01-01

    A simple and direct method for measuring the absorption of carbon dioxide by two different substances is described. Lithium hydroxide has been used for decades to remove the gas from enclosed living spaces, such as spacecraft and submarines. The ratio of the mass of carbon dioxide absorbed to the mass of lithium hydroxide used obtained from this…

  19. The thermodynamics of direct air capture of carbon dioxide

    International Nuclear Information System (INIS)

    An analysis of thermodynamic constraints shows that the low concentration of carbon dioxide in ambient air does not pose stringent limits on air capture economics. The thermodynamic energy requirement is small even using an irreversible sorbent-based process. A comparison to flue gas scrubbing suggests that the additional energy requirement is small and can be supplied with low-cost energy. In general, the free energy expended in the regeneration of a sorbent will exceed the free energy of mixing, as absorption is usually not reversible. The irreversibility, which grows with the depth of scrubbing, tends to affect flue gas scrubbing more than air capture which can successfully operate while extracting only a small fraction of the carbon dioxide available in air. This is reflected in a significantly lower theoretical thermodynamic efficiency for a single stage flue gas scrubber than for an air capture device, but low carbon dioxide concentration in air still results in a larger energy demand for air capture. The energy required for capturing carbon dioxide from air could be delivered in various ways. I analyze a thermal swing and also a previously described moisture swing which is driven by the evaporation of water. While the total amount of heat supplied for sorbent regeneration in a thermal swing, in accordance with Carnot's principle, exceeds the total free energy requirement, the additional free energy required as one moves from flue gas scrubbing to air capture can be paid with an amount of additional low grade heat that equals the additional free energy requirement. Carnot's principle remains satisfied because the entire heat supplied, not just the additional amount, must be delivered at a slightly higher temperature. Whether the system is driven by water evaporation or by low grade heat, the cost of the thermodynamically-required energy can be as small as $1 to $2 per metric ton of carbon dioxide. Thermodynamics does not pose a practical constraint on the

  20. Carbon Dioxide Angiography: Scientific Principles and Practice.

    Science.gov (United States)

    Cho, Kyung Jae

    2015-09-01

    Carbon dioxide (CO2) is a colorless, odorless gas which occurs naturally in the atmosphere and human body. With the advent of digital subtraction angiography, the gas has been used as a safe and useful alternative contrast agent in both arteriography and venography. Because of its lack of renal toxicity and allergic potential, CO2 is a preferred contrast agent in patients with renal failure or contrast allergy, and particularly in patients who require large volumes of contrast medium for complex endovascular procedures. Understanding of the unique physical properties of CO2 (high solubility, low viscosity, buoyancy, and compressibility) is essential in obtaining a successful CO2 angiogram and in guiding endovascular intervention. Unlike iodinated contrast material, CO2 displaces the blood and produces a negative contrast for digital subtraction imaging. Indications for use of CO2 as a contrast agent include: aortography and runoff, detection of bleeding, renal transplant arteriography, portal vein visualization with wedged hepatic venous injection, venography, arterial and venous interventions, and endovascular aneurysm repair. CO2 should not be used in the thoracic aorta, the coronary artery, and cerebral circulation. Exploitation of CO2 properties, avoidance of air contamination and facile catheterization technique are important to the safe and effective performance of CO2 angiography and CO2-guided endovascular intervention. PMID:26509137

  1. Modeling the Injection of Carbon Dioxide and Nitrogen into a Methane Hydrate Reservoir and the Subsequent Production of Methane Gas on the North Slope of Alaska

    Science.gov (United States)

    Garapati, N.; McGuire, P. C.; Liu, Y.; Anderson, B. J.

    2012-12-01

    HydrateResSim (HRS) is an open-source finite-difference reservoir simulation code capable of simulating the behavior of gas hydrate in porous media. The original version of HRS was developed to simulate pure methane hydrates, and the relationship between equilibrium temperature and pressure is given by a simple, 1-D regression expression. In this work, we have modified HydrateResSim to allow for the formation and dissociation of gas hydrates made from gas mixtures. This modification allows one to model the ConocoPhillips Ignik Sikumi #1 field test performed in early 2012 on the Alaska North Slope. The Ignik Sikumi #1 test is the first field-based demonstration of gas production through the injection of a mixture of carbon dioxide and nitrogen gases into a methane hydrate reservoir and thereby sequestering the greenhouse gas CO2 into hydrate form. The primary change to the HRS software is the added capability of modeling a ternary mixture consisting of CH4 + CO2 + N2 instead of only one hydrate guest molecule (CH4), therefore the new software is called Mix3HydrateResSim. This Mix3HydrateResSim upgrade to the software was accomplished by adding primary variables (for the concentrations of CO2 and N2), governing equations (for the mass balances of CO2 and N2), and phase equilibrium data. The phase equilibrium data in Mix3HydrateResSim is given as an input table obtained using a statistical mechanical method developed in our research group called the cell potential method. An additional phase state describing a two-phase Gas-Hydrate (GsH) system was added to consider the possibility of converting all available free water to form hydrate with injected gas. Using Mix3HydrateResSim, a methane hydrate reservoir with coexisting pure-CH4-hydrate and aqueous phases at 7.0 MPa and 5.5°C was modeled after the conditions of the Ignik Sikumi #1 test: (i) 14-day injection of CO2 and N2 followed by (ii) 30-day production of CH4 (by depressurization of the well). During the

  2. Carbon Dioxide Captured from Flue Gas by Modified Ca-based Sorbents in Fixed-bed Reactor at High Temperature

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; YU Hongbing; WANG Shengqiang; WANG Haowen; ZHOU Qibin

    2013-01-01

    Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide,calcium carbonate,calcium acetate monohydrate and calcium oxide.The CO2 absorption capacity of those sorbents was investigated in a fixed-bed reactor in the temperature range of 350 650 ℃.It was found that all of those sorbents showed higher capacity for CO2 absorption when the operating temperature higher than 450 ℃.The CaAc2-CaO sorbent showed the highest CO2 absorption capacity of 299 mg·g-1.The morphology of those sorbents was examined by scanning electron microscope(SEM),and the changes of composition before and after carbonation were also determined by X-ray diffraction(XRD).Results indicated that those sorbents have the similar chemical compositions and crystalline phases before carbonation reaction [mainly Ca(OH)2],and CaCO3 is the main component after carbonation reaction.The SEM morphology shows clearly that the sorbent pores were filled with reaction products after carbonation reaction,and became much denser than before.The N2 adsorption-desorption isotherms indicated that the CaAc2-CaO and CaCO3-CaO sorbents have higher specific surface area,larger pore volume and appropriate pore size distribution than that of CaO-CaO and Ca(OH)2-CaO.

  3. Designed amyloid fibers as materials for selective carbon dioxide capture.

    Science.gov (United States)

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  4. Biomass combustion for greenhouse carbon dioxide enrichment

    International Nuclear Information System (INIS)

    Greenhouses in northern climates have a significant heat requirement that is mainly supplied by non-renewable fuels such as heating oil and natural gas. This project's goal was the development of an improved biomass furnace able to recover the heat and the CO2 available in the flue gas and use them in the greenhouse. A flue gas purification system was designed, constructed and installed on the chimney of a wood pellet furnace (SBI Caddy Alterna). The purification system consists of a rigid box air filter (MERV rating 14, 0.3 μm pores) followed by two sets of heating elements and a catalytic converter. The air filter removes the particulates present in the flue gas while the heating elements and catalysers transform the noxious gases into less harmful gases. Gas analysis was sampled at different locations in the system using a TESTO 335 flue gas analyzer. The purification system reduces CO concentrations from 1100 cm3 m−3 to less than 1 cm3 m−3 NOx from 70 to 5.5 cm3 m−3 SO2 from 19 cm3 m−3 to less than 1 cm3 m−3 and trapped particulates down to 0.3 μm with an efficiency greater than 95%. These results are satisfactory since they ensure human and plant safety after dilution into the ambient air of the greenhouse. The recuperation of the flue gas has several obvious benefits since it increases the heat usability per unit biomass and it greatly improves the CO2 recovery of biomass heating systems for the benefit of greenhouse grown plants. - Highlights: • Biomass furnace shows high potential for greenhouse carbon dioxide enrichment. • Flue gas recuperation significantly increases the thermal efficiency of a furnace. • Catalytic converter can reduce CO and NOx below humans and plants exposure limit. • Particulates control is essential to maintain the efficiency of the catalytic conversion. • CO2 recovery from biomass heating systems reduces farmer's reliance on fossil fuel

  5. Automated carbon dioxide cleaning system

    Science.gov (United States)

    Hoppe, David T.

    1991-01-01

    Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.

  6. Strategies for carbon dioxide emissions reductions: Residential natural gas efficiency, economic, and ancillary health impacts in Maryland

    International Nuclear Information System (INIS)

    As part of its commitments to the Regional Greenhouse Gas Initiative (RGGI), the State of Maryland, USA, auctions emission permits to electric utilities, creating revenue that can be used to benefit consumers and the environment. This paper explores the CO2 emissions reductions that may be possible by allocating some of that revenue to foster efficiency improvements in the residential sector's use of natural gas. Since these improvements will require changes to the capital stock of houses and end use equipment, efficiency improvements may be accompanied by economic and ancillary health impacts, both of which are quantified in this paper.

  7. Laboratory Experiments on Environmental Friendly Means to Improve Coalbed Methane Production by Carbon Dioxide/Flue Gas Injection

    NARCIS (Netherlands)

    Mazumder, S.; Wolf, K.H.A.A.; Van Hemert, P.; Busch, A.

    2008-01-01

    Scaled in situ laboratory core flooding experiments with CO2, N2 and flue gas were carried out on coal in an experimental high P,T device. These experiments will be able to give an insight into the design of the injection system, management, control of the operations and the efficiency of an ECBM pr

  8. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Kjærgaard, Benedict; Nielsen, Jakob Koefoed;

    In this porcine lung injury model, apneic oxygenation with arteriovenous CO2 removal provided sufficient gas exchange and stable hemodynamics, indicating that the method might have a potential in the treatment of severe ARDS.   Acknowledgements The membrane lungs were kindly provided by Novalung GmbH, Germany....

  9. Effect of reactive surface area of minerals on mineralization and carbon dioxide trapping in a depleted gas reservoir

    NARCIS (Netherlands)

    Bolourinejad, P.; Shoeibi Omrani, P.; Herber, R.

    2014-01-01

    In this study, a long-term (up to 1000 years) geochemical modelling of subsurface CO2 storage was carried out on sandstone reservoirs of depleted gas fields in northeast Netherlands. It was found that mineral dissolution/precipitation has only a minor effect on reservoir porosity. In order to valida

  10. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture

    International Nuclear Information System (INIS)

    In this work, a systematic review of the literature work done so far on the use of hydrate crystallization as a basis to develop data for the hydrate based gas separation (HBGS) process for the capture of CO2 from fuel gas mixtures is presented. Such a gas mixture may arise in integrated gasification combined cycle (IGCC) power plants. A thorough assessment of the thermodynamic, kinetic factors and economic aspects of the HBGS process and critical comments are presented. Compared with competing technologies, high CO2 capacity and the use of water as a solvent are key advantages for the HBGS process for CO2 capture. Furthermore, in this review, a snapshot of the current state-of-the-art is presented and further research and development opportunities and pathways for commercializing the HBGS process for pre-combustion capture of CO2 from IGCC power plants are discussed. - Highlights: • A review on a novel process to capture CO2 using water via clathrates is presented. • Hydrate based gas separation process (HBGS) for pre-combustion capture has much promise. • Current state-of-the-art on HBGS process and future directions are presented. • HBGS process is the most environmentally benign approach as water is used as a solvent

  11. Gas-Phase Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over Co1.5PW12O40 Keggin-Type Heteropolyanion

    Directory of Open Access Journals (Sweden)

    Ahmed Aouissi

    2010-03-01

    Full Text Available The reactivity of Co1.5PW12O40 in the direct synthesis of dimethyl carbonate (DMC from CO2 and CH3OH was investigated. The synthesized catalyst has been characterized by means of FTIR, XRD, TG, and DTA and tested in gas phase under atmospheric pressure. The effects of the reaction temperature, time on stream, and methanol weight hourly space velocity (MWHSV on the conversion and DMC selectivity were investigated. The highest conversion (7.6% and highest DMC selectivity (86.5% were obtained at the lowest temperature used (200 °C. Increasing the space velocity MWHSV increased the selectivity of DMC, but decreased the conversion. A gain of 18.4% of DMC selectivity was obtained when the MWHSV was increased from 0.65 h-1 to 3.2 h-1.

  12. Synthesis of fluoropolymers in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Fluoropolymers are used in many technologically demanding applications because of their balance of high-performance properties. A significant impediment to the synthesis of variants of commercially available amorphous fluoropolymers is their general insolubility in most solvents except chlorofluorocarbons (CFCs). The environmental concerns about CFCs can be circumvented by preparing these technologically important materials in supercritical fluids. The homogeneous solution polymerization of highly fluorinated acrylic monomers can be achieved in supercritical carbon dioxide by using free radical methods. In addition, detailed decomposition rates and efficiency factors were measured for azobisisobutyronitrile in supercritical carbon dioxide and were compared to those obtained with conventional liquid solvents

  13. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo

    2010-03-15

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  14. Global deforestation: contribution to atmospheric carbon dioxide.

    Science.gov (United States)

    Woodwell, G M; Hobbie, J E; Houghton, R A; Melillo, J M; Moore, B; Peterson, B J; Shaver, G R

    1983-12-01

    A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1860 and 1980 was between 135 x 10(15) and 228 x 10(15) grams. Between 1.8 x 10(15) and 4.7 x 10(15) grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the release from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 x 10(15) grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed. PMID:17747369

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  17. Methane and Carbon Dioxide Emissions from Different Composting Periods

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Chang

    2009-01-01

    Full Text Available To investigate green house gas emissions from compost preparations, methane and carbon dioxide concentrations and emission rates at different accumulative times and composting periods were determined. While the accumulative time was less than 10 min with a closed acrylic chamber, meth ane and carbon dioxide emissions in creased slightly but with high fluntuation in the sampling e ror, and these values decreased significantly when the accumulative time was more than 20 min. During the 8 weeks of composting, the methane emission rate reaches its peak near the end of the second week and the carbon dioxide emission rate does the same near the end of third week. Meth ane and carbon dioxide emissions had high val ues at the first stage of com post ing and then de creased grad u ally for the ma tu rity of com post. Carbon dioxide emission (y was significantly related to temperature (x1, moisture content (x2, and total or ganiccarbon (x3; and there gression equation is: y = 3.11907x1 + 6.19236x2 - 6.63081x3 - 50.62498. The re gres sion equa tion be tween meth ane emis sion (y? and mois ture con tent (x2, pH (x4, C/N ra tio (x5, and ash con tent (x6 is: y?= 0.13225x2 - 0.97046x4 - 1.10599x5 - 0.55220x6 + 50.77057 in the ini tial com post ing stage (weeks 1 to 3; while, the equa tion is: y?= 0.02824x2 - 0.0037x4 - 0.1499x5 - 0.07013x6 + 4.13589 in the later compost ing stage (weeks 4 to 8. Dif ferent stage composts have significant variation of properties and greenhouse gas emissions. Moreover, the emissions may be reduced by manipulating the proper factors.

  18. Snowpack-atmosphere gas exchanges of carbon dioxide, ozone, and nitrogen oxides at a hardwood forest site in northern Michigan

    Directory of Open Access Journals (Sweden)

    Brian Seok

    2015-03-01

    Full Text Available Abstract Snowpack-atmosphere gas exchanges of CO2, O3, and NOx (NO + NO2 were investigated at the University of Michigan Biological Station (UMBS, a mid-latitude, low elevation hardwood forest site, during the 2007–2008 winter season. An automated trace gas sampling system was used to determine trace gas concentrations in the snowpack at multiple depths continuously throughout the snow-covered period from two adjacent plots. One natural plot and one with the soil covered by a Tedlar sheet were setup for investigating whether the primary source of measured trace gases was biogenic (i.e., from the soil or non-biogenic (i.e., from the snowpack. The results were compared with the “White on Green” study conducted at the Niwot Ridge (NWT Long Term Ecological Research site in Colorado. The average winter CO2 flux ± s.e. from the soil at UMBS was 0.54 ± 0.037 µmol m-2 s-1 using the gradient diffusion method and 0.71 ± 0.012 µmol m-2 s-1 using the eddy covariance method, and in a similar range as found for NWT. Observed snowpack-O3 exchange was also similar to NWT. However, nitrogen oxides (NOx fluxes from snow at UMBS were 10 times smaller than those at NWT, and fluxes were bi-directional with the direction of the flux dependent on NOx concentrations in ambient air. The compensation point for the change in the direction of NOx flux was estimated to be 0.92 nmol mol-1. NOx in snow also showed diurnal dependency on incident radiation. These NOx dynamics in the snow at UMBS were notably different compared to NWT, and primarily determined by snow-atmosphere interactions rather than by soil NOx emissions.

  19. Enhancement of enterotoxin production by carbon dioxide in Vibrio cholerae.

    OpenAIRE

    Shimamura, T; Watanabe, S; Sasaki, S.

    1985-01-01

    We found that Vibrio cholerae 569B produced much more cholera enterotoxin in the presence of added carbon dioxide than in its absence. An atmosphere of 10% carbon dioxide was optimal for maximal enterotoxin production.

  20. Bioprocesses for removal of carbon dioxide and nitrogen oxide by microalgae for the utilization of gas generated during coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira [Fundacao Universidade Federal do Rio Grande, Rio Grande (Brazil)

    2008-07-01

    The aim of this work was to study the removal of CO{sub 2} and NO by microalgae and to evaluate the kinetic characteristics of the cultures. Spirulina sp. showed {mu}{sub max} and X{sub max} (0.11 d{sup -1}, 1.11 g L{sup -1} d{sup -1}) when treated with CO{sub 2} and NaNO{sub 3}. The maximum CO{sub 2} removal was 22.97% for S. obliquus treated with KNO{sub 3} and atmospheric CO{sub 2}. The S. obliquus showed maximum NO removal (21.30%) when treated with NO and CO{sub 2}. Coupling the cultivation of these microalgae with the removal of CO{sub 2} and NO has the potential not only to reduce the costs of culture media but also to offset carbon and nitrogen emissions. 19 refs., 3 figs., 2 tabs.

  1. Magnesian calcite sorbent for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Mabry, J.C.; Mondal, K. [Southern Illinois University, Carbondale, IL (United States)

    2011-07-01

    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO{sub 2} capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO{sub 3}:MgCO{sub 3}) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 {sup o}C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  2. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices.

    Science.gov (United States)

    Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan

    2009-01-01

    In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO(2) and C(2)H(4) using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.

  3. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices

    Directory of Open Access Journals (Sweden)

    Jenshan Lin

    2009-06-01

    Full Text Available In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs. ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.

  4. Elevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and no-tillage systems.

    Science.gov (United States)

    Prior, S A; Runion, G B; Rogers, H H; Arriaga, F J

    2010-01-01

    Increasing atmospheric CO(2) concentration has led to concerns about potential effects on production agriculture. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional tillage and no-tillage) to elevated CO(2). The study used a split-plot design replicated three times with two management systems as main plots and two atmospheric CO(2) levels (ambient and twice ambient) as split plots using open-top chambers on a Decatur silt loam soil (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum [Sorghum bicolor (L.) Moench.] and soybean [Glycine max (L.) Merr.] rotation with winter fallow and spring tillage practices. In the no-tillage system, sorghum and soybean were rotated, and three cover crops were used [crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)]. Over multiple growing seasons, the effect of management and CO(2) concentration on leaf-level gas exchange during row crop (soybean in 1999, 2001, and 2003; sorghum in 2000, 2002, and 2004) reproductive growth were evaluated. Treatment effects were fairly consistent across years. In general, higher photosynthetic rates were observed under CO(2) enrichment (more so with soybean) regardless of residue management practice. Elevated CO(2) led to decreases in stomatal conductance and transpiration, which resulted in increased water use efficiency. The effects of management system on gas exchange measurements were infrequently significant, as were interactions of CO(2) and management. These results suggest that better soil moisture conservation and high rates of photosynthesis can occur in both tillage systems in CO(2)-enriched environments during reproductive growth.

  5. Assessment and Design of Illumination in the Unit of Carbon Dioxide Gas of Khuzestan Zam Zam Company

    Directory of Open Access Journals (Sweden)

    Rangkooy

    2015-04-01

    Full Text Available Background Light is the first that necessary for any effort. This factor, more than any physical variable, affects human labor. Two properties of cognitive and psychological lighting in the workplace can affect human performance. Objectives This study aimed to assess the illuminance in CO2 Gas unit of Khuzestan Zam Zam Company, and resolve its light deficiency through artificial lighting design. Materials and Methods This study is a descriptive-analytical based on survey of natural and artificial lighting sources in the workplace. It also included measurement of lighting levels in 3 shifts, calculating the average illuminance and comparing with recommended values, drawing graphs of results measured illuminance and finally designing the lighting of the unit by lumen method with room index (Kr. The study was conducted between March and June 2006 and its data were analyzed with 1-way analysis of variance (ANOVA. Results Mean ± SD level of illuminance in the morning, evening, and night was 211.31 ± 292.07, 182.16 ± 205.16, 67.47 ± 71.10 (lx, respectively. The results showed that there is a significant difference (P < 0.001 between average illuminance of 3 shifts of morning (day light, evening, and night (artificial light and the standard illuminance value (300 lx, which entails the lighting design’s work area for this unit. According to the design of artificial lighting base on the lumen method calculations in CO2 Gas unit, 400, 250 watt Metal Halides and 10585 watt compact fluorescent lamps were required, which their numbers were 610 and 44, respectively. Conclusions This paper considered the method based on comprehensive surveys of workplace illuminance levels (natural light and artificial light and design of lighting system as one of workplace physical factors in order to increase the efficiency of the production unit, decrease in carelessness, fatigue errors, and work accident.

  6. Carbon dioxide based nephroscopy: a trick for laparoscopic pyelolithotomy.

    Science.gov (United States)

    Mason, Barry Michael; Hoenig, David

    2008-12-01

    For certain selected cases, laparoscopic pyelolithotomy is a practical and effective method to manage renal stone disease. One such case is that of an ectopically located pelvic kidney with a large stone burden. Here, we describe our technique and provide what we feel is a trick to performing a key part of this procedure--flexible nephroscopy while using carbon dioxide gas to "inflate" the collecting system. PMID:19099514

  7. The travel-related carbon dioxide emissions of atmospheric researchers

    OpenAIRE

    A. Stohl

    2008-01-01

    Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emis...

  8. Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Ying Min YU; Jin Hua FEI; Yi Ping ZHANG; Xiao Ming ZHENG

    2006-01-01

    Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionalized supports, solvents and ligands, could influence their activities and reuse performances greatly. These immobilized catalysts also offer the industrial advantages such as easy separation.

  9. Conductive polymers for carbon dioxide sensing

    NARCIS (Netherlands)

    Doan, T.C.D.

    2012-01-01

    Augmented levels of carbon dioxide (CO2) in greenhouses stimulate plant growth through photosynthesis. Wireless sensor networks monitoring CO2 levels in greenhouses covering large areas require preferably low power sensors to minimize energy consumption. Therefore, the main obj

  10. Tourism Transport, Technology, and Carbon Dioxide Emissions

    NARCIS (Netherlands)

    Peeters, P.M.

    2010-01-01

    Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left unchecked

  11. Carbon dioxide foaming of glassy polymers

    NARCIS (Netherlands)

    Wessling, M.; Borneman, Z.; Boomgaard, van den Th.; Smolders, C.A.

    1994-01-01

    The mechanism of foaming a glassy polymer using sorbed carbon dioxide is studied in detail. A glassy polymer supersaturated with nitrogen forms a microcellular foam, if the polymer is quickly heated above its glass transition temperature. A glassy polymer supersaturated with CO2 forms this foam-like

  12. Diiodination of Alkynes in supercritical Carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香; 尹笃林; 江焕峰

    2003-01-01

    A general,green and efficient method for the synthesis of transdiiodoalkenes in CO2(sc) has been developed.Trans-diiodoalkenes were obtained stereospecifically in quantitative yields via diiodination of both electron-rich and electron-deficient alkynes in the presence of KI,Ce(SO4)2 and water in supercritical carbon dioxide [CO2(sc)]at 40℃.

  13. Carbon dioxide in European coastal waters

    NARCIS (Netherlands)

    Borges, A.V.; Schiettecatte, L.-S.; Abril, G.; Delille, B.; Gazeau, F.P.H.

    2006-01-01

    We compiled from literature annually integrated air–water fluxes of carbon dioxide (CO2) computed from field measurements, in 20 coastal European environments that were gathered into 3 main ecosystems: inner estuaries, upwelling continental shelves and non-upwelling continental shelves. The comparis

  14. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  15. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  16. Some Organic Reactions in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    JIANG Huan-feng; YANG Xiao-yue; LI Guo-ping; ZOU Gang

    2004-01-01

    Organic reactions in supercritical carbon dioxide (scCO2) have facilitated great progress in recent years 1. ScCO2, as an environmentally friendly reaction medium, may be a substitute for volatile and toxic organic solvents and show some special advantages. Firstly, CO2 is inexpensive,nonflammable, nontoxic and chemical inert under many conditions. Secondly, scCO2 possesses hybrid properties of both liquid and gas, to the advantage of some reactions involving gaseous reagents. Control of the solvent density by variation of the temperature and pressure enables the solvent properties to be "tuned" to reactants. Finally, separating of CO2 from the reaction mixture is energy-efficient and simple. Here we disclose our new work on some organic reactions involving small molecules in scCO2.The results showed that the upper reactions in scCO2 could be carried out smoothly and thepressure of CO2 had a remarkable effect on the conversion and selectivity.

  17. Carbon dioxide: A new material for energy storage

    Directory of Open Access Journals (Sweden)

    Jacques Amouroux

    2014-08-01

    Full Text Available Though carbon dioxide is the main green house gas due to burning of fossil resource or miscellaneous chemical processes, we propose here that carbon dioxide be a new material for energy storage. Since it can be the key to find the solution for three critical issues facing the world: food ecosystems, the greenhouse issue and energy storage. We propose to identify the carbon recovery through a circular industrial revolution in the first part, and in the second part we present the starting way of three business plants to do that from industrial examples. By pointing out all the economic constraints and the hidden competitions between energy, water and food, we try to qualify the phrase “sustainable development” and open the way of a huge circular economy.

  18. 气体膜分离混合气中二氧化碳的研究进展%Progress of separation of carbon dioxide from gas mixture by gas separation membrane

    Institute of Scientific and Technical Information of China (English)

    孙翀; 李洁; 孙丽艳; 许瑞娜; 郑祥; 雷洋; 杨烨

    2011-01-01

    As the carbon capture program, gas membrane separation technology is considered to be the most development potential method of the decarburization by the international community. The status of hollow fiber membrane contactors, membrane structures, systems technology and absorbent research is reviewed. Alkanolamines relatively to water and carbonates, which hold high carbon dioxide absorption rate, lower heat of reaction, reaction speed and ease of recycling, etc. ,are most widely used in the research and industrial process.%气体膜分离技术作为碳捕获方案被国际社会认为是最有发展潜力的脱碳方法之一.综述介绍了中空纤维膜接触器、膜结构、系统工艺和吸收剂的研究现状.相对于水和碳酸盐类,醇胺具有的二氧化碳吸收率高、反应热低、反应速度快以及容易再生等优点,在研究与工业过程中是应用最广泛的吸收剂之一.

  19. Basic research on the carbon dioxide fixation using seaweed. Kaisorui no tansan gas kotei ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M.; Ishihara, T. (The Kansai Electric Power Co. Inc., Osaka (Japan))

    1993-08-25

    Study was made for grasping the basic data of CO2 fixation technology by seaweed. The photosynthesis under the sea, which is different from that on the land, is judged to be made by taking in HCO3[sup -] and converting it into CO2 inside the plant. Porphyra yezoensis which is seaweed is cultivated as comestible. With a rise in CO2 content, the growth in length of leaves was observed to be accelerated through ventilating Porphyra yezoensis with the three test types of air which respectively contained 350ppm (atmospheric CO2 content), 1000ppm and 1600ppm CO2. As a result of measuring the photosynthesis speed by the generated quantity of O2, it was heightened with a rise in dissolved inorganic carbonic acid content of the sea water. Measurement was also made of daily fluctuation in calcification speed by Corallina officinalis capable of calcification by ventilating it with 350ppm and 1600ppm CO2. In case of 1600ppm, the sedimentation of CaCO3 was prevented. In case of 350ppm, the sedimentation was quantitatively larger during the bright period than that during the dark period. The growth of Gracilaria gigas which is an agar material was compared by changing the above CO2 levels. In case of 1600ppm, the weight grew to 2.3 times in 20 days. 16 figs., 2 tabs.

  20. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  1. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  2. 46 CFR 169.565 - Fixed carbon dioxide system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  3. 21 CFR 868.5310 - Carbon dioxide absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  4. Seismically Initiated Carbon Dioxide Gas Bubble Growth in Groundwater: A Mechanism for Co-seismic Borehole Water Level Rise and Remotely Triggered Secondary Seismicity

    Science.gov (United States)

    Crews, Jackson B.

    Visualization experiments, core-scale laboratory experiments, and numerical simulations were conducted to examine the transient effect of dilational seismic wave propagation on pore fluid pressure in aquifers hosting groundwater that is near saturation with respect to dissolved carbon dioxide (CO2) gas. Groundwater can become charged with dissolved CO2 through contact with gas-phase CO2 in the Earth's crust derived from magma degasing, metamorphism, and biogenic processes. The propagation of dilational seismic waves (e.g., Rayleigh and p-waves) causes oscillation of the mean normal confining stress and pore fluid pressure. When the amplitude of the pore fluid pressure oscillation is large enough to drive the pore fluid pressure below the bubble pressure, an aqueous-to-gas-phase transition can occur in the pore space, which causes a buildup of pore fluid pressure and reduces the inter-granular effective stress under confined conditions. In visualization experiments conducted in a Hele-Shaw cell representing a smooth-walled, vertically oriented fracture, millisecond-scale pressure perturbations triggered bubble nucleation and growth lasting tens of seconds, with resulting pore fluid overpressure proportional to the magnitude of the pressure perturbation. In a Berea sandstone core flooded with initially under-saturated aqueous CO2 under conditions representative of a confined aquifer, rapid reductions in confining stress triggered transient pore pressure rise up to 0.7 MPa (100 psi) overpressure on a timescale of ~10 hours. The rate of pore pressure buildup in the first 100 seconds was proportional to the saturation with respect to dissolved CO 2 at the pore pressure minimum. Sinusoidal confining stress oscillations on a Berea sandstone core produced excess pore fluid pressure after the oscillations were terminated. Confining stress oscillations in the 0.1-0.4 MPa (15-60 psi) amplitude range and 0.05-0.30 Hz frequency band increased the pore fluid pressure by 13-60 cm

  5. Coupling dehydrogenation of isobutane in the presence of carbon dioxide over chromium oxide supported on active carbon

    Institute of Scientific and Technical Information of China (English)

    Jian Fei Ding; Zhang Feng Qin; Xue Kuan Li; Guo Fu Wang; Jian Guo Wang

    2008-01-01

    The dehydrogenation of isobutane (IB) to produce isobutene coupled with reverse water gas shift in the presence of carbon dioxide was investigated over the catalyst Cr2O3 supported on active carbon (Cr2O3/AC). The results illustrated that isobutane c onversion and isobutene yield can be enhanced through the reaction coupling in the presence of carbon dioxide. Moreover, carbon dioxide can partially eliminate carbonaceous deposition on the catalyst and keep the active phase (Cr2O3), which are then helpful to alleviate the catalyst deactivation.

  6. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  7. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, Sander; Clauson-Kaas, Anne Sofie Kjærulff; Bobuľská, L.;

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application......-sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over......-estimated. In addition to the CO2 released from carbonates, there appears to be a labile fraction of biochar that is oxidized quickly during the first days of incubation, probably by both abiotic and biotic processes. Later in the incubation, biotic mineralization appears to be the primary cause of CO2 evolution...

  8. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  9. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

    DEFF Research Database (Denmark)

    Bjerregård, Asger; Jansen, Erik

    2012-01-01

    Measurement of the arterial carbon dioxide (P(a)CO(2)) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P(ET)CO(2)) and transcutaneous carbon dioxide (PTCCO2......). Carbon dioxide in the blood and cerebral tissue has great influence on vasoactivity and thereby blood volume of the brain. We have found no studies on the correlation between P(ET)CO(2) or P(TC)CO(2), and P(a)CO(2) during hyperbaric oxygen therapy (HBOT)....

  10. Materials for carbon dioxide separation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingqing

    2014-10-01

    The CO{sub 2} adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO{sub 2} adsorption ability. Another promising class of materials for CO{sub 2} capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO{sub 3} and the relationship between physisorption and chemisorption properties of CaO-based materials.

  11. Carbon dioxide research conference: carbon dioxide, science and consensus

    International Nuclear Information System (INIS)

    The DOE program focuses on three areas each of which requires more research before the many CO2-related questions can be answered. These areas include the global carbon cycle, climate effects, and vegetation effects. Additional information is needed to understand the sources and sinks of CO2. Research efforts include an attempt to estimate regional and global changes in temperature and precipitation. Increased atmospheric CO2 may be a potential benefit to vegetation and crops because it is an essential element required for plant growth. Eight separate papers are included

  12. A review of chemical absorption of carbon dioxide for biogas upgrading

    Institute of Scientific and Technical Information of China (English)

    Fouad RH Abdeen; Maizirwan Mel; Mohammed Saedi Jami; Sany Izan Ihsan; Ahmad Faris Ismail

    2016-01-01

    Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide, and trace amounts of other gases. Biogas purification removes trace gases in biogas for safe utilisation. Biogas upgrading produces methane-rich biogas by removing bulk carbon dioxide from the gas mixture. Several carbon dioxide removal techniques can be applied for biogas upgrading. However, chemical absorption of carbon dioxide for biogas upgrading is of special significance due to its operation at ambient or near ambient temperature and pressure, thus reducing energy consumption. This paper reviews the chemical absorption of carbon dioxide using amine scrubbing, caustic solvent scrubbing, and amino acid salt solution scrubbing. Each of these tech-niques for biogas upgrading is discussed. The paper concludes that an optimised implementation of the chemical absorption techniques for biogas upgrading requires further research.

  13. Carbon dioxide flux measurements from a coastal Douglas-fir forest floor

    International Nuclear Information System (INIS)

    This thesis examined the process that affects the exchange of carbon between the soil and the atmosphere with particular attention to the large amounts of carbon stored in soils in the form of decaying organic matter. This forest floor measuring study was conducted in 2000 at a micro-meteorological tower flux site in a coastal temperature Douglas-fir forest. The measuring study involved half hourly measurements of both carbon dioxide and below-ground carbon dioxide storage. Measurements were taken at 6 locations between April and December to include a large portion of the growing season. Eddy covariance (EC) measurements of carbon dioxide flux above the forest floor over a two month period in the summer and the autumn were compared with forest floor measurements. Below-ground carbon dioxide mixing ratios of soil air were measured at 6 depths between 0.02 to 1 m using gas diffusion probes and a syringe sampling method. Maximum carbon dioxide fluxes measured by the soil chambers varied by a factor of 3 and a high spatial variability in soil carbon dioxide flux was noted. Forest floor carbon dioxide fluxes measured by each of the chambers indicated different sensitivities to soil temperature. Hysteresis in the flux temperature relationship over the year was evident. Reliable below-canopy EC measurements of the forest floor carbon dioxide flux were difficult to obtain because of the every low wind speeds below the forest canopy. The amount of carbon dioxde present in the soil increased rapidly with depth near the surface but less rapidly deeper in the soil. It was suggested that approximately half of the carbon dioxide produced below-ground comes from between the soil surface and the first 0.15 m of depth. Carbon dioxide fluxes from the floor of a Douglas-fir forest were found to be large compared to other, less productive ecosystems

  14. Recycling technology of emitted carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hironori [National Inst. of Materials and Chemical Research (NIMC), Ibaraki (Japan)

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  15. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-04-01

    Full Text Available The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v carbon dioxide concentration, but began started a constant at 30% and 40% (%v carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.

  16. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v carbon dioxide concentration, but began started a constant at 30% and 40% (%v carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.

  17. Water in supercritical carbon dioxide dyeing

    Directory of Open Access Journals (Sweden)

    Zheng Lai-Jiu

    2015-01-01

    Full Text Available This paper investigates the effect of water serving as entrainer on the dyeing of wool fabrics in supercritical carbon dioxide. Compared with previous supercritical dyeing methods, addition of water makes the dyeing process more effective under low temperature and low pressure. During dyeing process, dyestuff can be uniformly distributed on fabrics’s surface due to water interaction, as a result coloration is enhanced while color difference is decreased.

  18. Dye solubility in supercritical carbon dioxide fluid

    Directory of Open Access Journals (Sweden)

    Yan Jun

    2015-01-01

    Full Text Available Supercritical carbon dioxide fluid is an alternative solvent for the water of the traditional dyeing. The solubility of dyestuff affects greatly the dyeing process. A theoretical model for predicting the dye solubility is proposed and verified experimentally. The paper concludes that the pressure has a greater impact on the dyestuff solubility than temperature, and an optimal dyeing condition is suggested for the highest distribution coefficient of dyestuff.

  19. Plasma beam discharge in carbon dioxide

    International Nuclear Information System (INIS)

    The paper deals with the dissociation of carbon dioxide in nonequilibrium plasma of a stationary plasma-beam discharge. Experimental results of spectroscopic and probe measurements of plasma parameters are given. Moreover, a mass-spectrometric analysis of gaseous products of the chemical reactions is presented. In addition the measurement of the deposition rate of solid products by means of a quartz oscillator is described. The results show that plasma beam discharge is an effective tool for inducing plasma-chemical reactions. (author)

  20. Numerical Simulation on Hazard Zone Determination During the Dispersion of Natural Gas Containing Carbon Dioxide%含二氧化碳天然气云团扩散危险区域确定的数值模拟

    Institute of Scientific and Technical Information of China (English)

    马世海; 黄平; 杨智超; 蔡晓军

    2011-01-01

    The explosion characteristics and hazards caused by dispersion of the natural gas containing carbon dioxide are concerned about. In order to confirm the hazard zone determination during the dispersion of natural gas containing carbon dioxide, explosion characteristics and the accuracy evaluation for the numerical model, mechanism of the puff dispersion and dispersion issues caused by blowout were investigated by numerical simulation methods. A dispersion model of natural gas containing carbon dioxide was set up, and the dispersion evolvement was researched in detail, furthermore, the hazard zone concluding asphyxiation and explosion or flammability is defined. The numerical simulation results show that the flammability zone caused by the puff dispersion of the natural gas containing carbon dioxide takes on an irregular cirque distribution. Along-wind variation of flammability-zone dimension is larger than that for crosswind. For both cases of along-wind and crosswind, the distribution of variations of flammability zone with time presents the shape of parabola whose peak point is up. Besides, it does not matter to judge explosive zone based on time or on space, the affected area for flammability zone is way smaller than that for the asphyxia zone.%为确定含二氧化碳天然气云团扩散的危险区域范围,借助数值模拟方法建立了含二氧化碳天然气云团扩散模型.详细研究了含二氧化碳天然气云团扩散过程,确定了包括窒息和燃爆在内的2种危险区域.研究结果表明,含二氧化碳天然气云团扩散中燃爆区域呈不规则圆环状分布,燃爆区域的横风向尺度变化不大,而平行于风向的方向变化较大.无论横风向还是顺风向,燃爆区域尺度随时间的变化都呈开口朝下的抛物线形分布.高含二氧化碳天然气云团扩散后形成的燃爆区域无论从时间还是空间尺度看,波及的范围都远小于窒息性危险区域.

  1. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  2. Effect of carbon dioxide on the rate of iodine vapor absorption by aqueous solution of sodium hydroxide

    International Nuclear Information System (INIS)

    There is always carbon dioxide in the atmosphere as an impurity. Since this is an acid gas similar to iodine, each absorption rate seems to be affected by the other due to the coexistence of these two. Experiments have been conducted to clarify the absorption rate and absorption mechanism of iodine in the simultaneous absorption of iodine and carbon dioxide. Carbon dioxide coexisting with gas phases as an impurity decreases the absorption rate of iodine in the removal by washing with water of iodine mixed in the air. The first cause of this is that the diffusion coefficient of iodine in gas phase decreases with the carbon dioxide content in the gas phase. The second cause is that coexistent carbon dioxide is an acid gas, dissociates by dissolving into the absorbing solution, increases hydrogen ion concentration together with the formation of negative ions of bicarbonate and carbonate, and reduces hydroxyl ion concentration as a result. It is more important that existence of iodine has a catalytic effect to the rate of basic catalytic hydrolysis of carbon dioxide simultaneously dissolved in water phase, and accelerates this reaction rate. The mechanism of catalytic effect of iodine for the hydrolysis of carbon dioxide can not be clarified in detail only by this experiment, but the simultaneous absorption rate of iodine and carbon dioxide can be explained satisfactorily. (Wakatsuki, Y

  3. Modeling Carbon Dioxide, pH and Un-Ionized Ammonia Relationships in Serial Reuse Systems

    Science.gov (United States)

    Watten, Barnaby J.; Rust, Michael; Colt, John

    2009-01-01

    In serial reuse systems, excretion of metabolic carbon dioxide has a significant impact on ambient pH, carbon dioxide, and un-ionized ammonia concentrations. This impact depends strongly on alkalinity, water flow rate, feeding rate, and loss of carbon dioxide to the atmosphere. A reduction in pH from metabolic carbon dioxide can significantly reduce the un-ionized ammonia concentration and increase the carbon dioxide concentrations compared to those parameters computed from influent pH. The ability to accurately predict pH in serial reuse systems is critical to their design and effective operation. A trial and error solution to the alkalinity–pH system was used to estimate important water quality parameters in serial reuse systems. Transfer of oxygen and carbon dioxide across the air–water interface, at overflow weirs, and impacts of substrate-attached algae and suspended bacteria were modeled. Gas transfer at the weirs was much greater than transfer across the air–water boundary. This simulation model can rapidly estimate influent and effluent concentrations of dissolved oxygen, carbon dioxide, and un-ionized ammonia as a function of water temperature, elevation, water flow, and weir type. The accuracy of the estimates strongly depends on assumed pollutional loading rates and gas transfer at the weirs. The current simulation model is based on mean daily loading rates; the impacts of daily variation loading rates are discussed. Copies of the source code and executable program are available free of charge.

  4. Will peak oil accelerate carbon dioxide emissions?

    Science.gov (United States)

    Caldeira, K.; Davis, S. J.; Cao, L.

    2008-12-01

    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  5. Alveolar partial pressures of carbon dioxide and oxygen measured by a helium washout technique.

    OpenAIRE

    Jordanoglou, J.; Tatsis, G; Danos, J; Gougoulakis, S; Orfanidou, D; Gaga, M

    1990-01-01

    A non-invasive technique was developed for measuring alveolar carbon dioxide and oxygen tension during tidal breathing. This was achieved by solving the Bohr equations for mean alveolar carbon dioxide and oxygen tensions (PACO2, PAO2) from known values of the dead-space:tidal volume ratio measured by helium washout, and from the mixed expired partial pressure of carbon dioxide and oxygen. The derived values of wPACO2 and wPAO2 were compared with PaCO2 obtained from arterial gas analysis and P...

  6. Enzymatic conversion of carbon dioxide.

    Science.gov (United States)

    Shi, Jiafu; Jiang, Yanjun; Jiang, Zhongyi; Wang, Xueyan; Wang, Xiaoli; Zhang, Shaohua; Han, Pingping; Yang, Chen

    2015-10-01

    With the continuous increase in fossil fuels consumption and the rapid growth of atmospheric CO2 concentration, the harmonious state between human and nature faces severe challenges. Exploring green and sustainable energy resources and devising efficient methods for CO2 capture, sequestration and utilization are urgently required. Converting CO2 into fuels/chemicals/materials as an indispensable element for CO2 capture, sequestration and utilization may offer a win-win strategy to both decrease the CO2 concentration and achieve the efficient exploitation of carbon resources. Among the current major methods (including chemical, photochemical, electrochemical and enzymatic methods), the enzymatic method, which is inspired by the CO2 metabolic process in cells, offers a green and potent alternative for efficient CO2 conversion due to its superior stereo-specificity and region/chemo-selectivity. Thus, in this tutorial review, we firstly provide a brief background about enzymatic conversion for CO2 capture, sequestration and utilization. Next, we depict six major routes of the CO2 metabolic process in cells, which are taken as the inspiration source for the construction of enzymatic systems in vitro. Next, we focus on the state-of-the-art routes for the catalytic conversion of CO2 by a single enzyme system and by a multienzyme system. Some emerging approaches and materials utilized for constructing single-enzyme/multienzyme systems to enhance the catalytic activity/stability will be highlighted. Finally, a summary about the current advances and the future perspectives of the enzymatic conversion of CO2 will be presented. PMID:26055659

  7. Progress of carbon dioxide removal from the recycle gas of F-T synthesis%反应循环气中二氧化碳脱除技术的进展

    Institute of Scientific and Technical Information of China (English)

    王祥云

    2011-01-01

    In this paper, the recent developments and applications of technologies of carbon dioxide removal from the recycle stream of F-T synthesis are reviewed. Because of complicate composition of reaction gas, the process of carbon dioxide removal requires less-loss of useful gas, no side-reaction between solution and gases, and lower heat consumption. The new technologies of carbon dioxide removal from the recycle stream of F-T synthesis developed and applied by Research Institute of Nanjing Chemical Industry Group has the advantages of low hydrocarbon loss, stable solution, low heat consumption for solution desorption. The heat consumption for solution desorption is reduced by 30% than the conventional technology.%介绍了反应循环气脱碳技术研究开发进展及各种最新应用.由于反应后的气体组成复杂,选择脱碳技术也有特殊要求,不仅要求有用气体损耗少、同时溶液不会因与气体成分接触发生降解,而且溶液再生热耗应尽可能降低.南化集团研究院研究开发的循环气脱碳技术的应用结果表明,其具有"有机组分损失低"、"溶液稳定性好"的优点,溶液再生热耗比常规的碳酸钾脱碳工艺降低30%以上.

  8. Elevated pressure of carbon dioxide affects growth of thermophilic Petrotoga sp.

    Science.gov (United States)

    Rakoczy, Jana; Gniese, Claudia; Schippers, Axel; Schlömann, Michael; Krüger, Martin

    2014-05-01

    Carbon capture and storage (CCS) is considered a promising new technology which reduces carbon dioxide emissions into the atmosphere and thereby decelerates global warming. During CCS, carbon dioxide is captured from emission sources (e.g. fossil fuel power plants or other industries), pressurised, and finally stored in deep geological formations, such as former gas or oil reservoirs as well as saline aquifers. However, with CCS being a very young technology, there are a number of unknown factors that need to be investigated before declaring CCS as being safe. Our research investigates the effect of high carbon dioxide concentrations and pressures on an indigenous microorganism that colonises a potential storage site. Growth experiments were conducted using the thermophilic thiosulphate-reducing bacterium Petrotoga sp., isolated from formation water of the gas reservoir Schneeren (Lower Saxony, Germany), situated in the Northern German Plain. Growth (OD600) was monitored over one growth cycle (10 days) at different carbon dioxide concentrations (50%, 100%, and 150% in the gas phase), and was compared to control cultures grown with 20% carbon dioxide. An additional growth experiment was performed over a period of 145 days with repeated subcultivation steps in order to detect long-term effects of carbon dioxide. Cultivation over 10 days at 50% and 100% carbon dioxide slightly reduced cell growth. In contrast, long-term cultivation at 150% carbon dioxide reduced cell growth and finally led to cell death. This suggested a more pronounced effect of carbon dioxide at prolonged cultivation and stresses the need for a closer consideration of long-term effects. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a sterilising effect on cells. This effect was not observed in control cultures

  9. Electrochemical Cell for Obtaining Oxygen from Carbon Dioxide Atmospheres

    Science.gov (United States)

    Hooker, Matthew; Rast, H. Edward; Rogers, Darren K.; Borja, Luis; Clark, Kevin; Fleming, Kimberly; Mcgurren, Michael; Oldaker, Tom; Sweet, Nanette

    1989-01-01

    To support human life on the Martian surface, an electrochemical device will be required to obtain oxygen from the carbon dioxide rich atmosphere. The electrolyte employed in such a device must be constructed from extremely thin, dense membranes to efficiently acquire the oxygen necessary to support life. A forming process used industrially in the production of multilayer capacitors and electronic substrates was adapted to form the thin membranes required. The process, known as the tape casting, involves the suspension consisting of solvents and binders. The suspension is passed under a blade, resulting in the production of ceramic membranes between 0.1 and 0.5 mm thick. Once fired, the stabilized zirconia membranes were assembled into the cell design by employing a zirconium phosphate solution as the sealing agent. The resulting ceramic-to-ceramic seals were found to be structurally sound and gas-tight. Furthermore, by using a zirconia-based solution to assemble the cell, the problem of a thermal expansion mismatch was alleviated. By adopting an industrial forming process to produce thin membranes, an electrochemical cell for obtaining oxygen from carbon dioxide was produced. The proposed cell design is unique in that it does not require a complicated manifold system for separating the various gases present in this process, nor does it require a series of complex electrical connections. Thus, the device can reliably obtain the vital oxygen supply from the toxic carbon dioxide atmosphere.

  10. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    International Nuclear Information System (INIS)

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur

  11. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Science.gov (United States)

    2010-10-01

    ....102-1, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1...) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon...

  12. Carbon dioxide kinetics and capnography during critical care

    OpenAIRE

    Anderson, Cynthia T; Breen, Peter H

    2000-01-01

    Greater understanding of the pathophysiology of carbon dioxide kinetics during steady and nonsteady state should improve, we believe, clinical care during intensive care treatment. Capnography and the measurement of end-tidal partial pressure of carbon dioxide (PETCO2) will gradually be augmented by relatively new measurement methodology, including the volume of carbon dioxide exhaled per breath (VCO2,br) and average alveolar expired PCO2 (PA̅E̅CO2). Future directions include the study of oxy...

  13. Designed amyloid fibers as materials for selective carbon dioxide capture

    OpenAIRE

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2013-01-01

    New and improved materials capable of binding carbon dioxide are essential to addressing the global threat of accelerating climate change. The presently used industrial methods for carbon dioxide capture have severe drawbacks, including toxicity and energy inefficiency. Newer porous materials are so far less effective in water, invariably a component of combustion gases. Here, we present a material for carbon dioxide capture. This material, amyloid fibers in powdered form, selectively capture...

  14. Supercritical carbon dioxide: a solvent like no other

    Directory of Open Access Journals (Sweden)

    Jocelyn Peach

    2014-08-01

    Full Text Available Supercritical carbon dioxide (scCO2 could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs. Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity.

  15. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M;

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant...

  16. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  17. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  18. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    Zheng Jiao; Xiaojuan Wan; Bing Zhao; Huijiao Guo; Tiebing Liu; Minghong Wu

    2008-02-01

    In this paper, the effects of electron beam irradiation on the gas sensing performance of tin dioxide thin films toward H2 are studied. The tin dioxide thin films were prepared by ultrasonic spray pyrolysis. The results show that the sensitivity increased after electron beam irradiation. The electron beam irradiation effects on tin dioxide thin films were simulated and the mechanism was discussed.

  19. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M;

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  20. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  1. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann;

    2014-01-01

    ). In a winter wheat field in Denmark, soil CO2 concentrations were measured from 29 November 2011 to 14 June 2012 at upslope and footslope positions of a short catena (25 m). Carbon dioxide was measured at 20 and 40 cm soil depths (i.e., within and below the nominal plough layer) using the two measurement......; however, differences may occur in response to soil spatial variability. A better coverage of spatial variability is more easily addressed using manually operated systems whereas temporal variability can be covered using the automated system. Depending on the aim of the study, the two systems may be used...

  2. Carbon dioxide detection in adult Odonata.

    Science.gov (United States)

    Piersanti, Silvana; Frati, Francesca; Rebora, Manuela; Salerno, Gianandrea

    2016-04-01

    The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata. PMID:26831359

  3. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO2 transport options, the geological storage of the CO2 and Total commitments in the domain. (A.L.B.)

  4. Carbon dioxide capture and geological storage

    OpenAIRE

    2013-01-01

    Sustainable Carbon dioxide Capture and Storage, or CCS, can be achieved using geological means, an approach that differs in many ways from CO2 capture and storage in vegetation. Firstly, it differs because this latter approach enables CO2 to be stored only temporarily – for less than one year in annual plants or for several centuries in tree phytomass. Secondly, CO2 capture is associated with bioconversion of the sun’s energy which is then stored in biochemical form in the phytomass. As the t...

  5. The applicability of C-14 measurements in the soil gas for the assessment of leakage out of underground carbon dioxide reservoirs

    OpenAIRE

    Chałupnik Stanisław; Wysocka Małgorzata

    2014-01-01

    Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage). Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to...

  6. Killing wild geese with carbon dioxide or a mixture of carbon dioxide and argon

    NARCIS (Netherlands)

    Gerritzen, M.A.; Reimert, H.G.M.; Lourens, A.; Bracke, M.B.M.; Verhoeven, M.T.W.

    2013-01-01

    The killing of animals is the subject of societal and political debate. Wild geese are caught and killed on a regular basis for fauna conservation and damage control. Killing geese with carbon dioxide (CO2) is commonly practiced, but not listed in legislation on the protection of flora and fauna, an

  7. Unmanned Aircraft in the Measurement of Carbon Dioxide in Buoyant Plumes

    Science.gov (United States)

    Jacob, J.

    2015-12-01

    Carbon sequestration, the storage of carbon dioxide gas underground, has the potential to reduce global warming by removing a greenhouse gas from the atmosphere. These storage sites, however, must first be monitored to detect if carbon dioxide is leaking back out to the atmosphere. As an alternative to traditional large ground-based sensor networks to monitor CO2 levels for leaks, unmanned aircraft offer the potential to perform in-situ atmospheric leak detection over large areas for a fraction of the cost. This project developed a proof-of-concept sensor system to map relative carbon dioxide levels to detect potential leaks. Ground tests were performed to verify and calibrate the system including wind tunnel tests to determine the optimal configuration of the system to account for dynamic calibration models required to determine accurate location of gas concentration in (x,y,z,t). Field tests were then conducted over a controlled release of CO2 as well as over controlled rangeland fires which released carbon dioxide over a large area. 3D maps of carbon dioxide were developed from the system telemetry that clearly illustrated increased CO2 levels from the fires. Results are compared with dynamic atmospheric models of gas dispersion within plumes.

  8. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    Science.gov (United States)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  9. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.

    Science.gov (United States)

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-12-04

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  10. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    Kamalakanta Behera

    2015-12-01

    Full Text Available Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability, ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2 gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  11. Amine reclaiming technologies in post-combustion carbon dioxide capture.

    Science.gov (United States)

    Wang, Tielin; Hovland, Jon; Jens, Klaus J

    2015-01-01

    Amine scrubbing is the most developed technology for carbon dioxide (CO2) capture. Degradation of amine solvents due to the presence of high levels of oxygen and other impurities in flue gas causes increasing costs and deterioration in long term performance, and therefore purification of the solvents is needed to overcome these problems. This review presents the reclaiming of amine solvents used for post combustion CO2 capture (PCC). Thermal reclaiming, ion exchange, and electrodialysis, although principally developed for sour gas sweetening, have also been tested for CO2 capture from flue gas. The three technologies all have their strengths and weaknesses, and further development is needed to reduce energy usage and costs. An expected future trend for amine reclamation is to focus on process integration of the current reclaiming technologies into the PCC process in order to drive down costs.

  12. Amine reclaiming technologies in post-combustion carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    Tielin Wang; Jon Hovland; KlauS J.Jens

    2015-01-01

    Amine scrubbing is the most developed technology for carbon dioxide (CO2) capture.Degradation of amine solvents due to the presence of high levels of oxygen and other impurities in flue gas causes increasing costs and deterioration in long term performance,and therefore purification of the solvents is needed to overcome these problems.This review presents the reclaiming of amine solvents used for post combustion CO2 capture (PCC).Thermal reclaiming,ion exchange,and electrodialysis,although principally developed for sour gas sweetening,have also been tested for CO2 capture from flue gas.The three technologies all have their strengths and weaknesses,and further development is needed to reduce energy usage and costs.An expected future trend for amine reclamation is to focus on process integration of the current reclaiming technologies into the PCC process in order to drive down costs.

  13. Carbon dioxide capture and storage: a win-win option? (the economic case)

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, G. [Future Energy Solutions, Didcot (United Kingdom)

    2003-07-01

    The UK currently derived 90% of its primary energy and generates over 70% of its electricity from fossil fuels. Moreover, it has access to substantial carbon dioxide storage capacity. In particular there is potential for storage combined with Enhance Oil Recovery (EOR) in the oil fields of the central and northern North Sea areas, while the gas fields of the southern North Sea offer a large near shore resource for storage. In the longer term saline aquifers offer an even large storage capacity. Consequently carbon dioxide capture and storage needs to be assessed as an important potential option for greenhouse gas abatement for the UK. This scoping study has examined the implementation, operation, economics and barriers to undertaking carbon dioxide capture and storage in the UK. It has concentrated on carbon dioxide capture from fossil fuel power stations; large 'point sources' of the gas that would need to be tackled in order to deliver significant levels of greenhouse gas abatement. Options for gas capture considered are retrofitting equipment to existing coal and natural gas fired plant as well as the construction of new coal (IGCC) and gas (GTCC) technology. Economic assessments have been made with 'present day' costs, and do not consider future improvements through technical innovation and; learning by doing', the potential of which is considerable for the mature carbon capture technologies.

  14. GAS-LIQUID SOLUBILITIES OF CARBON-MONOXIDE, CARBON-DIOXIDE, HYDROGEN, WATER, 1-ALCOHOLS (1-LESS-THAN-OR-EQUAL-TO-N-LESS-THAN-OR-EQUAL-TO-6), AND N-PARAFFINS (2-LESS-THAN-OR-EQUAL-TO-N-LESS-THAN-OR-EQUAL-TO-6) IN HEXADECANE, OCTACOSANE, 1-HEXADECANOL, PHENANTHRENE, AND TETRAETHYLENE GLYCOL AT PRESSURES UP TO 5.5 MPA AND TEMPERATURES FROM 293 TO 553-K

    NARCIS (Netherlands)

    BREMAN, BB; BEENACKERS, AACM; RIETJENS, EWJ; STEGE, RJH

    1994-01-01

    The gas-liquid solubilities of the solutes carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents tetraethylene glycol, hexadecane, octacosane, 1-hexadecanol, and phenanthrene were measur

  15. Evaluation and selection of sensing materials for carbon dioxide (CO 2) sensor by molecular modeling

    NARCIS (Netherlands)

    Chen, X.P.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.Q.

    2011-01-01

    We report a molecular modeling study to evaluate and select conducting polymers (CPs) as the sensing materials of carbon dioxide (CO2) sensor. The interaction between polymer and gas and the adsorption of the gas molecules in the polymer matrix are investigated. Polymers considered for this work inc

  16. Evaluation and selection of sensing materials for carbon dioxide (CO2) sensor by molecular modeling

    NARCIS (Netherlands)

    Chen, X.P.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.Q.

    2011-01-01

    We report a molecular modeling study to evaluate and select conducting polymers (CPs) as the sensing materials of carbon dioxide (CO2) sensor. The interaction between polymer and gas and the adsorption of the gas molecules in the polymer matrix are investigated. Polymers considered for this work inc

  17. 甲烷气体对煤吸附二氧化碳气体的影响研究%Research on methane gas to coal adsorption of carbon dioxide gas influence

    Institute of Scientific and Technical Information of China (English)

    王雪峰; 邓存宝; 邓汉忠; 周健

    2013-01-01

      煤炭自燃是煤矿的主要灾害之一。不仅烧毁宝贵资源,还严重危害井下工作人员的安全与健康。CO2气体灭火可以应用于矿井的防灭火工作。煤矿井下的气体是多种气体的混合物,煤对很多种气体具有吸附特性。运用量子化学理论高斯03软件包对二氧化碳气体在煤表面吸附时,甲烷气体对其吸附能力的影响进行研究。结果表明,当煤表面分别吸附1个和2个CO2分子时,有1个CH4分子存在会促进煤表面吸附CO2分子。但当CO2分子的个数大于2个时,有1个CH4分子存在就会抑制煤表面吸附CO2分子。因此,CH4分子对煤表面吸附CO2分子是有影响的。甲烷气体的含量能够影响煤对二氧化碳气体的吸附。%  Coal spontaneous combustion is one of the main disasters in coal mine. Not only burned precious resources, but also it serious harm work personnel's safety and health. CO2 gas fire extinguishing can be applied to the mine fire prevention work. Mine gas is a mixture of gases. For a variety of gas coal is absorbing coal to a variety of gas has adsorption characteristics. Using quantum chemistry theory Gaussian 03 package, research of CH4 gas influenced adsorption ability in coal surface of CO2 gas. The results showed that, when the coal surface adsorption respectively 1 and 2 CO2 molecule, a CH4 molecular existence will promote coal surface adsorption CO2 molecule. But when CO2 molecular number greater than 2, 1 CH4 molecular existence will inhibit coal surface adsorption CO2 molecule. Therefore, CH4 molecule on coal surface adsorption CO2 molecule is an influence. Methane gas content can affect coal of carbon dioxide gas adsorption.

  18. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  19. Use of supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masayuki (Niigata Univ., Faculty of Engineering, Niigata, (Japan))

    1989-09-25

    Supercritical fluid extraction is a novel diffusion and separation technique which exploits simultaneously the increase of vapor pressure and the difference of chemical affinities of fluids near the critical point. A solvent which is used as the supercritical fluid has the following features: the critical point exists in the position of relatively ease of handling, the solvent is applicable to the extraction of a physiological active substance of thermal instability. Carbon dioxide as the solvent is non-flammable, non-corrosive, non-toxic, cheap, and readily available of high purity. The results of studies on the use of supercritical carbon dioxide (SC-CO{sub 2}) as a solvent for natural products in the fermentation and food industries, were collected. SC-CO{sub 2} extraction are used in many fields, examples for the application are as follows: removal of organic solvents from antibiotics; extraction of vegetable oils contained in wheat germ oil, high quality mustard seeds, rice bran and so on; brewing of sake using rice and rice-koji; use as a non-aqueous medium for the synthesis of precursors of the Aspartame; and use in sterilization. 66 refs., 17 figs., 21 tabs.

  20. Monitoring to ensure safe and effective geologic sequestration of carbon dioxide

    International Nuclear Information System (INIS)

    Reliable and cost-effective monitoring will be an important part of making geologic sequestration a safe, effective and acceptable method for greenhouse gas control. Monitoring is likely to be required as part of the permitting process for underground injection and will be used for a number of purposes, namely, tracking the location of the plume of injected carbon dioxide, ensuring that injection and abandoned wells are not leaking, and for verification of the quantity of carbon dioxide that has been injected underground. Additionally, depending on site-specific considerations, monitoring may also be required to ensure that natural resources such as groundwater and ecosystems are protected and that local populations are not exposed to unsafe concentrations of carbon dioxide. This paper reviews the methods that are available for monitoring carbon dioxide in surface and subsurface environments for onshore geologic storage sites. Methods for monitoring the subsurface environments include geophysical techniques such as the time-lapse 3-D seismic imaging that has been used successfully at Sleipner and the high-resolution cross-well seismic imaging that has been used to monitor carbon dioxide behavior in EOR projects. In addition, the potential for other geophysical methods such as electromagnetic imaging, gravity and tilt meters are discussed. For monitoring geochemical interactions between carbon dioxide and the geologic formation, natural and introduced tracers, major ion geochemical indicators and pH are discussed. Methods for monitoring carbon dioxide concentrations and fluxes on the surface range from conventional flowmeters and simple carbon dioxide sensors, to the potential for future applications of remote sensing and laser-based techniques for detecting carbon dioxide dispersed in the environment. The current state of the art and possible future for these technologies are described

  1. Simulation of carbon dioxide insufflation via a diffuser in an open surgical wound model.

    Science.gov (United States)

    Cater, John E; van der Linden, Jan

    2015-01-01

    Flow within a model surgical opening during insufflation with heated carbon dioxide was studied using computational fluid dynamics. A volume of fluid method was used to simulate the mixture of ambient air and carbon dioxide gas. The negative buoyancy of the carbon dioxide caused it to fill the wound and form a protective layer on the internal surfaces for a range of flow rates, temperatures, and angles of patient inclination. It was observed that the flow remained attached to the surface of the model due to the action of the Coanda effect. A flow rate of 10 L/min was sufficient to maintain a warm carbon dioxide barrier for a moderately sized surgical incision for all likely angles of inclination. PMID:25103346

  2. The extreme carbon dioxide outburst at the Menzengraben potash mine 7 July 1953

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    PHAST. Output from the model is inconsistent with the asphyxiation harm observed. The high-momentum release is predicted to disperse safely and never reach the ground. Carbon dioxide capture and storage (CCS) schemes will involve handling and transportation of unprecedented quantities of CO2. Case......Carbon dioxide is an asphyxiant and an irritant gas. An extreme outburst of carbon dioxide took place 7 July 1953 in a potash mine in the former East Germany. During 25 min, a large amount of CO2 was blown out of the mine shaft with great force. It was wind still and concentrated CO2 accumulated...... in a valley leading to multiple asphyxiation casualties. Based on a review of concentration–response relationships, the location of victims, and other information, it is concluded that concentrations of 10–30% carbon dioxide may have occurred 450 m from the point of release for at least 45 min...

  3. Development of NaY zeolite derived from biomass and environmental assessment of carbon dioxide reduction

    Directory of Open Access Journals (Sweden)

    Worathanakul Patcharin

    2016-01-01

    Full Text Available Carbon dioxide is one of greenhouse gases. The carbon dioxide caused by the industry activities and impact to the global warming. The objectives of this research were to synthesize NaY zeolite from bagasse ash as silica source and loaded with different weight percentage of Cu(II for carbon dioxide reduction. The carbon footprint of Cu/Y zeolite for carbon dioxide reduction was calculated. The synthesized NaY zeolite from bagasse ash can be easily formed at Si/Al ratio of 0.75 with the additional heat after crystallization 70 °C for 1 hour. The crystal size of NaY zeolite was approximately 0.22−0.37 μm diameter. The results of carbon dioxide adsorption were increased when the flow rate of carbon dioxide decreased. Finally, the carbon footprint value was shown that synthesis step was shown the highest of greenhouse gas emission. This research can increase the value of wastes and reduce pollution emission.

  4. Carbonated hydrocarbons for improved gas well fracturing results

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, N. G.; Anderson, H. A.

    1996-10-01

    A process for hydraulic fracturing gas reservoirs has been developed which used the reservoir gas as a drive mechanism and a specially designed fluid slug to achieve miscible recovery of the treating fluid. The slug combines carbon dioxide with certain hydrocarbons, causing the hydrocarbons to achieve high viscosity, which in turn results in low friction and good sand carrying capability. The carbon dioxide in solution creates a miscible bank of enriched carbon dioxide between the fracturing fluid and the reservoir gas, which then permits recovery of virtually all of the fracturing fluid. The resulting high permeability leads to improved well productivity. Field results to verify the applicability of this process were presented. It was found that miscibility between the reservoir fluid, the enriched carbon dioxide bank, and the fracturing fluid must be present to achieve optimum recovery. 30 refs., 5 tabs., 14 figs.

  5. Weathering approaches to carbon dioxide sequestration

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The aim of enhanced weathering is to capture CO2 by the carbonation of silicates, or by dissolution of these silicates during which the greenhouse gas CO2 is converted to bicarbonate in solution. Research in this field is still focused on increasing the rate of reaction, but the required additional

  6. Diffuso-Kinetics and Diffuso-Mechanics of Carbon Dioxide / Polyvinylidene Fluoride System under Explosive Gas Decompression: Identification of Key Diffuso-Elastic Couplings by Numerical and Experimental Confrontation

    Directory of Open Access Journals (Sweden)

    Grandidier Jean-Claude

    2015-02-01

    Full Text Available The work aims at identifying the key diffuso-elastic couplings which characterize a numerical tool developed to simulate the irreversible ‘Explosive Decompression Failure’ (XDF in semi-crystalline polymer. The model proposes to predict the evolution of the gas concentration and of the stress field in the polymer during the gas desorption [DOI: 10.1016/j.compositesa.2005.05.021]. Main difficulty is to couple thermal, mechanical and diffusive effects that occur simultaneously during the gas desorption. The couplings are splitting into two families: indirect coupling (i.e., phenomenology that is state variables (gas concentration, temperature, and pressure dependent. direct coupling, (i.e., diffuso-elastic coupling as polymer volume changes because of gas diffusion; The numerical prediction of the diffusion kinetics and of the volume strain (swelling of PVF2 (polyvinylidene fluoride under CO2 (carbon dioxide environment is concerned. The prediction is carried out by studying selected combinations of couplings for a broad range of CO2 pressures. The modeling relevance is evaluated by a comparison with experimental transport parameters analytically identify from solubility tests. A pertinent result of the present study is to have demonstrated the non-uniqueness of the coefficients of diffusion (D and solubility (Sg between the diffuso-elastic coupling (direct coupling and indirect coupling. Main conclusion is that it is necessary to consider concomitantly the two types of couplings, the indirect and the direct couplings.

  7. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  8. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.;

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...

  9. 27 CFR 24.319 - Carbon dioxide record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24.319 Section 24.319 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor...

  10. Balance and forecasts of french carbon dioxide emissions

    International Nuclear Information System (INIS)

    This paper strikes the balance of carbon dioxide emissions in France between 1986 and 1991 and gives forecasts till 2010. Since 1986, France has reduced its efforts for energy conservation and air pollution by carbon dioxide begins to growth again in connection with consumption growth in transport area, development of computer and simulation needs

  11. Combined reactions and separations using ionic liquids and carbon dioxide

    NARCIS (Netherlands)

    Kroon, M.C.

    2006-01-01

    A new and general type of process for the chemical industry is presented using ionic liquids and supercritical carbon dioxide as combined reaction and separation media. In this process, the carbon dioxide pressure controls the miscibility of reactants, products, catalyst and ionic liquid, enabling f

  12. Carbon Dioxide and Global Warming: A Failed Experiment

    Science.gov (United States)

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  13. Carbon Dioxide Detection and Indoor Air Quality Control.

    Science.gov (United States)

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  14. Adverse effects of the automotive industry on carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    Mpho Bosupeng

    2016-05-01

    Full Text Available This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japan. In addition, significant relations were observed between output and carbon dioxide discharges in Spain, Canada, India and Japan. Changes in output had substantial impact on emissions in Germany, Canada and India. The results also show that the number of passenger cars influences the magnitude of emissions in multiple economies. In conclusion, the automotive industry has to be considered in policies that aim to reduce carbon dioxide emissions.

  15. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  16. Flow characteristics and reaction properties of carbon dioxide in microtubules and porous media

    Institute of Scientific and Technical Information of China (English)

    ZHAO RenBao; YUE XiangAn; WU Ya Hong; XU ShaoLiang; WANG Fei; HOU YongLi

    2008-01-01

    Carbon dioxide reacts with porous media while flowing through them enhancing their permeability. Its flow behavior as well as the permeability enhancement effects were studied in synthetic cores, natural cores and microtubes with an inner diameter of 5 μm. The results show that the permeability of H2O-saturated cores (containing carbonate ingredients) was enhanced by increasing the injection volume of a CO2-H2O solution. This enhancement is attributable to carbon dioxide's corrosion, which is justified by SEM scanning. The same phenomenon occurs with a CO2-H2O solution in microtubes, but for a different reason. The gas flow velocity of carbon dioxide in microtubes was approximately 100% aster than that of nitrogen because of the scale and the squeezing effects. Carbon dioxide molecules dissolved in water accelerate the diffusion rate of water molecules within the boundary layer, which in turn diminishes the thickness of the water film and enlarges the effective pore size. This flow behavior facilitates the injection of carbon dioxide into low-permeability reservoirs for oil-displacement and formation energy buildup purposes. This behavior also increases the potential for carbon dioxide channeling or release from the formation.

  17. Low energy decomposition of carbon dioxide and other molecules

    Science.gov (United States)

    Pamfiloff, Eugene

    2013-05-01

    Since the observation of elevating quantities of atmospheric greenhouse gases, finding a practical method other than the capture-and-sequestration scheme for the reduction and disposal of carbon dioxide (CO2) has been an important objective. Recently, an efficient low-energy process has been developed allowing the selective molecular decomposition of CO2, CO, and other molecules. Thus, CO2 can be broken down into C + O + O. This permits the O2 molecules to be stored or released while the clean carbon atoms can be bagged and utilized in various industries. For the control of carbon dioxide or other gas emissions at their source, it can be scaled up for power plants or down for smaller facilities. The process also allows the production of a beam of exclusively positive ions or exclusively negative ions and contrary to other devices, excludes the probability of beam contamination by plasma or neutral particles, making it ideal for electronic thin-films manufacturing and spectroscopy systems. Because the system allows the simultaneous production of ion beams containing selectable ratios of positive to negative ions, it simplifies construction of favored or complex molecules through varied ionic bonds. Also discussed are several methods to apply the new technology as an upgrade to spectrometers and other devices. For further information contact the author: epamfiloff@mattertech.com.

  18. Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Mogensen, Mogens Bjerg

    2009-01-01

    Carbon dioxide electrolysis was studied in Ni/YSZ electrode supported Solid Oxide Electrolysis Cells (SOECs) consisting of a Ni-YSZ support, a Ni-YSZ electrode layer, a YSZ electrolyte, and a LSM-YSZ O2 electrode (YSZ = Yttria Stabilized Zirconia). The results of this study show that long term CO2...... of the current density and irreversible when operated at conditions that would oxidise carbon. This clearly shows that the passivation was not caused by coke formation. On the other hand, the passivation was partly reversible when introducing hydrogen. The passivation may be a consequence of impurities...... in the gas stream, most likely sulphur, adsorbing on some specific nickel sites in the cathode of the SOEC. Activation can be carried out by hydrogen reacting with adsorbed sulphur to form the volatile compound H2S. Because adsorption of sulphur is site specific, only a part of the nickel sites were...

  19. Systemic effects of geoengineering by terrestrial carbon dioxide removal on carbon related planetary boundaries

    Science.gov (United States)

    Heck, Vera; Donges, Jonathan; Lucht, Wolfgang

    2015-04-01

    The planetary boundaries framework as proposed by Rockström et al. (2009) provides guidelines for ecological boundaries, the transgression of which is likely to result in a shift of Earth system functioning away from the relatively stable Holocene state. As the climate change boundary is already close to be transgressed, several geoengineering (GE) methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. One of the proposed GE methods is carbon extraction from the atmosphere via biological carbon sequestration. In case mitigation efforts fail to substantially reduce greenhouse gas emissions, this form of GE could act as potential measure to reduce atmospheric carbon dioxide concentrations. We here study the possible influences of human interactions in the Earth system on carbon related planetary boundaries in the form of geoengineering (terrestrial carbon dioxide removal). We use a conceptual model specifically designed to investigate fundamental carbon feedbacks between land, ocean and atmosphere (Anderies et al., 2013) and modify it to include an additional geoengineering component. With that we analyze the existence and stability of a safe operating space for humanity, which is here conceptualized in three of the 9 proposed dimensions, namely climate change, ocean acidification and land-use. References: J. M. Anderies et al., The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environ. Res. Lett., 8(4):044048 (2013) J. Rockström et al., A safe operating space for humanity. Nature 461 (7263), 472-475 (2009)

  20. The impact of carbon dioxide and exhaust gas recirculation on the oxidative reactivity of soot from ethylene flames and diesel engines

    Science.gov (United States)

    Al-Qurashi, Khalid O.

    Restrictive emissions standards to reduce nitrogen oxides (NOx) and particulate matter (PM) emissions from diesel engines necessitate the development of advanced emission control technology. The engine manufacturers in the United States have implemented the exhaust gas recirculation (EGR) and diesel particulate filters (DPF) to meet the stringent emissions limits on NOx and PM, respectively. Although the EGR-DPF system is an effective means to control diesel engine emissions, there are some concerns associated with its implementation. The chief concern with this system is the DPF regenerability, which depends upon several factors, among which are the physicochemical properties of the soot. Despite the plethora of research that has been conducted on DPF regenerability, the impact of EGR on soot reactivity and DPF regenerability is yet to be examined. This work concerns the impact of EGR on the oxidative reactivity of diesel soot. It is part of ongoing research to bridge the gap in establishing a relationship between soot formation conditions, properties, and reactivity. This work is divided into three phases. In the first phase, carbon dioxide (CO2) was added to the intake charge of a single cylinder engine via cylinders of compressed CO2. This approach simulates the cold-particle-free EGR. The results showed that inclusion of CO2 changes the soot properties and yields synergistic effects on the oxidative reactivity of the resulting soot. The second phase of this research was motivated by the findings from the first phase. In this phase, post-flame ethylene soot was produced from a laboratory co-flow laminar diffusion flame to better understand the mechanism by which the CO2 affects soot reactivity. This phase was accomplished by successfully isolating the dilution, thermal, and chemical effects of the CO2. The results showed that all of these effects account for a measurable increase in soot reactivity. Nevertheless, the thermal effect was found to be the most

  1. Carbon dioxide sorption/ desorption characteristics of coals in Taiwan

    Science.gov (United States)

    Chien-Hung, Hsiao; Loung-Yie, Tsai

    2013-04-01

    Geological sequestration of CO2 into depleted oil reservoir, saline aquifer or unmineable coal seam is now being actively investigated for the purpose of reducing greenhouse gas in the atmosphere. Understanding the physical, chemical, and thermodynamic phenomena occurred with CO2 injection is very important in marking a reliable prediction of sequestration. This study examined the feasibility of carbon dioxide sequestration into unmineable coal seams in Taiwan. A total of 20 Miocene-aged coal samples from Western Foothill Belt, NW Taiwan, were collected. The stratigraphy include Mushan, Shihti, and Nanchuang Formation from bottom up. Proximate and petrographic analyses include maceral composition, Vitrinite reflectance were also measured. Carbon dioxide adsorption isotherms were analyzed at 35 degrees Celsius and up to 800 psi, by using a gravimetric ad/desorption apparatus. Isotherms were then fitted with a modified Langmuir Isotherm model by using Langmuir Pressure and Langmuir Volume so the model can be applied to supercritical conditions. According to the result of adsorption experiment, the pressure and temperature were quite significant. The gas storage capacity of CO2 was about 400 600 scf/ton at pressure up to 800 psi. Comparing the results of adsorption capacity with Proximate analysis and vitrinite reflectance, the Langmuir Volume shows a strong positive correlation with fixed carbon and vitrinite content. Furthermore, Adsorption capacity is closely related to micropores which were also rank and maceral dependent. It is noticed that the observed coal pore structures were affected by rank, and then exhibit have different diffusion rate of CO2.Finally, images under SEM were evaluated to understand the pathways of gas sorption.

  2. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU-Concepts

    Science.gov (United States)

    LeVan, M. Douglas; Finn, John E.; Sridhar, K. R.

    2000-01-01

    Solid oxide electrolyzers, such as electrolysis cells utilizing yttria-stabilized zirconia, can produce oxygen from Mars atmospheric carbon dioxide and reject carbon monoxide and unreacted carbon dioxide in a separate stream. The oxygen-production process has been shown to be far more efficient if the high-pressure, unreacted carbon dioxide can be separated and recycled back into the feed stream. Additionally, the mass of the adsorption compressor can be reduced. Also, the carbon monoxide by-product is a valuable fuel for space exploration and habitation, with applications from fuel cells to production of hydrocarbons and plastics. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU. Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, respectively. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU, Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, Research needs for the design shown are as follows: (1) The best adsorbent

  3. Carbon dioxide problems. Countermeasures to the carbon dioxide problem in hydrocarbon-fired plants

    International Nuclear Information System (INIS)

    Among the environmental problems discussed in this paper, global warming and the restriction of CFC are primarily thermal engineering issues. In particular, global warming, likely to be caused by an increase in the atmospheric carbon dioxide concentration, is one of the most essential and urgent environmental problems. In recent international conferences, held for example by UNEP, a proposal was made that carbon dioxide concentration be controlled under its 1898 level. However, this proposal may not be so forceful, since it is not clear whether the control is to be imposed on each country separately or on the developed countries as a whole. The vague content of the proposal may be attributed to the existing international situation, whereby the energy resources available to each country differ substantially

  4. Carbon dioxide neutral, integrated biofuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2010-12-15

    Algae are efficient biocatalysts for both capture and conversion of carbon dioxide in the environment. In earlier work, we have optimized the ability of Chlorella vulgaris to rapidly capture CO{sub 2} from man-made emission sources by varying environmental growth conditions and bioreactor design. Here we demonstrate that a coupled biodiesel-bioethanol facility, using yeast to produce ethanol and photosynthetic algae to produce biodiesel, can result in an integrated, economical, large-scale process for biofuel production. Each bioreactor acts as an electrode for a coupled complete microbial fuel cell system; the integrated cultures produce electricity that is consumed as an energy source within the process. Finally, both the produced yeast and spent algae biomass can be used as added value byproducts in the feed or food industries. Using cost and revenue estimations, an IRR of up to 25% is calculated using a 5 year project lifespan. (author)

  5. Carbon dioxide: Global warning for nephrologists.

    Science.gov (United States)

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle. PMID:27648406

  6. Biochemical Capture and Removal of Carbon Dioxide

    Science.gov (United States)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  7. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    Energy Technology Data Exchange (ETDEWEB)

    Mayorga, E; Aufdenkampe, A K; Masiello, C A; Krusche, A V; Hedges, J I; Quay, P D; Richey, J E; Brown, T A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C and {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  8. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    Science.gov (United States)

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  9. Carbon dioxide and methane emissions from the Yukon River system

    Science.gov (United States)

    Striegl, Rob; Dornblaser, Mark M.; McDonald, Cory P.; Rover, Jennifer R.; Stets, Edward G.

    2012-01-01

    Carbon dioxide (CO2) and methane (CH4) emissions are important, but poorly quantified, components of riverine carbon (C) budgets. This is largely because the data needed for gas flux calculations are sparse and are spatially and temporally variable. Additionally, the importance of C gas emissions relative to lateral C exports is not well known because gaseous and aqueous fluxes are not commonly measured on the same rivers. We couple measurements of aqueous CO2 and CH4 partial pressures (pCO2, pCH4) and flux across the water-air interface with gas transfer models to calculate subbasin distributions of gas flux density. We then combine those flux densities with remote and direct observations of stream and river water surface area and ice duration, to calculate C gas emissions from flowing waters throughout the Yukon River basin. CO2emissions were 7.68 Tg C yr−1 (95% CI: 5.84 −10.46), averaging 750 g C m−2 yr−1 normalized to water surface area, and 9.0 g C m−2 yr−1 normalized to river basin area. River CH4 emissions totaled 55 Gg C yr−1 or 0.7% of the total mass of C emitted as CO2 plus CH4 and ∼6.4% of their combined radiative forcing. When combined with lateral inorganic plus organic C exports to below head of tide, C gas emissions comprised 50% of total C exported by the Yukon River and its tributaries. River CO2 and CH4 derive from multiple sources, including groundwater, surface water runoff, carbonate equilibrium reactions, and benthic and water column microbial processing of organic C. The exact role of each of these processes is not yet quantified in the overall river C budget.

  10. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    International Nuclear Information System (INIS)

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas

  11. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Lee, Dong Woog; Jang, Se Gyu; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo [KEPCO Research Institute, Daejon (Korea, Republic of); Choi, Jong Shin [Korea East-West Power Co. LTD, Seoul (Korea, Republic of)

    2014-06-15

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

  12. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique

    2003-12-18

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous

  13. Does carbon dioxide pool or stream in the subsurface?

    CERN Document Server

    Cardoso, Silvana S S

    2014-01-01

    Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams would transport it efficiently to depth, but this may not be so. Here, we assess the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. New laboratory experiments confirm the curtailing of convection by reaction. Wide and narrow streams of dense carbon-rich water are shut-off gradually as reaction strength increases until all transport of the pooled carbon dioxide occurs by slow molecular diffusion. These results show that the complex fluid dynamic and kinetic interactions between pooled carbon dioxide an...

  14. Design of stable catalysts for methane-carbon dioxide reforming

    NARCIS (Netherlands)

    Lercher, J.A.; Bitter, J.H.; Hally, W.; Niessen, W.; Seshan, K.

    2001-01-01

    The activity and stability of catalysts for methane-carbon dioxide reforming depend subtly upon the support and the active metal. Methane decomposes to carbon and hydrogen, forming carbon on the oxide support and the metal. Carbon on the metal is reactive and can be oxidized to CO by oxygen from dis

  15. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption.

    Science.gov (United States)

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-01-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g(-1)) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation. PMID:27572662

  16. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    Science.gov (United States)

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g-1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  17. Carbon Dioxide Sequestration and ECBM in the Powder River Basin

    Science.gov (United States)

    Colmenares, L. B.; Zoback, M. D.

    2003-12-01

    Coal seams are both a source of coal bed methane (CBM) and a potential carbon dioxide sink. For sub-bituminous coals like those in the Powder River Basin (PRB), the CO2/CH4 adsorption ratio is approximately 10:1, which indicates the significant potential for sequestering carbon dioxide. In addition, injected carbon dioxide would also enhance the production of methane from the coal seam because of its higher adsorption capacity. This means that the injection of carbon dioxide in coal beds may have the dual benefit of sequestering carbon dioxide and enhancing CBM production. Moreover, if carbon dioxide injection efficiently displaces the adsorbed methane, it may reduce the amount of water produced from CBM wells as part of the depressurization process. Our work in the Powder River Basin indicates that drilling and completion operations result in hydraulic fracturing of the coal and possibly the adjacent strata. This would result in both excess CBM water production and inefficient depressurization of coals. We have been able to collect water-enhancement tests data in coals to obtain the magnitude of the least principal stress in the coal seam. The preliminary data we have analyzed indicates that the hydrofracs are horizontal in some areas because the least principal stress corresponds to the overburden. It is interesting to speculate that one could use horizontal hydrofracs near the bottom of the coal seam for carbon dioxide injection and a horizontal hydrofrac near the upper part of the coal seam for methane production.

  18. Modeling and calculation of open carbon dioxide refrigeration system

    International Nuclear Information System (INIS)

    Highlights: • A model of open refrigeration system is developed. • The state of CO2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO2 has little relation to the state of CO2. • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration

  19. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane,carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  20. Forest management techniques for carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Takao [Forestry and Forest Products Research Inst., Tsukuba, Ibaraki (Japan)

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  1. Carbon dioxide warming of the early Earth

    Science.gov (United States)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  2. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    Science.gov (United States)

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  3. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    Science.gov (United States)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  4. Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The coupling reaction of carbon dioxide with epoxides was investigated using naturally occurring α-amino acids as the catalyst in supercritical carbon dioxide and it was found that L-histidine is the most active catalyst.In the presence of 0.8 mol% of L-histidine at 130°C under 8 MPa of CO2,the reaction of carbon dioxide with epoxides proceeded smoothly,affording corresponding cyclic carbonates in good to excellent yields.

  5. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  6. Carbon dioxide fluid-flow modeling and injectivity calculations

    Science.gov (United States)

    Burke, Lauri

    2011-01-01

    At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.

  7. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    Science.gov (United States)

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  8. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  9. Using the second law first: Improving the thermodynamic efficiency of carbon dioxide separation from gas streams in an Endex calcium looping system

    International Nuclear Information System (INIS)

    The most costly step in carbon capture from flue gas streams is regeneration of the pure CO2 stream from the sorbent, because of the high temperatures required by conventional systems. This work presents an entropy generation analysis of the new Endex calcium looping method, in which regeneration is driven directly by the heat of carbonation and pressure-swing is used to reduce the temperature of calcination. Entropy generation rates for the important subprocesses in the control volume are computed and visualised over the expedient parameter space. The performance of the system is optimised in two ways: by minimising the total entropy generation rate per mole of CO2 captured, and by maximising the capture efficiency. The tradeoff between these two objectives is highlighted. - Highlights: • Entropy generation analysis is applied to a model Endex CO2 scrubbing system. • Entropy generation rates are computed for all of the important subprocesses. • The specific entropy generation rate and the CO2 capture efficiency are optimised. • Reducing the temperatures and pressures can reduce the second law efficiency. • Irreversibility from even a very small sorbent replacement flow is significant

  10. Large scale carbon dioxide production from coal-fired power stations for enhanced oil recovery: a new economic feasibility study

    International Nuclear Information System (INIS)

    The concept of capturing carbon dioxide from fossil-fuelled electric power generating plants and utilizing it as a flooding agent in enhanced oil recovery (EOR) processes, was explored. In this context, this paper describes how cogeneration concepts, together with process optimization strategies, help to reduce the carbon dioxide production cost by utilizing low-pressure steam and waste heat from various sections of the power generation process. Based on these optimization strategies, the recovery cost of carbon dioxide from coal-fired power stations is estimated to be in the range of $ 0.50 to $ 2.00/mscf. Assuming an average cost of $ 1.25/mscf, the production cost of incremental oil would be about $ 18.00. This means that even with today's modest oil prices, there is room for profit to be made operating a carbon dioxide flood with flue gas extracted carbon dioxide

  11. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)

    2012-06-15

    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  12. Synthesis pf dimethyl carbonate in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ballivet-Tkatchenko, D.; Plasseraud, L. [Universite de Bourgogne-UFR Sciences et Techniques, Dijon (France). Lab. de Synthese et Electrosynthese Organometalliques]. E-mail: ballivet@u-bourgogne.fr; Ligabue, R.A. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Dept. de Quimica Pura

    2006-01-15

    The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu{sub 3}SnOCH{sub 3}, n-Bu{sub 2}Sn(OCH{sub 3}){sub 2}, and [n-Bu{sub 2}(CH{sub 3}O)Sn]{sub 2}O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO{sub 2} pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO{sub 2} pressure higher than 16 MPa. Under these conditions, CO{sub 2} acted as a reactant and a solvent. (author)

  13. Synthesis of dimethyl carbonate in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    D. Ballivet-Tkatchenko

    2006-03-01

    Full Text Available The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH32 , and [n-Bu2(CH3OSn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.

  14. Atmospheric carbon dioxide: its role in maintaining phytoplankton standing crops

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, D.W.; Brunskill, G.J.; Emerson, S.; Broecker, W.S.; Peng, T.H.

    1972-01-01

    The rate of invasion of carbon dioxide into an artificially eutrophic Canadian Shield Lake with insuffient internal sources of carbon was determined by two methods: Measuring the carbon:nitrogen:phosphorus ratios of seston after weekly additions of nitrogen and phosphorus, and measuring the loss of radon-/sup 222/ tracer from the epilimnion. Both methods gave an invasion rate of about 0.2 gram of carbon per square meter per day. The results demonstrate that invasion of atmospheric carbon dioxide may be sufficient to permit eutrophication of any body of water receiving an adequate supply of phosphorus and nitrogen.

  15. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water

    CERN Document Server

    Heng, Kevin

    2015-01-01

    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres. We construct analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the mixing ratio of methane. By examining the abundances of these molecules across a broad range of temperatures (spanning equilibrium temperatures from 600 to 2500 K), pressures (via temperature-pressure profiles that explore albedo and opacity variations) and carbon-to-oxygen ratios (from 0.1 to 100), we conclude that carbon dioxide is subdominant compared to carbon monoxide and water. Atmospheric mixing does not alter this conclusion if carbon dioxide is subdominant everywhere in the atmosphere. Carbon dioxide and carbon monoxide may attain comparable abundances if th...

  16. The source of carbon dioxide for gastric acid production.

    Science.gov (United States)

    Steer, Howard

    2009-01-01

    The source of carbon dioxide for the chemical reaction leading to the production of gastric acid is unknown. The decarboxylation of an amino acid releases carbon dioxide. Pepsinogens provide a rich source of the amino acid arginine. Both the source of carbon dioxide, arginine, and the consequence of arginine decarboxylation, agmatine, have been studied. The site of carbon dioxide production has been related to the survival of the parietal cell. An immunohistochemical study has been carried out on glycol methacrylate embedded gastric biopsies from the normal stomach of 38 adult patients. The sections have been stained using polyclonal antibody to pepsinogen II, polyclonal antibody to agmatine, and polyclonal antibody to Helicobacter pylori. Pepsinogen II and agmatine are found in the parietal cell canaliculi. This is consistent with the production of carbon dioxide from arginine in the parietal cell canaliculi. Evidence is presented for the decarboxylation of arginine derived from the activation segment of pepsinogen as the source of carbon dioxide for the production of gastric acid. The production of carbon dioxide by the decarboxylation of arginine in the parietal cell canaliculus enables the extracellular hydration of carbon dioxide at the known site of carbonic anhydrase activity. The extracellular production of acid in the canaliculus together with the presence of agmatine helps to explain why the parietal cells are not destroyed during the formation of gastric acid. Agmatine is found in the mucus secreting cells of the stomach and its role in acid protection of the stomach is discussed. Anat Rec, 2009. (c) 2008 Wiley-Liss, Inc. PMID:18951509

  17. Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2013-01-01

    This paper reports on a source of past carbon dioxide accidents which so far has only been sporadically mentioned in the literature. Violent and highly destructive outbursts of hundreds of tons of CO2 occurred regularly, if not routinely, in the now closed salt mines of the former DDR....... The Menzengraben mine experienced an extreme outburst in 1953, possibly involving a several thousand tons of carbon dioxide. This source of accidents fills an important gap in the available carbon dioxide accident history and may provide a unique empirical perspective on the hazards of handling very large amounts...

  18. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Science.gov (United States)

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  19. 46 CFR 167.45-45 - Carbon dioxide fire-extinguishing system requirements.

    Science.gov (United States)

    2010-10-01

    ... boiler, and the top of the casing or drum, whichever is the higher, on water-tube boilers. The quantity... is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give a gas saturation of 25 percent of the gross volume of the largest boiler room from tank top to top...

  20. Efficacy of supercritical carbon dioxide for nonthermal inactivation of Escherichia coli K12 in apple cider

    Science.gov (United States)

    This study evaluated the efficacy of a supercritical carbon dioxide (SCCO2) system with a gas-liquid porous metal contactor for eliminating Escherichia coli K12 in apple cider. Pasteurized, preservative-free apple cider was inoculated with E. coli K12 and processed using the SCCO2 system at CO2 conc...

  1. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Robert Weber; Norman Whitton

    2010-09-30

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  2. Evaluation of a transportable capnometer for monitoring end-tidal carbon dioxide

    DEFF Research Database (Denmark)

    Hildebrandt, T; Tobiasen, Malene Espelund; Olsen, K S

    2010-01-01

    We compared a small and transportable Capnometer (EMMA™) with a reference capnometer, the Siesta i TS Anaesthesia. During air-breathing through a facemask, both the EMMA (nine modules) and reference capnometer sampled expired gas simultaneously. A wide range of end-tidal carbon dioxide values were...

  3. Amazon river carbon dioxide outgassing fuelled by wetlands

    OpenAIRE

    Abril, G.; Martinez, J M; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M. F.; Vidal, L.; Meziane, T.; Kim, J. -H.; Bernardes, M. C.; Savoye, N.; Deborde, J; Souza, E.L.; Alberic, P; de Souza, M.F.L.; Roland, F.

    2014-01-01

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems(2). It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream ...

  4. The oxygen and carbon dioxide balance in the earth's atmosphere

    Science.gov (United States)

    Johnson, F. S.

    1975-01-01

    The oxygen-carbon dioxide cycle is described in detail, and steps which are sensitive to perturbation or instability are identified. About half of the carbon dioxide consumption each year in photosynthesis occurs in the oceans. Phytoplankton, which are the primary producers, have been shown to assimilate insecticides and herbicides. The impact of such materials on phytoplankton photosynthesis, both direct and as the indirect result of detrimental effects higher up in the food chain, cannot be assessed. Net oxygen production is very small in comparison with the total production and occurs almost exclusively in a few ocean areas with anoxic bottom conditions and in peat-forming marshes which are sensitive to anthropogenic disturbances. The carbon dioxide content of the atmosphere is increasing at a relatively rapid rate as the result of fossil fuel combustion. Increases in photosynthesis as the result of the hothouse effect may in turn reduce the carbon dioxide content of the atmosphere, leading to global cooling.

  5. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a growing need to develop improved technologies for precise airborne measurements of carbon dioxide, CO2. CO2 measurements are of great importance to many...

  6. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase 1 has seen the development of a revolutionary new type of sensor for making carbon dioxide (CO2) measurements from small Unmanned Aircraft Systems (UAS) and...

  7. Precision remote sensor for oxygen and carbon dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes development of a passive optical sensor for simultaneous high-precision measurement of oxygen and carbon dioxide profiles within the full...

  8. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  9. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  10. Carbon dioxide stripping in aquaculture -- part III: model verification

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    Based on conventional mass transfer models developed for oxygen, the use of the non-linear ASCE method, 2-point method, and one parameter linear-regression method were evaluated for carbon dioxide stripping data. For values of KLaCO2 < approximately 1.5/h, the 2-point or ASCE method are a good fit to experimental data, but the fit breaks down at higher values of KLaCO2. How to correct KLaCO2 for gas phase enrichment remains to be determined. The one-parameter linear regression model was used to vary the C*CO2 over the test, but it did not result in a better fit to the experimental data when compared to the ASCE or fixed C*CO2 assumptions.

  11. Pathophysiological and clinical aspects of carbonic dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Larsen, Jens Fromholt

    by CO 2 -PP ? endocrine and metabolic response may be activated and the inflammatory response blunted by CO 2 -PP   ? mean arterial pressure and heart rate is increased during CO 2 -PP ? preload and afterload is increased, heart performance decreased, but cardiac output not affected during CO 2 -PP...... pneumoperitoneum (CO 2 -PP) and positional changes of the patients are the general methods of exposing the intraperitoneal organs. Carbonic dioxide (CO 2 ) is the preferred gas, because it is inexpensive, highly soluble, and chemically stable. In addition, it suppresses combustion and is a normal product of human...... invasive methods. Based on a randomized design comparing conventional with gasless laparoscopy the effects of CO 2 - PP are investigated in regard to: ? outcome, pain, convalescence, ? coagulation and fibrinolysis ? surgical stress response ? perioperative haemodynamics and heart performance...

  12. Effects of carbon dioxide on laryngeal receptors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.W.; Sant' Ambrogio, F.B.; Orani, G.P.; Sant' Ambrogio, G.; Mathew, O.P. (Univ. of Texas, Galveston (United States))

    1990-02-26

    Carbon dioxide (CO{sub 2}) either stimulates or inhibits laryngeal receptors in the cat. The aim of this study was to correlate the CO{sub 2} response of laryngeal receptors with their response to other known stimuli (i.e. pressure, movement, cold, water and smoke). Single unit action potentials were recorded from fibers in the superior laryngeal nerve of 5 anesthetized, spontaneously breathing dogs together with CO{sub 2} concentration, esophageal and subglottic pressure. Constant streams of warm, humidified air or 10% CO{sub 2} in O{sub 2} were passed through the functionally isolated upper airway for 60 s. Eight of 13 randomly firing or silent receptors were stimulated by CO{sub 2} (from 0.4{plus minus}0.1 to 1.8{plus minus}0.4 imp.s). These non-respiratory-modulated receptors were more strongly stimulated by solutions lacking Cl{sup {minus}} and/or cigarette smoke. Six of 21 respiratory modulated receptors (responding to pressure and/or laryngeal motion) were either inhibited or stimulated by CO{sub 2}. Our results show that no laryngeal receptor responds only to CO{sub 2}. Silent or randomly active receptors were stimulated most often by CO{sub 2} consistent with the reflex effect of CO{sub 2} in the larynx.

  13. Euthanasia of neonatal mice with carbon dioxide

    Science.gov (United States)

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  14. Vibrations of the carbon dioxide dimer

    Science.gov (United States)

    Chen, Hua; Light, J. C.

    2000-03-01

    Fully coupled four-dimensional quantum-mechanical calculations are presented for intermolecular vibrational states of rigid carbon dioxide dimer for J=0. The Hamiltonian operator is given in collision coordinates. The Hamiltonian matrix elements are evaluated using symmetrized products of spherical harmonics for angles and a potential optimized discrete variable representation (PO-DVR) for the intermolecular distance. The lowest ten or so states of each symmetry are reported for the potential energy surface (PES) given by Bukowski et al. [J. Chem. Phys. 110, 3785 (1999)]. Due to symmetries, there is no interconversion tunneling splitting for the ground state. Our calculations show that there is no tunneling shift of the ground state within our computation precision (0.01 cm-1). Analysis of the wave functions shows that only the ground states of each symmetry are nearly harmonic. The van der Waals frequencies and symmetry adapted force constants are found and compared to available experimental values. Strong coupling between the stretching coordinates and the bending coordinates are found for vibrationally excited states. The interconversion tunneling shifts are discussed for the vibrationally excited states.

  15. Suppressing bullfrog larvae with carbon dioxide

    Science.gov (United States)

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  16. Carbon dioxide balneotherapy and cardiovascular disease

    Science.gov (United States)

    Pagourelias, Efstathios D.; Zorou, Paraskevi G.; Tsaligopoulos, Miltiadis; Athyros, Vasilis G.; Karagiannis, Asterios; Efthimiadis, Georgios K.

    2011-09-01

    Carbon dioxide (CO2) balneotherapy is a kind of remedy with a wide spectrum of applications which have been used since the Middle Ages. However, its potential use as an adjuvant therapeutic option in patients with cardiovascular disease is not yet fully clarified. We performed a thorough review of MEDLINE Database, EMBASE, ISI WEB of Knowledge, COCHRANE database and sites funded by balneotherapy centers across Europe in order to recognize relevant studies and aggregate evidence supporting the use of CO2 baths in various cardiovascular diseases. The three main effects of CO2 hydrotherapy during whole body or partial immersion, including decline in core temperature, an increase in cutaneous blood flow, and an elevation of the score on thermal sensation, are analyzed on a pathophysiology basis. Additionally, the indications and contra-indications of the method are presented in an evidence-based way, while the need for new methodologically sufficient studies examining the use of CO2 baths in other cardiovascular substrates is discussed.

  17. Zenker's Diverticulum: Carbon Dioxide Laser Endoscopic Surgery

    Directory of Open Access Journals (Sweden)

    Jan Plzák

    2014-01-01

    Full Text Available Nowadays endoscopic diverticulotomy is the surgical approach of the first choice in treatment of Zenker's diverticulum. We report our experience with this procedure and try to sum up recent recommendations for management of surgery and postoperative care. Data of 34 patients with Zenker's diverticulum, treated by endoscopic carbon dioxide laser diverticulotomy at the Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic, were prospectively stored and followed in relatively short period from May 2009 to December 2013. The average length of diverticulum was 32 mm. The average duration of surgery was 32 min. The patients were fed via feeding tube for 6.1 days and antibiotics were administered for 7 days. Mean hospitalization time was 7.4 days. We observed one transient recurrent laryngeal nerve paralysis and no other serious complications. Recurrence rate was 3%. We recommend complete transection of the diverticular septum in one procedure, systemic antibiotic treatment and exclusion of transoral intake for minimally 5 days, and contrast oesophagogram before resumption of oral intake to exclude fistula. Open diverticulectomy should be reserved for cases with inadequate endoscopic exposure and for revision surgery for multiple recurrences from endoscopic diverticulotomies.

  18. Seawater pH and Anthropogenic Carbon Dioxide

    CERN Document Server

    Marsh, Gerald E

    2008-01-01

    In 2005, the Royal Society published a report titled "Ocean acidification due to increasing atmospheric carbon dioxide". The report's principal conclusion-that average ocean pH could decrease by 0.5 units by 2100-is demonstrated here to be consistent with a linear extrapolation of very limited data. It is also shown that current understanding of ocean mixing, and of the relationship between pH and atmospheric carbon dioxide concentration, cannot justify such an extrapolation.

  19. Carbon dioxide heat pump for dual-temperature drinking fountain

    Institute of Scientific and Technical Information of China (English)

    杨大章; 吕静; 何哲彬; 黄秀芝

    2009-01-01

    Carbon dioxide trans-critical heat pump system for heating and cooling water was designed,and its thermodynamic steady-state concentration model was established. Based on the steady-state model,parameters of the carbon dioxide trans-critical heat pump were calculated by computer programming. According to these parameters,the effects and application prospect of the heat pump system were analyzed for dual-temperature drinking fountains.

  20. A simple, disposable end-tidal carbon dioxide detector.

    OpenAIRE

    Rosenberg, M; Block, C. S.

    1991-01-01

    Detection of expired carbon dioxide is one of the most reliable methods of avoiding accidental esophageal intubation. Although capnography has become a standard monitoring technique in the hospital operating room, it is rarely available in the office setting or other arenas where emergency endotracheal intubation may be required. A new and inexpensive device, however, has been developed for assessing end-tidal carbon dioxide. This semi-quantitative detector fits between the endotracheal tube ...

  1. Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization

    OpenAIRE

    Nuno Carlos LEITÃO

    2014-01-01

    This article investigates the correlation between economic growth, carbon dioxide emissions, renewable energy and globalization for the period 1970-2010, using time series (OLS,GMM, unit root test, VEC model, and Granger causality) to Portuguese economy. OLS estimator and GMM model demonstrate that carbon dioxide emissions and renewable energy are positively correlated with economic growth. The econometric models also show that the overall index of globalization has a positive effect...

  2. Carbon dioxide capture by means of cyclic organic nitrogen compounds

    OpenAIRE

    García Abuín, Alicia

    2012-01-01

    The research work included in present PhD Thesis involves the research studies to capture carbon dioxide using different cyclic nitrogen organic compounds (glucosamine (GA), chitosan (C), alkyl-pyrrolidones, pyrrolidine (PYR) and piperidine (PIP). This investigation is based on the study of three experimental systems. Each of them has characteristics potentially suitable to achieve the aim of this work, that is to say, to improve the carbon dioxide capture process, which is pre...

  3. Mycorrhizal mediation of soil organic carbon decomposition under elevated atmospheric carbon dioxide

    Science.gov (United States)

    Significant effort in global change research has recently been directed towards assessing the potential of soil as a carbon sink under future atmospheric carbon dioxide scenarios. Attention has focused on the impact of elevated carbon dioxide on plant interactions with mycorrhizae, a symbiotic soil...

  4. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation

    Science.gov (United States)

    Matter, Jürg M.; Kelemen, Peter B.

    2009-12-01

    Anthropogenic greenhouse-gas emissions continue to increase rapidly despite efforts aimed at curbing the release of such gases. One potentially long-term solution for offsetting these emissions is the capture and storage of carbon dioxide. In principle, fluid or gaseous carbon dioxide can be injected into the Earth's crust and locked up as carbonate minerals through chemical reactions with calcium and magnesium ions supplied by silicate minerals. This process can lead to near-permanent and secure sequestration, but its feasibility depends on the ease and vigour of the reactions. Laboratory studies as well as natural analogues indicate that the rate of carbonate mineral formation is much higher in host rocks that are rich in magnesium- and calcium-bearing minerals. Such rocks include, for example, basalts and magnesium-rich mantle rocks that have been emplaced on the continents. Carbonate mineral precipitation could quickly clog up existing voids, presenting a challenge to this approach. However, field and laboratory observations suggest that the stress induced by rapid precipitation may lead to fracturing and subsequent increase in pore space. Future work should rigorously test the feasibility of this approach by addressing reaction kinetics, the evolution of permeability and field-scale injection methods.

  5. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    Energy Technology Data Exchange (ETDEWEB)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques

  6. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin

    2014-03-31

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber‐cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long‐term durability and reduce energy and emission. For a reaction within a 24‐hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60‐80% in 4‐hour carbon dioxide curing and improve the resistance to freeze‐thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO{sub 2} in carbon utilization. By the use of self‐concentrating absorption technology, high purity CO{sub 2} can be produced at a price below $40/t. With low cost CO{sub 2} capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO{sub 2}/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  7. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  8. Carbon Dioxide/Methane Separation by Adsorption on Sepiolite

    Institute of Scientific and Technical Information of China (English)

    José A.Delgado; María A.Uguina; José L.Sotelo; Beatriz Ruíz; Marcio Rosário

    2007-01-01

    In this work,the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched.Adsorption equilibrium and kinetics have been measured in a fixed-bed.and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained.A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics.using the Langmuir equation to describe the adsotption equilibrium isotherm.The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied.The experimental results were compared with the ones predicted by the model adapted to a PSA system.Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle.These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.

  9. Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

    1997-03-01

    Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

  10. Chemical recycling of carbon dioxide emissions from a cement plant into dimethyl ether, a case study of an integrated process in France using a Reverse Water Gas Shift (RWGS) step

    International Nuclear Information System (INIS)

    Recycling of carbon dioxide (CO2) and hydrogen (H2) into liquid fuel technology has recently gained wide public interest since it is a potential pathway to increase the liquid fuel supply and to mitigate CO2 emissions simultaneously. In France, the majority of the electricity production is derived from nuclear and renewable energy which have a low CO2 footprint. This electricity power enables a potential for massive hydrogen production with low carbon emissions. We studied the possibility to develop this technology at an industrial scale in the French context on a typical industrial example of a cement manufacture in the south of France. An integrated process is proposed, which enables the use of the heat released by the CO2 to fuel process to help to capture the CO2 released by the cement manufacture. Some technological issues are discussed, and a potential solution is proposed for the catalyst used in the critical step of the Reverse Water Gas-Shift reaction (RWGS) of the process. (authors)

  11. FY 2000 report on the results of the R and D on the advanced carbon dioxide recovery system of closed cycle gas turbine aiming at 2000 K (ACRO-GT2000)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With the aim of reducing the carbon dioxide emitted from thermal power plants and commercializing ultra-high temperature/high efficiency gas turbines, R and D were conducted, and the FY results were outlined. In the study of system design, conceptual design was made of a 500MW commercial plant that can easily recover carbon oxide by pure oxygen combustion of the fuel. In the development of the combustion control technology, study of methane-oxygen burner was made with the aim of expanding the ignition limit and flame stability region. In the development of the turbine blade cooling technology, conducted were the conceptual design of 1st stage nozzle and turbine blade, study of heat transfer characteristics on the outside surface of turbine blade and heat transfer characteristics on the inside surface of turbine blade, conceptual design of 2nd stage nozzle and turbine blade, study of sealing technology, etc. In the development of auxiliary equipment, developmental study was conducted of high pressure ratio compressor, condenser, high temperature heat exchanger, etc. In the developmental study of ultra-high temperature materials, study was made of thermal-shielded coating, ceramic matrix composite materials, etc. (NEDO)

  12. Liquid carbon dioxide absorbents, methods of using the same, and related systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Michael Joseph; Perry, Robert James; Lam, Tunchiao Hubert; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lewis, Larry Neil; Rubinsztajn, Malgorzata Iwona; Hancu, Dan

    2016-09-13

    A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO.sub.2 or have a high-affinity for CO.sub.2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO.sub.2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.

  13. Carbon Dioxide Reduction Technology Trade Study

    Science.gov (United States)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  14. Final Technical Report HFC Concrete: A Low­Energy, Carbon-Dioxide­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC

  15. A low-cost electro-gen solvent for carbon dioxide sequestration

    Science.gov (United States)

    Neelameggham, Neale R.; Davis, Brian R.

    2010-09-01

    An innovative concept for one of the lowest-cost carbon dioxide capture methods from power plants and other carbon-dioxide-emitting facilities is provided here. The concept is to use a novel electro-thermo-chemical regeneration approach which will generate a product solution containing hydroxyl ions for absorbing the flue gas CO2. This may work with existing flue gas desulfurizing equipment to minimize the cost of carbon capture. The process involves the use of low-cost make-up reagents which are capable of providing credits for partial mineralization of CO2, thus offsetting some of the costs for carbon capture and sequestration. The process presents the possibility of making this a low-cost on-site mineralization with cost offsets.

  16. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  17. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  18. Multum in Parvo: Explorations with a Small Bag of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    EJM Campbell

    2001-01-01

    Full Text Available A collection of 12 papers published between 1957 and 1972 are revisited. The papers had a common theme of the use of rebreathing carbon dioxide and explored a variety of topics in respiratory physiology. The first study established a method for the noninvasive and indirect estimation of arterial carbon dioxide pressure that was suitable for the routine clinical monitoring of respiratory failure and whose clinical utility remains to this day, but which also provided observations that were the stimulus for the studies that followed. The rate of rise in the partial pressure of carbon dioxide (PCO2 during rebreathing led to an analysis of body carbon dioxide storage capacity. Knowledge of carbon dioxide storage led to a method for quantifying lactate production in exercise without the need for blood sampling. The changes in ventilation that accompanied the increase in PCO2 provided the basis for a rapid method for measuring aspects of breathing control (Read's method, which was later modified to measure the ventilatory response to hypoxia. The physiology of breath-holding was explored through observations of the fall in breath-holding time as PCO2 climbed. Rebreathing also allowed increases in voluntary ventilation to be achieved without the development of alkalosis, leading to studies of maximal voluntary ventilation and respiratory muscle fatigue. Equilibration of PCO2 during rebreathing was used to measure mixed venous PCO2 during exercise and develop an integrated approach to the physiology of exercise in health and disease; alveolar-arterial disequilibrium in PCO2 during exercise was uncovered. Equilibration of PCO2, as well as PO2, during rebreathing of carbon dioxide and nitrogen gas mixtures showed different time courses of venous gases at the onset of exercise. Starting with the rebreathing of carbon dioxide in oxygen mixtures in a small rubber bag, an astonishing range of topics in respiratory physiology was explored, with observations

  19. Application of a novel calcium looping process for production of heat and carbon dioxide enrichment of greenhouses

    International Nuclear Information System (INIS)

    Highlights: • The greenhouse calcium looping process was developed by ASPEN Plus simulator. • In this process, the carbonation reaction provides required heat during night time. • The calcination reaction provides required carbon dioxide during day time. • This novel process saves up to 72% energy compared to the fossil fuel burners. • The process thermodynamically attributes to zero emission of carbon dioxide. - Abstract: Greenhouses typically employ conventional burner systems to suffice heat and carbon dioxide required for plant growth. The energy requirement and carbon dioxide emissions from fossil fuel burner are generally high. As an alternative, this paper describes a novel greenhouse calcium looping process which is expected to decrease the energy requirements and associated carbon dioxide emissions. The conceptual design of greenhouse calcium looping process is carried out in the ASPEN Plus v 7.3 simulator. In a greenhouse calcium looping process, the calcination reaction is considered to take place during day time in order to provide the required optimum carbon dioxide between 1000 and 2000 ppm, while the carbonation reaction is occurred during night time to provide required heat. The process simulations carried out in ASPEN indicates that greenhouse calcium looping process theoretically attributes to zero emission of carbon dioxide. Moreover, in a scenario modelling study compared to the conventional natural gas burner system, the heat duty requirements in the greenhouse calcium looping process were found to reduce by as high as 72%

  20. Testing carbon sequestration site monitor instruments using a controlled carbon dioxide release facility

    Science.gov (United States)

    Humphries, Seth D.; Nehrir, Amin R.; Keith, Charlie J.; Repasky, Kevin S.; Dobeck, Laura M.; Carlsten, John L.; Spangler, Lee H.

    2008-02-01

    Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide (CO2) release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.0027-2.0042 μm spectral region that contains three CO2 absorption lines and is used for aboveground atmospheric CO2 concentration measurements. The second instrument also uses a temperature tunable DFB diode laser capable of accessing the 2.0032-2.0055 μm spectral region that contains five CO2 absorption lines for underground CO2 soil gas concentration measurements. The performance of these instruments for carbon sequestration site monitoring was studied using a newly developed controlled CO2 release facility. A 0.3 ton CO2/day injection experiment was performed from 3-10 August 2007. The aboveground differential absorption instrument measured an average atmospheric CO2 concentration of 618 parts per million (ppm) over the CO2 injection site compared with an average background atmospheric CO2 concentration of 448 ppm demonstrating this instrument's capability for carbon sequestration site monitoring. The underground differential absorption instrument measured a CO2 soil gas concentration of 100,000 ppm during the CO2 injection, a factor of 25 greater than the measured background CO2 soil gas concentration of 4000 ppm demonstrating this instrument's capability for carbon sequestration site monitoring

  1. Numerical Simulation of Impacts of Hydrological Properties of Geologic Storage Formations on Injection Efficiency of Carbon Dioxide

    Science.gov (United States)

    Kihm, J.; Kim, J.

    2010-12-01

    A series of numerical simulations using a multiphase thermo-hydrological numerical model is performed to analyze groundwater flow, carbon dioxide flow, and heat transport due to geologic storage of carbon dioxide in a geologic storage formation (sandstone aquifer) and to evaluate impacts of its saturated (i.e., porosity and intrinsic permeability) and unsaturated (i.e., residual water saturation, residual gas saturation, gas-entry pressure, and van Genuchten’s exponent) hydrological properties on the injection efficiency of carbon dioxide. The numerical simulation results show that the hydrological properties of the storage formation have significant effects on the injection efficiency of carbon dioxide. Under a constant injection pressure of carbon dioxide, the injection rate and injectivity of carbon dioxide increase rapidly during the early period of carbon dioxide injection (about 2 weeks) and then increases monotonously until the end of carbon dioxide injection. The injection rate and injectivity of carbon dioxide are most sensitive to variations in the intrinsic permeability and van Genuchten’s exponent of the storage formation. They increase significantly as the intrinsic permeability and van Genuchten’s exponent of the storage formation increase, whereas they decrease slightly as the porosity and the residual gas saturation of the storage formation increase. However, they are most insensitive to variations in the residual water saturation and the gas-entry pressure of the storage formation. These results indicate that the injection efficiency of carbon dioxide is significantly dependent on the relative permeability, which is a function of the unsaturated hydrological properties (i.e., residual water saturation, residual gas saturation, gas-entry pressure, and van Genuchten’s exponent) of the storage formation, as well as its saturated hydrological properties (i.e., porosity and intrinsic permeability) in different degrees. Therefore it may be

  2. Uncertainty assessment of carbon dioxide storage capacity evaluation in deep saline aquifer:a case study in Songliao Basin, China

    Science.gov (United States)

    Liu, Y.; Yang, X.

    2012-12-01

    Carbon dioxide Capture and Storage techniques (CCS) are one of the effective measures for reduction Carbon dioxide emissions to the atmosphere to mitigate the global warming. Among the Carbon dioxide geological storage options, deep saline aquifers offer the largest storage potential and are widely distributed throughout the Earth. Implementation of carbon dioxide capture and geological storage to reduce greenhouse gas emissions requires carbon dioxide storage capacity in deep saline aquifers. The storage capacity estimation depends on the storage trapping mechanisms and the availability, resolution and certainty of data. There are five different types of trapping mechanisms in deep saline aquifers namely structural and stratigraphic trapping, residual gas trapping, solubility trapping, mineral trapping and hydrodynamic trapping in which storage capacity by solubility trapping is the largest. The carbon dioxide storage capacities in deep saline aquifer can be evaluated by the method recommended by Carbon Sequestration Leadership Forum (CSLF), which mainly depends on the area of study area, thickness and porosity of sandstone, density and carbon dioxide content (mass fraction) in formation water at initial and saturated state. Hydrogeological parameters in aquifer are uncertainty because of uncertainty of measurement and the spatial variety, which leads evaluation uncertainty of carbon dioxide storage capacity. In this paper, acceptance of evaluated carbon dioxide storage capacity in deep saline aquifer caused by hydrological parameters was discussed based on geostatistical methods and stochastic simulation. The stratum named Yaojialing group in the center depressed area of Songliao Basin was chosen as study area because of the rich data. The porosity of sandstone, thickness ration of sandstone to stratum and the total dissolved solid in formation water were regarded as the main source of the uncertainty of carbon dioxide storage capacity evaluation in deep saline

  3. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    Science.gov (United States)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  4. Generation, capture, and utilization of industrial carbon dioxide.

    Science.gov (United States)

    Hunt, Andrew J; Sin, Emily H K; Marriott, Ray; Clark, James H

    2010-03-22

    As a carbon-based life form living in a predominantly carbon-based environment, it is not surprising that we have created a carbon-based consumer society. Our principle sources of energy are carbon-based (coal, oil, and gas) and many of our consumer goods are derived from organic (i.e., carbon-based) chemicals (including plastics, fabrics and materials, personal care and cleaning products, dyes, and coatings). Even our large-volume inorganic-chemicals-based industries, including fertilizers and construction materials, rely on the consumption of carbon, notably in the form of large amounts of energy. The environmental problems which we now face and of which we are becoming increasingly aware result from a human-induced disturbance in the natural carbon cycle of the Earth caused by transferring large quantities of terrestrial carbon (coal, oil, and gas) to the atmosphere, mostly in the form of carbon dioxide. Carbon is by no means the only element whose natural cycle we have disturbed: we are transferring significant quantities of elements including phosphorus, sulfur, copper, and platinum from natural sinks or ores built up over millions of years to unnatural fates in the form of what we refer to as waste or pollution. However, our complete dependence on the carbon cycle means that its disturbance deserves special attention, as is now manifest in indicators such as climate change and escalating public concern over global warming. As with all disturbances in materials balances, we can seek to alleviate the problem by (1) dematerialization: a reduction in consumption; (2) rematerialization: a change in what we consume; or (3) transmaterialization: changing our attitude towards resources and waste. The "low-carbon" mantra that is popularly cited by organizations ranging from nongovernmental organizations to multinational companies and from local authorities to national governments is based on a combination of (1) and (2) (reducing carbon consumption though greater

  5. Thermodynamic promotion of carbon dioxide-clathrate hydrate formation by tetrahydrofuran, cyclopentane and their mixtures

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens;

    2013-01-01

    Gas clathrate hydrate dissociation pressures are reported for mixtures of carbon dioxide, water and thermodynamic promoters forming structure II hydrates.Hydrate (H)-aqueous liquid (Lw)-vapour (V) equilibrium pressures for the ternary system composed of water, tetrahydrofuran (THF), and carbon...... dioxide (CO2), with 5.0mole percent THF in the initial aqueous phase, are presented in the temperature range from 283.3K to 285.2K. At 283.3K, the three-phase equilibrium pressure is determined to be 0.61MPa (absolute pressure).Four-phase hydrate (H)-aqueous liquid (Lw)-organic liquid (La)-vapour (V....... It is shown that upon adding THF to the pure aqueous phase to form a 4mass percent solution, the equilibrium pressure of the formed hydrates may be lowered compared to the ternary system of water, cyclopentane and carbon dioxide. © 2013 Elsevier Ltd....

  6. Thermodynamics of a post combustion hydrate-based carbon dioxide capture process

    International Nuclear Information System (INIS)

    Hydrates selectivity towards carbon dioxide is offering a promising route for carbon dioxide removal from flue gases. Hydrate-based CO2 capture process could substitute amine facilities widely implemented in gas treatment plants but suffering from oxidative degradation problems and high energy demand. In the framework of this thesis, we focus on phase equilibria that are involved in such process. Experimental dissociation conditions for clathrate hydrates of carbon dioxide and nitrogen, in the presence of some promoting molecules (Tetrahydrofuran, Tetrabutyl ammonium bromide and Tetrabutyl ammonium Fluoride ) are reported in the experimental section of this work. The data generated in this work along with literature data are compared to the model predictions. The developed model is based on the Cubic Plus Association (CPA) equation of state (EoS) for fluid phases combined to the van der Waals and Platteeuw's theory for the hydrate phase. (author)

  7. Synthesis and carbon dioxide sorption of layered double hydroxide/silica foam nanocomposites with hierarchical mesostructure

    KAUST Repository

    Fu, Liling

    2014-03-05

    Layered double hydroxides (LDHs) with a hierarchical mesostructure are successfully synthesized on mesoporous silica foams by simple impregnation and hydrothermal treatment. The as-synthesized LDH/silica foam nanocomposites show well-defined mesostructures with high surface areas, large pore volumes, and mesopores of 6-7 nm. The nanocomposites act as carbon dioxide (CO2) sorbents under simulated flue gas conditions. They also exhibit significantly enhanced CO2 capacities under high-pressure conditions and high CO2/N2 and CO2/CH4 selectivities. Respect the hierarchy: Hierarchical mesoporous layered double hydroxide (LDH) nanocomposites with high surface areas and large pore volumes are synthesized by controlled hydrothermal growth of LDH precursors on a mesoporous silica foam. The as-synthesized nanocomposites exhibit a significantly enhanced capacity and selectivity towards carbon dioxide, making them very promising candidates for carbon dioxide (CO2) separation applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carbon dioxide conversion by means of coplanar dielectric barrier discharges

    Science.gov (United States)

    Schiorlin, Milko; Klink, Rouven; Brandenburg, Ronny

    2016-08-01

    To face the worldwide problem of anthropogenic carbon dioxide (CO2) emission new techniques have to be developed. One approach for carbon capture utilization (CCU) is the conversion of CO2 to more valuable chemicals, e.g., carbon monoxide (CO) by means of non-thermal plasma generated at ambient conditions and supplied by excess energy from renewable sources. This paper reports about the effect of the admixture of inert gases, namely nitrogen or argon to CO2 in a coplanar dielectric barrier discharge (DBD). Systematic experiments were conducted to investigate the effects of applied voltage, frequency, flowrate and CO2 concentration in the influent. The composition of products, energy efficiency and yield were determined. Within the investigated parameter ranges, the maximum conversion of CO2 to CO efficiency of 1% was achieved when the specific input energy was 190 J L-1, whereas the maximum CO yield of 0.7% was achieved when the specific input energy was 210 J L-1. In conclusion, the energy efficiency can be significantly increased by operating the plasma in a diluted CO2 gas. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  9. It is time to put carbon dioxide to work

    Energy Technology Data Exchange (ETDEWEB)

    Lipinsky, E.S. [Battelle, Columbus, OH (United States)

    1993-12-31

    The need to control emissions of carbon dioxide into the atmosphere is the subject of vigorous debate at this time. There is growing evidence that rising levels of carbon dioxide increase global warming, with perhaps highly adverse impacts for the human economy. There are calls for carbon taxes and other harsh measures. Japan has established a national goal of holding carbon dioxide emissions in the year 2000 to 1990 levels. I hope that this conference will be a turning point in the United States position on this issue. The current major end uses for CO{sub 2} include refrigeration, beverage carbonation, soda ash production, fire fighting, and urea fertilizer production. They are all based on chemistry that would not surprise a good chemist of the 19th century. Consumption of carbon dioxide in synthesis of industrial chemicals is limited. Usually one explains low production of chemicals from a candidate feedstock in terms of poor availability, price, purity, or reactivity. We can eliminate the first three as the causes of the underutilization of carbon dioxide.

  10. Design and Test of Drilling and Completion Experimental System with Supercritical Carbon Dioxide

    OpenAIRE

    Du Yu-Kun; Wang Rui-He; Ni Hong-Jian; Yue Wei-Min

    2013-01-01

    Supercritical Carbon dioxide (SC-CO2) has many excellent properties, such as high rock-breaking efficiency, strong dissolved performance and good displacement efficiency. It is a high-efficiency fluid to exploit coal-bed methane, shale gas, heavy oil, low permeability reservoirs and other unconventional oil and gas reservoirs. Using SC-CO2 jet to break formation rock assisted the drill bit can get several times the penetration rate of conventional drilling and effectively enhance the oil reco...

  11. The accuracy of non-invasive carbon dioxide monitoring: a clinical evaluation of two transcutaneous systems.

    Science.gov (United States)

    Bolliger, D; Steiner, L A; Kasper, J; Aziz, O A; Filipovic, M; Seeberger, M D

    2007-04-01

    We determined the accuracy of two transcutaneous carbon dioxide monitoring systems (SenTec Digital Monitor with V-Sign Sensor and TOSCA 500 with TOSCA Sensor 92) for the measurement of single values and trends in the arterial partial pressure of carbon dioxide in 122 adult patients during major surgery and in 50 adult patients in the intensive care unit. One or several paired measurements were performed in each patient. The first measurement was used to determine the accuracy of a single value of transcutaneous carbon dioxide; the difference between the first and the last measurements was used to analyse the accuracy and to track trends. We defined a 95% limit of agreement of agreement between transcutaneous carbon dioxide partial pressure values derived from the two systems and arterial carbon dioxide values for both single values and trends as defined by our suggested limit of agreement. We conclude that these systems cannot replace conventional blood gas analysis in the clinical setting studied. PMID:17381578

  12. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation.

  13. Effect of an Internal Heat Exchanger on Performance of the Transcritical Carbon Dioxide Refrigeration Cycle with an Expander

    OpenAIRE

    Zhenying Zhang; Lili Tian; Yanhua Chen; Lirui Tong

    2014-01-01

    The effect of the internal heat exchanger (IHE) on the performance of the transcritical carbon dioxide refrigeration cycle with an expander is analyzed theoretically on the basis of the first and second laws of thermodynamics. The possible parameters affecting system efficiency such as heat rejection pressure, gas cooler outlet temperature, evaporating temperature, expander isentropic efficiency and IHE effectiveness are investigated. It is found that the IHE addition in the carbon dioxide re...

  14. Tipping points for carbon dioxide and air pollution benefits: an energy systems analysis of natural gas verses electric technologies in the U.S. buildings sector

    Science.gov (United States)

    Our analysis examines emission trade-offs between electricity and natural gas use in the buildings sector at the system level, including upstream emissions from the electric sector and natural gas mining emissions.

  15. Measurement and Modeling of Carbon Dioxide Solubility in Polar and Nonpolar Solvent

    Directory of Open Access Journals (Sweden)

    Hojatollah Ahmadi

    2012-08-01

    Full Text Available The solubility of gases is an important issue in the industries. Carbon Dioxide Through gas transmission line exists as sour gas therefore it is eliminated by solvent in industry. Carbone Dioxide is nonpolar molecule that has lower solubility in liquid solvent. In this study the solubility of carbon dioxide in some polar and nonpolar solvents (include Acetone, Acetic Acid, Benzene, Carbon Tetra Chloride, Chlorobenzene, Chloroform, Cyclo-hexane, Di-Methyl Formamid, Ethanol, Ethyl acetate, Methanol, NButanol, N-Heptane, N-Hexane at atmospheric pressure and temperatures range from 5-35ºC was determined. A laboratory unit was made for this experience and the solubility of CO2 was reported. The solubility of carbon dioxide in these solvent was low due to unreactivity and nonpolarity nature of these material. The solubility of CO2 in Ethyl Acetate and Methanol was highest and lowest respectively. This investigation showed that the solvent with carbonyl group have higher activity than other.

  16. Carbon Dioxide Sequestration, Weathering Approaches to

    Science.gov (United States)

    Schuiling, R. D.

    The aim of enhanced weathering is to capture CO2 by the carbonation of silicates, or by dissolution of these silicates during which the greenhouse gas CO2 is converted to bicarbonate in solution. Research in this field is still focused on increasing the rate of reaction, but the required additional technologies add considerably to the cost of the process. In this entry, the focus is on the optimization of the weathering conditions, by selecting the most reactive abundantly available minerals, grinding them, and spreading the grains over land. Thereafter nature takes its course. Since its formulation in the late 1990s, more and more people realize that this simple and natural approach may well turn out to be one of the most promising and environmentally friendliest ways to counteract climate change and ocean acidification

  17. Recent Progress in the Synthesis of Polymers Based on Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    H. Sugimoto; S. Inoue

    2005-01-01

    @@ 1Introduction Carbon dioxide is the most fundamental carbon resource indispensable for all living systems including human being via photosynthesis by green plants. On the other hand, chemical utilization of carbon dioxide has been rather limited.

  18. Systematic Analysis of Carbon Dioxide Activation of Waste Tire by Factorial Design

    Institute of Scientific and Technical Information of China (English)

    P.P.M. Fung; W.H-Cheung; G. McKay

    2012-01-01

    In this study, waste tire was used as raw material for the production of activated carbons through pyrolysis. 'Fire char was first produced by carbomzation at 550℃ under nitrogen. A two tactortal design was used to optimize the production of activated carbon from tire char. The effects of several factors controlling the activation process, such as temperature (.830-930℃), time (2-6h) and percentage ot carbon dioxide (70%-100%) were investigated. The production was described mathematically as a function of these three factors. First order modeling equations were developed for surface area, yield and mesopore volume. It was concluded that the yield, BET surface area and mesopore volume of activated carbon were most sensitive to activation temperature and time while percentage of carbon dioxide in the activation gas was a less significant factor.

  19. Carbon Dioxide Effects Research and Assessment Program. Carbon Dioxide Research Progress Report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dahlman, R. C.; Gross, T.; Machta, L.; Elliott, W.; MacCracken, M.

    1980-04-01

    Research on the global carbon cycle and the effects of increased carbon dioxide on the global climate system is reported. Environmental and societal effects related to CO/sub 2/ and environmental control technology for CO/sub 2/ are also discussed. Lists of research projects and reports and publications of the Carbon Dioxide and Climate Research Program are included. An expanded CO/sub 2/ monitoring network is providing increased coverage for interpretation of patterns of sources and sinks seasonal variability, and documentation of the global growth of CO/sub 2/. Modeling studies emphasized that knowledge of the transport and mixing of surface ocean waters is important in understanding deep oceanic circulation. Initial studies in the equatorial Pacific are helping quantify estimates of the amount of outgassing CO/sub 2/ from tropical waters. During fiscal year 1979, there was a substantial increase in appreciation of the role of the ocean in controlling not only atmospheric CO/sub 2/ concentrations but also the climatic response to changes in concentration. Model simulations of the effect of doubled CO/sub 2/ concentration carried out with fixed ocean temperatures a situation that is possible during perhaps the next 20 years, showed relatively small summer heating over land areas. On the other hand, simulations in which the oceanic temperatures could come into instantaneous equilibrium with atmospheric conditions continued to show global temperature increases of 3 +- 1.5/sup 0/C, accentuated at high latitudes. To improve understanding of possible regional climate changes, there were increased efforts to reconstruct regional climatic patterns prevailing during past warm periods that might serve as analogs of future climatic conditions. Particular attention was directed to the climates of the United States and other countries bordering the North Atlantic Ocean during the warm period 5000 to 7000 years ago.

  20. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide.

    Science.gov (United States)

    Liu, Hongmin; Lian, Zhiwei; Ye, Xiaojiang; Shangguan, Wenfeng

    2005-07-01

    Degradation of formaldehyde with different initial concentration over titanium dioxide was carried out in a photocatalytic reactor. Photocatalytic rates were well described by the simplified Langmuir-Hinshelwood model. The kinetic analysis shows that the apparent first-order reaction coefficient is lower and half-life of photocatalysis is longer for low concentration than for high concentration formaldehyde. A network formation model of the photocatalytic products was established. Experimental results and analysis demonstrate that carbon dioxide concentration and carbon monoxide concentration in gas phase vary exponentially with the illumination time and may be even higher than gas-phase formaldehyde concentration if there is much pre-adsorbed formaldehyde in adsorption equilibrium on catalysts before illumination. Carbon monoxide is found to be one of the by-products during formaldehyde photooxidation.

  1. Surface chemistry of polymers. The adsorption of carbon dioxide and sulfur dioxide on polyvinylidene chloride

    OpenAIRE

    Stoeckli, Fritz

    2007-01-01

    Isotherms for the adsorption of nitrogen (77 K), carbon dioxide (195-247 K) and sulfur dioxide (254-293 K) on polyvinylidene chloride have been measured volumetrically. The B.E.T. cross-sectional areas of 18 Å2 (CO2) and 24 Å2 (SO2) are comparable to liquid density values. The isosteric heat of adsorption of CO2 is constant for 0.2

  2. Numerical investigation on the expansion of supercritical carbon dioxide jet

    International Nuclear Information System (INIS)

    Supercritical carbon dioxide (SC-CO2) fluid is characterized by low rock breaking threshold pressure and high rock breaking rate. Meanwhile, SC-CO2 fluid has relatively low viscosity near to gas and high density near to liquid. So, it has great advantages in drilling and rock breaking over water. In this paper, numerical study of SC-CO2 flowing through a nozzle is presented. The purpose of this simulation is to ascertain why the SC-CO2 jet flow has better ability in drilling and rock breaking than the water jet flow. The simulation model was controlled by the RANS equations together with the continuity equation as well as the energy equation. The realizable k-epsilon turbulence model was adopted to govern the turbulent characteristics. Pressure boundary conditions were applied to the inlet and outlet boundary. The properties of carbon dioxide and water were described by UDF. It is found that: (1) under the same boundary conditions, the decay of dimensionless central axial velocity and dynamic pressure of water is quicker than that of the SC-CO2, and the core length of SC-CO2 jet is about 4.5 times of the nozzle diameter, which is 1 times longer than that of the water; (2) With the increase of inlet pressure or the decrease of outlet pressure, the dimensionless central axial velocity and dynamic pressure attenuation of water keeps the same, while the decay of central axial velocity of SC-CO2 turns gentle; (3) the change of central axial temperature of SC-CO2 is more complex than that of the water

  3. Metal Nanoparticles Preparation In Supercritical Carbon Dioxide Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Harry W. Rollins

    2004-04-01

    The novel optical, electronic, and/or magnetic properties of metal and semiconductor nanoparticles have resulted in extensive research on new methods for their preparation. An ideal preparation method would allow the particle size, size distribution, crystallinity, and particle shape to be easily controlled, and would be applicable to a wide variety of material systems. Numerous preparation methods have been reported, each with its inherent advantages and disadvantages; however, an ideal method has yet to emerge. The most widely applied methods for nanoparticle preparation include the sonochemical reduction of organometallic reagents,(1&2) the solvothermal method of Alivisatos,(3) reactions in microemulsions,(4-6) the polyol method (reduction by alcohols),(7-9) and the use of polymer and solgel materials as hosts.(10-13) In addition to these methods, there are a variety of methods that take advantage of the unique properties of a supercritical fluid.(14&15) Through simple variations of temperature and pressure, the properties of a supercritical fluid can be continuously tuned from gas-like to liquid-like without undergoing a phase change. Nanoparticle preparation methods that utilize supercritical fluids are briefly reviewed below using the following categories: Rapid Expansion of Supercritical Solutions (RESS), Reactive Supercritical Fluid Processing, and Supercritical Fluid Microemulsions. Because of its easily accessible critical temperature and pressure and environmentally benign nature, carbon dioxide is the most widely used supercritical solvent. Supercritical CO2 is unfortunately a poor solvent for many polar or ionic species, which has impeded its use in the preparation of metal and semiconductor nanoparticles. We have developed a reactive supercritical fluid processing method using supercritical carbon dioxide for the preparation of metal and metal sulfide particles and used it to prepare narrowly distributed nanoparticles of silver (Ag) and silver sulfide

  4. Experimental investigation of critical flow of supercritical carbon dioxide

    Science.gov (United States)

    Mignot, Guillaume Paul H.

    A blowdown facility (0.125 m3) has been built to perform measurements of the critical flow rate of carbon dioxide over a wide range of conditions up to a supercritical pressure of 240 bars and up to a supercritical temperature of 260°C, i.e. three times the critical pressure and two times the critical temperature. The influence of the rupture geometry was investigated using a set of exit pipes with varying entrance shape, roughness and length to diameter ratio ranging from 3.7 to 168. The study showed that a rough sharp edge entrance tube had a lower critical mass flow rate compared to a smooth round entrance tube. For length to diameter ratios larger than 14.7, although two-phase effects were observed, the fluid behavior could be accurately modeled using a homogeneous equilibrium model with friction. For length to diameter ratio smaller than 14.7, the critical mass flux results exhibited a plateau, indicating that the critical mass flow rate was governed by the vena contracta. Stagnation pressure, stagnation temperature and mass time traces were scaled successfully using the initial mass and the initial mass flow rate. An exception was observed for the high density low temperature case due to non equilibrium effects occurring within the vessel. The compressibility of the flow in association with the contraction induced multidimensional and repetitive shock structures within the tube. These have been predicted with computational fluid dynamics modeling for perfect gas conditions. To measure experimentally the fluid state within the tube, an optical absorption technique has been developed, calibrated and tested in two geometries and during an integral blowdown test. Results showed that this new technique lead to the correct qualitative trends in the pressure measurements but that it needed to be calibrated against a more accurate high pressure database obtained for carbon dioxide.

  5. Meridional carbon dioxide transport in the northern North Atlantic

    NARCIS (Netherlands)

    Stoll, M.H.C.; Aken, H.M. van; Baar, H.J.W. de; Boer, C.J. de

    1996-01-01

    Combination of estimated water transport and accurate measurements of total carbon dioxide (TCO2) on a hydrographic section at 58°N allows the assessment of meridional inorganic carbon transport in the northern North Atlantic Ocean. The transport has been decomposed into contributions from the large

  6. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon...

  7. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    the selective hydrogenation of unsaturated aldehydes in carbon dioxide medium. It was found that supported tungstosilicic acid catalysts and acidic resin Amberlyst-15 are very effective for performing aldol reactions. The positive influence of temperature and CO2-content on catalyst activity was studied...... useful for the phase behaviour investigations. The direct synthesis of dimethyl carbonate from methanol and CO2 has been investigated for quite a long time, however hardly any sufficiently active catalysts have been found so far. Nevertheless, optimisation of the phase equilibria of the reaction mixture...... studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap...

  8. Molecular Simulation of Carbon Dioxide Adsorbed in a Slit Carbon Pore

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both the grand canonical Monte Carlo and molecular dynamics simulation methods are used to investigate the adsorption and diffusion of carbon dioxide confined in a 1.86 nm slit carbon pore at 4 temperatures from subcritical (120 K) to supercritical (313 K) conditions. Layering transition, capillary condensation and adsorption hysteresis are found at 120 K. The microstructure of carbon dioxide fluid in the slit carbon pore is analyzed. The diffusion coefficients of carbon dioxide parallel to the slit wall are significantly larger than those normal to the slit wall.

  9. Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis

    OpenAIRE

    Kaur, Simran

    2013-01-01

    Chlorine dioxide is a selective oxidant and powerful antimicrobial agent. Previous work has shown that treatment of cantaloupe with chlorine dioxide gas at 5 mg/L for 10 minutes results in a 4.6 and 4.3 log reduction of E. coli O157:H7 and L. monocytogenes respectively. A significant reduction (p Current analytical methods for chlorine dioxide and chloroxyanions are only applicable to aqueous samples. Some of these methods have been used to determine surface residues in treated products by...

  10. Carbon dioxide emission from brickfields around Bangladesh

    Directory of Open Access Journals (Sweden)

    M.A. Imran

    2014-12-01

    Full Text Available The study was undertaken at six divisions of Bangladesh to investigate the CO2 emission from brickfields. to explore the rate of carbon emission over the last 10 years, based on existing technology for brick production. The finding reveals that there were more than 45,000 Brick kilns in Bangladesh which together account for about 95% of operating kilns including Bull's Trench Kiln, Fixed Chimney Kiln, Zigzag Kiln and Hoffman Kiln. These kilns were the most carbon emitting source but it varies on fuel type, kiln type and also for location. It has been found that, maximum carbon emission area was Chittagong, which was 93.150 with percentage of last 10 years and 9.310 per cent per year. Whereas Sylhet was lower carbon emission area indicating percentage 17.172 of last 10 years and 4.218 percent per year. It has been found that total annual amount of CO2 emission for 4 types brick kilns from Dhaka, Chittagong, Rajshahi, Khulana, Sylhet and Barisal were 8.862 Mt yr-1, 10.048 Mt yr-1, 12.783 Mt yr-1, 15.250 Mt yr-1, in the year of 2002, 2005, 2007 and 2010 respectively. In Mymensingh district, the maximum CO2 emission and coal consumption was obtained in Chamak brick field, which was 1882 tons and 950 tons, respectively and minimum was obtained in Zhalak brick field, which was 1039.5 tons and 525.0 tons, respectively during the year of 2013. The percentage in last 10 years of CO2 emission was 72.784 and per cent per year 7.970, which is very alarming for us. The estimates obtained from surveys and on-site investigations indicate that these kilns consume an average of 240 tons of coal to produce 1 million bricks. This type of coal has a measured calorific value of 6,400 KJ, heating value of coal is 20.93 GJ t-1 and it produces 94.61 TJ t-1 and 56.1 TJ t-1 CO2 from coal and natural gas, respectively.

  11. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.

    Science.gov (United States)

    Strudwick, Andrew James; Weber, Nils Eike; Schwab, Matthias Georg; Kettner, Michel; Weitz, R Thomas; Wünsch, Josef R; Müllen, Klaus; Sachdev, Hermann

    2015-01-27

    The realization of graphene-based, next-generation electronic applications essentially depends on a reproducible, large-scale production of graphene films via chemical vapor deposition (CVD). We demonstrate how key challenges such as uniformity and homogeneity of the copper metal substrate as well as the growth chemistry can be improved by the use of carbon dioxide and carbon dioxide enriched gas atmospheres. Our approach enables graphene film production protocols free of elemental hydrogen and provides graphene layers of superior quality compared to samples produced by conventional hydrogen/methane based CVD processes. The substrates and resulting graphene films were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Raman microscopy, sheet resistance and transport measurements. The superior quality of the as-grown graphene films on copper is indicated by Raman maps revealing average G band widths as low as 18 ± 8 cm(-1) at 514.5 nm excitation. In addition, high charge carrier mobilities of up to 1975 cm(2)/(V s) were observed for electrons in transferred films obtained from a carbon dioxide based growth protocol. The enhanced graphene film quality can be explained by the mild oxidation properties of carbon dioxide, which at high temperatures enables an uniform conditioning of the substrates by an efficient removal of pre-existing and emerging carbon impurities and a continuous suppression and in situ etching of carbon of lesser quality being co-deposited during the CVD growth. PMID:25398132

  12. Second Law of Thermodynamics Analysis of Transcritical Carbon Dioxide Refrigeration Cycle

    Institute of Scientific and Technical Information of China (English)

    杨俊兰; 马一太; 管海清; 李敏霞

    2004-01-01

    In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy analysis model is applied. The effects of heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures on the exergy loss, exergy efficiency and the coefficient of performance (COP) of the expansion turbine cycle are analyzed. It is found that the great percentages of exergy losses take place in the gas cooler and compressor. Moreover, heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures have strong influence on the exergy efficiency, COP and the exergy loss of each component. The analysis shows that there exists an optimal heat rejection pressure corresponding to the maximum exergy efficiency and COP, respectively. The results are of significance in providing theoretical basis for optimal design and the control of the transcritical carbon dioxide system with an expansion turbine.

  13. Environmental Remediation and Conversion of Carbon Dioxide (CO2 into Useful Green Products by Accelerated Carbonation Technology

    Directory of Open Access Journals (Sweden)

    Kwang-Suk You

    2010-01-01

    Full Text Available This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2, a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC. Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation.

  14. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  15. Monte-Carlo simulations of methane/carbon dioxide and ethane/carbon dioxide mixture adsorption in zeolites and comparison with matrix treatment of statistical mechanical lattice model

    Science.gov (United States)

    Dunne, Lawrence J.; Furgani, Akrem; Jalili, Sayed; Manos, George

    2009-05-01

    Adsorption isotherms have been computed by Monte-Carlo simulation for methane/carbon dioxide and ethane/carbon dioxide mixtures adsorbed in the zeolite silicalite. These isotherms show remarkable differences with the ethane/carbon dioxide mixtures displaying strong adsorption preference reversal at high coverage. To explain the differences in the Monte-Carlo mixture isotherms an exact matrix calculation of the statistical mechanics of a lattice model of mixture adsorption in zeolites has been made. The lattice model reproduces the essential features of the Monte-Carlo isotherms, enabling us to understand the differing adsorption behaviour of methane/carbon dioxide and ethane/carbon dioxide mixtures in zeolites.

  16. Measures for carbon dioxide problem and utilization of energy

    International Nuclear Information System (INIS)

    As global environment problems, there are water, expansion of deserts, weather, tropical forests, wild animals, ocean pollution, nuclear waste contamination, acid rain, ozone layer and so on, and population, foods, energy, and resources are the problems surrounding them. It is clear that these origins are attributed to the development and consumption largely dependent on the intention of developed countries and the population problem of developing countries. In this report, the discharge of carbon dioxide that causes greenhouse effect and its relation with energy are discussed. The increase of carbon dioxide concentration, its release from fossil fuel, the destruction of forests, the balance of carbon on the earth, the development of new energy such as solar energy, the transport of new energy, secondary energy system and the role of carbon dioxide, the transfer to low carbon fuel and the carbon reduction treatment of fuel, the utilization of unused energy and energy price, the efficiency of energy utilization, the heightening of efficiency of energy conversion, energy conservation and the breakaway from energy wasteful use culture, and the recovery, preservation and use of discharged carbon dioxide are described. (K.I.)

  17. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, M.B.; Ambus, P.; Michelsen, A.;

    2011-01-01

    Carbon dioxide (CO(2)) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO(2) concentration from c. 380 mu...

  18. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders;

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  19. Transcritical carbon dioxide small commercial cooling applications analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cecchinato, Luca; Corradi, Marco [Dipartimento di Fisica Tecnica, Universita di Padova, via Venezia 1, I-35131 Padova (Italy)

    2011-01-15

    This paper presents a project to develop an R744 commercial single door bottle cooler that is cost competitive and matches the performance of typical cost optimised R404A and R134a systems. Compressors with different displacement and efficiency values are evaluated for refrigerating systems with fin and tube and steel wire-on-tube gas coolers. Capillary tubes are tested. A methodology to properly sizing them and to optimize the combination of capillary tube and refrigerant charge is developed. The problem of optimal cycle high pressure is addressed and Liao's approximated solution questioned. Tests demonstrate that the CO{sub 2} energy consumption systems are higher than traditional ones especially at ambient temperatures above 25 C. Carbon dioxide appears to be a feasible option for stand-alone refrigerating equipment in terms of total equivalent warming impact (TEWI) compared to HFC refrigerants with actual single stage R744 compressor technology, only if the refrigeration units operate at medium-low gas cooler inlet temperature. (author)

  20. Applying Econometrics to the Carbon Dioxide “Control Knob”

    Directory of Open Access Journals (Sweden)

    Timothy Curtin

    2012-01-01

    Full Text Available This paper tests various propositions underlying claims that observed global temperature change is mostly attributable to anthropogenic noncondensing greenhouse gases, and that although water vapour is recognized to be a dominant contributor to the overall greenhouse gas (GHG effect, that effect is merely a “feedback” from rising temperatures initially resulting only from “non-condensing” GHGs and not at all from variations in preexisting naturally caused atmospheric water vapour (i.e., [H2O]. However, this paper shows that “initial radiative forcing” is not exclusively attributable to forcings from noncondensing GHG, both because atmospheric water vapour existed before there were any significant increases in GHG concentrations or temperatures and also because there is no evidence that such increases have produced measurably higher [H2O]. The paper distinguishes between forcing and feedback impacts of water vapour and contends that it is the primary forcing agent, at much more than 50% of the total GHG gas effect. That means that controlling atmospheric carbon dioxide is unlikely to be an effective “control knob” as claimed by Lacis et al. (2010.