WorldWideScience

Sample records for carbon dioxide corrosion

  1. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system co...

  2. Corrosion of Candidate High Temperature Alloys in Supercritical Carbon Dioxide

    Science.gov (United States)

    Parks, Curtis J.

    The corrosion resistance of three candidate alloys is tested in supercritical carbon dioxide (S-CO2) at different levels of temperature and pressure for up to 3000 hours. The purpose of the testing is to evaluate the compatibility of different engineering alloys in S-CO2 for use in a S-CO 2 Brayton cycle. The three alloys used are austenitic stainless steel 316, iron-nickel-base superalloy 718, and nickel-base superalloy 738. Each alloy is exposed to four combinations of temperature and pressure, consisting of either 550°C or 700°C at either 15 or 25 MPa for up to 1500 hours. At each temperature, an additional sample set is tested for 3000 hours and experienced an increase in pressure from 15 MPa to 25 MPa after 1500 hours of testing. All three alloys are successful in producing a protective oxide layer at the lower temperature of 550°C based on the logarithmic weight gain trends. At the higher temperature of 700°C, 316SS exhibits unfavourable linear weight gain trends at both pressures of 15 and 25 MPa. In comparison, IN-718 and IN-738 performs similarly in producing a protective oxide layer illustrated through a power weight gain relation. The effect of pressure is most pronounced at the operating temperature of 700°C, where the higher pressure of 25 MPa results in an increased rate of oxide formation. SEM analysis exposes a thin film oxide for both IN-718 and IN-738 but severe intergranular corrosion is exhibited by IN-738. Based on the testing conducted, both alloys show favourable characteristics for use in S-CO 2 conditions up to 700°C, but further testing is required to characterize the effect of the intergranular corrosion on the stability of oxide in IN-738. 316SS provided favourable results for use in temperatures of 550°C, but the protective oxide deteriorated at an operating temperature of 700°C.

  3. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  4. Solving corrosion problems at the NEA Bellingham Massachusetts carbon dioxide recovery plant

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, T.R. [Duke/Fluor Daniel, Charlotte, NC (United States); Hansen, D.A. [Fluor Daniel Inc., Houston, TX (United States); Mariz, C.L. [Fluor Daniel Inc., Irvine, CA (United States); McCullough, J.G. [Proton Technology Ltd., Hawthorne, NY (United States)

    1999-11-01

    The Northeast Energy Associates (NEA) carbon dioxide recovery plant at Bellingham, MA utilizes a 30 wt % monoethanol amine (MEA) solution with a proprietary additive to inhibit the corrosion of carbon steel. This plant was the first application of this technology to gas turbine flue gas, which has high concentrations of oxygen (typically 13 vol. %) and low concentrations of carbon dioxide (typically 3 vol. %). Prior to the operation of the Bellingham plant, the technology had been applied to boiler flue gas streams, which typically contain more than 8 vol. % carbon dioxide and 2--4 vol. % oxygen. In this first application of the technology to gas turbine flue gas, unexpected corrosion occurred in both the absorber and stripper towers. The causes of the corrosion and its successful elimination are the subject of this paper.

  5. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion.

    Science.gov (United States)

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2014-07-01

    The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus.

  6. Predicting the adsorption properties of carbon dioxide corrosion inhibitors using a structure-activity relationship

    Energy Technology Data Exchange (ETDEWEB)

    Kinsella, B.; De Marco, R.; Jefferson, A.; Pejcic, B. [Western Australian Corrosion Research Group, Department of Applied Chemistry, Curtin University of Technology, GPO Box U1987, Perth, 6845, WA (Australia); Durnie, W. [Nalco/Exxon Energy Chemicals Ltd, Hardley, Hythe, Southampton (Australia)

    2004-07-01

    This paper presents a study of the influence of various chemical inhibitors on the corrosion rate of mild steel in brine electrolyte under carbon dioxide conditions. The performances as corrosion inhibitors were fitted to a Temkin adsorption isotherm, and various constants of adsorption (i.e., adsorption equilibrium constants and molecular interaction constants) have been obtained. The inhibitor adsorption mechanism has been discussed in terms of thermodynamics (i.e., {delta}H, {delta}G and {delta}S) and this revealed that some compounds chemisorbed onto the steel electrode. In addition, molecular modelling was undertaken using PCSPARTAN Plus and HyperChem Professional, and the various molecular parameters have been correlated with the thermodynamic adsorption properties of the inhibitors. A four-parameter fit for both negative and positive charged molecules is discussed. (authors)

  7. Basic aspects of the carbon dioxide corrosion in oil and gas production; Aspectos basicos de la corrosion por dioxido de carbono en la produccion de petroleo y gas

    Energy Technology Data Exchange (ETDEWEB)

    Angulo Macias, J.

    2010-07-01

    Carbon dioxide (CO{sub 2}) is a non-corrosive gas within the driven conditions in the oil and gas industry, but the presence of water converts it, maybe, in the most important component in the corrosive processes in this industry. Corrosion has an important impact inside the oil and gas companies, no only in economics but also in safety, environmental and social aspects. After several decades of investigation of these corrosion processes, there are still several mechanisms not fully understood. (Author) 19 refs.

  8. Inhibiting properties and adsorption of an amine based fatty acid corrosion inhibitor on carbon steel in aqueous carbon dioxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Buchweishaija, Joseph

    1997-12-31

    Carbon dioxide corrosion is a major corrosion problem in oil and gas production systems and many organic inhibitors have been tested and used to protect the substrate from corrosion. This thesis studies the mechanism of interaction of the inhibitor molecule with the metallic substrate and how this affects the dissolution rate of the metal. The performance of a commercial amine based fatty acid corrosion inhibitor has been investigated using rotating cylinder electrodes and carbon steel electrodes in CO{sub 2} saturated formation water in the temperature range between 35 to 80{sup o}C. The corrosion process was monitored by electrochemical impedance measurements, and at the end of each experiment full polarization curves were recorded. When the inhibitor was applied on noncorroded electrodes, high inhibitor performance, over 99.7%, was observed independent of temperature. On precorroded electrodes inhibitor performance was found to depend on temperature and time of precorrosion. Above 60{sup o}C, the inhibitor performance decreased with increasing time of precorrosion, presumably because of the formation of a corrosion film of either iron carbonate or a combination of iron carbonate and iron carbide which prevent the inhibitor from reaching the surface. The inhibitor protection efficiency was assumed to be associated with the degree of inhibitor coverage at the material surface, and adsorption isotherms have been calculated in the concentration range between 0.1 ppm and 100 ppm. A Langmuir isotherm was found to give the best fit. The inhibitor performance on a 2 days precorroded rotating electrode was investigated at different solution pH ranging between 4.5 and 6.5 at 35{sup o}C. 130 refs., 80 figs., 22 tabs.

  9. Investigation on carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water

    Energy Technology Data Exchange (ETDEWEB)

    Mu, L.J. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: mulijunxjtu@126.com; Zhao, W.Z. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-01-15

    The carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water is studied by potentiodynamic curve and electrochemical impedance spectroscopy (EIS); the micro-structure and composition of the corrosion scale formed at high-temperature and high-pressure are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that 13Cr stainless steel is in passive state in the stratum water, the passive current density increases and the passive potential region decreases with increasing temperature. The corrosion scale formed at high-temperature and high-pressure is mainly composed of iron/chromium oxides and a little amount of FeCO{sub 3}.

  10. Corrosion of reinforcement induced by environment containing chloride and carbon dioxide

    Indian Academy of Sciences (India)

    Vladimír Živica

    2003-10-01

    Reinforced concrete structures during their exploitation may be exposed to the common action of carbonation and chlorides causing corrosion of steel reinforcement. Therefore, the related data seem to be interesting and important when the evaluation of the service life of the structures is the object of interest. This fact was a motivation for the present experimental study on the sequence of action of chloride solutions and carbonation of the embedding concrete. The results obtained show that carbonation of concrete foregoing the action of chloride solutions may intensify the process of corrosion of steel reinforcement in comparison to the converse sequence of the action of mentioned media. At the same time the natrium chloride solution has been shown as a more aggressive medium opposite to the calcium and magnesium chloride solutions.

  11. The microwave assisted synthesis of 1-alkyl-3-methylimidazolium bromide as potential corrosion inhibitor toward carbon steel in 1 M HCl solution saturated with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Pasasa, Norman Vincent A., E-mail: npasasa@gmail.com; Bundjali, Bunbun; Wahyuningrum, Deana [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10 Bandung, Jawa Barat (Indonesia)

    2015-09-30

    Injection of corrosion inhibitor into the fluid current of oil and gas pipelines is an effective way to mitigate corrosion rate on the inner-surface parts of pipelines, especially carbon steel pipelines. In this research, two alkylimidazolium ionic liquids, 1-decyl-3-methylimidazolium bromide (IL1) and 1-dodecyl-3-methylimidazolium bromide (IL2) have been synthesized and studied as a potential corrosion inhibitor towards carbon steel in 1 M HCl solution saturated with carbon dioxide. IL1 and IL2 were synthesized using microwave assisted organic synthesis (MAOS) method. Mass Spectrometry analysis of IL1 and IL2 showed molecular mass [M-H+] peak at 223.2166 and 251.2484, respectively. The FTIR,{sup 1}H-NMR and {sup 13}C-NMR spectra confirmed that IL1 and IL2 were successfully synthesized. Corrosion inhibition activity of IL1 and IL2 were determined using weight loss method. The results showed that IL1 and IL2 have the potential as good corrosion inhibitors with corrosion inhibition efficiency of IL1 and IL2 are 96.00% at 100 ppm (343 K) and 95.60% at 50 ppm (343 K), respectively. The increase in the concentration of IL1 and IL2 tends to improve their corrosion inhibition activities. Analysis of the data obtained from the weight loss method shows that the adsorption of IL1 and IL2 on carbon steel is classified into chemisorption which obeys Langmuir’s adsorption isotherm.

  12. Pitting Corrosion Behavior of Stainless Steel 304 in Carbon Dioxide Environments

    Institute of Scientific and Technical Information of China (English)

    LI Guo-min; GUO Xing-peng; ZHENG Jia-shen

    2004-01-01

    The pitting corrosion behavior of stainless steel (SS) 304 in aqueous CO2-H2S-Cl- environment was investigated by potentiodynamic cyclic anodic polarization and electron probe microanalysis (EPMA). The experimental results show that the pitting corrosion susceptivity of SS 304 increases with the increase of temperature. Chlorine ion is the prerequisite for pitting corrosion of SS 304 in H2S-CO2 environments. There is a linear relationship between the pitting corrosion potential (Eb-100) and chlorine ion concentration, and Eb-100 becomes noble with increasing pH value of the solution with or without H2S. pH value has little effect on the protection potential with the presence of H2S. H2S increases strongly the pitting corrosion susceptivity and deteriorates the pitting corrosion resistance of SS 304 in CO2 environments. The observations by EPMA show that SS 304 in CO2-saturated NaCl solution (3 %) with H2S suffers pitting corrosion accompanied with intergranular corrosion.

  13. Corrosion in Supercritical carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark

    2013-12-10

    The supercritical CO{sub 2} Brayton cycle is gaining importance for power conversion in the Generation IV fast reactor system because of its high conversion efficiencies. When used in conjunction with a sodium fast reactor, the supercritical CO{sub 2} cycle offers additional safety advantages by eliminating potential sodium-water interactions that may occur in a steam cycle. In power conversion systems for Generation IV fast reactors, supercritical CO{sub 2} temperatures could be in the range of 30°C to 650°C, depending on the specific component in the system. Materials corrosion primarily at high temperatures will be an important issue. Therefore, the corrosion performance limits for materials at various temperatures must be established. The proposed research will have four objectives centered on addressing corrosion issues in a high-temperature supercritical CO{sub 2} environment: Task 1: Evaluation of corrosion performance of candidate alloys in high-purity supercritical CO{sub 2}: The following alloys will be tested: Ferritic-martensitic Steels NF616 and HCM12A, austenitic alloys Incoloy 800H and 347 stainless steel, and two advanced concept alloys, AFA (alumina forming austenitic) steel and MA754. Supercritical CO{sub 2} testing will be performed at 450°C, 550°C, and 650°C at a pressure of 20 MPa, in a test facility that is already in place at the proposing university. High purity CO{sub 2} (99.9998%) will be used for these tests. Task 2: Investigation of the effects of CO, H{sub 2}O, and O{sub 2} impurities in supercritical CO{sub 2} on corrosion: Impurities that will inevitably present in the CO{sub 2} will play a critical role in dictating the extent of corrosion and corrosion mechanisms. These effects must be understood to identify the level of CO{sub 2} chemistry control needed to maintain sufficient levels of purity to manage corrosion. The individual effects of important impurities CO, H{sub 2}O, and O{sub 2} will be investigated by adding them

  14. Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution

    Directory of Open Access Journals (Sweden)

    Rihan Omar Rihan

    2012-01-01

    Full Text Available X52 and X60 high strength low alloy (HSLA steels are widely used in the construction of petroleum pipelines. This paper discusses the corrosion resistance of X52 and X60 steels in CO2 containing saltwater at pH 4.4 and 50 ºC. A circulating flow loop system inside an autoclave was used for conducting the experimental work. The rotating impeller speed was 2000 rpm. The corrosion rate was monitored using in situ electrochemical methods such as potentiodynamic sweep, linear polarization resistance, and electrochemical impedance spectroscopy (EIS methods. Results indicated that the corrosion rate of X60 steel is relatively higher than that of X52 steel.

  15. Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution

    Directory of Open Access Journals (Sweden)

    Rihan Omar Rihan

    2013-02-01

    Full Text Available X52 and X60 high strength low alloy (HSLA steels are widely used in the construction of petroleum pipelines. This paper discusses the corrosion resistance of X52 and X60 steels in CO2 containing saltwater at pH 4.4 and 50 ºC. A circulating flow loop system inside an autoclave was used for conducting the experimental work. The rotating impeller speed was 2000 rpm. The corrosion rate was monitored using in situ electrochemical methods such as potentiodynamic sweep, linear polarization resistance, and electrochemical impedance spectroscopy (EIS methods. Results indicated that the corrosion rate of X60 steel is relatively higher than that of X52 steel.

  16. Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution

    OpenAIRE

    Rihan Omar Rihan

    2013-01-01

    X52 and X60 high strength low alloy (HSLA) steels are widely used in the construction of petroleum pipelines. This paper discusses the corrosion resistance of X52 and X60 steels in CO2 containing saltwater at pH 4.4 and 50 ºC. A circulating flow loop system inside an autoclave was used for conducting the experimental work. The rotating impeller speed was 2000 rpm. The corrosion rate was monitored using in situ electrochemical methods such as potentiodynamic sweep, linear polarization resistan...

  17. Carbon dioxide corrosion: Modelling and experimental work applied to natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Loldrup Fosboel. P.

    2007-10-15

    CO{sub 2} corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO{sub 2} corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system consists mainly of CO{sub 2}-Na{sub 2}CO{sub 3}-NaHCO{sub 3}-MEG-H{sub 2}O. Sodium is injected in the pipelines as NaOH in order to pH-stabilize the pipeline to avoid corrosion and MEG is injected in order to prevent gas hydrates. There are a great number of models available in the literature which may predict CO{sub 2} corrosion. These models are not very accurate and assume ideality in the main part of the equation. This thesis deals with aspect of improving the models to account for the non-ideality. A general overview and extension of the theory behind electrochemical corrosion is presented in chapter 2 to 4. The theory deals with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO{sub 2} corrosion is shown in chapter 5 and possible extensions of the models are discussed. A list of literature cites is given in chapter 6. The literature review in chapter 5 shows how FeCO{sub 3} plays a main part in the protection of steel. Especially the solubility of FeCO{sub 3} is an important factor. Chapter 7 discusses and validates the thermodynamic properties of FeCO{sub 3}. The study shows that there is a discrepancy in the properties of FeCO{sub 3}. Sets of consistent thermodynamic properties of FeCO{sub 3} are given. A mixed solvent electrolyte model is regressed in chapter 8 for the CO{sub 2}-Na{sub 2}CO{sub 3}-NaHCO{sub 3}-MEG-H{sub 2}O system. Parameters of the extended UNIQUAC model is fitted to literature data of VLE, SLE, heat excess and validated against heat capacity data. The model is also

  18. Corrosion due to use of carbon dioxide for enhanced oil recovery. Final report. SumX No. 78-003

    Energy Technology Data Exchange (ETDEWEB)

    DeBerry, D.W.; Clark, W.S.

    1979-09-01

    This study documents the specific effects of CO/sub 2/ on corrosion and identifies promising methods for controlling corrosion in fields using CO/sub 2/ injection. Information has been assembled on: CO/sub 2/ corrosion problems in general, surface and downhole corrosion problems specifically associated with CO/sub 2/ enhanced oil recovery, and methods to reduce corrosion problems in CO/sub 2/ environments. Corrosion mechanisms, kinetic behavior, and the effects of various parameters on corrosion by CO/sub 2/ are presented in this study. Engineering metals are not attacked by CO/sub 2/ under oil field environments unless liquid water is also present. Plain and low alloy steels are attacked by mixtures of CO/sub 2/ and liquid water. Attack on these bare metals may become serious at a CO/sub 2/ partial pressure as low as 4 psi and it increases with CO/sub 2/ partial pressure although not in direct proportion. Fluid flow rate is an important factor in CO/sub 2//water corrosion. Practically all stainless steels and similar resistant alloys are not particularly subject to corrosion by CO/sub 2//water mixtures alone, even at high CO/sub 2/ pressures. Elevated levels of CO/sub 2/ can aggravate the corrosive effects of other species such as hydrogen sulfide, oxygen, and chloride. Mixtures of CO/sub 2/, carbon monoxide (CO), and water can cause stress corrosion cracking of plain steels. Corrosion problems in CO/sub 2/ systems should be circumvented when possible by avoiding combination of the corrosive components. Although water cannot be excluded throughout the CO/sub 2/ injection-oil production-CO/sub 2/ and water reinjection chain, air in-leakage can be minimized and oxygen scavengers used to remove any residual. Exclusion of oxygen is important to the successful use of other corrosion control measures. A discussion is given of the main control methods including metal selection, protective coatings and nonmetallic materials, and chemical inhibition. (DLC)

  19. Inhibitor treatment program for chlorine dioxide corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Edmondson, J.G.; Holder, E.P.

    1991-11-12

    This patent describes a method of inhibiting corrosion by chlorine dioxide in oil field waterflood systems by adding a sufficient amount of a corrosion inhibiting composition. It comprises a phosphonate, a copolymer consisting of repeating units of acrylic acid/allyl hydroxy propyl sulfonate ether, and a permangante.

  20. Carbon Dioxide Absorbents

    Science.gov (United States)

    1950-05-17

    carbondioxide content of the solution was then determined. A gas mixture containing 2.6% carbon dioxide and 97.4% nitrogen was prepared in the...which carbon dioxide is removed by heat0 Since this step is usually carried out by "steam stripping ", that is, contacting the solution at its boiling...required to produce the steam required for stripping the carbon dioxide from the s olution. The method ueed in this investigation for determining the

  1. CARBON DIOXIDE REDUCTION SYSTEM.

    Science.gov (United States)

    CARBON DIOXIDE , *SPACE FLIGHT, RESPIRATION, REDUCTION(CHEMISTRY), RESPIRATION, AEROSPACE MEDICINE, ELECTROLYSIS, INSTRUMENTATION, ELECTROLYTES, VOLTAGE, MANNED, YTTRIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, NICKEL.

  2. Erosion-corrosion in carbon dioxide saturated systems in presence of sand, inhibitor, oil, and high concentration of salt

    Science.gov (United States)

    Hassani, Shokrollah

    Oil and gas production is usually accompanied by formation water which typically contains high levels of chloride. Some effects of chloride concentration on corrosion are not widely known in the literature, and this can result in misleading conclusions. One goal of this research was to contribute to a better understanding of the effects of chloride concentration in CO2 corrosion. Experimental and theoretical studies conducted in the present work have shown that increasing the NaCl concentration in solution has three important effects on corrosion results. First, standard pH meter readings in high NaCl concentration solutions require corrections. Second, increasing the NaCl concentration decreases the CO2 concentration in solution and therefore contributes to a decrease in the corrosion rate. Third, increasing the NaCl concentration increases the solubility of FeCO3 and therefore reduces the likelihood of forming an iron carbonate scale. High NaCl concentration also decreases the sand erosion rate of the metal slightly by increasing the density and viscosity of the liquid. There are two main contributions of this research. The first contribution is the experimental characterization of inhibited erosion-corrosion behavior of mild steel under CO2-saturated conditions with a high salt concentration. Chemical inhibition is one the most important techniques for controlling erosion-corrosion in offshore mild steel pipelines, tubing and pipe fittings in oil and gas industry. The second contribution is the introduction of a new approach for predicting inhibited erosion-corrosion in mild steel pipes including the effects of flow and environmental conditions, sand production, and an oil phase. Sand erosion can decrease the efficiency of corrosion protection systems including iron-carbonate scale formation and chemical inhibition. The need to be able to predict inhibitor performance under sand production conditions is particularly acute when the wells are deep or off

  3. Study on metal corrosion caused by chlorine dioxide of various purities

    Institute of Scientific and Technical Information of China (English)

    崔崇威; 黄君礼; 许晶

    2004-01-01

    Weight lost method was used to comparatively study the corrosion behavior of four different metals under the dosage of chlorine dioxide, chlorine and their mixture respectively. The experimental results indicated that chlorine causes the most serious corrosion of carbon steel, and the higher the concentration of chlorine, the more serious the corrosion. On the contras, metals corrosion is the least serious in the case of chlorine dioxide.The results further revealed that chlorine dioxide is the most effective water treatment reagent, making it the best choice to use extensively in circulated cooling water disinfection and corrosion control.

  4. Carbon Dioxide Fountain

    Science.gov (United States)

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  5. Carbon Dioxide and Climate.

    Science.gov (United States)

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  6. Encapsulated liquid sorbents for carbon dioxide capture.

    Science.gov (United States)

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  7. Carbon dioxide sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  8. Influence of chloride and carbon dioxide on general and crevice corrosion of steam turbine materials for geothermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, HaiFeng; Niu, Libin; Oishi, Shuji; Takaku, Hiroshi [Shinshu Univ. (Japan). Faculty of Engineering; Shiokawa, Kunio; Yamashita, Mitsuo [Fuji Electric Advanced Technology Co. Ltd. (Japan); Sakai, Yoshihiro [Fuji Electric Systems Co. Ltd. (Japan)

    2006-09-15

    The influence of chloride and CO{sub 2} on general and crevice corrosion of steam turbine materials for geothermal power plants was investigated in two simulated geothermal waters. The general corrosion rates of the rotor steels with a lower Cr content were accelerated due to the CO{sub 2} in the water, while the corrosion rates of the blade steels with a higher Cr content were controlled mainly by the chloride concentration in the waters. Concerning the crevice corrosion behavior, the galvanic corrosion effects in each of the waters were confirmed for the rotor steels with lower corrosion potentials than those of the blade materials, and almost no difference in corrosion behavior was observed between the two waters tested. Regarding general and crevice corrosion in the two simulated geothermal waters, it was determined that a newly developed rotor material and also an improved heat-treated blade material are promising for actual usage in geothermal power plants. (orig.)

  9. CARBON DIOXIDE SEPARATION BY SELECTIVE PERMEATION.

    Science.gov (United States)

    CARBON DIOXIDE , SEPARATION), (*PERMEABILITY, CARBON DIOXIDE ), POROUS MATERIALS, SILICON COMPOUNDS, RUBBER, SELECTION, ADSORPTION, TEMPERATURE, PRESSURE, POLYMERS, FILMS, PLASTICS, MEMBRANES, HUMIDITY.

  10. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  11. Electrochemical Investigation of the Corrosion of Different Microstructural Phases of X65 Pipeline Steel under Saturated Carbon Dioxide Conditions

    Directory of Open Access Journals (Sweden)

    Yuanfeng Yang

    2015-05-01

    Full Text Available The aim of this research was to investigate the influence of metallurgy on the corrosion behaviour of separate weld zone (WZ and parent plate (PP regions of X65 pipeline steel in a solution of deionised water saturated with CO2, at two different temperatures (55 °C and 80 °C and at initial pH~4.0. In addition, a non-electrochemical immersion experiment was also performed at 80 °C in CO2, on a sample portion of X65 pipeline containing part of a weld section, together with adjacent heat affected zones (HAZ and parent material. Electrochemical impedance spectroscopy (EIS was used to evaluate the corrosion behaviour of the separate weld and parent plate samples. This study seeks to understand the significance of the different microstructures within the different zones of the welded X65 pipe in CO2 environments on corrosion performance; with particular attention given to the formation of surface scales; and their composition/significance. The results obtained from grazing incidence X-ray diffraction (GIXRD measurements suggest that, post immersion, the parent plate substrate is scale free, with only features arising from ferrite (α-Fe and cementite (Fe3C apparent. In contrast, at 80 °C, GIXRD from the weld zone substrate, and weld zone/heat affected zone of the non-electrochemical sample indicates the presence of siderite (FeCO3 and chukanovite (Fe2CO3(OH2 phases. Scanning Electron Microscopy (SEM on this surface confirmed the presence of characteristic discrete cube-shaped crystallites of siderite together with plate-like clusters of chukanovite.

  12. Aspects of carbon dioxide utilization

    Energy Technology Data Exchange (ETDEWEB)

    Omae, Iwao [Omae Research Laboratories, 335-23 Mizuno, Sayama, Saitama 350-1317 (Japan)

    2006-06-30

    Carbon dioxide reacts with hydrogen, alcohols, acetals, epoxides, amines, carbon-carbon unsaturated compounds, etc. in supercritical carbon dioxide or in other solvents in the presence of metal compounds as catalysts. The products of these reactions are formic acid, formic acid esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, polycarbonate (bisphenol-based engineering polymer), aliphatic polycarbonates, etc. Especially, the productions of formic acid, formic acid methyl ester and dimethylformamide with a ruthenium catalyst; dimethyl carbonate and urethanes with a dialkyltin catalyst; 2-pyrone with a nickel-phosphine catalyst; diphenyl carbonate with a lead phenoxide catalyst; the alternating copolymerization of carbon dioxide and epoxides with a zinc catalyst has attracted attentions as the industrial utilizations of carbon dioxide. The further development of these production processes is expected. (author)

  13. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  14. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  15. Carbon fuel cells with carbon corrosion suppression

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  16. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy.

  17. Improvement of carbon corrosion resistance through heat-treatment in polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Y.J.; Oh, H.S.; Kim, H. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering

    2010-07-01

    Electrochemical corrosion of carbon in the catalyst layer of polymer electrolyte membrane fuel cells (PEMFCs) is a critical factor in limiting their durability. The corrosion rate increases during the iterative abnormal operating conditions known as reverse current phenomenon. The corrosion causes a decrease of the active surface of the platinum (Pt) catalyst. The graphitization of carbon increases corrosion resistance, and the hydrophobicity of the carbon surface can also play an important role in decreasing carbon corrosion. This study investigated the effect of heat-treating carbon nanofibers (CNFs) for use in PEMFC applications. The aim of the study was to determine if heat treatments modified the carbon surface by eliminating the oxygen functional group and increasing hydrophobicity. The electrochemical carbon corrosion of CNFs were compared after heat treatments at various temperatures. Mass spectrometry was used to measure electrochemical carbon corrosion by monitoring the amounts of carbon dioxide (CO{sub 2}) produced during the electrochemical oxidation process. 2 refs.

  18. Carbon dioxide corrosion inhibition of N80 carbon steel in single liquid phase and liquid/particle two-phase flow by hydroxyethyl imidazoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, Liaoning Province (China); Department of Applied Chemistry, Shenyang Institute of Chemical Technology, Shenyang 110142 (China); Zheng, Y.G. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, Liaoning Province (China); Okafor, P.C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, Liaoning Province (China); Department of Pure and Applied Chemistry, University of Calabar, Calabar (Nigeria)

    2009-07-15

    CO{sub 2} corrosion inhibition of N80 steel in liquid single-phase and liquid/particle two-phase flow by 2-undecyl-1-hydroxyethyl imidazoline (HEI-11) and 2-undecyl-1-hydroxyethyl-1-hydroxyethyl quaternary imidazoline (HQI-11) was investigated using weight loss, potentiodynamic polarization, EIS, and scanning electron microscope (SEM) techniques. The results show that the corrosion rate in the absence and presence of the imidazolines is strongly dependent on the flow condition and presence of entrained sand particles. The imidazolines function via a mixed-type corrosion inhibition mechanism. The inhibition efficiencies of the imidazolines followed the trend HQI-11 > HEI-11 in all the systems studied. Inhibition mechanism has been discussed in relation to the polycentric adsorption sites on the imidazoline molecules. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Reducing carbon dioxide to products

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  20. Carbon Dioxide Flux Measurement Systems

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The...

  1. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  2. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  3. High capacity carbon dioxide sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  4. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  5. 21 CFR 582.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  6. Atmospheric corrosion of carbon steel resulting from short term exposures

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, R.; Cook, D.C.; Perez, T.; Reyes, J. [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States)

    1998-12-31

    The study of corrosion products from short term atmospheric exposures of carbon steel, is very important to understand the processes that lead to corrosion of steels, and ultimately improve the performance of such steel in highly corrosive environments. Many regions along the Gulf of Mexico have extremely corrosive environments due to high mean annual temperature, humidity, time-of-wetness and every high atmospheric pollutants. The process the formation of corrosion products resulting from short term exposure of carbon steel, both as a function of environmental conditions and exposure time, has been investigated. Two sets of coupons were exposed at marine and marine locations, in Campeche, Mexico. Each set was exposed between 1 and 12 months to study the corrosion as a function of time. During the exposure periods, the relative humidity, rainfall, mean temperature, wind speed and wind direction were monitored along with the chloride and sulfur dioxide concentrations in the air. The corroded coupons were analyzed by Moessbauer, Raman, Infrared spectroscopies and X-ray diffraction in order to completely identify the oxides and map their location in the corrosion coating. Scattering and transmission Moessbauer analysis showed some layering of the oxides with lepidocrocite and akaganeite closer to the surface. The fraction of akaganeite phase increased at sites with higher chloride concentrations. A detailed analysis on the development of the oxide phases as a function of exposure time and environmental conditions will be presented. (Author)

  7. Method for carbon dioxide splitting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    2017-02-28

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0carbon dioxide, and heating to a temperature less than approximately 1400 C, thereby producing carbon monoxide gas and the original metal oxide compound.

  8. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  9. Perspectives in the use of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Aresta Michele

    1999-01-01

    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  10. GEOLOGICAL STORAGE OF CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    Iva Kolenković

    2014-07-01

    Full Text Available Carbon dioxide geological storage represents a key segment of the carbon capture and storage system (CCS expected to significantly contribute to the reduction of its emissions, primarily in the developed countries and in those that are currently being industrialised. This approach to make use of the subsurface is entirely new meaning that several aspects are still in research phase. The paper gives a summary of the most important recent results with a short overview the possibilities in the Republic of Croatia. One option is to construct underground carbon dioxide storage facilities in deep coal seams or salt caverns. Another would be to use the CO2 in enhanced oil and gas recovery projects relying on the retention of the carbon dioxide in the deep reservoir because a portion of the injected gas is not going be produced together with hydrocarbons. Finally, the greatest potential estimated lies in depleted hydrocarbon reservoirs with significantly reduced reservoir pressure, as well as in the large regional units - layers of deep saline aquifers that extend through almost all sedimentary basins (the paper is published in Croatian.

  11. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  12. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  13. Use of supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masayuki (Niigata Univ., Faculty of Engineering, Niigata, (Japan))

    1989-09-25

    Supercritical fluid extraction is a novel diffusion and separation technique which exploits simultaneously the increase of vapor pressure and the difference of chemical affinities of fluids near the critical point. A solvent which is used as the supercritical fluid has the following features: the critical point exists in the position of relatively ease of handling, the solvent is applicable to the extraction of a physiological active substance of thermal instability. Carbon dioxide as the solvent is non-flammable, non-corrosive, non-toxic, cheap, and readily available of high purity. The results of studies on the use of supercritical carbon dioxide (SC-CO{sub 2}) as a solvent for natural products in the fermentation and food industries, were collected. SC-CO{sub 2} extraction are used in many fields, examples for the application are as follows: removal of organic solvents from antibiotics; extraction of vegetable oils contained in wheat germ oil, high quality mustard seeds, rice bran and so on; brewing of sake using rice and rice-koji; use as a non-aqueous medium for the synthesis of precursors of the Aspartame; and use in sterilization. 66 refs., 17 figs., 21 tabs.

  14. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  15. Capturing carbon dioxide as a polymer from natural gas.

    Science.gov (United States)

    Hwang, Chih-Chau; Tour, Josiah J; Kittrell, Carter; Espinal, Laura; Alemany, Lawrence B; Tour, James M

    2014-06-03

    Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and (13)C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

  16. 21 CFR 184.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  17. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  18. Volcanic versus anthropogenic carbon dioxide

    Science.gov (United States)

    Gerlach, T.

    2011-01-01

    Which emits more carbon dioxide (CO2): Earth's volcanoes or human activities? Research findings indicate unequivocally that the answer to this frequently asked question is human activities. However, most people, including some Earth scientists working in fields outside volcanology, are surprised by this answer. The climate change debate has revived and reinforced the belief, widespread among climate skeptics, that volcanoes emit more CO2 than human activities [Gerlach, 2010; Plimer, 2009]. In fact, present-day volcanoes emit relatively modest amounts of CO2, about as much annually as states like Florida, Michigan, and Ohio.

  19. Corrosion of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    M Sen; R Balasubramaniam; A V Ramesh Kumar

    2000-10-01

    The corrosion behaviour of two carbon-alloyed intermetallics of composition Fe–28.1Al–2.1C and Fe–27.5Al–3.7C has been studied and compared with that of binary intermetallics. Potentiodynamic polarization studies indicated that the intermetallics exhibited active–passive behaviour in an acidic solution of pH = 1, whereas they exhibited stable passivity in a buffer solution of pH 8.4. Corrosion rates were also obtained by immersion testing. The variation of corrosion rate as a function of time was similar for both the intermetallics. The variation in corrosion rate as a function of time has been explained based on the observed potentiodynamic polarization behaviour. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to galvanic corrosion, due to the presence of carbides.

  20. Carbon dioxide reducing processes; Koldioxidreducerande processer

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Fredrik

    1999-12-01

    This thesis discusses different technologies to reduce or eliminate the carbon dioxide emissions, when a fossil fuel is used for energy production. Emission reduction can be accomplished by separating the carbon dioxide for storage or reuse. There are three different ways of doing the separation. The carbon dioxide can be separated before the combustion, the process can be designed so that the carbon dioxide can be separated without any energy consumption and costly systems or the carbon dioxide can be separated from the flue gas stream. Two different concepts of separating the carbon dioxide from a combined cycle are compared, from the performance and the economical point of view, with a standard natural gas fired combined cycle where no attempts are made to reduce the carbon dioxide emissions. One concept is to use absorption technologies to separate the carbon dioxide from the flue gas stream. The other concept is based on a semi-closed gas turbine cycle using carbon dioxide as working fluid and combustion with pure oxygen, generated in an air-separating unit. The calculations show that the efficiency (power) drop is smaller for the first concept than for the second, 8.7 % points compared to 13.7 % points, when power is produced. When both heat and power are produced, the relation concerning the efficiency (power) remains. Regarding the overall efficiency (heat and power) the opposite relation is present. A possible carbon dioxide tax must exceed 0.21 SEK/kg CO{sub 2} for it to be profitable to separate carbon dioxide with any of these technologies.

  1. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  2. Interglacials, Milankovitch Cycles, and Carbon Dioxide

    CERN Document Server

    Marsh, Gerald E

    2010-01-01

    The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  3. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  4. Electrocatalysts for carbon dioxide conversion

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  5. Carbon Dioxide Photodissociation on Iapetus

    Science.gov (United States)

    Palmer, Eric; Brown, R. H.

    2009-09-01

    Carbon dioxide has been detected on Iapetus (Buratti et al., 2005) and is correlated with the dark material, mostly at mid-latitudes on the leading face of Iapetus (Palmer and Brown, in preparation). The average absorption feature of CO2 in the dark region is 24.7%; if it were a thin veneer of CO2 ice, it would be 14 um thick. Estimating the surface area of dark material and extrapolating gives a total CO2 budget of 8 x 107 kg on the surface of Iapetus. Volatile studies indicate that the surface of Iapetus is too hot to have CO2 ice remain on the surface for more than a few hundred years (Palmer and Brown, 2008). It has been suggested that complexing of volatiles, such as in clathrates, fluid or gas inclusions, or adsorption, would increase the stability on the Jovian and Saturnian satellites, increasing their residence times (McCord; et al., 1998; Hibbitts et al., 2001, 2002, 2007). While complexing would increase carbon dioxide's thermal stability, the resident time of CO2 on Iapetus would remain short due to the effect of UV radiation. We calculated the photodissociation rate for CO2 and found that the entire budget of CO2 on Iapetus would be destroyed in less than one Earth year. If we assume a steady-state system on Iapetus (photodissociation equal to photo-generation) approx. 108 kg will be destroyed and produced every Earth year. Unless the complexing mechanism provides some shielding from UV radiation while still allowing the detection of the 4.26-micron CO2 band, then a source of CO2 is required. We suggest that the source of CO2 is photolytic production from water ice and carbonaceous material.

  6. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  7. Study on Polymer(JR)Cement Resisting Corrosion of Corrosive Performance by Carbon Dioxide%聚合物(JR)水泥抗二氧化碳腐蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    王杰; 兰新生; 张力; 苏璟; 叶春燕

    2015-01-01

    This paper studies that the microstructure, changes of the composition and corrosion ratio, strength and permeability of cement stone before and after corrosion were analyzed with the method of X-ray diffraction(XRD),scanning electron microscope (SEM) and chemistry, The discussion that concentration of CO2 and temperature have effect on the cement corrosion characteristics and polymer JR resistances CO2 corrosion of mechanism. The results show the microstructure scanning seen a layer of impermeable membrane on cement surface by adding polymer JR, The corrosion products is the reaction of CO2 and a small amount of cement in the Ca(OH)2 and C-S-H by XRD;The internal structure and cementations materials of corrosion cement stone is not damaged. The polymer JR can effectively reduces the permeability of cement stone;Increasing the concentration of CO2 will intensify the corrosion rate, the loss of strength of cement stone and the increasing of permeability;The corrosion cement has a significantly larger turning point as the concentration of CO2 between 0.15 and 0.2. The polymer of cement has good effects of anti CO2 corrosion when the concentration of CO2 is less than 0.15;Under a certain concentration of CO2, the relationship between corrosion temperature and corrosion ratio is quadratics;Being covered non permeable polymer membranes on surface of cement stone and being filled polymer particles in cement stone pore have increased polymer JR of cement stone resistance corrosion of CO2.%本文利用化学、XRD和SEM等手段分析聚合物JR水泥腐蚀后的腐蚀率、强度、渗透率及水泥石微观结构和组成变化,探讨CO2浓度、腐蚀温度对聚合物JR水泥腐蚀性能影响和抗CO2腐蚀机理。结果表明:掺加聚合物JR后,SEM观察在水泥石表面上形成一层非渗透性膜,腐蚀后产物经XRD分析,水泥石中只有少量的Ca(OH)2和C-S-H碱性物质与CO2发生反应;腐蚀后水泥石内部结构和胶

  8. In situ and ex situ characterization of carbon corrosion in PEMFCs

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, Joseph D [Los Alamos National Laboratory; Bo, Li [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Fenton, James [FLORIDA SOLAR ENERGY CENTER

    2010-01-01

    Carbon corrosion is an important degradation mechanism that impairs PEMFC performance through destruction of catalyst connectivity, collapse of pore structure, and loss of hydrophobic character. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in fuel cell exhaust gases through non-dispersive infrared spectroscopy (NDIR). Performance degradation was also studied by a DOE protocol for catalyst support accelerated stress testing. Finally, changes in gas diffusion layer and microporous layer carbon surfaces were observed through an ex situ aging procedure.

  9. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  10. 46 CFR 193.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  11. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  12. 46 CFR 108.627 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  13. 46 CFR 169.732 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  14. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  15. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  16. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  17. 46 CFR 95.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  18. 46 CFR 76.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  19. Reactive Capture of Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  20. Carbon Dioxide Collection and Pressurization Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reactive Innovations, LLC, proposes a Phase I SBIR program to develop a compact and lightweight electrochemical reactor to separate and pressurize carbon dioxide...

  1. Measuring of carbon dioxide in water/steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Daucik, Karol

    2004-12-01

    Prevention of corrosion of the water/steam cycle caused by anionic contamination is based on control of acid conductivity. The contribution of carbon dioxide to the corrosion is very limited and yet it contributes considerably to the acid conductivity as one of the most common contaminants. Monitoring of the dangerous anionic contamination has therefore been on the agenda for many years. Commercial monitors for this purpose are based on separation of carbon dioxide from stronger acids due to its high volatility. A systematic error in these monitors comes from high volatility of other anionic contaminants, e.g. formic and acetic acid. The aim of this investigation was to show that the separation could be made on a weak base anion exchanger working on the basis of differences in the strength of acids. This simple method was expected to give reliable results with low investment and low operating costs. The results showed that the separation is indeed effective. However, reliable data are received only if the anion exchange resin is in equilibrium with the actual concentration of carbon dioxide in the sample. It may take several hours to reach this equilibrium by natural flow of the sample through the anion exchange column. Changes in the concentration of carbon dioxide in the sample will therefore temporarily give false results until a new equilibrium is achieved. The simple monitoring method can be used only in places, where verification of carbon dioxide contamination is required by long-term operation with elevated and stable acid conductivity in the steam. For future design it is suggested to install a forced achievement of the new equilibrium by conditioning of the resin by means of short-lived additions of carbon dioxide or sodium hydroxide to the sample. In these periods the output from the monitor will be suspended. Output close to the equilibrium is expected to be reached within 10 minutes. This new suggested procedure will complicate the monitoring to such a

  2. Carbon dioxide separation using adsorption with steam regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  3. Photohole Induced Corrosion of Titanium Dioxide: Mechanism and Solutions.

    Science.gov (United States)

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Liu, Tianyu; Wang, Fuxin; Zhai, Teng; Tong, Yexiang; Li, Yat

    2015-10-14

    Titanium dioxide (TiO2) has been extensively investigated as photoanode for water oxidation, as it is believed to be one of the most stable photoanode materials. Yet, we surprisingly found that TiO2 photoanodes (rutile nanowire, anatase nanotube, and P25 nanoparticle film) suffered from substantial photocurrent decay in neutral (Na2SO4) as well as basic (KOH) electrolyte solution. Photoelectrochemical measurements togehter with electron microscopy studies performed on rutile TiO2 nanowire photoanode show that the photocurrent decay is due to photohole induced corrosion, which competes with water oxidation reaction. Further studies reveal that photocurrent decay profile in neutral and basic solutions are fundamentally different. Notably, the structural reconstruction of nanowire surface occurs simultaneously with the corrosion of TiO2 in KOH solution resulting in the formation of an amorphous layer of titanium hydroxide, which slows down the photocorrosion. Based on this discovery, we demonstrate that the photoelectrochemical stability of TiO2 photoanode can be significantly improved by intentionally coating an amorphous layer of titanium hydroxide on the nanowire surface. The pretreated TiO2 photaonode exhibits an excellent photocurrent retention rate of 97% after testing in KOH solution for 72 h, while in comparison the untreated sample lost 10-20% of photocurrent in 12 h under the same measurement conditions. This work provides new insights in understanding of the photoelectrochemical stability of bare TiO2 photoanodes.

  4. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, S; Clauson-Kaas, S; Bobul'ská, L

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application...

  5. Method for Extracting and Sequestering Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  6. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    Energy Technology Data Exchange (ETDEWEB)

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2003-03-10

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities

  7. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    Energy Technology Data Exchange (ETDEWEB)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing

  8. Designed amyloid fibers as materials for selective carbon dioxide capture.

    Science.gov (United States)

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  9. Corrosion of stainless steels by sulphur dioxide and chlorine in atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Dhirendra, Dr.; Sanyal, B.; Pandey, G.N.

    1982-10-01

    This paper deals with the effect of sulphur dioxide and chlorine on stainless steels (AISI 304 and 321) under different atmospheric conditions. 70% RH value was found to be critical giving maximum corrosion. Potassium dichromate has been found to be a suitable passivating agent for protection against corrosion due to chlorine. (5 refs.)

  10. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    In the year 2013, 9.5 billion metric tons of carbon dioxide gas was emitted into the air, and each year this amount is increasing [1]. Carbon dioxide emissions are of particular concern as they represent 80% of greenhouse gas emissions and therefore are a large contributor to global warming. Among...... the two approaches that are currently being investigated, carbon capture and storage (CCS) and carbon capture and utilization (CCU) [1] to address this issue, the later approach is more promising as it reuses captured carbon dioxide, as a fuel, reactant, solvent, and others, to produce valuable products....... There is not only a need for technologies for capture and utilization, via conversion, but also there are numerous questions that need to be resolved. For example, which higher value chemicals can be produced, what are their current demands and costs of production, and, how much of the captured carbon dioxide would...

  11. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  12. Carbon dioxide utilisation in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Tommasi, I. [Universita di Bari (Italy). Centro METEA e Dipartimento di Chimica

    1997-12-31

    The amount of carbon dioxide available for industrial utilisation may expand to unprecedented levels if the recovery of carbon dioxide from energy plants flue gases is implemented. The potential of each of the three possible uses (technological, chemical, and biological) is far from being clearly defined. The chemical utilisation option, that has intrinsic thermodynamic and kinetic constraints, may raise controversial positions, depending on the criteria used for the analysis. The estimate of its real potential demands a thorough comparative analysis, using the Life Cycle Assessment methodology, of existing processes/products with the new ones based on CO{sub 2}, in order to establish whether, or not, the latter avoid carbon dioxide (either directly or indirectly) and their economics. The rejection/consideration assessment methodology will produce reliable results only if an exhaustive number of parameters is used. The analysis cannot be limited to practiced industrial processes, but must be extended to an exhaustive inventory of cases. (Author)

  13. Use of chlorine dioxide in a secondary recovery process to inhibit bacterial fouling and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Knickrehm, M.; Caballero, E.; Romualdo, P.; Sandidge, J.

    1987-01-01

    A major oil company operates a secondary recovery waterflood in Inglewood, California. The waterflood currently processes 250,000 bbls. per day of produced fluid. The major economic and operational problems associated with a secondary recovery waterflood are: 1) corrosion due to oxygen, carbon dioxide, hydrogen sulfide, and bacteria (sulfate reducers and slime biomass), 2) plugging from deposits due to salts, sulfides, and biofilms. These problems lead to deterioration of water handling equipment, injection lines (surface and subsurface), and decreased water quality resulting in the plugging of injection wells. During the last 8 years the operator has used varying mechanical and chemical technology to solve these problems. From 1978 to 1982 traditional chemical programs were in effect. Over this time period there was a continuing decline in water quality, and a substantial increase in chemical and operational costs. It was determined at that time that the major reason for this was due to microbiological activity. With this in mind, the operator proceeded to test the effects of using Aqueous Chlorine Dioxide in one portion of their water handling facilities. Due to the success of the program it was applied field wide. Presently, the primary problems associated with bacteria have been arrested. Solving one corrosion problem can lead to the onset of another. The operator is now in the process of making a concentrated effort to eliminate the other synergistically related corrosive and plugging agents (O/sub 2/, CO/sub 2/, H/sub 2/S). A field history of the problems, findings, and solutions, are discussed along with an overview of our present direction.

  14. Carbon Dioxide Extraction from Air: Is It An Option?

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Klaus; Ziock, Hans-Joachim; Grimes, Patrick

    1999-02-01

    Controlling the level of carbon dioxide in the atmosphere without limiting access to fossil energy resources is only possible if carbon dioxide is collected and disposed of away from the atmosphere. While it may be cost-advantageous to collect the carbon dioxide at concentrated sources without ever letting it enter the atmosphere, this approach is not available for the many diffuse sources of carbon dioxide. Similarly, for many older plants a retrofit to collect the carbon dioxide is either impossible or prohibitively expensive. For these cases we investigate the possibility of collecting the carbon dioxide directly from the atmosphere. We conclude that there are no fundamental obstacles to this approach and that it deserves further investigation. Carbon dioxide extraction directly from atmosphere would allow carbon management without the need for a completely changed infrastructure. In addition it eliminates the need for a complex carbon dioxide transportation infrastructure, thus at least in part offsetting the higher cost of the extraction from air.

  15. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding......). In a winter wheat field in Denmark, soil CO2 concentrations were measured from 29 November 2011 to 14 June 2012 at upslope and footslope positions of a short catena (25 m). Carbon dioxide was measured at 20 and 40 cm soil depths (i.e., within and below the nominal plough layer) using the two measurement...

  16. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  17. Diiodination of Alkynes in supercritical Carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香; 尹笃林; 江焕峰

    2003-01-01

    A general,green and efficient method for the synthesis of transdiiodoalkenes in CO2(sc) has been developed.Trans-diiodoalkenes were obtained stereospecifically in quantitative yields via diiodination of both electron-rich and electron-deficient alkynes in the presence of KI,Ce(SO4)2 and water in supercritical carbon dioxide [CO2(sc)]at 40℃.

  18. Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Ying Min YU; Jin Hua FEI; Yi Ping ZHANG; Xiao Ming ZHENG

    2006-01-01

    Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionalized supports, solvents and ligands, could influence their activities and reuse performances greatly. These immobilized catalysts also offer the industrial advantages such as easy separation.

  19. Cooperative redox activation for carbon dioxide conversion

    DEFF Research Database (Denmark)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches...

  20. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  1. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  2. Carbon dioxide foaming of glassy polymers

    NARCIS (Netherlands)

    Wessling, M.; Borneman, Z.; Boomgaard, van den Th.; Smolders, C.A.

    1994-01-01

    The mechanism of foaming a glassy polymer using sorbed carbon dioxide is studied in detail. A glassy polymer supersaturated with nitrogen forms a microcellular foam, if the polymer is quickly heated above its glass transition temperature. A glassy polymer supersaturated with CO2 forms this foam-like

  3. Electrocatalytic carbon dioxide reduction - a mechanistic study

    NARCIS (Netherlands)

    Schouten, Klaas Jan Schouten

    2013-01-01

    This thesis presents new insights into the reduction of carbon dioxide to methane and ethylene on copper electrodes. This electrochemical process has great potential for the storage of surplus renewable electrical energy in the form of hydrocarbons. The research described in this thesis focuses on t

  4. Tourism Transport, Technology, and Carbon Dioxide Emissions

    NARCIS (Netherlands)

    Peeters, P.M.

    2010-01-01

    Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left unchecked

  5. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  6. 9 CFR 313.5 - Chemical; carbon dioxide.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  7. 46 CFR 169.565 - Fixed carbon dioxide system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  8. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  9. 46 CFR 108.431 - Carbon dioxide systems: General.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  10. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  11. 27 CFR 24.319 - Carbon dioxide record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  12. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  13. 21 CFR 868.5310 - Carbon dioxide absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  14. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  15. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  16. RESEARCH ON ELECTRIC ARC REDUCTION OF CARBON DIOXIDE,

    Science.gov (United States)

    CARBON DIOXIDE , REDUCTION(CHEMISTRY), ELECTRIC ARCS, CHEMICAL REACTIONS, HEAT OF REACTION, GAS FLOW, OXYGEN, CARBON COMPOUNDS, MONOXIDES, ELECTRODES, LABORATORY EQUIPMENT, HIGH TEMPERATURE, PLASMAS(PHYSICS), ENERGY.

  17. Flow characteristics and reaction properties of carbon dioxide in microtubules and porous media

    Institute of Scientific and Technical Information of China (English)

    ZHAO RenBao; YUE XiangAn; WU Ya Hong; XU ShaoLiang; WANG Fei; HOU YongLi

    2008-01-01

    Carbon dioxide reacts with porous media while flowing through them enhancing their permeability. Its flow behavior as well as the permeability enhancement effects were studied in synthetic cores, natural cores and microtubes with an inner diameter of 5 μm. The results show that the permeability of H2O-saturated cores (containing carbonate ingredients) was enhanced by increasing the injection volume of a CO2-H2O solution. This enhancement is attributable to carbon dioxide's corrosion, which is justified by SEM scanning. The same phenomenon occurs with a CO2-H2O solution in microtubes, but for a different reason. The gas flow velocity of carbon dioxide in microtubes was approximately 100% aster than that of nitrogen because of the scale and the squeezing effects. Carbon dioxide molecules dissolved in water accelerate the diffusion rate of water molecules within the boundary layer, which in turn diminishes the thickness of the water film and enlarges the effective pore size. This flow behavior facilitates the injection of carbon dioxide into low-permeability reservoirs for oil-displacement and formation energy buildup purposes. This behavior also increases the potential for carbon dioxide channeling or release from the formation.

  18. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

    DEFF Research Database (Denmark)

    Bjerregård, Asger; Jansen, Erik

    2012-01-01

    Measurement of the arterial carbon dioxide (P(a)CO(2)) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P(ET)CO(2)) and transcutaneous carbon dioxide (PTCCO2......). Carbon dioxide in the blood and cerebral tissue has great influence on vasoactivity and thereby blood volume of the brain. We have found no studies on the correlation between P(ET)CO(2) or P(TC)CO(2), and P(a)CO(2) during hyperbaric oxygen therapy (HBOT)....

  19. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (carbon dioxide removal.

  20. Causes and prevention of corrosion in carbon steel natural gas coolers

    Energy Technology Data Exchange (ETDEWEB)

    Kotwica, D.J.; Minevski, L. [BetzDearborn, The Woodlands, TX (United States)

    1998-12-31

    Two case histories in which high pressure natural gas coolers had failed due to the presence of carbon dioxide are reviewed. CO{sub 2} along with CO and H{sub 2}S are acid gases usually present in natural gas feeds. Carbonic acid can form in aqueous condensate, lowering the pH and locally corroding mild steel tube metal. Stress corrosion cracking (SCC) can occur in tubing containing residual tensile stresses from welding or manufacturing. Bicarbonates and carbonates concentrated in condensate from CO{sub 2} and CO present in natural gas are required to produce SCC. Cathodic depolarizers such as oxygen in conjunction with the presence of carbonic acid will increase the corrosion rate of mild steel. Oxygen also increases the susceptibility of mild steel to carbonate SCC.

  1. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  2. Materials for carbon dioxide separation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingqing

    2014-10-01

    The CO{sub 2} adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO{sub 2} adsorption ability. Another promising class of materials for CO{sub 2} capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO{sub 3} and the relationship between physisorption and chemisorption properties of CaO-based materials.

  3. Comparison between half-cell potential of reinforced concrete exposed to carbon dioxide and chloride environment

    Directory of Open Access Journals (Sweden)

    Somnuk Tangtermsirikul

    2010-10-01

    Full Text Available The objective of this study is to investigate the effect of concrete mix proportion and fly ash on half-cell potential (HCPand corrosion current density (icorr of steel in concrete exposed to different environments. Reinforced concrete specimenswith different fly ash replacement percentages and water to binder ratios (w/b were studied in this paper. The specimenswere subjected to two highly corrosive environments which are chloride and carbon dioxide. HCP and icorr were used tomonitor the corrosion process. Results of this study demonstrate that both HCP and icorr indicated the same tendency,especially for corroded specimens after being exposed to chloride. This means that HCP can be used to inspect corrosion ofsteel due to chloride. In case of carbonation, concrete specimens with fly ash showed more negative potential values thanconcrete without fly ash. However, chloride exposure test exhibited that specimen with higher fly ash replacement corrodedearlier. Moreover, HCP measurement presented different values between concrete exposed to chloride and carbon dioxide.There was an effect of carbonation to increase HCP during the initiation stage. A proper evaluation guideline for steelcorrosion due to carbonation needs to be further studied.

  4. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic techniques even though localised corrosion rate cannot be measured. FSM measures general......Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...... corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS...

  5. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    Science.gov (United States)

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  6. Marine atmospheric corrosion of carbon steels

    Directory of Open Access Journals (Sweden)

    Morcillo, Manuel

    2015-06-01

    Full Text Available Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a environmental conditions necessary for akaganeite formation; (b characterisation of akaganeite in the corrosion products formed; (c corrosion mechanisms of carbon steel in marine atmospheres; (d exfoliation of rust layers formed in highly aggressive marine atmospheres; (e long-term corrosion rate prediction; and (f behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camariñas, Galicia in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM/energy dispersive spectrometry (EDS, X-ray diffraction (XRD, Mössbauer spectroscopy and SEM/μRaman spectroscopy.La investigación fundamental en corrosión atmosférica marina de aceros al carbono es un campo científico relativamente joven que presenta grandes lagunas de conocimiento. La formación de akaganeíta en los productos de corrosión que se forman sobre el acero cuando se expone a atmósferas marinas conduce a un incremento notable de la velocidad de corrosión. En el trabajo se abordan las siguientes cuestiones: (a condiciones ambientales necesarias para la formación de akaganeíta, (b caracterización de la akaganeíta en los productos de corrosión formados, (c mecanismos de corrosión del acero al carbono en atmósferas marinas, (d exfoliación de las capas de herrumbre formadas en atmósferas marinas muy agresivas, (e predicción de la velocidad de corrosión a largo plazo, y (f comportamiento de aceros patinables. La

  7. Sequestering ADM ethanol plant carbon dioxide

    Science.gov (United States)

    Finley, R.J.; Riddle, D.

    2008-01-01

    Archer Daniels Midland Co. (ADM) and the Illinois State Geological Survey (ISGS) are collaborating on a project in confirming that a rock formation can store carbon dioxide from the plant in its pores. The project aimed to sequester the gas underground permanently to minimize release of the greenhouse gas into the atmosphere. It is also designed to store one million tons of carbon dioxide over a three-year period. The project is worth $84.3M, funded by $66.7M from the US Department Energy, supplemented by co-funding from ADM and other corporate and state resources. The project will start drilling of wells to an expected depth over 6500 feet into the Mount Simon Sandstone formation.

  8. Recycling technology of emitted carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hironori [National Inst. of Materials and Chemical Research (NIMC), Ibaraki (Japan)

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  9. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...... techniques even though localised corrosion rate cannot be measured. FSM measures general corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable...

  10. Dye solubility in supercritical carbon dioxide fluid

    Directory of Open Access Journals (Sweden)

    Yan Jun

    2015-01-01

    Full Text Available Supercritical carbon dioxide fluid is an alternative solvent for the water of the traditional dyeing. The solubility of dyestuff affects greatly the dyeing process. A theoretical model for predicting the dye solubility is proposed and verified experimentally. The paper concludes that the pressure has a greater impact on the dyestuff solubility than temperature, and an optimal dyeing condition is suggested for the highest distribution coefficient of dyestuff.

  11. Pulsed discharge plasmas in supercritical carbon dioxide

    OpenAIRE

    Kiyan, Tsuyoshi; Uemura, A.; Tanaka, K.; Zhang, C. H.; Namihira, Takao; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Roy, B.C.; Sasaki, M.; Goto, M.; キヤン, ツヨシ; ナミヒラ, タカオ; サクガワ, タカシ; カツキ, スナオ

    2005-01-01

    In recent years, several studies about electrical discharge plasma in supercritical carbon dioxide (CO2) have been carried out. One of the unique characteristics of supercritical fluid is a large density fluctuation near the critical point that can result in marked dramatic changes of thermal conductivity. Therefore, the electrical discharge plasma produced in supercritical fluid has unique features and reactions unlike those of normal plasma produced in gas phase. In our experiments, two typ...

  12. Water in supercritical carbon dioxide dyeing

    Directory of Open Access Journals (Sweden)

    Zheng Lai-Jiu

    2015-01-01

    Full Text Available This paper investigates the effect of water serving as entrainer on the dyeing of wool fabrics in supercritical carbon dioxide. Compared with previous supercritical dyeing methods, addition of water makes the dyeing process more effective under low temperature and low pressure. During dyeing process, dyestuff can be uniformly distributed on fabrics’s surface due to water interaction, as a result coloration is enhanced while color difference is decreased.

  13. Acute carbon dioxide avoidance in Caenorhabditis elegans

    OpenAIRE

    Hallem, Elissa A.; Sternberg, Paul W.

    2008-01-01

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement....

  14. Carbon dioxide makes heat therapy work

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, H.

    1987-01-01

    Scientists can now propagate healthy blueberry and raspberry plants from virus-infected stock by treating it with heat and carbon dioxide. Plants are grown at 100/sup 0/F, which makes them develop faster than the virus can spread. Then cuttings are taken of the new growth - less than an inch long - and grown into full-sized, virus-free plants. But in this race to outdistance the virus, some plant species are not able to take the heat. Some even die. Chemical reactions double for every 14/sup 0/F rise in temperature. So, if you try to grow a plant at 100/sup 0/F that was originally growing at 86/sup 0/F, it will double its respiration rate. Adding carbon dioxide increases the rate of photosynthesis in plants, which increases the plant's food reserves. What carbon dioxide does to allow some plants to grow at temperatures at which they would otherwise not survive and it allows other plants to grow for longer periods at 100/sup 0/F. One problem with the process, says Converse, is that the longer plants are exposed to heat the greater the mutation rate. So, resulting clones should be closely examined for trueness to horticultural type.

  15. Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    XIAO Kui; DONG Chao-fang; LI Xiao-gang; WANG Fu-ming

    2008-01-01

    The formation and development of corrosion products on carbon steel surface during the initial stage of atmospheric corrosion in a laboratory simulated environment have been studied by scanning electron microscopy (SEM)and Raman spectroscopy.The results showed that two different shapes of corrosion products,that is,ring and chain,were formed in the initial stage of corrosion.MnS clusters were found in the nuclei of corrosion products at the active local corrosion sites.The ring-shaped products were composed of lepidocrocite (γ-FeOOH) and maghemite(γ-Fe2 O3) transformed from lepidocrocite.The chain-type products were goethite (α-FeOOH).A formation mechanism of the corrosion products is proposed.

  16. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    Science.gov (United States)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  17. Internal corrosion of carbon steel piping in hot aquifers service

    Directory of Open Access Journals (Sweden)

    Simičić Miloš V.

    2011-01-01

    Full Text Available Internal corrosion of carbon steel pipelines is a major problem encountered in water service. In terms of prediction of the remaining lifetime for water pipelines based on the corrosion allowance, the three main approaches are corrosion modelling, corrosion inhibitor availability, and corrosion monitoring. In this study we used two theoretical corrosion models, CASSANDRA and NORSOK M-506 of quite different origin in order to predict uniform corrosivity of hot aquifers in eight different pipelines. Because of the varying calculation criteria for the different models, these can give very different corrosion rate predictions for the same data input. This is especially true under conditions where the formation of protective films may occur, such as at elevated temperatures. The evaluation of models was conducted by comparison using weight-loss coupons and three corrosion inhibitors were obtained from commercial suppliers. The tests were performed during the 60-day period. Even though inhibitors’ efficiencies of 98% had been achieved in laboratory testing, inhibitors’ availabilities of 85% have been used due to logistics problems and other issues. The results, given in mmpy, i.e. millimeter per year, are very consistent with NORSOK M-506 prediction. This is presumably because the model considers the effect of the formation of a passive iron carbonate film at temperatures above 80 °C and significant reduction in corrosion rate. Corrosion inhibitor A showed a better performance than inhibitors B and C in all cases but the target corrosion rates of less than 0.1 mmpy were achieved for all inhibitors. The chemical type of corrosion inhibitor A is based on quaternary amines mixed with methanol, isopropyl alcohol, xylene and ethylbenzene. Based on the obtained results the carbon steel lifetime of 30 years, provided proper inhibitors are present and 3mm corrosion allowance, can be achieved for hot aquifers service with presented water compositions.

  18. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  19. Simultaneous Hydrogen Sulphide and Carbon Dioxide Removal from Biogas by Water-Swollen Reverse Osmosis Membrane

    OpenAIRE

    Dolejš, P. (Petr); Poštulka, V. (Václav); Sedláková, Z. (Zuzana); Jandová, V. (Věra); Vejražka, J. (Jiří); Esposito, E.; Jansen, J.C.; Izák, P. (Pavel)

    2014-01-01

    Biogas is a suitable alternative fuel if unwanted impurities are removed to avoid corrosion of the inner parts of an engine. A recent breakthrough in biogas purification showed that a thin hydrophilic composite membrane can create the selective water swollen barrier able to remove unwanted sour gases such as carbon dioxide and hydrogen sulphide owing to significantly higher water solubility of the latter in comparison to methane. This work presents the use of water–swollen membranes for the...

  20. Carbon dioxide: A substitute for phosgene

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E. [Univ. of Bari (Italy)

    1997-03-01

    One of the many goals of the green chemistry movement is to eliminate the use of phosgene (COCl{sub 2}), an extremely hazardous compound used in many syntheses, including the production of carbamates, organic carbonates, and polymers. One of the most interesting options for eliminating this compound is to replace it with CO{sub 2}. In addition to carbon dioxide`s abundance and benign nature, it has the benefits of recycling carbon and of reducing the amount of CO{sub 2} released into the atmosphere when its use is linked with other processes that emit CO{sub 2}. Several synthetic strategies that do not use phosgene are under development. The authors briefly review the most interesting ones and then expand on the use of CO{sub 2} as a potential building block for organic carbamates, carbonates, and isocyanates. One of these routes, polycarbonate synthesis, is already in industrial-scale operation: PAC Polymers Inc. currently produces CO{sub 2}-epoxide copolymers. The synthesis of carbamates and substituted ureas has been developed, and this process awaits industrial exploitation.

  1. Enriching blast furnace gas by removing carbon dioxide.

    Science.gov (United States)

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  2. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A.G.; Ho, C.S.

    1988-06-20

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.

  3. Interaction of carbon dioxide with Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, N.; Andersson, Klas Jerker; Grabow, L.C.

    2008-01-01

    Experimental and theoretical studies on the interaction of carbon dioxide with pseudomorphic and rough copper layers deposited on a platinum (111) single crystal are reported. Evidence for carbon dioxide dissociation and carbonate formation is presented and the relevance to methanol synthesis...

  4. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon...

  5. Hydrogenation of carbon dioxide by hybrid catalysts, direct synthesis of aromatic from carbon dioxide and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kuei Chikung; Lee Mindar (National Taiwan Univ., Taipei (Taiwan))

    1991-02-01

    To improve climatic conditions and to solve the carbon resource problem, it is desirable to develop techniques whereby carbon dioxide can be converted to valuable liquid hydrocarbons which can be used either as fuels or industrial raw materials. Direct synthesis of aromatics from carbon dioxide hydrogenation was investigated in a single stage reactor using hybrid catalysts composed of iron catalysts and HZSM-5 zeolite. Carbon dioxide was first converted to CO by the reverse water gas shift reaction, followed by the hydrogenation of CO to hydrocarbons on iron catalyst, and finally the hydrocarbons were converted to aromatics in HZSM-5. Under the operating conditions of 350{degree}C, 2100 kilopascals and CO{sub 2}/H{sub 2}={1/2} the maximum aromatic selectivity obtained was 22% with a CO{sub 2} conversion of 38% using fused iron catalyst combined with the zeolite. Together with the kinetic studies, thermodynamic analysis of the CO{sub 2} hydrogenation was also conducted. It was found that unlike Fischer Tropsch synthesis, the formation of hydrocarbons from CO{sub 2} may not be thermodynamically favored at higher temperature. However, the sufficiently high yields of aromatics possible with this process provides a route for the direct synthesis of high-octane gasoline from carbon dioxide. 24 refs., 9 figs., 5 tabs.

  6. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  7. Carbon dioxide emission from bamboo culms.

    Science.gov (United States)

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.

  8. Carbon dioxide utilization in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E.; Tommasi, I. [Univ. of Bari (Italy)

    1996-12-31

    Carbon dioxide as a raw material for the Chemical Industry is receiving growing attention because: (i) if recovery of CO{sub 2} from flue gases will be implemented, huge amounts of CO{sub 2} will be available; (ii) environmental issues urge to develop new processes/products, avoiding toxic materials. Several uses of CO{sub 2} appear to be responding to both (i) and (ii), i.e. use as a solvent (supplanting organic solvents) use as a building block for carboxylates/carbonates (supplanting phosgene); use as carbon-source in the synthesis of fuels (supplanting CO or coal/hydrocarbons). These options will be evaluated and their potentiality discussed.

  9. Supercritical carbon dioxide: a solvent like no other

    Directory of Open Access Journals (Sweden)

    Jocelyn Peach

    2014-08-01

    Full Text Available Supercritical carbon dioxide (scCO2 could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs. Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity.

  10. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  11. Carbon dioxide absorbent and method of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Robert James; O' Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  12. Carbon dioxide absorbent and method of using the same

    Science.gov (United States)

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  13. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  14. Preparation of perlite-based carbon dioxide absorbent.

    Science.gov (United States)

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  15. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto

    Science.gov (United States)

    Carlson, R. W.

    1999-01-01

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  16. Six-fold Coordinated Carbon Dioxide VI

    Energy Technology Data Exchange (ETDEWEB)

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  17. Carbon dioxide detection in adult Odonata.

    Science.gov (United States)

    Piersanti, Silvana; Frati, Francesca; Rebora, Manuela; Salerno, Gianandrea

    2016-04-01

    The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata.

  18. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mijeong Lee; Gillis, James M.; Hwang, Jiann Yang [Michigan Technological University, Houghton (United States)

    2003-12-15

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO{sub 2}/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

  19. A Vortex Contactor for Carbon Dioxide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Raterman, Kevin Thomas; Mc Kellar, Michael George; Turner, Terry Donald; Podgorney, Anna Kristine; Stacey, Douglas Edwin; Stokes, B.; Vranicar, J.

    2001-05-01

    Many analysts identify carbon dioxide (CO2) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA) Greenhouse Gas Research and Development Programme cited separation costs from $35 to $264 per tonne of CO2 avoided for a conventional coal fired power plant utilizing existing capture technologies. Because these costs equate to a greater than 40% increase in current power generation rates, it appears obvious that a significant improvement in CO2 separation technology is required if a negative impact on the world economy is to be avoided.

  20. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  1. Killing wild geese with carbon dioxide or a mixture of carbon dioxide and argon

    NARCIS (Netherlands)

    Gerritzen, M.A.; Reimert, H.G.M.; Lourens, A.; Bracke, M.B.M.; Verhoeven, M.T.W.

    2013-01-01

    The killing of animals is the subject of societal and political debate. Wild geese are caught and killed on a regular basis for fauna conservation and damage control. Killing geese with carbon dioxide (CO2) is commonly practiced, but not listed in legislation on the protection of flora and fauna, an

  2. The kinetics of binding carbon dioxide in magnesium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M. [Los Alamos National Lab., NM (United States); Nomura, Koji [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.]|[Chichibu Onada Cement Co., Tokyo (Japan)

    1998-08-01

    Humans currently consume about 6 Gigatons of carbon annually as fossil fuel. In some sense, the coal industry has a unique advantage over many other anthropogenic and natural emitters of CO{sub 2} in that it owns large point sources of CO{sub 2} from which this gas could be isolated and disposed of. If the increased energy demands of a growing world population are to be satisfied from coal, the implementation of sequestration technologies will likely be unavoidable. The authors` method of sequestration involves binding carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, with minimal environmental impact. The technology is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Realization of a cost effective method requires development of optimal technologies for efficient extraction and thermal carbonation.

  3. Carbon dioxide research plan. A summary

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  4. Cooperative redox activation for carbon dioxide conversion

    Science.gov (United States)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  5. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    Science.gov (United States)

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  6. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: laboratory investigation.

    Science.gov (United States)

    Stipanicev, Marko; Turcu, Florin; Esnault, Loïc; Rosas, Omar; Basseguy, Régine; Sztyler, Magdalena; Beech, Iwona B

    2014-06-01

    Influence of sulfidogenic bacteria, from a North Sea seawater injection system, on the corrosion of S235JR carbon steel was studied in a flow bioreactor; operating anaerobically for 100days with either inoculated or filtrated seawater. Deposits formed on steel placed in reactors contained magnesium and calcium minerals plus iron sulfide. The dominant biofilm-forming organism was an anaerobic bacterium, genus Caminicella, known to produce hydrogen sulfide and carbon dioxide. Open Circuit Potentials (OCP) of steel in the reactors was, for nearly the entire test duration, in the range -800corrosion rate, expressed as 1/(Rp/Ω), was lower in the inoculated seawater though they varied significantly on both reactors. Initial and final corrosion rates were virtually identical, namely initial 1/(Rp/Ω)=2×10(-6)±5×10(-7) and final 1/(Rp/Ω)=1.1×10(-5)±2.5×10(-6). Measured data, including electrochemical noise transients and statistical parameters (0.0545), suggested pitting on steel samples within the inoculated environment. However, the actual degree of corrosion could neither be directly correlated with the electrochemical data and nor with the steel corrosion in the filtrated seawater environment. Further laboratory tests are thought to clarify the noticed apparent discrepancies.

  7. Electrocatalytic process for carbon dioxide conversion

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Salehi-Khojin, Amin

    2017-01-31

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and Helper Catalyst in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. the reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.

  8. Pharmaceutical applications of supercritical carbon dioxide.

    Science.gov (United States)

    Kaiser, C S; Römpp, H; Schmidt, P C

    2001-12-01

    The appearance of a supercritical state was already observed at the beginning of the 19th century. Nevertheless, the industrial extraction of plant and other natural materials started about twenty years ago with the decaffeination of coffee. Today carbon dioxide is the most common gas for supercritical fluid extraction in food and pharmaceutical industry. Since pure supercritical carbon dioxide is a lipophilic solvent, mixtures with organic solvents, especially alcohols, are used to increase the polarity of the extraction fluid; more polar compounds can be extracted in this way. The main fields of interest are the extraction of vegetable oils from plant material in analytical and preparative scale, the preparation of essential oils for food and cosmetic industry and the isolation of substances of pharmaceutical relevance. Progress in research was made by the precise measurement of phase equilibria data by means of different methods. Apart from extraction, supercritical fluid chromatography was introduced in the field of analytics, as well as micro- and nanoparticle formation using supercritical fluids as solvent or antisolvent. This review presents pharmaceutical relevant literature of the last twenty years with special emphasis on extraction of natural materials.

  9. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  10. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration. 86.1524 Section 86.1524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Procedures § 86.1524 Carbon dioxide analyzer calibration. (a) The calibration requirements for...

  11. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  12. Carbon Dioxide and Global Warming: A Failed Experiment

    Science.gov (United States)

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  13. Flexible substrates as basis for photocatalytic reduction of carbon dioxide

    DEFF Research Database (Denmark)

    Jensen, Jacob; Mikkelsen, Mette; Krebs, Frederik C

    2011-01-01

    A photocatalytic system for converting carbon dioxide into carbon monoxide was designed and constructed. The system relies on thin films of the photocatalyst prepared at low temperature using spray coating. We formulated inks based on the well-known photocatalyst titanium dioxide and characterized...

  14. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  15. Promising flame retardant textile in supercritical carbon dioxide

    Science.gov (United States)

    Since carbon dioxide is non-toxic, non-flammable and cost-effective, supercritical carbon dioxide (scCO2) is widely used in textile dyeing applications. Due to its environmentally benign character, scCO2 is considered in green chemistry as a substitute for organic solvents in chemical reactions. O...

  16. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Gerald E. Marsh

    2014-01-01

    Full Text Available The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  17. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    OpenAIRE

    Marsh, Gerald E.

    2014-01-01

    The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  18. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Kleingeld, T.; van Aken, C.; Hogendoorn, J. A.; Versteeg, G. F.

    2006-01-01

    In the present work the absorption of carbon dioxide into aqueous piperazine (PZ) solutions has been studied in a stirred cell, at low to moderate temperatures, piperazine concentrations ranging from 0.6 to 1.5 kmol m- 3, and carbon dioxide pressures up to 500 mbar, respectively. The obtained experi

  19. Combined reactions and separations using ionic liquids and carbon dioxide

    NARCIS (Netherlands)

    Kroon, M.C.

    2006-01-01

    A new and general type of process for the chemical industry is presented using ionic liquids and supercritical carbon dioxide as combined reaction and separation media. In this process, the carbon dioxide pressure controls the miscibility of reactants, products, catalyst and ionic liquid, enabling f

  20. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  1. Carbon Dioxide Detection and Indoor Air Quality Control.

    Science.gov (United States)

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  2. 21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO2) monitor.

    Science.gov (United States)

    2010-04-01

    ... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to arterial carbon dioxide tension measurement. (b) Classification. Class II (special controls). The...

  3. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  4. The fixation of carbon dioxide in inorganic and organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M. (Universita degli Studi, Bari (Italy). Dispartimento di Chemica e Centro CNR-MISO)

    1993-01-01

    The recovery of carbon dioxide from concentrated sources is currently under evaluation as a technology for the control of the emission into the atmosphere. In order for this option to be operative it is necessary to define the fate of recovered carbon dioxide. Two ways forward are open: disposal in natural fields (oceans, aquifers, deep geological cavities); - utilisation (technological use or chemical conversion). The fixation in chemicals can contribute both to reduce the use of fossil carbon and to cut the emission of carbon dioxide into the atmosphere. 6 refs., 1 fig., 5 tabs.

  5. Global carbon dioxide emissions from inland waters

    Science.gov (United States)

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Robert G.; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  6. The VGB guidelines for organic matter and dissolved carbon dioxide in the steam-water circuit of power plant - an interim report by the working group

    Energy Technology Data Exchange (ETDEWEB)

    Aspden, J.D. [Eskom, Chemistry and Auxiliary Plant Engineering, Johannesburg (South Africa); Bellows, J.C. [Westinghouse Power Generation, Orlando, FL (United States); Hein, M. [Preussen Elektra, Kraftwerk Staudinger, Grosskrotzenburg (Germany); Huber, S. [DOC-Labor, IHK Technologiefabrik, Karlsruhe (Germany); Maughan, E.V. [Tablar Messtechnik Ges. mbH, Duisburg (Germany); Pflug, H.D.; Rziha, M. [Siemens AG, KWU, Power Generation (KWU), Erlangen (Germany); Seipp, H.-G. [ABB Technikdienste and Logistik GmbH, TDL/C, Mannheim (Germany); Svoboda, R. [ABB Power Generation Ltd., Power Plant Chemistry, Baden (Switzerland); Woost, O. [Solvay Alkali Bernburg GmbH, Bernburg (Germany); Zeijseink, A.G.L. [KEMA Power Generation, ET Arnhem (Netherlands)

    1999-07-01

    Although no overwhelming evidence exists, organic acids and carbon dioxide have nevertheless been implicated as contributors to corrosion problems within the steam-water circuit. A dedicated group of international scientists and power plant chemists has been commissioned under the auspices of the VGB to examine and document the impact of organic matter and dissolved carbon dioxide on materials of construction in the steam-water circuit of power plant. (orig.)

  7. Carbon dioxide neutral, integrated biofuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2010-12-15

    Algae are efficient biocatalysts for both capture and conversion of carbon dioxide in the environment. In earlier work, we have optimized the ability of Chlorella vulgaris to rapidly capture CO{sub 2} from man-made emission sources by varying environmental growth conditions and bioreactor design. Here we demonstrate that a coupled biodiesel-bioethanol facility, using yeast to produce ethanol and photosynthetic algae to produce biodiesel, can result in an integrated, economical, large-scale process for biofuel production. Each bioreactor acts as an electrode for a coupled complete microbial fuel cell system; the integrated cultures produce electricity that is consumed as an energy source within the process. Finally, both the produced yeast and spent algae biomass can be used as added value byproducts in the feed or food industries. Using cost and revenue estimations, an IRR of up to 25% is calculated using a 5 year project lifespan. (author)

  8. Oxygen and carbon dioxide monitoring during sleep.

    Science.gov (United States)

    Amaddeo, Alessandro; Fauroux, Brigitte

    2016-09-01

    Monitoring of oxygen and carbon dioxide (CO2) is of crucial importance during sleep-disordered breathing in order to assess the consequences of respiratory events on gas exchange. Pulse oximetry (SpO2) is a simple and cheap method that is used routinely for the recording of oxygen levels and the diagnosis of hypoxemia. CO2 recording is necessary for the diagnosis of alveolar hypoventilation and can be performed by means of the end-tidal (PetCO2) or transcutaneous CO2 (PtcCO2). However, the monitoring of CO2 is not performed on a routine basis due to the lack of simple, cheap and reliable CO2 monitors. This short review summarizes some technical aspects of gas exchange recording during sleep in children before discussing the different definitions of alveolar hypoventilation and the importance of CO2 recording.

  9. Layered solid sorbents for carbon dioxide capture

    Science.gov (United States)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  10. Biochemical Capture and Removal of Carbon Dioxide

    Science.gov (United States)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  11. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  12. Thermodynamical effects during carbon dioxide release

    Science.gov (United States)

    Singh, A. K.; Böttcher, N.; Görke, U.-J.; Kolditz, O.

    2012-04-01

    Pruess [1] investigated the risk of carbon dioxide leakage from shallow storage sites by modeling scenarios. Such a fluid release is associated with mechanical work performed by formation fluid against expansion without taking heat from ambient environment. Understanding of heat related to mechanical work is essential to predict the temperature at the leak. According to the first law of thermodynamics, internal energy of working fluid decreases with an amount which is equivalent to this work hence, working fluid lost its own heat. Such kind of heat loss depends strongly on whether the expansion process is adiabatic or isothermal. Isothermal expansion allows the working fluid to interact thermally with the solid matrix. Adiabatic expansion is an isenthalpic process that takes heat from the working fluid and the ambient environment remains unchanged. This work is part of the CLEAN research project [6]. In this study, thermodynamic effects of mechanical work during eventual carbon dioxide leakage are investigated numerically. In particular, we are interested to detect the temperature at leakage scenarios and its deviation with different thermodynamic processes. Finite element simulation is conducted with a two-dimensional rectangular geometry representing a shallow storage site which bottom was located at -300m below the land surface. A fully saturated porous medium is assumed where the pore space is filled completely with carbon dioxide. Carbon dioxide accumulated in the secondary trap at 30 Bar and 24 °C is allowed to leak from top right point of rectangle with atmospheric pressure. With (i) adiabatic and (ii) isothermal compressibility factors, temperature around leakage area has been calculated which show a significant difference. With some simplification, this study detects leak temperature which is very close with [1]. Temporal evaluation at the leaky area shows that the working fluid temperature can be reduced to -20 °C when the leakage scenario is performed

  13. Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [Dept. of Materials Physical and Chemical, University of Science and Technology Beijing, Beijing 100083 (China); Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Li, D.Y., E-mail: dongyang.li@ualberta.c [Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Shang, C.J. [Dept. of Materials Physical and Chemical, University of Science and Technology Beijing, Beijing 100083 (China)

    2009-12-15

    Aluminizing is often used to improve steel's resistances to corrosion, oxidation and wear. This article reports our recent attempts to further improve aluminized carbon steel through surface nanocrystallization for higher resistances to corrosion and corrosive wear. The surface nanocrystallization was achieved using a process combining sandblasting and recovery heat treatment. The entire surface modification process includes dipping carbon steel specimens into a molten Al pool to form an Al coat, subsequent diffusion treatment at elevated temperature to form an aluminized layer, sandblasting to generate dislocation network or cells, and recovery treatment to turn the dislocation cells into nano-sized grains. The grain size of the nanocrystallized aluminized surface layer was in the range of 20-100 nm. Electrochemical properties, electron work function (EWF), and corrosive wear of the nanocrystalline alloyed surfaces were investigated. It was demonstrated that the nanocrystalline aluminized surface of carbon steel exhibited improved resistances to corrosion, wear and corrosive wear. The passive film developed on the nanocrystallized aluminized surface was also evaluated in terms of its mechanical properties and adherence to the substrate.

  14. Carbon dioxide absorbents for rebreather diving.

    Science.gov (United States)

    Pennefather, John

    2016-09-01

    Firstly I would like to thank SPUMS members for making me a Life Member of SPUMS; I was surprised and greatly honoured by the award. I also want to confirm and expand on the findings on carbon dioxide absorbents reported by David Harvey et al. For about 35 years, I was the main player in deciding which absorbent went into Australian Navy and Army diving sets. On several occasions, suppliers of absorbents to the anaesthesia market tried to supply the Australian military market. On no occasion did they provide absorbent that came close to the minimum absorbent capacity required, generally being 30-40% less efficient than diving-grade absorbents. Because I regard lives as being more important than any likely dollar saving, the best absorbent was always selected unless two suppliers provided samples with the same absorbent capacity. On almost every occasion, there was a clear winner and cost was never considered. I suggest the same argument for the best absorbent should be used by members and their friends who dive using rebreather sets. I make this point because of my findings on a set that was brought to me after the death of its owner. The absorbent was not the type or grain size recommended by the manufacturer of the set and did not resemble any of the diving grade absorbents I knew of. I suspected by its appearance that it was anaesthetic grade absorbent. When I tested the set, the absorbent system failed very quickly so it is likely that carbon dioxide toxicity contributed to his death. The death was not the subject of an inquest and I have no knowledge of how the man obtained the absorbent. Possibly there was someone from an operating theatre staff who unintentionally caused their friend's death by supplying him with 'borrowed absorbent'. I make this point as I would like to discourage members from making a similar error.

  15. Does carbon dioxide pool or stream in the subsurface?

    CERN Document Server

    Cardoso, Silvana S S

    2014-01-01

    Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams would transport it efficiently to depth, but this may not be so. Here, we assess the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. New laboratory experiments confirm the curtailing of convection by reaction. Wide and narrow streams of dense carbon-rich water are shut-off gradually as reaction strength increases until all transport of the pooled carbon dioxide occurs by slow molecular diffusion. These results show that the complex fluid dynamic and kinetic interactions between pooled carbon dioxide an...

  16. Effect of Carbon Dioxide on Microbiologically Influenced Corrosion Characteristic of X60 Steel%二氧化碳对X60钢微生物腐蚀行为影响

    Institute of Scientific and Technical Information of China (English)

    范梅梅; 刘宏芳

    2012-01-01

    利用失重法和扫描电镜研究了CO_2与嗜热SRB共存条件下X60钢在海底污泥和污水中的腐蚀行为.结果表明:CO_2饱和条件下,随着温度的升高,污泥和污水中腐蚀速率均增加,且含SRB的污泥和污水中X60钢的腐蚀速率均大于不含SRB的腐蚀速率,SEM观察表明,X60钢遭受的破坏以点蚀为主;随着CO_2分压的增大,X60钢的腐蚀速率增大,且污泥中腐蚀速率大于污水中腐蚀速率.%Corrosion behavior of X60 steel in CO_2 and thermophile sulfate-reducing bacteria (SRB) coexisted sludge and sewage,a submarine pipeline encountered environment,were studied by using weight-loss method and scanning electron microscopy(SEM).The results showed that with the increase of temperature,corrosion rate of X60 steel in sludge and sewage saturated with CO_2 increased,and corrosion rate in CO_2-saturated sludge and sewage with SRB was higher than that without SRB.The morphology of corroded coupon showed characteristics of pitting corrosion.The corrosion rate increased with the increasing CO_2 partial pressure at static state, and the corrosion rate in sludge was always higher than that in sewage;moreover,the corrosion rate increased quickly with the rising CO_2 partial pressure at dynamic state.

  17. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane,carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

    2005-07-01

    This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

  19. Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The coupling reaction of carbon dioxide with epoxides was investigated using naturally occurring α-amino acids as the catalyst in supercritical carbon dioxide and it was found that L-histidine is the most active catalyst.In the presence of 0.8 mol% of L-histidine at 130°C under 8 MPa of CO2,the reaction of carbon dioxide with epoxides proceeded smoothly,affording corresponding cyclic carbonates in good to excellent yields.

  20. Forest management techniques for carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Takao [Forestry and Forest Products Research Inst., Tsukuba, Ibaraki (Japan)

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  1. 油管钢在饱和CO2模拟油田液中的腐蚀行为研究%Corrosion Behavior of Tubing Steel 13Cr in a Simulated Oilfield Liquid with Saturated Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    祝英剑; 刘长宇; 王峰; 黄天杰

    2011-01-01

    The corrosion behavior of 13Cr steel in a simulated oilfield liquid by high temperature and high pressure has been studied by mass-loss method. The results show that the corrosion rate of 13Cr steel reaches a maximum when the pressure is 20 MPa and the temperature is 110 ℃.Chloride ion concentration also influences the corrosion rate of 13Cr steel.%用失重法研究在高温高压下13Cr钢在模拟油田液中的腐蚀行为.结果表明,13Cr钢的腐蚀速率在20 MPa、110℃时达到最大值.且Clˉ浓度对13Cr钢的腐蚀速率存在一定影响.

  2. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...... for cultures in CO2. This synergism between nisin and CO2 was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO2 and nisin occurs at the cytoplasmic membrane...

  3. 13Cr系列不锈钢在模拟井下介质中的CO2腐蚀研究%INVESTIGATION ON CARBON DIOXIDE CORROSION PERFORMANCE OF VARIOUS 13Cr STEELS IN SIMULATED STRATUM WATER

    Institute of Scientific and Technical Information of China (English)

    侯赞; 周庆军; 王起江; 张忠铧; 齐慧滨; 王俊

    2012-01-01

    The corrosion behaviour of various 13Cr steels (marked as 13Cr-0, 13Cr1, M13Cr and S13Cr) in the CO2 corrosion environment was investigated by high temperature and high pressure (HTHP) autoclave under conditions of different temperatures, concentrations of Cl ion and partial pressures of CO2 to simulate the downhole surroundings of a certain oil field. Their corrosion scales were observed and analyzed by scanning elec- tron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The results shown that corrosion rates of all steels increased with rising of temperature, concentration of Cl ion and CO2 partial pressure; temperature had the most notable impact on corrosion rates, at a high temperature, the four 13Cr steels exhibited conspicuous differences in corrosion rates; the order of corrosion rates of the four steels was 13Cr-0〉13Cr-1〉M13Cr〉S13Cr. Furthermore, the morphologies and microstructures of corrosion scales on different steels differed significantly from each other.%根据某油田不同井况条件,配制不同井下模拟溶液,用高温高压釜研究了4种不同成分的13Cr马氏体不锈钢在不同温度、Cl^-浓度和CO2分压下的腐蚀行为,对腐蚀性能进行了评价,用SEM,EDS,XRD和XPS等方法对腐蚀产物的形貌与成分进行了观察分析。结果表明,随着温度的升高及Cl^-浓度和CO2分压的增大,13Cr系列不锈钢的腐蚀速率均相应增大,腐蚀速率由高到低的排序为13Cr-0〉13Cr-1〉M13Cr〉S13Cr;其腐蚀产物膜的形貌与结构也有明显差异。

  4. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  5. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)

    2012-06-15

    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  6. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water

    CERN Document Server

    Heng, Kevin

    2015-01-01

    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres. We construct analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the mixing ratio of methane. By examining the abundances of these molecules across a broad range of temperatures (spanning equilibrium temperatures from 600 to 2500 K), pressures (via temperature-pressure profiles that explore albedo and opacity variations) and carbon-to-oxygen ratios (from 0.1 to 100), we conclude that carbon dioxide is subdominant compared to carbon monoxide and water. Atmospheric mixing does not alter this conclusion if carbon dioxide is subdominant everywhere in the atmosphere. Carbon dioxide and carbon monoxide may attain comparable abundances if th...

  7. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  8. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  9. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  10. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  11. Synthesis pf dimethyl carbonate in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ballivet-Tkatchenko, D.; Plasseraud, L. [Universite de Bourgogne-UFR Sciences et Techniques, Dijon (France). Lab. de Synthese et Electrosynthese Organometalliques]. E-mail: ballivet@u-bourgogne.fr; Ligabue, R.A. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Dept. de Quimica Pura

    2006-01-15

    The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu{sub 3}SnOCH{sub 3}, n-Bu{sub 2}Sn(OCH{sub 3}){sub 2}, and [n-Bu{sub 2}(CH{sub 3}O)Sn]{sub 2}O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO{sub 2} pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO{sub 2} pressure higher than 16 MPa. Under these conditions, CO{sub 2} acted as a reactant and a solvent. (author)

  12. Synthesis of dimethyl carbonate in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    D. Ballivet-Tkatchenko

    2006-03-01

    Full Text Available The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH32 , and [n-Bu2(CH3OSn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.

  13. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register / Vol. 75 , No. 230 / Wednesday, December 1... sequestration of carbon dioxide and all other facilities that conduct injection of carbon dioxide. This rule... may determine''). These regulations will affect owners or operators of carbon dioxide (CO...

  14. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  15. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Science.gov (United States)

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  16. Membranes for separation of carbon dioxide

    Science.gov (United States)

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Ramaswamy, Vidya; Willson, Patrick Daniel; Gao, Yan

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  17. Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2013-01-01

    This paper reports on a source of past carbon dioxide accidents which so far has only been sporadically mentioned in the literature. Violent and highly destructive outbursts of hundreds of tons of CO2 occurred regularly, if not routinely, in the now closed salt mines of the former DDR....... The Menzengraben mine experienced an extreme outburst in 1953, possibly involving a several thousand tons of carbon dioxide. This source of accidents fills an important gap in the available carbon dioxide accident history and may provide a unique empirical perspective on the hazards of handling very large amounts...

  18. Reactions of plutonium dioxide with water and oxygen-hydrogen mixtures: Mechanisms for corrosion of uranium and plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, John M.; Allen, Thomas H.; Morales, Luis A.

    1999-06-18

    Investigation of the interactions of plutonium dioxide with water vapor and with an oxygen-hydrogen mixture show that the oxide is both chemically reactive and catalytically active. Correspondence of the chemical behavior with that for oxidation of uranium in moist air suggests that similar catalytic processes participate in the mechanism of moisture-enhanced corrosion of uranium and plutonium. Evaluation of chemical and kinetic data for corrosion of the metals leads to a comprehensive mechanism for corrosion in dry air, water vapor, and moist air. Results are applied in confirming that the corrosion rate of Pu in water vapor decreases sharply between 100 and 200 degrees C.

  19. Microbiological Corrosion in Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    O. Medina–Custodio

    2009-01-01

    Full Text Available The Microbiologically Induced Corrosion affects several industries, such as oil industry where it is estimated that 20% to 30% pipes failures are related with microorganism . The chemical reactions generate ions transfer, this validate the use of electrochemical techniques for its analysis. Coupons submerged in a nutritional medium with presence and absence of three different microorganisms during two periods, 48 hours and 28 days we restudied. Polarization resistance (Rp and Electrochemical Impedance Spectroscopy (EIS techniques we re applied to determine the corrosivity of the systems. The results show a greater corrosive effect of abiotic system, this indicates a microorganisms protection effect to the metal, opposite to the first hypothesis. This result was ratified observing surfaces coupons by using Scanning Electron Microscopy (SEM technique. A possible mechanism based on Evans – Tafel graph is proposed to explain inhibitor microorganism effect.

  20. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  1. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  2. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap...... is discussed more extensively. Heterogeneously catalysed hydrogenation reactions are considered to be quite well studied and established. However, the catalyst performance can alter significantly when the reaction is performed in carbon dioxide medium. This effect was studied with the example of the selective...... the selective hydrogenation of unsaturated aldehydes in carbon dioxide medium. It was found that supported tungstosilicic acid catalysts and acidic resin Amberlyst-15 are very effective for performing aldol reactions. The positive influence of temperature and CO2-content on catalyst activity was studied...

  3. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a growing need to develop improved technologies for precise airborne measurements of carbon dioxide, CO2. CO2 measurements are of great importance to many...

  4. Comment on "An optimized potential for carbon dioxide"

    OpenAIRE

    Merker, T.; Vrabec, J.; Hasse, H.

    2009-01-01

    A molecular model for carbon dioxide is assessed regarding vapor-liquid equilibrium properties. Large deviations, being above 15 %, are found for vapor pressure and saturated vapor density in the entire temperature range.

  5. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A.; Jayakumar, D.A.; George, M.D.; Narvekar, P.V.; DeSousa, S.N.

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  6. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase 1 has seen the development of a revolutionary new type of sensor for making carbon dioxide (CO2) measurements from small Unmanned Aircraft Systems (UAS) and...

  7. Monthly Carbon Dioxide in Troposphere (AIRS on AQUA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon dioxide (CO2) is an important greenhouse gas released through natural processes such as respiration and volcano eruptions and through huma activities such as...

  8. Use of the electrosurgical unit in a carbon dioxide atmosphere.

    Science.gov (United States)

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J; Eidson, Jack L; Paolino, David V

    2016-01-01

    The electrosurgical unit (ESU) utilizes an electrical discharge to cut and coagulate tissue and is often held above the surgical site, causing a spark to form. The voltage at which the spark is created, termed the breakdown voltage, is governed by the surrounding gaseous environment. Surgeons are now utilizing the ESU laparoscopically with carbon dioxide insufflation, potentially altering ESU operating characteristics. This study examines the clinical implications of altering gas composition by measuring the spark gap distance as a marker of breakdown voltage and use of the ESU on a biologic model, both in room air and carbon dioxide. Paschen's Law predicted a 35% decrease in gap distance in carbon dioxide, while testing revealed an average drop of 37-47% as compared to air. However, surgical model testing revealed no perceivable clinical difference. Electrosurgery can be performed in carbon dioxide environments, although surgeons should be aware of potentially altered ESU performance.

  9. Precision remote sensor for oxygen and carbon dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes development of a passive optical sensor for simultaneous high-precision measurement of oxygen and carbon dioxide profiles within the full...

  10. Carbon dioxide laser treatment of balanitis xerotica obliterans.

    Science.gov (United States)

    Ratz, J L

    1984-05-01

    A case of balanitis xerotica obliterans unresponsive to topical therapy is presented. The condition was successfully corrected following epithelial vaporization with the carbon dioxide laser, the patient remaining free of recurrence for 21 months postoperatively.

  11. Carbon dioxide heat pump for dual-temperature drinking fountain

    Institute of Scientific and Technical Information of China (English)

    杨大章; 吕静; 何哲彬; 黄秀芝

    2009-01-01

    Carbon dioxide trans-critical heat pump system for heating and cooling water was designed,and its thermodynamic steady-state concentration model was established. Based on the steady-state model,parameters of the carbon dioxide trans-critical heat pump were calculated by computer programming. According to these parameters,the effects and application prospect of the heat pump system were analyzed for dual-temperature drinking fountains.

  12. Seawater pH and Anthropogenic Carbon Dioxide

    CERN Document Server

    Marsh, Gerald E

    2008-01-01

    In 2005, the Royal Society published a report titled "Ocean acidification due to increasing atmospheric carbon dioxide". The report's principal conclusion-that average ocean pH could decrease by 0.5 units by 2100-is demonstrated here to be consistent with a linear extrapolation of very limited data. It is also shown that current understanding of ocean mixing, and of the relationship between pH and atmospheric carbon dioxide concentration, cannot justify such an extrapolation.

  13. Kinetic study of coals gasification into carbon dioxide atmosphere

    OpenAIRE

    Korotkikh A.G.; Slyusarskiy K.V.

    2015-01-01

    The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The ...

  14. Carbon Dioxide Effects under Conditions of Raised Environmental Pressure

    Science.gov (United States)

    1974-12-26

    the inspiratory muscles might have contributed to the elevated carbon dioxide tensions in the trained underwater swimmer because it was shown that...alveolar carbon dioxide tensions increase linearly with the work- load on the inspiratory muscles (Milic- Emili & Tyler 1962). Lanphier (1963...Submarine Escape Training Tank, U.S. Naval Submarine Base New London, in dives to 90 ft (3.7 ATA) (Sehaefer 1955; Schaefer & Carey 1962). During

  15. Mycorrhizal mediation of soil organic carbon decomposition under elevated atmospheric carbon dioxide

    Science.gov (United States)

    Significant effort in global change research has recently been directed towards assessing the potential of soil as a carbon sink under future atmospheric carbon dioxide scenarios. Attention has focused on the impact of elevated carbon dioxide on plant interactions with mycorrhizae, a symbiotic soil...

  16. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    Science.gov (United States)

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  17. Carbon dioxide grows as recovery tool

    Energy Technology Data Exchange (ETDEWEB)

    Byars, C.

    1972-08-07

    Two more companies, Shell Oil Co. and Atlantic Richfield Co., are starting up COD2U injection projects in W. Texas. Miscible recovery projects using carbon dioxide are being started in Crossett Field and Wasson Field. Announcement of similar projects in North Cowden and Slaughter-Leveland fields to be conducted by Amoco Production Co. is expected. Shell, which is supplying some of the gas from its deep wells in the JM and East Brown Bassett fields, is taking 20 MMcfd of the COD2U as the line goes through the North Cross unit on its way to Sacroc. The North Cross project expects to recover an additional 8,851,000 bbl of oil. Original oil-in-place is estimated at 51 million bbl. Cumulative production has been 6.9 million bbl and current output is 1,600 bpd from 18 wells. Atlantic Richfield Co. (ARCO) will start injecting COD2U in mid-September at their project in the Willard unit of Wasson Field in Yoakum County. The project area has produced about 85.8 million bbl of 33$ gravi regenerated scrubbing solution to ste (10 claims)

  18. Suppressing bullfrog larvae with carbon dioxide

    Science.gov (United States)

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  19. Vibrations of the carbon dioxide dimer

    Science.gov (United States)

    Chen, Hua; Light, J. C.

    2000-03-01

    Fully coupled four-dimensional quantum-mechanical calculations are presented for intermolecular vibrational states of rigid carbon dioxide dimer for J=0. The Hamiltonian operator is given in collision coordinates. The Hamiltonian matrix elements are evaluated using symmetrized products of spherical harmonics for angles and a potential optimized discrete variable representation (PO-DVR) for the intermolecular distance. The lowest ten or so states of each symmetry are reported for the potential energy surface (PES) given by Bukowski et al. [J. Chem. Phys. 110, 3785 (1999)]. Due to symmetries, there is no interconversion tunneling splitting for the ground state. Our calculations show that there is no tunneling shift of the ground state within our computation precision (0.01 cm-1). Analysis of the wave functions shows that only the ground states of each symmetry are nearly harmonic. The van der Waals frequencies and symmetry adapted force constants are found and compared to available experimental values. Strong coupling between the stretching coordinates and the bending coordinates are found for vibrationally excited states. The interconversion tunneling shifts are discussed for the vibrationally excited states.

  20. Carbon dioxide removal and the futures market

    Science.gov (United States)

    Coffman, D.’Maris; Lockley, Andrew

    2017-01-01

    Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for later performance on a contract. Forward contracts also entail future settlement, but they are traded directly between two parties. Futures and forwards are used in commodities trading, as producers seek financial security when planning production. We discuss the potential use of futures contracts in Carbon Dioxide Removal (CDR) markets; concluding that they have one principal advantage (near-term price security to current polluters), and one principal disadvantage (a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge caution about the prospects for market failure. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. While regulation offers increased assurances, we identify major insufficiencies with this approach—finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.

  1. Some Organic Reactions in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    JIANG Huan-feng; YANG Xiao-yue; LI Guo-ping; ZOU Gang

    2004-01-01

    Organic reactions in supercritical carbon dioxide (scCO2) have facilitated great progress in recent years 1. ScCO2, as an environmentally friendly reaction medium, may be a substitute for volatile and toxic organic solvents and show some special advantages. Firstly, CO2 is inexpensive,nonflammable, nontoxic and chemical inert under many conditions. Secondly, scCO2 possesses hybrid properties of both liquid and gas, to the advantage of some reactions involving gaseous reagents. Control of the solvent density by variation of the temperature and pressure enables the solvent properties to be "tuned" to reactants. Finally, separating of CO2 from the reaction mixture is energy-efficient and simple. Here we disclose our new work on some organic reactions involving small molecules in scCO2.The results showed that the upper reactions in scCO2 could be carried out smoothly and thepressure of CO2 had a remarkable effect on the conversion and selectivity.

  2. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

  3. Euthanasia of neonatal mice with carbon dioxide

    Science.gov (United States)

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  4. Carbon dioxide balneotherapy and cardiovascular disease

    Science.gov (United States)

    Pagourelias, Efstathios D.; Zorou, Paraskevi G.; Tsaligopoulos, Miltiadis; Athyros, Vasilis G.; Karagiannis, Asterios; Efthimiadis, Georgios K.

    2011-09-01

    Carbon dioxide (CO2) balneotherapy is a kind of remedy with a wide spectrum of applications which have been used since the Middle Ages. However, its potential use as an adjuvant therapeutic option in patients with cardiovascular disease is not yet fully clarified. We performed a thorough review of MEDLINE Database, EMBASE, ISI WEB of Knowledge, COCHRANE database and sites funded by balneotherapy centers across Europe in order to recognize relevant studies and aggregate evidence supporting the use of CO2 baths in various cardiovascular diseases. The three main effects of CO2 hydrotherapy during whole body or partial immersion, including decline in core temperature, an increase in cutaneous blood flow, and an elevation of the score on thermal sensation, are analyzed on a pathophysiology basis. Additionally, the indications and contra-indications of the method are presented in an evidence-based way, while the need for new methodologically sufficient studies examining the use of CO2 baths in other cardiovascular substrates is discussed.

  5. 78 FR 15376 - Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea

    Science.gov (United States)

    2013-03-11

    ... COMMISSION Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea On the basis... Korea and the antidumping duty orders on corrosion-resistant carbon steel flat products from Germany and... Corrosion-Resistant Carbon Steel Flat Products from Germany and Korea: Investigation Nos. 701-TA-350 and...

  6. Mechanical Properties and Corrosion Behavior of Low Carbon Steel Weldments

    Directory of Open Access Journals (Sweden)

    Mohamed Mahdy

    2013-01-01

    Full Text Available This research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current density and anodic Tafel slop, while decrease the polarization resistance compared with unwelded low carbon steel. Cyclic polarization were measured to show resistance of specimens to pitting corrosion and to calculate the forward and reveres potentials. The results show shifting the forward, reverse and pitting potentials toward active direction for weldments samples compared with unwelded sample.

  7. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  8. Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection

    Science.gov (United States)

    2009-02-01

    Carbon Nanotube Functionalization /Doping Polyvinylpyrrolidone (PVP) A) p-Doping C) Polymer Wrapping Model B) n-Doping Polyethyleneimine ( PEI ) SWCNT Paint...fluorine-containing) groups functions as the barrier layer Multilayer Smart Carbon Nanotube Coating Insoluble polymer layer top coating -PMMA Substrate...Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection Zafar Iqbal Department of Chemistry and Environmental Science New

  9. Carbon Dioxide/Methane Separation by Adsorption on Sepiolite

    Institute of Scientific and Technical Information of China (English)

    José A.Delgado; María A.Uguina; José L.Sotelo; Beatriz Ruíz; Marcio Rosário

    2007-01-01

    In this work,the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched.Adsorption equilibrium and kinetics have been measured in a fixed-bed.and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained.A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics.using the Langmuir equation to describe the adsotption equilibrium isotherm.The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied.The experimental results were compared with the ones predicted by the model adapted to a PSA system.Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle.These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.

  10. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    孙艳朋; 聂勇; 吴昂山; 姬登祥; 于凤文; 计建炳

    2012-01-01

    Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

  11. Calcium carbonate corrosivity in an Alaskan inland sea

    Directory of Open Access Journals (Sweden)

    W. Evans

    2013-09-01

    Full Text Available Ocean acidification is the hydrogen ion increase caused by the oceanic uptake of anthropogenic CO2, and is a focal point in marine biogeochemistry, in part, because this chemical reaction reduces calcium carbonate (CaCO3 saturation states (Ω to levels that are corrosive (i.e. Ω ≤ 1 to shell-forming marine organisms. However, other processes can drive CaCO3 corrosivity; specifically, the addition of tidewater glacial melt. Carbonate system data collected in May and September from 2009 through 2012 in Prince William Sound (PWS, a semi-enclosed inland sea located on the south-central coast of Alaska that is ringed with fjords containing tidewater glaciers, reveal the unique impact of glacial melt on CaCO3 corrosivity. Initial limited sampling was expanded in September 2011 to span large portions of the western and central sound, and included two fjords proximal to tidewater glaciers: Icy Bay and Columbia Bay. The observed conditions in these fjords affected CaCO3 corrosivity in the upper water column (pCO2 well below atmospheric levels. CaCO3 corrosivity in glacial melt plumes is poorly reflected by pCO2 or pHT, indicating that either one of these carbonate parameters alone would fail to track Ω in PWS. The unique Ω and pCO2 conditions in the glacial melt plumes enhances atmospheric CO2 uptake, which, if not offset by mixing or primary productivity, would rapidly exacerbate CaCO3 corrosivity in a positive feedback. The cumulative effects of glacial melt and air-sea gas exchange are likely responsible for the seasonal widespread reduction of Ω in PWS; making PWS highly sensitive to increasing atmospheric CO2 and amplified CaCO3 corrosivity.

  12. Carbon dioxide sequestration by direct aqueous mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    Carbon dioxide sequestration by an ex-situ, direct aqueous mineral carbonation process has been investigated over the past two years. This process was conceived to minimize the steps in the conversion of gaseous CO2 to a stable solid. This meant combining two separate reactions, mineral dissolution and carbonate precipitation, into a single unit operation. It was recognized that the conditions favorable for one of these reactions could be detrimental to the other. However, the benefits for a combined aqueous process, in process efficiency and ultimately economics, justified the investigation. The process utilizes a slurry of water, dissolved CO2, and a magnesium silicate mineral, such as olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. These minerals were selected as the reactants of choice for two reasons: (1) significant abundance in nature; and (2) high molar ratio of the alkaline earth oxides (CaO, MgO) within the minerals. Because it is the alkaline earth oxide that combines with CO2 to form the solid carbonate, those minerals with the highest ratio of these oxides are most favored. Optimum results have been achieved using heat pretreated serpentine feed material, sodium bicarbonate and sodium chloride additions to the solution, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was achieved in 30 minutes. Future studies are intended to investigate various mineral pretreatment options, the carbonation solution characteristics, alternative reactants, scale-up to a continuous process, geochemical modeling, and process economics.

  13. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  14. Microbiologically Influenced Corrosion of Carbon Steel Exposed to Biodiesel

    Directory of Open Access Journals (Sweden)

    S. Malarvizhi

    2016-01-01

    Full Text Available Environmental concerns over worsening air pollution problems caused by emissions from vehicles and depletion of fossil fuels have forced us to seek fuels such as biodiesel which can supplement petrofuels. Biodiesels have the ability to retain water and provide a conducive environment for microbiologically influenced corrosion (MIC which may cause difficulties during transportation, storage, and their use. This paper analyses the influence of bacteria on the corrosivity of biodiesel obtained from Jatropha curcas on carbon steel using mass loss method. Carbon steel showed the highest corrosion rates in B100 (100% biodiesel both in the presence and in absence of bacteria. The surface analysis of the metal was carried out using SEM.

  15. Carbon Dioxide Reduction Technology Trade Study

    Science.gov (United States)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  16. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  17. The Synthesis of Imidazoline Derivative Compounds as Corrosion Inhibitor towards Carbon Steel in 1% NaCl Solution

    Directory of Open Access Journals (Sweden)

    Deana Wahyuningrum

    2008-03-01

    Full Text Available Oleic imidazoline is one of the nitrogen containing heterocyclic compounds that has been widely used as commercial corrosion inhibitor, especially in minimizing the carbon dioxide induced corrosion process in oilfield mining. In this present work, some imidazoline derivative compounds have been synthesized utilizing both conventional and microwave assisted organic synthesis (MAOS methods, in order to determine their corrosion inhibition properties on carbon steel surface. The MAOS method is more effective in synthesizing these compounds than the conventional method regarding to the higher chemical yields of products (91% to 94% and the shorter reaction times (7 to 10 minutes. The characterization of corrosion inhibition activities of the synthesized products towards carbon steel in 1% NaCl solution was determined by the Tafel plot method. The corrosion inhibition activities of compound 1b ((Z-2-(2-(heptadec-8-enyl-4,5-dihydroimidazol-1-ylethanamine, 2b ((Z-2-(2-(heptadec-8-enyl-4,5-dihydroimidazol-1-ylethanol and 3b (2-(2-heptadecyl-4,5-dihydroimidazol-1-ylethanamine at 8 ppm concentration in 1% NaCl solution are, respectively, 32.18%, 39.59% and 12.73%. The heptadec-8-enyl and hydroxyethyl substituents at C(2 and N(1 position of imidazoline ring, respectively, gave the most effective corrosion inhibition activity towards carbon steel compared to the presence of other substituents. The increase in concentrations of compound 1b, 2b and 3b in 1% NaCl solution tends to improve their corrosion inhibition activities. Based on the analysis of the free Gibbs adsorption energy (DG0ads values of compound 1b, 2b and 3b (-32.97, -34.34 and -31.27 kJ/mol, respectively, these compounds have the potential to interact with carbon steel through semi-physiosorption or semi-chemisorption.

  18. It is time to put carbon dioxide to work

    Energy Technology Data Exchange (ETDEWEB)

    Lipinsky, E.S. [Battelle, Columbus, OH (United States)

    1993-12-31

    The need to control emissions of carbon dioxide into the atmosphere is the subject of vigorous debate at this time. There is growing evidence that rising levels of carbon dioxide increase global warming, with perhaps highly adverse impacts for the human economy. There are calls for carbon taxes and other harsh measures. Japan has established a national goal of holding carbon dioxide emissions in the year 2000 to 1990 levels. I hope that this conference will be a turning point in the United States position on this issue. The current major end uses for CO{sub 2} include refrigeration, beverage carbonation, soda ash production, fire fighting, and urea fertilizer production. They are all based on chemistry that would not surprise a good chemist of the 19th century. Consumption of carbon dioxide in synthesis of industrial chemicals is limited. Usually one explains low production of chemicals from a candidate feedstock in terms of poor availability, price, purity, or reactivity. We can eliminate the first three as the causes of the underutilization of carbon dioxide.

  19. Microbial corrosion of carbon steel by sulfate-reducing bacteria:

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo; Hilbert, Lisbeth Rischel

    1997-01-01

    Electrochemical measurements (EIS and DC-polarisation curves) have been conducted on carbon steel coupons exposed in SRB-active environments. Results from EIS measurements show that very large interfacial capacities are found in such systems, and consequently high capacitive currents...... for a misleading conclusion that increasing corrosion rates are caused by cathodic depolarisation in SRB-active environments....

  20. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2)...

  1. Recent Progress in the Synthesis of Polymers Based on Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    H. Sugimoto; S. Inoue

    2005-01-01

    @@ 1Introduction Carbon dioxide is the most fundamental carbon resource indispensable for all living systems including human being via photosynthesis by green plants. On the other hand, chemical utilization of carbon dioxide has been rather limited.

  2. Oxygen Atom Recombination in Carbon Dioxide Atmospheres

    Science.gov (United States)

    Jamieson, Corey; Garcia, R. M.; Pejakovic, D. A.; Kalogerakis, K. S.

    2009-09-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in our understanding of the above processes, and often the relevant input from laboratory measurements is missing or outdated. We are conducting experiments to measure the rate coefficients for O + O + CO2 and O + O2 + CO2 recombination and investigate the O2 excited states produced following O-atom recombination. These laboratory measurements are key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An ArF excimer laser with 193-nm pulsed output radiation is employed to partially photodissociate carbon dioxide. In an ambient-pressure (760 Torr) background of CO2, the O atoms produced recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal we can extract the rate coefficients for recombination of O + O and O + O2 in the presence of CO2. We also use fluorescence and resonance-enhanced multi-photon ionization techniques to detect the products of the O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation's (NSF) Planetary Astronomy Program. Rosanne Garcia's participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  3. Sour and sweet corrosion of carbon steel : general or pitting or localized or all of the above?

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S.; Doiron, A.; Li, J.; Park, D.Y.; Liu, P. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2009-07-01

    Carbon steel is used for 80 per cent of all refinery components in refineries, petrochemical plants and oil and gas pipelines. This paper described a model designed to predict internal pitting corrosion of carbon steel in sour and sweet environments. The effects of temperature and partial pressure of carbon dioxide (CO{sub 2}) were investigated experimentally using scanning electron microscopy (SEM) and laser profilometer analyses. Eight carbon steel coupons were placed in a high temperature high pressure rotating cage system. An autoclave was charged with CO{sub 2} and methane. Coupons were then examined using SEM and energy dispersive spectroscopy (EDS). Pit depth and density were evaluated. The obtained data were then filtered using a Gaussian filter to minimize scattering. The study showed that mass loss increased almost linearly as a function of CO{sub 2} partial pressure. An analysis of the surface layers indicated that a compact layer did not form to protect the surface from corrosion. Classical pitting corrosion processes were discussed, and the characteristics of carbon steel corrosion were outlined. 23 refs., 2 tabs., 12 figs.

  4. Carbon Dioxide Effects Research and Assessment Program. Carbon Dioxide Research Progress Report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dahlman, R. C.; Gross, T.; Machta, L.; Elliott, W.; MacCracken, M.

    1980-04-01

    Research on the global carbon cycle and the effects of increased carbon dioxide on the global climate system is reported. Environmental and societal effects related to CO/sub 2/ and environmental control technology for CO/sub 2/ are also discussed. Lists of research projects and reports and publications of the Carbon Dioxide and Climate Research Program are included. An expanded CO/sub 2/ monitoring network is providing increased coverage for interpretation of patterns of sources and sinks seasonal variability, and documentation of the global growth of CO/sub 2/. Modeling studies emphasized that knowledge of the transport and mixing of surface ocean waters is important in understanding deep oceanic circulation. Initial studies in the equatorial Pacific are helping quantify estimates of the amount of outgassing CO/sub 2/ from tropical waters. During fiscal year 1979, there was a substantial increase in appreciation of the role of the ocean in controlling not only atmospheric CO/sub 2/ concentrations but also the climatic response to changes in concentration. Model simulations of the effect of doubled CO/sub 2/ concentration carried out with fixed ocean temperatures a situation that is possible during perhaps the next 20 years, showed relatively small summer heating over land areas. On the other hand, simulations in which the oceanic temperatures could come into instantaneous equilibrium with atmospheric conditions continued to show global temperature increases of 3 +- 1.5/sup 0/C, accentuated at high latitudes. To improve understanding of possible regional climate changes, there were increased efforts to reconstruct regional climatic patterns prevailing during past warm periods that might serve as analogs of future climatic conditions. Particular attention was directed to the climates of the United States and other countries bordering the North Atlantic Ocean during the warm period 5000 to 7000 years ago.

  5. Assessing Carbon Dioxide Emissions from Energy Use at a University

    Science.gov (United States)

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  6. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    Science.gov (United States)

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  7. Entrainment process of carbon dioxide in the atmospheric boundary layer

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Gioli, B.; Miglietta, F.; Jonker, H.J.J.; Klein Baltink, H.; Hutjes, R.W.A.; Holtslag, A.A.M.

    2004-01-01

    Aircraft and surface measurements of turbulent thermodynamic variables and carbon dioxide (CO2) were taken above a grassland in a convective atmospheric boundary layer. The observations were analyzed to assess the importance of the entrainment process for the distribution and evolution of carbon dio

  8. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon...

  9. Regeneration of oxygen from carbon dioxide and water.

    Science.gov (United States)

    Weissbart, J.; Smart, W. H.; Wydeven, T.

    1972-01-01

    In a closed ecological system it is necessary to reclaim most of the oxygen required for breathing from respired carbon dioxide and the remainder from waste water. One of the advanced physicochemical systems being developed for generating oxygen in manned spacecraft is the solid electrolyte-electrolysis system. The solid electrolyte system consists of two basic units, an electrolyzer and a carbon monoxide disproportionator. The electrolyzer can reclaim oxygen from both carbon dioxide and water. Electrolyzer preparation and assembly are discussed together with questions of reactor design and electrolyzer performance data.

  10. Molecular Simulation of Carbon Dioxide Adsorbed in a Slit Carbon Pore

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both the grand canonical Monte Carlo and molecular dynamics simulation methods are used to investigate the adsorption and diffusion of carbon dioxide confined in a 1.86 nm slit carbon pore at 4 temperatures from subcritical (120 K) to supercritical (313 K) conditions. Layering transition, capillary condensation and adsorption hysteresis are found at 120 K. The microstructure of carbon dioxide fluid in the slit carbon pore is analyzed. The diffusion coefficients of carbon dioxide parallel to the slit wall are significantly larger than those normal to the slit wall.

  11. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  12. Monte-Carlo simulations of methane/carbon dioxide and ethane/carbon dioxide mixture adsorption in zeolites and comparison with matrix treatment of statistical mechanical lattice model

    Science.gov (United States)

    Dunne, Lawrence J.; Furgani, Akrem; Jalili, Sayed; Manos, George

    2009-05-01

    Adsorption isotherms have been computed by Monte-Carlo simulation for methane/carbon dioxide and ethane/carbon dioxide mixtures adsorbed in the zeolite silicalite. These isotherms show remarkable differences with the ethane/carbon dioxide mixtures displaying strong adsorption preference reversal at high coverage. To explain the differences in the Monte-Carlo mixture isotherms an exact matrix calculation of the statistical mechanics of a lattice model of mixture adsorption in zeolites has been made. The lattice model reproduces the essential features of the Monte-Carlo isotherms, enabling us to understand the differing adsorption behaviour of methane/carbon dioxide and ethane/carbon dioxide mixtures in zeolites.

  13. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    Science.gov (United States)

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  14. Carbon dioxide, the feedstock for using renewable energy

    Science.gov (United States)

    Hashimoto, K.; Kumagai, N.; Izumiya, K.; Kato, Z.

    2011-03-01

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  15. Carbon dioxide, the feedstock for using renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, K; Kato, Z [Tohoku Institute of Technology, Sendai, 982-8577 (Japan); Kumagai, N; Izumiya, K, E-mail: koji@imr.tohku.ac.jp [Daiki Ataka Engineering Co. Ltd. Kashiwa, 277-8515 (Japan)

    2011-03-15

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  16. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  17. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  18. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  19. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance.

    Science.gov (United States)

    Ranucci, Marco; Carboni, Giovanni; Cotza, Mauro; de Somer, Filip

    2017-01-01

    Carbon dioxide production during cardiopulmonary bypass derives from both the aerobic metabolism and the buffering of lactic acid produced by tissues under anaerobic conditions. Therefore, carbon dioxide removal monitoring is an important measure of the adequacy of perfusion and oxygen delivery. However, routine monitoring of carbon dioxide removal is not widely applied. The present article reviews the main physiological and pathophysiological sources of carbon dioxide, the available techniques to assess carbon dioxide production and removal and the clinically relevant applications of carbon dioxide-related variables as markers of the adequacy of perfusion during cardiopulmonary bypass.

  20. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  1. Chemoselective Alternating Copolymerization of Limonene Dioxide and Carbon Dioxide: A New Highly Functional Aliphatic Epoxy Polycarbonate.

    Science.gov (United States)

    Li, Chunliang; Sablong, Rafaël J; Koning, Cor E

    2016-09-12

    The alternating copolymerization of biorenewable limonene dioxide with carbon dioxide (CO2 ) catalyzed by a zinc β-diiminate complex is reported. The chemoselective reaction results in linear amorphous polycarbonates that carry pendent methyloxiranes and exhibit glass transition temperatures (Tg ) up to 135 °C. These polycarbonates can be efficiently modified by thiols or carboxylic acids in combination with lithium hydroxide or tetrabutylphosphonium bromide as catalysts, respectively, without destruction of the main chain. Moreover, polycarbonates bearing pendent cyclic carbonates can be quantitatively prepared by CO2 insertion catalyzed by lithium bromide.

  2. Carbon Dioxide As a Raw Material for Biodegradable Plastics

    Institute of Scientific and Technical Information of China (English)

    WANG Xianhong; QIN Yusheng; WANG Fosong

    2011-01-01

    @@ Carbon dioxide is the main greenhouse gas, but it is also a renewable and abundant source of carbon.It has not onlv shown various phvsicai utilization in the manufacturing of food, beverage and other industry areas, but been chemically fixed into urea, salicylic acid, organic and inorganic carbonates (Mikkelsen, Jorgensen & Krebs, 2010).However, developing a high value-added fixation route to CO is badly needed.

  3. XPS investigation of copper corrosion in hydro-carbonate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Sieber, I.; Hildebrand, H.; Schmuki, P. [University Erlangen-Nuremberg, Martensstr.7, D-91058 Erlangen (Germany); Kaluzhina, S.A. [Voronezh State University, University Sq.1, 394006 Voronezh (Russian Federation)

    2004-07-01

    Problems of corrosion and effective methods of metal protection are still actual in the present days. Special interest is in copper material, which as basic component of heat exchanger constructions can corrode in contact with carbonate water. The intensity of the corrosion destruction depends on the carbon water concentration and thermal conditions in the system. The present paper provides new insights into the role of the HCO{sub 3}{sup -} - ions in the corrosion process of copper. Copper samples after anodic oxidation in 0.02 and 0.1 M NaHCO{sub 3} have been studied using XPS and SEM. The presence of carbonate compounds in the passive film in 0.1 M NaHCO{sub 3} was established by XPS analysis all over the surface. These compounds are responsible for the protective character of the passive film towards local destruction. In the 0.02 M NaHCO{sub 3} electrolyte carbonate compounds were not found at places of pit formation after multi-cycling of the sample. (authors)

  4. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  5. Aesthetic Depigmentation of Gingival Smoker's Melanosis Using Carbon Dioxide Lasers.

    Science.gov (United States)

    Monteiro, Luis Silva; Costa, José Adriano; da Câmara, Marco Infante; Albuquerque, Rui; Martins, Marco; Pacheco, José Júlio; Salazar, Filomena; Figueira, Fernando

    2015-01-01

    Melanic pigmentation results from melanin produced by the melanocytes present in the basal layer of the oral epithelium. One of the most common causes of oral pigmentation is smoker melanosis, a condition associated with the melanocyte stimulation caused by cigarette smoke. This paper aims to illustrate the use of a carbon dioxide laser in the removal of the gingival melanic pigmentation for aesthetic reasons in a 27-year-old female patient with history of a smoking habit. The carbon dioxide laser vaporisation was performed on the gingival mucosa with effective and quick results and without any complications or significant symptoms after the treatment. We conclude that a carbon dioxide laser could be a useful, effective, and safe instrument to treat the aesthetic complications caused by oral smoker melanosis.

  6. [Thoracoscopic thymectomy with carbon dioxide insufflation in the mediastinum].

    Science.gov (United States)

    Ferrero-Coloma, C; Navarro-Martinez, J; Bolufer, S; Rivera-Cogollos, M J; Alonso-García, F J; Tarí-Bas, M I

    2015-02-01

    The case is presented of a 71 year-old male, diagnosed with a thymoma. A thoracoscopic thymectomy was performed using the carbon dioxide insufflation technique in the mediastinum. During the procedure, while performing one-lung ventilation, the patient's respiration worsened. The contralateral lung had collapsed, as carbon dioxide was travelling from the mediastinum to the thorax through the opened pleura. Two-lung ventilation was decided upon, which clearly improved oxygenation in the arterial gases and airway pressures. Both pH and pCO2 stabilized. The surgical approach and the carbon dioxide technique were continued because 2-lung ventilation did not affect the surgical procedure. This technique has many serious complications and it should always be performed using 2-lung ventilation.

  7. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  8. Novel carbon dioxide gas sensor based on infrared absorption

    Science.gov (United States)

    Zhang, Guangjun; Lui, Junfang; Yuan, Mei

    2000-08-01

    The feasibility of sensing carbon dioxide with a IR single- beam optical structure is studied, and a novel carbon dioxide gas sensor based on IR absorption is achieved. Applying the Lambert-Beer law and some key techniques such as current stabilization for IR source, using a high-quality IR detector, and data compensation for the influences of ambience temperature and atmosphere total pressure, the sensor can measure carbon dioxide with high precision and efficiency. The mathematical models for providing temperature and pressure compensation for the sensor are established. Moreover the solutions to the models are proposed. Both the models and the solutions to the models are verified via experiments. The sensor possesses the advantages of small volume, light weight, low power consumption, and high reliability. Therefore it can be used in many associated fields, such as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  9. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Science.gov (United States)

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  10. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  11. Carbon Surface Modification for Enhanced Corrosion Resistance

    Science.gov (United States)

    2008-01-01

    2 R. Rayne,1 and R.A. Bayles1 1Chemistry Division 2SAIC Introduction: Case hardening by carburization has long been recognized to produce wear... carburization technique has been developed for intro- ducing carbon into stainless steel surfaces without formation of carbides.1,2 This surface modification...Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal, and A.H. Heuer, “Carbon Supersaturation due to Paraequilibrium Carburization : Stainless

  12. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  13. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made.......Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  14. Potential of the technological and chemical utilisation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M. [Univ. Bari (Italy). Dip. di Chimica e Centro METEA

    1998-10-01

    The carbon dioxide mitigation has been agreed at international level. Besides the efficiency technologies, the recovery of CO{sub 2} from power-plants flue gases is a most innovative approach. This would make available large amounts of CO{sub 2}, either for disposal or for utilisation. The technological and chemical utilisation of carbon dioxide are options whose potential is under evaluation. The Life Cycle Analysis (LCA) study seems to be the most effective tool for their assessment. The two options are considered in this paper and the synthetic methodologies that appear as most likely to be implemented are analysed.

  15. Effect of H{sub 2}S on the CO{sub 2} corrosion of carbon steel in acidic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon-Seok, E-mail: choiy@ohio.ed [Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, 342 West State Street, Athens, OH 45701 (United States); Nesic, Srdjan [Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, 342 West State Street, Athens, OH 45701 (United States); Ling Shiun [ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, NJ 08801 (United States)

    2011-01-15

    The objective of this study is to evaluate the effect of low-level hydrogen sulfide (H{sub 2}S) on carbon dioxide (CO{sub 2}) corrosion of carbon steel in acidic solutions, and to investigate the mechanism of iron sulfide scale formation in CO{sub 2}/H{sub 2}S environments. Corrosion tests were conducted using 1018 carbon steel in 1 wt.% NaCl solution (25 {sup o}C) at pH of 3 and 4, and under atmospheric pressure. The test solution was saturated with flowing gases that change with increasing time from CO{sub 2} (stage 1) to CO{sub 2}/100 ppm H{sub 2}S (stage 2) and back to CO{sub 2} (stage 3). Corrosion rate and behavior were investigated using linear polarization resistance (LPR) technique. Electrochemical impedance spectroscopy (EIS) and potentiodynamic tests were performed at the end of each stage. The morphology and compositions of surface corrosion products were analyzed using scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results showed that the addition of 100 ppm H{sub 2}S to CO{sub 2} induced rapid reduction in the corrosion rate at both pHs 3 and 4. This H{sub 2}S inhibition effect is attributed to the formation of thin FeS film (tarnish) on the steel surface that suppressed the anodic dissolution reaction. The study results suggested that the precipitation of iron sulfide as well as iron carbonate film is possible in the acidic solutions due to the local supersaturation in regions immediately above the steel surface, and these films provide corrosion protection in the acidic solutions.

  16. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    Science.gov (United States)

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  17. Carbon Dioxide Effects Research and Assessment Program: Proceedings of the carbon dioxide and climate research program conference

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, L E [ed.

    1980-12-01

    Papers presented at the Carbon Dioxide and Climate Research Program Conference are included in this volume. Topics discussed are: the carbon cycle; modeling the carbon system; climatic response due to increased CO2; climate modeling; the use of paleoclimatic data in understanding climate change; attitudes and implications of CO2; social responses to the CO2 problem; a scenario for atmospheric CO2 to 2025; marine photosynthesis and the global carbon cycle; and the role of tropical forests in the carbon balance of the world. Separate abstracts of nine papers have been prepared for inclusion in the Energy Data Base. (RJC)

  18. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions,...

  19. Energy Saving High-Capacity Moderate Pressure Carbon Dioxide Storage System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach to high-pressure carbon dioxide storage will directly address the challenges associated with storage of compressed carbon dioxide - the need to reduce...

  20. Preparation of calcium carbonate particles coated with titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  1. ARTICLES: Vapor-Liquid Equilibrium Data of Carbon Dioxide+Methyl Propionate and Carbon Dioxide+Propyl Propionate Systems

    Science.gov (United States)

    Xu, Wei; Xie, Chuan-xin; Li, Hong-ling; Tian, Yi-ling

    2010-06-01

    High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the range from 313 K to 373 K. Experimental results were correlated with the Peng-Robinson equation of state with the two-parameter van der Waals mixing rule. At the same time, the Henry's coefficient, partial molar enthalpy change and partial molar entropy change of CO2 during dissolution at different temperature were also calculated.

  2. 78 FR 23524 - Approval and Promulgation of Implementation Plans; North Carolina: Deferral of Carbon Dioxide (CO2

    Science.gov (United States)

    2013-04-19

    ... Carbon Dioxide (CO 2 ) Emissions From Prevention of Significant Deterioration (PSD) Requirements for... applicability to biogenic carbon dioxide (CO 2 ) emissions from bioenergy and other biogenic stationary...

  3. Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production. [Penicillium chrysogenum

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.S.; Smith, M.D.

    1986-01-01

    The effect of dissolved carbon dioxide on the specific growth rate and the penicillin production rate of Penicillium chrysogenum was examined experimentally. The dissolved carbon dioxide was found to inhibit the specific growth rate and the penicillin production rate when the aerated submerged penicillin fermentation was exposed to influent gases of 12.6 and 20% carbon dioxide, respectively. Upon exposure to influent gases of 3 and 5% carbon dioxide, no pronounced metabolic inhibition was noted.

  4. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  5. Somewhere beyond the sea? The oceanic - carbon dioxide - reactions

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2014-05-01

    In correlation to climate change and CO2 emission different campaigns highlight the importance of forests and trees to regulate the concentration of carbon dioxide in the earths' atmosphere. Seeing millions of square miles of rainforest cut down every day, this is truly a valid point. Nevertheless, we often tend to forget what scientists like Spokes try to raise awareness for: The oceans - and foremost deep sea sections - resemble the second biggest deposit of carbon dioxide. Here carbon is mainly found in form of carbonate and hydrogen carbonate. The carbonates are needed by corals and other sea organisms to maintain their skeletal structure and thereby to remain vital. To raise awareness for the protection of this fragile ecosystem in schools is part of our approach. Awareness is achieved best through understanding. Therefore, our approach is a hands-on activity that aims at showing students how the carbon dioxide absorption changes in relation to the water temperature - in times of global warming a truly sensitive topic. The students use standard syringes filled with water (25 ml) at different temperatures (i.e. 10°C, 20°C, 40°C). Through a connector students inject carbon dioxide (25ml) into the different samples. After a fixed period of time, students can read of the remaining amount of carbon dioxide in relation to the given water temperature. Just as with every scientific project, students need to closely monitor their experiments and alter their setups (e.g. water temperature or acidity) according to their initial planning. A digital template (Excel-based) supports the analysis of students' experiments. Overview: What: hands-on, minds -on activity using standard syringes to exemplify carbon dioxide absorption in relation to the water temperature (Le Chatelier's principle) For whom: adjustable from German form 11-13 (age: 16-19 years) Time: depending on the prior knowledge 45-60 min. Sources (extract): Spokes, L.: Wie Ozeane CO2 aufnehmen. Environmental

  6. Carbon dioxide fluxes from Tifway bermudagrass: early results

    Science.gov (United States)

    Cotten, David L.; Zhang, G.; Leclerc, M. Y.; Raymer, P.; Steketee, C. J.

    2016-06-01

    This paper reports for the first time preliminary data on carbon uptake of warm-season turfgrass at a well-managed sod farm in south central Georgia. It examines the changes in carbon uptake from one of the most widely used warm-season turfgrass cultivars in the world, Tifway Bermudagrass. It elucidates the role of canopy density and light avalaibility on the net carbon uptake using the eddy-covariance technique. Preliminary evidence suggests that turfgrass is effective at sequestering carbon dioxide during the summer months even when the canopy is being reestablished following a grass harvest.

  7. Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media.

    Science.gov (United States)

    Oguzie, E E; Enenebeaku, C K; Akalezi, C O; Okoro, S C; Ayuk, A A; Ejike, E N

    2010-09-01

    The inhibition of low-carbon-steel corrosion in 1M HCl and 0.5M H(2)SO(4) by extracts of Dacryodis edulis (DE) was investigated using gravimetric and electrochemical techniques. DE extract was found to inhibit the uniform and localized corrosion of carbon steel in the acidic media, affecting both the cathodic and anodic partial reactions. The corrosion process was inhibited by adsorption of the extracted organic matter onto the steel surface in a concentration-dependent manner and involved both protonated and molecular species. Molecular dynamics simulations were performed to illustrate the process of adsorption of some specific components of the extract.

  8. Palladium-Catalyzed Addition of Carbon Monoxide and Carbon Tetrachloride to 1-Octene in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    张群健; 孙均华; 江焕峰; 欧阳小月; 程金生

    2003-01-01

    The Pd-catalyzed addition of carbon monoxide and carbon tetrachloride to 1-octene gave coadduct [alkyl 2-( 2, 2, 2-trichloroethyl)octanoate] as the major product in supercritical carbon dioxide by using pyridine as the base. It was found that the selectivity and the yield of coadduct were greatly affected by the pressure of carbon dioxide, the reaction temperature and the amounts of alcohol and base used.

  9. CHEMICAL FIXATION OF CARBON DIOXIDE USING SOLVENT EXTRACTION

    OpenAIRE

    SASAMOTO, Naoki; MASHIMO, Miki; MATSUMOTO, Shigeno; Yamamoto, Hideki; SHIBATA, Junji

    1996-01-01

    Investigations were carried out to create a chemical fixation process,where carbon dioxide and sodium chloride solution are converted to sodium hydrogen carbonate and hydrochloric acid. Because the reaction has a large and positive free energy change,it does not proceed unless a suitable condition is established.The reaction is able to proceed if hydrochloric acid,which is one of the reaction products,is removed from the reaction system by extraction with amine.Stripping of hydrochloric acid ...

  10. Photodissociation of carbon dioxide in the Mars upper atmosphere

    Science.gov (United States)

    Barth, C. A.

    1974-01-01

    Calculation of the intensity of two of the emissions produced during the dissociative excitation of carbon dioxide in the upper atmosphere of Mars by solar ultraviolet radiation. The calculation tangential column emission rates of the atomic oxygen 2972-A line and the carbon monoxide Cameron bands produced by the photodissociative mechanism are found to be factors of 3 and 10, respectively, smaller than the emission rates observed by Mariner ultraviolet spectrometers.

  11. Synthesis of fatty acid starch esters in supercritical carbon dioxide

    NARCIS (Netherlands)

    Muljana, Henky; van der Knoop, Sjoerd; Keijzer, Danielle; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2010-01-01

    This manuscript describes an exploratory study on the synthesis of fatty acid/potato starch esters using supercritical carbon dioxide (scCO(2)) as the solvent. The effects of process variables such as pressure (6-25 MPa), temperature (120-150 degrees C) and various basic catalysts and fatty acid der

  12. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80...

  13. Solubility of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Dijkstra, H. B. S.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    In the present work, new experimental data are presented on the solubility of carbon dioxide in aqueous piperazine solutions, for concentrations of 0.2 and 0.6 molar piperazine and temperatures of 25, 40, and 70°C respectively. The present data, and other data available in the literature, were corr

  14. Synthesis and characterization of zwitterionic carbon dioxide fixing reagents

    DEFF Research Database (Denmark)

    Mikkelsen, Mette; Jørgensen, Mikkel; Krebs, Frederik C

    2010-01-01

    The synthesis of three amine-based carbon dioxide fixing reagents is presented. The reagents were designed so that they would be able to bind CO2 reversibly through the formation of the well known carbamates that was stabilized through forming a zwitterion. CO2 fixing experiments were performed...

  15. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    Science.gov (United States)

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  16. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    and the potential for widespread feedbacks with global consequences. In this thesis, I present and discuss the findings of an investigation of comparable drivers of the seasonality in carbon dioxide (CO2) fluxes across heterogeneous Arctic tundra ecosystems. Due to the remoteness and the harsh climatic conditions...

  17. Distribution of Carbon Dioxide Produced by People in a Room:

    DEFF Research Database (Denmark)

    Naydenov, Kiril Georgiev; Baránková, Petra; Sundell, Jan

    2004-01-01

    Carbon dioxide exhaled by people can be used as a tracer gas for air change measurements in homes. Good mixing of tracer gas with room air is a necessary condition to obtain accurate results. However, the use of fans to ensure mixing is inconvenient. The natural room distribution of metabolic CO2...

  18. Aerobic Oxidation of Methyl Vinyl Ketone in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    OUYANG,Xiao-Yue(欧阳小月); JIANG,Huan-Feng(江焕峰); CHENG,Jin-Sheng(程金生); ZHANG,Qun-Jian(张群健)

    2002-01-01

    Aerobic oxidation of methyl vinyl ketone to acetal in supercritical carbon dioxide are achieved in high conversion and high selectivity when oxygen pressure reaches 0.5MPa. The effects of cocatalysts,additive, pressure and temperature of the reaction are studied in detail.

  19. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment

    Science.gov (United States)

    Gaihre, Santosh; Semple, Sean; Miller, Janice; Fielding, Shona; Turner, Steve

    2014-01-01

    Background: We tested the hypothesis that classroom carbon dioxide (CO[subscript 2]) concentration is inversely related to child school attendance and educational attainment. Methods: Concentrations of CO[subscript 2] were measured over a 3-5?day period in 60 naturally ventilated classrooms of primary school children in Scotland. Concentrations of…

  20. Fluxes of Methane and Carbon Dioxide from a Subarctic Lake

    DEFF Research Database (Denmark)

    Jammet, Mathilde Manon

    ) and carbon dioxide (CO2) with the atmosphere. Yet uncertainties in the magnitude and drivers of these fluxes remain, partly due to a lack of direct observations covering all seasons of the year, but also because of the diversity in measurement methods that often miss components of the transport processes...

  1. Solubilities of ferrocene and acetylferrocene in supercritical carbon dioxide

    DEFF Research Database (Denmark)

    Kazemi, Somayeh; Belandria, Veronica; Janssen, Nico

    2012-01-01

    In this work, the solubilities of ferrocene and acetylferrocene in supercritical carbon dioxide (scCO2) were measured using an analytical method in a quasi-flow apparatus. High-performance liquid chromatography was applied through an online sampling procedure to determine the concentration...

  2. Extraction of heavy oil by supercritical carbon dioxide

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Spirov, Pavel; Søgaard, Erik Gydesen

    2010-01-01

    The present study deals with the extraction of heavy oil by supercritical carbon dioxide at the pressure values changing from 16 to 56 MPa at the fixed value of temperature: 60oC. The amount of the recovered liquid phase of oil was calculated as a percentage of the extracted amount to the initial...

  3. How Can We Use Carbon Dioxide as a Solvent?

    Science.gov (United States)

    Mohamed, Azmi; Eastoe, Julian

    2011-01-01

    This article describes the work being undertaken to make more use of supercritical carbon dioxide as a green solvent. It discusses how the use of surfactants can address the limitations of supercritical CO[subscript 2] in dissolving solutes that are polar and of higher molecular weight. The design of appropriate hydrocarbon CO[subscript 2]-philic…

  4. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  5. Distribution of carbon dioxide produced by people in a room:

    DEFF Research Database (Denmark)

    Baránková, Petra; Naydenov, Kiril Georgiev; Melikov, Arsen Krikor

    2004-01-01

    Carbon dioxide produced by occupants can be used as a natural tracer gas for analysing air change rates in dwellings. However, a high level of concentration uniformity is necessary for tracer gas measurements. Therefore, mixing fans are usually used. The use of such fans in occupied homes...

  6. Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Mogensen, Mogens Bjerg

    2009-01-01

    Carbon dioxide electrolysis was studied in Ni/YSZ electrode supported Solid Oxide Electrolysis Cells (SOECs) consisting of a Ni-YSZ support, a Ni-YSZ electrode layer, a YSZ electrolyte, and a LSM-YSZ O2 electrode (YSZ = Yttria Stabilized Zirconia). The results of this study show that long term CO2...

  7. Cryotherapy gas--to use nitrous oxide or carbon dioxide?

    Science.gov (United States)

    Maiti, H; Cheyne, M F; Hobbs, G; Jeraj, H A

    1999-02-01

    Cryotherapy is regularly used in our clinic for treating genital warts. Nitrous oxide was used as the cryogenic gas. Following a health and safety review it was decided to monitor the nitrous oxide levels in the treatment room under different conditions. The Occupational Exposure Standard for nitrous oxide is 100 parts per million (PPM) (8-h time weighted average) and an indicative short-term exposure limit of 300 PPM (15-min reference period). High levels of gas were detected, especially when the exhaust was not vented to the outside. Venting of the gas to the outside could also present a hazard to adjacent areas. The situation was considered to be unacceptable and carbon dioxide was proposed as an alternative. The Occupational Exposure Standard for carbon dioxide is 5000 PPM (8-h time weighted average) and a short-term limit of 15,000 PPM (15-min reference period). Carbon dioxide levels were found to be within the Occupational Exposure Standard. There is no noticeable difference in the cryogenic efficacy of the 2 gases. Carbon dioxide is, therefore, a safer alternative. It also offers significant savings when compared with nitrous oxide.

  8. Solubilities of sub- and supercritical carbon dioxide in polyester resins

    NARCIS (Netherlands)

    Nalawade, SP; Picchioni, F; Janssen, LPBM; Patil, VE; Keurentjes, JTF; Staudt, R; Nalawade, Sameer P.; Patil, Vishal E.; Keurentjes, Jos T.F.

    2006-01-01

    In supercritical carbon dioxide (CO2) assisted polymer processes the solubility of CO2 in a polymer plays a vital role. The higher the amount of CO2 dissolved in a polymer the higher is the viscosity reduction of the polymer. Solubilities Of CO2 in polyester resins based on propoxylated bisphenol (P

  9. Carbon dioxide uptake by a temperate tidal sea

    NARCIS (Netherlands)

    Klaassen, Wim

    2007-01-01

    Carbon dioxide (CO2) exchange between the atmosphere and the Wadden Sea, a shallow coastal region along the northern Netherlands, has been measured from April 2006 onwards on a tidal flat and over open water. Tidal flat measurements were done using a flux chamber, and ship borne measurements using a

  10. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata T.; Benes, N.E.; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate water-l

  11. Carbon dioxide concentration in Mediterranean greenhouses : how much lost production?

    NARCIS (Netherlands)

    Stanghellini, C.; Incrocci, L.; Gazquez, J.C.; Dimauro, B.

    2008-01-01

    In the absence of artificial supply of carbon dioxide in the greenhouse environment, the CO2 absorbed in the process of photosynthesis must ultimately come from the external ambient through the ventilation openings. This requires that the CO2 concentration within the house must be lower than the ext

  12. Trade, production fragmentation, and China's carbon dioxide emissions

    NARCIS (Netherlands)

    Dietzenbacher, Erik; Pei, Jiansuo; Yang, Cuihong

    2012-01-01

    An input-output framework is adopted to estimate China's carbon dioxide (CO2) emissions as generated by its exports in 2002. More than one half of China's exports are related to international production fragmentation. These processing exports generate relatively little value added but also relativel

  13. Green dyeing of cotton fabrics by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Zhang Juan

    2015-01-01

    Full Text Available Green dyeing process with zero waste water emission is a hot topic recently. This paper reveals that supercritical carbon dioxide is the best candidate for this purpose. Effects of thermodynamic parameters, such as enthalpy and entropy of activation, on dyeing process are studied experimentally.

  14. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    NARCIS (Netherlands)

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ven

  15. Supercritical carbon dioxide process for pasteurization of fruit juices

    Science.gov (United States)

    Supercritical carbon dioxide (SCCO2) nonthermal processing inactivates microorganisms in juices using non-toxic and non-reactive CO2. However, data is lacking on the inactivation of E. coli K12 and L. plantarum in apple cider using pilot plant scale SCCO2 equipment. For this study, pasteurized pres...

  16. Glaciers as indicators of the carbon dioxide warming

    NARCIS (Netherlands)

    Oerlemans, J.

    1986-01-01

    During the past 150 years, mountain glaciers have shown a worldwide retreat. It has been argued that this is related to the warming which is predicted to result from increased carbon dioxide levels in the atmosphere; however, this warming has not been detected in a statistically significant way from

  17. Integrated biofuel facility, with carbon dioxide consumption and power generation

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering

    2009-07-01

    This presentation provided details of an economical design for a large-scale integrated biofuel facility for coupled production of bioethanol and biodiesel, with carbon dioxide capture and power generation. Several designs were suggested for both batch and continuous culture operations, taking into account all costs and revenues associated with the complete plant integration. The microalgae species Chlorella vulgaris was cultivated in a novel photobioreactor (PBR) in order to consume industrial carbon dioxide (CO{sub 2}). This photosynthetic culture can also act as a biocathode in a microbial fuel cell (MFC), which when coupled to a typical yeast anodic half cell, results in a complete biological MFC. The photosynthetic MFC produces electricity as well as valuable biomass and by-products. The use of this novel photosynthetic microalgae cathodic half cell in an integrated biofuel facility was discussed. A series of novel PBRs for continuous operation can be integrated into a large-scale bioethanol facility, where the PBRs serve as cathodic half cells and are coupled to the existing yeast fermentation tanks which act as anodic half cells. These coupled MFCs generate electricity for use within the biofuel facility. The microalgae growth provides oil for biodiesel production, in addition to the bioethanol from the yeast fermentation. The photosynthetic cultivation in the cathodic PBR also requires carbon dioxide, resulting in consumption of carbon dioxide from bioethanol production. The paper also discussed the effect of plant design on net present worth and internal rate of return. tabs., figs.

  18. Phase relation between global temperature and atmospheric carbon dioxide

    CERN Document Server

    Stallinga, Peter

    2013-01-01

    The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause for temperature variations. In this paper we discuss this assumption and analyze it on basis of bi-centenary measurements and using a relaxation model which causes phase shifts and delays.

  19. Continuous wave carbon dioxide treatment of balanitis xerotica obliterans.

    Science.gov (United States)

    Rosemberg, S K; Jacobs, H

    1982-05-01

    Herein is presented the first case of balanitis xerotica obliterans treated successfully by carbon dioxide-continuous wave (CW-CO2) laser vaporization. This method appears to be a safe addition to other well-known treatment modalities, offering minimal postoperative discomfort, preservation of anatomic landmarks and function, and excellent cosmetic results.

  20. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use...

  1. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 27.42a Section 27.42a Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... On Imported Distilled Spirits, Wines, and Beer Wines § 27.42a Still wines containing carbon dioxide. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  2. Carbon dioxide euthanasia in rats: Oxygen supplementation minimizes signs of agitation and asphyxia

    NARCIS (Netherlands)

    Coenen, A.M.L.; Drinkenburg, W.H.I.M.; Hoenderken, R.; Luijtelaar, E.L.J.M. van

    1995-01-01

    This paper records the effects of carbon dioxide when used for euthanasia, on behaviour, electrical brain activity and heart rate in rats. Four different methods were used. Animals were placed in a box (a) that was completely filled with carbon dioxide; (b) into which carbon dioxide was streamed at

  3. 76 FR 25236 - Carbon Dioxide; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2011-05-04

    ... AGENCY 40 CFR Part 180 Carbon Dioxide; Exemption From the Requirement of a Tolerance AGENCY... from the requirement of a tolerance for residues of carbon dioxide (CAS Reg. No. 124-38-9) when used as... permissible level for residues of carbon dioxide. DATES: This regulation is effective May 4, 2011....

  4. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  5. 40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carbon dioxide; exemption from the... Exemptions From Tolerances § 180.1049 Carbon dioxide; exemption from the requirement of a tolerance. The insecticide carbon dioxide is exempted from the requirement of a tolerance when used after harvest in...

  6. 76 FR 48073 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-08-08

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY... Conservation and Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous... of carbon dioxide streams that would otherwise be regulated as hazardous wastes under the...

  7. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from...

  8. 75 FR 8431 - Carbon Dioxide Fire Suppression Systems on Commercial Vessels

    Science.gov (United States)

    2010-02-24

    ... Homeland Security Coast Guard 46 Parts 25, 27, 28, et al. Carbon Dioxide Fire Suppression Systems on..., 182, 185, 189, 190, 193, 194, and 196 RIN 1625-AB44 Carbon Dioxide Fire Suppression Systems on... vessels. The amendments would clarify that approved alternatives to carbon dioxide systems may be used...

  9. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  10. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve s

  11. Efficientcy of corrosion protection properties of epoxy resin/cashew nut shell liquid alloy reinforced with titanium dioxide

    Directory of Open Access Journals (Sweden)

    Wilaivan Loonpooht

    2014-12-01

    Full Text Available The cure behavior of epoxy resin containing cashew nut shell liquid (CNSL and corrosion protective performance of epoxy alloy reinforced with titanium dioxide (TiO2 have been investigated. According to FTIR spectra obtained from epoxy alloys, the CNSL can be employed as a curing agent. The curing process occurred when amount of CNSL was as low as 20%wt. It was found experimentally that the CNSL used for epoxy curing should not be higher than 40%wt.in order to minimize amount CNSL left after reaction. The corrosion protective performance of epoxy alloy on aluminum sheets was carried out. The results revealed that the ability of corrosion resistance increased with the amount of TiO2 introduced into the Epoxy/CNSL film investigated. In this work, the highest corrosion resistance value was found when the TiO2 concentration of 1.5 %wt was reached.

  12. Methane and Carbon Dioxide Emissions from Different Composting Periods

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Chang

    2009-01-01

    Full Text Available To investigate green house gas emissions from compost preparations, methane and carbon dioxide concentrations and emission rates at different accumulative times and composting periods were determined. While the accumulative time was less than 10 min with a closed acrylic chamber, meth ane and carbon dioxide emissions in creased slightly but with high fluntuation in the sampling e ror, and these values decreased significantly when the accumulative time was more than 20 min. During the 8 weeks of composting, the methane emission rate reaches its peak near the end of the second week and the carbon dioxide emission rate does the same near the end of third week. Meth ane and carbon dioxide emissions had high val ues at the first stage of com post ing and then de creased grad u ally for the ma tu rity of com post. Carbon dioxide emission (y was significantly related to temperature (x1, moisture content (x2, and total or ganiccarbon (x3; and there gression equation is: y = 3.11907x1 + 6.19236x2 - 6.63081x3 - 50.62498. The re gres sion equa tion be tween meth ane emis sion (y? and mois ture con tent (x2, pH (x4, C/N ra tio (x5, and ash con tent (x6 is: y?= 0.13225x2 - 0.97046x4 - 1.10599x5 - 0.55220x6 + 50.77057 in the ini tial com post ing stage (weeks 1 to 3; while, the equa tion is: y?= 0.02824x2 - 0.0037x4 - 0.1499x5 - 0.07013x6 + 4.13589 in the later compost ing stage (weeks 4 to 8. Dif ferent stage composts have significant variation of properties and greenhouse gas emissions. Moreover, the emissions may be reduced by manipulating the proper factors.

  13. Corrosion inhibition of carbon steel by sodium metavanadate

    Directory of Open Access Journals (Sweden)

    VIJAYA GOPAL SRIBHARATHY

    2012-08-01

    Full Text Available The inhibition efficiency of sodium metavanadate (SMV-adipic acid (AA system in controlling corrosion of carbon steel in an aqueous solution containing 60 ppm of Cl- has been evaluated by weight-loss method; 250 ppm of SMV exhibits inhibition efficiency of 56 %. Addition of adipic acid to SMV improves the inhibition efficiency of the system. The formulation consisting of 250 ppm of SMV and 250 ppm of adipic acid has inhibition efficiency of 98 %. A synergistic effect exists between SMV and adipic acid with the synergism parameters greater than 1. Mecha¬nistic aspects of corrosion inhibition have been studied by electrochemical methods like potentiodynamic polarization and electrochemical impedance spectroscopy. FTIR spectra reveal that the protective film consists of Fe2+-SMV complex and Fe2+-adipic acid complex. The protective film has been analyzed by fluorescence spectra, SEM and EDAX.

  14. Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Xiao Wu

    2016-01-01

    Full Text Available The catalytic synthesis of cyclic carbonates using carbon dioxide as a C1-building block is a highly active area of research. Here, we review the catalytic production of enantiomerically enriched cyclic carbonates via kinetic resolution of racemic epoxides catalysed by metal-containing catalyst systems.

  15. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  16. The carbon dioxide content in ice cores - climatic curves of carbon dioxide. Zu den CO sub 2 -Klimakurven aus Eisbohrkernen

    Energy Technology Data Exchange (ETDEWEB)

    Heyke, H.E.

    1992-05-01

    The 'greenhouse effect', which implies a temperature of 15 deg C as against -18 deg C, owes its effect to 80% from water (clouds and gaseous phase) and to 10% from carbon dioxide, besides other components. Whereas water is largely unaccounted for, carbon dioxide has been postulated as the main cause of anticipated climatic catastrophe. The carbon dioxide concentration in the atmosphere has risen presently to such levels that all previous figures seem to have been left far behind. The reference point is the concentration of carbon dioxide in the air bubbles trapped in ice cores of Antartic and Greenland ice dated 160 000 years ago, which show much lower values than at present. A review of the most relevant publications indicates that many basic laws of chemistry seem to have been left largely unconsidered and experimental errors have made the results rather doubtful. Appropriate arguments have been presented. The investigations considered should be repeated under improved and more careful conditions. (orig.).

  17. High-pressure phase equilibria for the carbon dioxide + 3-pentanol and carbon dioxide + 3-pentanol + water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S.; Mun, S.Y.; Lee, H. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Chemical Engineering

    1999-05-01

    High-pressure vapor-liquid equilibria for the binary carbon dioxide + 3-pentanol system were measured at 313.2 K. The phase equilibrium apparatus used in this work was of the circulation type in which the coexisting phases were recirculated, on-line sampled, and analyzed. The critical pressure and corresponding mole fraction of carbon dioxide at 313.2 K were found to be 8.22 MPa and 0.974, respectively, for this binary system. The phase equilibria for the ternary carbon dioxide + 3-pentanol + water system were also measured at 313.2 K and pressures of 2.00, 4.00, 6.00, 8.00, and 8.25 MPa. This ternary system showed the liquid-liquid-vapor (LLV) phase behavior over the range of pressure up to the critical pressure of 8.25 MPa. The binary equilibrium data were all reasonably well-correlated with the Redlich-Kwong, Soave-Redlich-Kwong, Peng-Robinson, and Patel-Teja equations of state incorporated with the eight different mixing rules: the van der Waals, Panagiotopoulos-Reic, and six modified Huron-Vidal mixing rules with UNIQUAC parameters. For the prediction of high-pressure phase equilibria for the systems containing carbon dioxide and alcohols, the SRK-MHV2 might reproduce many features of the measured behavior although further tests are needed with other systems.

  18. Carbon dioxide: A new material for energy storage

    Directory of Open Access Journals (Sweden)

    Jacques Amouroux

    2014-08-01

    Full Text Available Though carbon dioxide is the main green house gas due to burning of fossil resource or miscellaneous chemical processes, we propose here that carbon dioxide be a new material for energy storage. Since it can be the key to find the solution for three critical issues facing the world: food ecosystems, the greenhouse issue and energy storage. We propose to identify the carbon recovery through a circular industrial revolution in the first part, and in the second part we present the starting way of three business plants to do that from industrial examples. By pointing out all the economic constraints and the hidden competitions between energy, water and food, we try to qualify the phrase “sustainable development” and open the way of a huge circular economy.

  19. Effect of Solid Loading on Carbon Dioxide Absorptionin Bubble Column

    Directory of Open Access Journals (Sweden)

    Alyaa Khadhier Mageed

    2011-01-01

    Full Text Available In the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.% on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h and absorbent concentration (caustic soda( 0.1,0.5 and 1 M . Activated carbon and alumina oxide (Al2O3 are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfacial area were increased with increasing volumetric gas flow rate, and solid loading.

  20. Mineralization of Carbon Dioxide: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O' Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  1. Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium

    DEFF Research Database (Denmark)

    Gharnati, Loubna; Musko, Nikolai; Jensen, Anker Degn

    2013-01-01

    In the present study the influence of the amount of carbon dioxide on the catalytic performance during the propylene carbonate synthesis from propylene oxide and CO2 was investigated. The reaction was performed in high-pressure batch autoclaves using immobilized 1-hydroxyethyl-9-propyl-cyclic gua......In the present study the influence of the amount of carbon dioxide on the catalytic performance during the propylene carbonate synthesis from propylene oxide and CO2 was investigated. The reaction was performed in high-pressure batch autoclaves using immobilized 1-hydroxyethyl-9-propyl...

  2. Photoassisted carbon dioxide reduction and formation of twoand three-carbon compounds. [prebiological photosynthesis

    Science.gov (United States)

    Halmann, M.; Aurian-Blajeni, B.; Bloch, S.

    1981-01-01

    The photoassisted reduction of aqueous carbon dioxide in the presence of naturally occurring minerals is investigated as a possible abiotic precursor of photosynthesis. Aqueous carbon dioxide saturated suspensions or surfaces of the minerals nontronite, bentonite, anatase, wolframite, molybdenite, minium, cinnabar and hematite were irradiated with high-pressure mercury lamps or sunlight. Chemical analyses reveal the production of formic acid, formaldehyde, methanol and methane, and the two and three-carbon compounds glyoxal (CHOCHO) and malonaldehyde (CH2(CHO)2). It is suggested that such photosynthetic reactions with visible light in the presence of semiconducting minerals may provide models for prebiological carbon and nitrogen fixation in both oxidized and reduced atmospheres.

  3. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2013-04-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  4. Supply of carbon dioxide for enhanced oil recovery. Final report, October 15, 1976--September 1, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Rump, W.M.; Hare, M.; Porter, R.E.

    1977-09-01

    Results are presented from a study of the carbon dioxide supply situation for miscible flooding operations to enhance oil recovery. Candidate oil reservoirs were identified, and the carbon dioxide requirements and the potential recoverable oil for some of these were estimated. A survey of carbon dioxide sources has been conducted within the geographic areas where candidate oil reservoirs exist. Sources considered were both high and low quality gases from combustion vents, chemical process stacks, and naturally occurring gas deposits. The survey shows more than enough carbon dioxide is available from above-ground sources alone to meet expected demands. Systems to purify and deliver the carbon dioxide were designed and the costs of the delivered carbon dioxide estimated. Lowest cost is carbon dioxide from natural source with credit for by-product methane. A more comprehensive survey of above-ground and natural sources is recommended.

  5. Carbon dioxide for the recovery of crude oil: a literature search to June 30, 1979. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doscher, T.

    1980-05-01

    Individual summaries and pertinent commentaries on each of the groups of references into which the literature on carbon dioxide for the recovery of crude oil has been classified are presented in this report. The major classifications are: physical models, laboratory studies, field tests, modelling, patents, and miscellaneous. A special summary that reviews and comments on field operations, fluid handling, and corrosion problems is also included. User's guide and subject categories for the CO/sub 2/ literature survey are given, followed by abstracts of the citations. It is concluded from this survey that the most significant deficiency in research on carbon dioxide flooding for the recovery of crude oil is the paucity of well controlled and interpreted field tests.

  6. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    gases are carbon dioxide, methane and nitrous oxide, of which carbon dioxide is the highest constituent at 82%. Furthermore, the amount of carbon dioxide emissions is growing with time. These trends make it evident that there is a need for methods to reduce these greenhouse gases emissions. While...... there are two methods of reducing carbon dioxide emissions, carbon capture and storage (CCS) and carbon capture and utilization (CCU), CCU is considered promising as it makes further use of the carbon dioxide as a solvent, raw material, and reagent to produce valuable products [1]. Using such utilization...... processes, the emissions can be reduced as they are being utilized and profit can be obtained, or the cost of operation for the carbon dioxide treatment can be returned, through this utilization process. In order to systematically reduce such emissions, carbon capture and utilization is considered rather...

  7. Chemical technologies for exploiting and recycling carbon dioxide into the value chain.

    Science.gov (United States)

    Peters, Martina; Köhler, Burkhard; Kuckshinrichs, Wilhelm; Leitner, Walter; Markewitz, Peter; Müller, Thomas E

    2011-09-19

    While experts in various fields discuss the potential of carbon capture and storage (CCS) technologies, the utilization of carbon dioxide as chemical feedstock is also attracting renewed and rapidly growing interest. These approaches do not compete; rather, they are complementary: CCS aims to capture and store huge quantities of carbon dioxide, while the chemical exploitation of carbon dioxide aims to generate value and develop better and more-efficient processes from a limited part of the waste stream. Provided that the overall carbon footprint for the carbon dioxide-based process chain is competitive with conventional chemical production and that the reaction with the carbon dioxide molecule is enabled by the use of appropriate catalysts, carbon dioxide can be a promising carbon source with practically unlimited availability for a range of industrially relevant products. In addition, it can be used as a versatile processing fluid based on its remarkable physicochemical properties.

  8. Corrosion inhibition of carbon steel by extract of Buddleia perfoliata

    Directory of Open Access Journals (Sweden)

    ROY LOPES-SESENES

    2012-06-01

    Full Text Available Buddleia perfoliata leaves extract has been investigated as a carbon steel corrosion inhibitor in 0.5 M sulfuric acid by using polarization curves, electrochemical impedance spectroscopy and weight-loss tests at different concentrations (0, 100, 200, 300, 400 and 500 ppm and temperatures, namely 25, 40 and 60 °C. Results showthat inhibition efficiency increases as the inhibitor concentration increases, decreases with temperature, and reaches a maximum value after 12 h of exposure, decreasing with a further increase in the exposure time. It was found that the inhibitory effect is due to the presence of tannines on this extract.

  9. Corrosion Inhibition of Carbon Steel in Chloride and Sulfate Solutions

    Directory of Open Access Journals (Sweden)

    Amr Ahmed Elsayed

    2016-02-01

    Full Text Available Corrosion is a major problem in industry and in infrastructure; a huge sum of expenditure every year is spent on preventing, retarding, and repairing its damages. This work studies the engineering of an inhibitor for carbon steel metal used in the cooling systems containing high concentration of chloride and sulfate ions. For this purpose, the synergy between the dichromate, molybdate and nitrite inhibitors is examined and optimized to the best results. Moreover, care was taken that the proposed inhibitor is compliant with the environmental laws and regulations.

  10. Carbonic acid as a reserve of carbon dioxide on icy moons: The formation of carbon dioxide (CO{sub 2}) in a polar environment

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Brant M.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States); Strazzulla, Giovanni, E-mail: brantmj@hawaii.edu [INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy)

    2014-06-20

    Carbon dioxide (CO{sub 2}) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν{sub 3} band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO{sub 2} band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H{sub 2}O)-carbon dioxide (CO{sub 2}) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν{sub 3} band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  11. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  12. Weathering approaches to carbon dioxide sequestration

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The aim of enhanced weathering is to capture CO2 by the carbonation of silicates, or by dissolution of these silicates during which the greenhouse gas CO2 is converted to bicarbonate in solution. Research in this field is still focused on increasing the rate of reaction, but the required additional

  13. Carbon dioxide emissions from Indian monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Viswanadham, R.; Rao, G.D.; Prasad, V.R.; Kumar, B.S.K.; Naidu, S.A.; Kumar, N.A.; Rao, D.B.; Sridevi, T.; Krishna, M.S.; Reddy, N.P.C.; Sadhuram, Y.; Murty, T.V.R.

    , H. Matsueda, and Y. Sawa. (2011). Carbon balance of South Asia constrained by passenger aircraft CO2 measurements. Atmos. Chem. Phys. Discuss, 11, 5379-5405. Ram, A.S.P., S. Nair, D. Chandramohan, (2003). Seasonal shift in net ecosystem production...

  14. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  15. Numerical Simulation of Extent of Carbon Dioxide Plume Injected in the Gyeongsang Basin, Korea

    Science.gov (United States)

    Kihm, J.; Park, S.; Kim, J.

    2012-12-01

    A series of thermo-hydro-chemical numerical simulations was performed to evaluate extent of carbon dioxide plume injected in the Gyeongsang Basin, which is one of the prospective onshore sedimentary basins for geologic storage of carbon dioxide in Korea. The carbon dioxide plume extent is an important factor in estimating storage efficiency and thus storage capacity of carbon dioxide in a storage formation because it represents an actual volume of the storage formation, which is occupied by injected carbon dioxide. The carbon dioxide plume extent is also an essential component in risk analysis of geologic storage of carbon dioxide because most of thermo-hydro-mechanical-chemical responses to carbon dioxide injection occur within it. To evaluate impacts of injection scenarios (i.e., injection rate and period) of carbon dioxide and geological conditions (i.e., thickness and depth) and hydrogeochemical properties (i.e., porosity, intrinsic permeability, salt concentration in groundwater, and volume fraction of chlorite) of a storage formation on the carbon dioxide plume extent, a series of sensitivity tests was also performed. The numerical simulation results show that the carbon dioxide plume extent is significantly affected by such injection scenarios, geological conditions, and hydrogeochemical properties. The carbon dioxide plume extent increases as the injection rate (with a constant injection period) increases, and this trend does not change with time. The carbon dioxide plume extent decreases as the injection period (with a constant total injection amount) increases until about 50 years, while it is not sensitive to the injection period after about 50 years. The carbon dioxide plume extent also decreases as the thickness increases until about 100 years, while it is not sensitive to the thickness after about 100 years. In contrast, the carbon dioxide plume extent decreases as the depth increases, and this trend is intensified with time. On the other hand, the

  16. Electrochemical energy storage device based on carbon dioxide as electroactive species

    Science.gov (United States)

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  17. Anti-Corrosive Effect of Tridax Procumbens – Zn2+ System Controlling the Corrosion of Carbon Steel

    OpenAIRE

    Kumar, C.; Mohan, R

    2014-01-01

    The corrosion inhibition efficiency (IE) of an aqueous extract Tridax Procumbens(TP) in controlling the corrosion of carbon steel aqueous medium containing 60 ppm of chloride ions in absence and presence of Zn2+ has been studied by weight loss method. The formulation consisting of 1 ml of Tridax Procumbens extract and 150 ppm of Zn2+ offers 96% inhibition efficiency. The synergistic effect exists between Tridax Procumbens and Zn2+ system. Polarization study shows that the Trida...

  18. Evidence for super-exponentially accelerating atmospheric carbon dioxide growth

    CERN Document Server

    Hüsler, Andreas D

    2011-01-01

    We analyze the growth rates of atmospheric carbon dioxide and human population, by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model. Our empirical calibrations confirm that human population has decelerated from its previous super-exponential growth until 1960 to ``just' an exponential growth, but with no sign of more deceleration. As for atmospheric CO2 content, we find that it is at least exponentially increasing and most likely characterized by an accelerating growth rate as off 2009, consistent with an unsustainable FTS power law regime announcing a drastic change of regime. The coexistence of a quasi-exponential growth of human population with a super-exponential growth of carbon dioxide content in the atmosphere is a diagnostic of insignificant impr...

  19. Salinity Effect on Ocean Surface Carbon Dioxide Fugacity

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2015-12-01

    Sea surface salinity (SSS) measured by Aquarius and the Soil Moisture Ocean Salinity (SMOS) over global ocean is used to characterize the change of the partial pressure of carbon dioxide at sea (pCO2sea). A statistical model on satellite retrieval of pCO2sea is used to examine the relation between the two parameters over two selected regions. One is the tropical western Atlantic, where hydrological forcing by Amazon River discharge causes major changes, and the other is the equatorial eastern Pacific, where ocean thermodynamics is more important. In both regions, pCO2sea tracks SSS closely in seasonal and year-to-year changes. In the Pacific, tropical instability wave is a major factor in the high frequency changes of both parameters. The manifestations of this relation in ocean-atmosphere carbon dioxide exchange and ocean acidification are explored.

  20. An intercomparison exercise for oceanic carbon dioxide measurements

    Science.gov (United States)

    Dickson, Andrew G.

    The Joint Scientific Committee on Oceanic Research (SCOR)/United Nations Educational, Scientific, and Cultural Organization (UNESCO/International Council for the Exploration of the Sea (ICES)/International Association for Physical Sciences of the Ocean (IAPSO) Panel on Oceanographic Tables and Standards (JPOTS) recently established a Sub-Panel on Standards for Carbon Dioxide Measurements. The terms of reference for this subpanel are coordination and assessment of work done toward preparing carbon dioxide standards for oceanographic measurements, and development of recommendations for the production and use of such standards. Members are A. G. Dickson (Scripps Institution of Oceanography, La Jolla, Calif.), chairman; F. Culkin (Institute of Oceanographic Sciences, Wormley, U.K.), A. Poisson (Universite Pierre et Marie Curie, Paris), C. S. Wong (Institute of Ocean Sciences, Sidney, Canada), and F. J. Millero (University of Miami, Miami, Fla.).

  1. Carbon Dioxide Management on the International Space Station

    Science.gov (United States)

    Burlingame, Katie

    2016-01-01

    The International Space Station (ISS) is a manned laboratory operating in orbit around the Earth that was built and is currently operated by several countries across the world. The ISS is a platform for novel scientific research as well as a testbed for technologies that will be required for the next step in space exploration. In order for astronauts to live on ISS for an extended period of time, it is vital that on board systems consistently provide a clean atmosphere. One contaminant that must be removed from the atmosphere is carbon dioxide (CO2). CO2 levels on ISS are higher than those on Earth and can cause crew members to experience symptoms such as headaches, lethargy and mental slowness. A variety of systems exist on ISS to remove carbon dioxide, including adsorbent technologies which can be reused and testbed technologies for future space vehicles.

  2. Syneresis of Vitreous by Carbon Dioxide Laser Radiation

    Science.gov (United States)

    Bridges, T. J.; Patel, C. K. N.; Strnad, A. R.; Wood, O. R.; Brewer, E. S.; Karlin, D. B.

    1983-03-01

    In carbon dioxide laser surgery of the vitreous a process of vaporization has been advocated. In this report syneresis, a thermal liquefaction of gel, is shown to be over ten times more efficient on an energy basis than vaporization. Syneresis of vitreous is experimentally shown to be a first-order kinetic process with an activation energy of 41 ± 0.5 kilocalories per mole. A theory of laser surgery in which this figure is used agrees closely with results from laser experiments on human eye-bank vitreous. The syneresis of vitreous by carbon dioxide laser radiation could lead to a more delicate form of ocular microsurgery, and application to other biological systems may be possible.

  3. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    Science.gov (United States)

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes.

  4. Simulation of the interaction of methane, carbon dioxide and coal

    Institute of Scientific and Technical Information of China (English)

    Nie Baisheng; Wang Longkang; Li Xiangchun; Wang Chao; Li Li

    2013-01-01

    Gas adsorption has an important influence on gas flow in a coal body. Research on the characteristics of coal and gas adsorption is the theoretical basis for studying gas flow in coal. In this paper, the interaction between methane, carbon dioxide and surface molecules of anthracite was simulated using the quantum chemistry method. Adsorption energy and adsorption configurations of different quantities of gas mole-cules absorbed on the coal surface were calculated. The results show that adsorption between coal and the two kinds of gas molecules is a physical adsorption process and there is an optimal configuration. Gas molecules are more easily adsorbed in the hydroxyl-containing side chain, while it is difficult for them to be adsorbed at the position of the benzene ring. Besides, carbon dioxide molecules are more readily adsorbed on the coal surface than methane molecules. The findings have an important signifi-cance in revealing the nature of gas adsorption in coal.

  5. Schwannoma of tongue base treated with transoral carbon dioxide laser.

    Science.gov (United States)

    Mehrzad, H; Persaud, R; Papadimitriou, N; Kaniyur, S; Mochloulis, G

    2006-12-01

    Schwannomas are benign slow growing solitary tumours of nerve sheath origin and can arise from any myelinated nerve. They have been reported to occur in most parts of the body with the highest incidence (25%) in the head and neck region, although tongue base lesions are rare. The tumour is resistant to radiotherapy, and therefore, the treatment of choice is surgery. We present a case of a tongue base schwannoma which was completely extirpated with a carbon dioxide laser via the transoral approach. The patient experienced virtually no morbidity from the use of the laser. Whilst tongue base schwannoma has been documented, we could not find an earlier report in the English literature describing our method of treatment. We conclude that transoral carbon dioxide laser can be added to the surgical armamentarium for the management of other similar cases in the future.

  6. Improving Settling Characteristics of Pure Oxygen Activated Sludge by Stripping of Carbon Dioxide.

    Science.gov (United States)

    Kundral, Somshekhar; Mudragada, Ratnaji; Coro, Ernesto; Moncholi, Manny; Mora, Nelson; Laha, Shonali; Tansel, Berrin

    2015-06-01

    Increased microbial activity at high ambient temperatures can be problematic for secondary clarifiers and gravity concentrators due to carbon dioxide (CO2) production. Production of CO2 in gravity concentrators leads to septic conditions and poor solids separation. The CO2 production can also be corrosive for the concrete surfaces. Effectiveness of CO2 stripping to improve solids settling was investigated using the sludge volume index (SVI) as the indicator parameter. Carbon dioxide was stripped by aeration from the sludge samples. Results from the study show that aeration also increased the pH values in the mixed liquor while removing CO2 and improving sludge settling. After 10 minutes of aeration at a rate of 0.37 m3 air/m3 water/min, 90% CO2 stripping was achieved. Based on the 30 min settling tests, the SVI increased by 26±1% after CO2 stripping while the pH increased by 0.8±0.1 pH units.

  7. Efficiency of Carbon Dioxide Fractional Laser in Skin Resurfacing

    Directory of Open Access Journals (Sweden)

    Andrej Petrov

    2016-05-01

    CONCLUSION: Multifunctional fractional carbon dioxide laser used in treatment of patients with acne and pigmentation from acne, as well as in the treatment of scars from different backgrounds, is an effective and safe method that causes statistically significant better effect of the treatment, greater patients’ satisfaction, minimal side effects and statistically better response to the therapy, according to assessments by the patient and the therapist.

  8. Extraction of olive oil with supercritical carbon dioxide / Ilana Geerdts

    OpenAIRE

    Geerdts, Ilana

    2005-01-01

    The principal objective of this study was to extract olive oil from the fruit of Olea europaea by means of supercritical carbon dioxide (sc-C02) as an alternative to traditional methods. Extractions were performed on a laboratory scale supercritical fluid extractor of the latest design, featuring three mutually independent flow systems and extremely high flow rates. A number of extraction runs based on a statistical design was performed to establish the conditions (time, pressu...

  9. Effect of temperature on carbon dioxide absorption in monoethanolamine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rocio Maceira; Estrella Alvarez; M. Angeles Cancela [University of Vigo, Vigo (Spain). Chemical Engineering Department

    2008-05-01

    The effect of temperature on volumetric mass transfer coefficient was studied during the absorption process of carbon dioxide in monoethanolamine aqueous solutions, using a square bubble column. Our studies provide an empirical correlation type Boltzmann to estimate the temperature operated, at different amine concentrations and gas flow rates. An excellent agreement has been shown between predicted and experimental data (r{sup 2} {gt} 0.991).

  10. Oxygen isotopic composition of carbon dioxide in the middle atmosphere

    OpenAIRE

    Liang, Mao-Chang; Blake, Geoffrey A.; Lewis, Brenton R.; Yung, Yuk L.

    2007-01-01

    The isotopic composition of long-lived trace molecules provides a window into atmospheric transport and chemistry. Carbon dioxide is a particularly powerful tracer, because its abundance remains >100 parts per million by volume (ppmv) in the mesosphere. Here, we successfully reproduce the isotopic composition of CO2 in the middle atmosphere, which has not been previously reported. The mass-independent fractionation of oxygen in CO2 can be satisfactorily explained by the exchange reaction with...

  11. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo

    2010-03-15

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  12. Irreversible climate change due to carbon dioxide emissions.

    Science.gov (United States)

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.

  13. Carbon dioxide emission from brickfields around Bangladesh

    Directory of Open Access Journals (Sweden)

    M.A. Imran

    2014-12-01

    Full Text Available The study was undertaken at six divisions of Bangladesh to investigate the CO2 emission from brickfields. to explore the rate of carbon emission over the last 10 years, based on existing technology for brick production. The finding reveals that there were more than 45,000 Brick kilns in Bangladesh which together account for about 95% of operating kilns including Bull's Trench Kiln, Fixed Chimney Kiln, Zigzag Kiln and Hoffman Kiln. These kilns were the most carbon emitting source but it varies on fuel type, kiln type and also for location. It has been found that, maximum carbon emission area was Chittagong, which was 93.150 with percentage of last 10 years and 9.310 per cent per year. Whereas Sylhet was lower carbon emission area indicating percentage 17.172 of last 10 years and 4.218 percent per year. It has been found that total annual amount of CO2 emission for 4 types brick kilns from Dhaka, Chittagong, Rajshahi, Khulana, Sylhet and Barisal were 8.862 Mt yr-1, 10.048 Mt yr-1, 12.783 Mt yr-1, 15.250 Mt yr-1, in the year of 2002, 2005, 2007 and 2010 respectively. In Mymensingh district, the maximum CO2 emission and coal consumption was obtained in Chamak brick field, which was 1882 tons and 950 tons, respectively and minimum was obtained in Zhalak brick field, which was 1039.5 tons and 525.0 tons, respectively during the year of 2013. The percentage in last 10 years of CO2 emission was 72.784 and per cent per year 7.970, which is very alarming for us. The estimates obtained from surveys and on-site investigations indicate that these kilns consume an average of 240 tons of coal to produce 1 million bricks. This type of coal has a measured calorific value of 6,400 KJ, heating value of coal is 20.93 GJ t-1 and it produces 94.61 TJ t-1 and 56.1 TJ t-1 CO2 from coal and natural gas, respectively.

  14. [Plant responses to elevated atmospheric carbon dioxide and transmission to other trophic levels]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, D.E.

    1995-10-01

    This program investigated how host plant responses to elevated atmospheric carbon dioxide may be transmitted to other trophic levels, especially leaf eating insects, and alter consumption of leaves and impare their function. Study results included the following findings: increased carbon dioxide to plants alters feeding by insect herbivores; leaves produced under higher carbon conditions contain proportionally less nitrogen; insect herbivores may have decreased reproduction under elevated carbon dioxide.

  15. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution

    NARCIS (Netherlands)

    Sabil, K.M.; Duarte, A.R.C.; Zevenbergen, J.F.; Ahmad, M.M.; Yusup, S.; Omar, A.A.; Peters, C.J.

    2010-01-01

    A laboratory-scale reactor system is built and operated to measure the kinetic of formation for single and mixed carbon dioxide-tetrahydrofuran hydrates. The T-cycle method, which is used to collect the kinetic data, is briefly discussed. For single carbon dioxide hydrate, the induction time decreas

  16. Sustainable catalyst supports for carbon dioxide gas adsorbent

    Science.gov (United States)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  17. Study on carbon dioxide conversion by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Hyun; Park, Geun Il; Cho, Il Hoon; Choi, Sang Do; Hong, Kwang Hee; Lee, Chang Woo

    1999-09-01

    This study was carried out to investigate the synergistic effects on the CO{sub 2} conversion by the application of semiconductor in the field of gamma-ray. Gamma-ray irradiation was performed to examine the effects of semiconductor application on CO{sub 2} conversion in water and the formation of organic material from carbonate solution. From experimental results it is clear that the supplication of semiconductor in the field of gamma-ray increases the efficiency for CO{sub 2} conversion to organic matter. Based on the obtained experimental results it is obvious that the synergistic effects of semiconductor materials in the gamma-ray field leads to increase of the CO{sub 2} conversion yield to organic matter up to 50 percent compared to the gamma-ray irradiation. The way of achieving higher activity is due to thecatalytic action of semiconductor by gamma-ray irradiation. Zr-doped TiO{sub 2} catalyst prepared by sol-gel method exhibits the higher efficiency for CO{sub 2} conversion in aqueous solution and carbonate containing solution. This effect of Zr-doping can be explained by the formation of additional defects in surface of TiO{sub 2} film. (author)

  18. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... corrosion-resistant carbon steel flat products (``CORE'') from Germany and the Republic of Korea (``Korea...-Year (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel...

  19. 77 FR 44213 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea...

    Science.gov (United States)

    2012-07-27

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... certain corrosion-resistant carbon steel flat products (``CORE'') from Germany and the Republic of Korea..., Director, Office 3, on ``Sunset Reviews of the Antidumping Duty Orders on Corrosion-Resistant Carbon...

  20. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Science.gov (United States)

    2012-04-23

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to...

  1. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of...

  2. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five... duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead...

  3. 77 FR 301 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year...

    Science.gov (United States)

    2012-01-04

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year Reviews Concerning the Countervailing Duty Order on Corrosion-Resistant Carbon Steel Flat Products From Korea and the Antidumping Duty Orders on Corrosion-Resistant Carbon Steel Flat Products From Germany...

  4. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-12-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through December 31, 2009. See Corrosion-Resistant Carbon Steel...

  5. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea.... See Corrosion-Resistant Carbon Steel Flat Products from Germany and the Republic of Korea:...

  6. 76 FR 3613 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2011-01-20

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE..., 2008. See Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea:...

  7. 77 FR 72827 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Final...

    Science.gov (United States)

    2012-12-06

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... on certain corrosion- resistant carbon steel flat products (``CORE'') from Germany and the Republic... Reviews'' section of this notice. \\1\\ Corrosion-Resistant Carbon Steel Flat Products From Germany and...

  8. Corrosion in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  9. Effect of Rare Earths on Corrosion Resisting Properties of Carbon-Manganese Clean Steels

    Institute of Scientific and Technical Information of China (English)

    郭锋; 林勤; 孙学义

    2004-01-01

    Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current icorr, and characteristic potential of pitting Eb. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization.

  10. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    Science.gov (United States)

    Archer, David; Eby, Michael; Brovkin, Victor; Ridgwell, Andy; Cao, Long; Mikolajewicz, Uwe; Caldeira, Ken; Matsumoto, Katsumi; Munhoven, Guy; Montenegro, Alvaro; Tokos, Kathy

    2009-05-01

    CO2 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere, the ocean, and the terrestrial biosphere on timescales of a few centuries. However, a sizeable fraction of the CO2 remains in the atmosphere, awaiting a return to the solid earth by much slower weathering processes and deposition of CaCO3. Common measures of the atmospheric lifetime of CO2, including the e-folding time scale, disregard the long tail. Its neglect in the calculation of global warming potentials leads many to underestimate the longevity of anthropogenic global warming. Here, we review the past literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial results from a model intercomparison project on this topic. The models agree that 20-35% of the CO2 remains in the atmosphere after equilibration with the ocean (2-20 centuries). Neutralization by CaCO3 draws the airborne fraction down further on timescales of 3 to 7 kyr.

  11. Surface chemistry of carbon dioxide revisited

    Science.gov (United States)

    Taifan, William; Boily, Jean-François; Baltrusaitis, Jonas

    2016-12-01

    This review discusses modern developments in CO2 surface chemistry by focusing on the work published since the original review by H.J. Freund and M.W. Roberts two decades ago (Surface Science Reports 25 (1996) 225-273). It includes relevant fundamentals pertaining to the topics covered in that earlier review, such as conventional metal and metal oxide surfaces and CO2 interactions thereon. While UHV spectroscopy has routinely been applied for CO2 gas-solid interface analysis, the present work goes further by describing surface-CO2 interactions under elevated CO2 pressure on non-oxide surfaces, such as zeolites, sulfides, carbides and nitrides. Furthermore, it describes additional salient in situ techniques relevant to the resolution of the interfacial chemistry of CO2, notably infrared spectroscopy and state-of-the-art theoretical methods, currently used in the resolution of solid and soluble carbonate species in liquid-water vapor, liquid-solid and liquid-liquid interfaces. These techniques are directly relevant to fundamental, natural and technological settings, such as heterogeneous and environmental catalysis and CO2 sequestration.

  12. Growth enhancement by soil derived carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Grodzinski, B.; Wallis, M.; O' Sullivan, J. (Univ. of Guelph, Ontario (Canada))

    1989-04-01

    The objective of this study was to investigate the role which naturally evolved CO{sub 2} from the soil can play in the early growth and establishment of vegetable transplants in the field. Two planting dates were utilized to examine the effects of the time of tunnel placement on development of a crop of bell peppers, Capsicum annuum L. Ambient CO{sub 2} levels were 340 {plus minus} 4 ppm. In the first 3 weeks of spring (May) CO levels 2 to 3 cm above the soil surface were 420 to 480 ppm. Inside plastic tunnels the upward flux of CO{sub 2} evolved from the soil was restricted effectively raising the tunnel atmosphere to over 3000 ppm even at midday. Data from parallel field and controlled environment chamber experiments support the view that 25-40% of the increase in seedling growth in the field tunnels in the spring was due to enhanced photosynthesis and carbon partitioning into both sugars and starch not merely the elevated temperatures associated with protected structures.

  13. Prospects for the utilization of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E.; Tommasi, I. (Universita degli Studi, Bari (Italy). Dipatimento di Chimica)

    1992-01-01

    The paper discusses the recovery and fixation of CO{sub 2}. Industrial applications of CO{sub 2} can be divided as follows:- non-synthetic industrial uses such as waste water treatment and food additives; utilization in the synthesis of organic chemicals; and the synthesis of intermediates and specialty chemicals such as urea and pharmaceuticals. The evaluation criteria for CO{sub 2} utilization pathways are:- the added value of the products; the energy requirements of the product; the rate of CO{sub 2} conversion; and the lifetime of the product. The conversion of CO{sub 2} into fuels raises three main questions: the amount of CO{sub 2} used, the source of energy from CO{sub 2} reduction and the rate of conversion of CO{sub 2}. The fixation of CO{sub 2} in organic materials such as carbonates may be of great relevance to the permanent fixation of CO{sub 2}. 5 refs., 3 figs., 6 tabs.

  14. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Robert W.; Clift, W. Miles

    2010-11-01

    The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

  15. Selected constituents in the smokes of foreign commercial cigaretts: tar, nicotine, carbon monoxide, and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.

    1979-05-01

    The tar, nicotine, carbon monoxide, and carbon dioxide contents of the smokes of 220 brands of foreign commercial cigarettes are reported. In some instances, filter cigarettes of certain brands were found to deliver as much or more smoke constituents than their nonfilter counterparts. Also, data indicated that there can be a great variation in the tar, nicotine, or carbon monoxide content of the smoke of samples of a given brand of cigarettes, depending on the nation in which they are purchased. 24 tables.

  16. The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications

    Directory of Open Access Journals (Sweden)

    C. C. Wachesk

    2016-01-01

    Full Text Available The physical and chemical characteristics of diamond-like carbon (DLC films make them suitable for implantable medical and odontological interests. Despite their good interactions with biological environment, incorporated nanoparticles can significantly enhance DLC properties. This manuscript studies the potential of titanium dioxide (TiO2 incorporated-DLC films in dental applications. In this scene, both osteoblasts attachment and spreading on the coatings and their corrosion characteristics in artificial saliva were investigated. The films were grown on 304 stainless steel substrates using plasma enhanced chemical vapor deposition. Raman scattering spectroscopy characterized the film structure. As the concentration of TiO2 increased, the films increased the osteoblast viability (MTT assay, becoming more thermodynamically favorable to cell spreading (WAd values became more negative. The increasing number of osteoblast nuclei indicates a higher adhesion between the cells and the films. The potentiodynamic polarization test in artificial saliva shows an increase in corrosion protection when TiO2 are present. These results show the potential use of TiO2-DLC films in implantable surfaces.

  17. Atmospheric Corrosion of Steel A3 Deposited with Ammonium Sulfate and in the Presence of Sulfur Dioxide

    Institute of Scientific and Technical Information of China (English)

    Ye WAN; Chuanwei YAN; Chunan CAO Jun TAN; Jun TAN

    2003-01-01

    A laboratory study of the atmospheric corrosion of carbon steel deposited with (NH4)2SO4 in the presence of SO2 isreported. The different levels of (NH4)2SO4 (0, 15, 30, 45, 60μg.cm-2) were added on the surface of the samplesbefore the exposure. The corrosion was investigated by a combination of gravimetry, Fourier transform infraredspectroscope and scanning electron microscopy. A detailed knowledge about the corrosion products was acquired,both quantitatively and qualitatively. The results show that the metal loss increased and the increasing tendency ofcorrosion rates slowed down with the increasing exposure time. The phase constituents of the corrosion products aremainly c-FeO(OH), γ-FeO(OH), and δ-FeO(OH).

  18. Inhibition of carbon steel corrosion by 11-aminoundecanoic acid

    Directory of Open Access Journals (Sweden)

    Saad Ghareba

    2015-12-01

    Full Text Available The current study reports results on the investigation of the possibility of using 11-aminoundecanoic acid (AA as an inhibitor of general corrosion of carbon steel (CS in HCl under a range of experimental conditions: inhibitor concentration, exposure time, electrolyte temperature and pH and CS surface roughness. It was found that AA acts as a mixed-type inhibitor, yielding maximum inhibition efficiency of 97 %. The adsorption of AA onto the CS surface was described by the Langmuir adsorption isotherm. The corresponding apparent Gibbs free energy of AA adsorption on CS at 295 K was calculated to be −30.2 kJ mol–1. The adsorption process was found to be driven by a positive change in entropy of the system. PM-IRRAS measurements revealed that the adsorbed AA layer is amorphous, which can be attributed to the repulsion between the neighboring positively charged amine groups and a high heterogeneity of the CS surface. It was also found that the AA provides very good corrosion protection of CS of various surface roughness, and over a prolonged time.

  19. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  20. Polyethyleneimine functionalized nano-carbons for the absorption of carbon dioxide

    Science.gov (United States)

    Dillon, Eoghan P.

    The evolution of nanotechnology over the past 20 years has allowed researchers to use a wide variety of techniques and instruments to synthesize and characterize new materials on the nano scale. Due to their size, these nano materials have a wide variety of interesting properties, including, high tensile strength, novel electronic and optical properties and high surface areas. In any absorption system, a high surface areas is desirable, making carbon nano materials ideal candidates for use in absorption systems. To that end, we have prepared a variety of nano carbons, single walled carbon nanotubes, multi walled carbon nanotubes, graphite intercalation compounds, graphite oxide, phenylalanine modified graphite and fullerenes, for the absorption of carbon dioxide. These nano carbons are functionalized with the polymer, polyethyleneimine, and fully characterized using Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, solid state 13C NMR, and thermogravimetric analysis. The carbon dioxide absorption potential of the PEI-nano carbons was evaluated using thermogravimetric analysis at standard room temperature and pressure. We have demonstrated the high gravimetric capacity of carbon dioxide capture on these materials with extremely high capacities for PEI-C60.

  1. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Loring, John S.; Chen, Jeffrey; Benezeth Ep Gisquet, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-07-14

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  2. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

    Science.gov (United States)

    Shen, Jing; Kortlever, Ruud; Kas, Recep; Birdja, Yuvraj Y.; Diaz-Morales, Oscar; Kwon, Youngkook; Ledezma-Yanez, Isis; Schouten, Klaas Jan P.; Mul, Guido; Koper, Marc T. M.

    2015-01-01

    The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low overpotential (0.5 V), with an efficiency and selectivity comparable to the best porphyrin-based electrocatalyst in the literature. While carbon monoxide is the main reduction product, we also observe methane as by-product. The results of our detailed pH-dependent studies are explained consistently by a mechanism in which carbon dioxide is activated by the cobalt protoporphyrin through the stabilization of a radical intermediate, which acts as Brønsted base. The basic character of this intermediate explains how the carbon dioxide reduction circumvents a concerted proton–electron transfer mechanism, in contrast to hydrogen evolution. Our results and their mechanistic interpretations suggest strategies for designing improved catalysts. PMID:26324108

  3. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  4. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Bruno [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France)]|[Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France); L' Hostis, Valerie; Le Bescop, Patrick [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France); Idrissi, Hassane [Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France)

    2004-07-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  5. Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States); Prairie, M.R.; Chavez, J.M. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    Corrosion behavior of two stainless steels and carbon steel in mixtures of NaNO{sub 3} and KNO{sub 3} was evaluated to determine if impurities found in commodity grades of alkali nitrates aggravate corrosivity as applicable to an advanced solar thermal energy system. Corrosion tests were conducted for 7000 hours with Types 304 and 316 stainless steels at 570C and A36 carbon steel at 316C in seven mixtures of NaNO{sub 3} and KNO{sub 3} containing variations in impurity concentrations. Corrosion tests were also conducted in a ternary mixture of NaNO{sub 3}, KNO{sub 3}, and Ca(NO{sub 3}){sub 2}. Corrosion rates were determined by descaled weight losses while oxidation products were examined by scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The nitrate mixtures were periodically analyzed for changes in impurity concentrations and for soluble corrosion products.

  6. Corrosion of Carbon Steel under Epoxy-varnish Coating Studied by Scanning Kelvin Probe

    Institute of Scientific and Technical Information of China (English)

    XIAO Kui; DONG Chaofang; ZHANG Xin; WU Junsheng; XU Longjiao; LI Xiaogang

    2012-01-01

    The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmosphere environment.The localized corrosion was accurately characterized by SKP in both coated and uncoated regions.The SKP results showed that Volta potential varied with the test time,and the more the corrosion products,the more positive the potential.The borderline between coated and uncoated regions of partly coated steel shifted towards the coated side with the increasing of test time.The coating disbonding rate could be determined according to the shift of potential borderline measured by SKP.The corrosion mechanism of partly coated steel in NaC1 salt spray was discussed according to the potential maps and corrosion morphologies.

  7. Sequestration of carbon dioxide (CO2) using red mud.

    Science.gov (United States)

    Yadav, Vishwajeet S; Prasad, Murari; Khan, Jeeshan; Amritphale, S S; Singh, M; Raju, C B

    2010-04-15

    Red mud, an aluminium industry hazardous waste, has been reported to be an inexpensive and effective adsorbent. In the present work applicability of red mud for the sequestration of green house gases with reference to carbon dioxide has been studied. Red mud sample was separated into three different size fractions (RM I, RM II, RM III) of varying densities (1.5-2.2 g cm(-3)). Carbonation of each fraction of red mud was carried out separately at room temperature using a stainless steel reaction chamber at a fixed pressure of 3.5 bar. Effects of reaction time (0.5-12 h) and liquid to solid ratio (0.2-0.6) were studied for carbonation of red mud. Different instrumental techniques such as X-ray diffraction, FTIR and scanning electron microscope (SEM) were used to ascertain the different mineral phases before and after carbonation of each fraction of red mud. Characterization studies revealed the presence of boehmite, cancrinite, chantalite, hematite, gibbsite, anatase, rutile and quartz. Calcium bearing mineral phases (cancrinite and chantalite) were found responsible for carbonation of red mud. Maximum carbonation was observed for the fraction RM II having higher concentration of cancrinite. The carbonation capacity is evaluated to be 5.3 g of CO(2)/100 g of RM II.

  8. Catalytic conversion of carbon dioxide to valuable chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Baiker, A. [Swiss Federal Institute of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry

    1999-08-01

    Fixation of carbon dioxide by using it as a C{sub 1}-building block in chemical synthesis has gained considerable interest, mainly stimulated by environmental considerations and by its abundant availability. Catalysis provides several opportunities to convert CO{sub 2} to valuable chemicals. The present state of these efforts is briefly surveyed giving special emphasis to most recent developments in heterogeneous catalysis, including the synthesis of methylmaines and formic acid derivatives. Chemicals synthesized by homogeneous catalysis mentioned are carbonates, carbamates, urethanes, lactones, pyrones, and formic acid and derivatives. Those made by heterogenous catalytic routes are: methanol, carbon monoxide and hydrogen (synthesis gas), methane, methylamine and formic acid derivatives. 70 refs., 1 fig.

  9. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    Science.gov (United States)

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner.

  10. Adding value to carbon dioxide from ethanol fermentations.

    Science.gov (United States)

    Xu, Yixiang; Isom, Loren; Hanna, Milford A

    2010-05-01

    Carbon dioxide (CO(2)) from ethanol production facilities is increasing as more ethanol is produced for alternative transportation fuels. CO(2) produced from ethanol fermentation processes is of high purity and is nearly a saturated gas. Such highly-concentrated source of CO(2) is a potential candidate for capture and utilization by the CO(2) industry. Quantity, quality and capture of CO(2) from ethanol fermentations are discussed in this review. The established and emerging value-added opportunities and markets for CO(2) from ethanol plants also are reviewed. The majority of CO(2) applications are dedicated to serving carbonated beverage and food processing and preservation markets. Beyond traditional merchant markets, the potential for exploring some fresh and profitable markets are discussed including carbon sources in chemical industries for the following: enhanced oil recovery; production of chemicals, fuels, and polymers; and production of algae-based biofuels through CO(2) fixation by microalgae.

  11. Indirect methods for characterization of carbon dioxide levels in fermentation broth.

    Science.gov (United States)

    Frick, R; Junker, B

    1999-01-01

    Various factors which influence dissolved carbon dioxide levels were indirectly evaluated in pilot scale and laboratory studies. For pilot scale studies, off-gas carbon dioxide (percentage in exit air) was measured using a mass spectrometer and then its potential impact on dissolved carbon dioxide concentrations qualitatively examined. Greater volumetric air flowrates reduced off-gas carbon dioxide levels more effectively at lower airflow ranges and thus lowered expected dissolved carbon dioxide levels through gas stripping. Lower broth pH values decreased off-gas carbon dioxide levels but increased expected dissolved carbon dioxide levels due to the pH-dependence of the gas/liquid carbon dioxide equilibrium. While back-pressure increases had an insignificant effect on off-gas carbon dioxide levels, they directly affected expected dissolved carbon dioxide levels according to Henry's law. Laboratory studies, conducted using both uninoculated and inoculated fermentation media, quantified the response of the media to pH changes with bicarbonate addition, specifically its buffering capacity. This effect then was related qualitatively to expected dissolved carbon dioxide levels. Higher dissolved carbon dioxide levels, as demonstrated by reduced pH changes with bicarbonate addition, thus would be expected for salt solutions of increased ionic strength and higher protein content media. In addition, pH changes with greater bicarbonate additions declined for fermentation samples taken over the course of a one week cultivation, most likely due to the higher protein content associated with biomass growth. The presence of weak acids/bases initially in the media or formed as metabolic by products, as well as the concentration of buffering ions such as phosphate, also were believed to be important contributing elements to the buffering capacity of the solution.

  12. Supercritical Carbon Dioxide Extraction of Benzene in Poly(vinyl acetate) and Polystyrene

    OpenAIRE

    佐々木, 正和; 滝嶌, 繁樹; 舛岡, 弘勝

    1989-01-01

    In order to test the applicability of the supercritical fluid extraction technique to the separation of impurities in polymers, separation of benzene from two polymers of poly(vinyl acetate) and polystyrene was carried out using supercritical carbon dioxide. Figure 1 shows a schematic diagram of the supercritical fluid extraction apparatus. It consists of the following sections: (1) compression of carbon dioxide, (2) extraction, and (3) control and measurement of carbon dioxide flow rates...

  13. Life cycle study. Carbon dioxide emissions lower in electric heating than in oil heating

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, A.; Jaervinen, P.; Nikula, A.

    1996-11-01

    A primary objective of energy conservation is to cut carbon dioxide emissions. A comparative study on the various heating forms, based on the life cycle approach, showed that the carbon dioxide emissions resulting form heating are appreciably lower now that electric heating has become more common. The level of carbon dioxide emissions in Finland would have been millions of tonnes higher had oil heating been chosen instead of electric heating. (orig.)

  14. Corrosion of carbon steel, zinc and copper by air pollution in Chongqing

    Institute of Scientific and Technical Information of China (English)

    YE Di; ZHAO Da-wei; CHEN Gang-cai; ZHANG Dong-bao

    2007-01-01

    This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose-response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.

  15. Atmospheric carbon dioxide and the global carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Trabalka, J R [ed.

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  16. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Loring, John S.; Chen, Jeffrey; Benezeth, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-06-16

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, the implication of these results is that mineral trapping in scCO2 dominated fluids will be insignificant and limited to surface complexation unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  17. CARBON DIOXIDE REDUCTION CONTACTORS IN SPACE VEHICLES AND OTHER ENCLOSED STRUCTURES,

    Science.gov (United States)

    CONTROLLED ATMOSPHERES, CARBON DIOXIDE , REMOVAL, LIFE SUPPORT SYSTEMS, SPACE ENVIRONMENTS, CONFINED ENVIRONMENTS, OXYGEN CONSUMPTION, REGENERATION(ENGINEERING), CHEMISORPTION, MASS TRANSFER, FLUID MECHANICS, CENTRIFUGES.

  18. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    Science.gov (United States)

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials.

  19. Using the carbon dioxide laser for tonsillotomy in children.

    Science.gov (United States)

    Linder, A; Markström, A; Hultcrantz, E

    1999-10-15

    Carbon dioxide laser tonsillotomies were performed on 33 children aged 1-12 years for the relief of obstructive symptoms due to tonsillar hyperplasia. As opposed to conventional tonsillectomy, only the protruding part of each tonsil was removed. A carbon dioxide laser delivering 20 W was used for the excision. Twenty-one children were seen in active short-term follow-up and the records of all the children were checked for possible surgery related events up to 20-33 months after surgery. Laser tonsillotomy was uniformly effective in relieving the obstruction, with good hemostasis. The tonsillar remnants healed completely within 2 weeks. No major adverse events occurred. Post-operative pain appeared slight and easily controlled. There was no gain in operating time compared with conventional tonsillectomy. The laser tonsillotomies were in most cases done in day surgery. No recurrence of obstructive problems was reported up to 20-33 months after surgery. It was concluded that tonsillotomy, using a carbon dixoide laser, is a valid treatment for obstructive symptoms caused by enlarged tonsils, which can be performed with little bleeding and post-operative pain. The improved hemostasis may enable a shift from in-patient to day surgery.

  20. THE ELECTROCHEMICAL BEHAVIOR OF OCEANIC MICROBIOLOGICAL INFLUENCED CORROSION ON CARBON STEEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The corrosion behavior of carbon steel in the medium of marine microorganisms was investigated by electrochemical impedance spectra, polarization curves, and so on. Experimental results showed that the corrosion potential of carbon steel moved in a negative direction in the unpurified marine microorganism solution, and the polarization style of the cathodic process did not change. The electrochemical impedance spectra showed that the impedance value of the electrode decreased in the medium with bacteria, which indicated that the existence of microorganism could accelerate the corrosion progress of carbon steel.

  1. Chemical looping integration with a carbon dioxide gas purification unit

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jr., Herbert E.; Jukkola, Glen D.; Thibeault, Paul R.; Liljedahl, Gregory N.

    2017-01-24

    A chemical looping system that contains an oxidizer and a reducer is in fluid communication with a gas purification unit. The gas purification unit has at least one compressor, at least one dryer; and at least one distillation purification system; where the gas purification unit is operative to separate carbon dioxide from other contaminants present in the flue gas stream; and where the gas purification unit is operative to recycle the contaminants to the chemical looping system in the form of a vent gas that provides lift for reactants in the reducer.

  2. New and future developments in catalysis activation of carbon dioxide

    CERN Document Server

    Suib, Steven L

    2013-01-01

    New and Future Developments in Catalysis is a package of books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. This volume presents a complete picture of all carbon dioxide (CO2) sources, outlines the environmental concerns regarding CO2, and critica

  3. Evidence for atmospheric carbon dioxide variability over the Gulf Stream

    Science.gov (United States)

    Bufton, J. L.

    1984-01-01

    Two airborne surveys of atmospheric carbon dioxide concentration have been conducted over the Gulf Stream off the east coast of Virginia and North Carolina on September 7-8, 1983. In situ CO2 data were acquired at an aircraft altitude of 300 m on trajectories that transcected the Gulf Stream near 36 deg N 73 deg W. Data show evidence of a CO2 concentration increase by 4 ppm to 15 ppm above the nominal atmospheric background value of 345 ppm. These enhanced values were associated with the physical location of the Gulf Stream prior to the passage of a weak cold front.

  4. [Colonoscopy with carbon dioxide insufflation: luxury or neccesity?].

    Science.gov (United States)

    Herráiz, Maite

    2013-01-01

    Colonoscopy is an essential diagnostic and therapeutic tool for many gastrointestinal diseases and is also a key element in the prevention and early diagnosis of colon cancer. Despite numerous technical advances, colonoscopy continues to be uncomfortable for patients, both during and after the procedure. To a large extent, the discomfort of colonoscopy depends on the need to distend the colon, which usually produces abdominal pain. Although ambient air is usually employed to expand and inflate the colon, in the last few years devices that allow carbon dioxide (CO(2)) insufflation in colonoscopy have been developed. This gas is a highly attractive option for pain-free colonoscopy.

  5. Physiological carbon dioxide, bicarbonate, and pH sensing.

    Science.gov (United States)

    Tresguerres, Martin; Buck, Jochen; Levin, Lonny R

    2010-11-01

    In biological systems, carbon dioxide exists in equilibrium with bicarbonate and protons. The individual components of this equilibrium (i.e., CO₂, HCO₃⁻, and H(+)), which must be sensed to be able to maintain cellular and organismal pH, also function as signals to modulate multiple physiological functions. Yet, the molecular sensors for CO₂/HCO₃⁻/pH remained unknown until recently. Here, we review recent progress in delineating molecular and cellular mechanisms for sensing CO₂, HCO₃⁻, and pH.

  6. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  7. Developing a molecular platform for potential carbon dioxide fixing

    DEFF Research Database (Denmark)

    Mikkelsen, Mette; Jørgensen, Mikkel; Krebs, Frederik C

    2010-01-01

    This paper presents an attempt to develop a new system for fixing carbon dioxide from the atmosphere. The proposed molecular system has been designed to have the capacity to spontaneously bind CO2 from the atmosphere with high affinity. The molecular system is furthermore designed to have the abi...... with bound CO2. One class of molecules that undergo a reaction compatible with our purposal is the merocyanine dyes that exhibit photochromic properties. Based on this structural class of molecules, a system for the potential fixing of CO2 has been developed....

  8. TIR-1 carbon dioxide laser system for fusion

    Science.gov (United States)

    Adamovich, V. A.; Anisimov, V. N.; Afonin, E. A.; Baranov, V. Iu.; Borzenko, V. L.; Kozochkin, S. M.; Maliuta, D. D.; Satov, Iu. A.; Sebrant, A. Iu.; Smakovski, Iu. B.

    1980-03-01

    The paper examines the TIR-1 carbon dioxide laser system for fusion. The current efforts are concentrated on (1) the microsecond laser pulse plasma heating in solenoids and theta pinches, and (2) nanosecond CO2 laser utilization for inertial confinement fusion. The TIR-1 system was designed to develop nanosecond CO2 laser technology and to study laser-target interaction at 10 microns. This system consists of an oscillator-preamplifier that produces about 1-nsec laser pulse with an energy contrast ratio of 1 million, a large triple-pass amplifier, and a target chamber with diagnostic equipment.

  9. Synthesis and Characterization of Cobalt-Carbon Core-Shell Microspheres in Supercritical Carbon Dioxide System

    Institute of Scientific and Technical Information of China (English)

    Jun-song Yang; Qian-wang Chen

    2008-01-01

    The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investigated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice.Characterization by a variety of techniques,including X-ray powder diffraction,X-ray photoelectron spectroscopy,Transmission electron microscope,Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm.The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed,based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction.Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample,which is lower than the 168 emu/g of the corresponding metal cobalt bulk material.This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core.Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.

  10. Yeast-based microporous carbon materials for carbon dioxide capture.

    Science.gov (United States)

    Shen, Wenzhong; He, Yue; Zhang, Shouchun; Li, Junfen; Fan, Weibin

    2012-07-01

    A hierarchical microporous carbon material with a Brunauer-Emmett-Teller surface area of 1348 m(2) g(-1) and a pore volume of 0.67 cm(3) g(-1) was prepared from yeast through chemical activation with potassium hydroxide. This type of material contains large numbers of nitrogen-containing groups (nitrogen content >5.3 wt%), and, consequently, basic sites. As a result, this material shows a faster adsorption rate and a higher adsorption capacity of CO(2) than the material obtained by directly carbonizing yeast under the same conditions. The difference is more pronounced in the presence of N(2) or H(2)O, showing that chemical activation of discarded yeast with potassium hydroxide could afford high-performance microporous carbon materials for the capture of CO(2).

  11. Clean Hydrogen Production. Carbon Dioxide Free Alternatives. Project Phisico2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fierro, J. L.; Gonzalez, C.; Serrano, D.; Penelas, G.; Romero, M.; Marcos, M. J.; Rodriguez, C.

    2006-07-01

    The main goal of the PHISICO2 project, funded and promoted by Comunidad de Madrid, is the evaluation and optimisation of three different processes for the clean hydrogen production without carbon dioxide emission. Solar energy and associated Technologies are proposed to be jointly employed with the aim of improving the process efficiency and reducing the production costs. As a transition to the non-fossil fuel hydrogen economy, the thermocatalytic CO2-free production of hydrogen from natural gas will be considered. One of the most promising alternatives of this process is to develop a cheap and stable carbon-based catalyst able to efficiently decompose methane into a CO2-free hydrogen stream and solid carbon. Thus, not only pure hydrogen can be obtained through but also carbon with specific properties and commercial value can be produced. Another option to be explored is the splitting of water by means of solar light by means of two different approaches: (i) photodissociation promoted by semiconductor catalysts and (ii) thermochemical cycles in which a specific mixed oxide is first thermally reduced by sunlight and then reoxidized by steam in a second step with the parallel production of hydrogen. Indeed, option (i) implies necessarily the development of semiconductors with appropriate band-gap able to decompose water into hydrogen and oxygen in an efficient manner. Another critical issue will be the development of a strategy/concept that allows efficient separation of hydrogen and oxygen within the cell. In option (ii), the development of stable ferrites which act as the redox element of the cycle is also an important challenge. Finally, a 5 kW prototype solar engine water splitting, based on the mentioned thermochemical cycle, will developed and tested using concentrated solar light as an energy source. Moreover, thermodynamic and kinetic studies, reactor design, process optimisation, economical studies and comparison with conventional hydrogen production systems

  12. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) has completed its administrative review of the countervailing duty (CVD) order on corrosion-resistant...\\ See Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

  13. 75 FR 77615 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2010-12-13

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic...

  14. 76 FR 69703 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2011-11-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic...

  15. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  16. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    Science.gov (United States)

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  17. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    Science.gov (United States)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co

  18. 49 CFR 195.579 - What must I do to mitigate internal corrosion?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to mitigate internal corrosion? 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.579 What must I do to mitigate internal corrosion? (a) General. If you transport any hazardous liquid or carbon dioxide...

  19. Catalytic Formation of Propylene Carbonate from Supercritical Carbon Dioxide/Propylene Oxide Mixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylammon-ium bromide (n-Bu4NBr) as catalyst. The high rate of reaction was attributed to rapid diffusion and the high miscibility of propylene oxide in SC-CO2 under employed conditions. Various reaction periods present different formation rate of propylene carbonate, mainly due to the existence of phase change during the reaction. The experimental results demonstrate that SC-CO2 could be used as not only an environmentally benign solvent but also a carbon precursor in synthesis.

  20. Ocean Surface Carbon Dioxide Fugacity Observed from Space

    Science.gov (United States)

    Liu, W. Timothy; Xie, Xiaosu

    2014-01-01

    We have developed and validated a statistical model to estimate the fugacity (or partial pressure) of carbon dioxide (CO2) at sea surface (pCO2sea) from space-based observations of sea surface temperature (SST), chlorophyll, and salinity. More than a quarter million in situ measurements coincident with satellite data were compiled to train and validate the model. We have produced and made accessible 9 years (2002-2010) of the pCO2sea at 0.5 degree resolutions daily over the global ocean. The results help to identify uncertainties in current JPL Carbon Monitoring System (CMS) model-based and bottom-up estimates over the ocean. The utility of the data to reveal multi-year and regional variability of the fugacity in relation to prevalent oceanic parameters is demonstrated.

  1. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    Energy Technology Data Exchange (ETDEWEB)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques

  2. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  3. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    OpenAIRE

    Talhelm, Alan F.; Pregitzer, Kurt S.; Kubiske, Mark E.; Zak, Donald R.; Campany, Courtney E.; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F.

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 d...

  4. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  5. Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration

    Science.gov (United States)

    US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

  6. The Path of Carbon in Photosynthesis X. Carbon Dioxide Assimilation in Plants

    Science.gov (United States)

    Calvin, M.; Bassham, J. A.; Benson, A. A.; Lynch, V.; Ouellet, C.; Schou, L.; Stepka, W.; Tolbert, N. E.

    1950-04-01

    The conclusions which have been drawn from the results of C{sup 14}O{sub 2} fixation experiments with a variety of plants are developed in this paper. The evidence for thermochemical reduction of carbon dioxide fixation intermediates is presented and the results are interpreted from such a viewpoint.

  7. Poly(urethane–carbonate)s from Carbon Dioxide

    KAUST Repository

    Chen, Zuliang

    2017-03-09

    A one-pot, two-step protocol for the direct synthesis of polyurethanes containing few carbonate linkages through polycondensation of diamines, dihalides, and CO2 in the presence of Cs2CO3 and tetrabutylammonium bromide is described. The conditions were optimized by studying the polycondensation of CO2 with 1,6-hexanediamine and 1,4-dibromobutane as model monomers. Then, various diamines and dihalides were tested under optimal conditions. Miscellaneous samples of such carbonate-containing polyurethanes exhibiting molar masses from 6000 to 22 000 g/mol (GPC) and yields higher than 85% were obtained. The thermal properties of such polyurethanes were unveiled by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA): they were found very similar to those of traditional polyurethanes obtained by diisocyanates + diols polycondensation.

  8. Microbial Response to Carbon Dioxide Injection in a Shallow Aquifer

    Science.gov (United States)

    Rook, A.; Faehndrich, D.; O'Mullan, G.; Mailloux, B.; Matter, J.; Stute, M.; Goldberg, D.

    2007-12-01

    Extensive research is underway to investigate the geophysical and geochemical dynamics of subsurface carbon sequestration, but there has been only theoretical consideration of the microbial response. Microbial dynamics are capable of altering the range and rates of geochemical reactions in the subsurface. The goal of this field experiment is to link geochemical changes due to CO2 injection to alterations in the microbial community and to provide an initial characterization of the microbial response. A seven week push-pull experiment was conducted at the Lamont-Doherty Earth Observatory Test Well. 200L of groundwater was extracted, bubbled with carbon dioxide, augmented with a bromide tracer, and injected to 230m depth below ground surface. The hydraulically isolated injection zone marked the contact area between dolerite sill and sedimentary rock. Samples were taken on a weekly basis. Geochemically, a drop in pH from 9.4 to 4.5 at injection was coupled with a release of Fe2+ from the formation. As neutralization and mixing caused pH to return toward background levels, Fe2+ concentrations decreased. The aquifer remained anoxic throughout the experiment. DNA was successfully extracted and the gene encoding 16S ribosomal RNA was amplified from all samples with the exception of the injection fluid. Sequencing from clone libraries and tRFLP analyses were used to characterize microbial dynamics during the seven week study. Whereas the number of microbial groups detected remained relatively constant over the course of the experiment, changes were observed in both the dominant microbes phylogenetic identity and relative abundance. Methane concentrations increased from background levels (below 50 nM) to 4.2 nM after injection, but initial attempts to amplify archaeal and methanogen-specific genes were unsuccessful, bringing into question the presence of a significant methanogenic population. These results confirm that there is a microbial response to carbon dioxide

  9. Pathophysiological and clinical aspects of carbonic dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Larsen, Jens Fromholt

    The number of laparoscopic procedures is still rising and within the field of gastro-intestinal surgery, urology, and gynaecology the laparoscopic procedure has now become the gold standard. The prerequisite for laparoscopic surgery is a working cavity. Positive pressure carbonic dioxide pneumope......The number of laparoscopic procedures is still rising and within the field of gastro-intestinal surgery, urology, and gynaecology the laparoscopic procedure has now become the gold standard. The prerequisite for laparoscopic surgery is a working cavity. Positive pressure carbonic dioxide...... invasive methods. Based on a randomized design comparing conventional with gasless laparoscopy the effects of CO 2 - PP are investigated in regard to: ? outcome, pain, convalescence, ? coagulation and fibrinolysis ? surgical stress response ? perioperative haemodynamics and heart performance...... ? the haemodynamic effects are most pronounced in the reverse Trendelenburg position ? static lung compliance is reduced, hypercarbia and acidosis follows CO 2 -PP ? postoperative hypercarbia and acidosis may be due to hypoventilation rather than CO 2 accumulation after CO 2 -PP laparoscopy. Further studies...

  10. Carbon Dioxide Information Analysis Center: FY 1991 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  11. Carbon Dioxide Information Analysis Center: FY 1991 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  12. Calculating the probability of injected carbon dioxide plumes encountering faults

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, P.D.

    2011-04-01

    One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

  13. Carbon dioxide dilution effect on flammability limits for hydrocarbons.

    Science.gov (United States)

    Chen, Chan-Cheng; Liaw, Horng-Jang; Wang, Tzu-Chi; Lin, Chin-Yu

    2009-04-30

    Theoretical models to predict the upper/lower flammability limits of a mixture composed of hydrocarbon and inert carbon dioxide are proposed in this study. It is found theoretically that there are linear relations between the reciprocal of the upper/lower flammability limits and the reciprocal of the molar fraction of hydrocarbon in the hydrocarbon/inert gas mixture. These theoretical linear relations are examined by existing experimental results reported in the literature, which include the cases of methane, propane, ethylene, and propylene. The coefficients of determination (R(2)) of the regression lines are found to be larger than 0.959 for all aforementioned cases. Thus, the proposed models are highly supported by existing experimental results. A preliminary study also shows the conclusions in present work have the possibility to extend to non-hydrocarbon flammable materials or to inert gas other than carbon dioxide. It is coincident that the theoretical model for the lower flammability limit (LFL) in present work is the same as the empirical model conjectured by Kondo et al.

  14. Electrochemical device for converting carbon dioxide to a reaction product

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-11-01

    An electrochemical device converts carbon dioxide to a reaction product. The device includes an anode and a cathode, each comprising a quantity of catalyst. The anode and cathode each has reactant introduced thereto. A polymer electrolyte membrane is interposed between the anode and the cathode. At least a portion of the cathode catalyst is directly exposed to gaseous carbon dioxide during electrolysis. The average current density at the membrane is at least 20 mA/cm.sup.2, measured as the area of the cathode gas diffusion layer that is covered by catalyst, and CO selectivity is at least 50% at a cell potential of 3.0 V. In some embodiments, the polymer electrolyte membrane comprises a polymer in which a constituent monomer is (p-vinylbenzyl)-R, where R is selected from the group consisting of imidazoliums, pyridiniums and phosphoniums. In some embodiments, the polymer electrolyte membrane is a Helper Membrane comprising a polymer containing an imidazolium ligand, a pyridinium ligand, or a phosphonium ligand.

  15. Carbon Dioxide Information Analysis Center: FY 1992 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

    1993-03-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  16. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.

    Science.gov (United States)

    Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia

    2017-03-08

    Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts.

  17. Numerical Simulation of Behavior of Carbon Dioxide Injected into Target Geologic Formations in the Bukpyeong Basin, Korea

    Science.gov (United States)

    Kihm, J.; Park, S.; Kim, J.

    2013-12-01

    A series of thermo-hydrological numerical simulations was performed to predict and analyze behavior of carbon dioxide injected into target geologic formations in the Bukpyeong Basin, which is one of the prospective offshore basins for geologic carbon dioxide storage in Korea. The results of the numerical simulations for the two areas in the basin show that the spatial distribution, structure (layered structure), and hydrological properties (anisotropy of intrinsic permeability) of the target geologic formations have significant impacts on three-dimensional behavior of carbon dioxide injected. The horizontal movement of carbon dioxide along the spatial distribution of a target geologic formation (Unit C-4) is more dominant than the vertical movement. As the injection amount of carbon dioxide increases, carbon dioxide plume expands furthermore and reaches to the shallower depth region from the mean sea level. Even in case of the maximum injection amount of carbon dioxide, carbon dioxide does not leak through the top boundary (sea floor) of the modeling domain for both areas. It indicates that carbon dioxide can be stored in the two areas up to their effective storage capacities of free fluid phase carbon dioxide, which was estimated in authors' previous study. As time progresses, carbon dioxide stored by hydrodynamic trapping decreases, while carbon dioxide stored by solubility trapping increases. The total mass of carbon dioxide stored by solubility trapping evaluated in this study is significantly greater than that estimated in authors' previous study. It indicates that the storage efficiency of aqueous phase carbon dioxide is greater than that of free fluid phase carbon dioxide. Therefore, this difference in the storage efficiencies of the free fluid and aqueous phases of carbon dioxide must be properly considered when more rigorous effective storage capacities of carbon dioxide are to be estimated on basin and even site scales. This work was supported by the

  18. Hepatic injury induced by carbon dioxide pneumoperitoneum in experimental rats

    Institute of Scientific and Technical Information of China (English)

    Gui-Sen Xu; He-Nian Liu; Jun Li; Xiao-Ling Wu; Xue-Mei Dai; Ying-Hai Liu

    2009-01-01

    AIM: To observe the hepatic injury induced by carbon dioxide pneumoperitoneum in rats and to explore its potential mechanism. METHODS: Thi r ty heal thy male SD rats were randomly divided into control group (n = 10), 0 h experimental group (n = 10) and 1 h experimental group (n = 10) after sham operation with carbon dioxide pneumoperitoneum. Histological changes in liver tissue were observed with hematoxylineosin staining. Liver function was assayed with an automatic biochemical analyzer. Concentration of malonyldialdehyde (MDA) and activity of superoxide dismutase (SOD) were assayed by colorimetry. Activity of adenine nucleotide translocator in liver tissue was detected with the atractyloside-inhibitor stop technique. Expression of hypoxia inducible factor-1 (HIF-1) mRNA in liver tissue was detected with in situ hybridization. RESULTS: Carbon dioxide pneumoperitoneum for 60 min could induce liver injury in rats. Alanine aminotransferase and aspartate aminotransferase were 95.7 ± 7.8 U/L and 86.8 ± 6.9 U/L in 0 h experimental group, and 101.4 ± 9.3 U/L and 106.6 ± 8.7 U/L in 1 h experimental group. However, no significant difference was found in total billirubin, albumin, and pre-albumin in the three groups. In 0 h experimental group, the concentration of MDA was 9.83 ± 2.53 μmol/g in liver homogenate and 7.64 ± 2.19 μmol/g in serum respectively, the activity of SOD was 67.58 ± 9.75 nu/mg in liver and 64.47 ± 10.23 nu/mg in serum respectively. In 1 h experimental group, the concentration of MDA was 16.57 ± 3.45 μmol/g in liver tissue and 12.49 ± 4.21 μmol/g in serum respectively, the activity of SOD was 54.29 ± 7.96 nu/mg in liver tissue and 56.31 ± 9.85 nu/mg in serum, respectively. The activity of ANT in liver tissue was 9.52 ± 1.56 in control group, 6.37 ± 1.33 in 0 h experimental group and 7.28 ± 1.45 (10-9 mol/min per gram protein) in 1 h experimental group, respectively. The expression of HIF-1 mRNA in liver tissue was not detected in

  19. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems......., the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  20. ELECTROCHEMICAL STUDIES ON THE CORROSION OF CARBON STEEL IN OXALIC ACID CLEANING SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B; John Mickalonis, J

    2007-10-08

    The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS has utilized oxalic acid to accomplish this task. Since the waste tanks are constructed of carbon steel, a significant amount of corrosion may occur. Although the total amount of corrosion may be insignificant for a short contact time, a significant amount of hydrogen may be generated due to the corrosion reaction. Linear polarization resistance and anodic/cathodic polarization tests were performed to investigate the corrosion behavior during the process. The effect of process variables such as temperature, agitation, aeration, sample orientation, light as well as surface finish on the corrosion behavior were evaluated. The results of the tests provided insight into the corrosion mechanism for the iron-oxalic acid system.

  1. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides.

    Science.gov (United States)

    Finkenstadt, Victoria L; Côté, Gregory L; Willett, J L

    2011-06-01

    Corrosion of metals is a serious and challenging problem faced worldwide by industry. Purified Leuconostoc mesenteroides exopolysaccharide (EPS) coatings, cast from aqueous solution, inhibited the corrosion of low-carbon steel as determined by electrochemical impedance spectroscopy (EIS). There were two different corrosion behaviors exhibited when EPS films from different strains were cast onto the steel. One EPS coating reacted immediately with the steel substrate to form an iron (III) oxide layer ("rust") during the drying process while another did not. The samples that did not flash corrode had higher corrosion inhibition and formed an iron (II) passivation layer during EIS testing that persisted after the cells were disassembled. Corrosion inhibition was strain-specific as polysaccharides with similar structure did not have the same corrosion potential.

  2. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    Science.gov (United States)

    A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.

  3. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  4. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    Science.gov (United States)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  5. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2015-06-15

    Phase I concludes with significant progress made towards the SunShot ELEMENTS goals of high energy density, high power density, and high temperature by virtue of a SrO/SrCO3 based material. A detailed exploration of sintering inhibitors has been conducted and relatively stable materials supported by YSZ or SrZO3 have been identified as the leading candidates. In 15 cycle runs using a 3 hour carbonation duration, several materials demonstrated energy densities of roughly 1500 MJ/m3 or greater. The peak power density for the most productive materials consistently exceeded 40 MW/m3—an order of magnitude greater than the SOPO milestone. The team currently has a material demonstrating nearly 1000 MJ/m3 after 100 abbreviated (1 hour carbonation) cycles. A subsequent 8 hour carbonation after the 100 cycle test exhibited over 1500 MJ/m3, which is evidence that the material still has capacity for high storage albeit with slower kinetics. Kinetic carbonation experiments have shown three distinct periods: induction, kinetically-controlled, and finally a diffusion-controlled period. In contrast to thermodynamic equilibrium prediction, higher carbonation temperatures lead to greater conversions over a 1 hour periods, as diffusion of CO2 is more rapid at higher temperatures. A polynomial expression was fit to describe the temperature dependence of the linear kinetically-controlled regime, which does not obey a traditional Arrhenius relationship. Temperature and CO2 partial pressure effects on the induction period were also investigated. The CO2 partial pressure has a strong effect on the reaction progress at high temperatures but is insignificant at temperatures under 900°C. Tomography data for porous SrO/SrCO3 structures at initial stage and after multiple carbonation/decomposition cycles have been obtained. Both 2D slices and 3D reconstructed representations have

  6. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide.

    Science.gov (United States)

    Loring, John S; Chen, Jeffrey; Bénézeth, Pascale; Qafoku, Odeta; Ilton, Eugene S; Washton, Nancy M; Thompson, Christopher J; Martin, Paul F; McGrail, B Peter; Rosso, Kevin M; Felmy, Andrew R; Schaef, Herbert T

    2015-07-14

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 μmol/m(2). Above this concentration and up to 76 μmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 μmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O

  7. Carbon Accounting for Carbon Dioxide Enhanced Oil recovery

    OpenAIRE

    Stewart, Jamie R; Haszeldine, R Stuart

    2014-01-01

    It is recognised from currently operating CO2EOR projects that the operations and processes involved in CO2EOR are energy intensive and may compromise the overall carbon footprint of a project (ARI, 2009; Dilmore, 2010). This study intends to provide a medium to high level life cycle assessment of CO2EOR operations for a theoretical offshore North Sea project. The study will focus on upstream operations involved in the CO2 EOR process and aims to quantify all significant processes and acti...

  8. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique

    2003-12-18

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous

  9. Uncertainities in carbon dioxide radiative forcing in atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Cess, R.D.; Zhang, M.H. (State Univ. of New York, Stony Brook, NY (United States)); Potter, G.L.; Gates, W.L.; Taylor, K.E. (Lawrence Livermore National Laboratory, CA (United States)); Colman, R.A.; Fraser, J.R.; McAvaney, B.J. (Bureau of Meterorology Research Centre, Victoria (Australia)); Dazlich, D.A.; Randall, D.A. (Colorado State Univ., Fort Collins, CO (United States)); Del Genio, A.D.; Lacis, A.A. (Goddard Institute for Space Studies, New York, NY (United States)); Esch, M.; Roeckner, E. (Max Planck Institute for Meteorology, Hamburg (Germany)); Galin, V. (Russian Academy of Sciences, Moscow (Russian Federation)); Hack, J.J.; Kiehl, J.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Ingram, W.J. (Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)); Le Treut, H.; Lli, Z.X. (Laboratoire de Meteorologie Dynamique, Paris (France)); Liang, X.Z.; Wang, W.C. (State Univ. of New York, Albany, NY (United States)); Mahfouf,

    1993-11-19

    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  10. 77 FR 33859 - Carbon Dioxide Fire Suppression Systems on Commercial Vessels

    Science.gov (United States)

    2012-06-07

    ...The Coast Guard is amending the current regulations for fire suppression systems on several classes of commercial vessels. The amendments clarify that approved alternatives to carbon dioxide systems may be used to protect some spaces on these vessels, and set general requirements for alternative systems. Additionally, certain new carbon dioxide systems must be equipped with lockout valves and......

  11. Palladium-Catalyzed Carbonylation of Primary Amines in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 江焕峰; 陈鸣才

    2001-01-01

    The chemoselectity of the palladimm-catalyzed carbonylation of amines was affected by the addition of MeOH in supercritical carbon dioxide. The results show different selectivity in supercritical carbon dioxide CO2(sc) from that in alcohol.Methyl carbamate and its derivatives were obtained in high yields in CO2(sc).

  12. Modeling of carbon dioxide absorption by aqueous ammonia solutions using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; van Well, Willy J. M.; Stenby, Erling Halfdan

    2010-01-01

    An upgraded version of the Extended UNIQUAC thermodynamic model for the carbon dioxide-ammonia-water system has been developed, based on the original version proposed by Thomsen and Rasmussen. The original model was valid in the temperature range 0-110°C, the pressure range 0-10 MPa...... properties of carbon dioxide and ammonia to supercritical conditions....

  13. Evaluation of a membrane based carbon dioxide absorber for spacecraft ECLS applications

    NARCIS (Netherlands)

    Feron, P.H.M.; Eckhard, F.; Witt, J.

    1996-01-01

    In an on-going harmonized ESA/NIVR project, performed by Stork Comprimo and TNO-MEP, the removal of the carbon dioxide with membranes is studied. The use of membrane gas absorption for carbon dioxide removal is currently hampered by the fact that the commonly used alkanolamines result in leakage pro

  14. Experimental studies on removal of carbon dioxide by aqueous ammonia fine spray

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Experimental studies on carbon dioxide capture in a spray scrubber were carried out.Fine spray of aqueous ammonia was used as CO2 absorbent.Effects of different operating and design parameters on CO2 removal efficiency including concentration of aqueous ammonia,liquid flow rate,total gas flow rate,initial temperature and concentration of carbon dioxide were investigated.

  15. Carbon Dioxide Absorbers: An Engaging Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Ticich, Thomas M.

    2011-01-01

    A simple and direct method for measuring the absorption of carbon dioxide by two different substances is described. Lithium hydroxide has been used for decades to remove the gas from enclosed living spaces, such as spacecraft and submarines. The ratio of the mass of carbon dioxide absorbed to the mass of lithium hydroxide used obtained from this…

  16. Carbon dioxide, but not isoflurane, elicits ultrasonic vocalizations in female rats.

    Science.gov (United States)

    Chisholm, J; De Rantere, D; Fernandez, N J; Krajacic, A; Pang, D S J

    2013-10-01

    Gradual filling of a chamber with carbon dioxide is currently listed by the Canadian Council on Animal Care guidelines as a conditionally acceptable method of euthanasia for rats. Behavioural evidence suggests, however, that exposure to carbon dioxide gas is aversive. Isoflurane is less aversive than carbon dioxide and may be a viable alternative, though objective data are lacking for the period leading up to loss of consciousness. It has been shown that during negative states, such as pain and distress, rats produce ultrasonic vocalizations. The objective of this study was to detect ultrasonic vocalizations during exposure to carbon dioxide gas or isoflurane as an indicator of a negative state. Specialized recording equipment, with a frequency detection range of 10 to 200 kHz, was used to register these calls during administration of each agent. Nine female Sprague-Dawley rats were exposed to either carbon dioxide or isoflurane on two different occasions. All rats vocalized in the ultrasonic range (30 to 70 kHz) during exposure to carbon dioxide. When exposed to isoflurane, no calls were detected from any of the animals. The frequent occurrence of ultrasonic vocalizations during carbon dioxide exposure suggests that the common practice of carbon dioxide euthanasia is aversive to rats and that isoflurane may be a preferable alternative.

  17. Metal Ions Extraction with Glucose Derivatives as Chelating Reagents in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Guo Chen YANG; Hai Jian YANG

    2006-01-01

    A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-1-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr2+ and Pb2+ extraction in supercritical carbon dioxide.

  18. Gas transfer rates from airlifts used for concurrent aeration, carbon dioxide stripping, and recirculation

    Science.gov (United States)

    Airlifts simplify recirculating aquaculture systems and can potentially reduce capital costs and minimize maintenance issues. Airlifts have the ability to move and aerate water as well as degass the water of any carbon dioxide. This study evaluated the oxygen transfer and carbon dioxide removal abil...

  19. The polity and politics of carbon-dioxide taxation in small European states

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    The most recent smaller country to adopt a carbon dioxide tax is Portugal (2014), but also Iceland (2013), Ireland (2010), Switzerland (2008), Croatia (2007), Estonia (2000) and Slovenia (1997) have managed to find ways to put into place taxes on carbon dioxide. France (2014) remains the exception...

  20. Varmeovergang og trykfald ved fordampning af kuldioxid (Heat Transfer and Pressure Drop for Boiling Carbon Dioxide)

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1999-01-01

    Heat transfer and pressure drop for carbon dioxide, pure and mixed with oil, has the been measured for flow in pipe. The measured heat transfer coefficient for pure carbon dioxide is much higher than the value calculated with the Shah correlation. With oil even higher heat transfer coefficient ha...