WorldWideScience

Sample records for carbon dioxide cooled reactors

  1. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  2. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  3. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  4. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  5. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    Science.gov (United States)

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  6. Investigation of CO{sub 2} Recovery System Design in Supercritical Carbon Dioxide Power Cycle for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Jung, Hwa-Young; Ahn, Yoonhan; Cho, Seong Kuk; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    These are mainly possible because the S-CO{sub 2} Brayton cycle has lower compressing work than other Brayton cycles due to its high density and low compressibility near the critical point. These attributes make easier to achieve higher turbine inlet temperature. Furthermore, the coolant chemistry control and component cooling systems are relatively simple for the S-CO{sub 2} cycle unlike the steam Rankine cycle, and therefore the total plant footprint can be greatly reduced further. However, certain amount of leakage flow is inevitable in the rotating turbo-machinery since the S-CO{sub 2} power cycle is a highly pressurized system. A computational model of critical flow in turbo-machinery seal is essential to predict the leakage flow and calculate the required total mass of working fluid in S-CO{sub 2} power system. Before designing a computational model of critical flow in turbo-machinery seal, this paper will identify what the issues are in predicting leakage flow and how these issues can be successfully addressed. Also, suitability of this solution in a large scale S-CO{sub 2} power cycle will be discussed, because this solution is for the small scale. S-CO{sub 2} power cycle has gained interest especially for the SFR application as an alternative to the conventional steam Rankine cycle, since S-CO{sub 2} power cycle can provide better performance and enhance safety. This paper discussed what the problem in leakage flow is and how to deal with this problem at present. High cavity pressure causing instability of gas foil bearing and large windage losses can be reduced by booster pump used to scavenge the gas in the rotor cavity. Also, labyrinth seals can be another good solution to decrease the rotor cavity pressure. Additionally, difference between large and small scale S-CO{sub 2} power cycle in turbo-machinery leakage is addressed. It is shown that optimization of CO{sub 2} recovery system design is more important to large scale S-CO{sub 2} power cycle. For

  7. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  8. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  9. Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

    2008-05-31

    The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates

  10. Compact and Lightweight Sabatier Reactor for Carbon Dioxide Reduction

    Science.gov (United States)

    Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Abney, Morgan B.; Perry, Jay L.

    2011-01-01

    The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA s cabin Atmosphere Revitalization System and In-Situ Resource Utilization architectures for both low-earth orbit and long-term manned space missions. In the current International Space Station (ISS) and other low orbit missions, metabolically-generated CO2 is removed from the cabin air and vented into space, resulting in a net loss of O2. This requires a continuous resupply of O2 via water electrolysis, and thus highlights the need for large water storage capacity. For long-duration space missions, the amount of life support consumables is limited and resupply options are practically nonexistent, thus atmosphere resource management and recycle becomes crucial to significantly reduce necessary O2 and H2O storage. Additionally, the potential use of the Martian CO2-rich atmosphere and Lunar regolith to generate life support consumables and propellant fuels is of interest to NASA. Precision Combustion, Inc. (PCI) has developed a compact, lightweight Microlith(Registered TradeMark)-based Sabatier (CO2 methanation) reactor which demonstrates the capability of achieving high CO2 conversion and near 100% CH4 selectivity at space velocities of 30,000-60,000 hr-1. The combination of the Microlith(Registered TradeMark) substrates and durable, novel catalyst coating permitted efficient Sabatier reactor operation that favors high reactant conversion, high selectivity, and long-term durability. This paper presents the reactor development and performance results at various operating conditions. Additionally, results from 100-hr durability tests and mechanical vibration tests are discussed.

  11. Experimental Study on Cooling Heat Transfer of Supercritical Carbon Dioxide Inside Horizontal Micro-Fin Tubes

    Science.gov (United States)

    Kuwahara, Ken; Higashiiu, Shinya; Ito, Daisuke; Koyama, Shigeru

    This paper deals with the experimental study on cooling heat transfer of supercritical carbon dioxide inside micro-fin tubes. The geometrical parameters in micro-fin tubes used in the present study are 6.02 mm in outer diameter, 4.76 mm to 5.11 mm in average inner diameter, 0.15 mm to 0.24 mm in fin height, 5 to 25 in helix angle, 46 to 52 in number of fins and 1.4 to 2.3 in area expansion ratio. Heat transfer coefficients were measured at 8-10 MPa in pressure, 360-690 kg/(m2•s) in mass velocity and 20-75 °C in CO2 temperature. The measured heat transfer coefficients of micro-fin tubes were 1.4 to 2 times higher than those of the smooth tube having 4.42 in inner diameter. The predicted heat transfer coefficients using the correlation equation, which was developed for single-phase turbulent fluid flow inside micro-fin-tubes, showed large deviations to the measured values. The new correlation to predict cooling heat transfer coefficient of supercritical carbon dioxide inside micro-fin tubes was developed taking into account the shape of fins based on experimental data empirically. This correlation equation agreed within ±20% of almost all of the experimental data.

  12. Carbon Dioxide reduction by non-equilibrium electrocatalysis plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amouroux, J; Cavadias, S [LGPPTS- ENSCP/UPMC 11 rue P. t M. Curie 75231 Paris cedex 05 (France); Doubla, A, E-mail: simeon-cavadias@chimie-paristech.fr [Laboratoire de Chimie Minerale, Universite de Yaounde I, BP 812 (Cameroon)

    2011-03-15

    A possible strategy to increase the added value from CCS, is to consider it as a raw material for the production of liquid fuels, or chemical products. The most studied ways related to CO{sub 2} reduction, with formation of molecules such as CH{sub 3}OH or syngas, is the reaction with H{sub 2} (exothermic reaction needing catalytic activation), or CH{sub 4} (endothermic reaction taking place at high temperature) with the use of a catalyst. The synthesis of CH{sub 3}OH is performed on Lewis acid type sites (default of electrons) Cu/Zn/Al{sub 2}O{sub 3}. However the products of the reaction i.e. the water and methanol molecules, are very polar, resulting in a very low desorption rate. So in this reaction the key step is water desorption (Lewis basis). The increase of temperature in order to increase this desorption rate, leads to a cracking and the deposition of carbon in the catalyst, limiting its lifetime. Plasma driven catalysis allows firstly, a vibrational activation of CO{sub 2}, H{sub 2} or CH{sub 4} through electron-molecule collisions, making easier their dissociation at low temperature and secondly expels water from the catalyst sites by supplying electrons (electropolarisation). The results show an increase of the yield in CH{sub 3}OH with plasma and catalyst, confirming the action of the plasma. However energy consumption remains relatively high.

  13. Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors

    Directory of Open Access Journals (Sweden)

    H. Ushida

    2016-12-01

    Full Text Available Under tritium production method using a high-temperature gas-cooled reactor loaded Li compound, Li compound has to be coated by ceramic materials in order to suppress the spreading of tritium to the whole reactor. Pyrolytic carbon (PyC is a candidate of the coating material because of its high resistance for gas permeation. In this study, hydrogen permeation experiments using a PyC-coated isotropic graphite tube were conducted and hydrogen diffusivity, solubility and permeability were evaluated. Tritium permeation behavior through PyC-coated Li compound particles was simulated by using obtained data. Hydrogen permeation flux through PyC in a steady state is proportional to the hydrogen pressure and is larger than that through Al2O3 which is also candidate coating material. However, total tritium leak within the supposed reactor operation period through the PyC-coated Li compound particles is lower than that through the Al2O3-coated ones because the hydrogen absorption capacity in PyC is considerably larger than that in Al2O3.

  14. Gas cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-01

    Although most of the development work on fast breeder reactors has been devoted to the use of liquid metal cooling, interest has been expressed for a number of years in alternative breeder concepts using other coolants. One of a number of concepts in which interest has been retained is the Gas-Cooled Fast Reactor (GCFR). As presently envisioned, it would operate on the uranium-plutonium mixed oxide fuel cycle, similar to that used in the Liquid Metal Fast Breeder Reactor (LMFBR), and would use helium gas as the coolant.

  15. Design Construction and Operation of a Supercritical Carbon Dioxide (sCO2) Loop for Investigation of Dry Cooling and Natural Circulation Potential for Use in Advanced Small Modular Reactors Utilizing sCO2 Power Conversion Cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlson, Matthew David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows for measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.

  16. Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

    2010-10-01

    In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water

  17. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Illias

    2002-06-10

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application this new development. We designed and built a membrane reactor to study the reforming reaction. A two-dimensional pseudo-homogeneous reactor model was developed to study the performance of the membrane reactor parametrically. The important results are presented in this report.

  18. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  19. Optimization of carbon dioxide supply in raceway reactors: Influence of carbon dioxide molar fraction and gas flow rate.

    Science.gov (United States)

    Duarte-Santos, T; Mendoza-Martín, J L; Acién Fernández, F G; Molina, E; Vieira-Costa, J A; Heaven, S

    2016-07-01

    Influence of CO2 composition and gas flow rate to control pH in a pilot-scale raceway producing Scenedesmus sp. was studied. Light and temperature determined the biomass productivity whereas neither the CO2 molar fraction nor the gas flow rate used influenced it; because pH was always controlled and carbon limitation did not take place. The CO2 molar fraction and the gas flow rate influenced carbon loss in the system. At low CO2 molar fraction (2-6%) or gas flow rate (75-100l·min(-1)) the carbon efficiency in the sump was higher than 95%, 85% of the injected carbon being transformed into biomass. Conversely, at high CO2 molar fraction (14%) or gas flow rate (150l·min(-1)) the carbon efficiency in the sump was lower than 67%, 32% of the carbon being fixed as biomass. Analysis here reported allows the pH control to be optimized and production costs to be reduced by optimizing CO2 efficiency.

  20. Study of the Effect of Reduced Iron Temperature Rising on Total Carbon Formation in Iron Reactor Isobaric and Cooling Zone

    Directory of Open Access Journals (Sweden)

    Bayu Alamsari

    2010-01-01

    Full Text Available We presented the mathematical model in the iron reactor. The model was limited to Isobaric Zone and Cooling Zone termed as IZ and CZ, respectively. The simulation was done by adapting the heat and mass transfer equations. The main purpose of this paper is to estimate the temperature increasing effect of reduced-iron on sponge-iron quality. The calculations are solved using Finite Element Method (FEM. The results showed that the temperature and concentration values from the simulation have high similarity to the reference data with Root-Mean-Square Error (RMSE about 0.7. The formation of total-carbon in the both zones decreased metallization degree until 1.72%. The increase in reduced-iron temperature higher than 1200 K produces total-carbon higher than 3%. Thus the increase in reduced-iron temperature more than 1200 K is not recommended because it can decrease metallization degree.

  1. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    New Pei Yee

    2008-04-01

    Full Text Available A one-dimensional mathematical model was developed to simulate the performance of catalytic fixed bedreactor for carbon dioxide reforming of methane over Rh/Al2O3 catalyst at atmospheric pressure. The reactionsinvolved in the system are carbon dioxide reforming of methane (CORM and reverse water gas shiftreaction (RWGS. The profiles of CH4 and CO2 conversions, CO and H2 yields, molar flow rate and molefraction of all species as well as reactor temperature along the axial bed of catalyst were simulated. In addition,the effects of different reactor temperature on the reactor performance were also studied. The modelscan also be applied to analyze the performances of lab-scale micro reactor as well as pilot-plant scale reactorwith certain modifications and model verification with experimental data. © 2008 BCREC UNDIP. All rights reserved.[Received: 20 August 2008; Accepted: 25 September 2008][How to Cite: N.A.S. Amin, I. Istadi, N.P. Yee. (2008. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 3 (1-3: 21-29. doi:10.9767/bcrec.3.1-3.19.21-29

  2. Carbon Dioxide Absorbents

    Science.gov (United States)

    1950-05-17

    carbondioxide content of the solution was then determined. A gas mixture containing 2.6% carbon dioxide and 97.4% nitrogen was prepared in the...which carbon dioxide is removed by heat0 Since this step is usually carried out by "steam stripping ", that is, contacting the solution at its boiling...required to produce the steam required for stripping the carbon dioxide from the s olution. The method ueed in this investigation for determining the

  3. CARBON DIOXIDE REDUCTION SYSTEM.

    Science.gov (United States)

    CARBON DIOXIDE , *SPACE FLIGHT, RESPIRATION, REDUCTION(CHEMISTRY), RESPIRATION, AEROSPACE MEDICINE, ELECTROLYSIS, INSTRUMENTATION, ELECTROLYTES, VOLTAGE, MANNED, YTTRIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, NICKEL.

  4. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2005-02-03

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were

  5. Carbon Dioxide Collection and Pressurization Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reactive Innovations, LLC, proposes a Phase I SBIR program to develop a compact and lightweight electrochemical reactor to separate and pressurize carbon dioxide...

  6. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  7. Summarized compatibility review of reactor materials for CO2-cooled graphite-moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, B.J.

    1964-09-23

    This report, which is a revised edition of TRG-Report-267, summarises an internal document and collates information on the compatibility of a range of materials used in CO{sub 2}-cooled graphite-moderated reactors. Information is presented in the form of six tables based on compatibilities of materials with carbon dioxide, beryllium, Magnox, magnesium, uranium and compatibilities of pairs of other relevant materials.

  8. 超临界二氧化碳在核反应堆系统中的应用%Applications of Supercritical Carbon Dioxide in Nuclear Reactor System

    Institute of Scientific and Technical Information of China (English)

    黄彦平; 王俊峰

    2012-01-01

    The applications of supercritical carbon dioxide Brayton cycle in nuclear reactor systems have attracted worldwide attention in recent years. In this paper, the advantages of employing supercritical carbon dioxide Brayton cycle in nuclear reactors were analyzed based on its fundamental conception. The investigations on supercritical carbon dioxide Brayton cycle were reviewed. The potential application area of supercritical carbon dioxide in Chinese advanced nuclear energy technology were analyzed and discussed, and some associated suggestions were proposed.%基于超临界二氧化碳布雷顿循环的基本原理,分析其应用于核反应堆系统的主要优势,介绍目前国际上超临界二氧化碳应用于核反应堆系统的相关研究进展,对超临界二氧化碳工质在我国未来先进核能技术研发中潜在的应用对象进行探讨,并提出相关建议.

  9. Carbon Dioxide Fountain

    Science.gov (United States)

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  10. Carbon Dioxide and Climate.

    Science.gov (United States)

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  11. MEANS FOR COOLING REACTORS

    Science.gov (United States)

    Wheeler, J.A.

    1957-11-01

    A design of a reactor is presented in which the fuel elements may be immersed in a liquid coolant when desired without the necessity of removing them from the reactor structure. The fuel elements, containing the fissionable material are in plate form and are disposed within spaced slots in a moderator material, such as graphite to form the core. Adjacent the core is a tank containing the liquid coolant. The fuel elements are mounted in spaced relationship on a rotatable shaft which is located between the core and the tank so that by rotation of the shaft the fuel elements may be either inserted in the slots in the core to sustain a chain reaction or immersed in the coolant.

  12. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor.

    Science.gov (United States)

    Zhang, Fang; Ding, Jing; Zhang, Yan; Chen, Man; Ding, Zhao-Wei; van Loosdrecht, Mark C M; Zeng, Raymond J

    2013-10-15

    Gasification of waste to syngas (H2/CO2) is seen as a promising route to a circular economy. Biological conversion of the gaseous compounds into a liquid fuel or chemical, preferably medium chain fatty acids (caproate and caprylate) is an attractive concept. This study for the first time demonstrated in-situ production of medium chain fatty acids from H2 and CO2 in a hollow-fiber membrane biofilm reactor by mixed microbial culture. The hydrogen was for 100% utilized within the biofilms attached on the outer surface of the hollow-fiber membrane. The obtained concentrations of acetate, butyrate, caproate and caprylate were 7.4, 1.8, 0.98 and 0.42 g/L, respectively. The biomass specific production rate of caproate (31.4 mmol-C/(L day g-biomass)) was similar to literature reports for suspended cell cultures while for caprylate the rate (19.1 mmol-C/(L day g-biomass)) was more than 6 times higher. Microbial community analysis showed the biofilms were dominated by Clostridium spp., such as Clostridium ljungdahlii and Clostridium kluyveri. This study demonstrates a potential technology for syngas fermentation in the hollow-fiber membrane biofilm reactors.

  13. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases.

    Science.gov (United States)

    de Godos, I; Mendoza, J L; Acién, F G; Molina, E; Banks, C J; Heaven, S; Rogalla, F

    2014-02-01

    Mass transfer of CO2 from flue gas was quantified in a 100m(2) raceway. The carbonation sump was operated with and without a baffle at different liquid/gas ratios, with the latter having the greatest influence on CO2 recovery from the flue gas. A rate of mass transfer sufficient to meet the demands of an actively growing algal culture was best achieved by maintaining pH at ∼8. Full optimisation of the process required both pH control and selection of the best liquid/gas flow ratio. A carbon transfer rate of 10gCmin(-1) supporting an algal productivity of 17gm(-2)day(-1) was achieved with only 4% direct loss of CO2 in the sump. 66% of the carbon was incorporated into biomass, while 6% was lost by outgassing and the remainder as dissolved carbon in the liquid phase. Use of a sump baffle required additional power without significantly improving carbon mass transfer.

  14. Carbon dioxide sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  15. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    Science.gov (United States)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater

  16. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    Science.gov (United States)

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  17. CARBON DIOXIDE SEPARATION BY SELECTIVE PERMEATION.

    Science.gov (United States)

    CARBON DIOXIDE , SEPARATION), (*PERMEABILITY, CARBON DIOXIDE ), POROUS MATERIALS, SILICON COMPOUNDS, RUBBER, SELECTION, ADSORPTION, TEMPERATURE, PRESSURE, POLYMERS, FILMS, PLASTICS, MEMBRANES, HUMIDITY.

  18. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  19. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  20. Carbon Dioxide Captured from Flue Gas by Modified Ca-based Sorbents in Fixed-bed Reactor at High Temperature

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; YU Hongbing; WANG Shengqiang; WANG Haowen; ZHOU Qibin

    2013-01-01

    Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide,calcium carbonate,calcium acetate monohydrate and calcium oxide.The CO2 absorption capacity of those sorbents was investigated in a fixed-bed reactor in the temperature range of 350 650 ℃.It was found that all of those sorbents showed higher capacity for CO2 absorption when the operating temperature higher than 450 ℃.The CaAc2-CaO sorbent showed the highest CO2 absorption capacity of 299 mg·g-1.The morphology of those sorbents was examined by scanning electron microscope(SEM),and the changes of composition before and after carbonation were also determined by X-ray diffraction(XRD).Results indicated that those sorbents have the similar chemical compositions and crystalline phases before carbonation reaction [mainly Ca(OH)2],and CaCO3 is the main component after carbonation reaction.The SEM morphology shows clearly that the sorbent pores were filled with reaction products after carbonation reaction,and became much denser than before.The N2 adsorption-desorption isotherms indicated that the CaAc2-CaO and CaCO3-CaO sorbents have higher specific surface area,larger pore volume and appropriate pore size distribution than that of CaO-CaO and Ca(OH)2-CaO.

  1. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  2. An experimental investigation of supercritical heat transfer in a three-rod bundle equipped with wire-wrap and grid spacers and cooled by carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Eter, Ahmad, E-mail: eng.eter@yahoo.com; Groeneveld, Dé, E-mail: degroeneveld@gmail.com; Tavoularis, Stavros, E-mail: stavros.tavoularis@uottawa.ca

    2016-07-15

    Highlights: • Heat transfer at supercritical pressures was studied experimentally in a three-rod bundle equipped with wire-wrap spacers or grid spacers. • Heat transfer deterioration occurred near the heated inlet under certain conditions. • Normal heat transfer was generally comparable to that in a tube and the predictions of a correlation. - Abstract: Heat transfer measurements in a three-rod bundle equipped with wire-wrap and grid spacers were obtained at supercritical pressures in the Supercritical University of Ottawa Loop (SCUOL). The tests were performed using carbon dioxide, as a surrogate fluid for water, flowing upwards for wide ranges of conditions, including conditions equivalent to the nominal and near-normal operating conditions of the proposed Canadian Super-Critical Water-Cooled Reactor. The test section contained three heated rods and three unheated rod segments with an outer diameter of 10 mm and a pitch-to-diameter ratio of 1.14; the heated length was 1500 mm. Detailed surface temperature measurements along and around the three heated rods were collected using internally traversed thermocouples. The following ranges of test conditions were covered, with equivalent water conditions given inside parentheses: pressure from 6.6 to 8.36 MPa (19.7–25 MPa); inlet temperature from 11 to 30 °C (330–371 °C); mass flux from 200 to 1175 kg m{sup −2} s{sup −1} (340–1822 kg m{sup −2} s{sup −1}); and wall heat flux from 1 to 175 kW m{sup −2} (11–1847 kW m{sup −2}). For one set of tests, the heated rods were fitted with a 1.3 mm OD wire wrap, having an axial pitch of 200 mm along the entire heated length; for a second set, the heated rods were fitted with grid spacers having a 5.3% flow blockage and located at 500 mm axial intervals. The effects of spacer configuration on heat transfer at supercritical pressures were documented and analyzed. The observed experimental trends were compared to those obtained in a experiment in a heated

  3. Aspects of carbon dioxide utilization

    Energy Technology Data Exchange (ETDEWEB)

    Omae, Iwao [Omae Research Laboratories, 335-23 Mizuno, Sayama, Saitama 350-1317 (Japan)

    2006-06-30

    Carbon dioxide reacts with hydrogen, alcohols, acetals, epoxides, amines, carbon-carbon unsaturated compounds, etc. in supercritical carbon dioxide or in other solvents in the presence of metal compounds as catalysts. The products of these reactions are formic acid, formic acid esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, polycarbonate (bisphenol-based engineering polymer), aliphatic polycarbonates, etc. Especially, the productions of formic acid, formic acid methyl ester and dimethylformamide with a ruthenium catalyst; dimethyl carbonate and urethanes with a dialkyltin catalyst; 2-pyrone with a nickel-phosphine catalyst; diphenyl carbonate with a lead phenoxide catalyst; the alternating copolymerization of carbon dioxide and epoxides with a zinc catalyst has attracted attentions as the industrial utilizations of carbon dioxide. The further development of these production processes is expected. (author)

  4. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  5. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  6. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  7. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy.

  8. Carbon dioxide exchange in a cool-temperate evergreen coniferous forest over complex topography in Japan during two years with contrasting climates.

    Science.gov (United States)

    Saitoh, Taku M; Tamagawa, Ichiro; Muraoka, Hiroyuki; Lee, Na-Yeon M; Yashiro, Yuichiro; Koizumi, Hiroshi

    2010-07-01

    We investigated carbon dioxide (CO(2)) exchange and its environmental response during two years with contrasting climate (2006 and 2007) in a cool-temperate mixed evergreen coniferous forest dominated by Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa). The study, which was conducted in a mountainous region of central Japan, used the eddy-covariance technique. Our results (crosschecked using the common u (*) approach and van Gorsel's alternative approach) showed that annual gross primary production (GPP) and ecosystem respiration (RE) were at least 6% higher in the dry year than in the wet year, whereas net ecosystem exchange (NEE) was similar in both years. Without soil water stress, strong light stress or seasonality of plant area index during most of the study period, the forest had high metabolic activity. GPP and RE differed greatly between the two years, especially in spring (April-May) and summer (July-September), respectively. The spring GPP difference (>20%) was influenced by different winter air temperatures and snow melt timing, which controlled photosynthetic capacity in spring, and by different spring light intensities. The annual NEE differed depending on the evaluation method used, but the mean 2-year NEE estimated by the u (*) threshold approach [-3.39 +/- 0.11 (SD) MgC ha(-1) year(-1)] appears more reasonable in comparison with results from other forests.

  9. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  10. Carbon Dioxide Reduction Technology Trade Study

    Science.gov (United States)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  11. Carbon Dioxide Detection and Indoor Air Quality Control.

    Science.gov (United States)

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  12. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  13. Reducing carbon dioxide to products

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  14. Carbon Dioxide Flux Measurement Systems

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The...

  15. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  16. Small Liquid Metal Cooled Reactor Safety Study

    Energy Technology Data Exchange (ETDEWEB)

    Minato, A; Ueda, N; Wade, D; Greenspan, E; Brown, N

    2005-11-02

    The Small Liquid Metal Cooled Reactor Safety Study documents results from activities conducted under Small Liquid Metal Fast Reactor Coordination Program (SLMFR-CP) Agreement, January 2004, between the Central Research Institute of the Electric Power Industry (CRIEPI) of Japan and the Lawrence Livermore National Laboratory (LLNL)[1]. Evaluations were completed on topics that are important to the safety of small sodium cooled and lead alloy cooled reactors. CRIEPI investigated approaches for evaluating postulated severe accidents using the CANIS computer code. The methods being developed are improvements on codes such as SAS 4A used in the US to analyze sodium cooled reactors and they depend on calibration using safety testing of metal fuel that has been completed in the TREAT facility. The 4S and the small lead cooled reactors in the US are being designed to preclude core disruption from all mechanistic scenarios, including selected unprotected transients. However, postulated core disruption is being evaluated to support the risk analysis. Argonne National Laboratory and the University of California Berkeley also supported LLNL with evaluation of cores with small positive void worth and core designs that would limit void worth. Assessments were also completed for lead cooled reactors in the following areas: (1) continuing operations with cladding failure, (2) large bubbles passing through the core and (3) recommendations concerning reflector control. The design approach used in the US emphasizes reducing the reactivity in the control mechanisms with core designs that have essentially no, or a very small, reactivity change over the core life. This leads to some positive void worth in the core that is not considered to be safety problem because of the inability to identify scenarios that would lead to voiding of lead. It is also believed that the void worth will not dominate the severe accident analysis. The approach used by 4S requires negative void worth throughout

  17. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

    2005-07-01

    This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

  18. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: marija_miletic@live.com [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: fuk@cvrez.cz [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: Igor.Pioro@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: Alexey.Dragunov@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada)

    2014-09-15

    Highlights: • Gas as a coolant in Gen-IV reactors, history and development. • Main physical parameters comparison of gas coolants: carbon dioxide, helium, hydrogen with water. • Forced convection in turbulent pipe flow. • Gas cooled fast reactor concept comparisons to very high temperature reactor concept. • High temperature helium loop: concept, development, mechanism, design and constraints. - Abstract: Rapidly increasing energy and electricity demands, global concerns over the climate changes and strong dependence on foreign fossil fuel supplies are powerfully influencing greater use of nuclear power. In order to establish the viability of next-generation reactor concepts to meet tomorrow's needs for clean and reliable energy production the fundamental research and development issues need to be addressed for the Generation-IV nuclear-energy systems. Generation-IV reactor concepts are being developed to use more advanced materials, coolants and higher burn-ups fuels, while keeping a nuclear reactor safe and reliable. One of the six Generation-IV concepts is a very high temperature reactor (VHTR). The VHTR concept uses a graphite-moderated core with a once-through uranium fuel cycle, using high temperature helium as the coolant. Because helium is naturally inert and single-phase, the helium-cooled reactor can operate at much higher temperatures, leading to higher efficiency. Current VHTR concepts will use fuels such as uranium dioxide, uranium carbide, or uranium oxycarbide. Since some of these fuels are new in nuclear industry and due to their unknown properties and behavior within VHTR conditions it is very important to address these issues by investigate their characteristics within conditions close to those in VHTRs. This research can be performed in a research reactor with in-pile helium loop designed and constructed in Research Center Rez Ltd. One of the topics analyzed in this article are also physical characteristic and benefits of gas

  19. Carbon dioxide heat pump for dual-temperature drinking fountain

    Institute of Scientific and Technical Information of China (English)

    杨大章; 吕静; 何哲彬; 黄秀芝

    2009-01-01

    Carbon dioxide trans-critical heat pump system for heating and cooling water was designed,and its thermodynamic steady-state concentration model was established. Based on the steady-state model,parameters of the carbon dioxide trans-critical heat pump were calculated by computer programming. According to these parameters,the effects and application prospect of the heat pump system were analyzed for dual-temperature drinking fountains.

  20. Facilitating Conceptual Understanding of Gas-Liquid Mass Transfer Coefficient through a Simple Experiment Involving Dissolution of Carbon Dioxide in Water in a Surface Aeration Reactor

    Science.gov (United States)

    Utgikar, Vivek P.; MacPherson, David

    2016-01-01

    Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…

  1. High capacity carbon dioxide sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  2. Hydrogenation of carbon dioxide by hybrid catalysts, direct synthesis of aromatic from carbon dioxide and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kuei Chikung; Lee Mindar (National Taiwan Univ., Taipei (Taiwan))

    1991-02-01

    To improve climatic conditions and to solve the carbon resource problem, it is desirable to develop techniques whereby carbon dioxide can be converted to valuable liquid hydrocarbons which can be used either as fuels or industrial raw materials. Direct synthesis of aromatics from carbon dioxide hydrogenation was investigated in a single stage reactor using hybrid catalysts composed of iron catalysts and HZSM-5 zeolite. Carbon dioxide was first converted to CO by the reverse water gas shift reaction, followed by the hydrogenation of CO to hydrocarbons on iron catalyst, and finally the hydrocarbons were converted to aromatics in HZSM-5. Under the operating conditions of 350{degree}C, 2100 kilopascals and CO{sub 2}/H{sub 2}={1/2} the maximum aromatic selectivity obtained was 22% with a CO{sub 2} conversion of 38% using fused iron catalyst combined with the zeolite. Together with the kinetic studies, thermodynamic analysis of the CO{sub 2} hydrogenation was also conducted. It was found that unlike Fischer Tropsch synthesis, the formation of hydrocarbons from CO{sub 2} may not be thermodynamically favored at higher temperature. However, the sufficiently high yields of aromatics possible with this process provides a route for the direct synthesis of high-octane gasoline from carbon dioxide. 24 refs., 9 figs., 5 tabs.

  3. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  4. 21 CFR 582.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  5. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution

    NARCIS (Netherlands)

    Sabil, K.M.; Duarte, A.R.C.; Zevenbergen, J.F.; Ahmad, M.M.; Yusup, S.; Omar, A.A.; Peters, C.J.

    2010-01-01

    A laboratory-scale reactor system is built and operated to measure the kinetic of formation for single and mixed carbon dioxide-tetrahydrofuran hydrates. The T-cycle method, which is used to collect the kinetic data, is briefly discussed. For single carbon dioxide hydrate, the induction time decreas

  6. Method for carbon dioxide splitting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    2017-02-28

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0carbon dioxide, and heating to a temperature less than approximately 1400 C, thereby producing carbon monoxide gas and the original metal oxide compound.

  7. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  8. Perspectives in the use of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Aresta Michele

    1999-01-01

    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  9. Liquid Metal Cooled Reactor for Space Power

    Science.gov (United States)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  10. GEOLOGICAL STORAGE OF CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    Iva Kolenković

    2014-07-01

    Full Text Available Carbon dioxide geological storage represents a key segment of the carbon capture and storage system (CCS expected to significantly contribute to the reduction of its emissions, primarily in the developed countries and in those that are currently being industrialised. This approach to make use of the subsurface is entirely new meaning that several aspects are still in research phase. The paper gives a summary of the most important recent results with a short overview the possibilities in the Republic of Croatia. One option is to construct underground carbon dioxide storage facilities in deep coal seams or salt caverns. Another would be to use the CO2 in enhanced oil and gas recovery projects relying on the retention of the carbon dioxide in the deep reservoir because a portion of the injected gas is not going be produced together with hydrocarbons. Finally, the greatest potential estimated lies in depleted hydrocarbon reservoirs with significantly reduced reservoir pressure, as well as in the large regional units - layers of deep saline aquifers that extend through almost all sedimentary basins (the paper is published in Croatian.

  11. Regeneration of oxygen from carbon dioxide and water.

    Science.gov (United States)

    Weissbart, J.; Smart, W. H.; Wydeven, T.

    1972-01-01

    In a closed ecological system it is necessary to reclaim most of the oxygen required for breathing from respired carbon dioxide and the remainder from waste water. One of the advanced physicochemical systems being developed for generating oxygen in manned spacecraft is the solid electrolyte-electrolysis system. The solid electrolyte system consists of two basic units, an electrolyzer and a carbon monoxide disproportionator. The electrolyzer can reclaim oxygen from both carbon dioxide and water. Electrolyzer preparation and assembly are discussed together with questions of reactor design and electrolyzer performance data.

  12. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  13. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  14. Electrochemistry of Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  15. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    孙艳朋; 聂勇; 吴昂山; 姬登祥; 于凤文; 计建炳

    2012-01-01

    Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

  16. 21 CFR 184.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  17. Application of Hastelloy X in Gas-Cooled Reactor Systems

    DEFF Research Database (Denmark)

    Brinkman, C. R.; Rittenhouse, P. L.; Corwin, W.R.

    1976-01-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data...

  18. Volcanic versus anthropogenic carbon dioxide

    Science.gov (United States)

    Gerlach, T.

    2011-01-01

    Which emits more carbon dioxide (CO2): Earth's volcanoes or human activities? Research findings indicate unequivocally that the answer to this frequently asked question is human activities. However, most people, including some Earth scientists working in fields outside volcanology, are surprised by this answer. The climate change debate has revived and reinforced the belief, widespread among climate skeptics, that volcanoes emit more CO2 than human activities [Gerlach, 2010; Plimer, 2009]. In fact, present-day volcanoes emit relatively modest amounts of CO2, about as much annually as states like Florida, Michigan, and Ohio.

  19. High Temperature Gas-Cooled Test Reactor Options Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  20. Carbon dioxide reducing processes; Koldioxidreducerande processer

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Fredrik

    1999-12-01

    This thesis discusses different technologies to reduce or eliminate the carbon dioxide emissions, when a fossil fuel is used for energy production. Emission reduction can be accomplished by separating the carbon dioxide for storage or reuse. There are three different ways of doing the separation. The carbon dioxide can be separated before the combustion, the process can be designed so that the carbon dioxide can be separated without any energy consumption and costly systems or the carbon dioxide can be separated from the flue gas stream. Two different concepts of separating the carbon dioxide from a combined cycle are compared, from the performance and the economical point of view, with a standard natural gas fired combined cycle where no attempts are made to reduce the carbon dioxide emissions. One concept is to use absorption technologies to separate the carbon dioxide from the flue gas stream. The other concept is based on a semi-closed gas turbine cycle using carbon dioxide as working fluid and combustion with pure oxygen, generated in an air-separating unit. The calculations show that the efficiency (power) drop is smaller for the first concept than for the second, 8.7 % points compared to 13.7 % points, when power is produced. When both heat and power are produced, the relation concerning the efficiency (power) remains. Regarding the overall efficiency (heat and power) the opposite relation is present. A possible carbon dioxide tax must exceed 0.21 SEK/kg CO{sub 2} for it to be profitable to separate carbon dioxide with any of these technologies.

  1. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  2. Interglacials, Milankovitch Cycles, and Carbon Dioxide

    CERN Document Server

    Marsh, Gerald E

    2010-01-01

    The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  3. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  4. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    Science.gov (United States)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  5. Encapsulated liquid sorbents for carbon dioxide capture.

    Science.gov (United States)

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  6. Electrocatalysts for carbon dioxide conversion

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  7. Carbon Dioxide Photodissociation on Iapetus

    Science.gov (United States)

    Palmer, Eric; Brown, R. H.

    2009-09-01

    Carbon dioxide has been detected on Iapetus (Buratti et al., 2005) and is correlated with the dark material, mostly at mid-latitudes on the leading face of Iapetus (Palmer and Brown, in preparation). The average absorption feature of CO2 in the dark region is 24.7%; if it were a thin veneer of CO2 ice, it would be 14 um thick. Estimating the surface area of dark material and extrapolating gives a total CO2 budget of 8 x 107 kg on the surface of Iapetus. Volatile studies indicate that the surface of Iapetus is too hot to have CO2 ice remain on the surface for more than a few hundred years (Palmer and Brown, 2008). It has been suggested that complexing of volatiles, such as in clathrates, fluid or gas inclusions, or adsorption, would increase the stability on the Jovian and Saturnian satellites, increasing their residence times (McCord; et al., 1998; Hibbitts et al., 2001, 2002, 2007). While complexing would increase carbon dioxide's thermal stability, the resident time of CO2 on Iapetus would remain short due to the effect of UV radiation. We calculated the photodissociation rate for CO2 and found that the entire budget of CO2 on Iapetus would be destroyed in less than one Earth year. If we assume a steady-state system on Iapetus (photodissociation equal to photo-generation) approx. 108 kg will be destroyed and produced every Earth year. Unless the complexing mechanism provides some shielding from UV radiation while still allowing the detection of the 4.26-micron CO2 band, then a source of CO2 is required. We suggest that the source of CO2 is photolytic production from water ice and carbonaceous material.

  8. Effect of hydrogen and carbon dioxide on carboxylic acids patterns in mixed culture fermentation.

    Science.gov (United States)

    Arslan, D; Steinbusch, K J J; Diels, L; De Wever, H; Buisman, C J N; Hamelers, H V M

    2012-08-01

    This study investigated the carboxylate spectrum from mixed culture fermentation of three organic waste streams after supplying 2 bar hydrogen and carbon dioxide or a mixture of these two gases to the headspace. Under any modified headspace, propionate production was ceased and butyrate, caproate and the total carboxylate concentrations were higher than in the reactors with N(2) headspace (control). Production of one major compound was achieved under hydrogen and carbon dioxide mixed headspace after 4 weeks of incubation. Both the highest acetate concentration (17.4 g COD/l) and the highest fraction (87%) were observed in reactors with mixed hydrogen and carbon dioxide headspace independent of the substrate used. In the control reactor, acetate made up maximum 67% of the total products. For other products, the highest concentration and fraction were seldom observed together. Selective butyrate production reaching a 75% fraction was found under the carbon dioxide headspace on the carbohydrate rich waste.

  9. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  10. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    Baldev Raj

    2009-06-01

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective of providing fast reactor electricity at an affordable and competitive price.

  11. Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

    2002-04-01

    Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

  12. 46 CFR 193.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  13. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  14. 46 CFR 108.627 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  15. 46 CFR 169.732 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  16. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  17. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  18. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  19. 46 CFR 95.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  20. 46 CFR 76.15-20 - Carbon dioxide storage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  1. Reactive Capture of Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  2. International working group on gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-15

    The purpose of the meeting was to provide a forum for exchange of information on safety and licensing aspects for gas-cooled reactors in order to provide comprehensive review of the present status and of directions for future applications and development. Contributions were made concerning the operating experience of the Fort St. Vrain (FSV) HTGR Power Plant in the United States of America, the experimental power station Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany, and the CO/sub 2/-cooled reactors in the United Kingdom such as Hunterson B and Hinkley Point B. The experience gained at each of these reactors has proved the high safety potential of Gas-cooled Reactor Power Plants.

  3. Carbon dioxide separation using adsorption with steam regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  4. Fuel development for gas-cooled fast reactors

    Science.gov (United States)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  5. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  6. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D., E-mail: thiagodbtr@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil); Silva, Mário A. B. da, E-mail: mabs500@gmail.com [Departamento de Energia Nuclear (CTG/UFPE), Av. Professor Luiz Freire, 1000, Recife 50740-540, PE (Brazil); Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil)

    2016-01-15

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  7. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, S; Clauson-Kaas, S; Bobul'ská, L

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application...

  8. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  9. Method for Extracting and Sequestering Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  10. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  11. Capital cost: gas cooled fast reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The results of an investment cost study for a 900 MW(e) GCFR central station power plant are presented. The capital cost estimate arrived at is based on 1976 prices and a conceptual design only, not a mature reactor design.

  12. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    Energy Technology Data Exchange (ETDEWEB)

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2003-03-10

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities

  13. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    Energy Technology Data Exchange (ETDEWEB)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing

  14. Designed amyloid fibers as materials for selective carbon dioxide capture.

    Science.gov (United States)

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  15. Simple analysis of an External Vessel Cooling Thermosyphon for a Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Young; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Song, Sub Lee [Handong Global University, Pohang (Korea, Republic of)

    2015-05-15

    KALIMER has three different DHR systems: two non-safety grade systems and one safety grade system. The non-safety grade systems are an IRACS (Intermediate Reactor Auxiliary Cooling System) and a steam/feedwater system. The safety grade system is a PDRC (Passive Decay Heat Removal Circuit). In case of the foreign reactor designs, ABTR (Advanced Burner Test Reactor) has a DRACS (Direct Reactor Auxiliary Cooling System), a PFBR (Indian Prototype Fast Breeder Reactor) has an SGDHRS (Safety Grade Decay Heat Removal System), and an EFR (European Fast Reactor) has DRC (Direct Reactor Cooling). Those designs have advantage on relatively high decay heat removal capacity. However, larger vessel size due to subsidiary in-vessel structure and possible accident propagation to reactor induced by sodium fire. In this paper, an ex-vessel thermosyphon design was proposed for the removal of decay heat for an iSFR. The proposed ex-vessel thermosyphon was designed to remove decay heat in both transient cases and BDBA cases, such as vessel failure. Proper working fluid was selected based on thermodynamic properties and chemical stability. Mercury was chosen as the working fluid, and SUS 314 was used for the corresponding structure material. Possible chemical reactions and adverse effects from using the thermosyphon were inherently eliminated by the system layout. A model for a high-temperature thermosyphon and numerical algorithms were used for the analysis. As a result of the simulation, the thermosyphon design was optimized, and it showed sufficient DHR performance to maintain core integrity.

  16. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    In the year 2013, 9.5 billion metric tons of carbon dioxide gas was emitted into the air, and each year this amount is increasing [1]. Carbon dioxide emissions are of particular concern as they represent 80% of greenhouse gas emissions and therefore are a large contributor to global warming. Among...... the two approaches that are currently being investigated, carbon capture and storage (CCS) and carbon capture and utilization (CCU) [1] to address this issue, the later approach is more promising as it reuses captured carbon dioxide, as a fuel, reactant, solvent, and others, to produce valuable products....... There is not only a need for technologies for capture and utilization, via conversion, but also there are numerous questions that need to be resolved. For example, which higher value chemicals can be produced, what are their current demands and costs of production, and, how much of the captured carbon dioxide would...

  17. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  18. Gas-cooled reactors: the importance of their development

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.

    1979-06-01

    The nearest term GCR is the steam-cycle HTGR, which can be used for both power and process steam production. Use of SC-HTGRs permits timely introduction of thorium fuel cycles and of high-thermal-efficiency reactors, decreasing the need for mined U/sub 3/O/sub 8/ before arrival of symbiotic fueling of fast-thermal reactor systems. The gas-turbine HTGR offers prospects of lower capital costs than other nuclear reactors, but it appears to require longer and more costly development than the SC-HTGR. Accelerated development of the GT-HTGR is needed to gain the advantages of timely introduction. The Gas-Cooled Fast Breeder Reactor (GCFR) offers the possibility of fast breeder reactors with lower capital costs and with higher breeding ratios from oxide fuels. The VHTR provides high-temperature heat for hydrogen production.

  19. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-04-01

    Full Text Available The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v carbon dioxide concentration, but began started a constant at 30% and 40% (%v carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.

  20. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v carbon dioxide concentration, but began started a constant at 30% and 40% (%v carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.

  1. Carbon dioxide utilisation in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Tommasi, I. [Universita di Bari (Italy). Centro METEA e Dipartimento di Chimica

    1997-12-31

    The amount of carbon dioxide available for industrial utilisation may expand to unprecedented levels if the recovery of carbon dioxide from energy plants flue gases is implemented. The potential of each of the three possible uses (technological, chemical, and biological) is far from being clearly defined. The chemical utilisation option, that has intrinsic thermodynamic and kinetic constraints, may raise controversial positions, depending on the criteria used for the analysis. The estimate of its real potential demands a thorough comparative analysis, using the Life Cycle Assessment methodology, of existing processes/products with the new ones based on CO{sub 2}, in order to establish whether, or not, the latter avoid carbon dioxide (either directly or indirectly) and their economics. The rejection/consideration assessment methodology will produce reliable results only if an exhaustive number of parameters is used. The analysis cannot be limited to practiced industrial processes, but must be extended to an exhaustive inventory of cases. (Author)

  2. Simulation of Reactor Transient and Design Criteria of Sodium-cooled Fast Reactors

    OpenAIRE

    Gottfridsson, Filip

    2010-01-01

    The need for energy is growing in the world and the market of nuclear power is now once more expanding. Some issues of the current light-water reactors can be solved by the next generation of nuclear power, Generation IV, where sodium-cooled reactors are one of the candidates. Phénix was a French prototype sodium-cooled reactor, which is seen as a success. Although it did encounter an earlier unexperienced phenomenon, A.U.R.N., in which a negative reactivity transient followed by an oscillati...

  3. Carbon Dioxide Extraction from Air: Is It An Option?

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Klaus; Ziock, Hans-Joachim; Grimes, Patrick

    1999-02-01

    Controlling the level of carbon dioxide in the atmosphere without limiting access to fossil energy resources is only possible if carbon dioxide is collected and disposed of away from the atmosphere. While it may be cost-advantageous to collect the carbon dioxide at concentrated sources without ever letting it enter the atmosphere, this approach is not available for the many diffuse sources of carbon dioxide. Similarly, for many older plants a retrofit to collect the carbon dioxide is either impossible or prohibitively expensive. For these cases we investigate the possibility of collecting the carbon dioxide directly from the atmosphere. We conclude that there are no fundamental obstacles to this approach and that it deserves further investigation. Carbon dioxide extraction directly from atmosphere would allow carbon management without the need for a completely changed infrastructure. In addition it eliminates the need for a complex carbon dioxide transportation infrastructure, thus at least in part offsetting the higher cost of the extraction from air.

  4. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding......). In a winter wheat field in Denmark, soil CO2 concentrations were measured from 29 November 2011 to 14 June 2012 at upslope and footslope positions of a short catena (25 m). Carbon dioxide was measured at 20 and 40 cm soil depths (i.e., within and below the nominal plough layer) using the two measurement...

  5. Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P.; Ryu, H. J.; Kulesza, K. P.; Kim, S. J.; Halsey, W. G.; Smith, C. F.; Brown, N. W.; Greenspan, E.; de Caro, M.; Li, N.; Hosemann, P.; Zhang, J.; Yu, H.; Nuclear Engineering Division; LLNL; LANL; Massachusetts Inst. of Tech.; Ecole des Mines de Paris; Oregon State Univ.; Univ.of California at Berkley

    2008-06-23

    This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics

  6. Control rod drive for high temperature gas cooled reactor

    Institute of Scientific and Technical Information of China (English)

    DengJun-Xian; XuJi-Ming; 等

    1998-01-01

    This control rod drive is developed for HTR-10 high temperature gas cooled test reactor.The stepmotor is prefered to improve positioning of the control rod and the scram behavior.The preliminary test in 1600170 ambient temperature shows that the selected stepmotor and transmission system can meet the main operation function requirements of HTR-10.

  7. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature

  8. Advanced gas cooled nuclear reactor materials evaluation and development program

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed.

  9. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  10. Diiodination of Alkynes in supercritical Carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香; 尹笃林; 江焕峰

    2003-01-01

    A general,green and efficient method for the synthesis of transdiiodoalkenes in CO2(sc) has been developed.Trans-diiodoalkenes were obtained stereospecifically in quantitative yields via diiodination of both electron-rich and electron-deficient alkynes in the presence of KI,Ce(SO4)2 and water in supercritical carbon dioxide [CO2(sc)]at 40℃.

  11. Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Ying Min YU; Jin Hua FEI; Yi Ping ZHANG; Xiao Ming ZHENG

    2006-01-01

    Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionalized supports, solvents and ligands, could influence their activities and reuse performances greatly. These immobilized catalysts also offer the industrial advantages such as easy separation.

  12. Cooperative redox activation for carbon dioxide conversion

    DEFF Research Database (Denmark)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches...

  13. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  14. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  15. Carbon dioxide foaming of glassy polymers

    NARCIS (Netherlands)

    Wessling, M.; Borneman, Z.; Boomgaard, van den Th.; Smolders, C.A.

    1994-01-01

    The mechanism of foaming a glassy polymer using sorbed carbon dioxide is studied in detail. A glassy polymer supersaturated with nitrogen forms a microcellular foam, if the polymer is quickly heated above its glass transition temperature. A glassy polymer supersaturated with CO2 forms this foam-like

  16. Electrocatalytic carbon dioxide reduction - a mechanistic study

    NARCIS (Netherlands)

    Schouten, Klaas Jan Schouten

    2013-01-01

    This thesis presents new insights into the reduction of carbon dioxide to methane and ethylene on copper electrodes. This electrochemical process has great potential for the storage of surplus renewable electrical energy in the form of hydrocarbons. The research described in this thesis focuses on t

  17. Tourism Transport, Technology, and Carbon Dioxide Emissions

    NARCIS (Netherlands)

    Peeters, P.M.

    2010-01-01

    Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left unchecked

  18. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  19. 9 CFR 313.5 - Chemical; carbon dioxide.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  20. 46 CFR 169.565 - Fixed carbon dioxide system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  1. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  2. 46 CFR 108.431 - Carbon dioxide systems: General.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  3. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  4. 27 CFR 24.319 - Carbon dioxide record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  5. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  6. 21 CFR 868.5310 - Carbon dioxide absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  7. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  8. RESEARCH ON ELECTRIC ARC REDUCTION OF CARBON DIOXIDE,

    Science.gov (United States)

    CARBON DIOXIDE , REDUCTION(CHEMISTRY), ELECTRIC ARCS, CHEMICAL REACTIONS, HEAT OF REACTION, GAS FLOW, OXYGEN, CARBON COMPOUNDS, MONOXIDES, ELECTRODES, LABORATORY EQUIPMENT, HIGH TEMPERATURE, PLASMAS(PHYSICS), ENERGY.

  9. Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

    2012-04-24

    An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

  10. Sustainable production of green feed from carbon dioxide and hydrogen.

    Science.gov (United States)

    Landau, Miron V; Vidruk, Roxana; Herskowitz, Moti

    2014-03-01

    Carbon dioxide hydrogenation to form hydrocarbons was conducted on two iron-based catalysts, prepared according to procedures described in the literature, and on a new iron spinel catalyst. The CO2 conversion measured in a packed-bed reactor was limited to about 60% because of excessive amounts of water produced in this process. Switching to a system of three packed-bed reactors in series with interim removal of water and condensed hydrocarbons increased CO2 conversion to as much as 89%. The pure spinel catalyst displayed a significantly higher activity and selectivity than those of the other iron catalysts. This process produces a product called green feed, which is similar in composition to the product of a high-temperature, iron-based Fischer–Tropsch process from syngas. The green feed can be readily converted into renewable fuels by well-established technologies.

  11. Preliminary Assessment of a Debris Bed Cooling Performance for Demonstration Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chung Ho; Park, Chang Gyu; Song, Hoon; Kim, Young Gyun; Jeong, Hae Yong; Chang, Jin Wook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In the case of the sodium-cooled fast reactor such as KALIMER-600, Hypothetical Core Disruptive Accident (HCDA) attributed from mass nuclear fuel melting is unlikely to occur due to defense in depth concepts to meet requirements of redundancy and diversity. Multiple faults such as loss of flow, loss of heat sink, or transient overpower without scram are to lead rising the power level until cladding failure as reactivity increasing. The fact that metallic fuel melts at a lower temperature than the cladding allows significant in-pin- fuel motion to occur prior to cladding failure. Also, the combination of Doppler and axial expansion feedback and negative feedback associated with the in-pin fuel relocation prevents the reactivity from reaching prompt critical. Finally, the resulting reactivity and power reductions help prevent fuel temperatures from rising more than the fuel melting temperature. It is more difficult to occur HCDA in a metallic fueled core because reactor power and heat removal capability is maintained in balance by inherent safety characteristics However, for the future design of sodium-cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth considering due to the triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. Accordingly, evaluation of a packed debris bed cooling performance with single phase flow for demonstration sodium-cooled fast reactor was carried out for proof of the in-vessel retention of the core debris

  12. System Study: Reactor Core Isolation Cooling 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  13. System Study: Reactor Core Isolation Cooling 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-01-31

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  14. System Study: Reactor Core Isolation Cooling 1998–2012

    Energy Technology Data Exchange (ETDEWEB)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trend was identified in the HPCI results. Statistically significant decreasing trends were identified for RCIC start-only and 8-hour trends.

  15. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

    DEFF Research Database (Denmark)

    Bjerregård, Asger; Jansen, Erik

    2012-01-01

    Measurement of the arterial carbon dioxide (P(a)CO(2)) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P(ET)CO(2)) and transcutaneous carbon dioxide (PTCCO2......). Carbon dioxide in the blood and cerebral tissue has great influence on vasoactivity and thereby blood volume of the brain. We have found no studies on the correlation between P(ET)CO(2) or P(TC)CO(2), and P(a)CO(2) during hyperbaric oxygen therapy (HBOT)....

  16. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (carbon dioxide removal.

  17. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  18. Superheated Water-Cooled Small Modular Underwater Reactor Concept

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available A novel fully passive small modular superheated water reactor (SWR for underwater deployment is designed to produce 160 MWe with steam at 500ºC to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF. The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

  19. Materials for carbon dioxide separation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingqing

    2014-10-01

    The CO{sub 2} adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO{sub 2} adsorption ability. Another promising class of materials for CO{sub 2} capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO{sub 3} and the relationship between physisorption and chemisorption properties of CaO-based materials.

  20. A gas-cooled reactor surface power system

    Science.gov (United States)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  1. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    Science.gov (United States)

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  2. Sequestering ADM ethanol plant carbon dioxide

    Science.gov (United States)

    Finley, R.J.; Riddle, D.

    2008-01-01

    Archer Daniels Midland Co. (ADM) and the Illinois State Geological Survey (ISGS) are collaborating on a project in confirming that a rock formation can store carbon dioxide from the plant in its pores. The project aimed to sequester the gas underground permanently to minimize release of the greenhouse gas into the atmosphere. It is also designed to store one million tons of carbon dioxide over a three-year period. The project is worth $84.3M, funded by $66.7M from the US Department Energy, supplemented by co-funding from ADM and other corporate and state resources. The project will start drilling of wells to an expected depth over 6500 feet into the Mount Simon Sandstone formation.

  3. Recycling technology of emitted carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hironori [National Inst. of Materials and Chemical Research (NIMC), Ibaraki (Japan)

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  4. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors

    Science.gov (United States)

    Zweibaum, Nicolas

    The development of advanced nuclear reactor technology requires understanding of complex, integrated systems that exhibit novel phenomenology under normal and accident conditions. The advent of passive safety systems and enhanced modular construction methods requires the development and use of new frameworks to predict the behavior of advanced nuclear reactors, both from a safety standpoint and from an environmental impact perspective. This dissertation introduces such frameworks for scaling of integral effects tests for natural circulation in fluoride-salt-cooled, high-temperature reactors (FHRs) to validate evaluation models (EMs) for system behavior; subsequent reliability assessment of passive, natural- circulation-driven decay heat removal systems, using these validated models; evaluation of life cycle carbon dioxide emissions as a key environmental impact metric; and recommendations for further work to apply these frameworks in the development and optimization of advanced nuclear reactor designs. In this study, the developed frameworks are applied to the analysis of the Mark 1 pebble-bed FHR (Mk1 PB-FHR) under current investigation at the University of California, Berkeley (UCB). (Abstract shortened by UMI.).

  5. Dye solubility in supercritical carbon dioxide fluid

    Directory of Open Access Journals (Sweden)

    Yan Jun

    2015-01-01

    Full Text Available Supercritical carbon dioxide fluid is an alternative solvent for the water of the traditional dyeing. The solubility of dyestuff affects greatly the dyeing process. A theoretical model for predicting the dye solubility is proposed and verified experimentally. The paper concludes that the pressure has a greater impact on the dyestuff solubility than temperature, and an optimal dyeing condition is suggested for the highest distribution coefficient of dyestuff.

  6. Pulsed discharge plasmas in supercritical carbon dioxide

    OpenAIRE

    Kiyan, Tsuyoshi; Uemura, A.; Tanaka, K.; Zhang, C. H.; Namihira, Takao; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Roy, B.C.; Sasaki, M.; Goto, M.; キヤン, ツヨシ; ナミヒラ, タカオ; サクガワ, タカシ; カツキ, スナオ

    2005-01-01

    In recent years, several studies about electrical discharge plasma in supercritical carbon dioxide (CO2) have been carried out. One of the unique characteristics of supercritical fluid is a large density fluctuation near the critical point that can result in marked dramatic changes of thermal conductivity. Therefore, the electrical discharge plasma produced in supercritical fluid has unique features and reactions unlike those of normal plasma produced in gas phase. In our experiments, two typ...

  7. Water in supercritical carbon dioxide dyeing

    Directory of Open Access Journals (Sweden)

    Zheng Lai-Jiu

    2015-01-01

    Full Text Available This paper investigates the effect of water serving as entrainer on the dyeing of wool fabrics in supercritical carbon dioxide. Compared with previous supercritical dyeing methods, addition of water makes the dyeing process more effective under low temperature and low pressure. During dyeing process, dyestuff can be uniformly distributed on fabrics’s surface due to water interaction, as a result coloration is enhanced while color difference is decreased.

  8. Acute carbon dioxide avoidance in Caenorhabditis elegans

    OpenAIRE

    Hallem, Elissa A.; Sternberg, Paul W.

    2008-01-01

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement....

  9. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  10. Carbon dioxide makes heat therapy work

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, H.

    1987-01-01

    Scientists can now propagate healthy blueberry and raspberry plants from virus-infected stock by treating it with heat and carbon dioxide. Plants are grown at 100/sup 0/F, which makes them develop faster than the virus can spread. Then cuttings are taken of the new growth - less than an inch long - and grown into full-sized, virus-free plants. But in this race to outdistance the virus, some plant species are not able to take the heat. Some even die. Chemical reactions double for every 14/sup 0/F rise in temperature. So, if you try to grow a plant at 100/sup 0/F that was originally growing at 86/sup 0/F, it will double its respiration rate. Adding carbon dioxide increases the rate of photosynthesis in plants, which increases the plant's food reserves. What carbon dioxide does to allow some plants to grow at temperatures at which they would otherwise not survive and it allows other plants to grow for longer periods at 100/sup 0/F. One problem with the process, says Converse, is that the longer plants are exposed to heat the greater the mutation rate. So, resulting clones should be closely examined for trueness to horticultural type.

  11. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    Science.gov (United States)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2

  12. Convective cooling in a pool-type research reactor

    Science.gov (United States)

    Sipaun, Susan; Usman, Shoaib

    2016-01-01

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.

  13. Convective cooling in a pool-type research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sipaun, Susan, E-mail: susan@nm.gov.my [Malaysian Nuclear Agency, Industrial Technology Division, Blok 29T, Bangi 43200, Selangor (Malaysia); Usman, Shoaib, E-mail: usmans@mst.edu [Missouri University of Science and Technology, Nuclear Engineering, 222 Fulton Hall 301 W.14th St., Rolla 64509 MO (United States)

    2016-01-22

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U{sub 3}Si{sub 2}Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system’s performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm{sup −3}. An MSTR model consisting of 20% of MSTR’s nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s{sup −1} from the 4” pipe, and predicted pool surface temperature not exceeding 30°C.

  14. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 2: Application to EBR-II Primary Sodium System and Related Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman; Collin J. Knight

    2006-03-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decontamination and decomissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidifed carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, USA. This report is Part 2 of a two-part report. This second report provides a supplement to the first report and describes the application of the humdidified carbon dioxide technique ("carbonation") to the EBR-II primary tank, primary cover gas systems, and the intermediate heat exchanger. Future treatment plans are also provided.

  15. Accident analysis of heavy water cooled thorium breeder reactor

    Science.gov (United States)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition

  16. Specific power of liquid-metal-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1987-10-01

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs.

  17. Delayed gamma power measurement for sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R., E-mail: romain.coulon@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Normand, S., E-mail: stephane.normand@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Ban, G., E-mail: ban@lpccaen.in2p3.f [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 Caen Cedex 4 (France); Barat, E.; Montagu, T.; Dautremer, T. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Brau, H.-P. [ICSM, Centre de Marcoule, BP 17171 F-30207 Bagnols sur Ceze (France); Dumarcher, V. [AREVA NP, SET, F-84500 Bollene (France); Michel, M.; Barbot, L.; Domenech, T.; Boudergui, K.; Bourbotte, J.-M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Jousset, P. [CEA, LIST, Departement des Capteurs, du Signal et de l' Information, F-91191 Gif-sur-Yvette (France); Barouch, G.; Ravaux, S.; Carrel, F. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Saurel, N. [CEA, DAM, Laboratoire Mesure de Dechets et Expertise, F-21120 Is-sur-Tille (France); Frelin-Labalme, A.-M.; Hamrita, H. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France)

    2011-01-15

    Graphical abstract: Display Omitted Research highlights: {sup 20}F and {sup 23}Ne tagging agents are produced by fast neutron flux. {sup 20}F signal has been measured at the SFR Phenix prototype. A random error of only 3% for an integration time of 2 s could be achieved. {sup 20}F and {sup 23}Ne power measurement has a reduced temperature influence. Burn-up impact could be limited by simultaneous {sup 20}F and {sup 23}Ne measurement. - Abstract: Previous works on pressurized water reactors show that the nitrogen 16 activation product can be used to measure thermal power. Power monitoring using a more stable indicator than ex-core neutron measurements is required for operational sodium-cooled fast reactors, in order to improve their economic efficiency at the nominal operating point. The fluorine 20 and neon 23 produced by (n,{alpha}) and (n,p) capture in the sodium coolant have this type of convenient characteristic, suitable for power measurements with low build-up effects and a potentially limited temperature, flow rate, burn-up and breeding dependence. This method was tested for the first time during the final tests program of the French Phenix sodium-cooled fast reactor at CEA Marcoule, using the ADONIS gamma pulse analyzer. Despite a non-optimal experimental configuration for this application, the delayed gamma power measurement was pre-validated, and found to provide promising results.

  18. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  19. Carbon dioxide: A substitute for phosgene

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E. [Univ. of Bari (Italy)

    1997-03-01

    One of the many goals of the green chemistry movement is to eliminate the use of phosgene (COCl{sub 2}), an extremely hazardous compound used in many syntheses, including the production of carbamates, organic carbonates, and polymers. One of the most interesting options for eliminating this compound is to replace it with CO{sub 2}. In addition to carbon dioxide`s abundance and benign nature, it has the benefits of recycling carbon and of reducing the amount of CO{sub 2} released into the atmosphere when its use is linked with other processes that emit CO{sub 2}. Several synthetic strategies that do not use phosgene are under development. The authors briefly review the most interesting ones and then expand on the use of CO{sub 2} as a potential building block for organic carbamates, carbonates, and isocyanates. One of these routes, polycarbonate synthesis, is already in industrial-scale operation: PAC Polymers Inc. currently produces CO{sub 2}-epoxide copolymers. The synthesis of carbamates and substituted ureas has been developed, and this process awaits industrial exploitation.

  20. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  1. Enriching blast furnace gas by removing carbon dioxide.

    Science.gov (United States)

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  2. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A.G.; Ho, C.S.

    1988-06-20

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.

  3. Mineralization of Carbon Dioxide: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O' Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  4. Interaction of carbon dioxide with Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, N.; Andersson, Klas Jerker; Grabow, L.C.

    2008-01-01

    Experimental and theoretical studies on the interaction of carbon dioxide with pseudomorphic and rough copper layers deposited on a platinum (111) single crystal are reported. Evidence for carbon dioxide dissociation and carbonate formation is presented and the relevance to methanol synthesis...

  5. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon...

  6. Shape optimization of a sodium cooled fast reactor

    Science.gov (United States)

    Schmitt, Damien; Allaire, Grégoire; Pantz, Olivier; Pozin, Nicolas

    2014-06-01

    Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth.(1, 2) Usual optimization methods for core conception are based on a parametric description of a given core design(3).(4) New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints.(5, 6) First studies show that these methods could be applied to sodium cooled core conception.(7) In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a get realistic core layout. Its caracteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas.

  7. Carbon dioxide emission from bamboo culms.

    Science.gov (United States)

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.

  8. Carbon dioxide utilization in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E.; Tommasi, I. [Univ. of Bari (Italy)

    1996-12-31

    Carbon dioxide as a raw material for the Chemical Industry is receiving growing attention because: (i) if recovery of CO{sub 2} from flue gases will be implemented, huge amounts of CO{sub 2} will be available; (ii) environmental issues urge to develop new processes/products, avoiding toxic materials. Several uses of CO{sub 2} appear to be responding to both (i) and (ii), i.e. use as a solvent (supplanting organic solvents) use as a building block for carboxylates/carbonates (supplanting phosgene); use as carbon-source in the synthesis of fuels (supplanting CO or coal/hydrocarbons). These options will be evaluated and their potentiality discussed.

  9. Supercritical carbon dioxide: a solvent like no other

    Directory of Open Access Journals (Sweden)

    Jocelyn Peach

    2014-08-01

    Full Text Available Supercritical carbon dioxide (scCO2 could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs. Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity.

  10. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  11. Carbon dioxide absorbent and method of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Robert James; O' Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  12. Carbon dioxide absorbent and method of using the same

    Science.gov (United States)

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  13. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  14. Preparation of perlite-based carbon dioxide absorbent.

    Science.gov (United States)

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  15. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto

    Science.gov (United States)

    Carlson, R. W.

    1999-01-01

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  16. Six-fold Coordinated Carbon Dioxide VI

    Energy Technology Data Exchange (ETDEWEB)

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  17. Clean Hydrogen Production. Carbon Dioxide Free Alternatives. Project Phisico2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fierro, J. L.; Gonzalez, C.; Serrano, D.; Penelas, G.; Romero, M.; Marcos, M. J.; Rodriguez, C.

    2006-07-01

    The main goal of the PHISICO2 project, funded and promoted by Comunidad de Madrid, is the evaluation and optimisation of three different processes for the clean hydrogen production without carbon dioxide emission. Solar energy and associated Technologies are proposed to be jointly employed with the aim of improving the process efficiency and reducing the production costs. As a transition to the non-fossil fuel hydrogen economy, the thermocatalytic CO2-free production of hydrogen from natural gas will be considered. One of the most promising alternatives of this process is to develop a cheap and stable carbon-based catalyst able to efficiently decompose methane into a CO2-free hydrogen stream and solid carbon. Thus, not only pure hydrogen can be obtained through but also carbon with specific properties and commercial value can be produced. Another option to be explored is the splitting of water by means of solar light by means of two different approaches: (i) photodissociation promoted by semiconductor catalysts and (ii) thermochemical cycles in which a specific mixed oxide is first thermally reduced by sunlight and then reoxidized by steam in a second step with the parallel production of hydrogen. Indeed, option (i) implies necessarily the development of semiconductors with appropriate band-gap able to decompose water into hydrogen and oxygen in an efficient manner. Another critical issue will be the development of a strategy/concept that allows efficient separation of hydrogen and oxygen within the cell. In option (ii), the development of stable ferrites which act as the redox element of the cycle is also an important challenge. Finally, a 5 kW prototype solar engine water splitting, based on the mentioned thermochemical cycle, will developed and tested using concentrated solar light as an energy source. Moreover, thermodynamic and kinetic studies, reactor design, process optimisation, economical studies and comparison with conventional hydrogen production systems

  18. Carbon dioxide detection in adult Odonata.

    Science.gov (United States)

    Piersanti, Silvana; Frati, Francesca; Rebora, Manuela; Salerno, Gianandrea

    2016-04-01

    The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata.

  19. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mijeong Lee; Gillis, James M.; Hwang, Jiann Yang [Michigan Technological University, Houghton (United States)

    2003-12-15

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO{sub 2}/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

  20. A Vortex Contactor for Carbon Dioxide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Raterman, Kevin Thomas; Mc Kellar, Michael George; Turner, Terry Donald; Podgorney, Anna Kristine; Stacey, Douglas Edwin; Stokes, B.; Vranicar, J.

    2001-05-01

    Many analysts identify carbon dioxide (CO2) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA) Greenhouse Gas Research and Development Programme cited separation costs from $35 to $264 per tonne of CO2 avoided for a conventional coal fired power plant utilizing existing capture technologies. Because these costs equate to a greater than 40% increase in current power generation rates, it appears obvious that a significant improvement in CO2 separation technology is required if a negative impact on the world economy is to be avoided.

  1. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  2. Killing wild geese with carbon dioxide or a mixture of carbon dioxide and argon

    NARCIS (Netherlands)

    Gerritzen, M.A.; Reimert, H.G.M.; Lourens, A.; Bracke, M.B.M.; Verhoeven, M.T.W.

    2013-01-01

    The killing of animals is the subject of societal and political debate. Wild geese are caught and killed on a regular basis for fauna conservation and damage control. Killing geese with carbon dioxide (CO2) is commonly practiced, but not listed in legislation on the protection of flora and fauna, an

  3. Reactivities of Shenfu Chars Toward Gasification with Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-wei; WEI Xian-yong; ZONG Zhi-min; WANG Tao-xia; XIE Rui-lun; DING Ming-jie; CAI Ke-ying; HUANG Yao-guo; GAO Jin-sheng; WU You-qing

    2007-01-01

    Five Shenfu char samples were prepared from Shenfu raw coal at different temperatures (950, 1100, 1200, 1300 and 1400 ℃) using a muffle furnace. Demineralization of the char samples was performed by treating them with 10% nitric acid for 10 min in a CEM Discover microwave reactor. The gasification of the chars, and corresponding demineralized chars, in a carbon dioxide (CO2) atmosphere was conducted in a Netzsch STA 409C131F temperature-programmed thermogravimetry apparatus. The effects of charring temperature and demineralization on the gasification reactivity of chars were systematically investigated. The results show that a char formed at a lower temperature is more reactive except for demineralized char formed at 1100 ℃, which is less reactive than char formed at 1200 ℃. Demineralization decreases the char reactivities toward gasification with CO2 to a small extent.

  4. Application of Hastelloy X in gas-cooled reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, C.R.; Rittenhouse, P.L.; Corwin, W.R.; Strizak, J.P.; Lystrup, A.; DiStefano, J.R.

    1976-10-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data are reported. Properties of concern include tensile, creep, creep-rupture, fatigue, creep-fatigue interaction, subcritical crack growth, thermal stability, and the influence of helium environments with controlled amounts of impurities on these properties. In order to develop these properties in helium environments that are expected to be prototypic of HTGR operating conditions, it was necessary to construct special environmental test systems. Details of construction and operating parameters are described. Interim results from tests designed to determine the above properties are presented. To date a fairly extensive amount of information has been generated on this material at Oak Ridge National Laboratory and elsewhere concerning behavior in air, which is reviewed. However, only limited data are available from tests conducted in helium. Comparisons of the fatigue and subcritical growth behavior in air between Hastelloy X and a number of other structural alloys are given.

  5. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100

    OpenAIRE

    Pengcheng Zhao; Kangli Shi; Shuzhou Li; Jingchao Feng; Hongli Chen

    2016-01-01

    Small modular reactor (SMR) has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR) is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100) is being developed by University of Science and Technology of China (USTC). In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kineti...

  6. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  7. Experimental study on heat transfer characteristics of supercritical carbon dioxide in horizontal tube

    Institute of Scientific and Technical Information of China (English)

    Jing LV; Meng FU; Na QIN; Bin DONG

    2008-01-01

    The heat transfer characteristics of supercrit-ical carbon dioxide in a horizontal tube with water in the vertical cross flow form were experimentally investi-gated. The results indicate that the changes of inlet pres-sure, mass flow rate, and cooling water flow rate have major effects on heat transfer performance. The varia-tions of Reynolds number and Prandtl number were obtained in counter flow and vertical cross flow. The four conventional correlations for convection heat transfer of supercritical carbon dioxide were verified by the experi-mental data in this study and the correlation agree with this experimental condition was determined.

  8. The kinetics of binding carbon dioxide in magnesium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M. [Los Alamos National Lab., NM (United States); Nomura, Koji [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.]|[Chichibu Onada Cement Co., Tokyo (Japan)

    1998-08-01

    Humans currently consume about 6 Gigatons of carbon annually as fossil fuel. In some sense, the coal industry has a unique advantage over many other anthropogenic and natural emitters of CO{sub 2} in that it owns large point sources of CO{sub 2} from which this gas could be isolated and disposed of. If the increased energy demands of a growing world population are to be satisfied from coal, the implementation of sequestration technologies will likely be unavoidable. The authors` method of sequestration involves binding carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, with minimal environmental impact. The technology is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Realization of a cost effective method requires development of optimal technologies for efficient extraction and thermal carbonation.

  9. Description of the magnox type of gas cooled reactor (MAGNOX)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, S.E.; Nonboel, E

    1999-05-01

    The present report comprises a technical description of the MAGNOX type of reactor as it has been build in Great Britain. The Magnox reactor is gas cooled (CO{sub 2}) with graphite moderators. The fuels is natural uranium in metallic form, canned with a magnesium alloy called 'Magnox'. The Calder Hall Magnox plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other stations are given in tables with a summary of design data. Special design features are also shortly described. Where specific data for Calder Hall Magnox has not been available, corresponding data from other Magnox plants has been used. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 sub-project 3: 'Reactors in Nordic Surroundings', which comprises a description of nuclear power plants neighbouring the Nordic countries. (au)

  10. Carbon dioxide research plan. A summary

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  11. Cooperative redox activation for carbon dioxide conversion

    Science.gov (United States)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  12. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    Science.gov (United States)

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  13. Electrocatalytic process for carbon dioxide conversion

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Salehi-Khojin, Amin

    2017-01-31

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and Helper Catalyst in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. the reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.

  14. Pharmaceutical applications of supercritical carbon dioxide.

    Science.gov (United States)

    Kaiser, C S; Römpp, H; Schmidt, P C

    2001-12-01

    The appearance of a supercritical state was already observed at the beginning of the 19th century. Nevertheless, the industrial extraction of plant and other natural materials started about twenty years ago with the decaffeination of coffee. Today carbon dioxide is the most common gas for supercritical fluid extraction in food and pharmaceutical industry. Since pure supercritical carbon dioxide is a lipophilic solvent, mixtures with organic solvents, especially alcohols, are used to increase the polarity of the extraction fluid; more polar compounds can be extracted in this way. The main fields of interest are the extraction of vegetable oils from plant material in analytical and preparative scale, the preparation of essential oils for food and cosmetic industry and the isolation of substances of pharmaceutical relevance. Progress in research was made by the precise measurement of phase equilibria data by means of different methods. Apart from extraction, supercritical fluid chromatography was introduced in the field of analytics, as well as micro- and nanoparticle formation using supercritical fluids as solvent or antisolvent. This review presents pharmaceutical relevant literature of the last twenty years with special emphasis on extraction of natural materials.

  15. Use of supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masayuki (Niigata Univ., Faculty of Engineering, Niigata, (Japan))

    1989-09-25

    Supercritical fluid extraction is a novel diffusion and separation technique which exploits simultaneously the increase of vapor pressure and the difference of chemical affinities of fluids near the critical point. A solvent which is used as the supercritical fluid has the following features: the critical point exists in the position of relatively ease of handling, the solvent is applicable to the extraction of a physiological active substance of thermal instability. Carbon dioxide as the solvent is non-flammable, non-corrosive, non-toxic, cheap, and readily available of high purity. The results of studies on the use of supercritical carbon dioxide (SC-CO{sub 2}) as a solvent for natural products in the fermentation and food industries, were collected. SC-CO{sub 2} extraction are used in many fields, examples for the application are as follows: removal of organic solvents from antibiotics; extraction of vegetable oils contained in wheat germ oil, high quality mustard seeds, rice bran and so on; brewing of sake using rice and rice-koji; use as a non-aqueous medium for the synthesis of precursors of the Aspartame; and use in sterilization. 66 refs., 17 figs., 21 tabs.

  16. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  17. Steam-Reheat Option for Supercritical-Water-Cooled Reactors

    Science.gov (United States)

    Saltanov, Eugene

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. Main objectives of the development are to increase thermal efficiency of a Nuclear Power Plant (NPP) and to decrease capital and operational costs. The first objective can be achieved by introducing nuclear steam reheat inside a reactor and utilizing regenerative feedwater heaters. The second objective can be achieved by designing a steam cycle that closely matches that of the mature supercritical fossil-fuelled power plants. The feasibility of these objectives is discussed. As a part of this discussion, heat-transfer calculations have been performed and analyzed for SuperCritical-Water (SCW) and SuperHeated-Steam (SHS) channels of the proposed reactor concept. In the calculations a uniform and three non-uniform Axial Heat Flux Profiles (AHFPs) were considered for six different fuels (UO2, ThO 2, MOX, UC2, UC, and UN) and at average and maximum channel power. Bulk-fluid, sheath, and fuel centerline temperatures as well as the Heat Transfer Coefficient (HTC) profiles were obtained along the fuel-channel length. The HTC values are within a range of 4.7--20 kW/m2·K and 9.7--10 kW/m2·K for the SCW and SHS channels respectively. The main conclusion is that while all the mentioned fuels may be used for the SHS channel, only UC2, UC, or UN are suitable for a SCW channel, because their fuel centerline temperatures are at least 1000°C below melting point, while that of UO2, ThO2 , and MOX may reach melting point.

  18. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration. 86.1524 Section 86.1524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Procedures § 86.1524 Carbon dioxide analyzer calibration. (a) The calibration requirements for...

  19. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  20. Carbon Dioxide and Global Warming: A Failed Experiment

    Science.gov (United States)

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  1. Flexible substrates as basis for photocatalytic reduction of carbon dioxide

    DEFF Research Database (Denmark)

    Jensen, Jacob; Mikkelsen, Mette; Krebs, Frederik C

    2011-01-01

    A photocatalytic system for converting carbon dioxide into carbon monoxide was designed and constructed. The system relies on thin films of the photocatalyst prepared at low temperature using spray coating. We formulated inks based on the well-known photocatalyst titanium dioxide and characterized...

  2. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  3. Promising flame retardant textile in supercritical carbon dioxide

    Science.gov (United States)

    Since carbon dioxide is non-toxic, non-flammable and cost-effective, supercritical carbon dioxide (scCO2) is widely used in textile dyeing applications. Due to its environmentally benign character, scCO2 is considered in green chemistry as a substitute for organic solvents in chemical reactions. O...

  4. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Gerald E. Marsh

    2014-01-01

    Full Text Available The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  5. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    OpenAIRE

    Marsh, Gerald E.

    2014-01-01

    The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  6. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Kleingeld, T.; van Aken, C.; Hogendoorn, J. A.; Versteeg, G. F.

    2006-01-01

    In the present work the absorption of carbon dioxide into aqueous piperazine (PZ) solutions has been studied in a stirred cell, at low to moderate temperatures, piperazine concentrations ranging from 0.6 to 1.5 kmol m- 3, and carbon dioxide pressures up to 500 mbar, respectively. The obtained experi

  7. Combined reactions and separations using ionic liquids and carbon dioxide

    NARCIS (Netherlands)

    Kroon, M.C.

    2006-01-01

    A new and general type of process for the chemical industry is presented using ionic liquids and supercritical carbon dioxide as combined reaction and separation media. In this process, the carbon dioxide pressure controls the miscibility of reactants, products, catalyst and ionic liquid, enabling f

  8. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  9. Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

    Directory of Open Access Journals (Sweden)

    Milan Krishna Singha Sarkar

    2017-02-01

    Full Text Available Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  10. 21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO2) monitor.

    Science.gov (United States)

    2010-04-01

    ... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to arterial carbon dioxide tension measurement. (b) Classification. Class II (special controls). The...

  11. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  12. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

    2005-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in

  13. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  14. The fixation of carbon dioxide in inorganic and organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M. (Universita degli Studi, Bari (Italy). Dispartimento di Chemica e Centro CNR-MISO)

    1993-01-01

    The recovery of carbon dioxide from concentrated sources is currently under evaluation as a technology for the control of the emission into the atmosphere. In order for this option to be operative it is necessary to define the fate of recovered carbon dioxide. Two ways forward are open: disposal in natural fields (oceans, aquifers, deep geological cavities); - utilisation (technological use or chemical conversion). The fixation in chemicals can contribute both to reduce the use of fossil carbon and to cut the emission of carbon dioxide into the atmosphere. 6 refs., 1 fig., 5 tabs.

  15. Global carbon dioxide emissions from inland waters

    Science.gov (United States)

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Robert G.; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  16. Carbon dioxide neutral, integrated biofuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2010-12-15

    Algae are efficient biocatalysts for both capture and conversion of carbon dioxide in the environment. In earlier work, we have optimized the ability of Chlorella vulgaris to rapidly capture CO{sub 2} from man-made emission sources by varying environmental growth conditions and bioreactor design. Here we demonstrate that a coupled biodiesel-bioethanol facility, using yeast to produce ethanol and photosynthetic algae to produce biodiesel, can result in an integrated, economical, large-scale process for biofuel production. Each bioreactor acts as an electrode for a coupled complete microbial fuel cell system; the integrated cultures produce electricity that is consumed as an energy source within the process. Finally, both the produced yeast and spent algae biomass can be used as added value byproducts in the feed or food industries. Using cost and revenue estimations, an IRR of up to 25% is calculated using a 5 year project lifespan. (author)

  17. Oxygen and carbon dioxide monitoring during sleep.

    Science.gov (United States)

    Amaddeo, Alessandro; Fauroux, Brigitte

    2016-09-01

    Monitoring of oxygen and carbon dioxide (CO2) is of crucial importance during sleep-disordered breathing in order to assess the consequences of respiratory events on gas exchange. Pulse oximetry (SpO2) is a simple and cheap method that is used routinely for the recording of oxygen levels and the diagnosis of hypoxemia. CO2 recording is necessary for the diagnosis of alveolar hypoventilation and can be performed by means of the end-tidal (PetCO2) or transcutaneous CO2 (PtcCO2). However, the monitoring of CO2 is not performed on a routine basis due to the lack of simple, cheap and reliable CO2 monitors. This short review summarizes some technical aspects of gas exchange recording during sleep in children before discussing the different definitions of alveolar hypoventilation and the importance of CO2 recording.

  18. Layered solid sorbents for carbon dioxide capture

    Science.gov (United States)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  19. Biochemical Capture and Removal of Carbon Dioxide

    Science.gov (United States)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  20. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  1. Thermodynamical effects during carbon dioxide release

    Science.gov (United States)

    Singh, A. K.; Böttcher, N.; Görke, U.-J.; Kolditz, O.

    2012-04-01

    Pruess [1] investigated the risk of carbon dioxide leakage from shallow storage sites by modeling scenarios. Such a fluid release is associated with mechanical work performed by formation fluid against expansion without taking heat from ambient environment. Understanding of heat related to mechanical work is essential to predict the temperature at the leak. According to the first law of thermodynamics, internal energy of working fluid decreases with an amount which is equivalent to this work hence, working fluid lost its own heat. Such kind of heat loss depends strongly on whether the expansion process is adiabatic or isothermal. Isothermal expansion allows the working fluid to interact thermally with the solid matrix. Adiabatic expansion is an isenthalpic process that takes heat from the working fluid and the ambient environment remains unchanged. This work is part of the CLEAN research project [6]. In this study, thermodynamic effects of mechanical work during eventual carbon dioxide leakage are investigated numerically. In particular, we are interested to detect the temperature at leakage scenarios and its deviation with different thermodynamic processes. Finite element simulation is conducted with a two-dimensional rectangular geometry representing a shallow storage site which bottom was located at -300m below the land surface. A fully saturated porous medium is assumed where the pore space is filled completely with carbon dioxide. Carbon dioxide accumulated in the secondary trap at 30 Bar and 24 °C is allowed to leak from top right point of rectangle with atmospheric pressure. With (i) adiabatic and (ii) isothermal compressibility factors, temperature around leakage area has been calculated which show a significant difference. With some simplification, this study detects leak temperature which is very close with [1]. Temporal evaluation at the leaky area shows that the working fluid temperature can be reduced to -20 °C when the leakage scenario is performed

  2. Carbon dioxide absorbents for rebreather diving.

    Science.gov (United States)

    Pennefather, John

    2016-09-01

    Firstly I would like to thank SPUMS members for making me a Life Member of SPUMS; I was surprised and greatly honoured by the award. I also want to confirm and expand on the findings on carbon dioxide absorbents reported by David Harvey et al. For about 35 years, I was the main player in deciding which absorbent went into Australian Navy and Army diving sets. On several occasions, suppliers of absorbents to the anaesthesia market tried to supply the Australian military market. On no occasion did they provide absorbent that came close to the minimum absorbent capacity required, generally being 30-40% less efficient than diving-grade absorbents. Because I regard lives as being more important than any likely dollar saving, the best absorbent was always selected unless two suppliers provided samples with the same absorbent capacity. On almost every occasion, there was a clear winner and cost was never considered. I suggest the same argument for the best absorbent should be used by members and their friends who dive using rebreather sets. I make this point because of my findings on a set that was brought to me after the death of its owner. The absorbent was not the type or grain size recommended by the manufacturer of the set and did not resemble any of the diving grade absorbents I knew of. I suspected by its appearance that it was anaesthetic grade absorbent. When I tested the set, the absorbent system failed very quickly so it is likely that carbon dioxide toxicity contributed to his death. The death was not the subject of an inquest and I have no knowledge of how the man obtained the absorbent. Possibly there was someone from an operating theatre staff who unintentionally caused their friend's death by supplying him with 'borrowed absorbent'. I make this point as I would like to discourage members from making a similar error.

  3. Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Howard [Advanced Cooling Technologies, Inc, Lancaster, PA (United States); Chen, Chien-Hua [Advanced Cooling Technologies, Inc, Lancaster, PA (United States)

    2014-08-27

    The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements in this program.

  4. Does carbon dioxide pool or stream in the subsurface?

    CERN Document Server

    Cardoso, Silvana S S

    2014-01-01

    Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams would transport it efficiently to depth, but this may not be so. Here, we assess the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. New laboratory experiments confirm the curtailing of convection by reaction. Wide and narrow streams of dense carbon-rich water are shut-off gradually as reaction strength increases until all transport of the pooled carbon dioxide occurs by slow molecular diffusion. These results show that the complex fluid dynamic and kinetic interactions between pooled carbon dioxide an...

  5. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    Science.gov (United States)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  6. Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Frisani, Angelo; Hassan, Yassin A; Ugaz, Victor M

    2010-11-02

    The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the

  7. 外胶凝法制备高温气冷堆UO2核芯的湿法工艺%Wet Process of External Gelation of Uranium for Preparation of Uranium Dioxide Kernel of High Temperature Gas-cooled Reactors

    Institute of Scientific and Technical Information of China (English)

    周湘文; 郝少昌; 赵兴宇; 马景陶; 王阳; 邓长生

    2012-01-01

    为制备高温气冷堆用燃料致密UO2核芯,对传统的溶胶-凝胶法进行优化和改进.主要对改进后的外胶凝工艺的湿法部分进行介绍,包括U3O8粉的溶解即欠酸硝酸铀酰(ADUN)溶液的制备、胶液的制备、胶液的分散和胶凝及凝胶球的陈化、洗涤和干燥等,并对湿法过程的机理进行了探讨.采用这一工艺,所得重铀酸铵微球的球形度好、尺寸分布均匀且具有良好空隙结构,经过后续的干法工艺如焙烧、还原和烧结,可制备出合格的高温气冷堆用燃料致密UO2核芯.%In order to prepare the dense uranium dioxide (UO2) kernel for high temperature gas-cooled reactors (HTGR) fuel, the conventional sol-gel processes are optimized and modified. The wet process of modified external gelation of uranium (EGU) is introduced, which includes the dissolution of U3Og, i.e. the preparation of acid-deficiency uranyl nitrate, preparation of broth solution, casting and gelation of broth solution and aging, washing and drying of the gelled spheres, and etc. The mechanism of wet process of EGU is also discussed. With the optimized wet process, the ammonium diuranate (ADU) microspheres with good sphericity, uniform diameter and perfect porous structure are prepared. After the subsequent treatments of dry processes such as calcination, reduction and sintering, the eligible dense UO2 kernels for HTGR fuel are manufactured.

  8. Study on the properties of the fuel compact for High Temperature Gas-cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chung-yong; Lee, Sung-yong; Choi, Min-young; Lee, Seung-jae; Jo, Young-ho [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of); Lee, Young-woo; Cho, Moon-sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    High Temperature Gas-cooled Reactors (HTGR), one of the Gen-IV reactors, have been using the fuel element which is manufactured by the graphite matrix, surrounding Tristructural-isotropic (TRISO)-coated Uranium particles. Factors with these characteristics effecting on the matrix of fuel compact are chosen and their impacts on the properties are studied. The fuel elements are considered with two types of concepts for HTGR, which are the block type reactor and the pebble bed reactor. In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength with the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and the two kinds of candidate binder (Phenol and Polyvinyl butyral) were chosen and mixed with each other, formed and heated to measure mechanical properties. The objective of this research is to optimize the materials and composition of the mixture and the forming process by evaluating the mechanical properties before/after carbonization and heat treatment. From the mechanical test results, the mechanical properties of graphite pellets was related to the various conditions such as the contents and kinds of binder, the kinds of graphite and the heat treatments. In the result of the compressive strength and Vicker's hardness, the 10 wt% phenol binder added R+S graphite pellet was relatively higher mechanical properties than other pellets. The contents of Phenol binder, the kinds of graphite powder and the temperature of carbonization and heat treatment are considered important factors for the properties. To optimize the mechanical properties of fuel elements, the role of binders and the properties of graphites will be investigated as

  9. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane,carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  10. Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma

    Science.gov (United States)

    Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin

    2017-01-01

    The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).

  11. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  12. Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The coupling reaction of carbon dioxide with epoxides was investigated using naturally occurring α-amino acids as the catalyst in supercritical carbon dioxide and it was found that L-histidine is the most active catalyst.In the presence of 0.8 mol% of L-histidine at 130°C under 8 MPa of CO2,the reaction of carbon dioxide with epoxides proceeded smoothly,affording corresponding cyclic carbonates in good to excellent yields.

  13. Forest management techniques for carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Takao [Forestry and Forest Products Research Inst., Tsukuba, Ibaraki (Japan)

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  14. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...... for cultures in CO2. This synergism between nisin and CO2 was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO2 and nisin occurs at the cytoplasmic membrane...

  15. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  16. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  17. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)

    2012-06-15

    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  18. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water

    CERN Document Server

    Heng, Kevin

    2015-01-01

    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres. We construct analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the mixing ratio of methane. By examining the abundances of these molecules across a broad range of temperatures (spanning equilibrium temperatures from 600 to 2500 K), pressures (via temperature-pressure profiles that explore albedo and opacity variations) and carbon-to-oxygen ratios (from 0.1 to 100), we conclude that carbon dioxide is subdominant compared to carbon monoxide and water. Atmospheric mixing does not alter this conclusion if carbon dioxide is subdominant everywhere in the atmosphere. Carbon dioxide and carbon monoxide may attain comparable abundances if th...

  19. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  20. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  1. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  2. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  3. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that

  4. Synthesis pf dimethyl carbonate in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ballivet-Tkatchenko, D.; Plasseraud, L. [Universite de Bourgogne-UFR Sciences et Techniques, Dijon (France). Lab. de Synthese et Electrosynthese Organometalliques]. E-mail: ballivet@u-bourgogne.fr; Ligabue, R.A. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Dept. de Quimica Pura

    2006-01-15

    The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu{sub 3}SnOCH{sub 3}, n-Bu{sub 2}Sn(OCH{sub 3}){sub 2}, and [n-Bu{sub 2}(CH{sub 3}O)Sn]{sub 2}O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO{sub 2} pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO{sub 2} pressure higher than 16 MPa. Under these conditions, CO{sub 2} acted as a reactant and a solvent. (author)

  5. Synthesis of dimethyl carbonate in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    D. Ballivet-Tkatchenko

    2006-03-01

    Full Text Available The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH32 , and [n-Bu2(CH3OSn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.

  6. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  7. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register / Vol. 75 , No. 230 / Wednesday, December 1... sequestration of carbon dioxide and all other facilities that conduct injection of carbon dioxide. This rule... may determine''). These regulations will affect owners or operators of carbon dioxide (CO...

  8. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  9. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Science.gov (United States)

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  10. Membranes for separation of carbon dioxide

    Science.gov (United States)

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Ramaswamy, Vidya; Willson, Patrick Daniel; Gao, Yan

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  11. Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2013-01-01

    This paper reports on a source of past carbon dioxide accidents which so far has only been sporadically mentioned in the literature. Violent and highly destructive outbursts of hundreds of tons of CO2 occurred regularly, if not routinely, in the now closed salt mines of the former DDR....... The Menzengraben mine experienced an extreme outburst in 1953, possibly involving a several thousand tons of carbon dioxide. This source of accidents fills an important gap in the available carbon dioxide accident history and may provide a unique empirical perspective on the hazards of handling very large amounts...

  12. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhao

    2016-01-01

    Full Text Available Small modular reactor (SMR has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100 is being developed by University of Science and Technology of China (USTC. In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kinetic model were established based on some reasonable simplifications and assumptions, the steady-state natural circulation characteristics of SNCLFR-100 primary cooling system were discussed and illustrated, and some reasonable suggestions were proposed for the reactor’s thermal-hydraulic and structural design. Moreover, in order to have a first evaluation of the system behavior in accident conditions, an unprotected loss of heat sink (ULOHS transient simulation at beginning of the reactor cycle (BOC has been analyzed and discussed based on the steady-state simulation results. The key temperatures of the reactor core are all under the safety limits at transient state; the reactor has excellent thermal-hydraulic performance.

  13. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap...... is discussed more extensively. Heterogeneously catalysed hydrogenation reactions are considered to be quite well studied and established. However, the catalyst performance can alter significantly when the reaction is performed in carbon dioxide medium. This effect was studied with the example of the selective...... the selective hydrogenation of unsaturated aldehydes in carbon dioxide medium. It was found that supported tungstosilicic acid catalysts and acidic resin Amberlyst-15 are very effective for performing aldol reactions. The positive influence of temperature and CO2-content on catalyst activity was studied...

  14. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a growing need to develop improved technologies for precise airborne measurements of carbon dioxide, CO2. CO2 measurements are of great importance to many...

  15. Comment on "An optimized potential for carbon dioxide"

    OpenAIRE

    Merker, T.; Vrabec, J.; Hasse, H.

    2009-01-01

    A molecular model for carbon dioxide is assessed regarding vapor-liquid equilibrium properties. Large deviations, being above 15 %, are found for vapor pressure and saturated vapor density in the entire temperature range.

  16. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A.; Jayakumar, D.A.; George, M.D.; Narvekar, P.V.; DeSousa, S.N.

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  17. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase 1 has seen the development of a revolutionary new type of sensor for making carbon dioxide (CO2) measurements from small Unmanned Aircraft Systems (UAS) and...

  18. Monthly Carbon Dioxide in Troposphere (AIRS on AQUA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon dioxide (CO2) is an important greenhouse gas released through natural processes such as respiration and volcano eruptions and through huma activities such as...

  19. Use of the electrosurgical unit in a carbon dioxide atmosphere.

    Science.gov (United States)

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J; Eidson, Jack L; Paolino, David V

    2016-01-01

    The electrosurgical unit (ESU) utilizes an electrical discharge to cut and coagulate tissue and is often held above the surgical site, causing a spark to form. The voltage at which the spark is created, termed the breakdown voltage, is governed by the surrounding gaseous environment. Surgeons are now utilizing the ESU laparoscopically with carbon dioxide insufflation, potentially altering ESU operating characteristics. This study examines the clinical implications of altering gas composition by measuring the spark gap distance as a marker of breakdown voltage and use of the ESU on a biologic model, both in room air and carbon dioxide. Paschen's Law predicted a 35% decrease in gap distance in carbon dioxide, while testing revealed an average drop of 37-47% as compared to air. However, surgical model testing revealed no perceivable clinical difference. Electrosurgery can be performed in carbon dioxide environments, although surgeons should be aware of potentially altered ESU performance.

  20. Precision remote sensor for oxygen and carbon dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes development of a passive optical sensor for simultaneous high-precision measurement of oxygen and carbon dioxide profiles within the full...

  1. Carbon dioxide laser treatment of balanitis xerotica obliterans.

    Science.gov (United States)

    Ratz, J L

    1984-05-01

    A case of balanitis xerotica obliterans unresponsive to topical therapy is presented. The condition was successfully corrected following epithelial vaporization with the carbon dioxide laser, the patient remaining free of recurrence for 21 months postoperatively.

  2. An alternative solution for heavy liquid metal cooled reactors fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Di Maio, Damiano, E-mail: damiano.vitaledimaio@uniroma1.it [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Cretara, Luca; Giannetti, Fabio [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Peluso, Vincenzo [“ENEA”, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Gandini, Augusto [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Manni, Fabio [“SRS Engineering Design S.r.l.”, Vicolo delle Palle 25-25/b, 00186 Rome (Italy); Caruso, Gianfranco [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy)

    2014-10-15

    Highlights: • A new fuel assembly locking system for heavy metal cooled reactor is proposed. • Neutronic, mechanical and thermal-hydraulic evaluations of the system behavior have been performed. • A comparison with other solutions has been presented. - Abstract: In the coming future, the electric energy production from nuclear power plants will be provided by both thermal reactors and fast reactors. In order to have a sustainable energy production through fission reactors, fast reactors should provide an increasing contribution to the total electricity production from nuclear power plants. Fast reactors have to achieve economic and technical targets of Generation IV. Among these reactors, Sodium cooled Fast Reactors (SFRs) and Lead cooled Fast Reactors (LFRs) have the greatest possibility to be developed as industrial power plants within few decades. Both SFRs and LFRs require a great R and D effort to overcome some open issues which affect the present designs (e.g. sodium-water reaction for the SFRs, erosion/corrosion for LFRs, etc.). The present paper is mainly focused on LFR fuel assembly (FA) design: issues linked with the high coolant density of lead or lead–bismuth eutectic cooled reactors have been investigated and an innovative solution for the core mechanical design is here proposed and analyzed. The solution, which foresees cylindrical fuel assemblies and exploits the buoyancy force due to the lead high density, allows to simplify the FAs locking system, to reduce their length and could lead to a more uniform neutron flux distribution.

  3. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  4. Seawater pH and Anthropogenic Carbon Dioxide

    CERN Document Server

    Marsh, Gerald E

    2008-01-01

    In 2005, the Royal Society published a report titled "Ocean acidification due to increasing atmospheric carbon dioxide". The report's principal conclusion-that average ocean pH could decrease by 0.5 units by 2100-is demonstrated here to be consistent with a linear extrapolation of very limited data. It is also shown that current understanding of ocean mixing, and of the relationship between pH and atmospheric carbon dioxide concentration, cannot justify such an extrapolation.

  5. Kinetic study of coals gasification into carbon dioxide atmosphere

    OpenAIRE

    Korotkikh A.G.; Slyusarskiy K.V.

    2015-01-01

    The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The ...

  6. Carbon Dioxide Effects under Conditions of Raised Environmental Pressure

    Science.gov (United States)

    1974-12-26

    the inspiratory muscles might have contributed to the elevated carbon dioxide tensions in the trained underwater swimmer because it was shown that...alveolar carbon dioxide tensions increase linearly with the work- load on the inspiratory muscles (Milic- Emili & Tyler 1962). Lanphier (1963...Submarine Escape Training Tank, U.S. Naval Submarine Base New London, in dives to 90 ft (3.7 ATA) (Sehaefer 1955; Schaefer & Carey 1962). During

  7. Mycorrhizal mediation of soil organic carbon decomposition under elevated atmospheric carbon dioxide

    Science.gov (United States)

    Significant effort in global change research has recently been directed towards assessing the potential of soil as a carbon sink under future atmospheric carbon dioxide scenarios. Attention has focused on the impact of elevated carbon dioxide on plant interactions with mycorrhizae, a symbiotic soil...

  8. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    Science.gov (United States)

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  9. Carbon dioxide grows as recovery tool

    Energy Technology Data Exchange (ETDEWEB)

    Byars, C.

    1972-08-07

    Two more companies, Shell Oil Co. and Atlantic Richfield Co., are starting up COD2U injection projects in W. Texas. Miscible recovery projects using carbon dioxide are being started in Crossett Field and Wasson Field. Announcement of similar projects in North Cowden and Slaughter-Leveland fields to be conducted by Amoco Production Co. is expected. Shell, which is supplying some of the gas from its deep wells in the JM and East Brown Bassett fields, is taking 20 MMcfd of the COD2U as the line goes through the North Cross unit on its way to Sacroc. The North Cross project expects to recover an additional 8,851,000 bbl of oil. Original oil-in-place is estimated at 51 million bbl. Cumulative production has been 6.9 million bbl and current output is 1,600 bpd from 18 wells. Atlantic Richfield Co. (ARCO) will start injecting COD2U in mid-September at their project in the Willard unit of Wasson Field in Yoakum County. The project area has produced about 85.8 million bbl of 33$ gravi regenerated scrubbing solution to ste (10 claims)

  10. Suppressing bullfrog larvae with carbon dioxide

    Science.gov (United States)

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  11. Vibrations of the carbon dioxide dimer

    Science.gov (United States)

    Chen, Hua; Light, J. C.

    2000-03-01

    Fully coupled four-dimensional quantum-mechanical calculations are presented for intermolecular vibrational states of rigid carbon dioxide dimer for J=0. The Hamiltonian operator is given in collision coordinates. The Hamiltonian matrix elements are evaluated using symmetrized products of spherical harmonics for angles and a potential optimized discrete variable representation (PO-DVR) for the intermolecular distance. The lowest ten or so states of each symmetry are reported for the potential energy surface (PES) given by Bukowski et al. [J. Chem. Phys. 110, 3785 (1999)]. Due to symmetries, there is no interconversion tunneling splitting for the ground state. Our calculations show that there is no tunneling shift of the ground state within our computation precision (0.01 cm-1). Analysis of the wave functions shows that only the ground states of each symmetry are nearly harmonic. The van der Waals frequencies and symmetry adapted force constants are found and compared to available experimental values. Strong coupling between the stretching coordinates and the bending coordinates are found for vibrationally excited states. The interconversion tunneling shifts are discussed for the vibrationally excited states.

  12. Carbon dioxide removal and the futures market

    Science.gov (United States)

    Coffman, D.’Maris; Lockley, Andrew

    2017-01-01

    Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for later performance on a contract. Forward contracts also entail future settlement, but they are traded directly between two parties. Futures and forwards are used in commodities trading, as producers seek financial security when planning production. We discuss the potential use of futures contracts in Carbon Dioxide Removal (CDR) markets; concluding that they have one principal advantage (near-term price security to current polluters), and one principal disadvantage (a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge caution about the prospects for market failure. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. While regulation offers increased assurances, we identify major insufficiencies with this approach—finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.

  13. Some Organic Reactions in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    JIANG Huan-feng; YANG Xiao-yue; LI Guo-ping; ZOU Gang

    2004-01-01

    Organic reactions in supercritical carbon dioxide (scCO2) have facilitated great progress in recent years 1. ScCO2, as an environmentally friendly reaction medium, may be a substitute for volatile and toxic organic solvents and show some special advantages. Firstly, CO2 is inexpensive,nonflammable, nontoxic and chemical inert under many conditions. Secondly, scCO2 possesses hybrid properties of both liquid and gas, to the advantage of some reactions involving gaseous reagents. Control of the solvent density by variation of the temperature and pressure enables the solvent properties to be "tuned" to reactants. Finally, separating of CO2 from the reaction mixture is energy-efficient and simple. Here we disclose our new work on some organic reactions involving small molecules in scCO2.The results showed that the upper reactions in scCO2 could be carried out smoothly and thepressure of CO2 had a remarkable effect on the conversion and selectivity.

  14. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

  15. Euthanasia of neonatal mice with carbon dioxide

    Science.gov (United States)

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  16. Carbon dioxide balneotherapy and cardiovascular disease

    Science.gov (United States)

    Pagourelias, Efstathios D.; Zorou, Paraskevi G.; Tsaligopoulos, Miltiadis; Athyros, Vasilis G.; Karagiannis, Asterios; Efthimiadis, Georgios K.

    2011-09-01

    Carbon dioxide (CO2) balneotherapy is a kind of remedy with a wide spectrum of applications which have been used since the Middle Ages. However, its potential use as an adjuvant therapeutic option in patients with cardiovascular disease is not yet fully clarified. We performed a thorough review of MEDLINE Database, EMBASE, ISI WEB of Knowledge, COCHRANE database and sites funded by balneotherapy centers across Europe in order to recognize relevant studies and aggregate evidence supporting the use of CO2 baths in various cardiovascular diseases. The three main effects of CO2 hydrotherapy during whole body or partial immersion, including decline in core temperature, an increase in cutaneous blood flow, and an elevation of the score on thermal sensation, are analyzed on a pathophysiology basis. Additionally, the indications and contra-indications of the method are presented in an evidence-based way, while the need for new methodologically sufficient studies examining the use of CO2 baths in other cardiovascular substrates is discussed.

  17. Acetate production enhancement from carbon dioxide reduction by using modified cathode materials in microbial electrosynthesis

    DEFF Research Database (Denmark)

    Aryal, Nabin; Halder, Arnab; Zhang, Minwei

    in the bioelectrochemical System (BES). The MES reactor can power with the solar photovoltaic system and harvest light energy to multi-carbon compounds to make it artificial photosynthesis system. Nevertheless, chemical production rate should be optimized for the commercialization of MES technology. Interestingly, it has......Microbial electrosynthesis (MES) is one of the emerging biosustainable technologies for the biological conversion of carbon dioxide to the value-added chemical precursor. The electro autotrophic bacteria fix CO2 via Wood-Ljungdahl pathway, accepting the electron derived from the cathode...... been demonstrated that the productivity was enhanced with the modified cathode surfaces by improving microbe-electrode electron transfer. Here, we have tested the different cathode materials for the improvement of acetate production from carbon dioxide and their behavior for the biofilm formation...

  18. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  19. Carbon Dioxide/Methane Separation by Adsorption on Sepiolite

    Institute of Scientific and Technical Information of China (English)

    José A.Delgado; María A.Uguina; José L.Sotelo; Beatriz Ruíz; Marcio Rosário

    2007-01-01

    In this work,the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched.Adsorption equilibrium and kinetics have been measured in a fixed-bed.and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained.A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics.using the Langmuir equation to describe the adsotption equilibrium isotherm.The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied.The experimental results were compared with the ones predicted by the model adapted to a PSA system.Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle.These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.

  20. Carbon dioxide sequestration by direct aqueous mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    Carbon dioxide sequestration by an ex-situ, direct aqueous mineral carbonation process has been investigated over the past two years. This process was conceived to minimize the steps in the conversion of gaseous CO2 to a stable solid. This meant combining two separate reactions, mineral dissolution and carbonate precipitation, into a single unit operation. It was recognized that the conditions favorable for one of these reactions could be detrimental to the other. However, the benefits for a combined aqueous process, in process efficiency and ultimately economics, justified the investigation. The process utilizes a slurry of water, dissolved CO2, and a magnesium silicate mineral, such as olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. These minerals were selected as the reactants of choice for two reasons: (1) significant abundance in nature; and (2) high molar ratio of the alkaline earth oxides (CaO, MgO) within the minerals. Because it is the alkaline earth oxide that combines with CO2 to form the solid carbonate, those minerals with the highest ratio of these oxides are most favored. Optimum results have been achieved using heat pretreated serpentine feed material, sodium bicarbonate and sodium chloride additions to the solution, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was achieved in 30 minutes. Future studies are intended to investigate various mineral pretreatment options, the carbonation solution characteristics, alternative reactants, scale-up to a continuous process, geochemical modeling, and process economics.

  1. Carbon Dioxide Sequestration by Direct Mineral Carbonation: Results from Recent Studies and Current Status

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Rush, G.E.; Walters, Richard P.; Turner, Paul C.

    2001-01-01

    Direct mineral carbonation has been investigated as a process to convert gaseous CO2 into a geologically stable, solid final form. The process utilizes a solution of sodium bicarbonate (NaHCO3), sodium chloride (NaCl), and water, mixed with a mineral reactant, such as olivine (Mg2SiO4) or serpentine [Mg3Si2O5(OH)4]. Carbon dioxide is dissolved into this slurry, by diffusion through the surface and gas dispersion within the aqueous phase. The process includes dissolution of the mineral and precipitation of magnesium carbonate (MgCO3) in a single unit operation. Optimum results have been achieved using heat pretreated serpentine feed material, with a surface area of roughly 19 m2 per gram, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% stoichiometric conversion of the silicate to the carbonate was achieved in 30 minutes. Studies suggest that the mineral dissolution rate is primarily surface controlled, while the carbonate precipitation rate is primarily dependent on the bicarbonate concentration of the slurry. Current studies include further examination of the reaction pathways, and an evaluation of the resource potential for the magnesium silicate reactant, particularly olivine. Additional studies include the examination of various pretreatment options, the development of a continuous flow reactor, and an evaluation of the economic feasibility of the process.

  2. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  3. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  4. It is time to put carbon dioxide to work

    Energy Technology Data Exchange (ETDEWEB)

    Lipinsky, E.S. [Battelle, Columbus, OH (United States)

    1993-12-31

    The need to control emissions of carbon dioxide into the atmosphere is the subject of vigorous debate at this time. There is growing evidence that rising levels of carbon dioxide increase global warming, with perhaps highly adverse impacts for the human economy. There are calls for carbon taxes and other harsh measures. Japan has established a national goal of holding carbon dioxide emissions in the year 2000 to 1990 levels. I hope that this conference will be a turning point in the United States position on this issue. The current major end uses for CO{sub 2} include refrigeration, beverage carbonation, soda ash production, fire fighting, and urea fertilizer production. They are all based on chemistry that would not surprise a good chemist of the 19th century. Consumption of carbon dioxide in synthesis of industrial chemicals is limited. Usually one explains low production of chemicals from a candidate feedstock in terms of poor availability, price, purity, or reactivity. We can eliminate the first three as the causes of the underutilization of carbon dioxide.

  5. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.

    Science.gov (United States)

    Burkhardt, M; Koschack, T; Busch, G

    2015-02-01

    A new type of anaerobic trickle-bed reactor was used for biocatalytic methanation of hydrogen and carbon dioxide under mesophilic temperatures and ambient pressure in a continuous process. The conversion of gaseous substrates through immobilized hydrogenotrophic methanogenic archaea in a biofilm is a unique feature of this type of reactor. Due to the formation of a three-phase system on the carrier surface and operation as a plug flow reactor without gas recirculation, a complete reaction could be observed. With a methane concentration higher than c(CH4) = 98%, the product gas exhibits a very high quality. A specific methane production of P(CH4) = 1.49 Nm(3)/(m(3)(SV) d) was achieved at a hydraulic loading rate of LR(H2) = 6.0 Nm(3)/(m(3)(SV) d). The relation between trickle flow through the reactor and productivity could be shown. An application for methane enrichment in combination with biogas facilities as a source of carbon dioxide has also been positively proven.

  6. Black carbon reduction will weaken the aerosol net cooling effect

    Directory of Open Access Journals (Sweden)

    Z. L. Wang

    2014-12-01

    Full Text Available Black carbon (BC, a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA will be enhanced by 0.12 W m−2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7–2.0 W m−2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  7. CFD Analysis of a supercritical carbon dioxide compressor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoon Han; Lee, Jek Young; Cha, Jae Eun; Addad, Yacine [KAIST, Daejeon (Korea, Republic of)

    2012-10-15

    The supercritical carbon dioxide Brayton cycle is considered as an attractive cycle for the next generation nuclear systems. It was identified that the compressor can achieve very small compressing work as operating conditions become closer to the critical point. Smaller amount of input work contributes to the enhancement of overall net cycle efficiency. Comparing to traditional water vapor cycle and helium cycle, the S CO{sup 2} cycle has relatively much less volume and component size. Therefore, S CO{sup 2} cycle can be used for many purposes such as nuclear ship propulsion where volume requirement is strict, or a small nuclear reactor when it is constructed on geographically limited area One of the main factors for determining the supercritical Brayton cycle efficiency is the performance of turbomachineries. Many research organizations already obtained experimental data of S CO{sup 2} cycle turbomachineries, but the amount of data is still limited. Our research team is conducting a S CO{sup 2} compressor test to obtain fundamental data for advanced compressor design and measure the performance of the compressor near the critical point. The S CO{sup 2} compressor testing loop is specially designed to test main compressor of the loop. The S CO{sup 2} fluid shows the properties of gases and liquids at the same time, but its behavior is closer to the liquid rather than gas near the critical point. Therefore, we are performing compressor test with canned motor pump which is unique from other previous studies.

  8. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    OpenAIRE

    Galvez, Cristhian

    2011-01-01

    The Pebble Bed Advanced High Temperature Reactor (PB-AHTR) is a pebble fueled, liquid salt cooled, high temperature nuclear reactor design that can be used for electricity generation or other applications requiring the availability of heat at elevated temperatures. A stage in the design evolution of this plant requires the analysis of the plant during a variety of potential transients to understand the primary and safety cooling system response. This study focuses on the performance of the pa...

  9. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  10. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  11. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2)...

  12. Recent Progress in the Synthesis of Polymers Based on Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    H. Sugimoto; S. Inoue

    2005-01-01

    @@ 1Introduction Carbon dioxide is the most fundamental carbon resource indispensable for all living systems including human being via photosynthesis by green plants. On the other hand, chemical utilization of carbon dioxide has been rather limited.

  13. Oxygen Atom Recombination in Carbon Dioxide Atmospheres

    Science.gov (United States)

    Jamieson, Corey; Garcia, R. M.; Pejakovic, D. A.; Kalogerakis, K. S.

    2009-09-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in our understanding of the above processes, and often the relevant input from laboratory measurements is missing or outdated. We are conducting experiments to measure the rate coefficients for O + O + CO2 and O + O2 + CO2 recombination and investigate the O2 excited states produced following O-atom recombination. These laboratory measurements are key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An ArF excimer laser with 193-nm pulsed output radiation is employed to partially photodissociate carbon dioxide. In an ambient-pressure (760 Torr) background of CO2, the O atoms produced recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal we can extract the rate coefficients for recombination of O + O and O + O2 in the presence of CO2. We also use fluorescence and resonance-enhanced multi-photon ionization techniques to detect the products of the O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation's (NSF) Planetary Astronomy Program. Rosanne Garcia's participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  14. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  15. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all H

  16. Production and detection of carbon dioxide on Iapetus

    Science.gov (United States)

    Palmer, Eric E.; Brown, Robert H.

    2011-04-01

    Cassini VIMS detected carbon dioxide on the surface of Iapetus during its insertion orbit. We evaluated the CO 2 distribution on Iapetus and determined that it is concentrated almost exclusively on Iapetus' dark material. VIMS spectra show a 4.27-μm feature with an absorption depth of 24%, which, if it were in the form of free ice, requires a layer 31 nm thick. Extrapolating for all dark material on Iapetus, the total observable CO 2 would be 2.3 × 10 8 kg. Previous studies note that free CO 2 is unstable at 10 AU over geologic timescales. Carbon dioxide could, however, be stable if trapped or complexed, such as in inclusions or clathrates. While complexed CO 2 has a lower thermal volatility, loss due to photodissociation by UV radiation and gravitational escape would occur at a rate of 2.6 × 10 7 kg year -1. Thus, Iapetus' entire inventory of surface CO 2 could be lost within a few decades. The high loss/destruction rate of CO 2 requires an active source. We conducted experiments that generated CO 2 by UV radiation of simulated icy regolith under Iapetus-like conditions. The simulated regolith was created by flash-freezing degassed water, crushing it into sub-millimeter sized particles, and then mixing it with isotopically labeled amorphous carbon ( 13C) dust. These samples were placed in a vacuum chamber and cooled to temperatures between 50 K and 160 K. The samples were irradiated with UV light, and the products were measured using a mass spectrometer, from which we measured 13CO 2 production at a rate of 2.0 × 10 12 mol s -1. Extrapolating to Iapetus and adjusting for the solar UV intensity and Iapetus' surface area, we calculated that CO 2 production for the entire surface would be 1.1 × 10 7 kg year -1, which is only a factor of two less than the loss rate. As such, UV photochemical generation of CO 2 is a plausible source of the detected CO 2.

  17. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Dipu, Arnoldus Lambertus, E-mail: dipu.a.aa@m.titech.ac.jp [Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ujisawa, Yutaka [Nippon Steel and Sumitomo Metal Corporation, 16-1, Sunayama, Kamisu, Ibaraki 314-0255 (Japan); Ryu, Junichi; Kato, Yukitaka [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-05-01

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO{sub 2}) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO{sub 2} concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O{sub 2}) production rates, increased with increasing operating temperature. The highest CO and O{sub 2} production rates of 1.24 and 0.64 μmol/min cm{sup 2}, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO{sub 2} electrolysis/iron production facility was estimated.

  18. Carbon Dioxide Effects Research and Assessment Program. Carbon Dioxide Research Progress Report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dahlman, R. C.; Gross, T.; Machta, L.; Elliott, W.; MacCracken, M.

    1980-04-01

    Research on the global carbon cycle and the effects of increased carbon dioxide on the global climate system is reported. Environmental and societal effects related to CO/sub 2/ and environmental control technology for CO/sub 2/ are also discussed. Lists of research projects and reports and publications of the Carbon Dioxide and Climate Research Program are included. An expanded CO/sub 2/ monitoring network is providing increased coverage for interpretation of patterns of sources and sinks seasonal variability, and documentation of the global growth of CO/sub 2/. Modeling studies emphasized that knowledge of the transport and mixing of surface ocean waters is important in understanding deep oceanic circulation. Initial studies in the equatorial Pacific are helping quantify estimates of the amount of outgassing CO/sub 2/ from tropical waters. During fiscal year 1979, there was a substantial increase in appreciation of the role of the ocean in controlling not only atmospheric CO/sub 2/ concentrations but also the climatic response to changes in concentration. Model simulations of the effect of doubled CO/sub 2/ concentration carried out with fixed ocean temperatures a situation that is possible during perhaps the next 20 years, showed relatively small summer heating over land areas. On the other hand, simulations in which the oceanic temperatures could come into instantaneous equilibrium with atmospheric conditions continued to show global temperature increases of 3 +- 1.5/sup 0/C, accentuated at high latitudes. To improve understanding of possible regional climate changes, there were increased efforts to reconstruct regional climatic patterns prevailing during past warm periods that might serve as analogs of future climatic conditions. Particular attention was directed to the climates of the United States and other countries bordering the North Atlantic Ocean during the warm period 5000 to 7000 years ago.

  19. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  20. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  1. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    OpenAIRE

    Sungjoo Lee; Byungun Yoon; Juneseuk Shin

    2016-01-01

    We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indic...

  2. Challenges and Innovative Technologies On Fuel Handling Systems for Future Sodium-Cooled Fast Reactors

    OpenAIRE

    Chassignet, Mathieu; Dumas, Sebastien; Penigot, Christophe; Prele, Gerard; Capitaine, Alain; Rodriguez, Gilles; Sanseigne, Emmanuel; Beauchamp, Francois

    2011-01-01

    International audience; The reactor refuelling system provides the means of transporting, storing, and handling reactor core subassemblies. The system consists of the facilities and equipment needed to accomplish the scheduled refuelling operations. The choice of a FHS impacts directly on the general design of the reactor vessel (primary vessel, storage, and final cooling before going to reprocessing), its construction cost, and its availability factor. Fuel handling design must take into acc...

  3. A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors

    Science.gov (United States)

    Dolnik, Milos; Epstein, Irving R.

    1993-01-01

    The dynamical behavior of the chlorine dioxide-iodide reaction has been studied in a system consisting of two continuous flow stirred tank reactors (CSTRs). The reactors are coupled by computer monitoring of the electrochemical potential in each reactor, which is then used to control the input into the other reactor. Two forms of coupling are employed: reciprocally triggered, exponentially decreasing stimulation, and alternating mass exchange. The reaction, which exhibits oscillatory and excitable behavior in a single CSTR, displays neuronlike bursting behavior with both forms of coupling. Reciprocal stimulation yields bursting in both reactors, while with alternating mass exchange, bursting is observed in one reactor and complex oscillation in the other. A simple model of the reaction gives good agreement between the experimental observations and numerical simulations.

  4. Assessing Carbon Dioxide Emissions from Energy Use at a University

    Science.gov (United States)

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  5. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    Science.gov (United States)

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  6. Entrainment process of carbon dioxide in the atmospheric boundary layer

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Gioli, B.; Miglietta, F.; Jonker, H.J.J.; Klein Baltink, H.; Hutjes, R.W.A.; Holtslag, A.A.M.

    2004-01-01

    Aircraft and surface measurements of turbulent thermodynamic variables and carbon dioxide (CO2) were taken above a grassland in a convective atmospheric boundary layer. The observations were analyzed to assess the importance of the entrainment process for the distribution and evolution of carbon dio

  7. Capturing carbon dioxide as a polymer from natural gas.

    Science.gov (United States)

    Hwang, Chih-Chau; Tour, Josiah J; Kittrell, Carter; Espinal, Laura; Alemany, Lawrence B; Tour, James M

    2014-06-03

    Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and (13)C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

  8. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon...

  9. Molecular Simulation of Carbon Dioxide Adsorbed in a Slit Carbon Pore

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both the grand canonical Monte Carlo and molecular dynamics simulation methods are used to investigate the adsorption and diffusion of carbon dioxide confined in a 1.86 nm slit carbon pore at 4 temperatures from subcritical (120 K) to supercritical (313 K) conditions. Layering transition, capillary condensation and adsorption hysteresis are found at 120 K. The microstructure of carbon dioxide fluid in the slit carbon pore is analyzed. The diffusion coefficients of carbon dioxide parallel to the slit wall are significantly larger than those normal to the slit wall.

  10. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  11. Steady Thermal Field Simulation of Forced Air-cooled Column-type Air-core Reactor

    Institute of Scientific and Technical Information of China (English)

    DENG Qiu; LI Zhenbiao; YIN Xiaogen; YUAN Zhao

    2013-01-01

    Modeling the steady thermal field of the column-type air-core reactor,and further analyzing its distribution regularity,will help optimizing reactor design as well as improving its quality.The operation mechanism and inner insulation structure of a novel current limiting column-type air-core reactor is introduced in this paper.The finite element model of five encapsulation forced air-cooled column type air-core reactor is constructed using Fluent.Most importantly,this paper present a new method that,the steady thermal field of reactor working under forced air-cooled condition is simulated without arbitrarily defining the convection heat transfer coefficient for the initial condition; The result of the thermal field distribution shows that,the maximum steady temperature rise of forced air-cooled columntype air-core reactor happens approximately 5% to its top.The law of temperature distribution indicates:In the 1/3part of the reactor to its bottom,the temperature will rise rapidly to the increasing of height,yet the gradient rate is gradually decreasing; In the 5 % part of the reactor to its top,the temperature will drop rapidly to the increasing of height; In the part between,the temperature will rise slowly to the increasing of height.The conclusion draws that more thermal withstand capacity should be considered at the 5 % part of the reactor to its top to achieve optimal design solution.

  12. Cryogenic Heat-Exchanger Design for Freeze-out Removal of Carbon Dioxide from Landfill Gas

    Science.gov (United States)

    Chang, Ho-Myung; Chung, Myung Jin; Park, Seong Bum

    A cryogenic heat exchanger to remove carbon dioxide from landfill gas (LFG) is proposed and designed for applications to LNG production in distributed-scale. Since the major components of LFG are methane and carbon dioxide, CO2 removal is a significant pre-process in the liquefaction systems. A new and simple approach is proposed to directly remove carbon dioxide as frost on the surface wall along the cooling passage in a liquefying heat exchanger and to install two identical heat exchangers in parallel for alternative switching. As a first step of feasibility study, combined heat and mass transfer analysis is performed on the freeze-out process of CO2 in a counterflow heat exchanger, where CH4-CO2 mixture is cooled below its frost temperature in thermal contact with cold refrigerant. Engineering correlations for the analogy of heat and mass transfer are incorporated into numerical heat exchanger analysis with detailed fluid properties. The developed analytical model is used to estimate the distribution of CO2 accumulation and the required heat exchanger size with latent thermal load for the cryogenic CO2 removal in various operating conditions.

  13. Monte-Carlo simulations of methane/carbon dioxide and ethane/carbon dioxide mixture adsorption in zeolites and comparison with matrix treatment of statistical mechanical lattice model

    Science.gov (United States)

    Dunne, Lawrence J.; Furgani, Akrem; Jalili, Sayed; Manos, George

    2009-05-01

    Adsorption isotherms have been computed by Monte-Carlo simulation for methane/carbon dioxide and ethane/carbon dioxide mixtures adsorbed in the zeolite silicalite. These isotherms show remarkable differences with the ethane/carbon dioxide mixtures displaying strong adsorption preference reversal at high coverage. To explain the differences in the Monte-Carlo mixture isotherms an exact matrix calculation of the statistical mechanics of a lattice model of mixture adsorption in zeolites has been made. The lattice model reproduces the essential features of the Monte-Carlo isotherms, enabling us to understand the differing adsorption behaviour of methane/carbon dioxide and ethane/carbon dioxide mixtures in zeolites.

  14. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    Science.gov (United States)

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  15. Carbon dioxide, the feedstock for using renewable energy

    Science.gov (United States)

    Hashimoto, K.; Kumagai, N.; Izumiya, K.; Kato, Z.

    2011-03-01

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  16. Carbon dioxide, the feedstock for using renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, K; Kato, Z [Tohoku Institute of Technology, Sendai, 982-8577 (Japan); Kumagai, N; Izumiya, K, E-mail: koji@imr.tohku.ac.jp [Daiki Ataka Engineering Co. Ltd. Kashiwa, 277-8515 (Japan)

    2011-03-15

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  17. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  18. Conceptual design of a passive moderator cooling system for a pressure tube type natural circulation boiling water cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pal, Eshita, E-mail: eshi.pal@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nayak, Arun K.; Vijayan, Pallipattu K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-15

    Highlights: • Passive moderator cooling system is designed to cool moderator passively during SBO. • PMCS is a system of two natural circulation loops, coupled via a heat exchanger. • RELAP5 analyses show that PMCS maintains moderator within safe limits for 7 days. - Abstract: The recent Fukushima accident has raised strong concern and apprehensions about the safety of reactors in case of a prolonged Station Black Out (SBO) continuing for several days. In view of this, a detailed study was performed simulating this condition in Advanced Heavy Water Reactor. In this study, a novel concept of moderator cooling by passive means has been introduced in the reactor design. The Passive Moderator Cooling System (PMCS) consists of a shell and tube heat exchanger designed to remove 2 MW heat from the moderator inside Calandria. The heat exchanger is located at a suitable elevation from the Calandria of the reactor, such that the hot moderator rises due to buoyancy into the heat exchanger and upon cooling from shell side water returns to Calandria forming a natural circulation loop. The shell side of the heat exchanger is also a natural circulation loop connected to an overhead large water reservoir, namely the GDWP. The objective of the PMCS is to remove the heat from the moderator in case of an SBO and maintaining its temperature below the permissible safe limit (100 °C) for at least 7 days. The paper first describes the concept of the PMCS. The concept has been assessed considering a prolonged SBO for at least 7 days, through an integrated analysis performed using the code RELAP5/MOD3.2 considering all the major components of the reactor. The analysis shows that the PMCS is able to maintain the moderator temperature below boiling conditions for 7 days.

  19. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  20. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  1. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance.

    Science.gov (United States)

    Ranucci, Marco; Carboni, Giovanni; Cotza, Mauro; de Somer, Filip

    2017-01-01

    Carbon dioxide production during cardiopulmonary bypass derives from both the aerobic metabolism and the buffering of lactic acid produced by tissues under anaerobic conditions. Therefore, carbon dioxide removal monitoring is an important measure of the adequacy of perfusion and oxygen delivery. However, routine monitoring of carbon dioxide removal is not widely applied. The present article reviews the main physiological and pathophysiological sources of carbon dioxide, the available techniques to assess carbon dioxide production and removal and the clinically relevant applications of carbon dioxide-related variables as markers of the adequacy of perfusion during cardiopulmonary bypass.

  2. Studies on advanced water-cooled reactors beyond generation Ⅲ for power generation

    Institute of Scientific and Technical Information of China (English)

    CHENG Xu

    2007-01-01

    China's ambitious nuclear power program motivates the country's nuclear community to develop advanced reactor concepts beyond generation Ⅲ to ensure a long-term, stable, and sustainable development of nuclear power. The paper discusses some main criteria for the selection of future water-cooled reactors by considering the specific Chinese situation. Based on the suggested selection criteria, two new types of water-cooled reactors are recommended for future Chinese nuclear power generation. The high conversion pressurized water reactor utilizes the present PWR technology to a large extent. With a conversion ratio of about 0.95, the fuel utilization is increased about 5 times. This significantly improves the sustainability of fuel resources. The supercritical water-cooled reactor has favorable features in economics,sustainability and technology availability. It is a logical extension of the generation Ⅲ PWR technology in China.The status of international R&D work is reviewed. A new supercritieal water-cooled reactor (SCWR) core structure (the mixed reactor core) and a new fuel assembly design (two-rows FA) are proposed. The preliminary analysis using a coupled neutron-physics/thermal-hydranlics method is carded out. It shows good feasibility for the new design proposal.

  3. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  4. Chemoselective Alternating Copolymerization of Limonene Dioxide and Carbon Dioxide: A New Highly Functional Aliphatic Epoxy Polycarbonate.

    Science.gov (United States)

    Li, Chunliang; Sablong, Rafaël J; Koning, Cor E

    2016-09-12

    The alternating copolymerization of biorenewable limonene dioxide with carbon dioxide (CO2 ) catalyzed by a zinc β-diiminate complex is reported. The chemoselective reaction results in linear amorphous polycarbonates that carry pendent methyloxiranes and exhibit glass transition temperatures (Tg ) up to 135 °C. These polycarbonates can be efficiently modified by thiols or carboxylic acids in combination with lithium hydroxide or tetrabutylphosphonium bromide as catalysts, respectively, without destruction of the main chain. Moreover, polycarbonates bearing pendent cyclic carbonates can be quantitatively prepared by CO2 insertion catalyzed by lithium bromide.

  5. Carbon Dioxide As a Raw Material for Biodegradable Plastics

    Institute of Scientific and Technical Information of China (English)

    WANG Xianhong; QIN Yusheng; WANG Fosong

    2011-01-01

    @@ Carbon dioxide is the main greenhouse gas, but it is also a renewable and abundant source of carbon.It has not onlv shown various phvsicai utilization in the manufacturing of food, beverage and other industry areas, but been chemically fixed into urea, salicylic acid, organic and inorganic carbonates (Mikkelsen, Jorgensen & Krebs, 2010).However, developing a high value-added fixation route to CO is badly needed.

  6. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  7. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    Science.gov (United States)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  8. Aesthetic Depigmentation of Gingival Smoker's Melanosis Using Carbon Dioxide Lasers.

    Science.gov (United States)

    Monteiro, Luis Silva; Costa, José Adriano; da Câmara, Marco Infante; Albuquerque, Rui; Martins, Marco; Pacheco, José Júlio; Salazar, Filomena; Figueira, Fernando

    2015-01-01

    Melanic pigmentation results from melanin produced by the melanocytes present in the basal layer of the oral epithelium. One of the most common causes of oral pigmentation is smoker melanosis, a condition associated with the melanocyte stimulation caused by cigarette smoke. This paper aims to illustrate the use of a carbon dioxide laser in the removal of the gingival melanic pigmentation for aesthetic reasons in a 27-year-old female patient with history of a smoking habit. The carbon dioxide laser vaporisation was performed on the gingival mucosa with effective and quick results and without any complications or significant symptoms after the treatment. We conclude that a carbon dioxide laser could be a useful, effective, and safe instrument to treat the aesthetic complications caused by oral smoker melanosis.

  9. [Thoracoscopic thymectomy with carbon dioxide insufflation in the mediastinum].

    Science.gov (United States)

    Ferrero-Coloma, C; Navarro-Martinez, J; Bolufer, S; Rivera-Cogollos, M J; Alonso-García, F J; Tarí-Bas, M I

    2015-02-01

    The case is presented of a 71 year-old male, diagnosed with a thymoma. A thoracoscopic thymectomy was performed using the carbon dioxide insufflation technique in the mediastinum. During the procedure, while performing one-lung ventilation, the patient's respiration worsened. The contralateral lung had collapsed, as carbon dioxide was travelling from the mediastinum to the thorax through the opened pleura. Two-lung ventilation was decided upon, which clearly improved oxygenation in the arterial gases and airway pressures. Both pH and pCO2 stabilized. The surgical approach and the carbon dioxide technique were continued because 2-lung ventilation did not affect the surgical procedure. This technique has many serious complications and it should always be performed using 2-lung ventilation.

  10. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  11. Novel carbon dioxide gas sensor based on infrared absorption

    Science.gov (United States)

    Zhang, Guangjun; Lui, Junfang; Yuan, Mei

    2000-08-01

    The feasibility of sensing carbon dioxide with a IR single- beam optical structure is studied, and a novel carbon dioxide gas sensor based on IR absorption is achieved. Applying the Lambert-Beer law and some key techniques such as current stabilization for IR source, using a high-quality IR detector, and data compensation for the influences of ambience temperature and atmosphere total pressure, the sensor can measure carbon dioxide with high precision and efficiency. The mathematical models for providing temperature and pressure compensation for the sensor are established. Moreover the solutions to the models are proposed. Both the models and the solutions to the models are verified via experiments. The sensor possesses the advantages of small volume, light weight, low power consumption, and high reliability. Therefore it can be used in many associated fields, such as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  12. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  13. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  14. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made.......Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  15. Potential of the technological and chemical utilisation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M. [Univ. Bari (Italy). Dip. di Chimica e Centro METEA

    1998-10-01

    The carbon dioxide mitigation has been agreed at international level. Besides the efficiency technologies, the recovery of CO{sub 2} from power-plants flue gases is a most innovative approach. This would make available large amounts of CO{sub 2}, either for disposal or for utilisation. The technological and chemical utilisation of carbon dioxide are options whose potential is under evaluation. The Life Cycle Analysis (LCA) study seems to be the most effective tool for their assessment. The two options are considered in this paper and the synthetic methodologies that appear as most likely to be implemented are analysed.

  16. Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor.

    Science.gov (United States)

    Honda, Ryo; Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2012-12-01

    A highly efficient microalgae cultivation process was developed for carbon dioxide capture using nutrients from treated sewage. A submerged-membrane filtration system was installed in a photobioreactor to achieve high nutrient loading and to maintain a high concentration and production of microalgae. Chlorella vulgaris, Botryococcus braunii and Spirulina platensis were continuously cultivated with simulated treated sewage and 1%-CO(2) gas. The optimum hydraulic retention time (HRT) and solids retention time (SRT) were explored to achieve the maximum CO(2) capture rate, nutrient removal rate and microalgae biomass productivity. The carbon dioxide capture rate and volumetric microalgae productivity were high when the reactor was operated under 1-day (HRT) and 18-days (SRT) conditions. The independent control of HRT and SRT is effective for efficient microalgae cultivation and carbon dioxide capture using treated sewage.

  17. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  18. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Science.gov (United States)

    Sulaiman, S. A.; Dominguez-Ontiveros, E. E.; Alhashimi, T.; Budd, J. L.; Matos, M. D.; Hassan, Y. A.

    2015-04-01

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A&M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  19. Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors

    Science.gov (United States)

    Su'ud, Zaki; Widiawati, Nina; Sekimoto, H.; Artoto, A.

    2017-01-01

    Safely analysis of 800MWt Pb-208 cooled fast reactors with natural Uranium as fuel cycle input employing axial-radial combined Modiified CANDLE burnup scheme has been performed. The analysis of unprotected loss of flow(ULOF) and unprotected rod run-out transient overpower (UTOP) are discussed. Some simulations for 800 MWt Pb-208 cooled fast reactors has been performed and the results show that the reactor can anticipate complete pumping failure inherently by reducing power through reactivity feedback and remove the rest of heat through natural circulations. Compared to the Pb-nat cooled long life Fast Reactors, Pb-208 cooled reactors have smaller Doppler but higher coolant density reactivity coefficient. In the UTOP accident case the analysis has been performed against external reactivity up to 0.003dk/k. And for ULOHS case it is assumed that the secondary cooling system has broken. During all accident the cladding temperature is the most critical. Especially for the case of UTOP accident. In addition the steam generator design has also consider excess power which may reach 50% extra during severe UTOP case..

  20. A review of gas-cooled reactor concepts for SDI (Strategic Defense Initiative) applications

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1989-08-01

    We have completed a review of multimegawatt gas-cooled reactor concepts proposed for SDI applications. Our study concluded that the principal reason for considering gas-cooled reactors for burst-mode operation was the potential for significant system mass savings over closed-cycle systems if open-cycle gas-cooled operation (effluent exhausted to space) is acceptable. The principal reason for considering gas-cooled reactors for steady-state operation is that they may represent a lower technology risk than other approaches. In the review, nine gas-cooled reactor concepts were compared to identify the most promising. For burst-mode operation, the NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor concept emerged as a strong first choice since its performance exceeds the anticipated operational requirements and the technology has been demonstrated and is retrievable. Although the NERVA derivative concepts were determined to be the lead candidates for the Multimegawatt Steady-State (MMWSS) mode as well, their lead over the other candidates is not as great as for the burst mode. 90 refs., 2 figs., 10 tabs.

  1. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    Science.gov (United States)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co

  2. Design of Supercritical Carbon Dioxide Compressor Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoon Han; Lee, Je Kyoung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yoon, Ho Joon; Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2012-05-15

    For small and medium-sized reactors and Generation IV reactors such as sodium-cooled fast reactor are recently under development actively. The supercritical CO{sub 2} Brayton cycle is considered as an attractive cycle for the above mentioned nuclear systems. This is because the supercritical CO{sub 2} Brayton cycle (S-CO{sub 2} cycle) is especially effective to reduce the volume of power generation system, which occupies 1.5{approx}2 times more space than the primary nuclear system in general. Comparing to traditional water-vapor cycle and helium cycle, the S-CO{sub 2} system has relatively much less volume and component size. Therefore, S-CO{sub 2} cycle can be used for many purposes such as nuclear ship propulsion where volume requirement is strict, or a small nuclear reactor when it is constructed on geographically limited area

  3. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  4. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    Science.gov (United States)

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  5. Carbon Dioxide Effects Research and Assessment Program: Proceedings of the carbon dioxide and climate research program conference

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, L E [ed.

    1980-12-01

    Papers presented at the Carbon Dioxide and Climate Research Program Conference are included in this volume. Topics discussed are: the carbon cycle; modeling the carbon system; climatic response due to increased CO2; climate modeling; the use of paleoclimatic data in understanding climate change; attitudes and implications of CO2; social responses to the CO2 problem; a scenario for atmospheric CO2 to 2025; marine photosynthesis and the global carbon cycle; and the role of tropical forests in the carbon balance of the world. Separate abstracts of nine papers have been prepared for inclusion in the Energy Data Base. (RJC)

  6. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions,...

  7. Energy Saving High-Capacity Moderate Pressure Carbon Dioxide Storage System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach to high-pressure carbon dioxide storage will directly address the challenges associated with storage of compressed carbon dioxide - the need to reduce...

  8. Preliminary Study of Lead-Oxide Cooled Fast Reactor with Natural Uranium as an Input Fuel with Reactor Shuffling Strategy

    Science.gov (United States)

    Mahmudah, Rida SN; Su’ud, Zaki

    2017-01-01

    A preliminary study of lead-oxide cooled fast reactor with natural uranium as an input fuel using reactor shuffling strategy has been conducted. In this study, reactor core is divided into four zone with the same volume, each zone use different uranium enrichment. The enrichment number is estimated so that in the end of reactor’s operation, we only need to add natural uranium as the fresh input fuel. This study used UN-PuN as the fuel and lead oxide as the coolant. Several parameter studies have been conducted to determine the most suitable input condition. It is confirmed in this study that with fuel : cladding : coolant ratio of 53 : 10 : 37, and uranium enrichment in the first to the fourth zone of 0%, 6.25%, 7.5% and 8%, respectively, the reactor can operate as long as 20 years of operation with terminal k-eff of 1.0004.

  9. Preparation of calcium carbonate particles coated with titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  10. ARTICLES: Vapor-Liquid Equilibrium Data of Carbon Dioxide+Methyl Propionate and Carbon Dioxide+Propyl Propionate Systems

    Science.gov (United States)

    Xu, Wei; Xie, Chuan-xin; Li, Hong-ling; Tian, Yi-ling

    2010-06-01

    High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the range from 313 K to 373 K. Experimental results were correlated with the Peng-Robinson equation of state with the two-parameter van der Waals mixing rule. At the same time, the Henry's coefficient, partial molar enthalpy change and partial molar entropy change of CO2 during dissolution at different temperature were also calculated.

  11. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  12. 78 FR 23524 - Approval and Promulgation of Implementation Plans; North Carolina: Deferral of Carbon Dioxide (CO2

    Science.gov (United States)

    2013-04-19

    ... Carbon Dioxide (CO 2 ) Emissions From Prevention of Significant Deterioration (PSD) Requirements for... applicability to biogenic carbon dioxide (CO 2 ) emissions from bioenergy and other biogenic stationary...

  13. Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production. [Penicillium chrysogenum

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.S.; Smith, M.D.

    1986-01-01

    The effect of dissolved carbon dioxide on the specific growth rate and the penicillin production rate of Penicillium chrysogenum was examined experimentally. The dissolved carbon dioxide was found to inhibit the specific growth rate and the penicillin production rate when the aerated submerged penicillin fermentation was exposed to influent gases of 12.6 and 20% carbon dioxide, respectively. Upon exposure to influent gases of 3 and 5% carbon dioxide, no pronounced metabolic inhibition was noted.

  14. Effects of doubled carbon dioxide on rainfall responses to large-scale forcing: A two-dimensional cloud-resolving modeling study

    Science.gov (United States)

    Li, Xiaofan; Shen, Xinyong; Liu, Jia

    2014-05-01

    Rainfall responses to doubled atmospheric carbon dioxide concentration were investigated through the analysis of two pairs of two-dimensional cloud-resolving model sensitivity experiments. One pair of experiments simulated pre-summer heavy rainfall over southern China around the summer solstice, whereas the other pair of experiments simulated tropical rainfall around the winter solstice. The analysis of the time and model domain mean heat budget revealed that the enhanced local atmospheric warming was associated with doubled carbon dioxide through the weakened infrared radiative cooling during the summer solstice. The weakened mean pre-summer rainfall corresponded to the weakened mean infrared radiative cooling. Doubled carbon dioxide increased the mean tropical atmospheric warming via the enhanced mean latent heat in correspondence with the strengthened mean infrared radiative cooling during the winter solstice. The enhanced mean tropical rainfall was associated with the increased mean latent heat.

  15. Somewhere beyond the sea? The oceanic - carbon dioxide - reactions

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2014-05-01

    In correlation to climate change and CO2 emission different campaigns highlight the importance of forests and trees to regulate the concentration of carbon dioxide in the earths' atmosphere. Seeing millions of square miles of rainforest cut down every day, this is truly a valid point. Nevertheless, we often tend to forget what scientists like Spokes try to raise awareness for: The oceans - and foremost deep sea sections - resemble the second biggest deposit of carbon dioxide. Here carbon is mainly found in form of carbonate and hydrogen carbonate. The carbonates are needed by corals and other sea organisms to maintain their skeletal structure and thereby to remain vital. To raise awareness for the protection of this fragile ecosystem in schools is part of our approach. Awareness is achieved best through understanding. Therefore, our approach is a hands-on activity that aims at showing students how the carbon dioxide absorption changes in relation to the water temperature - in times of global warming a truly sensitive topic. The students use standard syringes filled with water (25 ml) at different temperatures (i.e. 10°C, 20°C, 40°C). Through a connector students inject carbon dioxide (25ml) into the different samples. After a fixed period of time, students can read of the remaining amount of carbon dioxide in relation to the given water temperature. Just as with every scientific project, students need to closely monitor their experiments and alter their setups (e.g. water temperature or acidity) according to their initial planning. A digital template (Excel-based) supports the analysis of students' experiments. Overview: What: hands-on, minds -on activity using standard syringes to exemplify carbon dioxide absorption in relation to the water temperature (Le Chatelier's principle) For whom: adjustable from German form 11-13 (age: 16-19 years) Time: depending on the prior knowledge 45-60 min. Sources (extract): Spokes, L.: Wie Ozeane CO2 aufnehmen. Environmental

  16. Carbon dioxide fluxes from Tifway bermudagrass: early results

    Science.gov (United States)

    Cotten, David L.; Zhang, G.; Leclerc, M. Y.; Raymer, P.; Steketee, C. J.

    2016-06-01

    This paper reports for the first time preliminary data on carbon uptake of warm-season turfgrass at a well-managed sod farm in south central Georgia. It examines the changes in carbon uptake from one of the most widely used warm-season turfgrass cultivars in the world, Tifway Bermudagrass. It elucidates the role of canopy density and light avalaibility on the net carbon uptake using the eddy-covariance technique. Preliminary evidence suggests that turfgrass is effective at sequestering carbon dioxide during the summer months even when the canopy is being reestablished following a grass harvest.

  17. Palladium-Catalyzed Addition of Carbon Monoxide and Carbon Tetrachloride to 1-Octene in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    张群健; 孙均华; 江焕峰; 欧阳小月; 程金生

    2003-01-01

    The Pd-catalyzed addition of carbon monoxide and carbon tetrachloride to 1-octene gave coadduct [alkyl 2-( 2, 2, 2-trichloroethyl)octanoate] as the major product in supercritical carbon dioxide by using pyridine as the base. It was found that the selectivity and the yield of coadduct were greatly affected by the pressure of carbon dioxide, the reaction temperature and the amounts of alcohol and base used.

  18. CHEMICAL FIXATION OF CARBON DIOXIDE USING SOLVENT EXTRACTION

    OpenAIRE

    SASAMOTO, Naoki; MASHIMO, Miki; MATSUMOTO, Shigeno; Yamamoto, Hideki; SHIBATA, Junji

    1996-01-01

    Investigations were carried out to create a chemical fixation process,where carbon dioxide and sodium chloride solution are converted to sodium hydrogen carbonate and hydrochloric acid. Because the reaction has a large and positive free energy change,it does not proceed unless a suitable condition is established.The reaction is able to proceed if hydrochloric acid,which is one of the reaction products,is removed from the reaction system by extraction with amine.Stripping of hydrochloric acid ...

  19. Photodissociation of carbon dioxide in the Mars upper atmosphere

    Science.gov (United States)

    Barth, C. A.

    1974-01-01

    Calculation of the intensity of two of the emissions produced during the dissociative excitation of carbon dioxide in the upper atmosphere of Mars by solar ultraviolet radiation. The calculation tangential column emission rates of the atomic oxygen 2972-A line and the carbon monoxide Cameron bands produced by the photodissociative mechanism are found to be factors of 3 and 10, respectively, smaller than the emission rates observed by Mariner ultraviolet spectrometers.

  20. Synthesis of fatty acid starch esters in supercritical carbon dioxide

    NARCIS (Netherlands)

    Muljana, Henky; van der Knoop, Sjoerd; Keijzer, Danielle; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2010-01-01

    This manuscript describes an exploratory study on the synthesis of fatty acid/potato starch esters using supercritical carbon dioxide (scCO(2)) as the solvent. The effects of process variables such as pressure (6-25 MPa), temperature (120-150 degrees C) and various basic catalysts and fatty acid der

  1. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80...

  2. Solubility of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Dijkstra, H. B. S.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    In the present work, new experimental data are presented on the solubility of carbon dioxide in aqueous piperazine solutions, for concentrations of 0.2 and 0.6 molar piperazine and temperatures of 25, 40, and 70°C respectively. The present data, and other data available in the literature, were corr

  3. Synthesis and characterization of zwitterionic carbon dioxide fixing reagents

    DEFF Research Database (Denmark)

    Mikkelsen, Mette; Jørgensen, Mikkel; Krebs, Frederik C

    2010-01-01

    The synthesis of three amine-based carbon dioxide fixing reagents is presented. The reagents were designed so that they would be able to bind CO2 reversibly through the formation of the well known carbamates that was stabilized through forming a zwitterion. CO2 fixing experiments were performed...

  4. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    Science.gov (United States)

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  5. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    and the potential for widespread feedbacks with global consequences. In this thesis, I present and discuss the findings of an investigation of comparable drivers of the seasonality in carbon dioxide (CO2) fluxes across heterogeneous Arctic tundra ecosystems. Due to the remoteness and the harsh climatic conditions...

  6. Distribution of Carbon Dioxide Produced by People in a Room:

    DEFF Research Database (Denmark)

    Naydenov, Kiril Georgiev; Baránková, Petra; Sundell, Jan

    2004-01-01

    Carbon dioxide exhaled by people can be used as a tracer gas for air change measurements in homes. Good mixing of tracer gas with room air is a necessary condition to obtain accurate results. However, the use of fans to ensure mixing is inconvenient. The natural room distribution of metabolic CO2...

  7. Aerobic Oxidation of Methyl Vinyl Ketone in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    OUYANG,Xiao-Yue(欧阳小月); JIANG,Huan-Feng(江焕峰); CHENG,Jin-Sheng(程金生); ZHANG,Qun-Jian(张群健)

    2002-01-01

    Aerobic oxidation of methyl vinyl ketone to acetal in supercritical carbon dioxide are achieved in high conversion and high selectivity when oxygen pressure reaches 0.5MPa. The effects of cocatalysts,additive, pressure and temperature of the reaction are studied in detail.

  8. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment

    Science.gov (United States)

    Gaihre, Santosh; Semple, Sean; Miller, Janice; Fielding, Shona; Turner, Steve

    2014-01-01

    Background: We tested the hypothesis that classroom carbon dioxide (CO[subscript 2]) concentration is inversely related to child school attendance and educational attainment. Methods: Concentrations of CO[subscript 2] were measured over a 3-5?day period in 60 naturally ventilated classrooms of primary school children in Scotland. Concentrations of…

  9. Fluxes of Methane and Carbon Dioxide from a Subarctic Lake

    DEFF Research Database (Denmark)

    Jammet, Mathilde Manon

    ) and carbon dioxide (CO2) with the atmosphere. Yet uncertainties in the magnitude and drivers of these fluxes remain, partly due to a lack of direct observations covering all seasons of the year, but also because of the diversity in measurement methods that often miss components of the transport processes...

  10. Solubilities of ferrocene and acetylferrocene in supercritical carbon dioxide

    DEFF Research Database (Denmark)

    Kazemi, Somayeh; Belandria, Veronica; Janssen, Nico

    2012-01-01

    In this work, the solubilities of ferrocene and acetylferrocene in supercritical carbon dioxide (scCO2) were measured using an analytical method in a quasi-flow apparatus. High-performance liquid chromatography was applied through an online sampling procedure to determine the concentration...

  11. Extraction of heavy oil by supercritical carbon dioxide

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Spirov, Pavel; Søgaard, Erik Gydesen

    2010-01-01

    The present study deals with the extraction of heavy oil by supercritical carbon dioxide at the pressure values changing from 16 to 56 MPa at the fixed value of temperature: 60oC. The amount of the recovered liquid phase of oil was calculated as a percentage of the extracted amount to the initial...

  12. How Can We Use Carbon Dioxide as a Solvent?

    Science.gov (United States)

    Mohamed, Azmi; Eastoe, Julian

    2011-01-01

    This article describes the work being undertaken to make more use of supercritical carbon dioxide as a green solvent. It discusses how the use of surfactants can address the limitations of supercritical CO[subscript 2] in dissolving solutes that are polar and of higher molecular weight. The design of appropriate hydrocarbon CO[subscript 2]-philic…

  13. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  14. Distribution of carbon dioxide produced by people in a room:

    DEFF Research Database (Denmark)

    Baránková, Petra; Naydenov, Kiril Georgiev; Melikov, Arsen Krikor

    2004-01-01

    Carbon dioxide produced by occupants can be used as a natural tracer gas for analysing air change rates in dwellings. However, a high level of concentration uniformity is necessary for tracer gas measurements. Therefore, mixing fans are usually used. The use of such fans in occupied homes...

  15. Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Mogensen, Mogens Bjerg

    2009-01-01

    Carbon dioxide electrolysis was studied in Ni/YSZ electrode supported Solid Oxide Electrolysis Cells (SOECs) consisting of a Ni-YSZ support, a Ni-YSZ electrode layer, a YSZ electrolyte, and a LSM-YSZ O2 electrode (YSZ = Yttria Stabilized Zirconia). The results of this study show that long term CO2...

  16. Cryotherapy gas--to use nitrous oxide or carbon dioxide?

    Science.gov (United States)

    Maiti, H; Cheyne, M F; Hobbs, G; Jeraj, H A

    1999-02-01

    Cryotherapy is regularly used in our clinic for treating genital warts. Nitrous oxide was used as the cryogenic gas. Following a health and safety review it was decided to monitor the nitrous oxide levels in the treatment room under different conditions. The Occupational Exposure Standard for nitrous oxide is 100 parts per million (PPM) (8-h time weighted average) and an indicative short-term exposure limit of 300 PPM (15-min reference period). High levels of gas were detected, especially when the exhaust was not vented to the outside. Venting of the gas to the outside could also present a hazard to adjacent areas. The situation was considered to be unacceptable and carbon dioxide was proposed as an alternative. The Occupational Exposure Standard for carbon dioxide is 5000 PPM (8-h time weighted average) and a short-term limit of 15,000 PPM (15-min reference period). Carbon dioxide levels were found to be within the Occupational Exposure Standard. There is no noticeable difference in the cryogenic efficacy of the 2 gases. Carbon dioxide is, therefore, a safer alternative. It also offers significant savings when compared with nitrous oxide.

  17. Solubilities of sub- and supercritical carbon dioxide in polyester resins

    NARCIS (Netherlands)

    Nalawade, SP; Picchioni, F; Janssen, LPBM; Patil, VE; Keurentjes, JTF; Staudt, R; Nalawade, Sameer P.; Patil, Vishal E.; Keurentjes, Jos T.F.

    2006-01-01

    In supercritical carbon dioxide (CO2) assisted polymer processes the solubility of CO2 in a polymer plays a vital role. The higher the amount of CO2 dissolved in a polymer the higher is the viscosity reduction of the polymer. Solubilities Of CO2 in polyester resins based on propoxylated bisphenol (P

  18. Carbon dioxide uptake by a temperate tidal sea

    NARCIS (Netherlands)

    Klaassen, Wim

    2007-01-01

    Carbon dioxide (CO2) exchange between the atmosphere and the Wadden Sea, a shallow coastal region along the northern Netherlands, has been measured from April 2006 onwards on a tidal flat and over open water. Tidal flat measurements were done using a flux chamber, and ship borne measurements using a

  19. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata T.; Benes, N.E.; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate water-l

  20. Carbon dioxide concentration in Mediterranean greenhouses : how much lost production?

    NARCIS (Netherlands)

    Stanghellini, C.; Incrocci, L.; Gazquez, J.C.; Dimauro, B.

    2008-01-01

    In the absence of artificial supply of carbon dioxide in the greenhouse environment, the CO2 absorbed in the process of photosynthesis must ultimately come from the external ambient through the ventilation openings. This requires that the CO2 concentration within the house must be lower than the ext

  1. Trade, production fragmentation, and China's carbon dioxide emissions

    NARCIS (Netherlands)

    Dietzenbacher, Erik; Pei, Jiansuo; Yang, Cuihong

    2012-01-01

    An input-output framework is adopted to estimate China's carbon dioxide (CO2) emissions as generated by its exports in 2002. More than one half of China's exports are related to international production fragmentation. These processing exports generate relatively little value added but also relativel

  2. Green dyeing of cotton fabrics by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Zhang Juan

    2015-01-01

    Full Text Available Green dyeing process with zero waste water emission is a hot topic recently. This paper reveals that supercritical carbon dioxide is the best candidate for this purpose. Effects of thermodynamic parameters, such as enthalpy and entropy of activation, on dyeing process are studied experimentally.

  3. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    NARCIS (Netherlands)

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ven

  4. Supercritical carbon dioxide process for pasteurization of fruit juices

    Science.gov (United States)

    Supercritical carbon dioxide (SCCO2) nonthermal processing inactivates microorganisms in juices using non-toxic and non-reactive CO2. However, data is lacking on the inactivation of E. coli K12 and L. plantarum in apple cider using pilot plant scale SCCO2 equipment. For this study, pasteurized pres...

  5. Glaciers as indicators of the carbon dioxide warming

    NARCIS (Netherlands)

    Oerlemans, J.

    1986-01-01

    During the past 150 years, mountain glaciers have shown a worldwide retreat. It has been argued that this is related to the warming which is predicted to result from increased carbon dioxide levels in the atmosphere; however, this warming has not been detected in a statistically significant way from

  6. Integrated biofuel facility, with carbon dioxide consumption and power generation

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering

    2009-07-01

    This presentation provided details of an economical design for a large-scale integrated biofuel facility for coupled production of bioethanol and biodiesel, with carbon dioxide capture and power generation. Several designs were suggested for both batch and continuous culture operations, taking into account all costs and revenues associated with the complete plant integration. The microalgae species Chlorella vulgaris was cultivated in a novel photobioreactor (PBR) in order to consume industrial carbon dioxide (CO{sub 2}). This photosynthetic culture can also act as a biocathode in a microbial fuel cell (MFC), which when coupled to a typical yeast anodic half cell, results in a complete biological MFC. The photosynthetic MFC produces electricity as well as valuable biomass and by-products. The use of this novel photosynthetic microalgae cathodic half cell in an integrated biofuel facility was discussed. A series of novel PBRs for continuous operation can be integrated into a large-scale bioethanol facility, where the PBRs serve as cathodic half cells and are coupled to the existing yeast fermentation tanks which act as anodic half cells. These coupled MFCs generate electricity for use within the biofuel facility. The microalgae growth provides oil for biodiesel production, in addition to the bioethanol from the yeast fermentation. The photosynthetic cultivation in the cathodic PBR also requires carbon dioxide, resulting in consumption of carbon dioxide from bioethanol production. The paper also discussed the effect of plant design on net present worth and internal rate of return. tabs., figs.

  7. Phase relation between global temperature and atmospheric carbon dioxide

    CERN Document Server

    Stallinga, Peter

    2013-01-01

    The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause for temperature variations. In this paper we discuss this assumption and analyze it on basis of bi-centenary measurements and using a relaxation model which causes phase shifts and delays.

  8. Continuous wave carbon dioxide treatment of balanitis xerotica obliterans.

    Science.gov (United States)

    Rosemberg, S K; Jacobs, H

    1982-05-01

    Herein is presented the first case of balanitis xerotica obliterans treated successfully by carbon dioxide-continuous wave (CW-CO2) laser vaporization. This method appears to be a safe addition to other well-known treatment modalities, offering minimal postoperative discomfort, preservation of anatomic landmarks and function, and excellent cosmetic results.

  9. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  10. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  11. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use...

  12. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... carbon dioxide. 27.42a Section 27.42a Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... On Imported Distilled Spirits, Wines, and Beer Wines § 27.42a Still wines containing carbon dioxide. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  13. Carbon dioxide euthanasia in rats: Oxygen supplementation minimizes signs of agitation and asphyxia

    NARCIS (Netherlands)

    Coenen, A.M.L.; Drinkenburg, W.H.I.M.; Hoenderken, R.; Luijtelaar, E.L.J.M. van

    1995-01-01

    This paper records the effects of carbon dioxide when used for euthanasia, on behaviour, electrical brain activity and heart rate in rats. Four different methods were used. Animals were placed in a box (a) that was completely filled with carbon dioxide; (b) into which carbon dioxide was streamed at

  14. 76 FR 25236 - Carbon Dioxide; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2011-05-04

    ... AGENCY 40 CFR Part 180 Carbon Dioxide; Exemption From the Requirement of a Tolerance AGENCY... from the requirement of a tolerance for residues of carbon dioxide (CAS Reg. No. 124-38-9) when used as... permissible level for residues of carbon dioxide. DATES: This regulation is effective May 4, 2011....

  15. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  16. 40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carbon dioxide; exemption from the... Exemptions From Tolerances § 180.1049 Carbon dioxide; exemption from the requirement of a tolerance. The insecticide carbon dioxide is exempted from the requirement of a tolerance when used after harvest in...

  17. 76 FR 48073 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-08-08

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY... Conservation and Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous... of carbon dioxide streams that would otherwise be regulated as hazardous wastes under the...

  18. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from...

  19. 75 FR 8431 - Carbon Dioxide Fire Suppression Systems on Commercial Vessels

    Science.gov (United States)

    2010-02-24

    ... Homeland Security Coast Guard 46 Parts 25, 27, 28, et al. Carbon Dioxide Fire Suppression Systems on..., 182, 185, 189, 190, 193, 194, and 196 RIN 1625-AB44 Carbon Dioxide Fire Suppression Systems on... vessels. The amendments would clarify that approved alternatives to carbon dioxide systems may be used...

  20. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  1. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve s

  2. Cryogenic Cooling System for 5 kA, 200 μH Class HTS DC Reactor

    Science.gov (United States)

    Park, Heecheol; Kim, Seokho; Kim, Kwangmin; Park, Minwon; Park, Taejun; Kim, A.-rong; Lee, Sangjin

    DC reactors, made by aluminum busbar, are used to stabilize the arc of an electric furnace. In the conventional arc furnace, the transport current is several tens of kilo-amperes and enormous resistive loss is generated. To reduce the resistive loss at the DC reactor, a HTS DC reactor can be considered. It can dramatically improve the electric efficiency as well as reduce the installation space. Similar with other superconducting devices, the HTS DC reactor requires current leads from a power source in room temperature to the HTS coil in cryogenic environment. The heat loss at the metal current leads can be minimized through optimization process considering the geometry and the transport current. However, the transport current of the HTS DC reactor for the arc furnace is much larger than most of HTS magnets and the enormous heat penetration through the current lead should be effectively removed to keep the temperature around 70∼77 K. Current leads are cooled down by circulation of liquid nitrogen from the cooling system with a stirling cryocooler. The operating temperature of HTS coil is 30∼40 K and circulation of gaseous helium is used to remove the heat generation at the HTS coil. Gaseous helium is transported through the cryogenic helium blower and a single stage GM cryocooler. This paper describes design and experimental results on the cooling system for current leads and the HTS coil of 5 kA, 200 μH class DC reactor as a prototype. The results are used to verify the design values of the cooling systems and it will be applied to the design of scale-up cooling system for 50 kA, 200 μH class DC reactor.

  3. Circulating and plateout activity program for gas-cooled reactors with arbitrary radioactive chains

    Energy Technology Data Exchange (ETDEWEB)

    Apperson, C.E. Jr.

    1978-03-01

    A time-dependent method for estimating the fuel body, circulating, plateout, and filter inventory of a high temperature gas-cooled reactor (HTGR) during normal operation is discussed. The primary coolant model accounts for the source, buildup, decay, and cleanup of isotopes that are gas borne inside the prestressed concrete reactor vessel (PCRV). This method has been implemented in the SUVIUS computer program that is described in detail.

  4. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2015-06-15

    Phase I concludes with significant progress made towards the SunShot ELEMENTS goals of high energy density, high power density, and high temperature by virtue of a SrO/SrCO3 based material. A detailed exploration of sintering inhibitors has been conducted and relatively stable materials supported by YSZ or SrZO3 have been identified as the leading candidates. In 15 cycle runs using a 3 hour carbonation duration, several materials demonstrated energy densities of roughly 1500 MJ/m3 or greater. The peak power density for the most productive materials consistently exceeded 40 MW/m3—an order of magnitude greater than the SOPO milestone. The team currently has a material demonstrating nearly 1000 MJ/m3 after 100 abbreviated (1 hour carbonation) cycles. A subsequent 8 hour carbonation after the 100 cycle test exhibited over 1500 MJ/m3, which is evidence that the material still has capacity for high storage albeit with slower kinetics. Kinetic carbonation experiments have shown three distinct periods: induction, kinetically-controlled, and finally a diffusion-controlled period. In contrast to thermodynamic equilibrium prediction, higher carbonation temperatures lead to greater conversions over a 1 hour periods, as diffusion of CO2 is more rapid at higher temperatures. A polynomial expression was fit to describe the temperature dependence of the linear kinetically-controlled regime, which does not obey a traditional Arrhenius relationship. Temperature and CO2 partial pressure effects on the induction period were also investigated. The CO2 partial pressure has a strong effect on the reaction progress at high temperatures but is insignificant at temperatures under 900°C. Tomography data for porous SrO/SrCO3 structures at initial stage and after multiple carbonation/decomposition cycles have been obtained. Both 2D slices and 3D reconstructed representations have

  5. Device for cooling the main vessel of a fast fission nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Debru, M.

    1984-10-16

    The annular space delimited by the main vessel and an internal shell is in communication with the zone of the reactor vessel, in which the cold primary liquid is located. The annular space delimited by the shell and by an internal shell is in communication with the lower part of the core via tubes. Thus, the cold primary liquid is injected into the space where it circulates from bottom to top, and flows into the space, where it circulates from top to bottom while at the same time cooling the main vessel. The invention applies, in particular, to fast fission nuclear reactors cooled by liquid sodium.

  6. Secondary Cooling Water Quality Management for Multi Purpose Reactor 30 MW GA Siwabessy Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sunaryo, Geni Rina, E-mail: genirina@batan.go.i [Center for Reactor Technology and Nuclear Safety (PTRKN-BATAN), Bldg. 80, Puspiptek Area, Serpong, Tangerang 15310 (Indonesia)

    2011-07-01

    Indonesia Multi Purpose Research Reactor (MPR) G.A. Siwabessy 30 MW will be 25 years old in 2011. Series of Non Destructive Test (NDT) were done to understand the current condition such as Eddy Current test for Heat Exchangers, water immersed camera for understanding the tank liner condition, ultrasonic for secondary piping etc. Some deteorization was observed because of ageing and some changing was done. One of them is changing some part of secondary pipe lines because of leaking, with the local ones. For having another 25 years operation life, a proper water quality for secondary cooling water is needed towards corrosion prevention. The main objectives of this experiment is to understand the current water quality of secondary cooling water of RSG-GAS from the aspect of corrosion induced by chemicals and bacteria, and establish procedure for managing the secondary cooling water quality. Methodologies applied are surveillance corrosion by immersing coupon into water observed and followed by visual analyses, corrosion rate determination by electrochemical method with various chemical conditions and total bacteria determination by using test kit. The results show visually that the crevice, galvanic and homogeny corrosion with the current water quality easily be observed for carbon steel represented secondary pipelines at the condition of none oxy bio agent addition. This corrosion is being suppressed by adding the oxy bio agent. The orientation of coupon, vertically and horizontally, gives slightly different effect. The closely corrosion rate was obtained by separately experiment, electrochemical, at the concentration of inhibitor 100ppm is 0.13 {+-} 0.02, which is lower than in the raw water of 0.20 {+-} 0.01 mpy. The total bacteria detected is around 10{sup 7} cfu/ml at none reactor operation and without any anti bacteria added. The oxi bio agent chemical addition suppresses the numbers becomes 10{sup 3} cfu/ml. The SRB bacteria is detected as >10{sup 6} cfu/ml at

  7. Methane and Carbon Dioxide Emissions from Different Composting Periods

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Chang

    2009-01-01

    Full Text Available To investigate green house gas emissions from compost preparations, methane and carbon dioxide concentrations and emission rates at different accumulative times and composting periods were determined. While the accumulative time was less than 10 min with a closed acrylic chamber, meth ane and carbon dioxide emissions in creased slightly but with high fluntuation in the sampling e ror, and these values decreased significantly when the accumulative time was more than 20 min. During the 8 weeks of composting, the methane emission rate reaches its peak near the end of the second week and the carbon dioxide emission rate does the same near the end of third week. Meth ane and carbon dioxide emissions had high val ues at the first stage of com post ing and then de creased grad u ally for the ma tu rity of com post. Carbon dioxide emission (y was significantly related to temperature (x1, moisture content (x2, and total or ganiccarbon (x3; and there gression equation is: y = 3.11907x1 + 6.19236x2 - 6.63081x3 - 50.62498. The re gres sion equa tion be tween meth ane emis sion (y? and mois ture con tent (x2, pH (x4, C/N ra tio (x5, and ash con tent (x6 is: y?= 0.13225x2 - 0.97046x4 - 1.10599x5 - 0.55220x6 + 50.77057 in the ini tial com post ing stage (weeks 1 to 3; while, the equa tion is: y?= 0.02824x2 - 0.0037x4 - 0.1499x5 - 0.07013x6 + 4.13589 in the later compost ing stage (weeks 4 to 8. Dif ferent stage composts have significant variation of properties and greenhouse gas emissions. Moreover, the emissions may be reduced by manipulating the proper factors.

  8. Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Xiao Wu

    2016-01-01

    Full Text Available The catalytic synthesis of cyclic carbonates using carbon dioxide as a C1-building block is a highly active area of research. Here, we review the catalytic production of enantiomerically enriched cyclic carbonates via kinetic resolution of racemic epoxides catalysed by metal-containing catalyst systems.

  9. The carbon dioxide content in ice cores - climatic curves of carbon dioxide. Zu den CO sub 2 -Klimakurven aus Eisbohrkernen

    Energy Technology Data Exchange (ETDEWEB)

    Heyke, H.E.

    1992-05-01

    The 'greenhouse effect', which implies a temperature of 15 deg C as against -18 deg C, owes its effect to 80% from water (clouds and gaseous phase) and to 10% from carbon dioxide, besides other components. Whereas water is largely unaccounted for, carbon dioxide has been postulated as the main cause of anticipated climatic catastrophe. The carbon dioxide concentration in the atmosphere has risen presently to such levels that all previous figures seem to have been left far behind. The reference point is the concentration of carbon dioxide in the air bubbles trapped in ice cores of Antartic and Greenland ice dated 160 000 years ago, which show much lower values than at present. A review of the most relevant publications indicates that many basic laws of chemistry seem to have been left largely unconsidered and experimental errors have made the results rather doubtful. Appropriate arguments have been presented. The investigations considered should be repeated under improved and more careful conditions. (orig.).

  10. High-pressure phase equilibria for the carbon dioxide + 3-pentanol and carbon dioxide + 3-pentanol + water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S.; Mun, S.Y.; Lee, H. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Chemical Engineering

    1999-05-01

    High-pressure vapor-liquid equilibria for the binary carbon dioxide + 3-pentanol system were measured at 313.2 K. The phase equilibrium apparatus used in this work was of the circulation type in which the coexisting phases were recirculated, on-line sampled, and analyzed. The critical pressure and corresponding mole fraction of carbon dioxide at 313.2 K were found to be 8.22 MPa and 0.974, respectively, for this binary system. The phase equilibria for the ternary carbon dioxide + 3-pentanol + water system were also measured at 313.2 K and pressures of 2.00, 4.00, 6.00, 8.00, and 8.25 MPa. This ternary system showed the liquid-liquid-vapor (LLV) phase behavior over the range of pressure up to the critical pressure of 8.25 MPa. The binary equilibrium data were all reasonably well-correlated with the Redlich-Kwong, Soave-Redlich-Kwong, Peng-Robinson, and Patel-Teja equations of state incorporated with the eight different mixing rules: the van der Waals, Panagiotopoulos-Reic, and six modified Huron-Vidal mixing rules with UNIQUAC parameters. For the prediction of high-pressure phase equilibria for the systems containing carbon dioxide and alcohols, the SRK-MHV2 might reproduce many features of the measured behavior although further tests are needed with other systems.

  11. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or

  12. Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria.

    Science.gov (United States)

    Balamurugan, P; Joshi, M Hiren; Rao, T S

    2011-10-01

    Culture and molecular-based techniques were used to characterize bacterial diversity in the cooling water system of a fast breeder test reactor (FBTR). Techniques were selected for special emphasis on sulphate-reducing bacteria (SRB). Water samples from different locations of the FBTR cooling water system, in addition to biofilm scrapings from carbon steel coupons and a control SRB sample were characterized. Whole genome extraction of the water samples and SRB diversity by group specific primers were analysed using nested PCR and denaturing gradient gel electrophoresis (DGGE). The results of the bacterial assay in the cooling water showed that the total culturable bacteria (TCB) ranged from 10(3) to 10(5) cfu ml(-1); iron-reducing bacteria, 10(3) to 10(5) cfu ml(-1); iron oxidizing bacteria, 10(2) to 10(3) cfu ml(-1) and SRB, 2-29 cfu ml(-1). However, the counts of the various bacterial types in the biofilm sample were 2-3 orders of magnitude higher. SRB diversity by the nested PCR-DGGE approach showed the presence of groups 1, 5 and 6 in the FBTR cooling water system; however, groups 2, 3 and 4 were not detected. The study demonstrated that the PCR protocol influenced the results of the diversity analysis. The paper further discusses the microbiota of the cooling water system and its relevance in biofouling.

  13. Gas Cooled, Natural Uranium, D20 Moderated Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, R.C.; Beasley, E.G.; DeBoer, T.K.; Evans, T.C.; Molino, D.F.; Rothwell, W.S.; Slivka, W.R.

    1956-08-01

    The attractiveness of a helium cooled, heavy water moderated, natural uranium central station power plant has been investigated. A fuel element has been devised which allows the D20 to be kept at a low pressure while the exit gas temperature is high. A preliminary cost analysis indicates that, using currently available materials, competitive nuclear power in foreign countries is possible.

  14. Carbon dioxide: A new material for energy storage

    Directory of Open Access Journals (Sweden)

    Jacques Amouroux

    2014-08-01

    Full Text Available Though carbon dioxide is the main green house gas due to burning of fossil resource or miscellaneous chemical processes, we propose here that carbon dioxide be a new material for energy storage. Since it can be the key to find the solution for three critical issues facing the world: food ecosystems, the greenhouse issue and energy storage. We propose to identify the carbon recovery through a circular industrial revolution in the first part, and in the second part we present the starting way of three business plants to do that from industrial examples. By pointing out all the economic constraints and the hidden competitions between energy, water and food, we try to qualify the phrase “sustainable development” and open the way of a huge circular economy.

  15. Effect of Solid Loading on Carbon Dioxide Absorptionin Bubble Column

    Directory of Open Access Journals (Sweden)

    Alyaa Khadhier Mageed

    2011-01-01

    Full Text Available In the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.% on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h and absorbent concentration (caustic soda( 0.1,0.5 and 1 M . Activated carbon and alumina oxide (Al2O3 are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfacial area were increased with increasing volumetric gas flow rate, and solid loading.

  16. 深冷轻烃中CO2脱除工艺模拟分析%Simulation analysis of removal process for carbon dioxide from deep cooling light hydrocarbon

    Institute of Scientific and Technical Information of China (English)

    刘龙; 何英华; 李洪涛; 姜道华; 赵晶莹; 宋杰萍

    2011-01-01

    The removal of CO2 was designed by Aspen Plus software with the deep cooling light hydrocarbons from oil field as the raw material. The results showed that under the optimum operating pressure( 1.6 MPa), the stripping tower could remove 90% CO2 (mass fraction) from the light hydrocarbons, the treated product could be used as cracking feedstock.%以油田深冷轻烃为原料,利用Aspen Plus工艺模拟软件,对原料脱除二氧化碳进行模拟设计.结果表明,采用提馏塔分离方案,在提馏塔最佳操作压力为1.6 MPa的条件下,可脱除深冷轻烃中质量分数为90%的二氧化碳,满足裂解装置对原料的要求.

  17. Heat pipe cooled reactors for multi-kilowatt space power supplies

    Energy Technology Data Exchange (ETDEWEB)

    Ranken, W.A.; Houts, M.G.

    1995-01-01

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

  18. Heat pipe cooled reactors for multi-kilowatt space power supplies

    Science.gov (United States)

    Ranken, W. A.; Houts, M. G.

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFE's) to radiator heat pipes.

  19. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver (INEEL); J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas (MIT)

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  20. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections and... analysis for liquid and gaseous radwaste system components for light water nuclear power...

  1. MR-6 type fuel elements cooling in natural convection conditions after the reactor shut down

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, K.; Bykowski, W.; Moldysz, A. [Institute of Atomic Energy, Otwock Swierk (Poland)

    2002-07-01

    Natural cooling conditions of the nuclear fuel in the channel type reactor after its shut down are commonly determined with relatively high uncertainty. This is not only to he lack of adequate measurements of thermal parameters i.e. the residual power generation, the coolant flow and temperatures, but also due to indeterminate model of convection mechanism. The numerical simulation of natural convection in multitube fuel assembly in the fuel channel leads to various convection modes including evidently chaotic behaviour. To determine the real cooling conditions in the MARIA research reactor a series of experiments has been performed with fuel assembly equipped with a set of thermocouples. After some forced cooling period (the shortest was half an hour after the reactor shut down) the reactor was left with the only natural convection. Two completely different cooling modes have been observed. The MARIA core consists of series of individual fuel channel and so called bypasses, maintaining the hydraulic properties of the fuel channel, connected in parallel. Initially, the convection cells were established trough few so-called bypasses providing a very effective mode of cooling. In this mode the flow charts were identical to those existing in forced cooling mode. After certain period the system switched on the second cooling mode with natural circulation within the individual fuel cells. Higher temperatures and temperature fluctuations were characteristic for this mode approaching 30 deg in amplitude. In almost all the cases the system was switching few times between modes, but eventually remained in the second mode. The switching times were not regular and the process has a chaotic behaviour. (author)

  2. Application of objective provision tree to development of standard review plan for sodium-cooled fast reactor nuclear design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo-Hoon; Suh, Namduk; Choi, Yongwon; Shin, Andong [Korea Institute of Nuclear Safety, Daejon (Korea, Republic of)

    2016-06-15

    A systematic methodology was developed for the standard review plan for sodium-cooled fast reactor nuclear design. The process is first to develop an objective provision tree of sodium-cooled fast reactor for the reactivity control safety function. The provision tree is generally developed by designer to confirm whether the design satisfies the defense-in-depth concept. Then applicability of the current standard review plan of nuclear design for light water reactor to sodium-cooled fast reactor was evaluated and complemented by the developed objective provision tree.

  3. Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium

    DEFF Research Database (Denmark)

    Gharnati, Loubna; Musko, Nikolai; Jensen, Anker Degn

    2013-01-01

    In the present study the influence of the amount of carbon dioxide on the catalytic performance during the propylene carbonate synthesis from propylene oxide and CO2 was investigated. The reaction was performed in high-pressure batch autoclaves using immobilized 1-hydroxyethyl-9-propyl-cyclic gua......In the present study the influence of the amount of carbon dioxide on the catalytic performance during the propylene carbonate synthesis from propylene oxide and CO2 was investigated. The reaction was performed in high-pressure batch autoclaves using immobilized 1-hydroxyethyl-9-propyl...

  4. Photoassisted carbon dioxide reduction and formation of twoand three-carbon compounds. [prebiological photosynthesis

    Science.gov (United States)

    Halmann, M.; Aurian-Blajeni, B.; Bloch, S.

    1981-01-01

    The photoassisted reduction of aqueous carbon dioxide in the presence of naturally occurring minerals is investigated as a possible abiotic precursor of photosynthesis. Aqueous carbon dioxide saturated suspensions or surfaces of the minerals nontronite, bentonite, anatase, wolframite, molybdenite, minium, cinnabar and hematite were irradiated with high-pressure mercury lamps or sunlight. Chemical analyses reveal the production of formic acid, formaldehyde, methanol and methane, and the two and three-carbon compounds glyoxal (CHOCHO) and malonaldehyde (CH2(CHO)2). It is suggested that such photosynthetic reactions with visible light in the presence of semiconducting minerals may provide models for prebiological carbon and nitrogen fixation in both oxidized and reduced atmospheres.

  5. Zirconium carbide coating for corium experiments related to water-cooled and sodium-cooled reactors

    Science.gov (United States)

    Plevacova, K.; Journeau, C.; Piluso, P.; Zhdanov, V.; Baklanov, V.; Poirier, J.

    2011-07-01

    Since the TMI and Chernobyl accidents the risk of nuclear severe accident is intensively studied for existing and future reactors. In case of a core melt-down accident in a nuclear reactor, a complex melt, called corium, forms. To be able to perform experiments with prototypic corium materials at high temperature, a coating which resists to different corium melts related to Generation I and II Water Reactors and Generation IV sodium fast reactor was researched in our experimental platforms both in IAE NNC in Kazakhstan and in CEA in France. Zirconium carbide was selected as protective coating for graphite crucibles used in our induction furnaces: VCG-135 and VITI. The method of coating application, called reactive wetting, was developed. Zirconium carbide revealed to resist well to the (U x, Zr y)O 2-z water reactor corium. It has also the advantage not to bring new elements to this chemical system. The coating was then tested with sodium fast reactor corium melts containing steel or absorbers. Undesirable interactions were observed between the coating and these materials, leading to the carburization of the corium ingots. Concerning the resistance of the coating to oxide melts without ZrO 2, the zirconium carbide coating keeps its role of protective barrier with UO 2-Al 2O 3 below 2000 °C but does not resist to a UO 2-Eu 2O 3 mixture.

  6. Supply of carbon dioxide for enhanced oil recovery. Final report, October 15, 1976--September 1, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Rump, W.M.; Hare, M.; Porter, R.E.

    1977-09-01

    Results are presented from a study of the carbon dioxide supply situation for miscible flooding operations to enhance oil recovery. Candidate oil reservoirs were identified, and the carbon dioxide requirements and the potential recoverable oil for some of these were estimated. A survey of carbon dioxide sources has been conducted within the geographic areas where candidate oil reservoirs exist. Sources considered were both high and low quality gases from combustion vents, chemical process stacks, and naturally occurring gas deposits. The survey shows more than enough carbon dioxide is available from above-ground sources alone to meet expected demands. Systems to purify and deliver the carbon dioxide were designed and the costs of the delivered carbon dioxide estimated. Lowest cost is carbon dioxide from natural source with credit for by-product methane. A more comprehensive survey of above-ground and natural sources is recommended.

  7. Measuring of carbon dioxide in water/steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Daucik, Karol

    2004-12-01

    Prevention of corrosion of the water/steam cycle caused by anionic contamination is based on control of acid conductivity. The contribution of carbon dioxide to the corrosion is very limited and yet it contributes considerably to the acid conductivity as one of the most common contaminants. Monitoring of the dangerous anionic contamination has therefore been on the agenda for many years. Commercial monitors for this purpose are based on separation of carbon dioxide from stronger acids due to its high volatility. A systematic error in these monitors comes from high volatility of other anionic contaminants, e.g. formic and acetic acid. The aim of this investigation was to show that the separation could be made on a weak base anion exchanger working on the basis of differences in the strength of acids. This simple method was expected to give reliable results with low investment and low operating costs. The results showed that the separation is indeed effective. However, reliable data are received only if the anion exchange resin is in equilibrium with the actual concentration of carbon dioxide in the sample. It may take several hours to reach this equilibrium by natural flow of the sample through the anion exchange column. Changes in the concentration of carbon dioxide in the sample will therefore temporarily give false results until a new equilibrium is achieved. The simple monitoring method can be used only in places, where verification of carbon dioxide contamination is required by long-term operation with elevated and stable acid conductivity in the steam. For future design it is suggested to install a forced achievement of the new equilibrium by conditioning of the resin by means of short-lived additions of carbon dioxide or sodium hydroxide to the sample. In these periods the output from the monitor will be suspended. Output close to the equilibrium is expected to be reached within 10 minutes. This new suggested procedure will complicate the monitoring to such a

  8. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  9. Safe design of cooled tubular reactors for exothermic multiple reactions: Multiple-reaction networks

    NARCIS (Netherlands)

    Westerink, E.J.; Westerterp, K.R.

    1988-01-01

    The model of the pseudo-homogeneous, one-dimensional cooled tubular reactor is applied to a multiple-reaction network. It is demonstrated for a network which consists of two parallel and two consecutive reactions. Three criteria are developed to obtain an integral yield which does not deviate more t

  10. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies. (DLC)

  11. Thermally safe operation of a cooled semi-batch reactor: slow liquid-liquid reactions

    NARCIS (Netherlands)

    Steensma, M.; Westerterp, K.R.

    1988-01-01

    Thermally safe operation of a semi-batch reactor (SBR) implies that conditions leading to strong accumulation of unreacted reactants must be avoided. All thermal responses of a SBR, in which a slow liquid-liquid reaction takes place, can be represented in a diagram with the kinetics, cooling capacit

  12. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    gases are carbon dioxide, methane and nitrous oxide, of which carbon dioxide is the highest constituent at 82%. Furthermore, the amount of carbon dioxide emissions is growing with time. These trends make it evident that there is a need for methods to reduce these greenhouse gases emissions. While...... there are two methods of reducing carbon dioxide emissions, carbon capture and storage (CCS) and carbon capture and utilization (CCU), CCU is considered promising as it makes further use of the carbon dioxide as a solvent, raw material, and reagent to produce valuable products [1]. Using such utilization...... processes, the emissions can be reduced as they are being utilized and profit can be obtained, or the cost of operation for the carbon dioxide treatment can be returned, through this utilization process. In order to systematically reduce such emissions, carbon capture and utilization is considered rather...

  13. Chemical technologies for exploiting and recycling carbon dioxide into the value chain.

    Science.gov (United States)

    Peters, Martina; Köhler, Burkhard; Kuckshinrichs, Wilhelm; Leitner, Walter; Markewitz, Peter; Müller, Thomas E

    2011-09-19

    While experts in various fields discuss the potential of carbon capture and storage (CCS) technologies, the utilization of carbon dioxide as chemical feedstock is also attracting renewed and rapidly growing interest. These approaches do not compete; rather, they are complementary: CCS aims to capture and store huge quantities of carbon dioxide, while the chemical exploitation of carbon dioxide aims to generate value and develop better and more-efficient processes from a limited part of the waste stream. Provided that the overall carbon footprint for the carbon dioxide-based process chain is competitive with conventional chemical production and that the reaction with the carbon dioxide molecule is enabled by the use of appropriate catalysts, carbon dioxide can be a promising carbon source with practically unlimited availability for a range of industrially relevant products. In addition, it can be used as a versatile processing fluid based on its remarkable physicochemical properties.

  14. Carbonic acid as a reserve of carbon dioxide on icy moons: The formation of carbon dioxide (CO{sub 2}) in a polar environment

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Brant M.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States); Strazzulla, Giovanni, E-mail: brantmj@hawaii.edu [INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy)

    2014-06-20

    Carbon dioxide (CO{sub 2}) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν{sub 3} band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO{sub 2} band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H{sub 2}O)-carbon dioxide (CO{sub 2}) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν{sub 3} band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  15. Design guide for category II reactors light and heavy water cooled reactors. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    Brynda, W J; Lobner, P R; Powell, R W; Straker, E A

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems.

  16. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  17. Weathering approaches to carbon dioxide sequestration

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The aim of enhanced weathering is to capture CO2 by the carbonation of silicates, or by dissolution of these silicates during which the greenhouse gas CO2 is converted to bicarbonate in solution. Research in this field is still focused on increasing the rate of reaction, but the required additional

  18. Carbon dioxide emissions from Indian monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Viswanadham, R.; Rao, G.D.; Prasad, V.R.; Kumar, B.S.K.; Naidu, S.A.; Kumar, N.A.; Rao, D.B.; Sridevi, T.; Krishna, M.S.; Reddy, N.P.C.; Sadhuram, Y.; Murty, T.V.R.

    , H. Matsueda, and Y. Sawa. (2011). Carbon balance of South Asia constrained by passenger aircraft CO2 measurements. Atmos. Chem. Phys. Discuss, 11, 5379-5405. Ram, A.S.P., S. Nair, D. Chandramohan, (2003). Seasonal shift in net ecosystem production...

  19. A preliminary safety analysis for the prototype Gen IV Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Ha, Kwi Seok; Jeong, Jae Ho; Choi, Chi Woong; Jeong, Tae Kyeong; Ahn, Sang June; Lee, Seung Won; Chang, Won Pyo; Kang, Seok Hun; Yoo, Jae Woon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the in-vessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

  20. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marland, S. [Tennessee Univ., Knoxville, TN (United States)

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  1. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  2. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  3. Numerical Simulation of Extent of Carbon Dioxide Plume Injected in the Gyeongsang Basin, Korea

    Science.gov (United States)

    Kihm, J.; Park, S.; Kim, J.

    2012-12-01

    A series of thermo-hydro-chemical numerical simulations was performed to evaluate extent of carbon dioxide plume injected in the Gyeongsang Basin, which is one of the prospective onshore sedimentary basins for geologic storage of carbon dioxide in Korea. The carbon dioxide plume extent is an important factor in estimating storage efficiency and thus storage capacity of carbon dioxide in a storage formation because it represents an actual volume of the storage formation, which is occupied by injected carbon dioxide. The carbon dioxide plume extent is also an essential component in risk analysis of geologic storage of carbon dioxide because most of thermo-hydro-mechanical-chemical responses to carbon dioxide injection occur within it. To evaluate impacts of injection scenarios (i.e., injection rate and period) of carbon dioxide and geological conditions (i.e., thickness and depth) and hydrogeochemical properties (i.e., porosity, intrinsic permeability, salt concentration in groundwater, and volume fraction of chlorite) of a storage formation on the carbon dioxide plume extent, a series of sensitivity tests was also performed. The numerical simulation results show that the carbon dioxide plume extent is significantly affected by such injection scenarios, geological conditions, and hydrogeochemical properties. The carbon dioxide plume extent increases as the injection rate (with a constant injection period) increases, and this trend does not change with time. The carbon dioxide plume extent decreases as the injection period (with a constant total injection amount) increases until about 50 years, while it is not sensitive to the injection period after about 50 years. The carbon dioxide plume extent also decreases as the thickness increases until about 100 years, while it is not sensitive to the thickness after about 100 years. In contrast, the carbon dioxide plume extent decreases as the depth increases, and this trend is intensified with time. On the other hand, the

  4. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium...

  5. Application of hafnium hydride control rod to large sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Moriwaki, Hiroyuki, E-mail: hiroyuki_moriwaki@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Ohkubo, Yoshiyuki, E-mail: yoshiyuki_okubo@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Iwasaki, Tomohiko, E-mail: tomohiko.iwasaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-8579 (Japan); Konashi, Kenji, E-mail: konashi@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Narita-cho, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki-ken 311-1313 (Japan)

    2014-10-15

    Highlights: • Application of hafnium hydride control rod to large sodium cooled fast breeder reactor. • This paper treats application of an innovative hafnium hydride control rod to a large sodium cooled fast breeder reactor. • Hydrogen absorption triples the reactivity worth by neutron spectrum shift at H/Hf ratio of 1.3. • Lifetime of the control rod quadruples because produced daughters of hafnium isotopes are absorbers. • Nuclear and thermal hydraulic characteristics of the reactor are as good as or better than B-10 enriched boron carbide. - Abstract: This study treats the feasibility of long-lived hafnium hydride control rod in a large sodium-cooled fast breeder reactor by nuclear and thermal analyses. According to the nuclear calculations, it is found that hydrogen absorption of hafnium triples the reactivity by the neutron spectrum shift at the H/Hf ratio of 1.3, and a hafnium transmutation mechanism that produced daughters are absorbers quadruples the lifetime due to a low incineration rate of absorbing nuclides under irradiation. That is to say, the control rod can function well for a long time because an irradiation of 2400 EFPD reduces the reactivity by only 4%. The calculation also reveals that the hafnium hydride control rod can apply to the reactor in that nuclear and thermal characteristics become as good as or better than 80% B-10 enriched boron carbide. For example, the maximum linear heat rate becomes 3% lower. Owing to the better power distribution, the required flow rate decreases approximately by 1%. Consequently, it is concluded on desk analyses that the long lived hafnium hydride control rod is feasible in the large sodium-cooled fast breeder reactor.

  6. Evidence for super-exponentially accelerating atmospheric carbon dioxide growth

    CERN Document Server

    Hüsler, Andreas D

    2011-01-01

    We analyze the growth rates of atmospheric carbon dioxide and human population, by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model. Our empirical calibrations confirm that human population has decelerated from its previous super-exponential growth until 1960 to ``just' an exponential growth, but with no sign of more deceleration. As for atmospheric CO2 content, we find that it is at least exponentially increasing and most likely characterized by an accelerating growth rate as off 2009, consistent with an unsustainable FTS power law regime announcing a drastic change of regime. The coexistence of a quasi-exponential growth of human population with a super-exponential growth of carbon dioxide content in the atmosphere is a diagnostic of insignificant impr...

  7. Salinity Effect on Ocean Surface Carbon Dioxide Fugacity

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2015-12-01

    Sea surface salinity (SSS) measured by Aquarius and the Soil Moisture Ocean Salinity (SMOS) over global ocean is used to characterize the change of the partial pressure of carbon dioxide at sea (pCO2sea). A statistical model on satellite retrieval of pCO2sea is used to examine the relation between the two parameters over two selected regions. One is the tropical western Atlantic, where hydrological forcing by Amazon River discharge causes major changes, and the other is the equatorial eastern Pacific, where ocean thermodynamics is more important. In both regions, pCO2sea tracks SSS closely in seasonal and year-to-year changes. In the Pacific, tropical instability wave is a major factor in the high frequency changes of both parameters. The manifestations of this relation in ocean-atmosphere carbon dioxide exchange and ocean acidification are explored.

  8. An intercomparison exercise for oceanic carbon dioxide measurements

    Science.gov (United States)

    Dickson, Andrew G.

    The Joint Scientific Committee on Oceanic Research (SCOR)/United Nations Educational, Scientific, and Cultural Organization (UNESCO/International Council for the Exploration of the Sea (ICES)/International Association for Physical Sciences of the Ocean (IAPSO) Panel on Oceanographic Tables and Standards (JPOTS) recently established a Sub-Panel on Standards for Carbon Dioxide Measurements. The terms of reference for this subpanel are coordination and assessment of work done toward preparing carbon dioxide standards for oceanographic measurements, and development of recommendations for the production and use of such standards. Members are A. G. Dickson (Scripps Institution of Oceanography, La Jolla, Calif.), chairman; F. Culkin (Institute of Oceanographic Sciences, Wormley, U.K.), A. Poisson (Universite Pierre et Marie Curie, Paris), C. S. Wong (Institute of Ocean Sciences, Sidney, Canada), and F. J. Millero (University of Miami, Miami, Fla.).

  9. Carbon Dioxide Management on the International Space Station

    Science.gov (United States)

    Burlingame, Katie

    2016-01-01

    The International Space Station (ISS) is a manned laboratory operating in orbit around the Earth that was built and is currently operated by several countries across the world. The ISS is a platform for novel scientific research as well as a testbed for technologies that will be required for the next step in space exploration. In order for astronauts to live on ISS for an extended period of time, it is vital that on board systems consistently provide a clean atmosphere. One contaminant that must be removed from the atmosphere is carbon dioxide (CO2). CO2 levels on ISS are higher than those on Earth and can cause crew members to experience symptoms such as headaches, lethargy and mental slowness. A variety of systems exist on ISS to remove carbon dioxide, including adsorbent technologies which can be reused and testbed technologies for future space vehicles.

  10. Syneresis of Vitreous by Carbon Dioxide Laser Radiation

    Science.gov (United States)

    Bridges, T. J.; Patel, C. K. N.; Strnad, A. R.; Wood, O. R.; Brewer, E. S.; Karlin, D. B.

    1983-03-01

    In carbon dioxide laser surgery of the vitreous a process of vaporization has been advocated. In this report syneresis, a thermal liquefaction of gel, is shown to be over ten times more efficient on an energy basis than vaporization. Syneresis of vitreous is experimentally shown to be a first-order kinetic process with an activation energy of 41 ± 0.5 kilocalories per mole. A theory of laser surgery in which this figure is used agrees closely with results from laser experiments on human eye-bank vitreous. The syneresis of vitreous by carbon dioxide laser radiation could lead to a more delicate form of ocular microsurgery, and application to other biological systems may be possible.

  11. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    Science.gov (United States)

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes.

  12. Simulation of the interaction of methane, carbon dioxide and coal

    Institute of Scientific and Technical Information of China (English)

    Nie Baisheng; Wang Longkang; Li Xiangchun; Wang Chao; Li Li

    2013-01-01

    Gas adsorption has an important influence on gas flow in a coal body. Research on the characteristics of coal and gas adsorption is the theoretical basis for studying gas flow in coal. In this paper, the interaction between methane, carbon dioxide and surface molecules of anthracite was simulated using the quantum chemistry method. Adsorption energy and adsorption configurations of different quantities of gas mole-cules absorbed on the coal surface were calculated. The results show that adsorption between coal and the two kinds of gas molecules is a physical adsorption process and there is an optimal configuration. Gas molecules are more easily adsorbed in the hydroxyl-containing side chain, while it is difficult for them to be adsorbed at the position of the benzene ring. Besides, carbon dioxide molecules are more readily adsorbed on the coal surface than methane molecules. The findings have an important signifi-cance in revealing the nature of gas adsorption in coal.

  13. Schwannoma of tongue base treated with transoral carbon dioxide laser.

    Science.gov (United States)

    Mehrzad, H; Persaud, R; Papadimitriou, N; Kaniyur, S; Mochloulis, G

    2006-12-01

    Schwannomas are benign slow growing solitary tumours of nerve sheath origin and can arise from any myelinated nerve. They have been reported to occur in most parts of the body with the highest incidence (25%) in the head and neck region, although tongue base lesions are rare. The tumour is resistant to radiotherapy, and therefore, the treatment of choice is surgery. We present a case of a tongue base schwannoma which was completely extirpated with a carbon dioxide laser via the transoral approach. The patient experienced virtually no morbidity from the use of the laser. Whilst tongue base schwannoma has been documented, we could not find an earlier report in the English literature describing our method of treatment. We conclude that transoral carbon dioxide laser can be added to the surgical armamentarium for the management of other similar cases in the future.

  14. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of

  15. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  16. Scaled Facility Design Approach for Pool-Type Lead-Bismuth Eutectic Cooled Small Modular Reactor Utilizing Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangrok; Shin, Yong-Hoon; Lee, Jueun; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    In low carbon era, nuclear energy is the most prominent energy source of electricity. For steady ecofriendly nuclear energy supply, Generation IV reactors which are future nuclear reactor require safety, sustainability, economics and non-proliferation as four criteria. Lead cooled fast reactor (LFR) is one of these reactor type and Generation IV international forum (GIF) adapted three reference LFR systems which are a small and movable systems with long life without refueling, intermediate size and huge electricity generation system for power grid. NUTRECK (Nuclear Transmutation Energy Center of Korea) has been designed reactor called URANUS (Ubiquitous, Rugged, Accident-forgiving, Non-proliferating, and Ultra-lasting Sustainer) which is small modular reactor and using lead-bismuth eutectic coolant. To prove natural circulation capability of URANUS and analyze design based accidents, scaling mock-up experiment facility will be constructed. In this paper, simple specifications of URANUS will be presented. Then based on this feature, scaling law and scaled facility design results are presented. To validate safety feature and thermodynamics characteristic of URANUS, scaled mockup facility of URANUS is designed based on the scaling law. This mockup adapts two area scale factors, core and lower parts of mock-up are scaled for 3D flow experiment. Upper parts are scaled different size to reduce electricity power and LBE tonnage. This hybrid scaling method could distort some thermal-hydraulic parameters, however, key parameters for experiment will be matched for up-scaling. Detailed design of mock-up will be determined through iteration for design optimization.

  17. Efficiency of Carbon Dioxide Fractional Laser in Skin Resurfacing

    Directory of Open Access Journals (Sweden)

    Andrej Petrov

    2016-05-01

    CONCLUSION: Multifunctional fractional carbon dioxide laser used in treatment of patients with acne and pigmentation from acne, as well as in the treatment of scars from different backgrounds, is an effective and safe method that causes statistically significant better effect of the treatment, greater patients’ satisfaction, minimal side effects and statistically better response to the therapy, according to assessments by the patient and the therapist.

  18. Extraction of olive oil with supercritical carbon dioxide / Ilana Geerdts

    OpenAIRE

    Geerdts, Ilana

    2005-01-01

    The principal objective of this study was to extract olive oil from the fruit of Olea europaea by means of supercritical carbon dioxide (sc-C02) as an alternative to traditional methods. Extractions were performed on a laboratory scale supercritical fluid extractor of the latest design, featuring three mutually independent flow systems and extremely high flow rates. A number of extraction runs based on a statistical design was performed to establish the conditions (time, pressu...

  19. Effect of temperature on carbon dioxide absorption in monoethanolamine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rocio Maceira; Estrella Alvarez; M. Angeles Cancela [University of Vigo, Vigo (Spain). Chemical Engineering Department

    2008-05-01

    The effect of temperature on volumetric mass transfer coefficient was studied during the absorption process of carbon dioxide in monoethanolamine aqueous solutions, using a square bubble column. Our studies provide an empirical correlation type Boltzmann to estimate the temperature operated, at different amine concentrations and gas flow rates. An excellent agreement has been shown between predicted and experimental data (r{sup 2} {gt} 0.991).

  20. Oxygen isotopic composition of carbon dioxide in the middle atmosphere

    OpenAIRE

    Liang, Mao-Chang; Blake, Geoffrey A.; Lewis, Brenton R.; Yung, Yuk L.

    2007-01-01

    The isotopic composition of long-lived trace molecules provides a window into atmospheric transport and chemistry. Carbon dioxide is a particularly powerful tracer, because its abundance remains >100 parts per million by volume (ppmv) in the mesosphere. Here, we successfully reproduce the isotopic composition of CO2 in the middle atmosphere, which has not been previously reported. The mass-independent fractionation of oxygen in CO2 can be satisfactorily explained by the exchange reaction with...

  1. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo

    2010-03-15

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  2. Irreversible climate change due to carbon dioxide emissions.

    Science.gov (United States)

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.

  3. Carbon dioxide emission from brickfields around Bangladesh

    Directory of Open Access Journals (Sweden)

    M.A. Imran

    2014-12-01

    Full Text Available The study was undertaken at six divisions of Bangladesh to investigate the CO2 emission from brickfields. to explore the rate of carbon emission over the last 10 years, based on existing technology for brick production. The finding reveals that there were more than 45,000 Brick kilns in Bangladesh which together account for about 95% of operating kilns including Bull's Trench Kiln, Fixed Chimney Kiln, Zigzag Kiln and Hoffman Kiln. These kilns were the most carbon emitting source but it varies on fuel type, kiln type and also for location. It has been found that, maximum carbon emission area was Chittagong, which was 93.150 with percentage of last 10 years and 9.310 per cent per year. Whereas Sylhet was lower carbon emission area indicating percentage 17.172 of last 10 years and 4.218 percent per year. It has been found that total annual amount of CO2 emission for 4 types brick kilns from Dhaka, Chittagong, Rajshahi, Khulana, Sylhet and Barisal were 8.862 Mt yr-1, 10.048 Mt yr-1, 12.783 Mt yr-1, 15.250 Mt yr-1, in the year of 2002, 2005, 2007 and 2010 respectively. In Mymensingh district, the maximum CO2 emission and coal consumption was obtained in Chamak brick field, which was 1882 tons and 950 tons, respectively and minimum was obtained in Zhalak brick field, which was 1039.5 tons and 525.0 tons, respectively during the year of 2013. The percentage in last 10 years of CO2 emission was 72.784 and per cent per year 7.970, which is very alarming for us. The estimates obtained from surveys and on-site investigations indicate that these kilns consume an average of 240 tons of coal to produce 1 million bricks. This type of coal has a measured calorific value of 6,400 KJ, heating value of coal is 20.93 GJ t-1 and it produces 94.61 TJ t-1 and 56.1 TJ t-1 CO2 from coal and natural gas, respectively.

  4. [Plant responses to elevated atmospheric carbon dioxide and transmission to other trophic levels]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, D.E.

    1995-10-01

    This program investigated how host plant responses to elevated atmospheric carbon dioxide may be transmitted to other trophic levels, especially leaf eating insects, and alter consumption of leaves and impare their function. Study results included the following findings: increased carbon dioxide to plants alters feeding by insect herbivores; leaves produced under higher carbon conditions contain proportionally less nitrogen; insect herbivores may have decreased reproduction under elevated carbon dioxide.

  5. Transient Load Following and Control Analysis of Advanced S-CO2 Power Conversion with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, Anton; Sienicki, James J.

    2016-01-01

    Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for load following operation in regions where dry air cooling is a requirement

  6. Sustainable catalyst supports for carbon dioxide gas adsorbent

    Science.gov (United States)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  7. Study on carbon dioxide conversion by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Hyun; Park, Geun Il; Cho, Il Hoon; Choi, Sang Do; Hong, Kwang Hee; Lee, Chang Woo

    1999-09-01

    This study was carried out to investigate the synergistic effects on the CO{sub 2} conversion by the application of semiconductor in the field of gamma-ray. Gamma-ray irradiation was performed to examine the effects of semiconductor application on CO{sub 2} conversion in water and the formation of organic material from carbonate solution. From experimental results it is clear that the supplication of semiconductor in the field of gamma-ray increases the efficiency for CO{sub 2} conversion to organic matter. Based on the obtained experimental results it is obvious that the synergistic effects of semiconductor materials in the gamma-ray field leads to increase of the CO{sub 2} conversion yield to organic matter up to 50 percent compared to the gamma-ray irradiation. The way of achieving higher activity is due to thecatalytic action of semiconductor by gamma-ray irradiation. Zr-doped TiO{sub 2} catalyst prepared by sol-gel method exhibits the higher efficiency for CO{sub 2} conversion in aqueous solution and carbonate containing solution. This effect of Zr-doping can be explained by the formation of additional defects in surface of TiO{sub 2} film. (author)

  8. A 50-100 kWe gas-cooled reactor for use on Mars.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Curtis D. (.)

    2006-04-01

    In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered.

  9. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  10. Comparison of In-Vessel Shielding Design Concepts between Sodium-cooled Fast Burner Reactor and the Sodium-cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sunghwan; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, quantities of in-vessel shields were derived and compared each other based on the replaceable shield assembly concept for both of the breeder and burner SFRs. Korean Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) like SFR was used as the reference reactor and calculation method reported in the reference was used for shielding analysis. In this paper, characteristics of in-vessel shielding design were studied for the burner SFR and breeder SFR based on the replaceable shield assembly concept. An in-vessel shield to prevent secondary sodium activation (SSA) in the intermediate heat exchangers (IHXs) is one of the most important structures for the pool type Sodium-cooled Fast Reactor (SFR). In our previous work, two in-vessel shielding design concepts were compared each other for the burner SFR. However, a number of SFRs have been designed and operated with the breeder concept, in which axial and radial blankets were loaded for fuel breeding, during the past several decades. Since axial and radial blanket plays a role of neutron shield, comparison of required in-vessel shield amount between the breeder and burner SFRs may be an interesting work for SFR designer. Due to the blanket, the breeder SFR showed better performance in axial neutron shielding. Hence, 10.1 m diameter reactor vessel satisfied the design limit of SSA at the IHXs. In case of the burner SFR, due to more significant axial fast neutron leakage, 10.6 m diameter reactor vessel was required to satisfy the design limit of SSA at the IHXs. Although more efficient axial shied such as a mixture of ZrH{sub 2} and B{sub 4}C can improve shielding performance of the burner SFR, additional fabrication difficulty may mitigate the advantage of improved shielding performance. Therefore, it can be concluded that the breeder SFR has better characteristic in invessel shielding design to prevent SSA at the IHXs than the burner SFR in the pool-type reactor.

  11. Optimization of Internal Cooling Fins for Metal Hydride Reactors

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Kukkapalli

    2016-06-01

    Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.

  12. Preliminary Reactor Head Bolt Design of Prototype Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Han, Insu; Koo, Gyeonghoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    As structural requirements, the reactor head is designed to withstand all of the pressure, temperatures and forces which are likely to be imposed on it. The bolts that fasten the head to the vessel flange. Design of the reactor head bolts so as to withstand the loads applied should be designed. Currently, preliminary design of the PGSFR reactor bolts is progressed. So far, we have designed and evaluated example. The number and cross-sectional areas of bolts were determined using the procedure given in ASME BPVC Section III, Division 1, Appendix E. The purpose of this study is to conduct design the number and cross-sectional area of bolts attaching the PGSFR reactor head to the reactor vessel, using the ASME procedure. In this paper, preliminary bolt design for PGSFR was carried out according to the ASME procedure. Detailed calculations were carried out for bolt root diameter = 80 mm and number of bolts Nb = 45. It should be noted that the seating pressure recommended in the ASME code is only a suggested value, not mandatory appendix E. It does not guarantee a leak-tight joint. So these quantities are needed to carry out fatigue analysis of the bolts and to assure leak tightness of the joint during operation. For the future work, the fatigue and seismic analysis will be performed.

  13. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  14. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    Science.gov (United States)

    Archer, David; Eby, Michael; Brovkin, Victor; Ridgwell, Andy; Cao, Long; Mikolajewicz, Uwe; Caldeira, Ken; Matsumoto, Katsumi; Munhoven, Guy; Montenegro, Alvaro; Tokos, Kathy

    2009-05-01

    CO2 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere, the ocean, and the terrestrial biosphere on timescales of a few centuries. However, a sizeable fraction of the CO2 remains in the atmosphere, awaiting a return to the solid earth by much slower weathering processes and deposition of CaCO3. Common measures of the atmospheric lifetime of CO2, including the e-folding time scale, disregard the long tail. Its neglect in the calculation of global warming potentials leads many to underestimate the longevity of anthropogenic global warming. Here, we review the past literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial results from a model intercomparison project on this topic. The models agree that 20-35% of the CO2 remains in the atmosphere after equilibration with the ocean (2-20 centuries). Neutralization by CaCO3 draws the airborne fraction down further on timescales of 3 to 7 kyr.

  15. Surface chemistry of carbon dioxide revisited

    Science.gov (United States)

    Taifan, William; Boily, Jean-François; Baltrusaitis, Jonas

    2016-12-01

    This review discusses modern developments in CO2 surface chemistry by focusing on the work published since the original review by H.J. Freund and M.W. Roberts two decades ago (Surface Science Reports 25 (1996) 225-273). It includes relevant fundamentals pertaining to the topics covered in that earlier review, such as conventional metal and metal oxide surfaces and CO2 interactions thereon. While UHV spectroscopy has routinely been applied for CO2 gas-solid interface analysis, the present work goes further by describing surface-CO2 interactions under elevated CO2 pressure on non-oxide surfaces, such as zeolites, sulfides, carbides and nitrides. Furthermore, it describes additional salient in situ techniques relevant to the resolution of the interfacial chemistry of CO2, notably infrared spectroscopy and state-of-the-art theoretical methods, currently used in the resolution of solid and soluble carbonate species in liquid-water vapor, liquid-solid and liquid-liquid interfaces. These techniques are directly relevant to fundamental, natural and technological settings, such as heterogeneous and environmental catalysis and CO2 sequestration.

  16. Growth enhancement by soil derived carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Grodzinski, B.; Wallis, M.; O' Sullivan, J. (Univ. of Guelph, Ontario (Canada))

    1989-04-01

    The objective of this study was to investigate the role which naturally evolved CO{sub 2} from the soil can play in the early growth and establishment of vegetable transplants in the field. Two planting dates were utilized to examine the effects of the time of tunnel placement on development of a crop of bell peppers, Capsicum annuum L. Ambient CO{sub 2} levels were 340 {plus minus} 4 ppm. In the first 3 weeks of spring (May) CO levels 2 to 3 cm above the soil surface were 420 to 480 ppm. Inside plastic tunnels the upward flux of CO{sub 2} evolved from the soil was restricted effectively raising the tunnel atmosphere to over 3000 ppm even at midday. Data from parallel field and controlled environment chamber experiments support the view that 25-40% of the increase in seedling growth in the field tunnels in the spring was due to enhanced photosynthesis and carbon partitioning into both sugars and starch not merely the elevated temperatures associated with protected structures.

  17. Prospects for the utilization of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E.; Tommasi, I. (Universita degli Studi, Bari (Italy). Dipatimento di Chimica)

    1992-01-01

    The paper discusses the recovery and fixation of CO{sub 2}. Industrial applications of CO{sub 2} can be divided as follows:- non-synthetic industrial uses such as waste water treatment and food additives; utilization in the synthesis of organic chemicals; and the synthesis of intermediates and specialty chemicals such as urea and pharmaceuticals. The evaluation criteria for CO{sub 2} utilization pathways are:- the added value of the products; the energy requirements of the product; the rate of CO{sub 2} conversion; and the lifetime of the product. The conversion of CO{sub 2} into fuels raises three main questions: the amount of CO{sub 2} used, the source of energy from CO{sub 2} reduction and the rate of conversion of CO{sub 2}. The fixation of CO{sub 2} in organic materials such as carbonates may be of great relevance to the permanent fixation of CO{sub 2}. 5 refs., 3 figs., 6 tabs.

  18. Evaluation of proposed German safety criteria for high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Barsell, A.W.

    1980-05-01

    This work reviews proposed safety criteria prepared by the German Bundesministerium des Innern (BMI) for future licensing of gas-cooled high-temperature reactor (HTR) concepts in the Federal Republic of Germany. Comparison is made with US General Design Criteria (GDCs) in 10CFR50 Appendix A and with German light water reactor (LWR) criteria. Implications for the HTR design relative to the US design and safety approach are indicated. Both inherent characteristics and design features of the steam cycle, gas turbine, and process heat concepts are taken into account as well as generic design options such as a pebble bed or prismatic core.

  19. Microchannel Heat Exchangers with Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Ohadi, M.M.; Radermacher, R.

    2001-09-15

    The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient

  20. Trade-offs between solar radiation management, carbon dioxide removal, emissions mitigation and adaptation

    Science.gov (United States)

    Vaughan, Naomi; Lenton, Timothy

    2010-05-01

    The possible use of solar radiation control strategies to counteract global warming is explored through a number scenarios of different anthropogenic CO2 emission reduction pathways and carbon dioxide removal interventions. Using a simple Earth system model, we illustrate the trade-offs between CO2 emission reduction, the use of carbon dioxide removal geoengineering interventions (‘negative emissions') and solar radiation management (SRM). These relationships are illustrated over a multi-centennial timescale, allowing sufficient time for the carbon-cycle to respond to the anthropogenic perturbation. The anthropogenic CO2 emission scenarios (focussing on those from fossil fuel combustion) range from more to less stringent mitigation of emissions and includes the scenario assumed in our previous work on the maximum cooling potential of different geoengineering options. Results are presented in terms of transient atmospheric CO2 concentration and global mean temperature from year 1900 to year 2500. Implementation of solar radiation control strategies requires an understanding of the timing and effect of terminating such an intervention, a so called ‘exit strategy'. The results illustrate a number of considerations regarding exit strategies, including the inherent commitment to either carbon dioxide removal interventions, or the length of time the solar radiation control mechanism must be maintained for. The impacts of the various trade-offs are also discussed in the context of adaptation and adaptive resilience. The results have a bearing on policy and long term planning by illustrating some of the important assumptions regarding implementation of solar radiation management. These include baseline assumptions about emission mitigation efforts, timescale of intervention maintenance and impacts on adaptation.