WorldWideScience

Sample records for carbon degradation pathways

  1. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway.

    Science.gov (United States)

    Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien

    2015-10-27

    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs.

  2. Structure of PhnP: a phosphodiesterase of the carbon-phosphorous lyase pathway for phosphonate degradation

    DEFF Research Database (Denmark)

    Podzelinska, Kateryna; He, Shu-Mei; Wathier, Matthew;

    2009-01-01

    similar to that of the tRNase Z endonucleases but lacks the long exosite module used by these enzymes to bind their tRNA substrates. The active site of PhnP contains what are probably two Mn2+ ions surrounded by an array of active site residues that are identical to those observed in the tRNase Z enzymes......Carbon-phosphorus lyase is a multienzyme system encoded by the phn operon that enables bacteria to metabolize organophosphonates when the preferred nutrient, inorganic phosphate, is scarce. One of the enzymes encoded by this operon, PhnP, is predicted by sequence homology to be a metal...

  3. The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control.

    Science.gov (United States)

    Millerioux, Yoann; Ebikeme, Charles; Biran, Marc; Morand, Pauline; Bouyssou, Guillaume; Vincent, Isabel M; Mazet, Muriel; Riviere, Loïc; Franconi, Jean-Michel; Burchmore, Richard J S; Moreau, Patrick; Barrett, Michael P; Bringaud, Frédéric

    2013-10-01

    The Trypanosoma brucei procyclic form resides within the digestive tract of its insect vector, where it exploits amino acids as carbon sources. Threonine is the amino acid most rapidly consumed by this parasite, however its role is poorly understood. Here, we show that the procyclic trypanosomes grown in rich medium only use glucose and threonine for lipid biosynthesis, with threonine's contribution being ∼ 2.5 times higher than that of glucose. A combination of reverse genetics and NMR analysis of excreted end-products from threonine and glucose metabolism, shows that acetate, which feeds lipid biosynthesis, is also produced primarily from threonine. Interestingly, the first enzymatic step of the threonine degradation pathway, threonine dehydrogenase (TDH, EC 1.1.1.103), is under metabolic control and plays a key role in the rate of catabolism. Indeed, a trypanosome mutant deleted for the phosphoenolpyruvate decarboxylase gene (PEPCK, EC 4.1.1.49) shows a 1.7-fold and twofold decrease of TDH protein level and activity, respectively, associated with a 1.8-fold reduction in threonine-derived acetate production. We conclude that TDH expression is under control and can be downregulated in response to metabolic perturbations, such as in the PEPCK mutant in which the glycolytic metabolic flux was redirected towards acetate production.

  4. Degradation of aromatic compounds and degradative pathway of 4-nitrocatechol by Ochrobactrum sp. B2.

    Science.gov (United States)

    Zhong, Qiuzan; Zhang, Haiyan; Bai, Wenqin; Li, Mei; Li, Baotong; Qiu, Xinghui

    2007-12-01

    The potential capacity of a soil methyl parathion-degrading bacterium strain, Ochrobactrum sp. B2, for degrading various aromatic compounds were investigated. The results showed B2 was capable of degrading diverse aromatic compounds, but amino-substituted benzene compounds, at a concentration up to 100 mg L(-1) in 4 days. B2 could use 4-nitrocatechol (4-NC) as a sole carbon and energy source with release of nitrite ion. The pathway for 4-NC degradation via 1,2,4-benzenetriol (BT) and hydroquinone (HQ) formation in B2 was proposed based on the identification and quantification of intermediates by gas chromatography-mass spectrometry (GC-MS), and high performance liquid chromatography (HPLC). Degradation studies carried out on a plasmid-cured derivative showed that the genes for 4-NC degradative pathway was plasmid-borne in B2, suggesting that B2 degrades both p-nitrophenol and 4-NC by enzymes encoded by genes on the same plasmid.

  5. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  6. Improving Carbon Fixation Pathways

    OpenAIRE

    Ducat, Daniel C.; Silver, Pamela A

    2012-01-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing...

  7. Enzymatic degradation of multiwalled carbon nanotubes.

    Science.gov (United States)

    Zhao, Yong; Allen, Brett L; Star, Alexander

    2011-09-01

    Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood; however, many reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective and safe degradation of MWNTs. In this article, we investigated the effect of chemical functionalization of MWNTs on their enzymatic degradation with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). We investigated HRP/H(2)O(2) degradation of purified, oxidized, and nitrogen-doped MWNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side wall defects. These results provide a better understanding of the interaction between HRP and carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of nanotubes.

  8. Fenton degradation of Cartap hydrochloride: identification of the main intermediates and the degradation pathway.

    Science.gov (United States)

    Tian, Kaixun; Ming, Cuixiang; Dai, Youzhi; Honore Ake, Kouassi Marius

    2015-01-01

    The advanced oxidation of Cartap hydrochloride (Cartap) promoted by the Fenton system in an aqueous medium was investigated. Based on total organic carbon, chemical oxygen demand and high-performance liquid chromatography, the oxidation of Cartap is quite efficient by the Fenton system. Its long chain is easily destroyed, but the reaction does not proceed to complete mineralization. Ion chromatography detection indicated the formation of acetic acid, propionic acid, formic acid, nitrous acid and sulfuric acid in the reaction mixtures. Further evidence of nitrogen monoxide and sulfur dioxide formation was obtained by using a flue gas analyzer. Monitoring by gas chromatograph-mass spectrometer demonstrated the formation of oxalic acid, ethanol, carbon dioxide, and L-alanine ethylamide. Based on these experimental results, plausible degradation pathways for Cartap mineralization in an aqueous medium by the Fenton system are proposed.

  9. Mechanochemical degradation of tetrabromobisphenol A: Performance, products and pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kunlun; Huang, Jun; Zhang, Wang; Yu, Yunfei; Deng, Shubo [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Yu, Gang, E-mail: yg-den@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Fe + SiO{sub 2} shows better performance than CaO in mechanochemical destruction of TBBPA. Black-Right-Pointing-Pointer Nonhazardous inorganic carbon and soluble bromide were the final products. Black-Right-Pointing-Pointer Raman and FTIR imply the generation of inorganic carbon and removal of bromine atom. Black-Right-Pointing-Pointer Tri-BBPA, bi-BBPA, mono-BBPA, BPA were the main intermediates during ball milling. Black-Right-Pointing-Pointer The bromine was balanced and the degradation pathway was proposed. - Abstract: Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant (BFR), which has received more and more concerns due to its high lipophilicity, persistency and endocrine disrupting property in the environment. Considering the possible need for the safe disposal of TBBPA containing wastes in the future, the potential of mechanochemical (MC) destruction as a promising non-combustion technology was investigated in this study. TBBPA was co-ground with calcium oxide (CaO) or the mixture of iron powder and quartz sand (Fe + SiO{sub 2}) in a planetary ball mill at room temperature. The method of Fe + SiO{sub 2} destructed over 98% of initial TBBPA after 3 h and acquired 95% debromination rate after 5 h, which showed a better performance than the CaO method. Raman spectra and Fourier transform infrared spectroscopy (FTIR) demonstrated the generation of inorganic carbon with the disappearance of benzene ring and C-Br bond, indicating the carbonization and debromination process during mechanochemical reaction. LC-MS-MS screening showed that the intermediates of the treatment with Fe + SiO{sub 2} were tri-, bi-, mono-brominated BPA, BPA and other fragments. Finally all the intermediates were also destroyed after 5 h grinding. The bromine balance was calculated and a possible reaction pathway was proposed.

  10. Bioenergetics and pathway of acid blue 113 degradation by Staphylococcus lentus.

    Science.gov (United States)

    Sekar, Sudharshan; Mahadevan, Surianarayanan; Shanmugam, Bhuvanesh Kumar; Mandal, Asit Baran

    2012-01-01

    Bioreaction calorimetric studies of degradation of the dye acid blue 113 by Staphylococcus lentus are reported for the first time. The heat released during the dye degradation process can be successfully measured using reaction calorimeter. Power time and oxygen uptake rate (OUR) profile followed each other suggesting that heat profiles could monitor the progress of the dye degradation in biocalorimetry. The shifts observed in power-time profile indicated three distinct phases of the bioprocess indicating simultaneous utilization of glucose (primary) and dye (secondary carbon source). Secretion of azoreductase enzyme enhanced the degradation process. Optimization of aeration and agitation rates was observed to be vital to efficient dye degradation. The degradative pathway for acid blue 113 by S. lentus was delineated via high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), and gas chromatography coupled with mass spectrometry (GC-MS) analyses. Interestingly the products of degradation were found to have low toxicity, as per cytotoxicity measurements.

  11. Inhibitors and pathways of hepatocytic protein degradation.

    Science.gov (United States)

    Seglen, P O; Gordon, P B; Grinde, B; Solheim, A; Kovács, A L; Poli, A

    1981-01-01

    On the basis of experiments using amino acids and various inhibitors (lysosomotropic amines, leupeptin, chymostatin, vanadate, vinblastine, anoxia, methylaminopurines), five different modes of endogenous protein degradation in isolated rat hepatocytes can be distinguished. The two non-lysosomal (amine-resistant) mechanisms preferentially degrade relatively labile (short-lived) proteins: one of these mechanisms is energy-dependent and chymostatin-sensitive, the other is not. Of the three lysosomal (amine-sensitive) mechanisms, one--quantitatively minor--is amino acid-resistant and preferentially degrades labile proteins. The two amino acid-sensitive mechanisms each seen account for about one-half of the degradation of relatively stable (long-lived) proteins; one of them is suppressed by leucine and apparently corresponds to the formation of electron microscopically visible autophagosomes; the other may represent a different type of autophagy, inhibited by asparagine and glutamine. A new class of inhibitors, the purine derivatives (methylated 6-aminopurines, and 6-mercaptopurines) appear to specifically suppress autophagic/lysosomal protein degradation, and may help to further elucidate the mechanisms of autophagy.

  12. Microbial PAH-Degradation in Soil: Degradation Pathways and Contributing Factors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu-Xiang; CHENG Shu-Pei; ZHU Cheng-Jun; SUN Shi-Lei

    2006-01-01

    Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.

  13. Pathways for degradation of plastic polymers floating in the marine environment.

    Science.gov (United States)

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

  14. Properties and degradability of hydrothermal carbonization products.

    Science.gov (United States)

    Eibisch, Nina; Helfrich, Mirjam; Don, Axel; Mikutta, Robert; Kruse, Andrea; Ellerbrock, Ruth; Flessa, Heinz

    2013-09-01

    Biomass carbonized via hydrothermal carbonization (HTC) yields a liquid and a carbon (C)-rich solid called hydrochar. In soil, hydrochars may act as fertilizers and promote C sequestration. We assumed that the chemical composition of the raw material (woodchips, straw, grass cuttings, or digestate) determines the properties of the liquid and solid HTC products, including their degradability. Additionally, we investigated whether easily mineralizable organic components adsorbed on the hydrochar surface influence the degradability of the hydrochars and could be removed by repetitive washing. Carbon mineralization was measured as CO production over 30 d in aerobic incubation experiments with loamy sand. Chemical analysis revealed that most nutrients were preferably enriched in the liquid phase. The C mineralization of hydrochars from woodchips (2% of total C added), straw (3%), grass (6%), and digestate (14%) were dependent on the raw material carbonized and were significantly lower (by 60-92%; < 0.05) than the mineralization of the corresponding raw materials. Washing of the hydrochars significantly decreased mineralization of digestate-hydrochar (up to 40%) but had no effect on mineralization rates of the other three hydrochars. Variations in C mineralization between different hydrochars could be explained by multiple factors, including differences in the O/C-H/C ratios, C/N ratios, lignin content, amount of oxygen-containing functional groups, and pH. In contrast to the solids, the liquid products were highly degradable, with 61 to 89% of their dissolved organic C being mineralized within 30 d. The liquids may be treated aerobically (e.g., for nutrient recovery).

  15. Phenanthrene-degrading pathway of Agrobacterium sp. Phx1

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lei; YUAN; Hongli; WANG; Shuangqing; HUANG; Huaize

    2005-01-01

    The metabolic pathway of phenanthrene-degrading strain Agrobacterium sp. Phx1 was investigated. Phx1 almost was able to transform 100 υg/mL of phenanthrene completely in 1 day in broth media of beef extract-peptone (BP), Luria-Bertani (LB) and mineral salts media (MS), and LB and BP could promote the growth and degradation efficiency of Phx1. The GC-MS was employed to analyze the metabolites of the 1st, 3rd, 7th days of phenanthrene degradation in MS. As a result, the 1-Hydroxy-2-naphthoic acid (1H2N) and 1-naphthol (NOL) were detected in the metabolites of the 1st day. Only NOL was observed on the 3rd day and it disappeared on the 7th day. The accumulated NOL did not pertain to the defined pathway of phenanthrene degradation by bacteria. The further HPLC study confirmed the finding in GC-MS analysis and found the production of catechol (CAT) from o-phthalic acid (OPA) in the phenanthrene metabolizing, which has never been reported in the defined degrading pathways. This production was also evidenced by the production of CAT using OPA as substrate. All of our results showed that the Agrobacterium sp. Phx1 had a novel phenanthrene-degrading pathway.

  16. When RNA and protein degradation pathways meet

    Directory of Open Access Journals (Sweden)

    Pascal eGENSCHIK

    2014-04-01

    Full Text Available RNA silencing has become a major focus of molecular and biomedical research in the last decade. This mechanism, which is conserved in most eukaryotes, has been extensively studied and is associated to various pathways implicated in the regulation of development, in the control of transposition events, heterochromatin maintenance and also playing a role in defense against viruses. Despite of its importance, the regulation of the RNA silencing machinery itself remains still poorly explored. Recently several reports in both plants and metazoans revealed that key components of RNA silencing, such as RNA-induced silencing complex (RISC component ARGONAUTE proteins, but also the endonuclease Dicer are subjected to proteasomal and autophagic pathways. Here we will review these post-translational proteolytic regulations with a special emphasis on plant research and also discuss their functional relevance.

  17. Cathodic degradation of antibiotics: characterization and pathway analysis.

    Science.gov (United States)

    Kong, Deyong; Liang, Bin; Yun, Hui; Cheng, Haoyi; Ma, Jincai; Cui, Minhua; Wang, Aijie; Ren, Nanqi

    2015-04-01

    Antibiotics in wastewaters must be degraded to eliminate their antibacterial activity before discharging into the environment. A cathode can provide continuous electrons for the degradation of refractory pollutants, however the cathodic degradation feasibility, efficiency and pathway for different kinds of antibiotics is poorly understood. Here, we investigated the degradation of four antibiotics, namely nitrofurazone (NFZ), metronidazole (MNZ), chloramphenicol (CAP), and florfenicol (FLO) by a poised cathode in a dual chamber electrochemical reactor. The cyclic voltammetry preliminarily proved the feasibility of the cathodic degradation of these antibiotics. The cathodic reducibility of these antibiotics followed the order of NFZ > MNZ > CAP > FLO. A decreased phosphate buffered solution (PBS) concentration as low as 2 mM or utilization of NaCl buffer solution as catholyte had significant influence on antibiotics degradation rate and efficiency for CAP and FLO but not for NFZ and MNZ. PBS could be replaced by Na2CO3-NaHCO3 buffer solution as catholyte for the degradation of these antibiotics. Reductive dechlorination of CAP proceeded only after the reduction of the nitro group to aromatic amine. The composition of the degradation products depended on the cathode potential except for MNZ. The cathodic degradation process could eliminate the antibacterial activity of these antibiotics. The current study suggests that the electrochemical reduction could serve as a potential pretreatment or advanced treatment unit for the treatment of antibiotics containing wastewaters.

  18. Epoxy Coenzyme A Thioester pathways for degradation of aromatic compounds.

    Science.gov (United States)

    Ismail, Wael; Gescher, Johannes

    2012-08-01

    Aromatic compounds (biogenic and anthropogenic) are abundant in the biosphere. Some of them are well-known environmental pollutants. Although the aromatic nucleus is relatively recalcitrant, microorganisms have developed various catabolic routes that enable complete biodegradation of aromatic compounds. The adopted degradation pathways depend on the availability of oxygen. Under oxic conditions, microorganisms utilize oxygen as a cosubstrate to activate and cleave the aromatic ring. In contrast, under anoxic conditions, the aromatic compounds are transformed to coenzyme A (CoA) thioesters followed by energy-consuming reduction of the ring. Eventually, the dearomatized ring is opened via a hydrolytic mechanism. Recently, novel catabolic pathways for the aerobic degradation of aromatic compounds were elucidated that differ significantly from the established catabolic routes. The new pathways were investigated in detail for the aerobic bacterial degradation of benzoate and phenylacetate. In both cases, the pathway is initiated by transforming the substrate to a CoA thioester and all the intermediates are bound by CoA. The subsequent reactions involve epoxidation of the aromatic ring followed by hydrolytic ring cleavage. Here we discuss the novel pathways, with a particular focus on their unique features and occurrence as well as ecological significance.

  19. Kinetics and pathways of cyanide degradation at high temperatures and pressures.

    Science.gov (United States)

    Oulego, Paula; Laca, Adriana; Diaz, Mario

    2013-02-05

    The degradation of cyanide was performed in a 1-L semibatch reactor at temperatures between 393 and 473 K and at total pressures in the range of 2.0-8.0 MPa. The initial pH of the solution was set at 11, whereas initial concentrations ranged from 3.85 to 25 mM, which resemble the typical concentrations of cyanide-containing wastewater. The change with time of cyanide concentration, intermediates, and final products was analyzed in order to elucidate the reaction pathways. The experimental results suggest two parallel pathways of alkaline hydrolysis for the degradation of the pollutant. Formate and ammonia were identified as the final reaction products for one of the pathways, whereas carbon dioxide, nitrogen, and hydrogen were considered to be the final products for the other one. The degradation reaction results were fitted to first-order kinetic equations with respect to cyanide, giving respectively activation energies of 108.2 ± 3.3 and 77.6 ± 3.0 kJ/mol. Consequently, the formation of formate and ammonia is favored at high temperatures, whereas low temperatures favored the pathway leading to the formation of carbon dioxide and nitrogen.

  20. Vacuole import and degradation pathway:Insights into a specialized autophagy pathway

    Institute of Scientific and Technical Information of China (English)

    Abbas; A; Alibhoy; Hui-Ling; Chiang

    2011-01-01

    Glucose deprivation induces the synthesis of pivotagluconeogenic enzymes such as fructose-1,6-bisphos-phatase, malate dehydrogenase, phosphoenolpyruvatecarboxykinase and isocitrate lyase in Saccharomycescerevisiae. However, following glucose replenishment,these gluconeogenic enzymes are inactivated and de-graded. Studies have characterized the mechanismsby which these enzymes are inactivated in response toglucose. The site of degradation of these proteins hasalso been ascertained to be dependent on the dura-tion of starvation. Glucose replenishment of short-termstarved cells results in these proteins being degradedin the proteasome. In contrast, addition of glucose tocells starved for a prolonged period results in theseproteins being degraded in the vacuole. In the vacuoledependent pathway, these proteins are sequestered inspecialized vesicles termed vacuole import and degra-dation (Vid). These vesicles converge with the endo-cytic pathway and deliver their cargo to the vacuolefor degradation. Recent studies have identified thatinternalization, as mediated by actin polymerization, isessential for delivery of cargo proteins to the vacuolefor degradation. In addition, components of the targetof rapamycin complex 1 interact with cargo proteins during glucose starvation. Furthermore, Tor1p dissoci-ates from cargo proteins following glucose replenish-ment. Future studies will be needed to elaborate on the importance of internalization at the plasma membrane and the subsequent import of cargo proteins into Vid vesicles in the vacuole dependent degradation pathway.

  1. Degradation changes stable carbon isotope depth profiles in palsa peatlands

    Directory of Open Access Journals (Sweden)

    J. P. Krüger

    2014-01-01

    Full Text Available Palsa peatlands are a significant carbon pool in the global carbon cycle and are projected to change by global warming due to accelerated permafrost thaw. Our aim was to use stable carbon isotopes as indicators of palsa degradation. Depth profiles of stable carbon isotopes generally reflect organic matter dynamics in soils with an increase of δ13C values during aerobic decomposition and stable or decreasing δ13C values with depth during anaerobic decomposition. Stable carbon isotope depth profiles of undisturbed and degraded sites of hummocks as well as hollows at three palsa peatlands in northern Sweden were used to investigate the degradation processes. The depth patterns of stable isotopes clearly differ between intact and degraded hummocks at all sites. Erosion and cryoturbation at the degraded sites significantly changes the stable carbon isotope depth profiles. At the intact hummocks the uplifting of peat material by permafrost is indicated by a turning in the δ13C depth trend and this assessment is supported by a change in the C / N ratios. For hollows isotope patterns were less clear, but some hollows and degraded hollows in the palsa peatlands show differences in their stable carbon isotope depth profiles indicating enhanced degradation rates. We conclude that the degradation of palsa peatlands by accelerated permafrost thawing could be identified with stable carbon isotope depth profiles. At intact hummocks δ13C depth patterns display the uplifting of peat material by a change in peat decomposition processes.

  2. Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway.

    Science.gov (United States)

    Chauhan, A; Samanta, S K; Jain, R K

    2000-05-01

    Pseudomonas cepacia RKJ200 (now described as Burkholderia cepacia) has been shown to utilize p-nitrophenol (PNP) as sole carbon and energy source. The present work demonstrates that RKJ200 utilizes 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy, and is degraded with concomitant release of nitrite ions. Several lines of evidence, including thin layer chromatography, gas chromatography, 1H-nuclear magnetic resonance, gas chromatography-mass spectrometry, spectral analyses and quantification of intermediates by high performance liquid chromatography, have shown that NC is degraded via 1,2, 4-benzenetriol (BT) and hydroquinone (HQ) formation. Studies carried out on a PNP- derivative and a PNP+ transconjugant also demonstrate that the genes for the NC degradative pathway reside on the plasmid present in RKJ200; the same plasmid had earlier been shown to encode genes for PNP degradation, which is also degraded via HQ formation. It is likely, therefore, that the same sets of genes encode the further metabolism of HQ in NC and PNP degradation.

  3. Kynurenine pathway in psychosis: evidence of increased tryptophan degradation.

    LENUS (Irish Health Repository)

    Barry, Sandra

    2009-05-01

    The kynurenine pathway of tryptophan degradation may serve to integrate disparate abnormalities heretofore identified in research aiming to elucidate the complex aetiopathogenesis of psychotic disorders. Post-mortem brain tissue studies have reported elevated kynurenine and kynurenic acid in the frontal cortex and upregulation of the first step of the pathway in the anterior cingulate cortex of individuals with schizophrenia. In this study, we examined kynurenine pathway activity by measuring tryptophan breakdown, a number of pathway metabolites and interferon gamma (IFN-gamma), which is the preferential activator of the first-step enzyme, indoleamine dioxygenase (IDO), in the plasma of patients with major psychotic disorder. Plasma tryptophan, kynurenine pathway metabolites were measured using high-performance liquid chromatography (HPLC) in 34 patients with a diagnosis on the psychotic spectrum (schizophrenia or schizoaffective disorder) and in 36 healthy control subjects. IFN-gamma was measured using enzyme-linked immunosorbent assay (ELISA). The mean tryptophan breakdown index (kynurenine\\/tryptophan) was significantly higher in the patient group compared with controls (P < 0.05). IFN-gamma measures did not differ between groups (P = 0.23). No relationship was found between measures of psychopathology, symptom severity and activity in the first step in the pathway. A modest correlation was established between the tryptophan breakdown index and illness duration. These results provide evidence for kynurenine pathway upregulation, specifically involving the first enzymatic step, in patients with major psychotic disorder. Increased tryptophan degradation in psychoses may have potential consequences for the treatment of these disorders by informing the development of novel therapeutic compounds.

  4. Degradation of toluene-2,4-diamine by persulphate: kinetics, intermediates and degradation pathway.

    Science.gov (United States)

    Jiang, Yong-hai; Zhang, Jin-bao; Xi, Bei-dou; An, Da; Yang, Yu; Li, Ming-xiao

    2015-01-01

    In this study, the degradation of toluene-2,4-diamine (TDA) by persulphate (PS) in an aqueous solution at near-neutral pH was examined. The result showed that the degradation rate of TDA increased with increasing PS concentrations. The optimal dosage of PS in the reaction system was determined by efficiency indicator (I) coupling in the consumption of PS and decay half-life of TDA. Calculation showed that 0.74 mM of PS was the most effective dosage for TDA degradation, at that level the maximum I of 24.51 was obtained. PS can oxidize TDA for an extended reaction time period. Under neutral condition without activation, four degradation intermediates, 2,4-diamino-3-hydroxy-5-sulfonicacidtoluene, 2,4-diaminobenzaldehyde, 2,4-bis(vinylamino)benzaldehyde and 3,5-diamino-4-hydroxy-2-pentene, were identified by high-performance liquid chromatography-mass spectrometry. The tentative degradation pathway of TDA was proposed as well. It was found that hydroxyl radical played an important role in degradation of TDA with the activation of Fe2+, whereas PS anion and sulphate radicals were responsible for the degradation without activation of Fe2+.

  5. The Branched-Chain Dodecylbenzene Sulfonate Degradation Pathway of Pseudomonas aeruginosa W51D Involves a Novel Route for Degradation of the Surfactant Lateral Alkyl Chain

    OpenAIRE

    Campos-García, Jesús; Esteve, Abraham; Vázquez-Duhalt, Rafael; Ramos, Juán Luis; Soberón-Chávez, Gloria

    1999-01-01

    Pseudomonas aeruginosa W51D is able to grow by using branched-chain dodecylbenzene sulfonates (B-DBS) or the terpenic alcohol citronellol as a sole source of carbon. A mutant derived from this strain (W51M1) is unable to degrade citronellol but still grows on B-DBS, showing that the citronellol degradation route is not the main pathway involved in the degradation of the surfactant alkyl moiety. The structures of the main B-DBS isomers and of some intermediates were identified by gas chromatog...

  6. The Branched-Chain Dodecylbenzene Sulfonate Degradation Pathway of Pseudomonas aeruginosa W51D Involves a Novel Route for Degradation of the Surfactant Lateral Alkyl Chain

    Science.gov (United States)

    Campos-García, Jesús; Esteve, Abraham; Vázquez-Duhalt, Rafael; Ramos, Juán Luis; Soberón-Chávez, Gloria

    1999-01-01

    Pseudomonas aeruginosa W51D is able to grow by using branched-chain dodecylbenzene sulfonates (B-DBS) or the terpenic alcohol citronellol as a sole source of carbon. A mutant derived from this strain (W51M1) is unable to degrade citronellol but still grows on B-DBS, showing that the citronellol degradation route is not the main pathway involved in the degradation of the surfactant alkyl moiety. The structures of the main B-DBS isomers and of some intermediates were identified by gas chromatography-mass spectrometric analysis, and a possible catabolic route is proposed. PMID:10427075

  7. Degradation of phenazone in aqueous solution with ozone: influencing factors and degradation pathways.

    Science.gov (United States)

    Miao, Heng-Feng; Cao, Meng; Xu, Dan-Yao; Ren, Hong-Yan; Zhao, Ming-Xing; Huang, Zhen-Xing; Ruan, Wen-Quan

    2015-01-01

    Oxidation kinetics and degradation pathways of phenazone (an analgesic and antipyretic drug) upon reaction with O3 were investigated. Kinetic studies on degradation of phenazone were carried out under different operating conditions such as temperature, pH, anions and H2O2 addition. Results showed that the degradation followed the pseudo-first-order kinetic model. The reaction rate constant (kobs) of phenazone reached the maximum at 20 °C (9.653×10(-3) s(-1)). The presence of NO3(-) could enhance the degradation rate, while the addition of HCO3(-), SO4(2)(-), Cl(-) and the rise of pH showed negative effects on the ozonation of phenazone. H2O2 addition increased the phenazone degradation efficiency by 45.9% with the optimal concentration of 0.135 mM. Reaction by-products were evaluated by UPLC-Q-TOF-MS, which allowed the identification of a total of 10 by-products. The transformation pathways of phenazone ozonation consisted mainly of electrophilic addition and substitution, pyrazole ring opening, hydroxylation, dephenylization and coupling. The toxicity of these intermediate products showed that they are expected not to be more toxic than phenazone, with the exception of P7 (aniline) and P10 (1,5-dimethyl-4-((1-methyl-2-phenylhydrazinyl)methoxy)-2-phenyl-1H-pyrazol-3(2H)-one).

  8. A carbon sink pathway increases carbon productivity in cyanobacteria.

    Science.gov (United States)

    Oliver, John W K; Atsumi, Shota

    2015-05-01

    The burning of fossil reserves, and subsequent release of carbon into the atmosphere is depleting the supply of carbon-based molecules used for synthetic materials including plastics, oils, medicines, and glues. To provide for future society, innovations are needed for the conversion of waste carbon (CO2) into organic carbon useful for materials. Chemical production directly from photosynthesis is a nascent technology, with great promise for capture of CO2 using sunlight. To improve low yields, it has been proposed that photosynthetic capacity can be increased by a relaxation of bottlenecks inherent to growth. The limits of carbon partitioning away from growth within the cell and the effect of partitioning on carbon fixation are not well known. Here we show that expressing genes in a pathway between carbon fixation and pyruvate increases partitioning to 2,3-butanediol (23BD) and leads to a 1.8-fold increase in total carbon yield in the cyanobacterium Synechococcus elongatus PCC 7942. Specific 2,3-butanediol production increases 2.4-fold. As partitioning increases beyond 30%, it leads to a steep decline in total carbon yield. The data suggests a local maximum for carbon partitioning from the Calvin Benson cycle that is scalable with light intensity.

  9. Aerobic Degradation of Dinitrotoluenes and Pathway for Bacterial Degradation of 2,6-Dinitrotoluene

    OpenAIRE

    Nishino, Shirley F.; Paoli, George C.; Spain, Jim C.

    2000-01-01

    An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2,6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon...

  10. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-06-01

    Full Text Available Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography-mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis, cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10-12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil.

  11. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    Science.gov (United States)

    Arora, Pankaj K.; Sharma, Ashutosh

    2015-01-01

    Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography–mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate, whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis,cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10–12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil. PMID:26082768

  12. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    Science.gov (United States)

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products.

  13. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways.

    Science.gov (United States)

    Brugmans, M C P; Sӧntjens, S H M; Cox, M A J; Nandakumar, A; Bosman, A W; Mes, T; Janssen, H M; Bouten, C V C; Baaijens, F P T; Driessen-Mol, A

    2015-11-01

    The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TE applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications.

  14. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    Science.gov (United States)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  15. A method to detect soil carbon degradation during soil erosion

    Directory of Open Access Journals (Sweden)

    F. Conen

    2009-11-01

    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 4.6 tha−1 yr−1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 500–600 and 350–400 years of erosion input into the wetlands Laui and Spissen, respectively. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  16. A method to detect soil carbon degradation during soil erosion

    Directory of Open Access Journals (Sweden)

    C. Alewell

    2009-06-01

    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 2.6 t ha−1 yr−1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 800 and 400 years of erosion input into the wetlands. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  17. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways

    Energy Technology Data Exchange (ETDEWEB)

    Haigler, B.E.; Spain, J.C. (Air Force Civil Engineering Support Agency, Tyndall AFB, FL (United States))

    1991-11-01

    Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. The authors have investigate the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of {sup 18}O{sub 2} indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1, 2-dihydroxy-3-nitrocyclohexa-3, 5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation.

  18. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells.

    Science.gov (United States)

    Huber, S C; Akazawa, T

    1986-08-01

    Enzymes of sucrose degradation and glycolysis in cultured sycamore (Acer pseudoplatanus L.) cells were assayed and characterized in crude extracts and after partial purification, in an attempt to identify pathways for sucrose catabolism. Desalted cell extracts contained similar activities (20-40 nanomoles per milligram protein per minute) of sucrose synthase, neutral invertase, glucokinase, fructokinase, phosphofructokinase, and UDPglucose pyrophosphorylase (assayed with 2 micromolar pyrophosphate (PPi). PPi-linked phosphofructokinase activity was virtually dependent upon fructose 2,6-bisphosphate, and the maximum activity exceeded that of ATP-linked phosphofructokinase. Hexokinase activity, with glucose as substrate, was highly specific for ATP, whereas fructokinase activity was relatively nonspecific. At 1 millimolar nucleoside triphosphate, fructokinase activity decreased in the order: UTP > ATP > CTP > GTP. We propose two pathways for sucrose degradation. One involves invertase action, followed by classical glycolysis of hexose sugars, and the other is a novel pathway initiated by sucrose synthase. The K(m) for sucrose of sucrose synthase was severalfold lower than that of neutral invertase (15 versus 65 millimolar), which may determine carbon partitioning between the two pathways. The sucrose synthase pathway proposed involves cycling of uridylates and PPi. UDPglucose pyrophosphorylase, which is shown to be an effective ;PPi-scavenger,' would consume PPi and form UTP. The UTP could be then utilized in the UTP-linked fructokinase reaction, thereby forming UDP for sucrose synthase. The source of PPi is postulated to arise from the back reaction of PPi-linked phosphofructokinase. Sycamore cells contained a substantial endogenous pool of PPi (about 3 nanomoles per gram fresh weight, roughly 1/10 the amount of ATP in these cells), and sufficient fructose 2,6-bisphosphate (0.09 nanomole per gram fresh weight) to activate the PPi-linked phosphofructokinase. Possible

  19. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    Science.gov (United States)

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration.

  20. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?

    Science.gov (United States)

    Pfeifer, Marion; Lefebvre, Veronique; Turner, Edgar; Cusack, Jeremy; Khoo, MinSheng; Chey, Vun K.; Peni, Maria; Ewers, Robert M.

    2015-04-01

    Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in deadwood across a tropical forest degradation gradient at the landscape scale remains poorly documented. Many carbon stock studies have either focused exclusively on live standing biomass or have been carried out in primary forests that are unaffected by logging, despite the fact that coarse woody debris (deadwood with ≥10 cm diameter) can contain significant portions of a forest’s carbon stock. We used a field-based assessment to quantify how the relative contribution of deadwood to total above-ground carbon stock changes across a disturbance gradient, from unlogged old-growth forest to severely degraded twice-logged forest, to oil palm plantation. We measured in 193 vegetation plots (25 × 25 m), equating to a survey area of >12 ha of tropical humid forest located within the Stability of Altered Forest Ecosystems Project area, in Sabah, Malaysia. Our results indicate that significant amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased exponentially with increasing forest degradation 7-10 years after logging while deadwood accounted for >50% of above-ground carbon stocks in salvage-logged forest stands, more than twice the proportion commonly assumed in the literature. This carbon will be released as decomposition proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia, our findings have important implications for the calculation of current carbon stocks and sources as a result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout the tropics, our data may indicate a significant global challenge to calculating global carbon fluxes, as selectively-logged forests now represent more than one third of all standing tropical humid forests worldwide.

  1. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    Science.gov (United States)

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program.

  2. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  3. Insights from 14C into C loss pathways in degraded peatlands

    Science.gov (United States)

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This

  4. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing......, such a change could profoundly affect the global carbon cycle....

  5. Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions.

    Science.gov (United States)

    Bordeleau, Geneviève; Martel, Richard; Bamba, Abraham N'Valoua; Blais, Jean-François; Ampleman, Guy; Thiboutot, Sonia

    2014-10-01

    The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils. The role of SOM in NG degradation has already been documented under anoxic conditions, and was attributed to SOM-mediated electron transfer involving different reducing agents. However, unsaturated soils are usually well-oxygenated, and it was not clear whether SOM could participate in NG degradation under these conditions. Our results from batch- and column-type experiments clearly demonstrate that in presence of dissolved organic matter (DOM) leached from a natural soil, partial NG degradation can be achieved. In presence of particulate organic matter (POM) from the same soil, complete NG degradation was achieved. Furthermore, POM caused rapid sorption of NG, which should result in NG retention in the organic matter-rich shallow horizons of the soil profile, thus promoting degradation. Based on degradation products, the reaction pathway appears to be reductive, in spite of the aerobic conditions. The relatively rapid reaction rates suggest that this process could significantly participate in the natural attenuation of NG, both on military training ranges and in contaminated soil at production facilities.

  6. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-07-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  7. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  8. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  9. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  10. Carbon cycle: New pathways in the sand

    Science.gov (United States)

    Rao, Alexandra

    2017-01-01

    Organic carbon decomposition in anoxic marine sediments was thought to be dominated by bacteria, but experimental data and microbial culture studies now show that microalgae buried in coastal sands may also play an important role in carbon turnover.

  11. Enzymatic `stripping' and degradation of PEGylated carbon nanotubes

    Science.gov (United States)

    Bhattacharya, Kunal; Sacchetti, Cristiano; El-Sayed, Ramy; Fornara, Andrea; Kotchey, Gregg P.; Gaugler, James A.; Star, Alexander; Bottini, Massimo; Fadeel, Bengt

    2014-11-01

    Single-walled carbon nanotubes (SWCNTs) coated or functionalized with PEG chains of different molecular weight were assessed for their propensity to undergo biodegradation under in vitro conditions using recombinant myeloperoxidase (MPO) or ex vivo using freshly isolated primary human neutrophils. Our findings suggest that under natural conditions, a combined process of `stripping' (i.e., defunctionalization) and biodegradation of PEG-SWCNTs might occur and that PEG-SWCNTs are a promising - and degradable - nanomedicine vector.Single-walled carbon nanotubes (SWCNTs) coated or functionalized with PEG chains of different molecular weight were assessed for their propensity to undergo biodegradation under in vitro conditions using recombinant myeloperoxidase (MPO) or ex vivo using freshly isolated primary human neutrophils. Our findings suggest that under natural conditions, a combined process of `stripping' (i.e., defunctionalization) and biodegradation of PEG-SWCNTs might occur and that PEG-SWCNTs are a promising - and degradable - nanomedicine vector. Electronic supplementary information (ESI) available: Experimental protocols and supplementary data [Suppl. Fig. S1: Characterization of ox-SWCNTs and PEG-modified SWCNTs by AFM; Suppl. Fig. S2: Recombinant MPO-mediated degradation of SWCNTs determined using Raman spectroscopy; Suppl. Fig. S3: Recombinant MPO-mediated degradation of SWCNTs visualized by UV/Vis-NIR spectroscopy; Suppl. Fig. S4: Recombinant MPO-mediated degradation of SWCNTs visualized by TEM; Suppl. Fig. S5: Neutrophil-mediated degradation of SWCNTs determined using Raman spectroscopy; Suppl. Fig. S6 and Suppl. Fig. S7: Interaction of fluorochrome-conjugated SWCNTs with neutrophils at 3 and 6 h of co-culture, respectively, shown by confocal microscopy]. See DOI: 10.1039/c4nr03604b

  12. Complementary roles of intracellular and pericellular collagen degradation pathways in vivo

    DEFF Research Database (Denmark)

    Wagenaar-Miller, Rebecca A; Engelholm, Lars H; Gavard, Julie

    2007-01-01

    these two pathways is unclear and even controversial. Here we show that intracellular and pericellular collagen turnover pathways have complementary roles in vivo. Individual deficits in intracellular collagen degradation (urokinase plasminogen activator receptor-associated protein/Endo180 ablation......Collagen degradation is essential for cell migration, proliferation, and differentiation. Two key turnover pathways have been described for collagen: intracellular cathepsin-mediated degradation and pericellular collagenase-mediated degradation. However, the functional relationship between......) or pericellular collagen degradation (membrane type 1-matrix metalloproteinase ablation) were compatible with development and survival. Their combined deficits, however, synergized to cause postnatal death by severely impairing bone formation. Interestingly, this was mechanistically linked to the proliferative...

  13. Anoxic carbon degradation in Arctic sediments: Microbial transformations of complex substrates

    Science.gov (United States)

    Arnosti, C.; Finke, N.; Larsen, O.; Ghobrial, S.

    2005-05-01

    Complex substrates are degraded in anoxic sediments by the concerted activities of diverse microbial communities. To explore the effects of substrate complexity on carbon transformations in permanently cold anoxic sediments, four substrates— Spirulina cells, Isochrysis cells, and soluble high molecular weight carbohydrate-rich extracts of these cells (Spir-Ex and Iso-Ex)—were added to sediments collected from Svalbard. The sediments were homogenized, incubated anaerobically in gas-tight bags at 0°C, and enzyme activities, fermentation, and terminal respiration were monitored over a 1134 h time course. All substrate additions yielded a fraction (8%-13%) of carbon that was metabolized to CO 2 over the first 384 h of incubation. The timecourse of VFA (volatile fatty acid) production and consumption, as well as the suite of VFAs produced, was similar for all substrates. After this phase, pathways of carbon degradation diverged, with an additional 43%, 32%, 33%, and 8% of Isochrysis, Iso-Ex, Spirulina, and Spir-Ex carbon respired to CO 2 over the next 750 h of incubation. Somewhat surprisingly, the soluble, carbohydrate-rich extracts did not prove to be more labile substrates than the whole cells from which they were derived. Although Spirulina and Iso-Ex differed in physical and chemical characteristics (solid/soluble, C/N ratio, lipid and carbohydrate content), nearly identical quantities of carbon were respired to CO 2. In contrast, only 15% of Spir-Ex carbon was respired, despite the initial burst of activity that it fueled, its soluble nature, and its relatively high (50%) carbohydrate content. The microbial community in these cold anoxic sediments clearly has the capacity to react rapidly to carbon input; extent and timecourse of remineralization of added carbon is similar to observations made at much higher temperatures in temperate sediments. The extent of carbon remineralization from these specific substrates, however, would not likely have been predicted

  14. Modeling position-specific isotope fractionation of organic micropollutants degradation via different reaction pathways

    DEFF Research Database (Denmark)

    Jin, Biao; Rolle, Massimo

    : dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model successfully reproduces the multi-element isotope data, and precisely captures the dual element isotope trends, characterizing the different degradation pathways. Besides illustrating the model capability of mechanistic evaluation...

  15. Biochemical and physiological characterisation of the purine degradation pathway in plants

    OpenAIRE

    Werner, Andrea

    2013-01-01

    Plant growth is often limited by nitrogen availability in the soil. Not only do plants depend on efficient nitrogen uptake, they also require effective means to internally redistribute nitrogen during every stage of development. The purine degradation pathway contributes to this nitrogen recycling in plants. In tropical legumes it is also of central importance to the plants’ nitrogen supply under nitrogen-fixing conditions. This is the first time that the complete ureide degradation pathway h...

  16. Grassland Degradation Alters Soil Carbon Turnover through Depth

    Science.gov (United States)

    Creamer, C.; Prober, S. M.; Chappell, A.; Farrell, M.; Baldock, J.

    2015-12-01

    Ecosystem degradation is widespread and changes in aboveground plant communities alter belowground soil processes. In Australia, grassy eucalyptus woodlands dominated by kangaroo grasses (Themeda trianda) were widely cleared during European settlement for agriculture, with only fragments remaining of this now threatened ecosystem. As remnant grassland fragments are used for livestock grazing, Themeda transitions through states of degradation, starting with red grasses (Bothriochloa spp) and then proceeding to less productive, increasingly degraded states dominated by either annual exotic weeds or native wallaby grasses (Rytidosperma spp) and spear grasses (Austrastipa spp). The aim of our experiment was to determine how soil organic matter dynamics (including erosion, root biomass, C storage and turnover) have been altered by the transition from deeply-rooted Themeda grass systems to more shallowly-rooted annual exotic weeds and wallaby/spear grass states. We sampled soils in five depth-based increments (0-5, 5-15, 15-30, 30-60, 60-100 cm) across this ecosystem transition at five sites across New South Wales, Australia. Caseium-137 analysis indicated erosion rates were similar among all ecosystems and were consistent with levels for grasslands in the region. Compared to the remnant Themeda grass systems, the degraded states had lower root biomass, lower carbon stocks and C:N ratios in the coarse fraction (> 50 μm), lower fungal : bacterial ratios, higher available phosphate, higher alkyl : O-alkyl C ratios, and faster mineralization of synthetic root-exudate carbon. All these metrics indicate the surprising finding of more microbially processed OM and faster turnover of newly added C in the degraded sites. Compared to one another, the two degraded sites differed in both C and N turnover, with the exotic weeds having higher dissolved organic N, inorganic N, and coarse fraction N, higher fine fraction C stocks, and greater microbial biomass. These differences likely

  17. Degradation Pathway for Eplerenone by Validated Stability Indicating UP-LC Method

    OpenAIRE

    Kondru Sudhakar Babu; Venkataramanna Madireddy; Venkata Somaraju Indukuri

    2012-01-01

    Degradation pathway for eplerenone is established as per ICH recommendations by validated and stability-indicating reverse phase liquid chromatographic method. Eplerenone is subjected to stress conditions of acid, base, oxidation, and thermal and photolysis. Significant degradation is observed in acid and base stress conditions. Four impurities are studied and the major degradant (RRT about 0.31) was identified by LC-MS and spectral analysis. The stress samples are assayed against a qualified...

  18. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation--divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B-C; Schultz, N; Madsen, S H;

    2010-01-01

    Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase-mediated ...

  19. Extracellular entrapment and degradation of single-walled carbon nanotubes

    Science.gov (United States)

    Farrera, Consol; Bhattacharya, Kunal; Lazzaretto, Beatrice; Andón, Fernando T.; Hultenby, Kjell; Kotchey, Gregg P.; Star, Alexander; Fadeel, Bengt

    2014-05-01

    Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials.Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials. Electronic supplementary information (ESI) available: Suppl. Fig. 1 - length distribution of SWCNTs; suppl. Fig. 2 - characterization of pristine vs. oxidized SWCNTs; suppl. Fig. 3 - endotoxin evaluation; suppl. Fig. 4 - NET characterization; suppl. Fig. 5 - UV-Vis/NIR analysis of biodegradation of oxidized SWCNTs; suppl. Fig. 6 - cytotoxicity of partially degraded SWCNTs. See DOI: 10.1039/c3nr06047k

  20. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments.

    Science.gov (United States)

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Xiang, Huiming; Guo, Youluo

    2017-03-21

    Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (kobs) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO3(-) or Cl(-)) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO4(•)(-) or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal.

  1. 3'-5' RNA degradation pathways in human cells

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon

    revealed the interaction network of the main 3'-5' RNA degradation machinery – the RNA exosome complex. One of the key findings was the identification and characterisation of the Nuclear Exosome Targeting (NEXT) complex, important for nuclear functions of the exosome. Michal Lubas also studied the role...

  2. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  3. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    Science.gov (United States)

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  4. Molecular profiling of permafrost soil organic carbon composition and degradation

    Science.gov (United States)

    Gu, B.; Mann, B.

    2014-12-01

    Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon (C) cycling, though the dynamics of these transformations remain unclear at the molecular level. This study reports the application of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to profile molecular components of Arctic SOM collected from the surface water and the mineral horizon of a low-centered polygon soil at Barrow Environmental Observatory (BEO), Barrow, Alaska. Soil samples were subjected to anaerobic warming experiments for a period of 40 days, and the SOM was extracted before and after the incubation to determine the components of organic C that were degraded over the course of the study. A CHO index based on molecular composition data was utilized to codify SOM components according to their observed degradation potential. Carbohydrate- and lignin-like compounds in the water-soluble fraction (WSF) demonstrated a high degradation potential, while structures with similar stoichiometries in the base-soluble fraction (BSF) were not readily degraded. The WSF of SOM also shifted to a wider range of measured molecular masses including an increased prevalence of larger compounds, while the size distribution of compounds in the BSF changed little over the same period. Additionally, the molecular profiling data indicated an apparently ordered incorporation of organic nitrogen in the BSF immobilized as primary and secondary amines, possibly as components of N-heterocycles, which may provide insight into nitrogen immobilization or mobilization processes in SOM. Our study represents an important step forward for studying Arctic SOM with improved understanding of the molecular properties of soil organic C and the ability to represent SOM in climate models that will predict the impact of climate change on soil C and nutrient cycling.

  5. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil

    Science.gov (United States)

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-06-01

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H‧), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments.

  6. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil

    Science.gov (United States)

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-01-01

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H′), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments. PMID:27311984

  7. Carbon budgets and energy transition pathways

    NARCIS (Netherlands)

    Van Vuuren, Detlef P.; Van Soest, Heleen; Riahi, Keywan; Clarke, Leon; Krey, Volker; Kriegler, Elmar; Rogelj, Joeri; Schaeffer, Michiel; Tavoni, Massimo

    2016-01-01

    Scenarios from integrated assessment models can provide insights into how carbon budgets relate to other policy-relevant indicators by including information on how fast and by how much emissions can be reduced. Such indicators include the peak year of global emissions, the decarbonisation rate and t

  8. Carbon budgets and energy transition pathways

    NARCIS (Netherlands)

    Vuuren, Van Detlef P.; Soest, van Heleen; Riahi, Keywan; Clarke, Leon; Krey, Volker; Kriegler, Elmar; Rogelj, Joeri; Schaeffer, Michiel; Tavoni, Massimo

    2016-01-01

    Scenarios from integrated assessment models can provide insights into how carbon budgets relate to other policy-relevant indicators by including information on how fast and by how much emissions can be reduced. Such indicators include the peak year of global emissions, the decarbonisation rate an

  9. Carbon pathways in the Seine river system

    Science.gov (United States)

    Marescaux, Audrey; Garnier, Josette; Thieu, Vincent

    2016-04-01

    Many papers have recently suggested that the anthropogenic perturbations of the carbon cycle have led to a significant increase in carbon export from terrestrial ecosystems to inland waters. The quantification of the carbon cascade (including fate of CO2 emissions) in highly anthropized river systems is thus essential to understand the response of aquatic systems. The Seine Basin where Paris and its environs represent 2/3 of its population, and agriculture is particularly intensive, is a eutrophic system. The main aim of this research is to understand and quantify how an excess of anthropogenic nutrients entering the Seine River system may locally enhance primary production, C sequestration, C respiration and CO2 emissions. The development of a new CO2 module in the pre-existing biogeochemical Riverstrahler model (Billen et al., 2007) should enable a refined calculation of the carbon budget. Besides calculation of the Respiration and Production activities along the entire river continuum, it will directly associate CO2 emissions. The CO2 modelling results will be confronted to (i) direct (in-situ) measurements with a non-dispersive infrared gas analyzer and (ii) indirect measurements based on total alkalinity, carbonate and pH along the Seine river system during the last decades, and (iii) calculations of a C metabolism budget. Billen, G., Garnier, J., Némery, J., Sebilo, M., Sferratore, A., Barles, S., Benoit P., Benoît, M. (2007). A long-term view of nutrient transfers through the Seine river continuum. Science of the Total Environment, 375(1-3), 80-97. http://doi.org/10.1016/j.scitotenv.2006.12.005

  10. Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways.

    Science.gov (United States)

    Xia, Shengjie; Zhang, Lianyang; Pan, Guoxiang; Qian, Pingping; Ni, Zheming

    2015-02-21

    Three different composites, including a calcined FeOOH supported ZnAl layered double hydroxide (FeOOH-LDO), a calcined ZnAl layered double hydroxide (ZnAl-LDO) and a calcined ZnFeAl layered double hydroxide (ZnFeAl-LDO), were synthesized via a sol-gel method, and their activity for the visible light photocatalytic degradation of methylene blue (MB) was studied. The composites were characterized by PXRD, SEM, and BET techniques, confirming the formation of highly crystalline structures. The activity performance of MB degradation was in the following order: FeOOH-LDO (∼95%) > ZnFeAl-LDO (∼60%) > ZnAl-LDO (∼23%). In addition, a possible photocatalytic degradation reaction mechanism for MB was also proposed. Moreover, the frontier electron densities on the atoms of MB were calculated, which were in satisfactory agreement with the postulated mechanism.

  11. Photo-cross-linked poly(ethylene carbonate) elastomers: synthesis, in vivo degradation, and determination of in vivo degradation mechanism.

    Science.gov (United States)

    Cornacchione, L A; Qi, B; Bianco, J; Zhou, Z; Amsden, B G

    2012-10-01

    Low-molecular-weight poly(ethylene carbonate) diols of varying molecular weight were generated through catalyzed thermal degradation of high-molecular-weight poly(ethylene carbonate). These polymers were then end functionalized with acrylate groups. The resulting α,ω-diacrylates were effectively photo-cross-linked upon exposure to long-wave UV light in the presence of a photoinitiator to yield rubbery networks of low sol content. The degree of cross-linking effectively controlled the in vivo degradation rate of the networks by adherent macrophages; higher cross-link densities yielded slower degradation rates. The cross-link density did not affect the number of adherent macrophages at the elastomer/tissue interface, indicating that cross-linking affected the susceptibility of the elastomer to degradative species released by the macrophages. The reactive species likely responsible for in vivo degradation appears to be superoxide anion, as the in vivo results were in agreement with in vitro degradation via superoxide anion, while cholesterol esterase, known to degrade similar poly(alkylene carbonate)s, had no affect on elastomer degradation.

  12. Connecting Lignin-Degradation Pathway with Pre-Treatment Inhibitor Sensitivity of Cupriavidus necator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunsinger, G. B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, P. T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, D. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-05-27

    In order to produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  13. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Wei eWang

    2014-05-01

    Full Text Available To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose and lignin, through pretreatment and hydrolysis (both enzymatic and chemical, and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pretreatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB, a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pretreated corn stover slurry as well as individually in the presence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pretreated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF, benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  14. Phosphoketolase pathway engineering for carbon-efficient biocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-12-01

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Moreover, conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Here, we discuss recent advances and prospects for employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.

  15. Unveiling New Degradation Intermediates/Pathways from the Photocatalytic Degradation of Microcystin-LR

    Science.gov (United States)

    This study focuses on the identification of reaction intermediates formed during the photocatalytic degradation of the cyanotoxin microcystin-LR with immobilized TiO2 Tphotocatalysts at neutral pH. To differentiate between impurities already existing in the MC-LR stand...

  16. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik;

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...

  17. Degradation of Dissolved Organic Carbon from Discontinuous Permafrost Due to Photolysis and Different Inoculants

    Science.gov (United States)

    Aukes, P.; Schiff, S. L.

    2013-12-01

    Northern areas with permafrost are very susceptible to a warming climate. Temperature increases can alter hydrologic flow paths, increase the depth and biogeochemistry of the active layer, and degrade and reduce the amount of remaining permafrost. Particularly, loss of permafrost will release large stores of previously unavailable frozen carbon to the environment. Dissolved organic carbon (DOC) plays many important roles that affect both ecosystem health and drinking water quality. Comprised of countless different molecules, DOC absorbs harmful ultra-violet (UV) radiation and controls thermal regimes of lakes, is an important energy and nutrient source for heterotrophic microbes, complexes with and transports heavy metals, and reacts during chlorination of drinking water to form carcinogenic disinfection by-products. Since the ultimate fate of DOC depends on its reactivity with the surrounding environment, the implications of DOC released from permafrost for ecosystems and drinking water quality will vary across the landscape. We used 90-day lab incubations to assess the differences in quality of DOC by observing the susceptibility for DOC to degrade among various discontinuous-permafrost sources. Specifically, UV-photolysis and two surface water inoculants (pond and creek water filtered to 2.0μm) were used to represent the dominant degradation pathways encountered within the environment. Samples were taken in July 2013 from three locations (pond, creek, and wetland porewater) in a region of discontinuous permafrost near Yellowknife, NWT, Canada. We observed changes to the composition and quality of DOC resulting from photolysis and degradation by two inoculants over 90 days, where DOC quality was determined by Liquid Chromatography - Organic Carbon Detection, DOC:DON, UV-absorbance, and changes to other constituents (DIC, δ13C-DIC, CO2). We hypothesize that UV-photolysis and microbial degradation will readily degrade easily accessible and reactive components of

  18. Pathways for implementing REDD+. Experiences from carbon markets and communities

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.; Ravnkilde Moeller, L.; Lopez, T. De; Romero, M.Z.

    2011-07-01

    This issue of Carbon Market Perspectives on 'Pathways for implementing REDD+: Experience from carbon markets and communities' discusses the role of carbon markets in scaling up investments for REDD+ in developing countries. Nine articles authored by experienced negotiators on REDD+, carbon market actors, project developers and other leading experts share experiences and make suggestions on the key elements of a future international REDD+ regime: Architecture and underlying principles, measuring, reporting and verification (MRV), private-sector involvement, the rights of indigenous people and local communities, biodiversity conservation and environmental integrity. The articles are grouped under three main topics: the lessons of existing REDD+ projects; the future REDD+ regime and the role of carbon markets; and experiences and ideas about the involvement of indigenous people and local communities. (LN)

  19. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    DEFF Research Database (Denmark)

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia;

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyv...

  20. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  1. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.

    Science.gov (United States)

    Qin, Lang; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Tian, Fu-Xiang; Zhang, Tian-Yang; Zhu, Wen-Qian; Huang, He; Gao, Nai-Yun

    2014-11-15

    Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment.

  2. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity.

    Science.gov (United States)

    Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G

    2016-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation.

  3. Modelling pathways to Rubisco degradation: a structural equation network modelling approach.

    Directory of Open Access Journals (Sweden)

    Catherine Tétard-Jones

    Full Text Available 'Omics analysis (transcriptomics, proteomics quantifies changes in gene/protein expression, providing a snapshot of changes in biochemical pathways over time. Although tools such as modelling that are needed to investigate the relationships between genes/proteins already exist, they are rarely utilised. We consider the potential for using Structural Equation Modelling to investigate protein-protein interactions in a proposed Rubisco protein degradation pathway using previously published data from 2D electrophoresis and mass spectrometry proteome analysis. These informed the development of a prior model that hypothesised a pathway of Rubisco Large Subunit and Small Subunit degradation, producing both primary and secondary degradation products. While some of the putative pathways were confirmed by the modelling approach, the model also demonstrated features that had not been originally hypothesised. We used Bayesian analysis based on Markov Chain Monte Carlo simulation to generate output statistics suggesting that the model had replicated the variation in the observed data due to protein-protein interactions. This study represents an early step in the development of approaches that seek to enable the full utilisation of information regarding the dynamics of biochemical pathways contained within proteomics data. As these approaches gain attention, they will guide the design and conduct of experiments that enable 'Omics modelling to become a common place practice within molecular biology.

  4. Tissue factor pathway inhibitor relates to fibrin degradation in patients with acute deep venous thrombosis

    DEFF Research Database (Denmark)

    Sidelmann, Johannes J; Bladbjerg, Else-Marie; Gram, Jørgen

    2008-01-01

    Reduced concentration of tissue factor pathway inhibitor is a risk factor for development of deep venous thrombosis, whereas elevated concentrations of tissue factor pathway inhibitor are observed in patients with acute myocardial infarction and disseminated intravascular coagulation. Presently, we...... studied the association between inflammation, endothelial cell perturbation, fibrin degradation and the concentration of tissue factor pathway inhibitor in patients suspected for acute deep venous thrombosis. We determined the tissue factor pathway inhibitor -33T/C polymorphism, free and total tissue...... factor pathway inhibitor, C-reactive protein, von Willebrand factor and D-Dimer in 160 consecutive patients admitted to hospital with a tentative diagnosis of acute deep venous thrombosis. Deep venous thrombosis was identified in 57 patients (18 distal and 39 proximal). The distribution of the tissue...

  5. Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium.

    Science.gov (United States)

    Kita, Akihisa; Miura, Toyokazu; Kawata, Satoshi; Yamaguchi, Takeshi; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nishio, Naomichi; Nakashimada, Yutaka

    2016-03-01

    Methane fermentation is one of the effective approaches for utilization of brown algae; however, this process is limited by the microbial capability to degrade alginate, a main polysaccharide found in these algae. Despite its potential, little is known about anaerobic microbial degradation of alginate. Here we constructed a bacterial consortium able to anaerobically degrade alginate. Taxonomic classification of 16S rRNA gene, based on high-throughput sequencing data, revealed that this consortium included two dominant strains, designated HUA-1 and HUA-2; these strains were related to Clostridiaceae bacterium SK082 (99%) and Dysgonomonas capnocytophagoides (95%), respectively. Alginate lyase activity and metagenomic analyses, based on high-throughput sequencing data, revealed that this bacterial consortium possessed putative genes related to a predicted alginate metabolic pathway. However, HUA-1 and 2 did not grow on agar medium with alginate by using roll-tube method, suggesting the existence of bacterial interactions like symbiosis for anaerobic alginate degradation.

  6. Nuclear mRNA degradation pathway(s are implicated in Xist regulation and X chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Constance Ciaudo

    2006-06-01

    Full Text Available A critical step in X-chromosome inactivation (XCI, which results in the dosage compensation of X-linked gene expression in mammals, is the coating of the presumptive inactive X chromosome by the large noncoding Xist RNA, which then leads to the recruitment of other factors essential for the heterochromatinisation of the inactive X and its transcriptional silencing. In an approach aimed at identifying genes implicated in the X-inactivation process by comparative transcriptional profiling of female and male mouse gastrula, we identified the Eif1 gene involved in translation initiation and RNA degradation. We show here that female embryonic stem cell lines, silenced by RNA interference for the Eif1 gene, are unable to form Xist RNA domains upon differentiation and fail to undergo X-inactivation. To probe further an effect involving RNA degradation pathways, the inhibition by RNA interference of Rent1, a factor essential for nonsense-mediated decay and Exosc10, a specific nuclear component of the exosome, was analysed and shown to similarly impair Xist upregulation and XCI. In Eif1-, Rent1-, and Exosc10-interfered clones, Xist spliced form(s are strongly downregulated, while the levels of unspliced form(s of Xist and the stability of Xist RNA remain comparable to that of the control cell lines. Our data suggests a role for mRNA nuclear degradation pathways in the critical regulation of spliced Xist mRNA levels and the onset of the X-inactivation process.

  7. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species.

    Science.gov (United States)

    Hasan, Syed Adnan; Jabeen, Suraiya

    2015-01-02

    This article elucidates that strain Pseudomonas aeruginosa (IES-Ps-1) is a versatile toxic organic compound degrader. With the degradation of malathion and cypermethrin (studied by other researchers previously), this strain was able to degrade phenol. Two other indigenous soil flora (i.e., Pseudomonas sp. (IES-S) and Bacillus subtilis (IES-B)) were also found to be potential phenol degraders. Phenol was degraded with Monod kinetics during growth in nutrient broth and mineral salts medium. Before entering into the growth inhibition phase, strains IES-Ps-1, IES-S and IES-B could tolerate up to 400, 700 and 500 mg/L phenol, respectively, when contained in nutrient broth. However, according to the Luong-Levenspiel model, the growth of strains IES-Ps-1, IES-S and IES-B would cease at 2000, 2174 and 2190 mg/L phenol, respectively. Strain IES-Ps-1 degraded 700, 900 and 1050 mg/L phenol contained in mineral salts medium with the specific rates of 0.034, 0.075 and 0.021 h(-1), respectively. All these strains grew by making clusters when exposed to phenol in order to prevent damages due to high substrate concentration. These strains transformed phenol into catechol, which was then degraded via ortho-cleavage pathway.

  8. Sources, degradation and transport of terrigenous organic carbon on the East Siberian Arctic Shelf Seas

    Science.gov (United States)

    Tesi, Tommaso; Semiletov, Igor; Dudarev, Oleg; Gustafsson, Örjan

    2013-04-01

    Recent studies suggest that the present hydrological regime increase observed in the Arctic rivers is mainly the consequence of the changes in permafrost conditions as a result of climate warming. Given the enormous amount of carbon stored in coastal and terrestrial permafrost the potentially increased supply from this large carbon pool to the coastal Arctic Ocean, possibly associated with a translocated release to the atmosphere as CO2, is considered a plausible scenario in a warming climate. However, there is not sufficient information regarding the reactivity of terrigenous material once supplied to the Arctic Ocean. In this study, we address this critical issue by examining the organic composition of surface sediments collected over extensive scales on the East Siberian Arctic Shelf (ESAS) as part of the International Siberian Shelf Study (ISSS). The ESAS represents by far the largest shelf of the Arctic Ocean. Samples were collected from the inner- to the outer-shelf following the sediment transport pathway in a region between the Lena and the Kolyma rivers. The analytical approach includes the characterization of marine and land-derived carbon using a large number of molecular biomarkers obtained by alkaline CuO oxidation such as lignin-phenols, cutin-derived products, p-hydroxy benzenes, benzoic acids, fatty acids, and dicarboxylic acids. Our results indicated high concentrations of terrigenous material in shallow sediments and a marked decrease of terrestrial biomarkers with increasing distance from the coastline. In parallel, lignin-based degradation proxies suggested highly altered terrigenous carbon in mid- and outer-shelf sediments compared to coastal sediments. Furthermore, the ratio of cutin-derived products over lignin significantly increased along the sediment transport pathway. Considering that cutin is considered to be intrinsically more reactive compared to lignin, high values of this ratio off the coastal region were interpreted as selective

  9. Degradation kinetics and pathways of three calcium channel blockers under UV irradiation.

    Science.gov (United States)

    Zhu, Bing; Zonja, Bozo; Gonzalez, Oscar; Sans, Carme; Pérez, Sandra; Barceló, Damia; Esplugas, Santiago; Xu, Ke; Qiang, Zhimin

    2015-12-01

    Calcium channel blockers (CCBs) are a group of pharmaceuticals widely prescribed to lower blood pressure and treat heart diseases. They have been frequently detected in wastewater treatment plant (WWTP) effluents and downstream river waters, thus inducing a potential risk to aquatic ecosystems. However, little is known about the behavior and fate of CCBs under UV irradiation, which has been adopted as a primary disinfection method for WWTP effluents. This study investigated the degradation kinetics and pathways of three commonly-used CCBs, including amlodipine (AML), diltiazem (DIL), and verapamil (VER), under UV (254 nm) irradiation. The chemical structures of transformation byproducts (TBPs) were first identified to assess the potential ecological hazards. On that basis, a generic solid-phase extraction method, which simultaneously used four different cartridges, was adopted to extract and enrich the TBPs. Thereafter, the photo-degradation of target CCBs was performed under UV fluences typical for WWTP effluent disinfection. The degradation of all three CCBs conformed to the pseudo-first-order kinetics, with rate constants of 0.031, 0.044 and 0.011 min(-1) for AML, DIL and VER, respectively. By comparing the MS(2) fragments and the evolution (i.e., formation or decay) trends of identified TBPs, the degradation pathways were proposed. In the WWTP effluent, although the target CCBs could be degraded, several TBPs still contained the functional pharmacophores and reached peak concentrations under UV fluences of 40-100 mJ cm(-2).

  10. Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in lake erie.

    Science.gov (United States)

    Mou, Xiaozhen; Lu, Xinxin; Jacob, Jisha; Sun, Shulei; Heath, Robert

    2013-01-01

    Cyanobacterial harmful blooms (CyanoHABs) that produce microcystins are appearing in an increasing number of freshwater ecosystems worldwide, damaging quality of water for use by human and aquatic life. Heterotrophic bacteria assemblages are thought to be important in transforming and detoxifying microcystins in natural environments. However, little is known about their taxonomic composition or pathways involved in the process. To address this knowledge gap, we compared the metagenomes of Lake Erie free-living bacterioplankton assemblages in laboratory microcosms amended with microcystins relative to unamended controls. A diverse array of bacterial phyla were responsive to elevated supply of microcystins, including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria of the alpha, beta, gamma, delta and epsilon subdivisions and Verrucomicrobia. At more detailed taxonomic levels, Methylophilales (mainly in genus Methylotenera) and Burkholderiales (mainly in genera Bordetella, Burkholderia, Cupriavidus, Polaromonas, Ralstonia, Polynucleobacter and Variovorax) of Betaproteobacteria were suggested to be more important in microcystin degradation than Sphingomonadales of Alphaproteobacteria. The latter taxa were previously thought to be major microcystin degraders. Homologs to known microcystin-degrading genes (mlr) were not overrepresented in microcystin-amended metagenomes, indicating that Lake Erie bacterioplankton might employ alternative genes and/or pathways in microcystin degradation. Genes for xenobiotic metabolism were overrepresented in microcystin-amended microcosms, suggesting they are important in bacterial degradation of microcystin, a phenomenon that has been identified previously only in eukaryotic systems.

  11. Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in lake erie.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Mou

    Full Text Available Cyanobacterial harmful blooms (CyanoHABs that produce microcystins are appearing in an increasing number of freshwater ecosystems worldwide, damaging quality of water for use by human and aquatic life. Heterotrophic bacteria assemblages are thought to be important in transforming and detoxifying microcystins in natural environments. However, little is known about their taxonomic composition or pathways involved in the process. To address this knowledge gap, we compared the metagenomes of Lake Erie free-living bacterioplankton assemblages in laboratory microcosms amended with microcystins relative to unamended controls. A diverse array of bacterial phyla were responsive to elevated supply of microcystins, including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria of the alpha, beta, gamma, delta and epsilon subdivisions and Verrucomicrobia. At more detailed taxonomic levels, Methylophilales (mainly in genus Methylotenera and Burkholderiales (mainly in genera Bordetella, Burkholderia, Cupriavidus, Polaromonas, Ralstonia, Polynucleobacter and Variovorax of Betaproteobacteria were suggested to be more important in microcystin degradation than Sphingomonadales of Alphaproteobacteria. The latter taxa were previously thought to be major microcystin degraders. Homologs to known microcystin-degrading genes (mlr were not overrepresented in microcystin-amended metagenomes, indicating that Lake Erie bacterioplankton might employ alternative genes and/or pathways in microcystin degradation. Genes for xenobiotic metabolism were overrepresented in microcystin-amended microcosms, suggesting they are important in bacterial degradation of microcystin, a phenomenon that has been identified previously only in eukaryotic systems.

  12. NIR is degraded by the anaphase-promoting complex proteasome pathway

    Directory of Open Access Journals (Sweden)

    Jeong Ho Myong

    2014-01-01

    Full Text Available Novel INHAT Repressor (NIR is a histone acetylation inhibitor that can directly bind histone complexes and the tumor suppressors p53 and p63. Because NIR is mainly localized in the nucleolus and disappears from the nucleolus upon RNase treatment, it is thought to bind RNA or ribonucleoproteins. When NIR moves to the cytoplasm, it is immediately degraded; this degradation was blocked by MG132, a proteasome inhibitor. Furthermore, the central domain of NIR specifically bound APC-CCdh1. These data show that the stability of NIR is governed by the ubiquitin/proteasome pathway.

  13. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.

    Science.gov (United States)

    Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan

    2013-12-01

    The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals.

  14. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    KAUST Repository

    Scoma, Alberto

    2016-03-29

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  15. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Science.gov (United States)

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-03-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43- uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  16. [Degradation of L-phenylalanine and of aromatic carboxylic acids by chloridazon-degrading bacteria. Combination of side chain degradation and dioxygenase pathway].

    Science.gov (United States)

    Wegst, W; Lingens, F

    1981-09-01

    Strain N of Chloridazon-degrading bacteria degrades phenylalanine via cis-2,3-dihydro-2,3-dihydroxyphenylalanine,2,3-dihydroxyphenylalanine aspartate and 4-hydroxy-2-oxovalerate [Hoppe-Seyler's Z. Physiol. Chem. 360, 957--969, (1979); Biochem. J. 194, 679--684 (1981)]. cis-2,3-Dihydro-2,3-dihydroxyphenylalanine and 2,3-dihydroxyphenylalanine as well as phenylpyruvate, cis-2,3-dihydro-2,3-dihydroxyphenylpyruvate, 2,3-dihydroxyphenylpyruvate, cis-2,3-dihydro-2,3-dihydroxyphenylacetate, 2,3-dihydroxyphenylacetate and 2,3-dihydroxybenzaldehyde are detectable in the medium of strain E during growth on phenylalanine. Incubation with phenylacetate, 3-phenylpropionate or 4-phenylbutyrate leads to the accumulation of the corresponding cis-2,3-dihydro-2,3-dihydroxyphenyl derivatives. These compounds are transformed with dihydrodiol dehydrogenase to 2,3-dihydroxyphenylacetate, 3-(2,3-dihydroxyphenyl)propionate and 4-(2,3-dihydroxyphenyl)-butyrate, 3-(2,3-dihydroxyphenyl)propionate is attacked by a catechol 2,3-dioxygenase and the meta-cleavage product is again cleaved by a hydrolase yielding succinate. In a similar reaction sequence the degradation of 4-phenylbutyrate leads to the formation of glutarate. From the growth medium of strain E on phenylacetate also small amounts of 2-, 3- and 4-hydroxyphenylacetate were isolated. Resting cells were shown to metabolize 3- and 4-hydroxyphenylacetate via homogentisate and 3,4-dihydroxyphenylacetate. In the culture medium of strain K2AP benzoate could be detected. Pathways for the degradation of phenylalanine and aromatic carboxylic acids in chloridazon degrading bacteria are proposed.

  17. Carbon-14 background, pathway, and dose optimization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, E.; Higley, K. [Oregon State University (United States)

    2014-07-01

    Carbon-14 is radiologically relevant due to its long half-life coupled with its ease of incorporation into the global carbon cycle. The majority of carbon-14 releases from nuclear power plants in the United States are gaseous, and terrestrial samples constitute the primary indicator of increased environmental levels, and thus represent an important pathway for the incorporation of the radionuclide into both human and nonhuman populations. This project was broken into three phases: In phase one, information was summarized on background quantities and production mechanisms of carbon-14 in the general environment and adjacent to nuclear power plants. The second phase involved the review and analysis of nuclear power plant carbon-14 pathways to humans as compared to the United States Nuclear Regulatory Commission's Regulatory Guide 1.109 methodologies (based on ICRP 2), and identified areas where dose calculations could be optimized. Alternative models for calculating plant uptake from atmosphere and transfer in the food chain were investigated, with particular emphasis on models used by countries in the European Union. In phase three, collard green samples grown at three different locations relative to a nuclear power plant (one control garden and two downwind gardens) were evaluated using a Perkin Elmer TriCarb 3180 TR/SL Liquid Scintillation Counter (LSC). Samples were first oven dried and combusted using a Perkin Elmer Model 307 Oxidizer, and activity concentrations were calculated based on the LSC count data. These data were compared to samples analyzed using accelerator mass spectrometry. There was no statistically significant difference in carbon-14 concentrations at the two downwind gardens as compared to the control garden. This research is based on work supported, in part, by the Electrical Power Research Institute (EPRI). The opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily represent

  18. Thermally induced degradation pathways of three different antibody-based drug development candidates.

    Science.gov (United States)

    Fincke, Anja; Winter, Jonas; Bunte, Thomas; Olbrich, Carsten

    2014-10-01

    Protein-based medicinal products are prone to undergo a variety of chemical and physical degradation pathways. One of the most important exogenous stress condition to consider during manufacturing, transport and storage processes is temperature, because antibody-based therapeutics are only stable in a limited temperature range. In this study, three different formats of antibody-based molecules (IgG1, a bispecific scFv and a fab fragment) were exposed to thermal stress conditions occurring during transport and storage. For evaluation, an analytical platform was developed for the detection and characterization of relevant degradation pathways of different antibody-based therapeutics. The effect of thermal stress conditions on the stability of the three antibody-based formats was therefore investigated using visual inspection, different spectroscopic measurements, dynamic light scattering (DLS), differential scanning calorimetry (DSC), electrophoresis, asymmetric flow field-flow fractionation (AF4) and surface plasmon resonance technology (SPR). In summary, thermal stress led to heterogeneous chemical and physical degradation pathways of all three antibody-based formats used. In addition, identical exogenous stress conditions resulted in different kinds and levels of aggregates and fragmentation products. This knowledge is fundamental for a systematic and successful stabilization of protein-based therapeutics by the use of formulation additives.

  19. Current-induced strength degradation of activated carbon spheres in carbon supercapacitors

    Science.gov (United States)

    Sun, Yuan; Chen, Rong; Lipka, Stephen M.; Yang, Fuqian

    2016-05-01

    Activated carbon microspheres (ACSs), which are prepared using hydrothermal synthesis and ammonia activation, are used as the active materials in the anode and cathode of electric double layer capacitors (EDLCs). The ACS-based EDLCs of symmetrical electrodes exhibit good stability and a high degree of reversibility over 2000 charge-discharge cycles for electric current up to 10 A g-1. The ACSs maintain a nongraphitized carbon structure after over 2000 charge-discharge cycles. Nanoindentation experiments are performed on the ACSs, which are electrochemically cycled in a voltage window of 0-1 V at three electric currents of 0.5, 5, and 10 A g-1. For the same indentation load, both the contact modulus and indentation hardness of the ACSs decrease with the increase of the electric current used in the electrical charging and discharging. These results suggest that there exists strength degradation introduced by the electric current. A larger electric current will cause more strength degradation than a smaller electric current.

  20. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.

    Science.gov (United States)

    Chen, Zhi; Fang, Jingyun; Fan, Chihhao; Shang, Chii

    2016-05-01

    N-Nitrosopyrrolidine (NPYR) is an emerging contaminant in drinking water and wastewater. The degradation kinetics and mechanisms of NPYR degradation by the O3/UV process were investigated and compared with those of UV direct photolysis and ozonation. A synergistic effect of ozone and UV was observed in the degradation of NPYR due to the accelerated production of OH• by ozone photolysis. This effect was more pronounced at higher ozone dosages. The second-order rate constants of NPYR reacting with OH• and ozone was determined to be 1.38 (± 0.05) × 10(9) M(-1) s(-1) and 0.31 (± 0.02) M(-1) s(-1), respectively. The quantum yield by direct UV photolysis was 0.3 (± 0.01). An empirical model using Rct (the ratio of the exposure of OH• to that of ozone) was established for NPYR degradation in treated drinking water and showed that the contributions of direct UV photolysis and OH• oxidation on NPYR degradation were both significant. As the reaction proceeded, the contribution by OH• became less important due to the exhausting of ozone. Nitrate was the major product in the O3/UV process by two possible pathways. One is through the cleavage of nitroso group to form NO• followed by hydrolysis, and the other is the oxidation of the intermediates of amines by ozonation.

  1. Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation

    Science.gov (United States)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Kothe, Erika; Gleixner, Gerd

    2011-05-01

    Weathering of ancient organic matter contributes significantly to biogeochemical carbon cycles over geological times. The principle role of microorganisms in this process is well recognized. However, information is lacking on the contribution of individual groups of microorganisms and on the effect of labile carbon sources to the degradation process. Therefore, we investigated the contribution of fungi, Gram-positive and Gram-negative bacteria in the degradation process using a column experiment. Investigations were performed on low metamorphic black slates. All columns contained freshly crushed, sieved (0.63-2 mm), not autoclaved black slates. Two columns were inoculated with the lignite-degrading fungus Schizophyllum commune and received a culture medium containing 13C labeled glucose, two columns received only this culture medium and two control columns received only water. The total mass balance was calculated from all carbon added to the slate and the CO 2 and DOC losses. Phospholipid fatty acids (PLFA) were extracted to investigate microbial communities. We used both the compound specific 14C and 13C signal of the PLFA to quantify carbon uptake from black slates and the glucose of the culture medium, respectively. The total carbon loss in these columns exceeded the amount of added carbon by approximately 60%, indicating that black slate carbon has been used. PLFA associated with Gram-positive bacteria dominated the indigenous community and took up 22% of carbon from black slate carbon, whereas PLFA of Gram-negative bacteria used only 8% of carbon from the slates. PLFA of Gram-negative bacteria and fungi were both mostly activated by the glucose addition. The added Schizophyllum did not establish well in the columns and was overgrown by the indigenous microbial community. Our results suggest that especially Gram-positive bacteria are able to live on and degrade black slate material. They also benefit from easy degradable carbon from the nutrient broth. In

  2. Chemical Degradation of the Cathodic Electrical Contact Between Carbon and Cast Iron in Aluminum Production Cells

    Science.gov (United States)

    Brassard, Martin; Désilets, Martin; Soucy, Gervais; Bilodeau, Jean-François; Forté, Martin

    2017-02-01

    The cathodic carbon to cast iron electrical contact degradation is one of the factors to consider in the cathode voltage drop (CVD) increase over the lifetime of aluminum production cells. Lab-scale experiments were carried out to study the cast iron to carbon interface chemical degradation and the impact of important cell parameters like temperature and bath chemistry. Laboratory degradation results were compared with industrial samples. A thermoelectric Ansys numerical model was then used to predict the effect of cast iron surface degradation over CVD. Results show that the aluminum formation on the cast iron surface and its subsequent diffusion creates an immiscible mixture of Fe-Al metal alloy and electrolytic bath. Disparities were also observed between industrial samples taken from two different technologies, suggesting that the degradation can be slowed down. Thermoelectric calculations finally revealed that the impact of the contact resistance augmentation is by far greater than the cast iron degradation.

  3. KCTD1 suppresses canonical Wnt signaling pathway by enhancing β-catenin degradation.

    Directory of Open Access Journals (Sweden)

    Xinxin Li

    Full Text Available The canonical Wnt signaling pathway controls normal embryonic development, cellular proliferation and growth, and its aberrant activity results in human carcinogenesis. The core component in regulation of this pathway is β-catenin, but molecular regulation mechanisms of β-catenin stability are not completely known. Here, our recent studies have shown that KCTD1 strongly inhibits TCF/LEF reporter activity. Moreover, KCTD1 interacted with β-catenin both in vivo by co-immunoprecipitation as well as in vitro through GST pull-down assays. We further mapped the interaction regions to the 1-9 armadillo repeats of β-catenin and the BTB domain of KCTD1, especially Position Ala-30 and His-33. Immunofluorescence analysis indicated that KCTD1 promotes the cytoplasmic accumulation of β-catenin. Furthermore, protein stability assays revealed that KCTD1 enhances the ubiquitination/degradation of β-catenin in a concentration-dependent manner in HeLa cells. And the degradation of β-catenin mediated by KCTD1 was alleviated by the proteasome inhibitor, MG132. In addition, KCTD1-mediated β-catenin degradation was dependent on casein kinase 1 (CK1- and glycogen synthase kinase-3β (GSK-3β-mediated phosphorylation and enhanced by the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP. Moreover, KCTD1 suppressed the expression of endogenous Wnt downstream genes and transcription factor AP-2α. Finally, we found that Wnt pathway member APC and tumor suppressor p53 influence KCTD1-mediated downregulation of β-catenin. These results suggest that KCTD1 functions as a novel inhibitor of Wnt signaling pathway.

  4. Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2.

    Science.gov (United States)

    Hiessl, Sebastian; Schuldes, Jörg; Thürmer, Andrea; Halbsguth, Tobias; Bröker, Daniel; Angelov, Angel; Liebl, Wolfgang; Daniel, Rolf; Steinbüchel, Alexander

    2012-04-01

    The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search.

  5. Degradation pathways of low-ethoxylated nonylphenols by isolated bacteria using an improved method.

    Science.gov (United States)

    Zhang, Yu; Gu, Xin; Zhang, Jing; Yang, Min

    2014-01-01

    Nonylphenol ethoxylates (NPEOs) with low ethoxylation degree (NPav₂EO; containing two ethoxy units on average) and estrogenic properties are the intermediate products of nonionic surfactant NPEOs. To better understand the environmental fate of low-ethoxylated NPEOs, phylogenetically diverse low-ethoxylated NPEO-degrading bacteria were isolated from activated sludge using gellan gum as the gelling reagent. Four isolates belonging to four genera, i.e., Pseudomonas sp. NP522b in γ-Proteobacteria, Variovorax sp. NP427b and Ralstonia sp. NP47a in β-Proteobacteria, and Sphingomonas sp. NP42a in α-Proteobacteria were acquired. Ralstonia sp. NP47a or Sphingomonas sp. NP42a, have not been reported for the degradation of low-ethoxylated NPEOs previously. The biotransformation pathways of these isolates were investigated. The first three strains (NP522b, NP427b, and NP47a) exhibited high NPav₂EO oxidation ability by oxidizing the polyethoxy (EO) chain to form low-ethoxylated nonylphenoxy carboxylates, and then further oxidizing the alkyl chain to form carboxyalkylphenol polyethoxycarboxylates. Furthermore, Sphingomonas sp. NP42a degraded NPav2EO through a nonoxidative pathway with nonylphenol monoethoxylate as the dominant product.

  6. Unraveling the Specific Regulation of the Central Pathway for Anaerobic Degradation of 3-Methylbenzoate*

    Science.gov (United States)

    Juárez, Javier F.; Liu, Huixiang; Zamarro, María T.; McMahon, Stephen; Liu, Huanting; Naismith, James H.; Eberlein, Christian; Boll, Matthias; Carmona, Manuel; Díaz, Eduardo

    2015-01-01

    The mbd cluster encodes the anaerobic degradation of 3-methylbenzoate in the β-proteobacterium Azoarcus sp. CIB. The specific transcriptional regulation circuit that controls the expression of the mbd genes was investigated. The PO, PB1, and P3R promoters responsible for the expression of the mbd genes, their cognate MbdR transcriptional repressor, as well as the MbdR operator regions (ATACN10GTAT) have been characterized. The three-dimensional structure of MbdR has been solved revealing a conformation similar to that of other TetR family transcriptional regulators. The first intermediate of the catabolic pathway, i.e. 3-methylbenzoyl-CoA, was shown to act as the inducer molecule. An additional MbdR-dependent promoter, PA, which contributes to the expression of the CoA ligase that activates 3-methylbenzoate to 3-methylbenzoyl-CoA, was shown to be necessary for an efficient induction of the mbd genes. Our results suggest that the mbd cluster recruited a regulatory system based on the MbdR regulator and its target promoters to evolve a distinct central catabolic pathway that is only expressed for the anaerobic degradation of aromatic compounds that generate 3-methylbenzoyl-CoA as the central metabolite. All these results highlight the importance of the regulatory systems in the evolution and adaptation of bacteria to the anaerobic degradation of aromatic compounds. PMID:25795774

  7. Arginine deiminase pathway genes and arginine degradation variability in Oenococcus oeni strains.

    Science.gov (United States)

    Araque, Isabel; Gil, Joana; Carreté, Ramon; Constantí, Magda; Bordons, Albert; Reguant, Cristina

    2016-03-01

    Trace amounts of the carcinogenic ethyl carbamate can appear in wine as a result of a reaction between ethanol and citrulline, which is produced from arginine degradation by some bacteria used in winemaking. In this study, arginine deiminase (ADI) pathway genes were evaluated in 44 Oenococcus oeni strains from wines originating from several locations in order to establish the relationship between the ability of a strain to degrade arginine and the presence of related genes. To detect the presence of arc genes of the ADI pathway in O. oeni, pairs of primers were designed to amplify arcA, arcB, arcC and arcD1 sequences. All strains contained these four genes. The same primers were used to confirm the organization of these genes in an arcABCD1 operon. Nevertheless, considerable variability in the ability to degrade arginine among these O. oeni strains was observed. Therefore, despite the presence of the arc genes in all strains, the expression patterns of individual genes must be strain dependent and influenced by the different wine conditions. Additionally, the presence of arc genes was also determined in the 57 sequenced strains of O. oeni available in GenBank, and the complete operon was found in 83% of strains derived from wine. The other strains were found to lack the arcB, arcC and arcD genes, but all contained sequences homologous to arcA, and some of them had also ADI activity.

  8. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Bin [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Hiromatsu, Kenji, E-mail: khiromatsu@fukuoka-u.ac.jp [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Hisaeda, Hajime; Duan, Xuefeng; Imai, Takashi [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Murata, Shigeo; Tanaka, Keiji [Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613 (Japan); Himeno, Kunisuke [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2010-02-12

    Cytotoxic CD8{sup +} T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8{sup +} T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8{sup +} T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4{sup +} T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8{sup +} T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.

  9. Chemical modification and degradation of atrazine in Medicago sativa through multiple pathways.

    Science.gov (United States)

    Zhang, Jing Jing; Lu, Yi Chen; Yang, Hong

    2014-10-08

    Atrazine is a member of the triazine herbicide family intensively used to control weeds for crop production. In this study, atrazine residues and its degraded products in alfalfa (Medicago sativa) were characterized using UPLC-TOF-MS/MS. Most of atrazine absorbed in plants was found as chemically modified derivatives like deisopropylated atrazine (DIA), dehydrogenated atrazine (DHA), or methylated atrazine (MEA), and some atrazine derivatives were conjugated through different functional groups such as sugar, glutathione, and amino acids. Interestingly, the specific conjugates DHA+hGSH (homoglutathione) and MEA-HCl+hGSH in alfalfa were detected. These results suggest that atrazine in alfalfa can be degraded through different pathways. The increased activities of glycosyltransferase and glutathione S-transferase were determined to support the atrazine degradation models. The outcome of the work uncovered the detailed mechanism for the residual atrazine accumulation and degradation in alfalfa and will help to evaluate whether the crop is suitable to be cultivated in the atrazine-polluted soil.

  10. Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents

    OpenAIRE

    Liebgott, Pierre-Pol; Labat, Marc; Amouric, Agnès; Tholozan, Jean-Luc; Lorquin, Jean

    2008-01-01

    To isolate a new Halomonas sp. strain capable of degrading tyrosol, a toxic compound present in olive mill wastewater, through the homogentisic acid (HGA) pathway. A moderately halophilic Gram-negative bacterium belonging to the Halomonas genus and designated strain TYRC17 was isolated from olive processing effluents. This strain was able to completely degrade tyrosol (2-(p-hydroxyphenyl)-ethanol), a toxic compound found in such effluent. Tyrosol degradation begins by an oxidation to 4-hydrox...

  11. Insulin-degrading enzyme is exported via an unconventional protein secretion pathway

    Directory of Open Access Journals (Sweden)

    Leissring Malcolm A

    2009-01-01

    Full Text Available Abstract Insulin-degrading enzyme (IDE is a ubiquitously expressed zinc-metalloprotease that degrades several pathophysiologically significant extracellular substrates, including insulin and the amyloid β-protein (Aβ, and accumulating evidence suggests that IDE dysfunction may be operative in both type 2 diabetes mellitus and Alzheimer disease (AD. Although IDE is well known to be secreted by a variety of cell types, the underlying trafficking pathway(s remain poorly understood. To address this topic, we investigated the effects of known inhibitors or stimulators of protein secretion on the secretion of IDE from murine hepatocytes and HeLa cells. IDE secretion was found to be unaffected by the classical secretion inhibitors brefeldin A (BFA, monensin, or nocodazole, treatments that readily inhibited the secretion of α1-antitrypsin (AAT overexpressed in the same cells. Using a novel cell-based Aβ-degradation assay, we show further that IDE secretion was similarly unaffected by multiple stimulators of protein secretion, including glyburide and 3'-O-(4-benzoylbenzoyl-ATP (Bz-ATP. The calcium ionophore, A23187, increased extracellular IDE activity, but only under conditions that also elicited cytotoxicity. Our results provide the first biochemical evidence that IDE export is not dependent upon the classical secretion pathway, thereby identifying IDE as a novel member of the select class of unconventionally secreted proteins. Further elucidation of the mechanisms underlying IDE secretion, which would be facilitated by the assays described herein, promises to uncover processes that might be defective in disease or manipulated for therapeutic benefit.

  12. Abiotic degradation rates for carbon tetrachloride and chloroform: Final report.

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Humphrys, Daniel R.; Wietsma, Thomas W.; Truex, Michael J.

    2012-12-01

    This report documents the objectives, technical approach, and progress made through FY 2012 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The project also sought to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. We conducted 114 hydrolysis rate experiments in sealed vessels across a temperature range of 20-93 °C for periods as long as 6 years, and used the Arrhenius equation to estimate activation energies and calculate half-lives for typical Hanford groundwater conditions (temperature of 16 °C and pH of 7.75). We calculated a half-life of 630 years for hydrolysis for CT under these conditions and found that CT hydrolysis was unaffected by contact with sterilized, oxidized minerals or Hanford sediment within the sensitivity of our experiments. In contrast to CT, hydrolysis of CF was generally slower and very sensitive to pH due to the presence of both neutral and base-catalyzed hydrolysis pathways. We calculated a half-life of 3400 years for hydrolysis of CF in homogeneous solution at 16 °C and pH 7.75. Experiments in suspensions of Hanford sediment or smectite, the dominant clay mineral in Hanford sediment, equilibrated to an initial pH of 7.2, yielded calculated half-lives of 1700 years and 190 years, respectively, at 16 °C. Experiments with three other mineral phases at the same pH (muscovite mica, albite feldspar, and kaolinite) showed no change from the homogeneous solution results (i.e., a half-life of 3400 years). The strong influence of Hanford sediment on CF hydrolysis was attributed to the presence of smectite and its ability to adsorb protons, thereby buffering the solution pH at a higher level than would otherwise occur. The project also determined liquid-vapor partition coefficients for CT under the temperatures and pressures encountered in the sealed vessels that

  13. Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway

    Directory of Open Access Journals (Sweden)

    Scheuring David

    2012-09-01

    Full Text Available Abstract Background In yeast and mammals, many plasma membrane (PM proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. Results Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. Conclusions Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route

  14. Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum

    Institute of Scientific and Technical Information of China (English)

    SHEN; Xihui; LIU; Shuangjiang

    2005-01-01

    Although the protocatechuate branch of the β-ketoadipate pathway in Gram bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study,Corynebacterium glutamicum was cultivated with protocatechuate, p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locus ncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes,ncg12314 and ncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). Recombinant Escherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted in C. glutamicum, the ability to degrade and assimilate protocatechuate, p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity of C.glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded by ncg12314 and ncg12315. The additional genes involved in the protocatechuate branch of the β-ketoadipate pathway were identified by mining the genome data publically available in the GenBank. The functional identification of genes and their unique organization in C. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.

  15. Electrochemical treatment of trypan blue synthetic wastewater and its degradation pathway

    Directory of Open Access Journals (Sweden)

    ANANTHA N. SUBBA RAO

    2013-11-01

    Full Text Available The trypan blue (TB dye synthetic wastewater was treated in presence of chloride ions by electrochemical method. The effect of current density, pH, initial concentration of dye and supporting electrolyte on color and COD removal were investigated. The UV-Vis ab­sorption intensity, chemical oxygen demand (COD, cyclic voltammetry (CV, Fourier transform- infrared spectroscopy (FT-IR, gas chromatography – mass spectrometry (GC-MS analysis were conducted to investigate the kinetics and degradation pathway of TB dye.

  16. Elimination of paternal mitochondria through the lysosomal degradation pathway in C.elegans

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou; Haimin Li; Ding Xue

    2011-01-01

    In mammals,the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal,despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization.The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown.We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans,and that the lysosomal pathway actively participates in this process.Molecular and cell biological analyses indicate that in wild-type animals paternal mitoehondria and mtDNA are destroyed within two hours after fertilization.In animals with compromised lysosomes,paternal mitochondria persist until late embryonic stages.Therefore,the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization.Our study indicates that C.elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.

  17. Computational protein design enables a novel one-carbon assimilation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, JB; Smith, AL; Poust, S; Wargacki, AJ; Bar-Even, A; Louw, C; Shen, BW; Eiben, CB; Tran, HM; Noor, E; Gallaher, JL; Bale, J; Yoshikuni, Y; Gelb, MH; Keasling, JD; Stoddard, BL; Lidstrom, ME; Baker, D

    2015-03-09

    We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.

  18. Molecular characterization of the Akt-TOR signaling pathway in rainbow trout: potential role in muscle growth/degradation

    Science.gov (United States)

    The Akt-TOR signaling pathway plays a key role in cellular metabolism and muscle growth. Hormone, nutrition and stress factors affect the Akt-TOR pathway by regulating gene transcription, protein synthesis and degradation. In addition, we previously showed that energetic demands elevate during vit...

  19. Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation

    Institute of Scientific and Technical Information of China (English)

    Ting Tao; Hui Shi; Yihong Guan; Delai Huang; Ye Chen; David P Lane; Jun Chen

    2013-01-01

    p53 protein turnover through the ubiquitination pathway is a vital mechanism in the regulation of its transcriptional activity; however,little is known about p53 turnover through proteasome-independent pathway(s).The digestive organ expansion factor (Def) protein is essential for the development of digestive organs.In zebrafish,loss of function of defselectively upregulates the expression of p53 response genes,which raises a question as to what is the relationship between Def and p53.We report here that Def is a nucleolar protein and that loss of function of defleads to the upregulation of p53 protein,which surprisingly accumulates in the nucleoli.Our extensive studies have demonstrated that Def can mediate the degradation of p53 protein and that this process is independent of the proteasome pathway,but dependent on the activity of Calpain3,a cysteine protease.Our findings define a novel nucleolar pathway that regulates the turnover function of p53,which will advance our understanding of p53's role in organogenesis and tumorigenesis.

  20. 13C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H

    Directory of Open Access Journals (Sweden)

    Steffen Ostermann

    2015-09-01

    Full Text Available Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner–Doudoroff pathway (EDP and the pentose phosphate pathway (PPP. Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically 13C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from 13C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with 13C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments.

  1. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation

    Science.gov (United States)

    Kagan, Valerian E.; Konduru, Nagarjun V.; Feng, Weihong; Allen, Brett L.; Conroy, Jennifer; Volkov, Yuri; Vlasova, Irina I.; Belikova, Natalia A.; Yanamala, Naveena; Kapralov, Alexander; Tyurina, Yulia Y.; Shi, Jingwen; Kisin, Elena R.; Murray, Ashley R.; Franks, Jonathan; Stolz, Donna; Gou, Pingping; Klein-Seetharaman, Judith; Fadeel, Bengt; Star, Alexander; Shvedova, Anna A.

    2010-05-01

    We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.

  2. The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Li, Yuanyuan; Dong, Shikui; Wen, Lu; Wang, Xuexia; Wu, Yu

    2013-10-15

    Quantifying the carbon storage of grasslands under different management strategies can help us understand how this ecosystem responds to different land management practices. To assess the C cycle and the importance of soil microbial biomass carbon, we measured the levels of soil organic carbon, biomass carbon (above- and underground) and soil microbial biomass carbon in areas with different grazing intensities and different management strategy (fenced and unfenced) in the Qinghai-Tibetan Plateau. We also calculated the ratio of soil microbial biomass carbon to soil organic carbon as an indicator of the soil organic matter availability and quality. Results showed that degradation had significant effects on the soil organic carbon, biomass carbon and microbial biomass carbon (P fencing only had a significant effect on the non-degraded and moderately degraded grasslands (P fencing may be an important management strategy for restoring lightly or moderately degraded grassland in the Qinghai-Tibetan Plateau.

  3. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.

    Science.gov (United States)

    Xiang, Yingying; Fang, Jingyun; Shang, Chii

    2016-03-01

    The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed.

  4. Kinetics and reaction pathways of formaldehyde degradation using the UV-fenton method.

    Science.gov (United States)

    Liu, Xiangxuan; Liang, Jiantao; Wang, Xuanjun

    2011-05-01

    This study was based on the purpose of investigating the reaction rules of formaldehyde (HCHO) as an intermediate product in the degradation of many other organic wastewaters. The process conditions of UV-Fenton method for the degradation of the low concentrations of HCHO were studied in a batch photochemical reactor. The results showed that, when the original HCHO concentration was 30 mg/L, at an operating temperature of 23 degrees C, pH = 3, an H202 dosage of 68 mg/L, and an H2O2-to-Fe2+ mole ratio (H2O2:Fe2+) of 5, 91.89% of the HCHO was removed after 30 minutes. The degradation of HCHO in the UV-Fenton system was basically in accordance with the exponential decay. The kinetic study results showed that the reaction orders of HCHO, Fe2+, and H2O2 in the system were 1.054, 0.510, and 0.728, respectively, and the activation energy (Ea) was 9.85 kJ/mol. The comparison of UV/H2O2, Fenton, and UV-Fenton systems for the degradation of HCHO, and the results of iron catalyst tests showed that the mechanism of UV-Fenton on the degradation of HCHO was through a synergistic effect of Fe2+ and UV light to catalyze the decomposition of H2O2. The introduction of UV irradiation to the Fenton system largely increased the degradation rate of HCHO, mainly as a result of the accelerating effect on the formation of the Fe2+/Fe3+ cycle. The reaction products were analyzed by gas chromatography-mass spectrometry and a chemical oxygen demand (COD) analyzer. The effluent gases also were analyzed by gas chromatography. Based on those results, the reaction pathways of HCHO in the UV-Fenton system were proposed. The qualitative and quantitative analysis of the reaction products and the COD showed that the main intermediate product of the reaction was formic acid, and the further oxidation of it was the rate-limiting step for the degradation of HCHO.

  5. Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway.

    Science.gov (United States)

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Keane, Mark A

    2013-10-01

    The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (K(M)=0.014 mM) and maximum rate (Vmax=11.2 μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria.

  6. Pathways and Determinants of Early Spontaneous Vegetation Succession in Degraded Lowland of South China

    Institute of Scientific and Technical Information of China (English)

    Wen-Jun Duan; Hai Ran; Sheng-Lei Fu; Qin-Feng Guo; Jun Wang

    2008-01-01

    Continuous and prolonged human disturbances have caused severe degradation of a large portion of lowland in South China, and how to restore such degraded ecosystems becomes an increasing concern. The process and mechanisms of spontaneous succession, which plays an important role in vegetation restoration, have not been adequately examined. To identify the pathways of early spontaneous vegetation succession, 41 plots representing plant communities abandoned over different times were established and Investigated. The communities and indicator species of the vegetation were classified by analyzing the important values of plant species using multivariate analyses. The reaults indicated that the plant species could be classified into nine plant communities repreaenting six succession staages. The pathway and species composition alao changed in the process of succession. We also meaeurad 13 environmental variables of microtopography, soil structure and soil nutrition in each plot to examine the driving forces of auccession and the vegetation-environment relationships. Our resulta ahowed that the environmental variables changed in diverse directions, and that aoil bulk density, soil water capacity and soU acidity were the most important factors.

  7. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver.

    Science.gov (United States)

    Skop, V; Cahová, M; Papáčková, Z; Páleníčková, E; Daňková, H; Baranowski, M; Zabielski, P; Zdychová, J; Zídková, J; Kazdová, L

    2012-01-01

    We present data supporting the hypothesis that the lysosomal-autophagy pathway is involved in the degradation of intracellular triacylglycerols in the liver. In primary hepatocytes cultivated in the absence of exogenous fatty acids (FFA), both inhibition of autophagy flux (asparagine) or lysosomal activity (chloroquine) decreased secretion of VLDL (very low density lipoproteins) and formation of FFA oxidative products while the stimulation of autophagy by rapamycine increased some of these parameters. Effect of rapamycine was completely abolished by inactivation of lysosomes. Similarly, when autophagic activity was influenced by cultivating the hepatocytes in "starving" (amino-acid poor medium) or "fed" (serum-supplemented medium) conditions, VLDL secretion and FFA oxidation mirrored the changes in autophagy being higher in starvation and lower in fed state. Autophagy inhibition as well as lysosomal inactivation depressed FFA and DAG (diacylglycerol) formation in liver slices in vitro. In vivo, intensity of lysosomal lipid degradation depends on the formation of autophagolysosomes, i.e. structures bringing the substrate for degradation and lysosomal enzymes into contact. We demonstrated that lysosomal lipase (LAL) activity in liver autophagolysosomal fraction was up-regulated in fasting and down-regulated in fed state together with the increased translocation of LAL and LAMP2 proteins from lysosomal pool to this fraction. Changes in autophagy intensity (LC3-II/LC3-I ratio) followed a similar pattern.

  8. Photocatalytic transformation of sixteen substituted phenylurea herbicides in aqueous semiconductor suspensions: intermediates and degradation pathways.

    Science.gov (United States)

    Fenoll, José; Sabater, Paula; Navarro, Gines; Pérez-Lucas, Gabriel; Navarro, Simón

    2013-01-15

    The photocatalytic degradation of sixteen substituted phenylurea herbicides (PUHs) in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO(2)) as photocatalyst under artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the oxidant (Na(2)S(2)O(8)) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO(2) alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such herbicides in optimal conditions and at constant volumetric rate of photon absorption in the photoreactor. Thus, the complete disappearance of all the studied compounds was achieved after 20 min of illumination in the ZnO/Na(2)S(2)O(8) system. The main photocatalytic intermediates detected during the degradation of PUHs were identified. The probable photodegradation pathways were proposed and discussed. The main steps involved: N-demethylation of the N,N-dimethylurea-substituted compounds followed of N-demethylation and N-demethoxylation of the N-methoxy-N-methyl-substituted ureas and hydroxylation of aromatic rings and their aliphatic side-chains of both, parent compounds and intermediates.

  9. Degradation Pathway for Eplerenone by Validated Stability Indicating UP-LC Method.

    Science.gov (United States)

    Sudhakar Babu, Kondru; Madireddy, Venkataramanna; Indukuri, Venkata Somaraju

    2012-01-01

    Degradation pathway for eplerenone is established as per ICH recommendations by validated and stability-indicating reverse phase liquid chromatographic method. Eplerenone is subjected to stress conditions of acid, base, oxidation, and thermal and photolysis. Significant degradation is observed in acid and base stress conditions. Four impurities are studied and the major degradant (RRT about 0.31) was identified by LC-MS and spectral analysis. The stress samples are assayed against a qualified reference standard and the mass balance is found close to 99.5%. Efficient chromatographic separation is achieved on a Waters symmetry C18 stationary phase with simple mobile phase combination delivered in gradient mode and quantification is carried at 240 nm at a flow rate of 1.0 mL min(-1). In the developed LC method the resolution between eplerenone and four potential impurities (imp-1, imp-2, imp-3, and imp-4) is found to be greater than 4.0. Regression analysis shows an r value (correlation coefficient) of greater than 0.999 for eplerenone and four potential impurities. This method is capable to detect the impurities of eplerenone at a level of 0.020% with respect to test concentration of 1.0 mg mL(-1) for a 20 μL injection volume. The developed UPLC method is validated with respect to specificity, linearity and range, accuracy, precision, and robustness for impurities and assay determination.

  10. Identification of genes and pathways related to phenol degradation in metagenomic libraries from petroleum refinery wastewater.

    Directory of Open Access Journals (Sweden)

    Cynthia C Silva

    Full Text Available Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system.

  11. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  12. Identification of genes and pathways related to phenol degradation in metagenomic libraries from petroleum refinery wastewater.

    Science.gov (United States)

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sérgio O; Silva, Lívia C F; Vidigal, Pedro M P; Vicentini, Renato; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia M J; Oliveira, Valéria M

    2013-01-01

    Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system.

  13. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-01-11

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha(-1), were higher than 45.90 Mg C ha(-1) in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  14. Anoxic carbon degradation in Arctic sediments: Microbial transformations of complex substrates

    DEFF Research Database (Denmark)

    Arnosti, Carol; Finke, Niko; Larsen, Ole

    2005-01-01

    Complex substrates are degraded in anoxic sediments by the concerted activities of diverse microbial communities. To explore the effects of substrate complexity on carbon transformations in permanently cold anoxic sediments, four substrates—Spirulina cells, Isochrysis cells, and soluble high...... of carbon degradation diverged, with an additional 43%, 32%, 33%, and 8% of Isochrysis, Iso-Ex, Spirulina, and Spir-Ex carbon respired to CO2 over the next 750 h of incubation. Somewhat surprisingly, the soluble, carbohydrate-rich extracts did not prove to be more labile substrates than the whole cells from...... which they were derived. Although Spirulina and Iso-Ex differed in physical and chemical characteristics (solid/soluble, C/N ratio, lipid and carbohydrate content), nearly identical quantities of carbon were respired to CO2. In contrast, only 15% of Spir-Ex carbon was respired, despite the initial burst...

  15. Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival.

    Directory of Open Access Journals (Sweden)

    Kevin Roy

    2014-09-01

    Full Text Available Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2 is limited by spliceosome-mediated decay (SMD. Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD. We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress.

  16. Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways.

    Science.gov (United States)

    Ma, Jingshuai; Lv, Wenying; Chen, Ping; Lu, Yida; Wang, Fengliang; Li, Fuhua; Yao, Kun; Liu, Guoguang

    2016-07-01

    The lipid regulator gemfibrozil (GEM) has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photolytic behavior, toxicity of intermediate products, and degradation pathways of GEM in aqueous solutions under UV irradiation. The results demonstrated that the photodegradation of GEM followed pseudo-first-order kinetics, and the pseudo-first-order rate constant was decreased markedly with increasing initial concentrations of GEM and initial pH. The photodegradation of GEM included direct photolysis via (3)GEM(*) and self-sensitization via ROS, where the contribution rates of degradation were 0.52, 90.05, and 8.38 % for ·OH, (1)O2, and (3)GEM(*), respectively. Singlet oxygen ((1)O2) was evidenced by the molecular probe compound, furfuryl alcohol (FFA), and was identified as the primary reactive species in the photolytic process. The steady-state concentrations of (1)O2 increased from (0.324 ± 0.014) × 10(-12) to (1.021 ± 0.040) × 10(-12) mol L(-1), as the initial concentrations of GEM were increased from 5 to 20 mg L(-1). The second-order rate constant for the reaction of GEM with (1)O2 was calculated to be 2.55 × 10(6) M(-1) s(-1). The primary transformation products were identified using HPLC-MS/MS, and possible photodegradation pathways were proposed by hydroxylation, aldehydes reactions, as well as the cleavage of ether side chains. The toxicity of phototransformation product evaluation revealed that photolysis potentially provides a critical pathway for GEM toxicity reduction in potable water and wastewater treatment facilities.

  17. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate

    Science.gov (United States)

    Loyd, Sean J.; Berelson, William M.; Lyons, Timothy W.; Hammond, Douglas E.; Corsetti, Frank A.

    2012-02-01

    Carbonate concretions can form as a result of organic matter degradation within sediments. However, the ability to determine specific processes and timing relationships to particular concretions has remained elusive. Previously employed proxies (e.g., carbon and oxygen isotopes) cannot uniquely distinguish among diagenetic alkalinity sources generated by microbial oxidation of organic matter using oxygen, nitrate, metal oxides, and sulfate as electron acceptors, in addition to degradation by thermal decarboxylation. Here, we employ concentrations of carbonate-associated sulfate (CAS) and δ 34S CAS (along with more traditional approaches) to determine the specific nature of concretion authigenesis within the Miocene Monterey Formation. Integrated geochemical analyses reveal that at least three specific organo-diagenetic reaction pathways can be tied to concretion formation and that these reactions are largely sample-site specific. One calcitic concretion from the Phosphatic Shale Member at Naples Beach yields δ 34S CAS values near Miocene seawater sulfate (˜+22‰ VCDT), abundant CAS (ca. 1000 ppm), depleted δ 13C carb (˜-11‰ VPDB), and very low concentrations of Fe (ca. 700 ppm) and Mn (ca. 15 ppm)—characteristics most consistent with shallow formation in association with organic matter degradation by nitrate, iron-oxides and/or minor sulfate reduction. Cemented concretionary layers of the Phosphatic Shale Member at Shell Beach display elevated δ 34S CAS (up to ˜+37‰), CAS concentrations of ˜600 ppm, mildly depleted δ 13C carb (˜-6‰), moderate amounts of Mn (ca. 250 ppm), and relatively low Fe (ca. 1700 ppm), indicative of formation in sediments dominated by sulfate reduction. Finally, concretions within a siliceous host at Montaña de Oro and Naples Beach show minimal CAS concentrations, positive δ 13C values, and the highest concentrations of Fe (ca. 11,300 ppm) and Mn (ca. 440 ppm), consistent with formation in sediments experiencing

  18. Enhanced degradation of carbon tetrachloride by surfactant-modified zero-valent iron

    Institute of Scientific and Technical Information of China (English)

    MENG Ya-feng; GUAN Bao-hong; WU Zhong-biao; WANG Da-hui

    2006-01-01

    Sorption of carbon tetrachloride (CT) by zero-valent iron (ZVI) is the rate-limiting step in the degradation of CT, so the sorption capacity of ZVI is of great importance. This experiment was aimed at enhancing the sorption of CT by ZVI and the degradation rate of CT by modification of surfactants. This study showed that ZVI modified by cationic surfactants has favorable synergistic effect on the degradation of CT. The CT degradation rate of ZVI modified by cetyl pyridinium bromide (CPB) was higher than that of the unmodified ZVI by 130%, and the CT degradation rate of ZVI modified by cetyl trimethyl ammonium bromide (CTAB) was higher than that of the unmodified ZVI by 81%. This study also showed that the best degradation effect is obtained at the near critical micelle concentrations (CMC) and that high loaded cationic surfactant does not have good synergistic effect on the degradation due to its hydrophilicity and the block in surface reduction sites. Furthermore degradation of CT by ZVI modified by nonionic surfactant has not positive effect on the degradation as the ionic surfactant and the ZVI modified by anionic surfactant has hardly any obvious effects on the degradation.

  19. Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Luck, Kyle A; Arnold, Heather N; Shastry, Tejas A; Marks, Tobin J; Hersam, Mark C

    2016-10-10

    Polyfluorenes have achieved noteworthy performance in organic electronic devices, but exhibit undesired green band emission under photo-oxidative conditions that have limited their broad utility in optoelectronic applications. In addition, polyfluorenes are well-known dispersants of single-walled carbon nanotubes (SWCNTs), although the influence of SWCNTs on polyfluorene photo-oxidative stability has not yet been defined. Here we quantitatively explore the photophysical properties of poly[(9,9-bis(3/-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) under photo-oxidative conditions when it is in van der Waals contact with SWCNTs. Photoluminescence spectroscopy tracks the spectral evolution of the polymer emission following ambient ultraviolet (UV) exposure, confirming that PFN exhibits green band emission. In marked contrast, PFN-wrapped SWCNTs possess high spectral stability without green band emission under the same ambient UV exposure conditions. By investigating a series of PFN thin films as a function of SWCNT content, it is shown that SWCNT loadings as low as ~23 wt% suppress photo-oxidative degradation. These findings suggest that PFN-SWCNT composites provide an effective pathway toward utilizing polyfluorenes in organic optoelectronics.

  20. Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+

    Directory of Open Access Journals (Sweden)

    Herold Martin

    2011-11-01

    Full Text Available Abstract Measuring forest degradation and related forest carbon stock changes is more challenging than measuring deforestation since degradation implies changes in the structure of the forest and does not entail a change in land use, making it less easily detectable through remote sensing. Although we anticipate the use of the IPCC guidance under the United Framework Convention on Climate Change (UNFCCC, there is no one single method for monitoring forest degradation for the case of REDD+ policy. In this review paper we highlight that the choice depends upon a number of factors including the type of degradation, available historical data, capacities and resources, and the potentials and limitations of various measurement and monitoring approaches. Current degradation rates can be measured through field data (i.e. multi-date national forest inventories and permanent sample plot data, commercial forestry data sets, proxy data from domestic markets and/or remote sensing data (i.e. direct mapping of canopy and forest structural changes or indirect mapping through modelling approaches, with the combination of techniques providing the best options. Developing countries frequently lack consistent historical field data for assessing past forest degradation, and so must rely more on remote sensing approaches mixed with current field assessments of carbon stock changes. Historical degradation estimates will have larger uncertainties as it will be difficult to determine their accuracy. However improving monitoring capacities for systematic forest degradation estimates today will help reduce uncertainties even for historical estimates.

  1. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanlin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Shi, Jin; Chen, Hongche [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dong, Wenbo, E-mail: wbdong@fudan.edu.cn [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC–MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO·) was also studied and H{sub 2}O{sub 2} was added to produce HO·. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO·. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16 h irradiation. - Highlights: • Photodegradation of 4-t-BP, an endocrine disrupting chemical, has been investigated. • 3 stable byproducts were identified from photolysis and oxidation processes. • 5 transient by-products were concluded from LFP experiments. • The theoretical calculation was performed to confirm the byproducts. • 4-t-BP was degraded with increasing efficiency: 254 nm < H{sub 2}O{sub 2}/313 nm < H{sub 2}O{sub 2}/254 nm.

  2. Peroxidase-induced degradation of single-walled carbon nanotubes: hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, I I; Vakhrusheva, T V; Sokolov, A V; Kostevich, V A [Research Institute for Physico-Chemical Medicine, FMBA, M. Pirogovskaya Str. 1a, Moscow (Russian Federation); Ragimov, A A, E-mail: irina.vlasova@yahoo.com [National Research Centre of Surgery, RAMS, Abrikosovskiy per. 2, Moscow (Russian Federation)

    2011-04-01

    Due to their extraordinary properties, single-walled carbon nanotubes (SWNTs) have a tremendous potential for medical applications such as clinical diagnostics, targeted drug (or gene) delivery and cancer therapy. Hence, effects of SWNTs on living systems as well as mechanisms for biodegradation of SWTNs are of great importance and must be studied before starting to explore SWNTs for medical use. This study was undertaken to compare the potential of different peroxidases in degrading carboxylated SWNT (c-SWNT) and to elucidate the role of peroxidase-generated reactive products in this process. A detailed study showed that neither reactive intermediate products nor free radicals generated via peroxidase cycle can considerably oxidize c-SWNT. Biodegradation of c-SWNT in model system can be induced by free radicals generated as a result of heme degradation. The latter explains why hemoglobin, which is a pseudo-peroxidase possessing low peroxidase activity, is able to oxidize carbon nanotubes with a higher efficiency than horseradish peroxidase. However, c-SWNT in the presence of blood plasma (15 vol %) demonstrated no degradation even at high concentrations of hemoglobin and H{sub 2}O{sub 2}. The comparison of the ability of various peroxidases to degrade SWNTs in vitro revealed that MPO, due to its ability to produce hypochlorite, and lactoperoxidase, due to its ability to produce hypobromite, are extremely efficient in degrading carbon nanotubes. Since neutrophils are a main source of human MPO, we tested the effect of SWNTs on these cells. SWNTs were unable to stimulate neutrophils. On the other hand, they dose-dependently enhanced opsonized zymosan-induced cell stimulation as detected by measuring the amount of hypochlorite produced. This finding may be relevant to the in vivo situation, for example, at inflammatory sites. In order to imitate conditions characteristic of phagosomes and inflammatory sites, we titrated the suspension of c-SWNT in the presence of

  3. Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon

    Indian Academy of Sciences (India)

    A K Subramani; K Byrappa; S Ananda; K M Lokanatha Rai; C Ranganathaiah; M Yoshimura

    2007-02-01

    The photocatalytic degradation of indigo carmine dye was studied using hydrothermally prepared TiO2 impregnated activated carbon (TiO2 : AC). A comparison between the degradation of the indigo carmine dye using commercial TiO2 and TiO2 : AC revealed the efficiency of the title compound. The degradation reaction was optimized with respect to the dye concentration and catalyst amount. The reduction in the chemical oxygen demand (COD) revealed the mineralization of dye along with colour removal. The active compound like TiO2 was impregnated onto the activated carbon surface under mild hydrothermal conditions (< 250°C, P ∼ 40 bars). The impregnated activated carbon samples were characterized using powder X-ray diffraction (XRD) and scanning electron microscope (SEM).

  4. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products.

    Science.gov (United States)

    Gomi, Nichina; Yoshida, Shuji; Matsumoto, Kazutsugu; Okudomi, Masayuki; Konno, Hiroki; Hisabori, Toru; Sugano, Yasushi

    2011-11-01

    We examined the degradation of amaranth, a representative azo dye, by Bjerkandera adusta Dec 1. The degradation products were analyzed by high performance liquid chromatography (HPLC), visible absorbance, and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). At the primary culture stage (3 days), the probable reaction intermediates were 1-aminonaphthalene-2,3,6-triol, 4-(hydroxyamino) naphthalene-1-ol, and 2-hydroxy-3-[2-(4-sulfophenyl) hydrazinyl] benzenesulfonic acid. After 10 days, the reaction products detected were 4-nitrophenol, phenol, 2-hydroxy-3-nitrobenzenesulfonic acid, 4-nitrobenzene sulfonic acid, and 3,4'-disulfonyl azo benzene, suggesting that no aromatic amines were created. Manganese-dependent peroxidase activity increased sharply after 3 days culture. Based on these results, we herein propose, for the first time, a degradation pathway for amaranth. Our results suggest that Dec 1 degrades amaranth via the combined activities of peroxidase and hydrolase and reductase action.

  5. Removal and Degradation Pathways of Sulfamethoxazole Present in Synthetic Municipal Wastewater via an Anaerobic Membrane Bioreactor

    KAUST Repository

    Sanchez Huerta, Claudia

    2016-05-01

    The current global water crisis in addition to continues contamination of natural water bodies with harmful organic micropollutants (OMPs) have driven the development of new water treatment technologies that allow the efficient removal of such compounds. Among a long list of OMPs, antibiotics are considered as top priority pollutants to be treated due to their great resistance to biological treatments and their potential to develop bacterial resistance. Different approaches, such as membrane-based and advance oxidation processes have been proposed to alleviate or minimize antibiotics discharge into aquatic environments. However most of these processes are costly and generate either matrices with high concentration of OMPs or intermediate products with potentially greater toxicity or persistence. Therefore, this thesis proposes the study of an anaerobic membrane bioreactor (AnMBR) for the treatment of synthetic municipal wastewater containing sulfamethoxazole (SMX), a world widely used antibiotic. Besides the general evaluation of AnMBR performance in the COD removal and biogas production, this research mainly focuses on the SMX removal and its degradation pathway. Thus 5 SMX quantification was performed through solid phase extraction-liquid chromatography/mass spectrometry and the identification of its transformation products (TPs) was assessed by gas chromatography/mass spectrometry technique. The results achieved showed that, working under optimal conditions (35°C, pH 7 and ORP around -380 to -420 mV) and after a biomass adaptation period (maintaining 0.85 VSS/TSS ratio), the AnMBR process provided over 95% COD removal and 95-98% SMX removal, while allowing stable biogas composition and methane production (≈130 mL CH4/g CODremoved). Kinetic analysis through a batch test showed that after 24 h of biological reaction, AnMBR process achieved around 94% SMX removal, indicating a first order kinetic reaction with K= 0.119, which highlights the high degradation

  6. Phosphorus, carbon- and nitrogen interactions in productive and degraded tropical pastures

    Science.gov (United States)

    Oberson, A.; Hegglin, D. D.; Nesper, M.; Rao, I.; Fonte, S.; Ramirez, B.; Velasquez, J.; Tamburini, F.; Bünemann, E. K.; Frossard, E.

    2011-12-01

    Pastures are the main land use in deforested areas of tropical South America. The highly weathered soils of these regions usually have low total and available phosphorus (P) contents. Low P availability can strongly limit plant and animal productivity and other soil ecosystem functions. Most introduced pastures of Brachiaria spp. are grass-alone (GA) while some are grass-legume (GL) pastures. The majority of the introduced pastures, particularly the grass-alone are at some state of degradation (GD). Pasture degradation induces severe loss of plant biomass production, with drastic ecological and economic implications. Although the importance of P deficiency in pasture degradation has been recognized, the knowledge generated on stoichiometry of carbon (C), nitrogen (N) and P along pathways of the nutrient cycles of pastures, with different botanical composition and productivity, has been very limited. We will present results of a case study realized during 2010 to 2011 in the forest margins agro-ecosystem of the department of Caquetá, Colombia. Our objectives were to determine: i) whether P availability is lower in degraded compared to productive pastures, and ii) whether the introduction of legumes in the pasture increases P availability through enhanced biological P cycling through plant growth, plant litter decomposition and the soil microbial biomass; and iii) whether pasture types (GA vs GL) and the state of pasture degradation affect the C:N:P ratios in nutrient pools of the soil-plant system. An on-farm study was conducted on nine farms in the department of Caquetá, Colombia. On every farm three different pasture types were studied: degraded grass alone pastures (GD), productive grass-alone pastures (GA) and productive grass-legume pastures (GL). Basic soil characteristics and indicators on soil P status, microbial P cycling, plant biomass production, plant litter deposition and nutrient concentrations in plant tissue were determined. Analysis of P, C and N

  7. Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts - The influence of the platinum to carbon ratio on the degradation rate

    Science.gov (United States)

    Speder, Jozsef; Zana, Alessandro; Spanos, Ioannis; Kirkensgaard, Jacob J. K.; Mortensen, Kell; Hanzlik, Marianne; Arenz, Matthias

    2014-09-01

    A colloidal synthesis approach is used to prepare supported proton exchange membrane fuel cell (PEMFC) catalysts with various Pt loadings - from low to extremely high ones. The catalyst samples are used to continue our investigation of the role of the Pt:C ratio in the degradation processes. The influence of the platinum loading on the electrochemical surface area (ECSA) loss is evaluated in a systematic electrochemical study by using two commercially available carbon blacks, namely Vulcan XC72R and Ketjenblack EC-300J. Accelerated degradation tests simulating load cycle and start-up/shutdown conditions are carried out in accordance with the Fuel Cell Commercialization Conference of Japan (FCCJ) recommendations. Under conditions simulating the load cycle of PEM fuel cells no unambiguous correlation between the ECSA loss and the Pt:C ratio is found. By contrast, under conditions simulating the repetitive start-up/shutdown processes of PEMFCs the ECSA loss first increases with increasing Pt loading. However, it decreases again for very high loadings. Furthermore, the Vulcan samples exhibited higher ECSA losses than the Ketjenblack samples, indicating the important role of the physical and chemical properties of pristine carbon supports in the carbon degradation mechanism.

  8. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands

    Directory of Open Access Journals (Sweden)

    W. Babel

    2014-06-01

    Full Text Available The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments coupling changes of surface properties and processes with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan plateau. We coupled measurements of micro-lysimeter, chamber, 13C labeling, and eddy-covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyze how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while the total sum of evapotranspiration remains unaffected. The results show an earlier onset of convection and cloud generation, likely triggered by enhanced evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a~significant influence on larger scales.

  9. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands

    Directory of Open Access Journals (Sweden)

    W. Babel

    2014-12-01

    Full Text Available The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.

  10. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  11. Effective photocatalytic degradation of atrazine over titania-coated carbon nanotubes (CNTs) coupled with microwave energy.

    Science.gov (United States)

    Chen, Hongzhe; Yang, Shaogui; Yu, Kai; Ju, Yongming; Sun, Cheng

    2011-04-14

    Microwave-assisted photocatalytic (MAPC) degradation of atrazine over nanotitania coated multiwalled carbon nanotubes (TiO(2)/MWCNTs) was investigated in this study. As a result, degradation efficiency of atrazine over TiO(2)/CNTs prepared by hydrothermal method was about 30% and 20% higher than that of titania P25 and anatase prepared hydrothermally in given time. The TiO(2)/CNTs composite samples were characterized by TGA-DSC, TEM, UV-vis DRS, XRD and BET, to explain the reason for efficient degradation and adsorption process of atrazine. Microwave thermal effect in this process was also investigated. Intermediates of degradation both in MAPC process and microwave-assisted photodegradation (MAPD) process were identified by LC/MS. It suggests that MWCNTs have special effects on atrazine degradation during MAPC process, like strong microwave absorption capability.

  12. The Degradation Pathway of the Mitophagy Receptor Atg32 Is Re-Routed by a Posttranslational Modification.

    Science.gov (United States)

    Levchenko, Mariia; Lorenzi, Isotta; Dudek, Jan

    2016-01-01

    The outer mitochondrial membrane protein Atg32 is the central receptor for mitophagy, the mitochondria-specific form of autophagy. Atg32 is an unstable protein, and is rapidly degraded under conditions in which mitophagy is not induced. Here we show that Atg32 undergoes a posttranslational modification upon induction of mitophagy. The modification is dependent on the core autophagic machinery, including Atg8, and on the mitophagy-specific adaptor protein Atg11. The modified Atg32 is targeted to the vacuole where it becomes stabilized when vacuolar proteases are deficient. Interestingly, we find that this degradation pathway differs from the degradation pathway of non-modified Atg32, which neither involves vacuolar proteases, nor the proteasome. These analyses reveal that a posttranslational modification discriminates a form of Atg32 targeting mitochondria for mitophagy from that, which escapes mitophagy by rapid degradation.

  13. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Leonard, Daniel; Masedunskas, Andrius

    2013-01-01

    of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor-associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies......Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent...... advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase-dependent manner and was subsequently...

  14. Cycle inhibiting factors (cifs): cyclomodulins that usurp the ubiquitin-dependent degradation pathway of host cells.

    Science.gov (United States)

    Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2011-04-01

    Cycle inhibiting factors (Cifs) are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are "cyclomodulins" that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL) complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  15. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  16. Degradation and healing mechanisms of carbon fibers during the catalytic growth of carbon nanotubes on their surfaces.

    Science.gov (United States)

    Kim, Kyoung Ju; Yu, Woong-Ryeol; Youk, Ji Ho; Lee, Jinyong

    2012-04-01

    This study reports on the main cause of the reduced tensile strength of carbon fibers (CFs) by investigating the microstructural changes in the CFs that are undergoing mainly two processes: catalyst nanoparticle formation and chemical vapor deposition (CVD). Interestingly, the two processes oppositely influenced the tensile strength of the CFs: the former negatively and the latter positively. The catalysts coating and nanoparticle formation degraded the CF surface by inducing amorphous carbons and severing graphitic layers, while those defects were healed by both the injected carbons and interfaced CNTs during the CVD process. The revealed degradation and healing mechanisms can serve as a fundamental engineering basis for exploring optimized processes in the manufacturing of hierarchical reinforcements without sacrificing the tensile strength of the substrate CFs.

  17. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The Lysosomal Degradation Pathway

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S.; Ambudkar, Suresh V.

    2015-01-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7 ± 1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1± 0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp expressing cancer cells towards chemotherapeutic drugs. PMID:26057472

  18. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  19. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.

    Science.gov (United States)

    Keen, Olya S; Ferrer, Imma; Michael Thurman, E; Linden, Karl G

    2014-12-01

    Lamotrigine is recently recognized as a persistent pharmaceutical in the water environment and wastewater effluents. Its degradation was studied under UV and ozone advanced oxidation treatments with reaction kinetics of lamotrigine with ozone (≈4 M(-1)s(-1)), hydroxyl radical [(2.1 ± 0.3) × 10(9)M(-1)s(-1)] and by UV photolysis with low and medium pressure mercury vapor lamps [quantum yields ≈0 and (2.7 ± 0.4)× 10(-4) respectively] determined. All constants were measured at pH 6 and at temperature ≈20°C. The results indicate that lamotrigine is slow to respond to direct photolysis or oxidation by ozone and no attenuation of the contaminant is expected in UV or ozone disinfection applications. The compound reacts rapidly with hydroxyl radicals indicating that advanced oxidation processes would be effective for its treatment. Degradation products were identified under each treatment process using accurate mass time-of-flight spectrometry and pathways of decay were proposed. The main transformation pathways in each process were: dechlorination of the benzene ring during direct photolysis; hydroxyl group addition to the benzene ring during the reaction with hydroxyl radicals; and triazine ring opening after reaction with ozone. Different products that form in each process may be to a varying degree less environmentally stable than the parent lamotrigine. In addition, a novel method of ozone quenching without addition of salts is presented. The new quenching method would allow subsequent mass spectrometry analysis without a solid phase extraction clean-up step. The method involves raising the pH of the sample to approximately 10 for a few seconds and lowering it back and is therefore limited to applications for which temporary pH change is not expected to affect the outcome of the analysis.

  20. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO{sub 2}-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Abramovic, Biljana, E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Kler, Sanja, E-mail: sanja.kler@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Sojic, Daniela, E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Lausevic, Mila, E-mail: milal@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Radovic, Tanja, E-mail: tradovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Vione, Davide, E-mail: davide.vione@unito.it [Dipartimento di Chimica Analitica, Universita di Torino, Via Pietro Giuria 5, 10125 Torino (Italy)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Kinetics and efficiency of photocatalytic degradation of the {beta}{sub 1}-blocker metoprolol tartrate (MET). Black-Right-Pointing-Pointer Two TiO{sub 2} specimens employed. Black-Right-Pointing-Pointer Faster degradation of MET, but slower mineralization, obtained with the TiO{sub 2} specimen having lower surface area. Black-Right-Pointing-Pointer Photocatalytic transformation pathways of MET including mineralization. - Abstract: This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used {beta}{sub 1}-blocker, in TiO{sub 2} suspensions of Wackherr's 'Oxyde de titane standard' and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01-0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO{sub 2} Wackherr induced a significantly faster MET degradation compared to TiO{sub 2} Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals ({center_dot}OH), it was shown that the reaction with {center_dot}OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO{sub 2} and H{sub 2}O, while the nitrogen was predominantly present as NH{sub 4}{sup +}. Reaction intermediates were studied in detail and a number of them were identified using LC-MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO{sub 2} specimen.

  1. Involvement of PML nuclear bodies in CBP degradation through the ubiquitin-proteasome pathway.

    Science.gov (United States)

    St-Germain, Jonathan R; Chen, Jihong; Li, Qiao

    2008-11-01

    Transcriptional coactivator CBP is involved in the regulation of an array of biological processes including cellular differentiation, proliferation and survival. The function of CBP is critical for proper embryonic development and is relevant in cancer biology. Although much is known about the functional roles of CBP in these cellular processes, fewer studies have assessed what in turn regulates CBP activity per se. It has been reported that CBP colocalizes with PML bodies which are nuclear structures disrupted in acute promyelocytic leukemia. However, the biological relevance of CBP localization to PML nuclear bodies is still unclear. In this study, we demonstrate that histone deacetylase inhibitors such as valproic acid, a therapeutically relevant compound used for the treatment of epilepsy, modulates CBP activity. Valproic acid reduces the steady-state level of CBP by inducing CBP degradation through the ubiquitin-proteasome pathway, while increasing the colocalization of CBP with ubiquitin nuclear speckles and with PML nuclear bodies. Our results suggest that PML nuclear bodies are nuclear sites involved in the ubiquitin-dependent degradation of CBP, providing novel insights in the regulation of CBP function and highlighting the relevance of its localization to PML nuclear bodies.

  2. Unusual starch degradation pathway via cyclodextrins in the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324.

    Science.gov (United States)

    Labes, Antje; Schönheit, Peter

    2007-12-01

    The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, alpha-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly beta-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway.

  3. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  4. Low-temperature carbonization and more effective degradation of carbohydrates induced by ferric trichloride.

    Science.gov (United States)

    Xia, Juan; Song, Le Xin; Dang, Zheng

    2012-07-05

    The present work is devoted to an attempt to understand the effect of an inorganic salt such as ferric trichloride (FeCl(3)) on the carbonization and degradation of carbohydrates such as β-cyclodextrin (CD), amylose, and cellulose. Our data revealed two important observations. First, the presence of FeCl(3) led to the occurrence of a low carbonization temperature of 373 K. This is a rare phenomenon, in which carbonization improvement is present even if a small amount of FeCl(3) was added. Experimental results had provided evidence for the fact that a redox process was started during the low-temperature carbonization of β-CD, causing the reduction of FeCl(3) to ferrous chloride (FeCl(2)) by carbon materials formed in the carbonization process in air. However, the reduction process of FeCl(3) produced the in situ composite nanomaterial of Fe-FeCl(2) combination in nitrogen. Second, a molecule-ion interaction emerged between FeCl(3) and the carbohydrates in aqueous solution, resulting in a more effective degradation of the carbohydrates. Moreover, our results demonstrated that FeCl(3) played the role of a catalyst during the degradation of the carbohydrates in solution. We believe that the current work not only has a significant potential application in disposal of waste carbohydrates but also could be helpful in many fields such as environmental protection, biomass energy development, and inorganic composite nanomaterials.

  5. Regulation of multiple carbon monoxide consumption pathways in anaerobic bacteria

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann

    2011-07-01

    Full Text Available Carbon monoxide (CO, well known as a toxic gas, is increasingly recognized as a key metabolite and signaling molecule. Microbial utilization of CO is quite common, evidenced by the rapid escalation in description of new species of CO-utilizing bacteria and archaea. Carbon monoxide dehydrogenase (CODH, the protein complex that enables anaerobic CO utilization has been well-characterized from an increasing number of microorganisms, however the regulation of multiple CO-related gene clusters in single isolates remains unexplored. Many species are extroraordinarily resistant to high CO concentrations, thiriving under pure CO at more than one atmosphere. We hypothesized that, in strains that can grow exclusively on CO, both carbon acquisition via the CODH/Acetyl CoA synthase complex and energy conservation via a CODH-linked hydrogenase must be differentially regulated in response to the availability of CO. The CO-sensing transcriptional activator, CooA is present in most CO-oxidizing bacteria. Here we present a genomic and phylogenetic survey of CODH operons and cooA genes found in CooA-containing bacteria. Two distinct groups of CooA homologs were found: One clade (CooA-1 is found in the majority of CooA containing bacteria, whereas the other clade (CooA-2 is found only in genomes that encode multiple CODH clusters, suggesting that the CooA-2 might be important for cross-regulation of competing CODH operons. Recombinant CooA-1 and CooA-2 regulators from the prototypical CO-utilizing bacterium Carboxydothermus hydrogenoformans were purified, and promoter binding analyses revealed that CooA-1 specifically regulates the hydrogenase-linked CODH, whereas CooA-2 is able to regulate both the hydrogenase-linked CODH and the CODH/ACS operons. These studies point to the ability of dual CooA homologs to partition CO into divergent CO-utilizing pathways resulting in efficient consumption of a single limiting growth substrate available across a wide range of

  6. Exploring effective sampling design for monitoring soil organic carbon in degraded Tibetan grasslands.

    Science.gov (United States)

    Chang, Xiaofeng; Bao, Xiaoying; Wang, Shiping; Zhu, Xiaoxue; Luo, Caiyun; Zhang, Zhenhua; Wilkes, Andreas

    2016-05-15

    The effects of climate change and human activities on grassland degradation and soil carbon stocks have become a focus of both research and policy. However, lack of research on appropriate sampling design prevents accurate assessment of soil carbon stocks and stock changes at community and regional scales. Here, we conducted an intensive survey with 1196 sampling sites over an area of 190 km(2) of degraded alpine meadow. Compared to lightly degraded meadow, soil organic carbon (SOC) stocks in moderately, heavily and extremely degraded meadow were reduced by 11.0%, 13.5% and 17.9%, respectively. Our field survey sampling design was overly intensive to estimate SOC status with a tolerable uncertainty of 10%. Power analysis showed that the optimal sampling density to achieve the desired accuracy would be 2, 3, 5 and 7 sites per 10 km(2) for lightly, moderately, heavily and extremely degraded meadows, respectively. If a subsequent paired sampling design with the optimum sample size were performed, assuming stock change rates predicted by experimental and modeling results, we estimate that about 5-10 years would be necessary to detect expected trends in SOC in the top 20 cm soil layer. Our results highlight the utility of conducting preliminary surveys to estimate the appropriate sampling density and avoid wasting resources due to over-sampling, and to estimate the sampling interval required to detect an expected sequestration rate. Future studies will be needed to evaluate spatial and temporal patterns of SOC variability.

  7. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin.

    Science.gov (United States)

    Deng, Weiqin; Lin, Derong; Yao, Kai; Yuan, Huaiyu; Wang, Zhilong; Li, Jianlong; Zou, Likou; Han, Xinfeng; Zhou, Kang; He, Li; Hu, Xinjie; Liu, Shuliang

    2015-10-01

    Aspergillus niger YAT strain was obtained from Chinese brick tea (Collection number: CGMCC 10,568) and identified on the basis of morphological characteristics and internal transcribed spacer (ITS) sequence. The strain could degrade 54.83 % of β-cypermethrin (β-CY; 50 mg L(-1)) in 7 days and 100 % of 3-phenoxybenzoic acid (3-PBA; 100 mg L(-1)) in 22 h. The half-lives of β-CY and 3-PBA range from 3.573 to 11.748 days and from 5.635 to 12.160 h, respectively. The degradation of β-CY and 3-PBA was further described using first-order kinetic models. The pathway and mechanism of β-CY degraded by YAT were investigated by analyzing the degraded metabolites through high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Relevant enzymatic activities and substrate utilization were also investigated. β-CY degradation products were analyzed. Results indicated that YAT strain transformed β-CY into 3-PBA. 3-PBA was then gradually transformed into permethric acid, protocatechuic acid, 3-hydroxy-5-phenoxy benzoic acid, gallic acid, and phenol gradually. The YAT strain can also effectively degrade these metabolites. The results indicated that YAT strain has potential applications in bioremediation of pyrethroid insecticide (PI)-contaminated environments and fermented food.

  8. Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement

    NARCIS (Netherlands)

    Habraken, Wouter J. E. M.; Zhang, Zheng; Wolke, Joop G. C.; Grijpma, Dirk W.; Mikos, Antonios G.; Feijen, Jan; Jansen, John A.

    2008-01-01

    Poly(trimethylene carbonate) (PTMC) is an enzymatically degradable polyester with rubber-like properties. Introduction of this polymer into an injectable calcium phosphate bone cement can therefore be used to introduce macroporosity into the cement for tissue engineering purposes as well as to impro

  9. Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement.

    NARCIS (Netherlands)

    Habraken, W.J.E.M.; Zhang, Z.; Wolke, J.G.C.; Grijpma, D.W.; Mikos, A.G.; Feijen, J.; Jansen, J.A.

    2008-01-01

    Poly(trimethylene carbonate) (PTMC) is an enzymatically degradable polyester with rubber-like properties. Introduction of this polymer into an injectable calcium phosphate bone cement can therefore be used to introduce macroporosity into the cement for tissue engineering purposes as well as to impro

  10. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid)

    NARCIS (Netherlands)

    Jansen, Janine; Koopmans, Steven A.; Los, Leonoor I.; van der Worp, Roelofje J.; Podt, Johanna G.; Hooymans, Johanna M. M.; Feijen, Jan; Grijpma, Dirk W.

    2011-01-01

    The intraocular degradation behavior of poly(trimethylene carbonate) (PTMC) networks and poly(-D,L-lactic acid) (PDLLA) networks and of linear high molecular weight PTMC and PDLLA was evaluated. PTMC is known to degrade by enzymatic surface erosion in vivo, whereas PDLLA degrades by hydrolytic bulk

  11. Simulation of permeability evolution of leakage pathway in carbonate-rich caprocks in carbon sequestration

    Science.gov (United States)

    Guo, B.; Fitts, J. P.; Dobossy, M. E.; Peters, C. A.

    2013-12-01

    Geologic carbon sequestration in deep saline aquifers is a promising strategy for mitigating climate change. A major concern is the possibility of brine and CO2 migration through the caprock such as through fractures and faults. In this work, we examine the extent to which mineral dissolution will substantially alter the porosity and permeability of caprock leakage pathways as CO2-acidified brine flows through them. Three models were developed. Firstly, a reactive transport model, Permeability Evolution of Leakage pathway (PEL), was developed to simulate permeability evolution of a leakage pathway during the injection period, and assumes calcite is the only reactive mineral. The system domain is a 100 m long by 0.2 m diameter cylindrical flow path with fixed boundaries containing a rock matrix with an initial porosity of 30% and initial permeability of 1×10-13 m2. One example result is for an initial calcite volume fraction (CVF) of 0.20, in which all the calcite is dissolved after 50 years and the permeability reaches 3.2×10-13 m2. For smaller values of CVF, the permeability reaches its final value earlier but the increase in permeability is minimal. For a large value of CVF such as 0.50, the permeability could eventually reach 1×10-12 m2, but the large amount of dissolved calcium buffers the solution and slows the reaction. After 50 years the permeability change is negligible. Thus, there is a non-monotonic relationship between the amount of calcite in the rock and the resulting permeability change because of the competing dynamics of calcite dissolution and alkalinity build-up. In the second model, PEL was coupled to an existing basin-scale multiphase flow model, Princeton's Estimating Leakage Semi-Analytical (ELSA) model. The new model, ELSA-PEL, estimates the brine and CO2 leakage rates during the injection period under conditions of permeability evolution. The scenario considered in this work is for 50 years of CO2 injection into the Mt. Simon formation in

  12. The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Copley, Shelley D. [University of Colorado; Rokicki, Joseph [University of Colorado; Turner, Pernilla [University of Colorado; Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL

    2012-01-01

    Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria.

  13. Ubiquitin proteasome-dependent degradation of the transcriptional coactivator PGC-1{alpha} via the N-terminal pathway.

    Science.gov (United States)

    Trausch-Azar, Julie; Leone, Teresa C; Kelly, Daniel P; Schwartz, Alan L

    2010-12-17

    PGC-1α is a potent, inducible transcriptional coactivator that exerts control on mitochondrial biogenesis and multiple cellular energy metabolic pathways. PGC-1α levels are controlled in a highly dynamic manner reflecting regulation at both transcriptional and post-transcriptional levels. Here, we demonstrate that PGC-1α is rapidly degraded in the nucleus (t(½ 0.3 h) via the ubiquitin proteasome system. An N-terminal deletion mutant of 182 residues, PGC182, as well as a lysine-less mutant form, are nuclear and rapidly degraded (t(½) 0.5 h), consistent with degradation via the N terminus-dependent ubiquitin subpathway. Both PGC-1α and PGC182 degradation rates are increased in cells under low serum conditions. However, a naturally occurring N-terminal splice variant of 270 residues, NT-PGC-1α is cytoplasmic and stable (t(½>7 h), providing additional evidence that PGC-1α is degraded in the nucleus. These results strongly suggest that the nuclear N terminus-dependent ubiquitin proteasome pathway governs PGC-1α cellular degradation. In contrast, the cellular localization of NT-PCG-1α results in a longer-half-life and possible distinct temporal and potentially biological actions.

  14. Streptococcus pyogenes malate degradation pathway links pH regulation and virulence.

    Science.gov (United States)

    Paluscio, Elyse; Caparon, Michael G

    2015-03-01

    The ability of Streptococcus pyogenes to infect different niches within its human host most likely relies on its ability to utilize alternative carbon sources. In examining this question, we discovered that all sequenced S. pyogenes strains possess the genes for the malic enzyme (ME) pathway, which allows malate to be used as a supplemental carbon source for growth. ME is comprised of four genes in two adjacent operons, with the regulatory two-component MaeKR required for expression of genes encoding a malate permease (maeP) and malic enzyme (maeE). Analysis of transcription indicated that expression of maeP and maeE is induced by both malate and low pH, and induction in response to both cues is dependent on the MaeK sensor kinase. Furthermore, both maePE and maeKR are repressed by glucose, which occurs via a CcpA-independent mechanism. Additionally, malate utilization requires the PTS transporter EI enzyme (PtsI), as a PtsI(-) mutant fails to express the ME genes and is unable to utilize malate. Virulence of selected ME mutants was assessed in a murine model of soft tissue infection. MaeP(-), MaeK(-), and MaeR(-) mutants were attenuated for virulence, whereas a MaeE(-) mutant showed enhanced virulence compared to that of the wild type. Taken together, these data show that ME contributes to S. pyogenes' carbon source repertory, that malate utilization is a highly regulated process, and that a single regulator controls ME expression in response to diverse signals. Furthermore, malate uptake and utilization contribute to the adaptive pH response, and ME can influence the outcome of infection.

  15. Cytolethal distending toxins require components of the ER-associated degradation pathway for host cell entry.

    Directory of Open Access Journals (Sweden)

    Aria Eshraghi

    2014-07-01

    Full Text Available Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs, are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD machinery, Derlin-2 (Derl2, the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT. In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.

  16. Cytolethal distending toxins require components of the ER-associated degradation pathway for host cell entry.

    Science.gov (United States)

    Eshraghi, Aria; Dixon, Shandee D; Tamilselvam, Batcha; Kim, Emily Jin-Kyung; Gargi, Amandeep; Kulik, Julia C; Damoiseaux, Robert; Blanke, Steven R; Bradley, Kenneth A

    2014-07-01

    Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.

  17. Carbon Cycling in Alpine and Arctic watersheds affected by permafrost degradation: An insight from Sweden

    Science.gov (United States)

    Roehm, C. L.; Giesler, R.; Karlsson, J.

    2009-05-01

    Linking the processes and dynamics acting within and between terrestrial and aquatic ecosystems is crucial in order to understand the impacts of environmental change on the re-distribution and transformation of energy within watersheds. Nearly 1300 Pg of carbon are stored in permafrost soils in boreal and arctic ecosystems. Permafrost degradation can result in the loss of significant amounts of terrestrial carbon, both through the release to the atmosphere in the form of carbon dioxide and methane, or through export downstream to lakes and rivers. The fate and effects of this carbon in lake ecosystems is poorly understood. We investigated the capacity of lake bacteria to utilize carbon from different adjacent mire soils in a discontinuous permafrost region of northern Sweden. We, additionally, studied other lake ecosystems by using organic matter quality as a proxy for the state of permafrost degradation within the watershed. Finally, we propose simple predictive models for the bioavailability of soils to aquatic bacteria. Our study identified three distinctive time sensitive pools of bacterial respiration whose carbon availability varied according to chemical characteristics. Soil dissolved organic carbon (DOC) was rapidly consumed by lake bacteria with nearly 85% consumed within the first 24 hours. Bacterial production was higher in the soil bioassays and increased in a lag fashion relative to bacterial respiration, resulting in increasing bacterial growth efficiencies over time as a function of C pool and soil type. The mean DOC consumption by lake bacteria was 0.087 mg C L-1 d-1 and varied between 0.382 mg L-1 d-1 and 0.491 mg L-1 d-1 when supplied with terrestrial DOC. The lake water bacterial respiration could explain a varying degree of pCO2 saturation in lakes as a function of both carbon quality and course. Carbon quality and end members can be used as proxies for the degree of permafrost degradation within the watershed. The data clearly show that export

  18. Surface and sub-surface degradation of unidirectional carbon fiber reinforced epoxy composites under dry and wet reciprocating sliding

    OpenAIRE

    Dhieb, H.; Buijnsters, J.G.; Eddoumy, F.; Vázquez, Luis; Celis, J. P.

    2013-01-01

    The role of water on the sub-surface degradation of unidirectional carbon fiber reinforced epoxy composite is examined. The correlation between the debonding of carbon fibers at the fiber-epoxy interface, and the wear behavior of the carbon fiber composite are discussed based on an in-depth analysis of the worn surfaces. We demonstrate that a reciprocating sliding performed along an anti-parallel direction to the fiber orientation under dry conditions results in a large degradation by debondi...

  19. Effects of Deforestation and Forest Degradation on Forest Carbon Stocks in Collaborative Forests, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2012-12-01

    Full Text Available There are some key drivers that favor deforestation and forest degradation. Consequently, levels of carbon stock are affected in different parts of same forest types. But the problem lies in exploring the extent of the effects on level of carbon stocking. This paper highlights the variations in levels of carbon stocks in three different collaborative forests of same forest type i.e. tropical sal (Shorea robusta forest in Mahottari district of the central Terai in Nepal. Three collaborative forests namely Gadhanta-Bardibas Collaborative Forest (CFM, Tuteshwarnath CFM and Banke- Maraha CFM were selected for research site. Interview and workshops were organized with the key informants that include staffs, members and representatives of CFMs to collect the socio-economic data and stratified random sampling was applied to collect the bio-physical data to calculate the carbon stocks. Analysis was carried out using statistical tools. It was found five major drivers namely grazing, fire, logging, growth of invasive species and encroachment. It was found highest carbon 269.36 ton per ha in Gadhanta- Bardibash CFM. The findings showed that the levels of carbon stocks in the three studied CFMs are different depending on how the drivers of deforestation and forest degradation influence over them.

  20. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  1. Evolutionary, computational, and biochemical studies of the salicylaldehyde dehydrogenases in the naphthalene degradation pathway

    Science.gov (United States)

    Jia, Baolei; Jia, Xiaomeng; Hyun Kim, Kyung; Ji Pu, Zhong; Kang, Myung-Suk; Ok Jeon, Che

    2017-01-01

    Salicylaldehyde (SAL) dehydrogenase (SALD) is responsible for the oxidation of SAL to salicylate using nicotinamide adenine dinucleotide (NAD+) as a cofactor in the naphthalene degradation pathway. We report the use of a protein sequence similarity network to make functional inferences about SALDs. Network and phylogenetic analyses indicated that SALDs and the homologues are present in bacteria and fungi. The key residues in SALDs were analyzed by evolutionary methods and a molecular simulation analysis. The results showed that the catalytic residue is most highly conserved, followed by the residues binding NAD+ and then the residues binding SAL. A molecular simulation analysis demonstrated the binding energies of the amino acids to NAD+ and/or SAL and showed that a conformational change is induced by binding. A SALD from Alteromonas naphthalenivorans (SALDan) that undergoes trimeric oligomerization was characterized enzymatically. The results showed that SALDan could catalyze the oxidation of a variety of aromatic aldehydes. Site-directed mutagenesis of selected residues binding NAD+ and/or SAL affected the enzyme’s catalytic efficiency, but did not eliminate catalysis. Finally, the relationships among the evolution, catalytic mechanism, and functions of SALD are discussed. Taken together, this study provides an expanded understanding of the evolution, functions, and catalytic mechanism of SALD. PMID:28233868

  2. Ozonation degradation of microcystin-LR in aqueous solution: intermediates, byproducts and pathways.

    Science.gov (United States)

    Chang, Jing; Chen, Zhong-lin; Wang, Zhe; Shen, Ji-min; Chen, Qian; Kang, Jing; Yang, Lei; Liu, Xiao-wei; Nie, Chang-xin

    2014-10-15

    The intermediates and byproducts formed during the ozonation of microcystin-LR (MC-LR, m/z = 995.5) and the probable degradation pathway were investigated at different initial molar ratios of ozone to MC-LR ([O3]0/[MC-LR]0). Seven reaction intermediates with m/z ≥ 795.4 were observed by LC/MS, and four of them (m/z = 815.4, 827.3, 853.3 and 855.3) have not been previously reported. Meanwhile, six aldehyde-based byproducts with molecular weights of 30-160 were detected for the first time. Intermediates structures demonstrated that ozone reacted with two sites of MC-LR: the diene bonds in the Adda side chain and the Mdha amino acid in the cyclic structure. The fragment from the Adda side chain oxidative cleavage could be further oxidized to an aldehyde with a molecular weight of 160 at low [O3]0/[MC-LR]0. Meanwhile, the polypeptide structure of MC-LR was difficult to be further oxidized, unless [O3]0/[MC-LR]0 > 10. After further oxidation of the intermediates, five other aldehyde-based byproducts were detected by GC/MS: formaldehyde, acetaldehyde, isovaleraldehyde, glyoxal and methylglyoxal. Formaldehyde, isovaleraldehyde and methylglyoxal were the dominant species. The yields of the aldehydes varied greatly, depending on the value of [O3]0/[MC-LR]0.

  3. REGγ regulates ERα degradation via ubiquitin–proteasome pathway in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Fan; Liang, Yan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Bi, Jiong [Laboratory of General Surgery, First Affiliated Hospital, Sun Yet-sen University, Guangzhou 510080 (China); Chen, Li; Zhang, Fan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cui, Youhong [Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Jiang, Jun, E-mail: jcbd@medmail.com.cn [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2015-01-02

    Highlights: • High expression of REGγ is correlated with ERα status and poor clinical features. • Cell growth, mobility and invasion are significantly impaired by REGγ knockdown. • REGγ indirectly regulates ERα protein expression. - Abstract: REGγ is a proteasome coactivator which regulates proteolytic activity in eukaryotic cells. Abundant lines of evidence have showed that REGγ is over expressed in a number of human carcinomas. However, its precise role in the pathogenesis of cancer is still unclear. In this study, by examining 200 human breast cancer specimens, we demonstrated that REGγ was highly expressed in breast cancers, and the expression of REGγ was positively correlated with breast cancer patient estrogen receptor alpha (ERα) status. Moreover, the expression of REGγ was found positively associated with poor clinical features and low survival rates in ERα positive breast cancer patients. Further cell culture studies using MCF7 and BT474 breast cancer cell lines showed that cell proliferation, motility, and invasion capacities were decreased significantly by REGγ knockdown. Lastly, we demonstrated that REGγ indirectly regulates the degradation of ERα protein via ubiquitin–proteasome pathway. In conclusion, our findings provide the evidence that REGγ expression was positively correlated with ERα status and poor clinical prognosis in ERα positive breast cancer patients. As well, we disclose a new connection between the two molecules that are both highly expressed in most breast cancer cases.

  4. The influence of paclitaxel on hydrolytic degradation in matrices obtained from aliphatic polyesters and polyester carbonates.

    Science.gov (United States)

    Musiał-Kulik, Monika; Kasperczyk, Janusz; Jelonek, Katarzyna; Dobrzyński, Piotr; Gebarowska, Katarzyna; Janeczek, Henryk; Libera, Marcin

    2010-01-01

    Biodegradable polymers have become common materials used in pharmacy and medicine due to their properties such as mechanical strength, biocompatibility and non-toxic degradation products. Different compositions of copolymers and also their chain microstructure may have an effect on matrices degradation and thus on the drug release profile. In our study, we aimed at the influence of paclitaxel content on hydrolytic degradation process of terpolymeric matrices. Hydrolytic degradation of three kinds of matrices (with 5 or 10% of paclitaxel and drug free matrices) prepared from three types of terpolymers was performed in vitro at 37 degrees C in phosphate buffer solution (PBS, pH 7,4). The 1H and 13C NMR spectra of terpolymers were recorded. Thermal properties were monitored by differential scanning calorimetry (DSC). Molecular weight dispersity (D) and molecular weight were determined using gel permeation chromatography (GPC). The surface morphology was studied by means of the scanning electron microscopy (SEM). The most significant degradation was observed in case of poly(L-lactide-co-glycolide-co-epsilon-caprolactone) 44:32:24. Weight loss and water uptake were similar in the event of the same type of matrices obtained from the two poly(L-lactide-co-glycolide-co-TMC). Decelerated paclitaxel release in case of matrices with 51:26:23 molar ratio was noticed and it can be connected with higher content of carbonate units. Knowledge of paclitaxel influence on hydrolytic degradation process may contribute to receive valuable information about its release mechanisms from biodegradable terpolymers.

  5. Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase.

    Science.gov (United States)

    Kozliak, E I; Guilloton, M B; Gerami-Nejad, M; Fuchs, J A; Anderson, P M

    1994-09-01

    Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.

  6. [Modification of activated carbon fiber for electro-Fenton degradation of phenol].

    Science.gov (United States)

    Ma, Nan; Tian, Yao-Jin; Yang, Guang-Ping; Xie, Xin-Yuan

    2014-07-01

    Microwave-modified activated carbon fiber (ACF-1), nitric acid-modified activated carbon fiber (ACF-2), phosphoric acid-modified activated carbon fiber (ACF-3) and ammonia-modified activated carbon fiber (ACF-4) were successfully fabricated. The electro-Fenton catalytic activities of modified activated carbon fiber were evaluated using phenol as a model pollutant. H2O2 formation, COD removal efficiency and phenol removal efficiency were investigated compared with the unmodified activated carbon fiber (ACF-0). Results indicated that ACF-1 showed the best adsorption and electrocatalytic activity. Modification was in favor of the formation of H2O2. The performance of different systems on phenol degradation and COD removal were ACF-1 > ACF-3 > ACF-4 > ACF-2 > ACF-0 and ACF-1 > ACF-4 > ACF-3 > ACF-2 > ACF-0, respectively, which confirmed that electrocatalytic activities of modified activated carbon fiber were better than the unmodified. In addition, phenol intermediates were not the same while using different modified activated carbon fibers.

  7. Building capacity for national carbon measurements for reducing emissions from deforestation and forest degradation

    Science.gov (United States)

    Goetz, S. J.; Laporte, N.; Horning, N.; Pelletier, J.; Jantz, P.; Ndunda, P.

    2014-12-01

    Many tropical countries are now working on developing their strategies for reducing emissions from deforestation and forest degradation, including activities that result in conservation or enhancement of forest carbon stocks and sustainable management of forests to effectively decrease atmospheric carbon emissions (i.e. REDD+). A new international REDD+ agreement is at the heart of recent negotiations of the parties to the UN Framework Convention on Climate Change (UNFCCC). REDD+ mechanisms could provide an opportunity to not only diminish an important source of emissions, but also to promote large-scale conservation of tropical forests and establish incentives and opportunities to alleviate poverty. Most tropical countries still lack basic information for developing and implementing their forest carbon stock assessments, including the extent of forest area and the rate at which forests are being cleared and/or degraded, and the carbon amounts associated with these losses. These same countries also need support to conduct integrated assessments of the most promising approaches for reducing emissions, and in identifying those policy options that hold the greatest potential while minimizing potential negative impacts of REDD+ policies. The WHRC SERVIR project in East Africa is helping to provide these data sets to countries via best practice tools and methods to support cost effective forest carbon monitoring solutions and more informed decision making processes under REDD+. We will present the results of our capacity building activites in the region and planned future efforts being coordinated with the NASA-SERVIR Hub in Kenya to support to REDD+ decision support.

  8. Tissue Response to, and Degradation Rate of, Photocrosslinked Trimethylene Carbonate-Based Elastomers Following Intramuscular Implantation

    Directory of Open Access Journals (Sweden)

    Brian G. Amsden

    2010-02-01

    Full Text Available Cylindrical elastomers were prepared through the UV-initiated crosslinking of terminally acrylated, 8,000 Da star-poly(trimethylene carbonate-co-ε-caprolactone and star-poly(trimethylene carbonate-co-D,L-lactide. These elastomers were implanted intramuscularly into the hind legs of male Wistar rats to determine the influence of the comonomer on the weight loss, tissue response, and change in mechanical properties of the elastomer. The elastomers exhibited only a mild inflammatory response that subsided after the first week; the response was greater for the stiffer D,L-lactide-containing elastomers. The elastomers exhibited weight loss and sol content changes consistent with a bulk degradation mechanism. The D,L-lactide-containing elastomers displayed a nearly zeroorder change in Young’s modulus and stress at break over the 30 week degradation time, while the ε-caprolactone-containing elastomers exhibited little change in modulus or stress at break.

  9. Electron emission degradation of nano-structured sp2-bonded amorphous carbon films

    Institute of Scientific and Technical Information of China (English)

    Lu Zhan-Ling; Wang Chang-Qing; Jia Yu; Zhang Bing-Lin; Yao Ning

    2007-01-01

    The initial field electron emission degradation behaviour of original nano-structured sp2-bonded amorphous carbon films has been observed.which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot.The possible re.on for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating.For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film,a cluster model with a series of graphite(0001) basal surfaces has been presented,and the theoretical calculations have been performed to investigate work functions of graphite(0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.

  10. Degradation of azurite in mural paintings: distribution of copper carbonate, chlorides and oxalates by SRFTIR

    Science.gov (United States)

    Lluveras, A.; Boularand, S.; Andreotti, A.; Vendrell-Saz, M.

    2010-05-01

    This article illustrates the analysis by synchrotron micro-analytical techniques of an azurite painting presenting greenish chromatic degradation. The challenge of the experiments was to obtain the spatial distribution of the degradation products of azurite. Copper hydroxychlorides, carbonates and copper oxalates have been mapped by SR FTIR imaging of cross sections in transmission mode. To complement the information, Py/GC/MS and GC/MS techniques were applied in order to characterize the binding media and organic materials present as well as their degradation products. Results contribute to a better understanding of the decay of blue areas in ancient paintings not only from the particular point of view of azurite weathering, but also by adding information regarding the oxalates’ formation and their distribution in painting samples. Synchrotron radiation demonstrates its capability for the mapping in painting cross sections.

  11. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate)

    DEFF Research Database (Denmark)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati

    2017-01-01

    Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough...... physicochemical characterization of diverse PEC (molecular weights: 85, 110, 133, 174 and 196 kDa), the degradation and drug release behavior of rifampicin- and bovine serum albumin-loaded PEC films was investigated in vitro (in the presence and absence of cholesterol esterase), in cell culture (RAW264.......7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half...

  12. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  13. Photocatalytic degradation of L-acid by TiO2 supported on the activated carbon

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ping; WANG Lian-jun; PENG Pan-ying

    2006-01-01

    TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount ofphotocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34 × 10-3 mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89.88%.The catalyst was reused 6 times and its degradation efficiency hardly changed.

  14. Recovery of energy, water and carbon exchange in degraded forests in eastern Amazonia

    Science.gov (United States)

    Trumbore, Susan; Brando, Paulo; Oliveira dos Santos, Claudinei; Silvério, Divino; Coe, Michael

    2016-04-01

    Large regions in the state of Mato Grosso in Brazil have been deforested and converted to pasture and soy agriculture. In addition to deforestation, remnant forests in the region are degraded by repeated fire and edge related effects. We are combining eddy covariance with other measures to study the impact of these changes in land cover on energy, water and carbon balance, in a region that sits at the ecotone between continuous forest and savanna. The degraded forest plot is part of a multi-year experimental fire treatment and had experienced large-scale mortality in the years prior to tower installation. Leaf area was strongly reduced in degraded forest, but surprisingly latent energy fluxes nearly equaled those in the intact forest. Carbon uptake rates in the intact forest exceeded those in the degraded forest, though not when expressed on a leaf-area basis. Overall, these results corroborate those found in experimentally logged tropical forest showing rapid recovery of fluxes, despite losses of biomass. Compared to both forests, the soy field reflected more incoming energy, and lost a greater proportion of absorbed radiation as sensible rather than latent heat.

  15. Stable carbon isotope fractionation in chlorinated ethene degradation by bacteria expressing three toluene oxygenases

    Directory of Open Access Journals (Sweden)

    Scott eClingenpeel

    2012-02-01

    Full Text Available One difficulty in using bioremediation at a contaminated site is demonstrating that biodegradation is actually occurring in situ. The stable isotope composition of contaminants may help with this, since they can serve as an indicator of biological activity. To use this approach it is necessary to establish how a particular biodegradation pathway affects the isotopic composition of a contaminant. This study examined bacterial strains expressing three aerobic enzymes for their effect on the 13C/12C ratio when degrading both trichloroethene (TCE and cis-1,2-dichloroethene (c-DCE: toluene 3-monoxygenase, toluene 4-monooxygenase, and toluene 2,3-dioxygenase. We found no significant differences in fractionation among the three enzymes for either compound. Aerobic degradation of c-DCE occurred with low fractionation producing δ13C enrichment factors of -0.9±0.5 to -1.2±0.5, in contrast to reported anaerobic degradation δ13C enrichment factors of -14.1‰ to -20.4‰. Aerobic degradation of TCE resulted in δ13C enrichment factors of -11.6±4.1‰ to -14.7±3.0‰ which overlap reported δ13C enrichment factors for anaerobic TCE degradation of -2.5‰ to -13.8‰. The data from this study suggest that stable isotopes could serve as a diagnostic for detecting aerobic biodegradation of TCE by toluene oxygenases at contaminated sites.

  16. Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record

    Directory of Open Access Journals (Sweden)

    Helen eBennion

    2015-08-01

    Full Text Available Efforts to restore enriched lakes have increased yet there remains uncertainty about whether restoration targets can be achieved and over what timescale. Paleoecological techniques, principally diatom analyses, were used to examine the degree of impact and recovery in 12 European lakes subject to eutrophication and subsequent reduction in nutrient loading. Dissimilarity scores showed that all sites experienced progressive deviation from the reference sample (core bottom prior to nutrient reduction, and principal curves indicated gradual compositional change with enrichment. When additive models were applied to the latter, the changes were statistically significant in 9 of the 12 sites. Shifts in diatom composition following reduction in nutrient loading were more equivocal, with a reversal towards the reference flora seen only in four of the deep lakes and one of the shallow lakes. Of these, only two were significant (Lake Bled and Mjøsa. Alternative nutrient sources seem to explain the lack of apparent recovery in the other deep lakes. In three shallow lakes diatom assemblages were replaced by a community associated with lower productivity but not the one seen prior to enrichment. Internal loading and top down control may influence recovery in shallow lakes and climate change may have confounded recovery in several of the study sites. Hence, ecosystem recovery is not simply a reversal of the degradation pathway and may take several decades to complete or, for some lakes, may not take place at all. By assessing ecological change over a decadal to centennial timescale, the study highlights the important role that paleolimnology can play in establishing a benchmark against which managers can evaluate the degree to which their restoration efforts are successful.

  17. Electrochemical treatment of iopromide under conditions of reverse osmosis concentrates--elucidation of the degradation pathway.

    Science.gov (United States)

    Lütke Eversloh, C; Henning, N; Schulz, M; Ternes, T A

    2014-01-01

    Application of reverse osmosis for the reuse of treated wastewater on the one hand offers a way to provide high quality effluent waters. On the other hand reverse osmosis concentrates exhibiting highly concentrated contaminants are produced simultaneously. Electrochemical treatment of those concentrates is regarded as one possible answer to the problem of their disposal into surface waters. Nevertheless, due to the diversity of direct and indirect degradation processes during electrolysis, special care has to be taken about the formation of toxic transformation products (TPs). In this study the electrochemical transformation of the X-ray contrast medium iopromide was investigated as a representative of biologically persistent compounds. For this purpose, anodic oxidation at boron doped diamond as well as cathodic reduction using a platinum electrode were considered. Kinetic analyses revealed a transformation of 100 μM iopromide with first order kinetic constants between 0.6 and 1.6 × 10(-4) s(-1) at the beginning and a subsequent increase of the reaction order due to the influence of secondary oxidants formed during electrolysis. Mineralization up to 96% was achieved after about 7.5 h. At shorter treatment times several oxidatively and reductively formed transformation products were detected, whereas deiodinated iopromide represented the major fraction. Nevertheless, the latter exhibited negligible toxicological relevance according to tests on vibrio fisheri. Additional experiments utilizing a divided cell setup enabled the elucidation of the transformation pathway, whereas emerging TPs could be identified by means of high resolution mass spectrometry and MS(n)-fragmentations. During electrolysis the iodine released from Iopromide was found to 90% as iodide and to 10% as iodate even in the open cell experiments, limiting the potential formation of toxic iodo-disinfection by-products. Chlorinated TPs were not found.

  18. Carbon storage in degraded cork oak (Quercus suber forests on flat lowlands in Morocco

    Directory of Open Access Journals (Sweden)

    Oubrahim H

    2016-02-01

    Full Text Available The present study aims to quantify the carbon stored in a degraded cork oak (Quercus suber L. ecosystem in the north west of Morocco, in view of potential management implications. To this end, carbon stocks were evaluated in the first 100 cm of the soil, the cork oak trees, and the understorey species (both above- and belowground. Results show that the total carbon stocks in the cork oak ecosystem ranges from 65 to 237 Mg ha-1 with a mean value of 121 Mg ha-1. The first 100 cm of the soil (including the forest floor represents the largest carbon pool (~51% of the total organic carbon of the ecosystem. Tree biomass (above- and belowground tissues of cork oak represents the second largest pool (47%, whereas the contribution of the understorey is less than 2%. Within the first 100 cm of the soil, over 87% of all the soil organic carbon is situated in the first 40 cm of the soil depth. The amount of carbon stored here ranges from 30 to 110 Mg ha-1and these organic carbon stocks vary considerably with the stand basal area of the cork oak (R2 = 0.82. In practice, the carbon stocks of the different pools considered are strongly correlated with the stand density of the cork oak stands. In the semi-arid forest ecosystems of our study, management prescriptions aiming at increasing the standing biomass of the cork oak should thus considerably contribute, both directly through tree biomass and indirectly through increased soil organic matter, to efficient carbon sequestration.

  19. Carbon Assimilation Pathways, Water Relationships and Plant Ecology.

    Science.gov (United States)

    Etherington, John R.

    1988-01-01

    Discusses between-species variation in adaptation of the photosynthetic mechanism to cope with wide fluctuations of environmental water regime. Describes models for water conservation in plants and the role of photorespiration in the evolution of the different pathways. (CW)

  20. Electro-catalytic oxidation of phenacetin with a three-dimensional reactor: Degradation pathway and removal mechanism.

    Science.gov (United States)

    Xiao, Mengshi; Zhang, Yonggang

    2016-06-01

    Phenacetin is a common analgesic, anti-arthritic and anti-rheumatic drug. This study dealt with the degradation of phenacetin in alkaline media using a three-dimensional reactor with particle electrodes. Particular attention was paid to the degradation pathway and the reaction mechanism in the system. Liquid chromatography coupled with time-of-flight mass spectrometry was used to identify the intermediates. The phenacetin was observed to be firstly cut off the branch chains main by direct oxidation, and then the intermediates further degraded to ring opening products by hydroxyl radical resulting from indirect oxidation and finally mineralized to CO2, H2O. A possible removal mechanism was proposed that direct and indirect oxidation together did effect on the pollutants with oxygen.

  1. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model

    Science.gov (United States)

    Bussy, Cyrill; Hadad, Caroline; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2015-12-01

    Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as resident macrophages of the brain - play a critical role in the internalization of f-CNTs and their partial in situ biodegradation following a stereotactic administration in the cortex. At the same time, several reports have indicated that immune cells such as neutrophils, eosinophils and even macrophages could participate in the processing of carbon nanomaterials via oxidation processes leading to degradation, with surface properties acting as modulators of CNT biodegradability. In this study we questioned whether degradability of f-CNTs within microglia could be modulated depending on the type of surface functionalization used. We investigated the kinetics of degradation of multi-walled carbon nanotubes (MWNTs) functionalized via different chemical strategies that were internalized within isolated primary microglia over three months. A cellular model of rat primary microglia that can be maintained in cell culture for a long period of time was first developed. The Raman structural signature of the internalized f-CNTs was then studied directly in cells over a period of up to three months, following a single exposure to a non-cytotoxic concentration of three different f-CNTs (carboxylated, aminated and both carboxylated and aminated). Structural modifications suggesting partial but continuous degradation were observed for all nanotubes irrespective of their surface functionalization. Carboxylation was shown to promote more pronounced structural changes inside microglia over the first two weeks of the study.Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as

  2. Mechanisms of soil degradation and consequences for carbon stocks on Tibetan grasslands

    Science.gov (United States)

    Kuzyakov, Yakov; Schleuss, Per-Marten; Miehe, Georg; Heitkamp, Felix; Sebeer, Elke; Spielvogel, Sandra; Xu, Xingliang; Guggenberger, Georg

    2016-04-01

    Tibetan grasslands provide tremendous sinks for carbon (C) and represent important grazing ground. Strong degradation - the destroying the upper root-mat/soil horizon of Kobresia pastures, has dramatic consequences for soil organic carbon (SOC) and nutrient storage. To demonstrate specific degradation patterns and elucidate mechanisms, as well as to assess consequences for SOC storage, we investigated a sequence of six degradation stages common over the whole Kobresia ecosystem. The soil degradation sequence consists of following mechanisms: Overgrazing and trampling by livestock provide the prerequisite for grassland degradation as both (a) cause plant dying, (b) reduce grassland recovery and (c) destroy protective Kobresia root-mats. These anthropogenic induced processes are amplified by naturally occurring degradation in harsh climate. The frequently repeated soil moisture and temperature fluctuations induce volume changes and tensions leading to polygonal cracking of the root mats. Then the plants die and erosion gradually extend the surface cracks. Soil erosion cause a high SOC loss from the upper horizons (0-10 cm: ~5.1 kg C m-2), whereas SOC loss beneath the surface cracks is caused by both, decreasing root C-input and SOC mineralization (SOC losses by mineralization: ~2.5 kg C m-2). Root biomass decreases with degradation and indicated lower C input. The negative δ13C shift of SOC reflects intensive decomposition and corresponds to a relative enrichment of 13C depleted lignin components. We conclude that the combined effects of overgrazing and harsh climate reduce root C input, increase SOC decomposition and initiate erosion leading to SOC loss up to 70% of intact soil (0-30 cm: ~7.6 kg C m-2). Consequently, a high amount of C is released back to the atmosphere as CO2, or is deposited in depressions and river beds creating a potential source of N2O and CH4. Concluding, anthropogenically induced overgrazing makes the Kobresia root-mat sensitive to natural

  3. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    Science.gov (United States)

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-05

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all.

  4. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements.

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Yubao, L.; Jansen, J.A.

    2012-01-01

    The main disadvantage of apatitic calcium phosphate cements (CPCs) is their slow degradation rate, which limits complete bone regeneration. Carbonate (CO(3)(2)(-)) is the common constituent of bone and it can be used to improve the degradability of the apatitic calcium phosphate ceramics. This study

  5. TRIM22 Inhibits the TRAF6-stimulated NF-κB Pathway by Targeting TAB2 for Degradation

    Institute of Scientific and Technical Information of China (English)

    Hui Qiu; Fang Huang; Han Xiao; Binlian Sun; Rongge Yang

    2013-01-01

    Tripartite motif containing 22 (TRIM22),a member of the TRIM/RBCC family,has been reported to activate the nuclear factor-kappa B (NF-κB) pathway in unstimulated macrophage cell lines,but the detailed mechanisms governing this activation remains unclear.We investigated this mechanism in HEK293T cells.We found that overexpression of TRIM22 could activate the NF-κB pathway and conversely,could inhibit the tumor necrosis factor receptor-associated factor 6 (TRAF6)-stimulated NF-κB pathway in HEK293T cells.Further experiments showed that TRIM22 could decrease the self-ubiquitination of TRAF6,and interact with and degrade transforming growth factor-β activated kinase 1 binding protein 2 (TAB2),and that these effects could be partially rescued by a TRIM22 RING domain deletion mutant.Collectively,our data indicate that overexpression of TRIM22 may negatively regulate the TRAF6-stimulated NF-κB pathway by interacting with and degrading TAB2.

  6. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution.

    Science.gov (United States)

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli; Zhang, Zhaohong; Yuan, Tianxin; Tian, Fangyuan; Dionysiou, Dionysios D

    2016-06-05

    In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10-20nm, 20-40nm, and 40-60nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10-20nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10-20nm CNTs within 7.0min irradiation when 25mL MO solution (25mg/L), 1.2g/L catalyst dose, 450W, 2450MHz, and pH=6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10-20nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168min(-1), respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  7. Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants.

    Science.gov (United States)

    Xu, Tiefeng; Ni, Dongjing; Chen, Xia; Wu, Fei; Ge, Pengfei; Lu, Wangyang; Hu, Hongguang; Zhu, ZheXin; Chen, Wenxing

    2016-11-05

    The effective elimination of micropollutants by an environmentally friendly method has received extensive attention recently. In this study, a photocatalyst based on polyacrylonitrile (PAN)-supported graphitic carbon nitride coupled with zinc phthalocyanine nanofibers (g-C3N4/ZnTcPc/PAN nanofibers) was successfully prepared, where g-C3N4/ZnTcPc was introduced as the catalytic entity and the PAN nanofibers were employed as support to overcome the defects of easy aggregation and difficult recycling. Herein, rhodamine B (RhB), 4-chlorophenol and carbamazepine (CBZ) were selected as the model pollutants. Compared with the typical hydroxyl radical-dominated catalytic system, g-C3N4/ZnTcPc/PAN nanofibers displayed the targeted adsorption and degradation of contaminants under visible light or solar irradiation in the presence of high additive concentrations. According to the results of the radical scavenging techniques and the electron paramagnetic resonance technology, the degradation of target substrates was achieved by the attack of active species, including photogenerated hole, singlet oxygen, superoxide radicals and hydroxyl radicals. Based on the results of ultra-performance liquid chromatography and mass spectrometry, the role of free radicals on the photocatalytic degradation intermediates was identified and the final photocatalytic degradation products of both RhB and CBZ were some biodegradable small molecules.

  8. Production of activated carbon by waste tire thermochemical degradation with CO2.

    Science.gov (United States)

    Betancur, Mariluz; Martínez, Juan Daniel; Murillo, Ramón

    2009-09-15

    The thermochemical degradation of waste tires in a CO(2) atmosphere without previous treatment of devolatilization (pyrolysis) in order to obtain activated carbons with good textural properties such as surface area and porosity was studied. The operating variables studied were CO(2) flow rate (50 and 150 mL/min), temperature (800 and 900 degrees C) and reaction time (1, 1.5, 2, 2.5 and 3h). Results show a considerable effect of the temperature and the reaction time in the porosity development. Kinetic measurements showed that the reactions involved in the thermochemical degradation of waste tire with CO(2), are similar to those developed in the pyrolysis process carried out under N(2) atmosphere and temperatures below 760 degrees C, for particles sizes of 500 microm and heating rate of 5 degrees C/min. For temperatures higher than 760 degrees C the CO(2) starts to oxidize the remaining carbon black. Activated carbon with a 414-m(2)/g surface area at 900 degrees C of temperature, 150 mL/min of CO(2) volumetric flow and 180 min of reaction time was obtained. In this work it is considering the no reactivity of CO(2) for devolatilization of the tires (up to 760 degrees C), and also the partial oxidation of residual char at high temperature for activation (>760 degrees C). It is confirmed that there are two consecutive stages (devolatilization and activation) developed from the same process.

  9. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Adriana C Lambertucci

    Full Text Available In this study, we investigated the effect of glutamine (Gln supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1 and the degradation pathways (MuRF-1 and MAFbx were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1 control, non-supplemented with glutamine; 2 control, supplemented with glutamine; 3 diabetic, non-supplemented with glutamine; and 4 diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2; the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  10. Pathways and bioenergetics of anaerobic carbon monoxide fermentation

    NARCIS (Netherlands)

    Diender, Martijn; Stams, Fons; Machado de Sousa, Diana

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the poten

  11. Funding pathways to a low-carbon transition

    Science.gov (United States)

    Foulds, Chris; Christensen, Toke Haunstrup

    2016-07-01

    The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low-carbon aspirations.

  12. The role of oxidation and enzymatic hydrolysis on the in vivo degradation of trimethylene carbonate based photocrosslinkable elastomers.

    Science.gov (United States)

    Chapanian, Rafi; Tse, M Yat; Pang, Stephen C; Amsden, Brian G

    2009-01-01

    The in vivo degradation of trimethylene carbonate (TMC) containing elastomers was investigated, and the mechanism of degradation explored through in vitro degradation under enzymatic and oxidative conditions. The elastomers were prepared via UV initiated crosslinking of prepolymers of TMC and equimolar amounts of TMC and epsilon-caprolactone (CL). The degradation process was followed by investigating the changes in the mechanical properties, mass loss, water uptake, sol content, differential scanning calorimetry, and surface chemistry through attenuated total reflectance infrared (ATR-FTIR) spectroscopy. During in vivo degradation, TMC and TMCCL elastomers exhibited surface erosion. The tissue response was of greater intensity in the case of the TMC elastomer. Both elastomers exhibited degradation in cholesterol esterase containing solutions in vitro, but no parallels were found between the rate of in vivo degradation and the rate of in vitro degradation. Only the TMCCL elastomer degraded in lipase. Degradation in a stable superoxide anion in vitro medium was consistent with the observed in vivo degradation results, indicating a dominant role of oxidation through the secretion of this reactive oxygen species by adherent phagocytic cells in the degradation of these elastomers.

  13. Carbon balance and greenhouse gas emissions of subarctic lowland palsa mires related to permafrost degradation.

    Science.gov (United States)

    Stiegler, Christian; Lindroth, Anders; Christensen, Torben R.; Johansson, Margareta

    2014-05-01

    The Torneträsk area in northern subarctic Sweden is particularly vulnerable to any further climate change since it is located on the 0-degree isotherm. Within the next decades a projected ongoing climate warming and increase in snow cover will most likely lead to the disappearance of lowland permafrost in this region, affecting greenhouse gas emissions, surface energy fluxes and vegetation cover. A previous study from the Torneträsk area has resulted in extensive data on the effects of permafrost degradation on surface energy balance. In this study we focus on the effects of different stages of permafrost degradation on carbon balance and emission of greenhouse gases. The study area covers several mires with similar local topographic conditions along an east-west oriented transect. Due to a strong climatic gradient, with maritime climate in the west and a more continental climate in the east, active layer thickness and permafrost temperatures generally increase from east to west while permafrost thickness decreases. In recent years permafrost has completely disappeared at the westernmost study site while at the other investigated locations the peat plateaus show varying stages of degradation. For our measurements we use both mobile and stationary energy balance and eddy covariance towers. Data has been collected during the growing season in 2013 by measuring flux densities of carbon dioxide and water vapour and all components of the surface energy budget, i.e. net radiation, turbulent fluxes of sensible and latent heat as well as ground heat fluxes. In addition, we measure active layer thickness and both soil moisture and soil temperature at various depths. In this study we aim to (A) investigate and better understand the effects of permafrost degradation on the CO2 dynamics in subarctic palsa mires, (B) assess variation in terrestrial CO2 and water vapour flux with changes in vegetation cover and soil moisture, (C) determine possible meteorological and

  14. Combined electrochemical degradation and activated carbon adsorption treatments for wastewater containing mixed phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, D.; Palanivelu, K.; Balasubramanian, N. [Anna University, Madras (India). Center for Environmental Studies

    2005-01-01

    Electrochemical degradation of mixed phenolic compounds present in coal conversion wastewater was investigated in the presence of chloride as supporting electrolyte. Initially, the degradation experiments were conducted separately with 300 mg/L of individual phenolic compound in the presence of 2500 mg/L chloride using Ti/TiO{sub 2}-RuO{sub 2}-IrO{sub 2} anode at 5.4 A/dm{sup 2} current density. Comparison of the experimental results of the chemical oxygen demand (COD) removal versus charge indicated that the order of decreasing COD removal for various phenolic compounds as catechol {gt} resorcinol {gt} m-cresol {gt} o-cresol {gt} phenol {gt} p-cresol. Degradation of the mixture of phenolic compounds and high-pressure liquid chromatography (HPLC) determinations at various stages of electrolysis showed that phenolic compounds were initially converted into benzoquinone and then to lower molecular weight aliphatic compounds. The COD and the total organic carbon (TOC) removal were 83 and 58.9% after passing 32 Ah/L with energy consumption of 191.6 kWh/kg of COD removal. Experiments were also conducted to remove adsorbable organic halogens (AOX) content in the treated solution using granular activated carbon. The optimum conditions for the removal of AOX was at pH 3.0, 5 mL/min flow rate and 31.2 cm bed height. Based on the investigation, a general scheme of treatment of mixed phenolic compounds by combined electrochemical and activated carbon adsorption treatment is proposed.

  15. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity.

    Science.gov (United States)

    Serna-Galvis, Efraim A; Giraldo-Aguirre, Ana L; Silva-Agredo, Javier; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2016-02-26

    This study evaluates the treatment of the antibiotic cloxacillin (CLX) in water by means of electrochemical oxidation, TiO2 photocatalysis, and the photo-Fenton system. The three treatments completely removed cloxacillin and eliminated the residual antimicrobial activity from synthetic pharmaceutical wastewater containing the antibiotic, commercial excipients, and inorganic ions. However, significant differences in the degradation routes were found. In the photo-Fenton process, the hydroxyl radical was involved in the antibiotic removal, while in the TiO2 photocatalysis process, the action of both the holes and the adsorbed hydroxyl radicals degraded the pollutant. In the electrochemical treatment (using a Ti/IrO2 anode in sodium chloride as supporting electrolyte), oxidation via HClO played the main role in the removal of CLX. The analysis of initial by-products showed five different mechanistic pathways: oxidation of the thioether group, opening of the central β-lactam ring, breakdown of the secondary amide, hydroxylation of the aromatic ring, and decarboxylation. All the oxidation processes exhibited the three first pathways. Moreover, the aromatic ring hydroxylation was found in both photochemical treatments, while the decarboxylation of the pollutant was only observed in the TiO2 photocatalysis process. As a consequence of the degradation routes and mechanistic pathways, the elimination of organic carbon was different. After 480 and 240 min, the TiO2 photocatalysis and photo-Fenton processes achieved ∼45 and ∼15 % of mineralization, respectively. During the electrochemical treatment, 100 % of the organic carbon remained even after the antibiotic was treated four times the time needed to degrade it. In contrast, in all processes, a natural matrix (mineral water) did not considerably inhibit pollutant elimination. However, the presence of glucose in the water significantly affected the degradation of CLX by means of TiO2 photocatalysis.

  16. High Voltage Surface Degradation on Carbon Blacks in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza

    In order to increase the power density of Li-ion batteries, much research is focused on developing cathode materials that can operate at high voltages above 4.5 V with a high capacity, high cycling stability, and rate capability. However, at high voltages all the components of positive electrodes...... including carbon black (CB) additives have a potential risk of degradation. Though the weight percentage of CB in commercial batteries is generally very small, the volumetric amount and thus the surface area of CB compose a rather large part of a cathode due to its small particle size (≈ 50 nm) and high...

  17. Effect of Adventitious Carbon on the Environmental Degradation of SiC/BN/SiC Composites

    Science.gov (United States)

    Ogbuji, L. U. J. T.; Yun, H. M.; DiCarlo, J.

    2002-01-01

    Pesting remains a major obstacle to the application of SiC/SiC composites in engine service and selective degradation of the boron nitride interphase at intermediate temperatures is of primary concern. However, significant progress has been made on interphase improvement recently and we now know more about the phenomenon and ways to suppress it. By screening SiC/BN/SiC materials through characterization of strength and microstructures after exposure in a burner rig, some factors that control pesting in these composites have been determined. A key precaution is careful control of elemental carbon presence in the interphase region.

  18. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.

    Science.gov (United States)

    Martin, Gaëtan; Guggiari, Matteo; Bravo, Daniel; Zopfi, Jakob; Cailleau, Guillaume; Aragno, Michel; Job, Daniel; Verrecchia, Eric; Junier, Pilar

    2012-11-01

    The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil.

  19. Decolorization of azo dye C.I. Reactive Black 5 by ozonation in aqueous solution: influencing factors, degradation products, reaction pathway and toxicity assessment.

    Science.gov (United States)

    Zheng, Qing; Dai, Yong; Han, Xiangyun

    2016-01-01

    In this study, ozonation treatment of C.I. Reactive Black 5 (RB5) was investigated at various operating parameters. The results showed that the aqueous solution initially containing 200 mg/L RB5 was quickly decolorized at pH 8.0 with an ozone dose of 3.2 g/h. Reaction intermediates with m/z 281, 546, 201, 350, 286 and 222 were elucidated using liquid chromatography-mass spectrometry, while sulfate ion, nitrate ion and three carboxylic acids (i.e., oxalic acid, formic acid, and acetic acid) were identified by ion exchange chromatography. Thus, the cleavage of the azo bond and the introduction of OH groups in the corresponding positions were proposed as the predominant reaction pathway. The detachment of sulfonic groups was also commonly observed during the ozonation treatment. The proposed degradation mechanism was confirmed by frontier electron density calculations, suggesting the feasibility of predicting the major events in the whole ozonation process with the computational method. Compared with RB5 degradation, the reduction of total organic carbon (TOC) proceeded much more slowly, and approximately 54% TOC was removed after 4 h of ozonation. Acute toxicity tests with Photobacterium phosphoreum showed that the toxicity of reaction solution was firstly increased and then decreased to a negligible level after 160 min.

  20. A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation.

    Science.gov (United States)

    Negi, Vishal Singh; Bingham, Jon-Paul; Li, Qing X; Borthakur, Dulal

    2014-02-01

    The tree legume Leucaena leucocephala contains a large amount of a toxic nonprotein aromatic amino acid, mimosine, and also an enzyme, mimosinase, for mimosine degradation. In this study, we isolated a 1,520-bp complementary DNA (cDNA) for mimosinase from L. leucocephala and characterized the encoded enzyme for mimosine-degrading activity. The deduced amino acid sequence of the coding region of the cDNA was predicted to have a chloroplast transit peptide. The nucleotide sequence, excluding the sequence for the chloroplast transit peptide, was codon optimized and expressed in Escherichia coli. The purified recombinant enzyme was used in mimosine degradation assays, and the chromatogram of the major product was found to be identical to that of 3-hydroxy-4-pyridone (3H4P), which was further verified by electrospray ionization-tandem mass spectrometry. The enzyme activity requires pyridoxal 5'-phosphate but not α-keto acid; therefore, the enzyme is not an aminotransferase. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products. The dependence of the enzyme on pyridoxal 5'-phosphate and the production of 3H4P with the release of ammonia indicate that it is a carbon-nitrogen lyase. It was found to be highly efficient and specific in catalyzing mimosine degradation, with apparent Km and Vmax values of 1.16×10(-4) m and 5.05×10(-5) mol s(-1) mg(-1), respectively. The presence of other aromatic amino acids, including l-tyrosine, l-phenylalanine, and l-tryptophan, in the reaction did not show any competitive inhibition. The isolation of the mimosinase cDNA and the biochemical characterization of the recombinant enzyme will be useful in developing transgenic L. leucocephala with reduced mimosine content in the future.

  1. Mechanism and Reaction Pathways for Microcystin-LR Degradation through UV/H2O2 Treatment.

    Science.gov (United States)

    Liu, Yafeng; Ren, Jing; Wang, Xiangrong; Fan, Zhengqiu

    2016-01-01

    Microcystin-LR (MCLR) is the most common cyanotoxin in contaminated aquatic systems. MCLR inhibits protein phosphatases 1 and 2A, leading to liver damage and tumor formation. MCLR is relatively stable owing to its cyclic structures. The combined UV/H2O2 technology can degrade MCLR efficiently. The second-order rate constant of the reaction between MCLR and hydroxyl radical (·OH) is 2.79(±0.23)×1010 M-1 s-1 based on the competition kinetics model using nitrobenzene as reference compound. The probable degradation pathway was analyzed through liquid chromatography mass spectrometry. Results suggested that the major destruction pathways of MCLR were initiated by ·OH attack on the benzene ring and diene of the Adda side chain. The corresponding aldehyde or ketone peptide residues were formed through further oxidation. Another minor destruction pathway involved ·OH attack on the methoxy group of the Adda side chain, followed by complete removal of the methoxy group. The combined UV/H2O2 system is a promising technology for MCLR removal in contaminated aquatic systems.

  2. Photochemical degradation of atrazine in UV and UV/H2O2 process: pathways and toxic effects of products.

    Science.gov (United States)

    Choi, Hyun-Jin; Kim, Daekeun; Lee, Tae-Jin

    2013-01-01

    The degradation of atrazine in aqueous solution by UV or UV/H2O2 processes, and the toxic effects of the degradation products were explored. The mineralization of atrazine was not observed in the UV irradiation process, resulting in the production of hydroxyatrazine (OIET) as the final product. In the UV/H2O2 process, the final product was ammeline (OAAT), which was obtained by two different pathways of reaction: dechlorination followed by hydroxylation, and the de-alkylation of atrazine. The by-products of the reaction of dechlorination followed by hydroxylation were OIET and hydroxydeethyl atrazine (OIAT), and those of de-alkylation were deisopropyl atrazine (CEAT), deethyl atrazine (CIAT), and deethyldeisopropyl atrazine (CAAT). OIAT and OAAT appeared to be quite stable in the degradation of atrazine by the UV/H2O2 process. In a toxicity test using Daphnia magna, the acute toxic unit (TUa) was less than 1 of TUa (100/EC50, %) in the UV/H2O2 process after 30 min of reaction time, while 1.2 to 1.3 of TUa was observed in the UV process. The TUa values of atrazine and the degradation products have the following decreasing order: OIET> Atrazine> CEAT≈CIAT> CAAT. OIAT and OAAT did not show any toxic effects.

  3. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community.

    Science.gov (United States)

    Zhang, Qinghua; Zhang, Yanyan; Li, Daping

    2017-04-01

    The performance of a microbial fuel cell (MFC) in terms of degradation of chloramphenicol (CAP) was investigated. Approximately 84% of 50mg/L CAP was degraded within 12h in the MFC. A significant interaction of pH, temperature, and initial CAP concentration was found on removal of CAP, and a maximum degradation rate of 96.53% could theoretically be achieved at 31.48°C, a pH of 7.12, and an initial CAP concentration of 106.37mg/L. Moreover, CAP was further degraded through a ring-cleavage pathway. The antibacterial activity of CAP towards Escherichia coli ATCC 25922 and Shewanella oneidensis MR-1 was largely eliminated by MFC treatment. High-throughput sequencing analysis indicated that Azonexus, Comamonas, Nitrososphaera, Chryseobacterium, Azoarcus, Rhodococcus, and Dysgonomonas were the predominant genera in the MFC anode biofilm. In conclusion, the MFC shows potential for the treatment of antibiotic residue-containing wastewater due to its high rates of CAP removal and energy recovery.

  4. Gamma radiolytic eradication of methoxychlor in aqueous media. The degradation pathways using HPLC and SPME-GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Butt, S.B.; Zafar, A. [PINSTECH, Nilore, Islamabad (Pakistan). Central Analytical Facility Div.; Riaz, M. [PINSTECH, Nilore, Islamabad (Pakistan). Chemistry Div.

    2013-08-01

    The gamma radiation-induced degradation of environmental pollutant methoxychlor in water was investigated. A {sup 60}Co gamma radiation source with a dose rate of 372 Gy h{sup -1} was used for gamma irradiation of 1 mg L{sup -1} and 10 mg L{sup -1} methoxychlor in water with a varied absorbed dose of 1-5 kGy. A single step clean up and pre-concentration procedure based on solid phase micro-extraction was optimized. The extent of radiolytic degradation was monitored by reversed phase HPLC-UV and GC-ECD. The trace and ultra trace level degradation products were identified using GC-MS-SPME by comparing their mass spectra with the NIST 98 m mass spectral library. Most of the generated products for 4 kGy dose are substituted chlorophenols. The reaction pathways of these substituted chlorophenols and benzophenone formation are also proposed. However, generated chlorophenols disappeared along with methoxychlor for an absorbed dose of 5 kGy. The attained degradation of methoxychlor is {proportional_to} 95% that reflects the potential use of ionization radiation for wastewater treatment. (orig.)

  5. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: identification of transformation products and pathways.

    Science.gov (United States)

    Pareja, Lucía; Pérez-Parada, Andrés; Agüera, Ana; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2012-05-01

    Quinclorac (QNC) is an effective but rather persistent herbicide commonly used in rice production. This herbicide presents a mean persistence in the environment so its residues are considered of environmental relevance. However, few studies have been conducted to investigate its environmental behavior and degradation. In the present work, direct photolysis and TiO(2) photocatalysis of the target compound in ultrapure and paddy field water were investigated. After 10h photolysis in ultrapure water, the concentration of QNC declined 26% and 54% at 250 and 700 W m(-2), respectively. However, the amount of quinclorac in paddy field water remained almost constant under the same irradiation conditions. QNC dissipated completely after 40 min of TiO(2) photocatalysis in ultrapure water, whereas 130 min were necessary to degrade 98% of the initial concentration in paddy field water. Possible QNC photolytic and photocatalytic degradation pathways are proposed after structure elucidation of the main transformation products, through liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and exact mass measurements. Pyridine ring hydroxylation at C-9 followed by ring opening and/or oxidative dechlorination were the key steps of QNC degradation.

  6. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway.

    Science.gov (United States)

    Wang, Jianbing; Fu, Wantao; He, Xuwen; Yang, Shaoxia; Zhu, Wanpeng

    2014-08-01

    The development of highly active carbon material catalysts in catalytic wet air oxidation (CWAO) has attracted a great deal of attention. In this study different carbon material catalysts (multi-walled carbon nanotubes, carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction, the removal of phenol was nearly 100% over the functionalized multi-walled carbon, while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals, which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions, a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First, maleic acid is transformed directly into malonic acid. Second, acetic acid is oxidized into an unknown intermediate, which is then oxidized into CO2 and H2O. Finally, formic acid and oxalic acid can mutually interconvert when conditions are favorable.

  7. Nicotine Dehydrogenase Complexed with 6-Hydroxypseudooxynicotine Oxidase Involved in the Hybrid Nicotine-Degrading Pathway in Agrobacterium tumefaciens S33.

    Science.gov (United States)

    Li, Huili; Xie, Kebo; Yu, Wenjun; Hu, Liejie; Huang, Haiyan; Xie, Huijun; Wang, Shuning

    2016-01-04

    Nicotine, a major toxic alkaloid in tobacco wastes, is degraded by bacteria, mainly via pyridine and pyrrolidine pathways. Previously, we discovered a new hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33 and characterized its key enzyme 6-hydroxy-3-succinoylpyridine (HSP) hydroxylase. Here, we purified the nicotine dehydrogenase initializing the nicotine degradation from the strain and found that it forms a complex with a novel 6-hydroxypseudooxynicotine oxidase. The purified complex is composed of three different subunits encoded by ndhAB and pno, where ndhA and ndhB overlap by 4 bp and are ∼26 kb away from pno. As predicted from the gene sequences and from chemical analyses, NdhA (82.4 kDa) and NdhB (17.1 kDa) harbor a molybdopterin cofactor and two [2Fe-2S] clusters, respectively, whereas Pno (73.3 kDa) harbors an flavin mononucleotide and a [4Fe-4S] cluster. Mutants with disrupted ndhA or ndhB genes did not grow on nicotine but grew well on 6-hydroxynicotine and HSP, whereas the pno mutant did not grow on nicotine or 6-hydroxynicotine but grew well on HSP, indicating that NdhA and NdhB are responsible for initialization of nicotine oxidation. We successfully expressed pno in Escherichia coli and found that the recombinant Pno presented 2,6-dichlorophenolindophenol reduction activity when it was coupled with 6-hydroxynicotine oxidation. The determination of reaction products catalyzed by the purified enzymes or mutants indicated that NdhAB catalyzed nicotine oxidation to 6-hydroxynicotine, whereas Pno oxidized 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde pyridine. These results provide new insights into this novel hybrid pathway of nicotine degradation in A. tumefaciens S33.

  8. Non-riverine pathways of terrigenous carbon to the ocean

    Science.gov (United States)

    Dittmar, T.

    2007-12-01

    The extent and nature of non-riverine fluxes of carbon from land to ocean are poorly understood. Tidal pumping from highly productive coastal environments, atmospheric deposition and submarine groundwater discharge can be significant transport mechanisms for carbon to the ocean. Evidence is mounting that tidally-induced porewater fluxes ("outwelling") of dissolved organic matter (DOM) from mangroves and salt marshes alone may be similar in magnitude as the global riverine flux of DOM. Tidal pumping of dissolved inorganic carbon (DIC) might exceed organic carbon fluxes by far, but the existing knowledge on DIC outwelling is too scarce for a first global estimate. Results from two case studies on the biogeochemistry of DOM outwelling are presented, from the mangroves in Northern Brazil and the salt marshes in the Northern Gulf of Mexico. Ongoing research in the Northern Gulf of Mexico indicates that outwelling and groundwater inputs probably exceed riverine DOM fluxes in this region. Similar observations were made in Northern Brazil. There, the fate of mangrove-derived DOM could be traced from its source in the mangrove sediments to the outer North Brazil shelf by using a combination of isotopic and molecular approaches. Reversed-phase liquid chromatography / mass spectrometry (LC/MS) provided a multifaceted array of information that mirrors the molecular complexity of DOM. Statistical analyses on these data revealed significant differences between mangrove and open-ocean DOM which successively disappeared by irradiating the samples with natural sunlight. Nuclear magnetic resonance analyses yielded concurrent results. Ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) is the only technique capable of resolving and identifying individual elemental compositions in these complex mixtures. We applied this technique for characterizing mangrove-derived DOM and to assess the molecular changes that occur in the initial stages of

  9. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.

    Science.gov (United States)

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  10. Pathways and bioenergetics of anaerobic carbon monoxide fermentation.

    Directory of Open Access Journals (Sweden)

    Martijn eDiender

    2015-11-01

    Full Text Available Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  11. Funding pathways to a low-carbon transition

    DEFF Research Database (Denmark)

    Foulds, Chris; Christensen, Toke Haunstrup

    2016-01-01

    The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low-carbon aspirat......The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low...

  12. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride

    Science.gov (United States)

    Chai, Bo; Yan, Juntao; Wang, Chunlei; Ren, Zhandong; Zhu, Yuchan

    2017-01-01

    Phosphorus doped graphitic carbon nitride (g-C3N4) was easily synthesized using ammonium hexafluorophosphate (NH4PF6) as phosphorus source, and ammonium thiocyanate (NH4SCN) as g-C3N4 precursor, through a direct thermal co-polycondensation procedure. The obtained phosphorus doped g-C3N4 was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), UV-vis diffuse reflectance absorption spectra (UV-DRS), photoelectrochemical measurement and photoluminescence spectra (PL). The photocatalytic activities of phosphorus doped g-C3N4 samples were evaluated by degradation of Rhodamine B (RhB) solution under visible light irradiation. The results showed that the phosphorus doped g-C3N4 had a superior photocatalytic activity than that of pristine g-C3N4, attributing to the phosphorus atoms substituting carbon atoms of g-C3N4 frameworks to result in light harvesting enhancement and delocalized π-conjugated system of this copolymer, beneficial for the increase of photocatalytic performance. The photoelectrochemical measurements also verified that the charge carrier separation efficiency was promoted by phosphorus doping g-C3N4. Moreover, the tests of radical scavengers demonstrated that the holes (h+) and superoxide radicals (rad O2-) were the main active species for the degradation of RhB.

  13. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  14. Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet

    Directory of Open Access Journals (Sweden)

    Gilberto Petraconi

    2010-04-01

    Full Text Available A stationary experiment was performed to study the degradation of carbon-based materials by immersion in a plasma jet. In the experiment, graphite and C/C composite were chosen as the target materials, and the reactive plasma jet was generated by an air plasma torch. For macroscopic study of the material degradation, the sample’s mass losses were measured as function of the exposure time under various temperatures on the sample surface. A microscopic analysis was then carried out for the study of microscopic aspects of the erosion of material surface. These experiments showed that the mass loss per unit area is approximately proportional to the exposure time and strongly depends on the temperature of the material surface. The mass erosion rate of graphite was appreciably higher than the C/C composite. The ablation rate in the carbon matrix region in C/C composite was also noticeably higher than that in the fiber region. In addition, the latter varied according to the orientation of fibers relatively to the flow direction. These tests indicated an excellent ablation resistance of the C/C composite, thus being a reliable material for rocket nozzles and heat shielding elements of the protection systems of hypersonic apparatuses from aerodynamic heating.

  15. Role of PF6- in the radiolytical and electrochemical degradation of propylene carbonate solutions

    Science.gov (United States)

    Ortiz, Daniel; Jimenez Gordon, Isabel; Legand, Solène; Dauvois, Vincent; Baltaze, Jean-Pierre; Marignier, Jean-Louis; Martin, Jean-Frédéric; Belloni, Jacqueline; Mostafavi, Mehran; Le Caër, Sophie

    2016-09-01

    The behavior under irradiation of neat propylene carbonate (PC), a co-solvent usually used in Li-ion batteries (LIB), and also of Li salt solutions is investigated. The decomposition of neat PC is studied using radiolysis in the pulse and steady state regime and is assigned to the ultrafast formation, in the reducing channel, of the radical anion PCrad - by electron attachment, followed by the ring cleavage, leading to CO. In the oxidative channel, the PC(sbnd H)rad radical is formed, generating CO2. The CO2 and CO yields are both close to the ionization yield of PC. The CO2 and CO productions in LiClO4, LiBF4 and LiN(CF3)2(SO2)2 solutions are similar as in neat PC. In contrast, in LiPF6/PC a strong impact on PC degradation is measured with a doubling of the CO2 yield due to the high reactivity of the electron towards PF6- observed in the picosecond range. A small number of oxide phosphine molecules are detected among the various products of the irradiated solutions, suggesting that most of them, observed in carbonate mixtures used in LIBs, arise from linear rather than from cyclical molecules. The similarity between the degradation by radiolysis or electrolysis highlights the interest of radiolysis as an accelerated aging method.

  16. Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes-TiO2.

    Science.gov (United States)

    Zhao, Donglin; Yang, Xin; Chen, Changlun; Wang, Xiangke

    2013-05-15

    A visible-light photocatalyst of multiwalled carbon nanotubes decorated with TiO2 nanoparticles (MWCNT/TiO2) was synthesized by a two-step method, in which TiO2 was first mounted on MWCNT surfaces by hydrolysis of tetrabutyl titanate and further crystallized into anatase nanocrystal in a vacuum furnace at 500°C. The photocatalytic degradation of methylene blue over the ultraviolet (UV) and visible-light spectrum regions was investigated. The MWCNT/TiO2 was able to absorb a high amount of photo energy in the visible-light region, driving effectively photochemical degradation reactions. There were more OH radicals produced by the MWCNT/TiO2 (1:3) than by pure TiO2 under UV and visible-light irradiation. In the photodegradation of methylene blue, as a model reaction, a signification enhancement in the reaction rate was observed with the MWCNT/TiO2 (1:3), compared to bare TiO2 and the physical mixture of MWCNTs and TiO2. MWCNTs can improve the photocatalytic activity of TiO2 in two aspects, namely e(-) transportation and adsorption. This work provides new insight into the fabrication of MWCNT/TiO2 as a high performance visible-light photocatalyst and facilitates its application in photocatalytic degradation of organic compounds.

  17. Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement.

    Science.gov (United States)

    Habraken, Wouter J E M; Zhang, Zheng; Wolke, Joop G C; Grijpma, Dirk W; Mikos, Antonios G; Feijen, Jan; Jansen, John A

    2008-06-01

    Poly(trimethylene carbonate) (PTMC) is an enzymatically degradable polyester with rubber-like properties. Introduction of this polymer into an injectable calcium phosphate bone cement can therefore be used to introduce macroporosity into the cement for tissue engineering purposes as well as to improve mechanical properties. Aim of this study was to investigate calcium phosphate cements with incorporated PTMC microspheres (PTMC CPCs) on their physical/mechanical properties and in vitro degradation characteristics. Therefore, composites were tested on setting time and mechanical strength as well as subjected to phosphate buffered saline (PBS) and enzyme containing medium. PTMC CPCs (12.5 and 25 wt%) with molecular weights of 52.7 kg mol(-1) and 176.2 kg mol(-1) were prepared, which showed initial setting times similar to that of original CPC. Though compression strength decreased upon incorporation of PTMC microspheres, elastic properties were improved as strain-at-yield increased with increasing content of microspheres. Sustained degradation of the microspheres inside PTMC CPC occurred when incubated in the enzymatic environment, but not in PBS, which resulted in an interconnected macroporosity for the 25 wt% composites.

  18. Thermal degradation kinetics of polyketone based on styrene and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jiali, E-mail: jiaqm411@163.com; Fan, Wenjun; Shan, Shaoyun; Su, Hongying; Wu, Shuisheng; Jia, Qingming

    2014-03-01

    Highlights: • The PK were synthesized from carbon monoxide and styrene in the presence of PANI-PdCl{sub 2} catalyst and PdCl{sub 2} catalyst. • The structures and thermal behaviors of PK prepared by homogenous and the supported catalyst were investigated. • The microstructures of PK were changed in the supported catalyst system. • The alternating PK copolymer (PANI-PdCl{sub 2} catalyst) was more thermally stable than PK (PdCl{sub 2} catalyst). • The degradation activation energy values were estimated by Flynn–Wall–Ozawa method and Kissinger method. - Abstract: Copolymerization of styrene with carbon monoxide to give polyketones (PK) was carried out under homogeneous palladium catalyst and polyaniline (PANI) supported palladium(II) catalyst, respectively. The copolymers were characterized by {sup 1}H NMR, {sup 13}C NMR and GPC. The results indicated that the PK catalyzed by the supported catalyst has narrow molecular weight distribution (PDI = 1.18). For comparison purpose of thermal behaviors of PK prepared by the homogeneous and the supported catalyst, thermogravimetric (TG) analysis and derivative thermogravimetric (DTG) were conducted at different heating rates. The peak temperatures (396–402 °C) for PK prepared by the supported catalyst are higher than those (387–395 °C) of PK prepared by the homogeneous catalyst. The degradation activation energy (E{sub k}) values were estimated by Flynn–Wall–Ozawa method and Kissinger method, respectively. The E{sub k} values, as determined by two methods, were found to be in the range 270.72 ± 0.03–297.55 ± 0.10 kJ mol{sup −1}. Structures analysis and thermal degradation analysis revealed that the supported catalyst changed the microstructures of PK, resulting in improving thermal stability of PK.

  19. Degradation of nitrobenzene-containing wastewater by carbon nanotubes immobilized nanoscale zerovalent iron

    Science.gov (United States)

    Jiao, Weizhou; Feng, Zhirong; Liu, Youzhi; Jiang, Huihui

    2016-07-01

    Nanoscaled zerovalent iron (NZVI)-multiwalled carbon nanotubes (CNTs) composite materials were prepared by in situ reduction of Fe2+ onto CNTs for nitrobenzene (NB) degradation. The morphologies and the composites of the prepared materials were characterized by SEM, TEM, and XRD. The results showed that the agglomeration of NZVI decreased with NZVI dispersed well onto the surfaces of CNTs, the particle size of NZVI on CNTs was about 20-50 nm. The BET surface areas of NZVI-CNTs was about 95.8 m2/g, which was 39 % higher than that of bare NZVI. For storage, the prepared NZVI-CNTs were concentrated into slurry and stored in situ as fresh slurry without drying. Contrast experiment results showed that the removal efficiency of NB by NZVI-CNTs fresh slurry was 30 % higher than that of vacuum-dried NZVI-CNTs, which indicates that storing in situ as fresh slurry can be an alternative strategy for nanoparticle storage. Batch experiment results showed that NB could be degraded to aniline by NZVI-CNTs rapidly, and the appropriate pH can be conducted at a relatively wide range from 2.0 to 9.0. The optimum mass ratio of iron-carbon was 1:1, and removal efficiency of NB by NZVI-CNTs with this mass ratio can achieve 100 % within 1 min. The degradation process of NB to intermediates was accelerated significantly by NZVI-CNTs, however, there was still a long term for the intermediates to transfer completely into the final product of aniline. The existence of CNTs can improve the formation of aniline through accelerating the electron transfer by forming microscopic galvanic cells with NZVI.

  20. UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects.

    Science.gov (United States)

    Kovacic, Marin; Juretic Perisic, Daria; Biosic, Martina; Kusic, Hrvoje; Babic, Sandra; Loncaric Bozic, Ana

    2016-08-01

    In this study, the photolysis behavior of commonly used anti-inflammatory drug diclofenac (DCF) was investigated using UV-C and UV-A irradiation. In that purpose, DCF conversion kinetics, mineralization of organic content, biodegradability, and toxicity were monitored and compared. The results showed different kinetics of DCF conversion regarding the type of UV source applied. However, in both cases, the mineralization extent reached upon complete DCF conversion is rather low (≤10 %), suggesting that the majority of DCF was transformed into by-products. Formation/degradation of main degradation by-products was monitored using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), whereas different profiles were obtained by UV-C and UV-A photolysis. The results of bioassays revealed that biodegradability of DCF solutions remained low through the applied treatments. The toxicity of irradiated DCF solutions was evaluated using Vibrio fischeri. A significant reduction of toxicity, especially in the case of UV-A radiation, was observed upon complete degradation of DCF. In addition to toxicity reduction, calculated Log K OW values of DCF degradation by-products indicate their low potential for bioaccumulation (Log K OW ≤ 3) in comparison to the parent substance.

  1. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway

    NARCIS (Netherlands)

    Hutchins, Maria U.; Veenhuis, Marten; Klionsky, Daniel J.

    1999-01-01

    Organelle biogenesis and turnover are necessary to maintain biochemical processes that are appropriate to the needs of the eukaryotic cell. Specific degradation of organelles in response to changing environmental cues is one aspect of achieving proper metabolic function. For example, the yeast Sacch

  2. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Hunkeler, Daniel; Tuxen, Nina;

    2014-01-01

    dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in 13C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation...... not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1......,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA 13C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1...

  3. Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles.

    Science.gov (United States)

    Bootharaju, M S; Pradeep, T

    2012-02-01

    Application of nanoparticles (NPs) in environmental remediation such as water purification requires a detailed understanding of the mechanistic aspects of the interaction between the species involved. Here, an attempt was made to understand the chemistry of noble metal nanoparticle-pesticide interaction, as these nanosystems are being used extensively for water purification. Our model pesticide, chlorpyrifos (CP), belonging to the organophosphorothioate group, is shown to decompose to 3,5,6-trichloro-2-pyridinol (TCP) and diethyl thiophosphate at room temperature over Ag and Au NPs, in supported and unsupported forms. The degradation products were characterized by absorption spectroscopy and electrospray ionization mass spectrometry (ESI MS). These were further confirmed by ESI tandem mass spectrometry. The interaction of CP with NP surfaces was investigated using transmission electron microscopy, energy dispersive analysis of X-rays, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). XPS reveals no change in the oxidation state of silver after the degradation of CP. It is proposed that the degradation of CP proceeds through the formation of AgNP-S surface complex, which is confirmed by Raman spectroscopy. In this complex, the P-O bond cleaves to yield a stable aromatic species, TCP. The rate of degradation of CP increases with increase of temperature and pH. Complete degradation of 10 mL of 2 ppm CP solution is achieved in 3 h using 100 mg of supported Ag@citrate NPs on neutral alumina at room temperature at a loading of ∼0.5 wt %. The effect of alumina and monolayer protection of NPs on the degradation of CP is also investigated. The rate of degradation of CP by Ag NPs is greater than that of Au NPs. The results have implications to the application of noble metal NPs for drinking water purification, as pesticide contamination is prevalent in many parts of the world. Study shows that supported Ag and Au NPs may be employed in sustainable

  4. Carbon capture and sequestration: an exploratory inhalation toxicity assessment of amine-trapping solvents and their degradation products.

    Science.gov (United States)

    McDonald, Jacob D; Kracko, Dean; Doyle-Eisele, Melanie; Garner, C Edwin; Wegerski, Chris; Senft, Al; Knipping, Eladio; Shaw, Stephanie; Rohr, Annette

    2014-09-16

    Carbon dioxide (CO2) absorption with aqueous amine solvents is a method of carbon capture and sequestration (CCS) from flue gases. One concern is the possible release of amine solvents and degradation products into the atmosphere, warranting evaluation of potential pulmonary effects from inhalation. The CCS amines monoethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP) underwent oxidative and CO2-mediated degradation for 75 days. C57bl/6N mice were exposed for 7 days by inhalation of 25 ppm neat amine or equivalant concentration in the degraded mixture. The aqueous solutions were nebulized to create the inhalation atmospheres. Pulmonary response was measured by changes in inflammatory cells in bronchoalveolar lavage fluid and cytokine expression in lung tissue. Ames mutagenicity and CHO-K1 micronucleus assays were applied to assess genotoxicity. Chemical analysis of the test atmosphere and liquid revealed complex mixtures, including acids, aldehydes, and other compounds. Exposure to oxidatively degraded MEA increased (p < 0.05) total cells, neutrophils, and lymphocytes compared to control mice and caused inflammatory cytokine expression (statistical increase at p < 0.05). MEA and CO2-degraded MEA were the only atmospheres to show statistical (p < 0.05) increase in oxidative stress. CO2 degradation resulted in a different composition, less degradation, and lower observed toxicity (less magnitude and number of effects) with no genotoxicity. Overall, oxidative degradation of the amines studied resulted in enhanced toxicity (increased magnitude and number of effects) compared to the neat chemicals.

  5. Structure and Mechanism of PhnP, a Phosphodiesterase of the Carbon-Phosphorus Lyase Pathway

    DEFF Research Database (Denmark)

    He, Shu-Mei; Wathier, Matthew; Podzelinska, Kateryna;

    2011-01-01

    PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase s...

  6. Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways

    NARCIS (Netherlands)

    Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S.A.B.; Stams, A.J.M.; Richnow, H.H.; Vogt, C.

    2008-01-01

    Recently, combined carbon and hydrogen isotope fractionation investigations have emerged as a powerful tool for the characterization of reaction mechanisms relevant for the removal of organic pollutants. Here, we applied this approach in order to differentiate benzene biodegradation pathways under o

  7. Pathways of carbon oxidation in continental margin sediments off central Chile

    DEFF Research Database (Denmark)

    Thamdrup, B; Canfield, Donald Eugene

    1996-01-01

    Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubatio...

  8. Avoiding, transforming, transitioning: pathways to sustainable low carbon passenger transport in developing countries

    DEFF Research Database (Denmark)

    Meza, Maria Josefina Figueroa; Fulton, Lewis; Tiwari, Geetam

    2013-01-01

    This review examines conditions affecting road passenger transport in developing countries that can be instrumental to building a pathway for reducing carbon emissions while concurrently meeting sustainable development goals. By contrasting present and future status of these conditions a vision e...

  9. Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway.

    Science.gov (United States)

    Yang, Xiaoling; Huang, Jun; Zhang, Kunlun; Yu, Gang; Deng, Shubo; Wang, Bin

    2014-03-01

    Perfluorooctane sulfonate (PFOS), a widely used mist suppressant in hard chrome electroplating industry, has been listed in the Stockholm Convention for global ban. 6:2 Fluorotelomer sulfonate (6:2 FTS) acid and salts have been adopted as alternative products in the market, but no data about their abiotic degradation has been reported. In the present study, the degradability of 6:2 FTS potassium salt (6:2 FTS-K) was evaluated under various advanced oxidation processes, including ultraviolet (UV) irradiation, UV with hydrogen peroxide (H2O2), alkaline ozonation (O3, pH = 11), peroxone (O3/H2O2), and Fenton reagent oxidation (Fe(2+)/H2O2). UV/H2O2 was found to be the most effective approach, where the degradation of 6:2 FTS-K followed the pseudo-first-order kinetics. The intermediates were mainly shorter chain perfluoroalkyl carboxylic acid (C7 to C2), while sulfate (SO4 (2-)) and fluoride (F(-)) were found to be the final products. The high yields of SO4 (2-) and F(-) indicate that 6:2 FTS-K can be nearly completely desulfonated and defluorinated under UV/H2O2 condition. The degradation should firstly begin with the substitution of hydrogen atom by hydroxyl radicals, followed by desulfonation, carboxylation, and sequential "flake off" of CF2 unit. Compared with PFOS which is inert in most advanced oxidation processes, 6:2 FTS-K is more degradable as the alternative.

  10. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea

    Science.gov (United States)

    Kono, Takunari; Mehrotra, Sandhya; Endo, Chikako; Kizu, Natsuko; Matusda, Mami; Kimura, Hiroyuki; Mizohata, Eiichi; Inoue, Tsuyoshi; Hasunuma, Tomohisa; Yokota, Akiho; Matsumura, Hiroyoshi; Ashida, Hiroki

    2017-01-01

    Two enzymes are considered to be unique to the photosynthetic Calvin–Benson cycle: ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), responsible for CO2 fixation, and phosphoribulokinase (PRK). Some archaea possess bona fide RuBisCOs, despite not being photosynthetic organisms, but are thought to lack PRK. Here we demonstrate the existence in methanogenic archaea of a carbon metabolic pathway involving RuBisCO and PRK, which we term ‘reductive hexulose-phosphate' (RHP) pathway. These archaea possess both RuBisCO and a catalytically active PRK whose crystal structure resembles that of photosynthetic bacterial PRK. Capillary electrophoresis-mass spectrometric analysis of metabolites reveals that the RHP pathway, which differs from the Calvin–Benson cycle only in a few steps, is active in vivo. Our work highlights evolutionary and functional links between RuBisCO-mediated carbon metabolic pathways in methanogenic archaea and photosynthetic organisms. Whether the RHP pathway allows for autotrophy (that is, growth exclusively with CO2 as carbon source) remains unknown. PMID:28082747

  11. Photocatalytic degradating methyl orange in water phase by UV-irradiated CdS carried by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; TANG YaPing; KANG BoNan; WANG BinSong; ZHOU Feng; MA Qiang; XIAO Ji; WANG DaZhi; LIANG Ji

    2007-01-01

    A new candidate for photocatalytic degradating organic dyes, CdS carried by carbon nanotubes (CdS/CNTs), is reported. The degradation ratio curves of methyl orange in water phase show that the capability for degradating organic molecules of CdS/CNTs is obviously higher than that of separated CdS. The degradation capability enhances as the increase of the amount of net CdS catalyst, the ratio of carbon nanotubes to CdS, and the area of the template, and is influenced by the pH value and the temperature of aqueous solution. These results suggest that the photocatalyst of CdS/CNTs is very suitable for potential applications in organic waste removal from water.

  12. Modeling Aerobic Carbon Source Degradation Processes using Titrimetric Data and Combined Respirometric-Titrimetric Data: Experimental Data and Model Structure

    DEFF Research Database (Denmark)

    Gernaey, Krist; Petersen, B.; Nopens, I.;

    2002-01-01

    vessel and a closed non-aerated respiration chamber for monitoring the oxygen uptake rate related to substrate degradation. The respirometer is combined with a titrimetric unit that keeps the pH of the activated sludge sample at a constant value by addition of acid and/or base. The experimental data......Experimental data are presented that resulted from aerobic batch degradation experiments in activated sludge with simple carbon sources (acetate and dextrose) as substrates. Data collection was done using combined respirometric-titrimetric measurements. The respirometer consists of an open aerated...... clearly showed that the activated sludge bacteria react with consumption or production of protons during aerobic degradation of the two carbon sources under study. Thus, the cumulative amount of added acid and/or base could serve as a complementary information source on the degradation processes...

  13. Photocatalytic degradating methyl orange in water phase by UV-irradiated CdS carried by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new candidate for photocatalytic degradating organic dyes,CdS carried by car-bon nanotubes(CdS/CNTs) ,is reported. The degradation ratio curves of methyl orange in water phase show that the capability for degradating organic molecules of CdS/CNTs is obviously higher than that of separated CdS. The degradation ca-pability enhances as the increase of the amount of net CdS catalyst,the ratio of carbon nanotubes to CdS,and the area of the template,and is influenced by the pH value and the temperature of aqueous solution. These results suggest that the photocatalyst of CdS/CNTs is very suitable for potential applications in organic waste removal from water.

  14. Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1.

    Science.gov (United States)

    Liu, Hong; Wang, Shu-Jun; Zhang, Jun-Jie; Dai, Hui; Tang, Huiru; Zhou, Ning-Yi

    2011-07-01

    Pseudomonas stutzeri ZWLR2-1 utilizes 2-chloronitrobenzene (2CNB) as a sole source of carbon, nitrogen, and energy. To identify genes involved in this pathway, a 16.2-kb DNA fragment containing putative 2CNB dioxygenase genes was cloned and sequenced. Of the products from the 19 open reading frames that resulted from this fragment, CnbAc and CnbAd exhibited striking identities to the respective α and β subunits of the Nag-like ring-hydroxylating dioxygenases involved in the metabolism of nitrotoluene, nitrobenzene, and naphthalene. The encoding genes were also flanked by two copies of insertion sequence IS6100. CnbAa and CnbAb are similar to the ferredoxin reductase and ferredoxin for anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. Escherichia coli cells expressing cnbAaAbAcAd converted 2CNB to 3-chlorocatechol with concomitant nitrite release. Cell extracts of E. coli/pCNBC exhibited chlorocatechol 1,2-dioxygenase activity. The cnbCDEF gene cluster, homologous to a 3-chlorocatechol degradation cluster in Sphingomonas sp. strain TFD44, probably contains all of the genes necessary for the conversion of 3-chlorocatechol to 3-oxoadipate. The patchwork-like structure of this catabolic cluster suggests that the cnb cluster for 2CNB degradation evolved by recruiting two catabolic clusters encoding a nitroarene dioxygenase and a chlorocatechol degradation pathway. This provides another example to help elucidate the bacterial evolution of catabolic pathways in response to xenobiotic chemicals.

  15. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    Science.gov (United States)

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation.

  16. Carbazole-degradative IncP-7 plasmid pCAR1.2 is structurally unstable in Pseudomonas fluorescens Pf0-1, which accumulates catechol, the intermediate of the carbazole degradation pathway.

    Science.gov (United States)

    Takahashi, Yurika; Shintani, Masaki; Li, Li; Yamane, Hisakazu; Nojiri, Hideaki

    2009-06-01

    We determined the effect of the host on the function and structure of the nearly identical IncP-7 carbazole-degradative plasmids pCAR1.1 and pCAR1.2. We constructed Pseudomonas aeruginosa PAO1(pCAR1.2) and P. fluorescens Pf0-1Km(pCAR1.2) and compared their growth on carbazole- and succinate-containing media with that of P. putida KT2440(pCAR1.1). We also assessed the stability of the genetic structures of the plasmids in each of the three hosts. Pf0-1Km(pCAR1.2) showed dramatically delayed growth when carbazole was supplied as the sole carbon source, while the three strains grew at nearly the same rate on succinate. Among the carbazole-grown Pf0-1Km(pCAR1.2) cells, two types of deficient strains appeared and dominated the population; such dominance was not observed in the other two strains or for succinate-grown Pf0-1Km(pCAR1.2). Genetic analysis showed that the two deficient strains possessed pCAR1.2 derivatives in which the carbazole-degradative car operon was deleted or its regulatory gene, antR, was deleted by homologous recombination between insertion sequences. From genomic information and quantitative reverse transcription-PCR analyses of the genes involved in carbazole mineralization by Pf0-1Km(pCAR1.2), we found that the cat genes on the chromosome of Pf0-1Km, which are necessary for the degradation of catechol (a toxic intermediate in the carbazole catabolic pathway), were not induced in the presence of carbazole. The resulting accumulation of catechol may have enabled the strain that lost its carbazole-degrading ability to have overall higher fitness than the wild-type strain. These results suggest that the functions of the chromosomal genes contributed to the selection of plasmid derivatives with altered structures.

  17. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); Stolte, Stefan [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); UFT-Centre of Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Siedlecka, Ewa Maria, E-mail: ewa.siedlecka@ug.edu.pl [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland)

    2014-09-15

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na{sub 2}SO{sub 4}. The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test.

  18. New Biochemical Pathway for Biphenyl Degradation in Plants: Structural, Mechanistic and Biotechnological Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pacios, L. F.; Campos, V. M.; Merino, I.; Gomez, L.

    2009-07-01

    Polychlorinated biphenyls (PVBs) and other structurally-related xenobiotics are amongst the most relevant organic pollutants known today. while some bacterial species can metabolize PCBs, with varying efficiency, no catabolic pathways have yet been described in plants. This is so despite the great potential of (at least some) plant species for soil and groundwater decontamination, a technology known as phyto remediation. (Author)

  19. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D

    2016-05-15

    Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically.

  20. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease.

    Science.gov (United States)

    Son, Sung Min; Cha, Moon-Yong; Choi, Heesun; Kang, Seokjo; Choi, Hyunjung; Lee, Myung-Shik; Park, Sun Ah; Mook-Jung, Inhee

    2016-05-01

    The secretion of proteins that lack a signal sequence to the extracellular milieu is regulated by their transition through the unconventional secretory pathway. IDE (insulin-degrading enzyme) is one of the major proteases of amyloid beta peptide (Aβ), a presumed causative molecule in Alzheimer disease (AD) pathogenesis. IDE acts in the extracellular space despite having no signal sequence, but the underlying mechanism of IDE secretion extracellularly is still unknown. In this study, we found that IDE levels were reduced in the cerebrospinal fluid (CSF) of patients with AD and in pathology-bearing AD-model mice. Since astrocytes are the main cell types for IDE secretion, astrocytes were treated with Aβ. Aβ increased the IDE levels in a time- and concentration-dependent manner. Moreover, IDE secretion was associated with an autophagy-based unconventional secretory pathway, and depended on the activity of RAB8A and GORASP (Golgi reassembly stacking protein). Finally, mice with global haploinsufficiency of an essential autophagy gene, showed decreased IDE levels in the CSF in response to an intracerebroventricular (i.c.v.) injection of Aβ. These results indicate that IDE is secreted from astrocytes through an autophagy-based unconventional secretory pathway in AD conditions, and that the regulation of autophagy is a potential therapeutic target in addressing Aβ pathology.

  1. Pathways and substrate-specific regulation of amino acid degradation in Phaeobacter inhibens DSM 17395 (archetype of the marine Roseobacter clade).

    Science.gov (United States)

    Drüppel, Katharina; Hensler, Michael; Trautwein, Kathleen; Koßmehl, Sebastian; Wöhlbrand, Lars; Schmidt-Hohagen, Kerstin; Ulbrich, Marcus; Bergen, Nils; Meier-Kolthoff, Jan P; Göker, Markus; Klenk, Hans-Peter; Schomburg, Dietmar; Rabus, Ralf

    2014-01-01

    Combining omics and enzymatic approaches, catabolic routes of nine selected amino acids (tryptophan, phenylalanine, methionine, leucine, isoleucine, valine, histidine, lysine and threonine) were elucidated in substrate-adapted cells of Phaeobacter inhibens DSM 17395 (displaying conspicuous morphotypes). The catabolic network [excluding tricarboxylic acid (TCA) cycle] was reconstructed from 71 genes (scattered across the chromosome; one-third newly assigned), with 69 encoded proteins and 20 specific metabolites identified, and activities of 10 different enzymes determined. For example, Ph. inhibens DSM 17395 does not degrade lysine via the widespread saccharopine pathway but might rather employ two parallel pathways via 5-aminopentanoate or 2-aminoadipate. Tryptophan degradation proceeds via kynurenine and 2-aminobenzoate; the latter is metabolized as known from Azoarcus evansii. Histidine degradation is analogous to the Pseudomonas-type Hut pathway via N-formyl-l-glutamate. For threonine, only one of the three genome-predicted degradation pathways (employing threonine 3-dehydrogenase) is used. Proteins of the individual peripheral degradation sequences in Ph. inhibens DSM 17395 were apparently substrate-specifically formed contrasting the non-modulated TCA cycle enzymes. Comparison of genes for the reconstructed amino acid degradation network in Ph. inhibens DSM 17395 across 27 other complete genomes of Roseobacter clade members revealed most of them to be widespread among roseobacters.

  2. Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk.

    Science.gov (United States)

    Tsunematsu, Yuta; Ishikawa, Noriyasu; Wakana, Daigo; Goda, Yukihiro; Noguchi, Hiroshi; Moriya, Hisao; Hotta, Kinya; Watanabe, Kenji

    2013-12-01

    Spirotryprostatins, an indole alkaloid class of nonribosomal peptides isolated from Aspergillus fumigatus, are known for their antimitotic activity in tumor cells. Because spirotryprostatins and many other chemically complex spiro-carbon-bearing natural products exhibit useful biological activities, identifying and understanding the mechanism of spiro-carbon biosynthesis is of great interest. Here we report a detailed study of spiro-ring formation in spirotryprostatins from tryprostatins derived from the fumitremorgin biosynthetic pathway, using reactants and products prepared with engineered yeast and fungal strains. Unexpectedly, FqzB, an FAD-dependent monooxygenase from the unrelated fumiquinazoline biosynthetic pathway, catalyzed spiro-carbon formation in spirotryprostatin A via an epoxidation route. Furthermore, FtmG, a cytochrome P450 from the fumitremorgin biosynthetic pathway, was determined to catalyze the spiro-ring formation in spirotryprostatin B. Our results highlight the versatile role of oxygenating enzymes in the biosynthesis of structurally complex natural products and indicate that cross-talk of different biosynthetic pathways allows product diversification in natural product biosynthesis.

  3. Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation

    Science.gov (United States)

    Luo, Lei; Zhang, Anfeng; Janik, Michael J.; Li, Keyan; Song, Chunshan; Guo, Xinwen

    2017-02-01

    Ordered mesoporous graphitic carbon nitrides were prepared by directly condensing the uniform mixtures of melamine and KIT-6. After removal of the KIT-6 sacrificial template, the carbon nitrides were characterized with TEM, N2 physical adsorption, XRD, FT-IR, XPS, UV-vis and PL spectrometries, and tested for their RhB photocatalytic degradation activity. Together, these characterizations confirmed the as-prepared tunable mesoporous materials with enhanced charge separation efficiency and superior photocatalytic performance. Compared with a conventional bulk g-C3N4, ordered mesoporous g-C3N4 exhibits a larger specific surface area of 279.3 m2/g and a pore size distribution about 4.0 nm and 13.0 nm. Meanwhile, the reduced bandgap energy of 2.77 eV and lower photogenerated electron-hole pair recombination frequency were evidenced by UV-Vis and PL spectra. The RhB photocatalytic degradation activity maximizes with a mass ratio of KIT-6/melamine of 80% (KCN80), and the kinetic constant reaches 0.0760 min-1 which is 16 times higher than that of the bulk sample. Reusability of KCN80 was demonstrated by a lack of evident deactivation after three consecutive reaction periods. The direct condensation of the KIT-6 and melamine mixture does not require pre-casting of the precursor into the pore system of the templates. Owing to its high product yield, improved SBET, reduced bandgap energy and limited charge recombination, the facile-prepared ordered mesoporous g-C3N4 is a practical candidate for further modification.

  4. Population sinks resulting from degraded habitats of an obligate life-history pathway.

    Science.gov (United States)

    Hickford, Michael J H; Schiel, David R

    2011-05-01

    Many species traverse multiple habitats across ecosystems to complete their life histories. Degradation of critical, life stage-specific habitats can therefore lead to population bottlenecks and demographic deficits in sub-populations. The riparian zone of waterways is one of the most impacted areas of the coastal zone because of urbanisation, deforestation, farming and livestock grazing. We hypothesised that sink populations can result from alterations of habitats critical to the early life stages of diadromous fish that use this zone, and tested this with field-based sampling and experiments. We found that for Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, obligate riparian spawning habitat was very limited and highly vulnerable to disturbance across 14 rivers in New Zealand. Eggs were laid only during spring tides, in the highest tidally influenced vegetation of waterways. Egg survival increased to >90% when laid in three riparian plant species and where stem densities were great enough to prevent desiccation, compared to no survival where vegetation was comprised of other species or was less dense. Experimental exclusion of livestock, one of the major sources of riparian degradation in rural waterways, resulted in quick regeneration, a tenfold increase in egg laying by fish and a threefold increase in survival, compared to adjacent controls. Overall, there was an inverse relationship between river size and egg production. Some of the largest rivers had little or no spawning habitat and very little egg production, effectively becoming sink populations despite supporting large adult populations, whereas some of the smallest pristine streams produced millions of eggs. We demonstrate that even a wide-ranging species with many robust adult populations can be compromised if a stage-specific habitat required to complete a life history is degraded by localised or more diffuse impacts.

  5. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Institute of Scientific and Technical Information of China (English)

    Agus Suryawan; Teresa ADavis

    2014-01-01

    Background:The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6-and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. Results:Abundance of atrogin-1, but not MuRF1, was greater in 26-than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6-than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the

  6. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Fupo [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Zhang, Jing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Chen, Xiaoming, E-mail: xmchenw@126.com [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China)

    2015-05-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials.

  7. Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways

    OpenAIRE

    2012-01-01

    We have studied for the first time the transcriptional regulatory circuit that controls the expression of the box genes encoding the aerobic hybrid pathway used to assimilate benzoate via coenzyme A (CoA) derivatives in bacteria. The promoters responsible for the expression of the box cluster in the β-proteobacterium Azoarcus sp., their cognate transcriptional repressor, the BoxR protein, and the inducer molecule (benzoyl-CoA) have been characterized. The BoxR protein shows a significant sequ...

  8. Selective breakdown of metallic pathways in double-walled carbon nanotube networks.

    Science.gov (United States)

    Ng, Allen L; Sun, Yong; Powell, Lyndsey; Sun, Chuan-Fu; Chen, Chien-Fu; Lee, Cheng S; Wang, YuHuang

    2015-01-07

    Covalently functionalized, semiconducting double-walled carbon nanotubes exhibit remarkable properties and can outperform their single-walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double-walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties. Here, the first approach to address this challenge through electrical breakdown of metallic double-walled carbon nanotubes, both inner and outer walls, within networks of mixed electronic types is described. The intact semiconductors demonstrate a ∼62% retention of the ON-state conductance in thin film transistors in response to covalent functionalization. The selective elimination of the metallic pathways improves the ON/OFF ratio, by more than 360 times, to as high as 40 700, while simultaneously retaining high ON-state conductance.

  9. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  10. Stable carbon and hydrogen isotopic fractionations of alkane compounds and crude oil during aerobically microbial degradation

    Institute of Scientific and Technical Information of China (English)

    PENG Xianzhi; ZHANG Gan; CHEN Fanzhong; LIU Guoqing

    2004-01-01

    Normal alkane compounds dodecane, pentadecane, hexadecane, octadecane, tetracosane, isoprenoid alkane pristane and a crude oil sample were aerobically biodegraded with a pure bacterial strain GIM2.5 and white rot fungus Phanerochaete Chrysosporium-1767 to monitor the kinetic fractionation of the molecular stable carbon (δ13C) and hydrogen (δD) isotopes in the course of biodegradation. Both δ13C (V-PDB) and δ D (V-SMOW) remained stable for the standard alkane compounds and n-alkane components (from n-C13 to n-C25) of the crude oil, generally varying in the range of ±0.5‰ and ±5‰ respectively, within the range of the instrumental precisions, especially for those molecularly heavier than n-C16 during microbial degradation. These results indicate that molecular stable carbon and hydrogen isotopic fingerprints can be promising indicators for tracing the sources of petroleum-related contaminants in the environment, especially in the case of severe weathering when they are difficult to be unambiguously identified by the chemical fingerprints alone.

  11. Time evolution and competing pathways in photodegradation of trifluralin and three of its major degradation products.

    Science.gov (United States)

    Tagle, Martín G Sarmiento; Laura Salum, María; Buján, Elba I; Argüello, Gustavo A

    2005-11-01

    The herbicide trifluralin (I)(N,N-di-n-propyl-2,6-dinitro-4-trifluoromethylaniline) decomposes, by the action of UV-Vis light (lambda > 300 nm), to several products, the most important (because they give subsequent photochemical reactions) being N-n-propyl-2,6-dinitro-4-trifluoromethylaniline (VI), 2-ethyl-7-nitro-5-trifluoromethyl-1H-benzimidazole 3-oxide (VII) and 2,6-dinitro-4-trifluoromethylaniline (XII). The time evolution of degradation of trifluralin (I) and the aforementioned three main photoproducts was studied in water and acetonitrile as solvents. The pseudo-first order rate constants allow one to calculate the branching ratios for some of the reactions involved. The preference for either N-dealkylation or cyclization depends on the solvent employed. Dissolved oxygen accelerates the photodegradation, especially the dealkylation.

  12. Towards the comprehension of the role of copper and iron in MSWI fly ash carbon degradation

    Energy Technology Data Exchange (ETDEWEB)

    Grandesso, E.; Arosio, C.; Collina, E.; Lasagni, M.; Pitea, D. [Universita Milano-Bicocca, Milano (Italy); Fermo, P. [Universita degli Studi di Milano, Milano (Italy)

    2004-09-15

    the fly ash. This conclusion supported previous findings from kinetic studies. Additional investigations on the catalytic role of copper(II) chloride and other metal oxides and salts in thermal degradation of carbon are needed to support the above findings and to give further information for the validation of the kinetic model.

  13. Influence of the atmospheric species water, oxygen, nitrogen and carbon dioxide on the degradation of aluminum doped zinc oxide layers

    NARCIS (Netherlands)

    Theelen, M.; Dasgupta, S.; Vroon, Z.; Kniknie, B.; Barreau, N.; Berkum, J. van; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N 2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical,

  14. Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line

    NARCIS (Netherlands)

    van Goethem, M. J.; van der Meer, R.; Reist, H. W.; Schippers, J. M.

    2009-01-01

    Monte Carlo simulations based on the Geant4 simulation toolkit were performed for the carbon wedge degrader used in the beam line at the Center of Proton Therapy of the Paul Scherrer Institute (PSI). The simulations are part of the beam line studies for the development and understanding of the GANTR

  15. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  16. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    Science.gov (United States)

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases.

  17. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, Katherine A.; Ealick, Steven E.

    2016-05-25

    HpxW from the ubiquitous pathogenKlebsiella pneumoniaeis involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide further insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed.

  18. Foam-structured Activated Carbon-ceramic as TiO2 Supports for Photocatalytic Degradation of Phenol

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-min

    2013-01-01

    An activated foam-structured carbon-ceramic(AFCC) was prepared and investigated as TiO2 support for the photocatalytic degradation of phenol.AFCC and TiO2/AFCC catalysts were characterized by N2 adsorptiondesorption and X-ray diffraction(XRD).The effects of AFCC on the photocatalytic activity and the crystallinity of TiO2 were studied.The results show that the crystallinity and anatase/rutile ratio of TiO2 loaded on AFCC could be significantly influenced by the calcination temperature.The degradation rate of phenol benefited from the synergistic effects of the adsorption of activated carbon(AC) and the photocatalysis of TiO2,which suggests that a high surface area of AC is essential to achieve high degradation rates and efficiencies.It was found that the larger mean cell size of AFCC increased the light transmission within the foam.

  19. Degradation Pathways for Geogenic Volatile Organic Compounds (VOCs) in Soil Gases from the Solfatara Crater (Campi Flegrei, Southern Italy).

    Science.gov (United States)

    Tassi, F.; Venturi, S.; Cabassi, J.; Capecchiacci, F.; Nisi, B., Sr.; Vaselli, O.

    2014-12-01

    The chemical composition of volatile organic compounds (VOCs) in soil gases from the Solfatara crater (Campi Flegrei, Southern Italy) was analyzed to investigate the effects of biogeochemical processes occurring within the crater soil on gases discharged from the hydrothermal reservoir and released into the atmosphere through diffuse degassing. In this system, two fumarolic vents (namely Bocca Grande and Bocca Nuova) are the preferential pathways for hydrothermal fluid uprising. For our goal, the chemistry of VOCs discharged from these sites were compared to that of soil gases. Our results highlighted that C4-C9 alkanes, alkenes, S-bearing compounds and alkylated aromatics produced at depth were the most prone to degradation processes, such as oxidation-reduction and hydration-dehydration reactions, as well as to microbial activity. Secondary products, which were enriched in sites characterized by low soil gas fluxes, mostly consisted of aldheydes, ketons, esters, ethers, organic acids and, subordinately, alcohols. Benzene, phenol and hydrofluorocarbons (HCFCs) produced at depth were able to transit through the soil almost undisturbed, independently on the emission rate of diffuse degassing. The presence of cyclics was possibly related to an independent low-temperature VOC source, likely within sedimentary formations overlying the hydrothermal reservoir. Chlorofluorocarbons (CFCs) were possibly due to air contamination. This study demonstrated the strict control of biogeochemical processes on the behaviour of hydrothermal VOCs that, at least at a local scale, may have a significant impact on air quality. Laboratory experiments conducted at specific chemical-physical conditions and in presence of different microbial populations may provide useful information for the reconstruction of the degradation pathways controlling fate and behaviour of VOCs in the soil.

  20. A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Ben Spencer; Jeremey Busby; Richard Martineau; Brian Wirth

    2012-10-01

    Nuclear power currently provides a significant fraction of the United States’ non-carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nation’s electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required.

  1. Potentiality of yeast Candida sp. SMN04 for degradation of cefdinir, a cephalosporin antibiotic: kinetics, enzyme analysis and biodegradation pathway.

    Science.gov (United States)

    Selvi, A; Das, Devlina; Das, Nilanjana

    2015-01-01

    A new yeast strain isolated from the pharmaceutical wastewater was capable of utilizing cefdinir as a sole carbon source for their growth in mineral medium. The yeast was identified and named as Candida sp. SMN04 based on morphology and 18S-ITS-D1/D2/D3 rRNA sequence analysis. The interaction between factors pH (3.0-9.0), inoculum dosage (1-7%), time (1-11 day) and cefdinir concentration (50-450 mg/L) was studied using a Box-Behnken design. The factors were studied as a result of their effect on cell dry weight (R1; g/L), extended spectrum β-lactamase (ESBL) assay (R2; mm), P450 activity (R3; U/mL) and degradation (R4; %). Maximum values of R1, R2, R3 and R4 were obtained at central values of all the parameters. The isolated yeast strain efficiently degraded 84% of 250 mg L⁻¹ of cefdinir within 6 days with a half-life of 2.97 days and degradation rate constant of 0.2335 per day. Pseudo-first-order model efficiently described the process. Among the various enzymes tested, the order of activity at the end of Day 4 was noted to be: cytochrome P450 (1.76 ± 0.03) > NADPH reductase (1.51 ± 0.20) > manganese peroxidase and amylase (0.66 ± 0.15; 0.66 ± 0.70). Intermediates were successfully characterized by liquid chromatography-mass spectrometry. The opening of the β-lactam ring involving ESBL activity was considered as one of the major steps in the cefdinir degradation process. Fourier transform-infrared spectroscopy analysis showed the absence of spectral vibrations between 1766 and 1519 cm⁻¹ confirming the complete removal of lactam ring during cefdinir degradation. The results of the present study are promising for the use of isolated yeast Candida sp. SMN04 as a potential bioremediation agent.

  2. Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2.

    Directory of Open Access Journals (Sweden)

    Alexia Comte

    Full Text Available Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D and meta involving a catechol 2,3 dioxygenase (C23D. Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively and thus, evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at low dissolved-oxygen concentration (DOC  =  0.06 mg x L(-1 suggested, apart for catechol, the presence of 2-hydroxymuconic acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S. solfataricus 98/2 degrade phenol through the meta route.

  3. Oncogenic activation of the Met receptor tyrosine kinase fusion protein, Tpr-Met, involves exclusion from the endocytic degradative pathway.

    Science.gov (United States)

    Mak, H H L; Peschard, P; Lin, T; Naujokas, M A; Zuo, D; Park, M

    2007-11-01

    Multiple mechanisms of dysregulation of receptor tyrosine kinases (RTKs) are observed in human cancers. In addition to gain-of-function, loss of negative regulation also contributes to oncogenic activation of RTKs. Negative regulation of many RTKs involves their internalization and degradation in the lysosome, a process regulated through ubiquitination. RTK oncoproteins activated following chromosomal translocation, are no longer transmembrane proteins, and are predicted to escape lysosomal degradation. To test this, we used the Tpr-Met oncogene, generated following chromosomal translocation of the hepatocyte growth factor receptor (Met). Unlike Met, Tpr-Met is localized in the cytoplasm and also lacks the binding site for Cbl ubiquitin ligases. We determined whether subcellular localization of Tpr-Met, and/or loss of its Cbl-binding site, is important for oncogenic activity. Presence of a Cbl-binding site and ubiquitination of cytosolic Tpr-Met oncoproteins does not alter their transforming activity. In contrast, plasma membrane targeting allows Tpr-Met to enter the endocytic pathway, and Tpr-Met transforming activity as well as protein stability are decreased in a Cbl-dependent manner. We show that transformation by Tpr-Met is in part dependent on its ability to escape normal downregulatory mechanisms. This provides a paradigm for many RTK oncoproteins activated following chromosomal translocation.

  4. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP)

    OpenAIRE

    Vietti, Giulia; Lison, Dominique; van den Brule, Sybille

    2016-01-01

    Several experimental studies have shown that carbon nanotubes (CNT) can induce respiratory effects, including lung fibrosis. The cellular and molecular events through which these effects develop are, however, not clearly elucidated. The purpose of the present review was to analyze the key events involved in the lung fibrotic reaction induced by CNT and to assess their relationships. We thus address current knowledge and gaps with a view to draft an Adverse Outcome Pathway (AOP) concerning the...

  5. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes

    Energy Technology Data Exchange (ETDEWEB)

    Brandstätter, Christian, E-mail: bran.chri@gmail.com; Laner, David, E-mail: david.laner@tuwien.ac.at; Fellner, Johann, E-mail: johann.fellner@tuwien.ac.at

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • 40 year old waste from an old MSW landfill was incubated in LSR experiments. • Carbon balances for anaerobic and aerobic waste degradation were established. • The transformation of carbon pools during waste degradation was investigated. • Waste aeration resulted in the formation of a new, stable organic carbon pool. • Water addition did not have a significant effect on aerobic waste degradation. - Abstract: Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were operated for 27 months, whereby the waste in one pair was kept under anaerobic conditions and the four other LSRs were aerated. Two of the aerated LSR were run with leachate recirculation and water addition and two without. The organic carbon in the solid waste was characterized at the beginning and at the end of the experiments and major carbon flows (e.g. TOC in leachate, gaseous CO{sub 2} and CH{sub 4}) were monitored during operation. After the termination of the experiments, the waste from the anaerobic LSRs exhibited a long-term gas production potential of more than 20 NL kg{sup −1} dry waste, which corresponded to the mineralization of around 12% of the initial TOC (67 g kg{sup −1} dry waste). Compared to that, aeration led to threefold decrease in TOC (32–36% of the initial TOC were mineralized), without apparent differences in carbon discharge between the aerobic set ups with and without water addition. Based on the investigation of the carbon pools it could be demonstrated that a bit more than 10% of the initially present organic carbon was transformed into more recalcitrant forms, presumably due to the formation of humic substances

  6. A putrescine-inducible pathway comprising PuuE-YneI in which gamma-aminobutyrate is degraded into succinate in Escherichia coli K-12.

    Science.gov (United States)

    Kurihara, Shin; Kato, Kenji; Asada, Kei; Kumagai, Hidehiko; Suzuki, Hideyuki

    2010-09-01

    Gamma-aminobutyrate (GABA) is metabolized to succinic semialdehyde by GABA aminotransferase (GABA-AT), and the succinic semialdehyde is subsequently oxidized to succinate by succinic semialdehyde dehydrogenase (SSADH). In Escherichia coli, there are duplicate GABA-ATs (GabT and PuuE) and duplicate SSADHs (GabD and YneI). While GabT and GabD have been well studied previously, the characterization and expression analysis of PuuE and YneI are yet to be investigated. By analyzing the amino acid profiles in cells of DeltapuuE and/or DeltagabT mutants, this study demonstrated that PuuE plays an important role in GABA metabolism in E. coli cells. The similarity of the amino acid sequences of PuuE and GabT is 67.4%, and it was biochemically demonstrated that the catalytic center of GabT is conserved as an amino acid residue important for the enzymatic activity in PuuE as Lys-247. However, the regulation of expression of PuuE is significantly different from that of GabT. PuuE is induced by the addition of putrescine to the medium and is repressed by succinate and low aeration conditions; in contrast, GabT is almost constitutive. Similarly, YneI is induced by putrescine, while GabD is not. For E. coli, PuuE is important for utilization of putrescine as a sole nitrogen source and both PuuE and YneI are important for utilization of putrescine as a sole carbon source. The results demonstrate that the PuuE-YneI pathway was a putrescine-inducible GABA degradation pathway for utilizing putrescine as a nutrient source.

  7. Sources and Input Pathways of Glyphosate and its Degradation Product AMPA

    Science.gov (United States)

    Bischofberger, S.; Hanke, I.; Wittmer, I.; Singer, H.; Stamm, C.

    2009-04-01

    Despite being the pesticide used in the largest quantities worldwide, the environmental relevance of glyphosate has been considered low for many years. Reasons for this assessment were the observations that glyphosate degrades quickly into its degradation product AMPA and that it sorbs strongly to soil particles. Hence, little losses to water bodies had been expected. Research during the last few years however contradicts this expectation. Although glyphosate is a dominant pesticide used in agriculture, recent studies on other pesticides revealed that urban sources may play a significant role for water quality. Therefore this study compares glyphosate input into streams from agricultural and urban sources. For that purpose, a catchment of an area of 25 km2 was selected. It has by about 12'000 inhabitants and about 15 % of the area is used as arable land. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a waste water treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. To analyze the concentration of glyphosate and its degradation product AMPA, the samples were derivatized with FMOC-Cl at low pH conditions and then filtrated. The solid phase extraction was conducted with Strata-X sorbent cartridge. Glyphosate and AMPA were detected with API 4000 after the chromatography with X bridge column C18. To assure the data quality, interne standards of Glyphosate and AMPA were added to every sample. The limit of detection and quantification for glyphosate and AMPA are bellow 1ng/l. We analyzed two rain events at a high resolution for all stations and several events at the outlet of the catchment. We measured high glyphosate concentration in urban and agriculture dominated catchments with up to

  8. Carbon/nitrogen-doped TiO2: New synthesis route, characterization and application for phenol degradation

    Directory of Open Access Journals (Sweden)

    Aboubakr M. Abdullah

    2016-03-01

    Full Text Available Porous nanocrystalline carbon and nitrogen (CN-doped TiO2 photocatalyst was prepared using carbon tetrachloride and polyaniline as precursors. The obtained powders were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM, Raman spectroscopy, Fourier transform infrared (FT-IR spectroscopy, and gravimetric analysis. The purpose of this work was to explore the state and location of nitrogen and carbon atoms introduced inside the TiO2 lattice and to study the exploitation of the photocatalytic activity of the CN-doped TiO2 for application in phenol degradation under UV illumination. After 30 min from the illumination onset, 64% and 57% of the phenol were degraded when the CN-doped TiO2 and TiO2 catalysts were used respectively.

  9. Modeling Aerobic Carbon Source Degradation Processes using Titrimetric Data and Combined Respirometric-Titrimetric Data: Structural and Practical Identifiability

    DEFF Research Database (Denmark)

    Gernaey, Krist; Petersen, B.; Dochain, D.;

    2002-01-01

    The structural and practical identifiability of a model for description of respirometric-titrimetric data derived from aerobic batch substrate degradation experiments of a CxHyOz carbon source with activated sludge was evaluated. The model processes needed to describe titrimetric data included...... difference in timing between pH effect and oxygen consumption. Finally, the biomass yield YH and the nitrogen content of the biomass i(xB) could be estimated from combined respirometric-titrimetric data obtained with addition of a known amount of carbon source. YH can also be estimated from r(O) data when...... considerably more for dextrose than for acetate degradation models. Noteworthy is the finding that the half-saturation substrate concentrations can be different depending on whether they are estimated from respirometric or titrimetric data. Moreover, this difference appears to be dependent on the carbon source...

  10. Carbofuran removal in continuous-photocatalytic reactor: Reactor optimization, rate-constant determination and carbofuran degradation pathway analysis.

    Science.gov (United States)

    Vishnuganth, M A; Remya, Neelancherry; Kumar, Mathava; Selvaraju, N

    2017-02-22

    Carbofuran (CBF) removal in a continuous-flow photocatalytic reactor with granular activated carbon supported titanium dioxide (GAC-TiO2) catalyst was investigated. The effects of feed flow rate, TiO2 concentration and addition of supplementary oxidants on CBF removal were investigated. The central composite design (CCD) was used to design the experiments and to estimate the effects of feed flow rate and TiO2 concentration on CBF removal. The outcome of CCD experiments demonstrated that reactor performance was influenced mainly by feed flow rate compared to TiO2 concentration. A second-order polynomial model developed based on CCD experiments fitted the experimental data with good correlation (R(2) ∼ 0.964). The addition of 1 mL min(-1) hydrogen peroxide has shown complete CBF degradation and 76% chemical oxygen demand removal under the following operating conditions of CBF ∼50 mg L(-1), TiO2 ∼5 mg L(-1) and feed flow rate ∼82.5 mL min(-1). Rate constant of the photodegradation process was also calculated by applying the kinetic data in pseudo-first-order kinetics. Four major degradation intermediates of CBF were identified using GC-MS analysis. As a whole, the reactor system and GAC-TiO2 catalyst used could be constructive in cost-effective CBF removal with no impact to receiving environment through getaway of photocatalyst.

  11. Abatement and degradation pathways of toluene in indoor air by positive corona discharge.

    Science.gov (United States)

    Van Durme, J; Dewulf, J; Sysmans, W; Leys, C; Van Langenhove, H

    2007-08-01

    Indoor air concentrations of volatile organic compounds often exceed outdoor levels by a factor of 5. There is much interest in developing new technologies in order to improve indoor air quality. In this work non-thermal plasma (DC positive corona discharge) is explored as an innovative technology for indoor air purification. An inlet gas stream of 10 l min(-1) containing 0.50+/-0.02 ppm toluene was treated by the plasma reactor in atmospheric conditions. Toluene removal proved to be achievable with a characteristic energy density epsilon(0) of 50 J l(-1). Removal efficiencies were higher for 26% relative humidity (epsilon(0)=35 J l(-1)), compared with those at increased humidities (50% relative humidity, epsilon(0)=49 J l(-1)). Reaction products such as formic acid, benzaldehyde, benzyl alcohol, 3-methyl-4-nitrophenol, 4-methyl-2-nitrophenol, 4-methyl-2-propyl furan, 5-methyl-2-nitrophenol, 4-nitrophenol, 2-methyl-4,6-dinitrophenol are identified by means of mass spectrometry. Based on these by-products a toluene degradation mechanism is proposed.

  12. Application of vibrational spectroscopy in the in vitro studies of carbon fiber-polylactic acid composite degradation.

    Science.gov (United States)

    Blazewicz, Marta; Gajewska, Maria Chomyszyn; Paluszkiewicz, Czeslawa

    1999-05-01

    Vibrational spectroscopy was used for assessment of new material for stomatology, for guided tissue regeneration (GTR) techniqe.Implants applied in the healing of periodontal defects using GTR technique have to meet stringent requirements concerning their chemical as well physical properties.At present the implants prepared from two layers membranes differing in porosity in their outer and inner layers are studied clinically. Composite plates prepared by us consist of three layers: polylactic acid film, carbon fibres coated with polylactic acid and carbon fabric.Vibrational spectroscopic studies of the material; polylactic acid- carbon fiber have made it possible to analyse chemical reactions occurring between the polymer and carbon surface. Analysis of the IR spectra of samples treated in Ringer solution allowed to describe the phenomena resulting from the composite degradation. It was shown that material biostability is related to the presence of carbon fibers.

  13. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang eTang

    2011-08-01

    Full Text Available Photosynthesis is the biological process that converts solar energy to biomass, bio-products and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and 13C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO2 assimilation pathways, acetate assimilation, carbohydrate catabolism, the TCA cycle and some key and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.

  14. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Valenzuela Jacob

    2012-06-01

    Full Text Available Abstract Background Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P and whole-genome transcripts were monitored over time via RNA-sequence determination. Results The specific Nile Red (NR fluorescence (NR fluorescence per cell increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO3- were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases. Conclusions The results indicate that P. tricornutum continued carbon dioxide reduction when population growth was arrested and different carbon-concentrating mechanisms were used dependent upon exogenous

  15. Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system.

    Science.gov (United States)

    Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing

    2013-07-01

    The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.

  16. Simplifying the complexity of a coupled carbon turnover and pesticide degradation model

    Science.gov (United States)

    Marschmann, Gianna; Erhardt, André H.; Pagel, Holger; Kügler, Philipp; Streck, Thilo

    2016-04-01

    The mechanistic one-dimensional model PECCAD (PEsticide degradation Coupled to CArbon turnover in the Detritusphere; Pagel et al. 2014, Biogeochemistry 117, 185-204) has been developed as a tool to elucidate regulation mechanisms of pesticide degradation in soil. A feature of this model is that it integrates functional traits of microorganisms, identifiable by molecular tools, and physicochemical processes such as transport and sorption that control substrate availability. Predicting the behavior of microbially active interfaces demands a fundamental understanding of factors controlling their dynamics. Concepts from dynamical systems theory allow us to study general properties of the model such as its qualitative behavior, intrinsic timescales and dynamic stability: Using a Latin hypercube method we sampled the parameter space for physically realistic steady states of the PECCAD ODE system and set up a numerical continuation and bifurcation problem with the open-source toolbox MatCont in order to obtain a complete classification of the dynamical system's behaviour. Bifurcation analysis reveals an equilibrium state of the system entirely controlled by fungal kinetic parameters. The equilibrium is generally unstable in response to small perturbations except for a small band in parameter space where the pesticide pool is stable. Time scale separation is a phenomenon that occurs in almost every complex open physical system. Motivated by the notion of "initial-stage" and "late-stage" decomposers and the concept of r-, K- or L-selected microbial life strategies, we test the applicability of geometric singular perturbation theory to identify fast and slow time scales of PECCAD. Revealing a generic fast-slow structure would greatly simplify the analysis of complex models of organic matter turnover by reducing the number of unknowns and parameters and providing a systematic mathematical framework for studying their properties.

  17. Carbon and hydrogen isotopic composition and generation pathway of biogenic gas in China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; WANG Xiaofeng; XU Yin; SHI Baoguang; XU Yongchang

    2009-01-01

    The carbon and hydrogen isotopic composition of biogenic gas is of great importance for the study of its generation pathway and reservoiring characteristics. In this paper, the formation pathways and reservoiring characteristics of biogenic gas reservoirs in China are described in terms of the carbon and hydrogen isotopic compositions of 31 gas samples from 10 biogenic gas reservoirs. The study shows that the hydrogen isotopic compositions of these biogenic gas reservoirs can be divided into three intervals:δDCH4>-200‰,-250‰<δDCH4<-200‰ and δDCH4<-250‰. The forerunners believed that the main generation pathway of biogenic gas under the condition of continental fresh water is acetic fermentation. Our research results showed that the generation pathway of biogenic gas under the condition of marine facies is typical CO2- reduction, the biogenic gas has heavy hydrogen isotopic composition: its δDCH4 values are higher than -200‰; that the biogenic gas under the condition of continental facies also was generated by the same way, but its hydrogen isotopic composition is lighter than that of biogenetic gas generated under typical marine facies condition: -250‰<δDCH4<-200‰, the δDCH4 values may be related to the salinity of the water medium in ancient lakes. From the relevant data of the Qaidam Basin, it can be seen that the hydrogen isotopic composition of biogenic methane has the same variation trend with increasing salinity of water medium. There are biogenic gas reservoirs formed in transitional regions under the condition of continental facies. These gas reservoirs resulted from both CO2- reduction and acetic fermentation, the formation of which may be related to the non-variant salinity of ancient water medium and the relatively high geothermal gradient, as is the case encountered in the Baoshan Basin. The biogenic gas generating in these regions has light hydrogen isotopic composition: δDCH4<-250‰, and relatively heavy carbon isotopic

  18. Urothelial endocytic vesicle recycling and lysosomal degradative pathway regulated by lipid membrane composition.

    Science.gov (United States)

    Grasso, E J; Calderón, R O

    2013-02-01

    The urothelium, a specialized epithelium that covers the mucosa cell surface of the urinary bladder, undergoes dramatic morphological changes during the micturition cycle that involve a membrane apical traffic. This traffic was first described as a lysosomal pathway, in addition to the known endocytosis/exocytosis membrane recycling. In an attempt to understand the role of membrane lipid composition in those effects, we previously described the lipid-dependent leakage of the endocytosed vesicle content. In this work, we demonstrated clear differences in the traffic of both the fluid probe and the membrane-bound probe in urothelial umbrella cells by using spectrofluorometry and/or confocal and epifluorescence microscopy. Different membrane lipid compositions were established by using three diet formulae enriched in oleic acid, linoleic acid and a commercial formula. Between three and five animals for each dietary treatment were used for each analysis. The decreased endocytosis of both fluid and membrane-bound probes (approximately 32 and 49 % lower, respectively) in oleic acid-derived umbrella cells was concomitant with an increased recycling (approximately 4.0 and 3.7 times, respectively) and diminished sorting to the lysosome (approximately 23 and 37 %, respectively) when compared with the control umbrella cells. The higher intravesicular pH and the impairment of the lysosomal pathway of oleic acid diet-derived vesicles compared to linoleic acid diet-derived vesicles and control diet-derived vesicles correlate with our findings of a lower V-ATPase activity previously reported. We integrated the results obtained in the present and previous work to determine the sorting of endocytosed material (fluid and membrane-bound probes) into the different cell compartments. Finally, the weighted average effect of the individual alterations on the intracellular distribution was evaluated. The results shown in this work add evidences for the modulatory role of the membrane

  19. Effects of carbon amendment on in situ atrazine degradation and total microbial biomass.

    Science.gov (United States)

    Ngigi, Anastasiah N; Getenga, Zachary M; Dörfler, Ulrike; Boga, Hamadi I; Kuria, Benson; Ndalut, Paul; Schroll, Reiner

    2013-01-01

    This study elucidates the effects of carbon amendment on metabolic degradation of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diamine) and total microbial biomass in soil. Degradation of (14)C-ring-labelled atrazine was monitored in laboratory incubations of soils supplemented with 0, 10, 100 and 1000 μg g(-1) sucrose concentrations. An experiment to determine the effect of carbon amendment on total microbial biomass and soil respiration was carried out with different concentrations of sucrose and non-labelled atrazine. The soils were incubated at a constant temperature and constant soil moisture at water potential of -15 kPa and a soil density of 1.3 g cm(-3). Mineralization of (14)C-ring-labelled atrazine was monitored continuously over a period of 59 d in the first experiment. The CO(2) production was monitored for 62 d in the second experiment and microbial biomass determined at the end of the incubation period. The addition of 1000 μg g(-1) sucrose reduced atrazine mineralization to 43.5% compared to 51.7% of the applied amount for the treatment without sucrose. The addition of 1000 μg g(-1) sucrose modified the transformation products to 1.08 μg g(-1) deisopropylatrazine (DIA), 0.32 μg g(-1) desethylatrazine (DEA) and 0.18 μg g(-1) deisopropyl-2-hydroxyatrazine (OH-DIA). Treatment without sucrose resulted in formation of 0.64 μg g(-1) hydroxyatrazine (HA), 0.28 μg g(-1) DIA and 0.20 μg g(-1) OH-DIA. Atrazine dealkylation was enhanced in treatments with 100 and 1000 μg g(-1) of sucrose added. HA metabolite was formed in the control (no sucrose) and in the presence of 10 μg g(-1) of sucrose, whereas DEA was only detected in treatment with 1000 μg g(-1) sucrose. Results indicate that total microbial biomass increased significantly (P < 0.001) with the addition of 1000 μg g(-1) sucrose.

  20. Cx31 is assembled and trafficked to cell surface by ER-Golgi pathway and degraded by proteasomal or lysosomal pathways

    Institute of Scientific and Technical Information of China (English)

    Li Qiang HE; Zhi Gao LONG; He Ping DAI; Kun XIA; Jia Hui XIA; Zhuo Hua ZHANG; Fang CAI; Yu LIU; Mu Jun LIU; Zhi Ping TAN; Qian PAN; Fai Yan FANG; De Sheng LIANG; Ling Qian WU

    2005-01-01

    Gap junctions, consisting of connexins, allow the exchange of small molecules (<1 kD) between adjacent cells, thus providing a mechanism for synchronizing the responses of groups of cells to environmental stimuli. Connexin 31 is a member of the connexin family. Mutations on connexin 31 are associated with erythrokeratodermia variabilis, hearing impairment and peripheral neuropathy. However, the pathological mechanism for connexin 31 mutants in these diseases are still unknown. In this study, we analyzed the assembly, trafficking and metabolism of connexin 31 in HeLa cells stably expressing connexin 31. Calcein transfer assay showed that calcein transfer was inhibited when cells were treated with Brefeldin A or cytochalasin D, but not when treated with nocodazole or α-glycyrrhetinic acid, suggesting that Golgi apparatus and actin filaments, but not microtubules, are crucial to the trafficking and assembly of connexin 31, as well as the formation of gap junction intercellular communication by connexin 31. Additionally, α-glycyrrhetinic acid did not effectively inhibit gap junctional intercellular communication formed by connexin 31. Pulse-chase assay revealed that connexin 31 had a half-life of about 6 h. Moreover, Western blotting and fluorescent staining demonstrated that in HeLa cells stably expressing connexin 31, the amount of connexin 31 was significantly increased after these cells were treated with proteasomal or lysosomal inhibitors. These findings indicate that connexin 31 was rapidly renewed,and possibly degraded by both proteasomal and lysosomal pathways.

  1. Bacterial degradation of fungicide captan.

    Science.gov (United States)

    Megadi, Veena B; Tallur, Preeti N; Mulla, Sikandar I; Ninnekar, Harichandra Z

    2010-12-22

    The phthalimide fungicide captan has been widely used to control plant pathogenic fungi. A strain of Bacillus circulans utilized the fungicide captan as sole source of carbon and energy. The organism degraded captan by a pathway involving its initial hydrolysis to yield cis-1,2,3,6-tetrahydrophthalimide, a compound without fungicidal activity. The formation of this compound was confirmed by HPLC, IR, NMR, and mass spectral analysis. The results also revealed that cis-1,2,3,6-tetrahydrophthalimide was further degraded to o-phthalic acid by a protocatechuate pathway. These findings indicated that there was a complete mineralization of fungicide captan by B. circulans.

  2. Microbial degradation of fluorinated drugs: biochemical pathways, impacts on the environment and potential applications.

    Science.gov (United States)

    Murphy, Cormac D

    2016-03-01

    Since the discovery over 60 years ago of fluorocortisone's biological properties (9-α-Fluoro derivatives of cortisone and hydrocortisone; Fried J and Sabo EF, J Am Chem Soc 76: 1455-1456, 1954), the number of fluorinated drugs has steadily increased. With the improvement in synthetic methodologies, this trend is likely to continue and will lead to the introduction of new fluorinated substituents into pharmaceutical compounds. Although the biotransformation of organofluorine compounds by microorganisms has been well studied, specific investigations on fluorinated drugs are relatively few, despite the increase in the number and variety of fluorinated drugs that are available. The strength of the carbon-fluorine bond conveys stability to fluorinated drugs; thus, they are likely to be recalcitrant in the environment or may be partially metabolized to a more toxic metabolite. This review examines the research done on microbial biotransformation and biodegradation of fluorinated drugs and highlights the importance of understanding how microorganisms interact with this class of compound from environmental, clinical and biotechnological perspectives.

  3. Sonochemical Degradation of Reactive Black 5 with a Composite Catalyst of TiO2/Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Cho, Eunju; Choi, Jongbok; Lee, Yonghyeon; Park, Jeong Min; Khim, Jeehyeong

    2013-07-01

    In the sonocatalytic process, composites of TiO2-carbon were used because carbon provides more adsorption sites and acts like an electron sink to prevent the recombination of an electron/hole. Therefore, in the present study, the characteristics of a TiO2/single-walled carbon nanotubes catalyst (TiO2/SWCNTs) have been investigated, and the optimal weight ratio of SWCNTs and the dose for degradation of reactive black 5 (RB5) were also evaluated. TiO2/SWCNT composite was characterized using Brunauer-Emmett-Teller analysis, scanning electron microscopy, energy-dispersive X-ray diffraction microanalysis and spectra, and X-ray diffraction patterns. The degradation rate constants of RB5 with the ratio of SWCNTs were found to depend on the adsorption phenomenon of a surface catalyst, light absorbance, and the recombination of electrons and holes. As a result, the optimal ratio of carbon in the sono-TiO2/SWCNTs process for degradation of RB5 was TiO2:SWCNTs= 200:1. Additionally, the optimal dose of the catalyst was 0.5 g/L.

  4. Effective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD removal rate increased with increasing residence time while it decreased with increasing the initial concentration of tetracycline. Moreover, pH had little effect on the removal of tetracycline, and the electrocatalytic membrane could effectively remove tetracycline with initial concentration of 50 mg·L−1 (pH, 3.8–9.6. The 100% tetracycline and 87.8% COD removal rate could be achieved under the following operating conditions: tetracycline concentration of 50 mg·L−1, current density of 1 mA·cm−2, temperature of 25 °C, and residence time of 4.4 min. This study provides a new and feasible method for removing antibiotics in water with the synergistic effect of electrocatalytic oxidation and membrane separation. It is evident that there will be a broad market for the application of electrocatalytic membrane in the field of antibiotic wastewater treatment.

  5. Ag nanoparticles loaded on porous graphitic carbon nitride with enhanced photocatalytic activity for degradation of phenol

    Science.gov (United States)

    Han, Zhenwei; Wang, Nan; Fan, Hai; Ai, Shiyun

    2017-03-01

    Highly efficient photocatalyst of visible-light-driven Ag nanoparticles loaded on porous graphitic carbon nitride (g-C3N4) was prepared by the reduction of Ag ions on porous g-C3N4. The obtained Ag/porous g-C3N4 composite products were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflection spectra (DRS), thermal gravimetric analysis (TGA). The results demonstrated that a homogeneous distribution of Ag NPs of 10 nm was attached onto the surface of the porous g-C3N4. The prepared Ag/porous g-C3N4 samples were applied for catalyzing the degradation of phenol in water under visible light irradiation. Porous g-C3N4 demonstrated an excellent support for the formation and dispersion of small uniform Ag NPs. When the weight percentage of Ag reaches 5%, the nanohybrid exhibits superior photocatalytic activities compared to bulk g-C3N4, porous g-C3N4, and 2% Ag/porous g-C3N4 hybrids. The enhanced photocatalytic performance is due to the synergic effect between Ag and porous g-C3N4, which suppressed the recombination of photogenerated electron-hole pairs.

  6. Mobility and degradation of trinitrotoluene/metabolites in soil columns: effect of soil organic carbon content.

    Science.gov (United States)

    Singh, Neera; Hennecke, Dieter; Hoerner, Jennifer; Koerdel, Werner; Schaeffer, Andreas

    2008-06-01

    There has been increasing interest in enhancing natural attenuation of munitions-contaminated soils. Present study reports the effect of increasing soil organic matter content on fate and mobility of trinitrotoluene (TNT) and metabolites in soil columns. This study was performed using 30-cm-long columns containing a top 5 cm of contaminated soil as a source layer and an uncontaminated soil (25 cm) adjusted to 0.5, 1.0, 1.5 and 3.0% organic carbon (OC) content using compost. Contaminated soil layer was fortified with uniformly ring-labeled (14)C-trinitrotoluene (TNT) or 2,4-dinitrotoluene (DNT); in total there were 8 treatments. Columns were leached with synthetic rain water under unsaturated flow conditions in downside up direction. There was significant increase in the retention of both (14)C-TNT and (14)C-DNT in soils with increasing soil OC content and in 3.0% soil OC content column degradation of TNT and metabolites from contaminated soil was significantly increased and resulted in greater soil-bound residues. Formation of monoamino-dinitrotoluene (ADNTs), diamino-mononitrotoluene (DANTs) and monoamino-mononitrotoluene (ANTs) metabolites was greatly enhanced with increase in OC content of soils. Study suggests that increasing OC content of contaminated soil to 3.0% significantly enhanced the reduction of nitroaromatics to more polar amine metabolites and the formation of soil-bound residues.

  7. Metagenomic Analysis of Hot Springs in Central India Reveals Hydrocarbon Degrading Thermophiles and Pathways Essential for Survival in Extreme Environments

    Science.gov (United States)

    Saxena, Rituja; Dhakan, Darshan B.; Mittal, Parul; Waiker, Prashant; Chowdhury, Anirban; Ghatak, Arundhuti; Sharma, Vineet K.

    2017-01-01

    Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5–55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5–98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together

  8. Degradation of {gamma}-HCH spiked soil using stabilized Pd/Fe{sup 0} bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ritu [Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Lucknow 226 025, UP (India); Misra, Virendra, E-mail: virendra_misra2001@yahoo.co.in [Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Mudiam, Mohana Krishna Reddy [Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Chauhan, Lalit Kumar Singh [Petroleum Toxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Singh, Rana Pratap [Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Lucknow 226 025, UP (India)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer This study explores the potential of CMC-Pd/nFe{sup 0} to degrade {gamma}-HCH in spiked soil. Black-Right-Pointing-Pointer Sorption-desorption characteristics and partitioning of {gamma}-HCH is investigated. Black-Right-Pointing-Pointer Three degradation pathways has been proposed and discussed. Black-Right-Pointing-Pointer {gamma}-HCH degradation mechanism and kinetics is elucidated. Black-Right-Pointing-Pointer Activation energy reveals that {gamma}-HCH degradation is a surface mediated reaction. - Abstract: This study investigates the degradation pathway of gamma-hexachlorocyclohexane ({gamma}-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe{sup 0} bimetallic nanoparticles (CMC-Pd/nFe{sup 0}). GC-MS analysis of {gamma}-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of {gamma}-HCH has been proposed. Batch studies showed complete {gamma}-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe{sup 0} within 6 h of incubation. The surface area normalized rate constant (k{sub SA}) was found to be 7.6 Multiplication-Sign 10{sup -2} L min{sup -1} m{sup -2}. CMC-Pd/nFe{sup 0} displayed {approx}7-fold greater efficiency for {gamma}-HCH degradation in comparison to Fe{sup 0} nanoparticles (nFe{sup 0}), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe{sup 0} loading and reaction temperature facilitates {gamma}-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial {gamma}-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that {gamma}-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of {gamma}-HCH contaminated soil using

  9. Isolation of Alcaligenes sp strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols

    NARCIS (Netherlands)

    Krooneman, J; Wieringa, EBA; Moore, ERB; Gerritse, J; Prins, RA; Gottschal, JC

    1996-01-01

    Isolations of 3-chlorobenzoate (3CBA)-degrading aerobic bacteria under reduced O-2, partial pressures yielded organisms which metabolized 3CBA via the gentisate or the protocatechuate pathway rather than via the catechol route. The 3CBA metabolism of one of these isolates, L6, which,vas identified a

  10. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    PAHs. • Hydroxylated PAHs intrinsically photodegrade fast in sunlit surface waters. • Reaction types and transformation pathways of 9-Hydroxyfluorene were clarified. • Photolysis kinetics was affected by multivariate effects of main water constituents. • The photomodified toxicity of 9-Hydroxyfluorene was examined using Vibrio fischeri.

  11. Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator

    Directory of Open Access Journals (Sweden)

    Reiss Monika

    2008-11-01

    Full Text Available Abstract Background Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol. Results A 20.2 kb DNA fragment was isolated as a result of the DNA walk. Fifteen open reading frames residing on a low-copy megaplasmid were identified. Eleven genes are co-transcribed in one polycistronic mRNA as shown by reverse transcription-PCR. Ten genes encode proteins, that are directly linked with the meta-cleavage pathway. The deduced amino acid sequences display similarities to a two-component phenol hydroxylase, a catechol 2,3-dioxygenase, a 4-oxalocrotonate tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decarboxylase, a 4-hydroxy-2-oxovalerate aldolase, an acetaldehyde dehydrogenase, a plant-type ferredoxin involved in the reactivation of extradiol dioxygenases and a novel regulatory protein. The only enzymes missing for the complete mineralization of phenol are a 2-hydroxymuconic acid-6-semialdehyde hydrolase and/or 2-hydroxymuconic acid-6-semialdehyde dehydrogenase. Conclusion Research on the bacterial degradation of aromatic compounds on a sub-cellular level has been more intensively studied in gram-negative organisms than in gram-positive bacteria. Especially regulatory mechanisms in gram-positive (thermophilic prokaryotes remain mostly unknown. We isolated the first complete sequence of an operon from a thermophilic bacterium encoding the meta-pathway genes and analyzed the genetic organization. Moreover, the first transcriptional regulator of the phenol metabolism in gram-positive bacteria was identified. This is a first step to elucidate

  12. Biological degradation of 4-chlorobenzoic acid by a PCB-metabolizing bacterium through a pathway not involving (chloro)catechol.

    Science.gov (United States)

    Adebusoye, Sunday A

    2017-02-01

    Cupriavidus sp. strain SK-3, previously isolated on polychlorinated biphenyl mixtures, was found to aerobically utilize a wide spectrum of substituted aromatic compounds including 4-fluoro-, 4-chloro- and 4-bromobenzoic acids as a sole carbon and energy source. Other chlorobenzoic acid (CBA) congeners such as 2-, 3-, 2,3-, 2,5-, 3,4- and 3,5-CBA were all rapidly transformed to respective chlorocatechols (CCs). Under aerobic conditions, strain SK-3 grew readily on 4-CBA to a maximum concentration of 5 mM above which growth became impaired and yielded no biomass. Growth lagged significantly at concentrations above 3 mM, however chloride elimination was stoichiometric and generally mirrored growth and substrate consumption in all incubations. Experiments with resting cells, cell-free extracts and analysis of metabolite pools suggest that 4-CBA was metabolized in a reaction exclusively involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoic acid, which was then hydroxylated to protocatechuic acid (PCA) and subsequently metabolized via the β-ketoadipate pathway. When strain SK-3 was grown on 4-CBA, there was gratuitous induction of the catechol-1,2-dioxygenase and gentisate-1,2-dioxygenase pathways, even if both were not involved in the metabolism of the acid. While activities of the modified ortho- and meta-cleavage pathways were not detectable in all extracts, activity of PCA-3,4-dioxygenase was over ten-times higher than those of catechol-1,2- and gentisate-1,2-dioxygenases. Therefore, the only reason other congeners were not utilized for growth was the accumulation of CCs, suggesting a narrow spectrum of the activity of enzymes downstream of benzoate-1,2-dioxygenase, which exhibited affinity for a number of substituted analogs, and that the metabolic bottlenecks are either CCs or catabolites of the modified ortho-cleavage metabolic route.

  13. Degradation of carbonyl sulfide by Actinomycetes and detection of clade D of β-class carbonic anhydrase.

    Science.gov (United States)

    Ogawa, Takahiro; Kato, Hiromi; Higashide, Mitsuru; Nishimiya, Mami; Katayama, Yoko

    2016-09-25

    Carbonyl sulfide (COS) is an atmospheric trace gas and one of the sources of stratospheric aerosol contributing to climate change. Although one of the major sinks of COS is soil, the distribution of COS degradation ability among bacteria remains unclear. Seventeen out of 20 named bacteria belonging to Actinomycetales had COS degradation activity at mole fractions of 30 parts per million by volume (ppmv) COS. Dietzia maris NBRC 15801(T) and Mycobacterium sp. THI405 had the activity comparable to a chemolithoautotroph Thiobacillus thioparus THI115 that degrade COS by COS hydrolase for energy production. Among 12 bacteria manifesting rapid degradation at 30 ppmv COS, Dietzia maris NBRC 15801(T) and Streptomyces ambofaciens NBRC 12836(T) degraded ambient COS (∼500 parts per trillion by volume). Geodermatophilus obscurus NBRC 13315(T) and Amycolatopsis orientalis NBRC 12806(T) increased COS concentrations. Moreover, six of eight COS degrading bacteria isolated from soils had partial nucleotide sequences similar to that of the gene encoding clade D of β-class carbonic anhydrase, which included COS hydrolase. These results indicate the potential importance of Actinomycetes in the role of soils as sinks of atmospheric COS.

  14. Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects.

    Science.gov (United States)

    Kampf, C J; Filippi, A; Zuth, C; Hoffmann, T; Opatz, T

    2016-07-21

    Dicarbonyls are known to be important precursors of so-called atmospheric brown carbon, significantly affecting aerosol optical properties and radiative forcing. In this systematic study we report the formation of light-absorbing nitrogen containing compounds from simple 1,2-, 1,3-, 1,4-, and 1,5-dicarbonyl + amine reactions. A combination of spectrophotometric and mass spectrometric techniques was used to characterize reaction products in solutions mimicking atmospheric particulates. Experiments with individual dicarbonyls and dicarbonyl mixtures in ammonium sulfate and glycine solutions demonstrate that nitrogen heterocycles are common structural motifs of brown carbon chromophores formed in such reaction systems. 1,4- and 1,5-dicarbonyl reaction systems, which were used as surrogates for terpene ozonolysis products, showed rapid formation of light-absorbing material and products with absorbance maxima at ∼450 nm. Synergistic effects on absorbance properties were observed in mixed (di-)carbonyl experiments, as indicated by the formation of a strong absorber in ammonium sulfate solutions containing acetaldehyde and acetylacetone. This cross-reaction oligomer shows an absorbance maximum at 385 nm, relevant for the actinic flux region of the atmosphere. This study demonstrates the complexity of secondary brown carbon formation via the imine pathway and highlights that cross-reactions with synergistic effects have to be considered an important pathway for atmospheric BrC formation.

  15. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    Energy Technology Data Exchange (ETDEWEB)

    Mosedale, Merrie [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Wu, Hong [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Kurtz, C. Lisa [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Schmidt, Stephen P. [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Adkins, Karissa, E-mail: Karissa.Adkins@pfizer.com [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Harrill, Alison H. [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); University of Arkansas for Medical Sciences, Little Rock, AR72205 (United States)

    2014-10-01

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  16. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  17. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light.

    Science.gov (United States)

    Kusakabe, Tamami; Tatsuke, Tsuneyuki; Tsuruno, Keigo; Hirokawa, Yasutaka; Atsumi, Shota; Liao, James C; Hanai, Taizo

    2013-11-01

    Production of alternate fuels or chemicals directly from solar energy and carbon dioxide using engineered cyanobacteria is an attractive method to reduce petroleum dependency and minimize carbon emissions. Here, we constructed a synthetic pathway composed of acetyl-CoA acetyl transferase (encoded by thl), acetoacetyl-CoA transferase (encoded by atoAD), acetoacetate decarboxylase (encoded by adc) and secondary alcohol dehydrogenase (encoded by adh) in Synechococcus elongatus strain PCC 7942 to produce isopropanol. The enzyme-coding genes, heterogeneously originating from Clostridium acetobutylicum ATCC 824 (thl and adc), Escherichia coli K-12 MG1655 (atoAD) and Clostridium beijerinckii (adh), were integrated into the S. elongatus genome. Under the optimized production conditions, the engineered cyanobacteria produced 26.5 mg/L of isopropanol after 9 days.

  18. Thermal and catalytic degradation of polyethylene wastes in the presence of silica gel, 5A molecular sieve and activated carbon.

    Science.gov (United States)

    González, Yovana Sander; Costa, Carlos; Márquez, M Carmen; Ramos, Pedro

    2011-03-15

    A comparative study of thermal and catalytic degradation of polyethylene wastes has been carried out with the aim of obtaining chemical compounds with potential use in the chemical industry and the energy production. Polyethylene wastes were obtained from polyethylene bags used in supermarkets. Catalysts utilized in the study were silica gel, 5A molecular sieve and activated carbon. The pyrolysis was performed in a batch reactor at 450, 500 and 700 °C during 2h for each catalyst. The ratio catalyst/PE was 10% w/w and the solid and gaseous products were analyzed by gas chromatography and mass spectrometry. The optimum operation temperature and the influence of the three catalysts are discussed with regards to the products formed. The best temperature for degradation with silica gel and activated carbon as catalysts was 450 °C and with 5A molecular sieve was 700 °C. Degradation products of PE (solid fraction and gas fraction) are depending on temperature and catalyst used. External surface and structure of catalysts were visualized by Scanning Electron Microscopy (SEM) and the contribution on product distribution is commented. All products from different degradations could be used as feed stocks in chemical industry or in energy production based on the value of heat of combustion for solid fraction (45000 J/g), similar to the heat of combustion of commercial fuels.

  19. Experimental Priapism is Associated with Increased Oxidative Stress and Activation of Protein Degradation Pathways in Corporal Tissue

    Science.gov (United States)

    Kanika, Nirmala D.; Melman, Arnold; Davies, Kelvin P.

    2010-01-01

    Priapism is a debilitating disease for which there is at present no clinically accepted pharmacologic intervention. It has been estimated that priapism lasting more than 24 hours in patients is associated with a 44–90% rate of erectile dysfunction (ED). In this investigation we determined in two animal models of priapism (opiorpin-induced priapism in the rat and priapism in a mouse model of sickle cell disease) if there is evidence for an increase in markers of oxidative stress in corporal tissue. In both animal models we demonstrate that priapism results in increased levels of lipid peroxidation, glutathione S-transferase activity, and oxidatively damaged proteins in corporal tissue. Using Western blot analysis we demonstrated there is up regulation of the ubiquitination ligase proteins, Nedd-4 and Mdm-2, and the lysososomal autophage protein, LC3. The anti-apoptotic protein, Bcl-2, was also up regulated. Overall, we demonstrate that priapism is associated with increased oxidative stress in corporal tissue and the activation of protein degradation pathways. Since oxidative stress is known to mediate the development of ED resulting from several etiologies (for example ED resulting from diabetes and aging) we suggest that damage to erectile tissue resulting from priapism might be prevented by treatments targeting oxidative stress. PMID:21085184

  20. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kajiho

    Full Text Available The Rab family of small guanosine triphosphatases (GTPases plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs. Ras and Rab interactor (or Ras interaction/interference-like (RINL, which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM domain-containing (Anks protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.

  1. Degradation of ethyl paraben by heat-activated persulfate oxidation: statistical evaluation of operating factors and transformation pathways.

    Science.gov (United States)

    Frontistis, Zacharias; Antonopoulou, Maria; Konstantinou, Ioannis; Mantzavinos, Dionissios

    2017-01-01

    A factorial design methodology was implemented to evaluate the importance of ethyl paraben (EP) concentration (500-1500 μg/L), sodium persulfate concentration (400-500 mg/L), temperature (40-60 °C), reaction time (2-30 min), water matrix (pure water or secondary treated wastewater), and initial solution pH (3-9) on EP removal by heat-activated persulfate oxidation. All individual effects, except the solution pH, were statistically significant and so were the second-order interactions of ethyl paraben concentration with temperature or the reaction time. The influence of the water matrix was crucial, and the efficiency of the process was lower in secondary treated wastewater due to the presence of natural organic matter and inorganic salts that compete with ethyl paraben for the reactive oxygen species. Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) was employed to identify major transformation by-products (TBPs); 13 compounds were detected as TBPs of EP. Degradation occurred through (i) hydroxylation, (ii) dealkylation, and (iii) oligomerization reactions leading to TBPs with ether and biphenyl structures. Oligomerization reactions were found to be the dominant pathway during the first steps of the reaction. The toxicity of 500 μg/L EP in secondary treated wastewater was tested against marine bacteria Vibrio fischeri; toxicity increased during the first minutes due to the production of several TBPs, but it consistently decreased thereafter.

  2. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode

    Institute of Scientific and Technical Information of China (English)

    Sorina Motoc; Adriana Remes; Aniela Pop; Florica Manea; Joop Schoonman

    2013-01-01

    This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes,i.e.,multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes.The composite electrodes were obtained using two-roll mill procedure.SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix.AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area.The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry,differential-pulsed voltammetry,square-wave voltammetry and chronoamperometry.The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs.Ag/AgCl,and IBP concentration was determined comparatively by differential-pulsed voltammetry,under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode.AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.

  3. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration.

    Science.gov (United States)

    Guo, He; Wang, Huijuan; Wu, Qiangshun; Zhou, Guangshun; Yi, Chengwu

    2016-09-01

    The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value.

  4. Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway.

    Science.gov (United States)

    Laquitaine, L; Durimel, A; de Alencastro, L F; Jean-Marius, C; Gros, O; Gaspard, S

    2016-01-01

    Banana has been a main agricultural product in the French West Indies (Guadeloupe and Martinique) since the 1960s. This crop requires the intensive use of pesticides to prevent attacks by insect pests. Chlorinated pesticides, such as hexachlorocyclohexane (HCH), chlordecone and dieldrin, were used until the beginning of the 1990s, resulting in a generalized diffuse contamination of the soil and water in the areas of banana production, hence the need to develop solutions for cleanup of the polluted sites. The aims of this work were (i) to assess lindane degradation in soil slurry microcosms treated with lindane at 10 mg/L and (ii) to detect the catabolic genes involved in the HCH degradation pathway. The soil slurry microcosm system showed a 40% lindane degradation efficiency at the end of a 30-day experiment. Lower lindane removal was also detected in the abiotic controls, probably caused by pesticide adsorption to soil particles. Indeed, the lindane concentration decreased from 6000 to 1330 ng/mL and from 800 to 340 ng/mL for the biotic and abiotic soils, respectively. Nevertheless, some of the genes involved in the HCH degradation pathway were amplified by polymerase chain reaction (PCR) from crude deoxyribonucleic acid (DNA) extracted from the Guadeloupe agricultural soil, suggesting that HCH degradation is probably mediated by bacteria closely related to the family Sphingomonadaceae.

  5. [Study on degradation of polycyclic aromatic hydrocarbons (PAHs) with different additional carbon sources in aged contaminated soil].

    Science.gov (United States)

    Yin, Chun-Qin; Jiang, Xin; Wang, Fang; Wang, Cong-Ying

    2012-02-01

    This study was conducted with different additional carbon sources (such as: glucose, DL-malic acid, citrate, urea and ammonium acetate) to elucidate the degradation of polycyclic aromatic hydrocarbons (PAHs) in aged contaminated soil under an indoor simulation experiment. The results showed that the quantity of CO2 emission in different additional carbon sources treatments was obviously much more than that of check treatment in the first week, and the quantity of CO2 emission in DL-malic acid treatment was the largest. The average CO2 production decreased in an order urea > glucose approximately citrate approximately DL-malic acid approximately ammonium acetate > check. Meanwhile, the amount of volatized PAHs in applied carbon sources treatments was significantly less than that in check treatment. The amount of three volatized PAHs decreased in an order phenanthrene > fluoranthene > benzo(b)fluoranthene. Compared with the check treatment, the average degradation rates of the three PAHs were significantly augmented in the supplied carbon sources treatments, in which rates of the three PAHs were much higher in DL-malic acid and urea treatments than those in other treatments. The largest proportion of residual was benzo(b)fluoranthene (from 72% to 81%) among three PAHs compounds, followed by fluoranthene (from 53% to 70% ) and phenanthrene (from 27% to 44%).

  6. A central role for carbon-overflow pathways in the modulation of bacterial cell death.

    Directory of Open Access Journals (Sweden)

    Vinai Chittezham Thomas

    2014-06-01

    Full Text Available Similar to developmental programs in eukaryotes, the death of a subpopulation of cells is thought to benefit bacterial biofilm development. However mechanisms that mediate a tight control over cell death are not clearly understood at the population level. Here we reveal that CidR dependent pyruvate oxidase (CidC and α-acetolactate synthase/decarboxylase (AlsSD overflow metabolic pathways, which are active during staphylococcal biofilm development, modulate cell death to achieve optimal biofilm biomass. Whereas acetate derived from CidC activity potentiates cell death in cells by a mechanism dependent on intracellular acidification and respiratory inhibition, AlsSD activity effectively counters CidC action by diverting carbon flux towards neutral rather than acidic byproducts and consuming intracellular protons in the process. Furthermore, the physiological features that accompany metabolic activation of cell death bears remarkable similarities to hallmarks of eukaryotic programmed cell death, including the generation of reactive oxygen species and DNA damage. Finally, we demonstrate that the metabolic modulation of cell death not only affects biofilm development but also biofilm-dependent disease outcomes. Given the ubiquity of such carbon overflow pathways in diverse bacterial species, we propose that the metabolic control of cell death may be a fundamental feature of prokaryotic development.

  7. Genetic associations of type 2 diabetes with islet amyloid polypeptide processing and degrading pathways in asian populations.

    Directory of Open Access Journals (Sweden)

    Vincent Kwok Lim Lam

    Full Text Available Type 2 diabetes (T2D is a complex disease characterized by beta cell dysfunctions. Islet amyloid polypeptide (IAPP is highly conserved and co-secreted with insulin with over 40% of autopsy cases of T2D showing islet amyloid formation due to IAPP aggregation. Dysregulation in IAPP processing, stabilization and degradation can cause excessive oligomerization with beta cell toxicity. Previous studies examining genetic associations of pathways implicated in IAPP metabolism have yielded conflicting results due to small sample size, insufficient interrogation of gene structure and gene-gene interactions. In this multi-staged study, we screened 89 tag single nucleotide polymorphisms (SNPs in 6 candidate genes implicated in IAPP metabolism and tested for independent and joint associations with T2D and beta cell dysfunctions. Positive signals in the stage-1 were confirmed by de novo and in silico analysis in a multi-centre unrelated case-control cohort. We examined the association of significant SNPs with quantitative traits in a subset of controls and performed bioinformatics and relevant functional analyses. Amongst the tag SNPs, rs1583645 in carboxypeptidase E (CPE and rs6583813 in insulin degrading enzyme (IDE were associated with 1.09 to 1.28 fold increased risk of T2D (P Meta = 9.4×10(-3 and 0.02 respectively in a meta-analysis of East Asians. Using genetic risk scores (GRS with each risk variant scoring 1, subjects with GRS≥3 (8.2% of the cohort had 56% higher risk of T2D than those with GRS = 0 (P = 0.01. In a subcohort of control subjects, plasma IAPP increased and beta cell function index declined with GRS (P = 0.008 and 0.03 respectively. Bioinformatics and functional analyses of CPE rs1583645 predicted regulatory elements for chromatin modification and transcription factors, suggesting differential DNA-protein interactions and gene expression. Taken together, these results support the importance of dysregulation of IAPP

  8. Kenya's Climate Change Action Plan. Low Carbon Climate Resilient Development Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, D.; Sawyer, D.; Stiebert, S.; McFatridge, S. [International Institute for Sustainable Development IISD, Winnipeg, Manitoba (Canada); Wuertenberger, L.; Van Tilburg, X.; Hekkenberg, M. [Energy research Centre of the Netherlands ECN, Policy Studies, Amsterdam (Netherlands); Owino, T.; Battye, W. [ClimateCare, Nairobi (Kenya); Mutia, T. [Regional Institute for Social Enterprise Kenya RISE, Nairobi (Kenya); Olum, P. [Climate Change Consultant (Kenya)

    2012-12-15

    Kenya Vision 2030 - the long-term development blueprint for the country - aims to transform Kenya into 'a newly industrialising, middle-income country providing a high quality of life to all its citizens in a clean and secure environment'. A low carbon climate resilient development pathway, as set out in this Climate Change Action Plan, can help meet Vision 2030 goals through actions that address both sustainable development and climate change. This pathway can also help the Government achieve the Millennium Development Goals and other internationally agreed development goals without compromising the environment and its natural resources. As Kenya realizes its development aspirations, there will be gains and risks. A growing population and economy with migration to cities will mean increases in greenhouse gas (GHG) emissions. Resulting environmental and social conditions, including increased competition over resources, could intensify vulnerability to climate risks. Transitioning to a low carbon climate resilient development pathway can address future risks thereby improving Kenya's ability to prosper under a changing climate while reducing the emissions intensity of a growing economy. Moving forward on the 2010 National Climate Change Response Strategy will help Kenya transition to a low carbon climate resilient development pathway that puts people and livelihoods at the forefront. The strategy recognized the importance of climate change and development, and this Climate Change Action Plan is the logical next step. A yearlong multistakeholder participatory process involving the public sector, private sector and civil society resulted in this Action Plan that identifies priority climate change actions for Kenya for the short, medium and long term. The Government of Kenya takes climate change and its impact on development seriously. Climate change is considered a crosscutting issue that will be mainstreamed in the planning process both at the national

  9. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway.

    Science.gov (United States)

    Ahner, Annette; Gong, Xiaoyan; Schmidt, Bela Z; Peters, Kathryn W; Rabeh, Wael M; Thibodeau, Patrick H; Lukacs, Gergely L; Frizzell, Raymond A

    2013-01-01

    Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27's ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4's impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin-proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein.

  10. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    Science.gov (United States)

    Vlasova, Irina I; Vakhrusheva, Tatyana V; Sokolov, Alexey V; Kostevich, Valeria A; Gusev, Alexandr A; Gusev, Sergey A; Melnikova, Viktoriya I; Lobach, Anatolii S

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes.

  11. Role of activated carbon on micropollutans degradation by different radiation processes

    Directory of Open Access Journals (Sweden)

    Inmaculada Velo Gala

    2015-04-01

    Full Text Available The objective of this study was to analyse the influence of the presence of activated carbon on radiation processes. The triiodinated contrast medium diatrizoate was chosen as the contaminant model. We selected four commercial activated carbons and sixteen gamma radiation-modified carbons derived from these. The different advanced oxidation/reduction processes that have been studied were improved through the addition of activated carbon in the UV light and gamma radiating processes. In the UV/activated carbon process, the synergic activity of the activated carbon is enhanced in the samples with higher percentages of surface oxygen, ester/anhydride groups and carbon atoms with sp2 hybridization. Band gap determination of activated carbons revealed that they behave as semiconductor materials and, therefore, as photoactive materials in the presence of UV radiation, given that all band gap values are <4 eV. We also observed that the gamma radiation treatment reduces the band gap values of the activated carbons and that, in a single series of commercial carbons, lower band gap values correspond to higher contaminant removal rate values. We observed that the activity of the reutilized activated carbons is similar to that of the original carbons. Based on these results, we proposed that the activated carbon acts as a photocatalyst, promoting electrons of the valence band to the conduction band and increasing the generation of HO• radicals in the medium. Similarly, there was a synergic effect made by the presence of activated carbon in gamma radiation system, which favours pollutant removal. This synergic effect is independent of the textural but not the chemical characteristics of the activated carbon, observing a higher synergic activity for carbons with a higher surface content of oxygen, specifically quinone groups. We highlight that the synergic effect of the activated carbon requires adsorbent–adsorbate electrostatic interaction and is absent

  12. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways.

    Science.gov (United States)

    Donnet, Marcel; Bowen, Paul; Lemaître, Jacques

    2009-12-15

    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann's approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thus possible equilibrium precipitation pathways can be evaluated by calculating the evolution of surface charge, particle size and/or interfacial energy during the ongoing reaction. The approach includes the use of the Kelvin's law to express the influence of particle size on the solubility constant of precipitates, the use of Nernst's law to calculate surface potentials from solubility calculations and relate this to experimentally measured zeta potentials. Calcium carbonate precipitation and zeta potential measurements of well characterised high purity calcite have been used as a model system to validate the calculated values. The clarification of the change in zeta potential on titration illustrates the power of this approach as a tool for reaction pathway prediction and hence knowledge based tailoring of precipitation reactions.

  13. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  14. Towards early detection of the hydrolytic degradation of poly(bisphenol A)carbonate by hyphenated liquid chromatography and comprehensive two-dimensional liquid chromatography

    NARCIS (Netherlands)

    Coulier, L.; Kaal, E.R.; Hankemeier, Th.

    2006-01-01

    The hydrolytic degradation of poly(bisphenol A)carbonate (PC) has been characterized by various liquid chromatography techniques. Size exclusion chromatography (SEC) showed a significant decrease in molecular mass as a result of hydrolytic degradation, while 'liquid chromatography at critical condit

  15. Air-ice carbon pathways inferred from a sea ice tank experiment

    Directory of Open Access Journals (Sweden)

    Marie Kotovitch

    2016-06-01

    Full Text Available Abstract Given rapid sea ice changes in the Arctic Ocean in the context of climate warming, better constraints on the role of sea ice in CO2 cycling are needed to assess the capacity of polar oceans to buffer the rise of atmospheric CO2 concentration. Air-ice CO2 fluxes were measured continuously using automated chambers from the initial freezing of a sea ice cover until its decay during the INTERICE V experiment at the Hamburg Ship Model Basin. Cooling seawater prior to sea ice formation acted as a sink for atmospheric CO2, but as soon as the first ice crystals started to form, sea ice turned to a source of CO2, which lasted throughout the whole ice growth phase. Once ice decay was initiated by warming the atmosphere, the sea ice shifted back again to a sink of CO2. Direct measurements of outward ice-atmosphere CO2 fluxes were consistent with the depletion of dissolved inorganic carbon in the upper half of sea ice. Combining measured air-ice CO2 fluxes with the partial pressure of CO2 in sea ice, we determined strongly different gas transfer coefficients of CO2 at the air-ice interface between the growth and the decay phases (from 2.5 to 0.4 mol m−2 d−1 atm−1. A 1D sea ice carbon cycle model including gas physics and carbon biogeochemistry was used in various configurations in order to interpret the observations. All model simulations correctly predicted the sign of the air-ice flux. By contrast, the amplitude of the flux was much more variable between the different simulations. In none of the simulations was the dissolved gas pathway strong enough to explain the large fluxes during ice growth. This pathway weakness is due to an intrinsic limitation of ice-air fluxes of dissolved CO2 by the slow transport of dissolved inorganic carbon in the ice. The best means we found to explain the high air-ice carbon fluxes during ice growth is an intense yet uncertain gas bubble efflux, requiring sufficient bubble nucleation and upwards rise. We

  16. The ubiquitin+proteasome protein degradation pathway as a therapeutic strategy in the treatment of solid tumor malignancies.

    Science.gov (United States)

    Driscoll, James J; Minter, Alex; Driscoll, Daniel A; Burris, Jason K

    2011-02-01

    A concept that currently steers the development of cancer therapies has been that agents directed against specific proteins that facilitate tumorigenesis or maintain a malignant phenotype will have greater efficacy, less toxicity and a more sustained response relative to traditional cytotoxic chemotherapeutic agents. The clinical success of the targeted agent Imatinib mesylate as an inhibitor of the tyrosine kinase associated with the breakpoint cluster region-Abelson oncogene locus (BCR-ABL) in the treatment of Philadelphia-positive chronic myelogenous leukemia (CML) has served as a paradigm. While intellectually gratifying, the selective targeting of a single driver event by a small molecule, e.g., kinase inhibitor, to dampen a tumor-promoting pathway in the treatment of solid tumors is limited by many factors. Focus can alternatively be placed on targeting fundamental cellular processes that regulate multiple events, e.g., protein degradation, through the Ubiquitin (Ub)+Proteasome System (UPS). The UPS plays a critical role in modulating numerous cellular proteins to regulate cellular processes such as signal transduction, growth, proliferation, differentiation and apoptosis. Clinical success with the proteasome inhibitor bortezomib revolutionized treatment of B-cell lineage malignancies such as Multiple Myeloma (MM). However, many patients harbor primary resistance and do not respond to bortezomib and those that do respond inevitably develop resistance (secondary resistance). The lack of clinical efficacy of proteasome inhibitors in the treatment of solid tumors may be linked mechanistically to the resistance detected during treatment of hematologic malignancies. Potential mechanisms of resistance and means to improve the response to proteasome inhibitors in solid tumors are discussed.

  17. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene.

  18. Activation of the cAMP/PKA pathway induces UT-A1 urea transporter monoubiquitination and targets it for lysosomal degradation.

    Science.gov (United States)

    Su, Hua; Chen, Minguang; Sands, Jeff M; Chen, Guangping

    2013-12-15

    Regulation of urea transporter UT-A1 in the kidney is important for the urinary concentrating mechanism. We previously reported that activation of the cAMP/PKA pathway by forskolin (FSK) leads to UT-A1 ubiquitination, endocytosis, and degradation. In this study, we discovered that FSK-induced UT-A1 ubiquitination is monoubiquitination as judged by immunoblotting with specific ubiquitin antibodies to the different linkages of the ubiquitin chain. UT-A1 monoubiquitination induced by FSK was processed mainly on the cell plasma membrane. Monoubiquitination facilitates UT-A1 endocytosis, and internalized UT-A1 is accumulated in the early endosome. Inhibition of ubiquitination by E1 ubiquitin-activating enzyme inhibitor PYR-41 significantly reduced FSK-induced UT-A1 endocytosis and degradation. Interestingly, FSK-stimulated UT-A1 degradation occurs through a lysosomal protein degradation system. We further found that the PKA phosphorylation sites of UT-A1 at Ser486 and Ser499 are required for FSK-induced UT-A1 monoubiquitination. The physiological significance was confirmed using rat kidney inner medullary collecting duct suspensions, which showed that vasopressin treatment promotes UT-A1 ubiquitination. We conclude that unlike under basal conditions in which UT-A1 is subject to polyubiquitination and proteasome-mediated protein degradation, activation of UT-A1 by FSK induces UT-A1 monoubiquitination and protein lysosomal degradation.

  19. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-10-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic

  20. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    Science.gov (United States)

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway.

  1. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling.

  2. Transport and degradation of dissolved organic matter and associated freshwater pathways in the Laptev Sea (Siberian Arctic)

    Science.gov (United States)

    Hoelemann, Jens; Janout, Markus; Koch, Boris; Bauch, Dorothea; Hellmann, Sebastian; Eulenburg, Antje; Heim, Birgit; Kassens, Heidemarie; Timokhov, leonid

    2016-04-01

    The Siberian shelves are seasonally ice-covered and characterized by large freshwater runoff rates from some of the largest rivers on earth. These rivers also provide a considerable amount of dissolved organic carbon (DOC) to the Arctic Ocean. With an annual load of about 6 Tg DOC a-1 the Lena River contributes nearly 20 percent of the annual DOC discharge to the Arctic Ocean. We present a comprehensive dataset collected during multiple Laptev Sea expeditions carried out in spring, summer and fall (2010-15) in order to explore the processes controlling the dispersal and degradation of DOM during the river water's passage across the shelf. Our investigations are focused on CDOM (Colored Dissolved Organic Matter), which resembles the DOC concentration, interacts with solar radiation and forms a major fraction of the organic matter pool. Our results show an inverse correlation between salinity and CDOM, which emphasizes its terrigenous source. Further, the spectral slope of CDOM absorption indicates that photochemical bleaching is the main process that reduces the CDOM absorption (~ 20%) in freshwater along its transport across the shelf. The distribution of the Lena river water is primarily controlled by winds in summer. During summers with easterly or southerly winds, the plume remains on the central and northern Laptev shelf, and is available for export into the Arctic Basin. The CDOM-rich river water increases the absorption of solar radiation and enhances warming of a shallow surface layer. This emphasizes the importance of CDOM for sea surface temperatures and lateral ice melt on the shelf and adjacent basin. DOC concentrations in freshwater vary seasonally and become larger with increasing discharge. Our data indicate that the CDOM concentrations are highest during the freshet when landfast ice is still present. Subsequent mixing with local sea ice meltwater lowers CDOM to values that are characteristic for the Lena freshwater during the rest of the year.

  3. Influence of soil frost on the character and degradability of dissolved organic carbon in boreal forest soils

    Science.gov (United States)

    Panneer Selvam, B.; Laudon, H.; Guillemette, F.; Berggren, M.

    2016-03-01

    Recent studies suggest that increases in extent and duration of winter soil frost increases dissolved organic carbon (DOC) concentrations in boreal riparian soils and connected aquatic systems during the subsequent spring and summer. However, little is known about the impact of frost on DOC character and its degradability. We applied three experimental treatments to riparian soils in northern Sweden—shallow soil frost (insulated), deep soil frost (snow removed) and control plots—to test the effect of different soil frost regimes on the chemical characteristics and degradability of soil DOC. Soil pore water samples were analyzed using excitation-emission fluorescence (parallel factor analysis) combined with biological and photochemical degradation experiments. We found that the absolute bacterial metabolic rates were significantly lower in samples from the shallow soil frost treatments, compared with the other treatments. Explorative multivariate analyses indicate that increasing soil frost is contributing to increased protein-like fluorescence and to increased biological degradability of the DOC. Our study shows that decreases in riparian soil frost due to climate warming may not only contribute to decreased riparian DOC concentrations but also lead to shifts in the DOC composition, resulting in decreased biodegradability (yet similar photodegradability) of the DOC that is exported from riparian soils to streams.

  4. Comprehensive evaluation of one-carbon metabolism pathway gene variants and renal cell cancer risk.

    Directory of Open Access Journals (Sweden)

    Todd M Gibson

    Full Text Available INTRODUCTION: Folate and one-carbon metabolism are linked to cancer risk through their integral role in DNA synthesis and methylation. Variation in one-carbon metabolism genes, particularly MTHFR, has been associated with risk of a number of cancers in epidemiologic studies, but little is known regarding renal cancer. METHODS: Tag single nucleotide polymorphisms (SNPs selected to produce high genomic coverage of 13 gene regions of one-carbon metabolism (ALDH1L1, BHMT, CBS, FOLR1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, TYMS and the closely associated glutathione synthesis pathway (CTH, GGH, GSS were genotyped for 777 renal cell carcinoma (RCC cases and 1,035 controls in the Central and Eastern European Renal Cancer case-control study. Associations of individual SNPs (n = 163 with RCC risk were calculated using unconditional logistic regression adjusted for age, sex and study center. Minimum p-value permutation (Min-P tests were used to identify gene regions associated with risk, and haplotypes were evaluated within these genes. RESULTS: The strongest associations with RCC risk were observed for SLC19A1 (P(min-P = 0.03 and MTHFR (P(min-P = 0.13. A haplotype consisting of four SNPs in SLC19A1 (rs12483553, rs2838950, rs2838951, and rs17004785 was associated with a 37% increased risk (p = 0.02, and exploratory stratified analysis suggested the association was only significant among those in the lowest tertile of vegetable intake. CONCLUSIONS: To our knowledge, this is the first study to comprehensively examine variation in one-carbon metabolism genes in relation to RCC risk. We identified a novel association with SLC19A1, which is important for transport of folate into cells. Replication in other populations is required to confirm these findings.

  5. Imaging wellbore cement degradation by carbon dioxide under geologic sequestration conditions using X-ray computed microtomography.

    Science.gov (United States)

    Jung, Hun Bok; Jansik, Danielle; Um, Wooyong

    2013-01-02

    X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm(3), porosity: 40%) and the carbonated zone (density: 2.27 g/cm(3), porosity: 23%) after reaction with CO(2)-saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm(3), porosity: 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO(2) attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO(2) leakage.

  6. Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1

    Institute of Scientific and Technical Information of China (English)

    WU Haizhen; WEI Chaohai; WAMG Yaqin; HE Qincong; LIANG Shizhong

    2009-01-01

    A bacterial strain that utilized o-chloronitrobenzene (o-CNB) as the sole carbon, nitrogen and energy sources was isolated from an activated sludge collected from an industrial waste treatment plant. It was identified as Pseudomonas putida based on its morphology, physiological, and biochemical characteristics with an automatic biometrical system and the 16S rRNA sequence analysis. Microcosm study showed that the biodegradation of o-CNB was optimized at culture medium pH 8.0 and temperature of 32℃. At these conditions, the strain degraded 85% of o-CNB at a starting concentration of 1.1 mmol/L in 42 h. o-Chloroaniline was identified as the major metabolite with both high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The study showed that o-chloronitrobenzene degradation by Pseudomonas putida OCNB-1 was initiated by aniline dioxyenase, nitrobenzene reductase and catechol-1,2-dioxygenase.

  7. Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, Deepshikha; Karak, Niranjan, E-mail: karakniranjan@gmail.com

    2016-07-15

    Highlights: • Nitrogen containing carbon dot and carbon dot/TiO{sub 2} nanohybrid (CD@TiO{sub 2}) are synthesized without any additional doping of passivating agent. • The photocatalytic efficacy of CD@TiO{sub 2} is found to be the best as compared to the bare TiO{sub 2}, CD and nanohybrid of TiO{sub 2} in presence of carbon dot. • Up-conversion luminescence of CD promotes the degradation activity of synthesized CD@TiO{sub 2} under visible light. • The hazardous contaminants like phenol, benzene and pesticide are efficiently degraded by CD@TiO{sub 2} under normal sunlight. - Abstract: In the present study, a novel, simple and green method was developed to synthesize highly luminescent nitrogen containing carbon dot (CD) using carbon resources like bio-based citric acid and glycerol in the presence of cost free cow urine. The as-synthesized CD showed exciting wavelength dependent down- and up-conversion flourescence properties. To utilize the advantage of up-conversion flourescence, a nanohybrid (CD@TiO{sub 2}) was synthesized from the above carbon resources and titanium butoxide through a facile one pot single step hydrothermal protocol. Nanomaterials like bare TiO{sub 2} and nanohybrid of TiO{sub 2} in presence of CD (CD/TiO{sub 2}) were also synthesized for comparison purpose. The optical properties and structural characteristics of the prepared CD, bare TiO{sub 2}, CD@TiO{sub 2} and CD/TiO{sub 2} were examined by Fourier transform infrared (FTIR), UV–vis and fluorescence spectroscopic, scanning electron microscopic (SEM), transmission electron microscopic (TEM) and X-ray diffraction (XRD) studies. The elemental compositions of bare CD and CD@TiO{sub 2} nanohybrid were obtained from EDX analyses. The poor crystalline nature and narrow distribution of spherical CD and anatase form of TiO{sub 2} were confirmed from XRD and TEM studies. Amongst the studied nanomaterials, CD@TiO{sub 2} exhibited the most promising photocatalytic degradation of organic

  8. Photosynthetic carbon fixation pathways in Zostera marina and three Florida seagrasses

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S.; Wetzel, R.G.

    1982-06-01

    The photosynthetic carbon fixation pathways of four seagrass species, Zostera marina L. from Alaska and Thalassia testudinum Banks ex Konig, Syringodium filiforme Kutz. and Halodule wrightii Aschers. from the Gulf of Mexico, were investigated with a /sup 14/C pulse-chase technique. All species were found to be principally of the C/sub 3/ type. However, Thalassia and Halodule had higher initial incorporation rates into organic acids than is typical for terrestrial C/sub 3/ plants. Of 11 seagrass species investigated thus far for C/sub 3/ or C/sub 4/ metabolism using this technique, 10 were found to be principally of the C/sub 3/ type while only one exhibited C/sub 4/ metabolism.

  9. Photocatalytic Degradation of Humic Acid by Fe-TiO2 Supported on Spherical Activated Carbon with Enhanced Activity

    OpenAIRE

    2013-01-01

    Fe-TiO2 supported on spherical activated carbon (Fe-TiO2/SAC) with different Fe contents was prepared by heat treatment process after ion exchange method. The prepared Fe-TiO2/SAC was characterized by SEM, EDS, and BET. Batch experiments for photocatalytic degradation of humic acid by Fe-TiO2/SAC were carried out in the fluidized bed photoreactor. It was found that 0 wt% Fe-TiO2/SAC had high photocatalytic activity in the wavelength range of 100~280 nm. However, Fe-TiO2/SAC with Fe contents o...

  10. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  11. Cloning and expression of meta-cleavage enzyme (CarB of carbazole degradation pathway from Pseudomonas stutzeri

    Directory of Open Access Journals (Sweden)

    Ariane Leites Larentis

    2005-06-01

    Full Text Available In this work, the 1082bp PCR product corresponding to carBaBb genes that encode the heterotetrameric enzyme 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase (CarB, involved in the Pseudomonas stutzeri ATCC 31258 carbazole degradation pathway, was cloned using the site-specific recombination system. Recombinant clones were confirmed by PCR, restriction enzyme digestion and sequencing. CarB dioxygenase was expressed in high levels and in active form in Escherichia coli BL21-SI using the His-tagged expression vector pDEST TM17 and salt induction for 4h.Carbazol e seus derivados são compostos nitrogenados aromáticos, presentes comumente em petróleo e potencialmente poluentes. A rota de biodegradação de carbazol a ácido antranílico em Pseudomonas sp. é composta por três enzimas responsáveis, respectivamente, pelas reações de dioxigenação angular, meta-clivagem e hidrólise. A segunda enzima da rota, 2'-aminobifenil-2,3-diol 1,2-dioxigenase (CarB, codificada por dois genes (carBa e carBb, é um heterotetrâmero com atividade catalítica na quebra do anel catecol do susbtrato na posição meta. Neste trabalho, foi clonado o produto de PCR de 1082pb correspondente aos genes carBaBb da bactéria degradadora de carbazol Pseudomonas stutzeri ATCC 31258. A estratégia de clonagem empregada foi a de recombinação sítio-específica e a construção dos plasmídeos foi confirmada por PCR, digestão com enzima de restrição e seqüenciamento. A enzima ativa foi expressa em altas concentrações em vetor pDEST TM17 com cauda de histidina e promotor T7 em Escherichia coli BL21-SI com indução por NaCl durante 4h.

  12. Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy

    Science.gov (United States)

    Mehlenbacher, Randy D.; McDonough, Thomas J.; Grechko, Maksim; Wu, Meng-Yin; Arnold, Michael S.; Zanni, Martin T.

    2015-04-01

    Thin film networks of highly purified semiconducting carbon nanotubes (CNTs) are being explored for energy harvesting and optoelectronic devices because of their exceptional transport and optical properties. The nanotubes in these films are in close contact, which permits energy to flow through the films, although the pathways and mechanisms for energy transfer are largely unknown. Here we use a broadband continuum to collect femtosecond two-dimensional white-light spectra. The continuum spans 500 to 1,300 nm, resolving energy transfer between all combinations of bandgap (S1) and higher (S2) transitions. We observe ultrafast energy redistribution on the S2 states, non-Förster energy transfer on the S1 states and anti-correlated energy levels. The two-dimensional spectra reveal competing pathways for energy transfer, with S2 excitons taking routes depending on the bandgap separation, whereas S1 excitons relax independent of the bandgap. These observations provide a basis for understanding and ultimately controlling the photophysics of energy flow in CNT-based devices.

  13. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Yuanqin Jiang

    Full Text Available Biomedical applications of carbon nanotubes (CNTs often involve improving their hydrophilicity and dispersion in biological media by modifying them through noncovalent or covalent functionalization. However, the potential adverse effects of surface-functionalized CNTs have not been well characterized. In this study, we functionalized multi-walled CNTs (MWCNTs via carboxylation, to produce MWCNTs-COOH, and via poly (ethylene glycol linking, to produce MWCNTs-PEG. We used these functionalized MWCNTs to study the effect of surface functionalization on MWCNTs-induced toxicity to macrophages, and elucidate the underlying mechanisms of action. Our results revealed that MWCNTs-PEG were less cytotoxic and were associated with less apoptotic cell death of macrophages than MWCNTs-COOH. Additionally, MWCNTs-PEG induced less generation of reactive oxygen species (ROS involving less activation of NADPH oxidase compared with MWCNTs-COOH, as evidenced by membrane translocation of p47(phox and p67(phox in macrophages. The less cytotoxic and apoptotic effect of MWCNTs-PEG compared with MWCNTs-COOH resulted from the lower cellular uptake of MWCNTs-PEG, which resulted in less activation of oxidative stress-responsive pathways, such as p38 mitogen-activated protein kinases (MAPK and nuclear factor (NF-κB. These results demonstrate that surface functionalization of CNTs may alter ROS-mediated cytotoxic and apoptotic response by modulating apoptotic signaling pathways. Our study thus provides new insights into the molecular basis for the surface properties affecting CNTs toxicity.

  14. Gadolinium nanoparticle-decorated multiwalled carbon nanotube/titania nanocomposites for degradation of methylene blue in water under simulated solar light.

    Science.gov (United States)

    Mamba, G; Mbianda, X Y; Mishra, A K

    2014-04-01

    Gadolinium oxide nanoparticles of diameters degradation of methylene blue under simulated solar light irradiation. Higher photocatalytic activity was observed for the gadolinium oxide-decorated multiwalled carbon nanotube-based nanocomposites compared to the neat multiwalled carbon nanotube/titania nanocomposite and commercial titania. This improvement in photocatalytic activity was ascribed to the gadolinium oxide nanoparticles supported at the interface of the carbon nanotubes and titania resulting in efficient electron transfer between the two components of the composite. Total organic carbon (TOC) analysis revealed a higher degree of complete mineralisation of methylene blue (80.0 % TOC removal) which minimise the possible formation of toxic by-products. The photocatalyst could be re-used for five times, reaching a maximum degradation efficiency of 85.9 % after the five cycles. The proposed photocatalytic degradation mechanism is outlined herein.

  15. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.

    Science.gov (United States)

    Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2011-06-13

    Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.

  16. Reaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems.

    Science.gov (United States)

    Yuan, Bao-ling; Li, Xiang-zhong; Graham, Nigel

    2008-05-01

    The photocatalytic degradation of dimethyl phthalate (DMP) in aqueous TiO2 suspension under UV illumination has been investigated using oxygen (O2) and ferrate (Fe(VI)) as electron acceptors. The experiments demonstrated that Fe(VI) was a more effective electron acceptor than O2 for scavenging the conduction band electrons from the surface of the catalyst. Some major intermediate products from DMP degradation were identified by HPLC and GC/MS analyses. The analytical results identified dimethyl 3-hydroxyphthalate and dimethyl 2-hydroxyphthalate as the two main intermediate products from the DMP degradation in the TiO2-UV-O2 system, while in contrast phthalic acid was found to be the main intermediate product in the TiO2-UV-Fe(VI) system. These findings indicate that DMP degradation in the TiO2-UV-O2 and TiO2-UV-Fe(VI) systems followed different reaction pathways. An electron spin resonance analysis confirmed that hydroxyl radicals existed in the TiO2-UV-O2 reaction system and an unknown radical species (most likely an iron-oxo species) is suspected to exist in the TiO2-UV-Fe(VI) reaction system. Two pathway schemes of DMP degradation in the TiO2-UV-O2 and TiO2-UV-Fe(VI) reaction systems are proposed. It is believed that the radicals formed in the TiO2-UV-O2 reaction system preferably attack the aromatic ring of the DMP, while in contrast the radicals formed in the TiO2-UV-Fe(VI) reaction systems attack the alkyl chain of DMP.

  17. Fucoidan inhibition of lung cancer in vivo and in vitro : role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation.

    Science.gov (United States)

    Hsu, Hsien-Yeh; Lin, Tung-Yi; Wu, Yu-Chung; Tsao, Shu-Ming; Hwang, Pai-An; Shih, Yu-Wei; Hsu, Jason

    2014-09-15

    Fucoidan, a polysaccharide extracted from brown seaweeds, reduces tumor cell proliferation. In this study, we demonstrate that fucoidan reduces tumor size in LLC1-xenograft male C57BL/6 mice. Moreover, we found that LLC1-bearing mice continuously fed fucoidan showed greater antitumor activity than mice with discontinuous feeding. Fucoidan inhibited the in vitro growth of lung cancer cells. Transforming growth factor β (TGFβ) receptors (TGFRs) play important roles in the regulation of proliferation and progression, and high TGFRI expression in lung cancer specimens is associated with a worse prognosis. Herein, using lung cancer cells, we found that fucoidan effectively reduces TGFRI and TGFRII protein levels in vivo and in vitro. Moreover, fucoidan reduces TGFR downstream signaling events, including those in Smad2/3 and non-Smad pathways: Akt, Erk1/2, and FAK phosphorylation. Furthermore, fucoidan suppresses lung cancer cell mobility upon TGFβ stimulation. To elucidate how fucoidan decreases TGFR proteins in lung cancer cells, we found that fucoidan enhances the ubiquitination proteasome pathway (UPP)-mediated degradation of TGFRs in A549 and CL1-5 cells. Mechanistically, fucoidan promotes Smurf2 and Smad7 to conjugate TGFRs, resulting in TGF degradation; however, Smurf2-shRNA abolishes fucoidan-enhanced UPP-mediated TGFR degradation. Our study is the first to identify a novel mechanism for the antitumor activity of fucoidan, namely decreasing tumor growth by modulating the TGFR/Smad7/Smurf2-dependent axis, leading to TGFR protein degradation and inhibition of lung cancer cell progression in vitro and in vivo. Our current findings indicate that fucoidan is a potential therapeutic agent or dietary supplementation for lung cancer, acting via the Smurf2-dependent ubiquitin degradation of TGFβ receptors.

  18. Pore-scale insights to the rate of organic carbon degradation and biofilm formation under variable hydro-biogeochemical conditions in soils and sediments

    Science.gov (United States)

    Liu, C.; Yan, Z.; Liu, Y.; Li, M.; Bailey, V. L.

    2015-12-01

    Biogeochemical processes that control microbial growth, organic carbon degradation, and CO2 production and migration are fundamentally occur at the pore scale. In this presentation, we will describe our recent results of a pore-scale simulation research to investigate: 1) how moisture content and distribution affects oxygen delivery, organic carbon availability, and microbial activities that regulate the rate of organic carbon degradation and CO2 production in aerobic systems; and 2) how pore-scale reactive transport processes affect local microbial growth, biofilm formation, and overall rate of microbial reactions in anoxic systems. The results revealed that there is an optimal moisture content for aerobic bacterial respiration and CO2 production. When moisture is below the optimal value, organic carbon availability limits its degradation due to diffusion and osmotic stress to bacterial reactivity; and when moisture is above the optimal value, oxygen delivery limits microbial respiration. The optimal moisture condition is, however, a function of soil texture and physical heterogeneity, bioavailable soil organic carbon, and microbial community function. In anoxic and saturated system, simulation results show that biofilm preferentially forms in concave areas around sand particles and macro aggregates where cross-directional fluxes of organic carbon and electron acceptors (e.g., nitrate) favor microbial growth and attachment. The results provide important insights to the establishment of constitutive relationships between the macroscopic rates of soil organic carbon degradation and moisture content, and to the development of biogeochemical reactive transport models that incorporate biofilm structures and physio-chemical heterogeneity in soils and sediments.

  19. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C.

    Science.gov (United States)

    Mulla, Sikandar I; Hu, Anyi; Wang, Yuwen; Sun, Qian; Huang, Shir-Ly; Wang, Han; Yu, Chang-Ping

    2016-02-01

    Bacterial degradation plays a vital role in determining the environmental fate of micropollutants like triclocarban. The mechanism of triclocarban degradation by pure bacterium is not yet explored. The purpose of this study was to identify metabolic pathway that might be involved in bacterial degradation of triclocarban. Triclosan-degrading Sphingomonas sp. strain YL-JM2C was first found to degrade up to 35% of triclocarban (4 mg L(-1)) within 5 d. Gas chromatography-mass spectrometry detected 3,4-dichloroaniline, 4-chloroaniline and 4-chlorocatechol as the major metabolites of the triclocarban degradation. Furthermore, total organic carbon results confirmed that the intermediates, 3,4-dichloroaniline (4 mg L(-1)) and 4-chloroaniline (4 mg L(-1)) could be degraded up to 77% and 80% by strain YL-JM2C within 5 d.

  20. Effects of salinity on dynamics of soil carbon in degraded coastal wetlands: Implications on wetland restoration

    Science.gov (United States)

    Zhao, Qingqing; Bai, Junhong; Lu, Qiongqiong; Zhang, Guangliang

    2017-02-01

    To investigate the effects of salinity on dynamics of soil carbon contents and stocks, soil samples were collected at a depth of 30 cm at four sampling sites (Sites B, T, S and P) along a salinity gradient in a drained coastal wetland, the Yellow River Delta, China. The salinity of these four sites ranked in the order: B (8.68 ± 4.25 ms/cm) > T (5.89 ± 3.17 ms/cm) > S (3.19 ± 1.01 ms/cm) > P (2.26 ± 0.39 ms/cm). Soil total carbon (TC), soil organic carbon (SOC), and soil microbial biomass carbon (MBC) were measured. Based on these data, soil organic carbon density (SOCD) and soil microbial biomass carbon density (MBCD) were calculated at four sites. The results showed that the mean concentrations of TC and MBC showed a general deceasing tendency with increasing salinities in the top 30 cm of soils. The values of SOCD and MBCD exhibited similar tendency along the salinity gradient. As for profile distribution pattern, The C/N ratios ranged from 8.28 to 56.51. The microbial quotient values at four sampling sites were quite low, ranging from 0.06 to 0.19. Higher C/N ratios were found in samples with high salinity. Correlation analysis showed that the concentrations of TC and MBC at four sampling sites were significantly negatively correlated with salinity (P carbon accumulation and microbial activities.

  1. The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle.

    Science.gov (United States)

    Abrams, Jesse F; Hohn, Sönke; Rixen, Tim; Baum, Antje; Merico, Agostino

    2016-01-01

    Tropical peatlands are among the most space-efficient stores of carbon on Earth containing approximately 89 Gt C. Of this, 57 Gt (65%) are stored in Indonesian peatlands. Large-scale exploitation of land, including deforestation and drainage for the establishment of oil palm plantations, is changing the carbon balance of Indonesian peatlands, turning them from a natural sink to a source via outgassing of CO2 to the atmosphere and leakage of dissolved organic carbon (DOC) into the coastal ocean. The impacts of this perturbation to the coastal environment and at the global scale are largely unknown. Here, we evaluate the downstream effects of released Indonesian peat carbon on coastal ecosystems and on the global carbon cycle. We use a biogeochemical box model in combination with novel and literature observations to investigate the impact of different carbon emission scenarios on the combined ocean-atmosphere system. The release of all carbon stored in the Indonesian peat pool, considered as a worst-case scenario, will increase atmospheric pCO2 by 8 ppm to 15 ppm within the next 200 years. The expected impact on the Java Sea ecosystems is most significant on the short term (over a few hundred years) and is characterized by an increase of 3.3% in phytoplankton, 32% in seagrass biomass, and 5% decrease in coral biomass. On the long term, however, the coastal ecosystems will recover to reach near pre-excursion conditions. Our results suggest that the ultimate fate of the peat carbon is in the deep ocean with 69% of it landing in the deep DIC pool after 1000 years, but the effects on the global ocean carbonate chemistry will be marginal.

  2. Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation.

    Science.gov (United States)

    El-Salamony, R A; Amdeha, E; Ghoneim, S A; Badawy, N A; Salem, K M; Al-Sabagh, A M

    2017-03-01

    Activated carbon (AC), prepared from sugarcane bagasse waste through a low-temperature chemical carbonization treatment, was used as a support for nano-TiO2. TiO2 supported on AC (xTiO2-AC) catalysts (x = 10, 20, 50, and 70 wt.%) were prepared through a mechano-mixing method. The photocatalysts were characterized by Raman, X-ray diffraction analysis, FTIR, SBET, field emission scanning electron microscope, and optical technique. The adsorption and photo-activity of the prepared catalysts (xTiO2-AC) were evaluated using methylene blue (MB) dye. The photocatalytic degradation of MB was evaluated under UVC irradiation and visible light. The degradation percentage of the 100 ppm MB at neutral pH using 20TiO2-AC reaches 96 and 91 after 180 min under visible light and UV irradiation, respectively. In other words, these catalysts are more active under visible light than under UV light irradiation, opening the possibility of using solar light for this application.

  3. Fast Degradation for High Activity: Oxygen- and Nitrogen-Functionalised Carbon Nanotubes in Solid-Acid Fuel-Cell Electrodes.

    Science.gov (United States)

    Naumov, Olga; Naumov, Sergej; Flyunt, Roman; Abel, Bernd; Varga, Aron

    2016-12-08

    Similar to polymer electrolyte membrane fuel cells, the widespread application of solid acid fuel cells (SAFCs) has been hindered partly by the necessity of the use of the precious-metal catalyst Pt in the electrodes. Here we investigate multi-walled carbon nanotubes (MWCNTs) for their potential catalytic activity by using symmetric cell measurements of solid-acid-based electrochemical cells in a cathodic environment. For all measurements, the carbon nanotubes were Pt free and subject to either nitrogen or oxygen plasma treatment. AC impedance spectroscopy of the electrochemical cells, with and without a DC bias, was performed and showed significantly lower initial impedances for oxygen-plasma-treated MWCNTs compared to those treated with a nitrogen plasma. In symmetric cell measurements with a DC bias, the current declines quickly for oxygen-plasma-treated MWCNTs and more slowly, over 12 days, for nitrogen-plasma-treated MWCNTs. To elucidate the degradation mechanisms of the oxygen-plasma-treated MWCNTs under SAFC operating conditions, theoretical calculations were performed using DFT. The results indicate that several degradation mechanisms are likely to occur in parallel through the reduction of the surface oxygen groups that were introduced by the plasma treatment. This finally leads to an inert MWCNT surface and a very low electrode performance. Nitrogen-plasma-treated MWCNTs appear to have a higher stability and may be worthwhile for future investigations.

  4. Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: mechanism implication

    Institute of Scientific and Technical Information of China (English)

    HE Zhong; YANG Shaogui; JU Yongming; SUN Cheng

    2009-01-01

    The photocatalytic degradation of rhodamine B (RhB) was carried out using TiO2 supported on activated carbon (TiO2-AC) under microwave irradiation. Composite catalyst TiO2-AC was prepared and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). In the process of microwave-enhanced photocatalysis (MPC), RhB (30 mg/L) was almost completely decoloured in 10 min, and the mineralization efficiency was 96.0% in 20 min. The reaction rate constant of RhB in MPC using TiO2-AC by pseudo first-order reaction kinetics was 4.16 times of that using Degussa P25. Additionally, according to Gas Chromatography/Mass Spectrometry (GC/MS) and Liquid Chromatography/Mass Spectrometry (LC/MS) identification, the major intermediates of RhB in MPC included two kinds of N-de-ethylation intermediates (N,N-diethyl-N'-ethyl-rhodamine (DER)), oxalic acid, malonic acid, succinic acid, and phthalic acid, maleic acid, 3-nitrobenzoic acid, et al. The degradation of RhB in MPC was mainly attributed to the destruction of the conjugated structure, and then the intermediates transformed to acid molecules which were mineralized to water and carbon dioxide.

  5. Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway.

    Science.gov (United States)

    Pettersson, Susanne; Sczaniecka, Matylda; McLaren, Lorna; Russell, Fiona; Gladstone, Karen; Hupp, Ted; Wallace, Maura

    2013-03-15

    The Notch receptor is necessary for modulating cell fate decisions throughout development, and aberrant activation of Notch signalling has been associated with many diseases, including tumorigenesis. The E3 ligase MDM2 (murine double minute 2) plays a role in regulating the Notch signalling pathway through its interaction with NUMB. In the present study we report that MDM2 can also exert its oncogenic effects on the Notch signalling pathway by directly interacting with the Notch 1 receptor through dual-site binding. This involves both the N-terminal and acidic domains of MDM2 and the RAM [RBP-Jκ (recombination signal-binding protein 1 for Jκ)-associated molecule] and ANK (ankyrin) domains of Notch 1. Although the interaction between Notch1 and MDM2 results in ubiquitination of Notch1, this does not result in degradation of Notch1, but instead leads to activation of the intracellular domain of Notch1. Furthermore, MDM2 can synergize with Notch1 to inhibit apoptosis and promote proliferation. This highlights yet another target for MDM2-mediated ubiquitination that results in activation of the protein rather than degradation and makes MDM2 an attractive target for drug discovery for both the p53 and Notch signalling pathways.

  6. Effects of rodent-induced land degradation on ecosytem carbon fluxes in alpine meadow in the Qinghai–Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    F. Peng

    2014-10-01

    Full Text Available Land degradation induced by rodent activities is extensively occurred in alpine meadow ecosystem in the Qinghai–Tibet Plateau that would affect the ecosystem carbon (C balance. We conducted a field experiment with six levels of land degradation (D1–D6, degradation aggravates from D1 to D6 to investigate the effects of land degradation on ecosystem C fluxes. Soil respiration (Rs, net ecosystem exchange (NEE, ecosystem respiration (ER and gross ecosystem production (GEP were measured from June to September 2012. Soil respiration, ER, GEP and above-ground biomass (AGB was significantly higher in slightly degraded (D3 and D6 than in severely degraded land (D1, D2, D4 and D5. Positive averages of NEE in the growing season indicate that alpine meadow ecosystem is a weak C sink during the growing season. Net ecosystem exchange had no significant difference among different degraded levels, but the average NEE in slightly degraded group was 33.6% higher than in severely degraded group. Soil respiration, ER and NEE were positively correlated with AGB whereas soil organic C, labile soil C, total nitrogen (N and inorganic nitrogen were associated with root biomass (RB. Our results highlight the decline of vegetation C storage of alpine meadow ecosystem with increasing number of rodent holes and suggest the control of AGB on ecosystem C fluxes, and the control of RB on soil C and N with development of land degradation.

  7. Effects of rodent-induced land degradation on ecosytem carbon fluxes in alpine meadow in the Qinghai-Tibet Plateau, China

    Science.gov (United States)

    Peng, F.; Quangang, Y.; Xue, X.; Guo, J.; Wang, T.

    2014-10-01

    Land degradation induced by rodent activities is extensively occurred in alpine meadow ecosystem in the Qinghai-Tibet Plateau that would affect the ecosystem carbon (C) balance. We conducted a field experiment with six levels of land degradation (D1-D6, degradation aggravates from D1 to D6) to investigate the effects of land degradation on ecosystem C fluxes. Soil respiration (Rs), net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) were measured from June to September 2012. Soil respiration, ER, GEP and above-ground biomass (AGB) was significantly higher in slightly degraded (D3 and D6) than in severely degraded land (D1, D2, D4 and D5). Positive averages of NEE in the growing season indicate that alpine meadow ecosystem is a weak C sink during the growing season. Net ecosystem exchange had no significant difference among different degraded levels, but the average NEE in slightly degraded group was 33.6% higher than in severely degraded group. Soil respiration, ER and NEE were positively correlated with AGB whereas soil organic C, labile soil C, total nitrogen (N) and inorganic nitrogen were associated with root biomass (RB). Our results highlight the decline of vegetation C storage of alpine meadow ecosystem with increasing number of rodent holes and suggest the control of AGB on ecosystem C fluxes, and the control of RB on soil C and N with development of land degradation.

  8. Common Degradative Pathways of Morpholine, Thiomorpholine, and Piperidine by Mycobacterium aurum MO1: Evidence from 1H-Nuclear Magnetic Resonance and Ionspray Mass Spectrometry Performed Directly on the Incubation Medium

    Science.gov (United States)

    Combourieu, Bruno; Besse, Pascale; Sancelme, Martine; Godin, Jean-Philippe; Monteil, André; Veschambre, Henri; Delort, Anne-Marie

    2000-01-01

    In order to see if the biodegradative pathways for morpholine and thiomorpholine during degradation by Mycobacterium aurum MO1 could be generalized to other heterocyclic compounds, the degradation of piperidine by this strain was investigated by performing 1H-nuclear magnetic resonance directly with the incubation medium. Ionspray mass spectrometry, performed without purification of the samples, was also used to confirm the structure of some metabolites during morpholine and thiomorpholine degradation. The results obtained with these two techniques suggested a general pathway for degradation of nitrogen heterocyclic compounds by M. aurum MO1. The first step of the degradative pathway is cleavage of the C—N bond; this leads formation of an intermediary amino acid, which is followed by deamination and oxidation of this amino acid into a diacid. Except in the case of thiodiglycolate obtained from thiomorpholine degradation, the dicarboxylates are completely mineralized by the bacterial cells. A comparison with previously published data showed that this pathway could be a general pathway for degradation by other strains of members of the genus Mycobacterium. PMID:10919768

  9. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway.

    Science.gov (United States)

    Ilie, Ioana; Ilie, Razvan; Mocan, Teodora; Tabaran, Flaviu; Iancu, Cornel; Mocan, Lucian

    2013-01-01

    Recent data in the literature support the role of nicotinamide (NA) as a pharmacologic agent that stimulates pancreatic beta-cells to produce insulin in vitro. There are data showing that carbon nanotubes may be useful in initiating and maintaining cellular metabolic responses. This study shows that administration of multiwalled carbon nanotubes (MWCNTs) functionalized with nicotinamide (NA-MWCNTs) leads to significant insulin production compared with individual administration of NA, MWCNTs, and a control solution. Treatment of 1.4E7 cells for 30 minutes with NA-MWCNTs at concentrations ranging from 1 mg/L to 20 mg/L resulted in significantly increased insulin release (0.18 ± 0.026 ng/mL for 1 mg/L, 0.21 ± 0.024 ng/mL for 5 mg/L, and 0.27 ± 0.028 ng/mL for 20 mg/L). Thus, compared with cells treated with NA only (0.1 ± 0.01 ng/mL for 1 mg/L, 0.12 ± 0.017 ng/mL for 5 mg/L, and 0.17 ± 0.01 ng/mL for 20 mg/L) we observed a significant positive effect on insulin release in cells treated with NA-MWCNTs. The results were confirmed using flow cytometry, epifluorescence microscopy combined with immunochemistry staining, and enzyme-linked immunosorbent assay techniques. In addition, using immunofluorescence microscopy techniques, we were able to demonstrate that MWCNTs enhance insulin production via the macrophage migration inhibitory factor pathway. The application and potential of NA combined with MWCNTs as an antidiabetic agent may represent the beginning of a new chapter in the nanomediated treatment of diabetes mellitus.

  10. Elastomeric networks based on trimethylene carbonate polymers for biomedical applications : physical properties and degradation behaviour

    OpenAIRE

    Bat, Erhan

    2010-01-01

    The number of applications for biomedical technologies is ever-increasing, and there is a need to develop new materials with properties that can conform to the requirements of a specific application. Synthetic polymers are of great importance in the biomedical field as they can be designed to exhibit a wide range of physical- and biological properties and a range of degradation profiles. Interest in biodegradable elastomers is increasing, particularly for the engineering of soft and elastic t...

  11. MIR125B1 represses the degradation of the PML-RARA oncoprotein by an autophagy-lysosomal pathway in acute promyelocytic leukemia.

    Science.gov (United States)

    Zeng, Cheng-Wu; Chen, Zhen-Hua; Zhang, Xing-Ju; Han, Bo-Wei; Lin, Kang-Yu; Li, Xiao-Juan; Wei, Pan-Pan; Zhang, Hua; Li, Yangqiu; Chen, Yue-Qin

    2014-10-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)-associated PML-RARA fusion gene. We have previously found that MIR125B1 is highly expressed in patients with APL and may be associated with disease pathogenesis; however, the mechanism by which MIR125B1 exerts its oncogenic potential has not been fully elucidated. Here, we demonstrated that MIR125B1 abundance correlates with the PML-RARA status. MIR125B1 overexpression enhanced PML-RARA expression and inhibited the ATRA-induced degradation of the PML-RARA oncoprotein. RNA-seq analysis revealed a direct link between the PML-RARA degradation pathway and MIR125B1-arrested differentiation. We further demonstrated that the MIR125B1-mediated blockade of PML-RARA proteolysis was regulated via an autophagy-lysosomal pathway, contributing to the inhibition of APL differentiation. Furthermore, we identified DRAM2 (DNA-damage regulated autophagy modulator 2), a critical regulator of autophagy, as a novel target that was at least partly responsible for the function of MIR125B1 involved in autophagy. Importantly, the knockdown phenotypes for DRAM2 are similar to the effects of overexpressing MIR125B1 as impairment of PML-RARA degradation, inhibition of autophagy, and myeloid cell differentiation arrest. These effects of MIR125B1 and its target DRAM2 were further confirmed in an APL mouse model. Thus, MIR125B1 dysregulation may interfere with the effectiveness of ATRA-mediated differentiation through an autophagy-dependent pathway, representing a novel potential APL therapeutic target.

  12. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces

    Science.gov (United States)

    Tecon, Robin; Or, Dani

    2017-01-01

    Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grown on hydrated surfaces. The model consortium consisted of two Pseudomonas putida mutant strains that can fully degrade the aromatic hydrocarbon toluene. We demonstrated that obligate cooperation in toluene degradation (cooperative mutualism) favored convergence of 1:1 partner ratio and strong intermixing at the microscale (10–100 μm). In contrast, competition for benzoate, a compound degraded independently by both strains, led to distinct segregation patterns. Emergence of a persistent spatial pattern has been predicted for surface attached microbial activity in liquid films that mediate diffusive exchanges while permitting limited cell movement (colony expansion). This study of a simple microbial consortium offers mechanistic glimpses into the rules governing the assembly and functioning of complex sessile communities, and points to general principles of spatial organization with potential applications for natural and engineered microbial systems. PMID:28262696

  13. Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach

    Science.gov (United States)

    Hazarika, Deepshikha; Karak, Niranjan

    2016-07-01

    In the present study, a novel, simple and green method was developed to synthesize highly luminescent nitrogen containing carbon dot (CD) using carbon resources like bio-based citric acid and glycerol in the presence of cost free cow urine. The as-synthesized CD showed exciting wavelength dependent down- and up-conversion flourescence properties. To utilize the advantage of up-conversion flourescence, a nanohybrid (CD@TiO2) was synthesized from the above carbon resources and titanium butoxide through a facile one pot single step hydrothermal protocol. Nanomaterials like bare TiO2 and nanohybrid of TiO2 in presence of CD (CD/TiO2) were also synthesized for comparison purpose. The optical properties and structural characteristics of the prepared CD, bare TiO2, CD@TiO2 and CD/TiO2 were examined by Fourier transform infrared (FTIR), UV-vis and fluorescence spectroscopic, scanning electron microscopic (SEM), transmission electron microscopic (TEM) and X-ray diffraction (XRD) studies. The elemental compositions of bare CD and CD@TiO2 nanohybrid were obtained from EDX analyses. The poor crystalline nature and narrow distribution of spherical CD and anatase form of TiO2 were confirmed from XRD and TEM studies. Amongst the studied nanomaterials, CD@TiO2 exhibited the most promising photocatalytic degradation of organic pollutants like benzene and phenol as well as an anthrogenic pesticide under sunlight.

  14. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms.

  15. Oxidation state, bioavailability & biochemical pathway define the fate of carbon in soil

    Science.gov (United States)

    Kuzyakov, Yakov; Apostel, Carolin; Gunina, Anna; Herrmann, Anke M.; Dippold, Michaela

    2015-04-01

    Numerous experiments under laboratory and field conditions analyzed microbial utilization and mean residence time (MRT) of carbon (C) from plant and microbial residues as well as root exudates in soil. Most of these studies tested the effects of various environmental factors, such as temperature, soil moisture, texture etc. on these parameters. However, only a few studies compared the properties of the substances themselves and there is no conceptual framework based on biochemical pathways. We hypothesize that the fate of C from organic substances in soil strongly depends on the first step of their microbial utilization, specifically, on biochemical pathway and initial C oxidation state, as well as its bioavailability in soils, defined by its hydrophobicity and molecular weight. Here we introduce and evaluate a new conceptual framework based on the following parameters: 1) C oxidation state, 2) molecular weight and hydrophobicity, 3) initial biochemical pathway of a substance class in microbial cells. To assess these parameters, two databases were prepared based on the literature and own studies. The first database included only the studies with 14C or 13C position specific labeled sugars, amino acids, carboxylic acids, phenols and lipids in soil. This database allowed us to analyze microbial utilization and mineralization of organics to CO2 depending on their C oxidation state (OS) and on functional groups. Additionally, we calculated data on the bond electronegativity of all compounds investigated in these studies. The second data base included the results of 14C and 13C studies with uniformly labeled substances of various classes. This database considered the free enthalpie (Delta H) per C unit from a variety of substrates differing in their aromaticity, hydrophobicity/electronegativity and location of the substance on the van Krevelen diagram. In addition, we calculated the hydrophobicity from the electronegativity of the individual bonds and recorded their

  16. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway

    Directory of Open Access Journals (Sweden)

    Ilie I

    2013-08-01

    Full Text Available Ioana Ilie,1 Razvan Ilie,2 Teodora Mocan,3 Flaviu Tabaran,4 Cornel Iancu,4 Lucian Mocan4 1Department of Endocrinology, 2Department of Microbiology, 3Department of Physiology, 4Third Surgery Clinic, Department of Nanomedicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania Abstract: Recent data in the literature support the role of nicotinamide (NA as a pharmacologic agent that stimulates pancreatic beta-cells to produce insulin in vitro. There are data showing that carbon nanotubes may be useful in initiating and maintaining cellular metabolic responses. This study shows that administration of multiwalled carbon nanotubes (MWCNTs functionalized with nicotinamide (NA-MWCNTs leads to significant insulin production compared with individual administration of NA, MWCNTs, and a control solution. Treatment of 1.4E7 cells for 30 minutes with NA-MWCNTs at concentrations ranging from 1 mg/L to 20 mg/L resulted in significantly increased insulin release (0.18 ± 0.026 ng/mL for 1 mg/L, 0.21 ± 0.024 ng/mL for 5 mg/L, and 0.27 ± 0.028 ng/mL for 20 mg/L. Thus, compared with cells treated with NA only (0.1 ± 0.01 ng/mL for 1 mg/L, 0.12 ± 0.017 ng/mL for 5 mg/L, and 0.17 ± 0.01 ng/mL for 20 mg/L we observed a significant positive effect on insulin release in cells treated with NA-MWCNTs. The results were confirmed using flow cytometry, epifluorescence microscopy combined with immunochemistry staining, and enzyme-linked immunosorbent assay techniques. In addition, using immunofluorescence microscopy techniques, we were able to demonstrate that MWCNTs enhance insulin production via the macrophage migration inhibitory factor pathway. The application and potential of NA combined with MWCNTs as an antidiabetic agent may represent the beginning of a new chapter in the nanomediated treatment of diabetes mellitus. Keywords: carbon nanotubes, NA, insulin-producing cells, insulin, macrophage migration inhibitory factor, diabetes mellitus

  17. Synthesized TiO{sub 2}/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kefu; Hu, Xin-Yan [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chen, Bor-Yann; Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan, Taiwan (China); Zhang, Qian [Department of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wang, Jiajie; Lin, Yu-Jung [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chang, Chang-Tang, E-mail: ctchang73222@gmail.com [Department of Environmental Engineering, National I-Lan University, I-Lan, Taiwan (China)

    2016-10-15

    Highlights: • The major photo-catalytic degradation pathway of azo-dye was elaborated according to the identification of by-products from GC–MS and IC analysis. • Comparative assessment on characteristics of abiotic and biotic dye decolorization was analyzed. • EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to determine the main active oxidative species in the system. • The toxicity effects of degradation intermediates of Reactive Black 5 (RB5) on the cellular respiratory activity were assessed. - Abstract: In this study, a one-step solid dispersion method was used to synthesize titanium dioxide (TiO{sub 2})/Zeolite Socony Mobil-5 (ZSM-5) composites with substantially reduced time and energy consumption. A degradation efficiency of more than 95% was achieved within 10 min using 50% PTZ (synthesized TiO{sub 2}/ZSM-5 composites with TiO{sub 2} contents of 50 wt% loaded on ZSM-5) at pH 7 and 25 °C. The possible degradation pathway of azo-dye Reactive Black 5 (RB5) was investigated using gas chromatography–mass spectrometry and ion chromatography (IC). The bonds between the N atoms and naphthalene groups are likely attacked first and cleaved by hydroxyl radicals, ultimately resulting in the decolorization and mineralization of the azo dye. A comparative assessment of the characteristics of abiotic and biotic dye decolorization was completed. In addition, the toxicity effects of the degradation intermediates of azo-dye RB5 on cellular respiratory activity were analyzed. The bio-toxicity results showed that the decay rate constants of CO{sub 2} production from the azo-dye RB5 samples at different degradation times increased initially and subsequently decreased, indicating that intermediates of higher toxicity could adhere to the catalyst surface and gradually destroyed by further photocatalytic oxidation. Additionally, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system

  18. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14

    OpenAIRE

    Koopman, Frank; Wierckx, Nick; de Winde, Johannes H; Ruijssenaars, Harald J.

    2010-01-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates pose significant problems for the production of second-generation biofuels and biochemicals. Among these inhibitors, 5-(hydroxymethyl)furfural (HMF) and furfural are specifically notorious. In this study, we describe the complete molecular identification and characterization of the pathway by which Cupriavidus basilensis HMF14 metabolizes HMF and furfural. The identification of this pathway enabled the construction of an HMF an...

  19. Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway

    Science.gov (United States)

    Reboul, Cyril; Boissière, Julien; André, Lucas; Meyer, Gregory; Bideaux, Patrice; Fouret, Gilles; Feillet-Coudray, Christine; Obert, Philippe; Lacampagne, Alain; Thireau, Jérôme; Cazorla, Olivier; Richard, Sylvain

    2017-01-01

    Risk of hospital readmission and cardiac mortality increases with atmospheric pollution for patients with heart failure. The underlying mechanisms are unclear. Carbon monoxide (CO) a ubiquitous environmental pollutant could be involved. We explored the effect of daily exposure of CO relevant to urban pollution on post-myocardial infarcted animals. Rats with ischemic heart failure were exposed 4 weeks to daily peaks of CO mimicking urban exposure or to standard filtered air. CO exposure worsened cardiac contractile dysfunction evaluated by echocardiography and at the cardiomyocyte level. In line with clinical reports, the animals exposed to CO also exhibited a severe arrhythmogenic phenotype with numerous sustained ventricular tachycardias as monitored by surface telemetric electrocardiograms. CO did not affect cardiac β–adrenergic responsiveness. Instead, mitochondrial dysfunction was exacerbated leading to additional oxidative stress and Ca2+ cycling alterations. This was reversed following acute antioxidant treatment of cardiomyocytes with N-acetylcysteine confirming involvement of CO-induced oxidative stress. Exposure to daily peaks of CO pollution aggravated cardiac dysfunction in rats with ischemic heart failure by specifically targeting mitochondria and generating ROS-dependent alterations. This pathway may contribute to the high sensibility and vulnerability of individuals with cardiac disease to environmental outdoor air quality. PMID:28045070

  20. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP).

    Science.gov (United States)

    Vietti, Giulia; Lison, Dominique; van den Brule, Sybille

    2016-02-29

    Several experimental studies have shown that carbon nanotubes (CNT) can induce respiratory effects, including lung fibrosis. The cellular and molecular events through which these effects develop are, however, not clearly elucidated. The purpose of the present review was to analyze the key events involved in the lung fibrotic reaction induced by CNT and to assess their relationships. We thus address current knowledge and gaps with a view to draft an Adverse Outcome Pathway (AOP) concerning the fibrotic potential of CNT.As for many inhaled particles, CNT can indirectly activate fibroblasts through the release of pro-inflammatory (IL-1β) and pro-fibrotic (PDGF and TGF-β) mediators by inflammatory cells (macrophages and epithelial cells) via the induction of oxidative stress, inflammasome or NF-kB. We also highlight here direct effects of CNT on fibroblasts, which appear as a new mode of toxicity relatively specific for CNT. Direct effects of CNT on fibroblasts include the induction of fibroblast proliferation, differentiation and collagen production via ERK 1/2 or Smad signaling. We also point out the physico-chemical properties of CNT important for their toxicity and the relationship between in vitro and in vivo effects. This knowledge provides evidence to draft an AOP for the fibrogenic activity of CNT, which allows developing simple in vitro models contributing to predict the CNT effects in lung fibrosis, and risk assessment tools for regulatory decision.

  1. Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway.

    Science.gov (United States)

    Reboul, Cyril; Boissière, Julien; André, Lucas; Meyer, Gregory; Bideaux, Patrice; Fouret, Gilles; Feillet-Coudray, Christine; Obert, Philippe; Lacampagne, Alain; Thireau, Jérôme; Cazorla, Olivier; Richard, Sylvain

    2017-01-03

    Risk of hospital readmission and cardiac mortality increases with atmospheric pollution for patients with heart failure. The underlying mechanisms are unclear. Carbon monoxide (CO) a ubiquitous environmental pollutant could be involved. We explored the effect of daily exposure of CO relevant to urban pollution on post-myocardial infarcted animals. Rats with ischemic heart failure were exposed 4 weeks to daily peaks of CO mimicking urban exposure or to standard filtered air. CO exposure worsened cardiac contractile dysfunction evaluated by echocardiography and at the cardiomyocyte level. In line with clinical reports, the animals exposed to CO also exhibited a severe arrhythmogenic phenotype with numerous sustained ventricular tachycardias as monitored by surface telemetric electrocardiograms. CO did not affect cardiac β-adrenergic responsiveness. Instead, mitochondrial dysfunction was exacerbated leading to additional oxidative stress and Ca(2+) cycling alterations. This was reversed following acute antioxidant treatment of cardiomyocytes with N-acetylcysteine confirming involvement of CO-induced oxidative stress. Exposure to daily peaks of CO pollution aggravated cardiac dysfunction in rats with ischemic heart failure by specifically targeting mitochondria and generating ROS-dependent alterations. This pathway may contribute to the high sensibility and vulnerability of individuals with cardiac disease to environmental outdoor air quality.

  2. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Directory of Open Access Journals (Sweden)

    Feil Helene

    2009-08-01

    Full Text Available Abstract Background Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. Results The a priori prediction that the D. aromatica genome would contain previously characterized "central" enzymes to support anaerobic aromatic degradation of benzene proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzylsuccinate synthase (bssABC genes (responsible for fumarate addition to toluene and the central benzoyl-CoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex and exosortase (epsH are also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB gene cluster, Calvin cycle enzymes, and proteins involved in nitrogen fixation in other species (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively. Conclusion Analysis of the D. aromatica genome indicates there is much to be

  3. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.; Feil, Helene; Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla

    2008-11-17

    Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsible for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial

  4. Mitigation of Climatic Change by Soil Carbon Sequestration: Issues of Science, Monitoring, and Degraded Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R Cesar C.; Rosenberg, Norman J.; Lal, Rattan

    2001-11-01

    Farmers, gardeners, and, of course, argonomists know that adding organic matter to soils is a good thing to do. Organic matter increases soil water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation, and improves tilth. Depending on its type-humus, manure, stubble, litter-organic matter contains between 40 and 60% carbon.

  5. Mitigation of Climatic Change by Soil Carbon Sequestration: Issues of Science, Monitoring, and Degraded Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R Cesar C.; Rosenberg, Norman J.; Lal, Rattan

    2001-12-31

    Farmers, gardeners, and, of course, argonomists know that adding organic matter to soils is a good thing to do. Organic matter increases soil water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation, and improves tilth. Depending on its type-humus, manure, stubble, litter-organic matter contains between 40 and 60% carbon.

  6. Pathways of Organic-Carbon Oxidation in 3 Continental-Margin Sediments Rid A-8010-2010

    DEFF Research Database (Denmark)

    CANFIELD, DE; JØRGENSEN, BB; FOSSING, H.;

    1993-01-01

    important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance Of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...... organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most...

  7. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mayumi; Imadome, Kaori; Shoji, Yoshimi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Isozaki, Tetsurou; Endo, Satoshi; Yamada, Shigeru [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2015-09-01

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2 major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells.

  8. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution

    Digital Repository Service at National Institute of Oceanography (India)

    Samanta, S.; Dalai, T.K.; Pattanaik, J.K.; Rai, S.K.; Mazumdar, A.

    In this study, we present comprehensive data on dissolved Ca, dissolved inorganic carbon (DIC) and its carbon isotope composition (δ13CDIC) of (i) the Ganga (Hooghly) River estuary water sampled during six seasons...

  9. Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration.

    Science.gov (United States)

    Chomiak, A; Traber, J; Morgenroth, E; Derlon, N

    2015-11-15

    We investigated the influence of biofouling of ultrafiltration membranes on the removal of organic model foulants and ultimately on the quality of permeate. Gravity Driven Membrane ultrafiltration (GDM) membrane systems were operated with modified river water during five weeks without control of the biofilm formation. Three GDM systems were studied: two systems with biofilms exposed to (A) variable or (B) constant load of organic foulants, and (C) one system operated without biofilm and exposed to constant foulant loading. Biodegradable dextran or non-biodegradable polystyrene sulfonate model foulants were tested. Substrate biodegradability was confirmed by Size Exclusion Chromatography (SEC) and by degradation batch tests (D). The GDM systems (A) and (B) were fed with pre-filtered river water supplemented with dextran (Dex) of 1, 150 or 2000 kDa, or polystyrene sulfonate (PSS) of 1 or 80 kDa at concentrations of 2-3.5 mgC L(-1). In exp. (C) the feed water consisted of deionized water with 25 mgC L(-1) of either PSS 1, 80 kDa or Dex 2000 kDa. The biofilm formation on UF membrane surfaces controlled the foulant permeation and thus the permeate quality. Biofilms exposed to continuous foulant loading (exp. B) degraded low molecular weight (LMW) biodegradable foulants (1 kDa Dex), which improved the permeate quality. For high molecular weight (HMW) substrates (150, 2000 kDa Dex), the improvement of the permeate quality was observed after 7 days of biofilm formation, and resulted from the foulant hydrolysis followed by degradation. For non-biodegradable foulants, an improvement of 20% of the retention was observed for the polystyrene (1, 80 kDa PSS) due to the presence of biofilms on membrane surfaces. For variable foulant loading (exp. A) the biofilms hydrolysed the large biodegradable foulants but did not degraded them fully, which resulted a deterioration of the permeate quality (except for the LMW dextran (1 kDa) that was fully degraded). Overall, the "biofilm

  10. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways.

    Science.gov (United States)

    Wu, Zihao; Fang, Jingyun; Xiang, Yingying; Shang, Chii; Li, Xuchun; Meng, Fangang; Yang, Xin

    2016-11-01

    The UV/chlorine process, which forms several reactive species including hydroxyl radicals (HO) and reactive chlorine species (RCS) to degrade contaminants, is being considered to be an advanced oxidation process. This study investigated the kinetics and mechanism of the degradation of trimethoprim (TMP) by the UV/chlorine process. The degradation of TMP was much faster by UV/chlorine compared to UV/H2O2. The degradation followed pseudo first-order kinetics, and the rate constant (k') increased linearly as the chlorine dosage increased from 20 μM to 200 μM and decreased as pH rose from 6.1 to 8.8. k' was not affected by chloride and bicarbonate but decreased by 50% in the presence of 1-mg/L NOM. The contribution of RCS, including Cl, Cl2(-) and ClO, to the degradation removal rate was much higher than that of HO and increased from 67% to 87% with increasing pH from 6.1 to 8.8 under the experimental condition. The increasing contribution of RCS to the degradation with increasing pH was attributable to the increase in the ClO concentration. Kinetic modeling and radical scavenging tests verified that ClO mainly attacked the trimethoxybenzyl moiety of TMP. RCS reacted with TMP much faster than HOCl/OCl(-) to form chlorinated products (i.e., m/z 325) and chlorinated disinfection byproducts such as chloroform, chloral hydrate, dichloroacetonitrile and trichloronitromethane. The hydroxylation and demethylation of m/z 325 driven by HO generated m/z 327 and m/z 341. Meanwhile, reactions of m/z 325 with HO and RCS/HOCl/OCl(-) generated dichlorinated and hydroxylated products (i.e., m/z 377). All the chlorinated products could be further depleted to produce products with less degree of halogenation in the UV/chlorine process, compared to dark chlorination. The acute toxicity to Vibrio fischeri by UV/chlorine was lower than chlorination at the same removal rate of TMP. This study demonstrated the importance of RCS, in particular, ClO, in the degradation of micropollutants

  11. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions.

    Science.gov (United States)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from -3.4±0.3 to -4.3±0.3‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from -7.0±0.4 to -13.6±1.2‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO4(-)). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO).

  12. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    Science.gov (United States)

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  13. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  14. Synthesis of novel cobalt doped zinc oxide/carbon nano composite for the photocatalytic degradation of acid blue 113

    Directory of Open Access Journals (Sweden)

    S. Sunitha

    2015-03-01

    Full Text Available Cobalt doped Zinc Oxide/Carbon nano composite was synthesized by solution combustion method and characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscopy analysis. This composite shows X-ray diffraction pattern that matched with nano particle of ZnO with wurtzite structure and average grain size was found to be 10.53 nm. . Further the presence of the elements like C, Co, Zn and O was confirmed by energy dispersive X-ray spectroscopy analysis. The effect of Co doping on the photocatalytic activity was investigated by photo degradation of the dye, acid blue 113. This nano composite exhibited better photocatalytic activity when compared to nano ZnO and nano ZnO/C composites.

  15. Stable isotope probing and Raman spectroscopy for monitoring carbon flow in a food chain and revealing metabolic pathway.

    Science.gov (United States)

    Li, Mengqiu; Huang, Wei E; Gibson, Christopher M; Fowler, Patrick W; Jousset, Alexandre

    2013-02-05

    Accurately measuring carbon flows is a challenge for understanding processes such as diverse intracellular metabolic pathways and predator-prey interactions. Combined with stable isotope probing (SIP), single-cell Raman spectroscopy was demonstrated for the first time to link the food chain from carbon substrate to bacterial prey up to predators at the single-cell level in a quantitative and nondestructive manner. Escherichia coli OP50 with different (13)C content, which were grown in a mixture of (12)C- and fully carbon-labeled (13)C-glucose (99%) as a sole carbon source, were fed to the nematode. The (13)C signal in Caenorhabditis elegans was proportional to the (13)C content in E. coli. Two Raman spectral biomarkers (Raman bands for phenylalanine at 1001 cm(-1) and thymine at 747 cm(-1) Raman bands), were used to quantify the (13)C content in E. coli and C. elegans over a range of 1.1-99%. The phenylalanine Raman band was a suitable biomarker for prokaryotic cells and thymine Raman band for eukaryotic cells. A biochemical mechanism accounting for the Raman red shifts of phenylalanine and thymine in response to (13)C-labeling is proposed in this study and is supported by quantum chemical calculation. This study offers new insights of carbon flow via the food chain and provides a research tool for microbial ecology and investigation of biochemical pathways.

  16. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers.

    Science.gov (United States)

    Yuan, Rusheng; Guan, Rongbo; Shen, Wenzhong; Zheng, Jingtang

    2005-02-01

    Photocatalytic degradation of methylene blue (MB) in aqueous solution was investigated using TiO2 immobilized on activated carbon fibers (ACFs). The TiO2 and ACF combination (TiO2/ACF) was prepared by using epoxy as the precursor of the link between TiO2 and ACFs, followed by calcination at 460 degrees C in a N2 atmosphere. The TiO2/ACF composite prepared was easier to handle than the original TiO2 powder in suspension. More significantly, the TiO2/ACF composite can be used repeatedly without a decline in photodegradation ability. After six cycles, the amount of MB removal for the TiO2/ACF composite was still slightly higher than that for fresh P25 TiO2 in suspension. Through measurement of chemical oxygen demand in the solution and the concentration of ammonium generated during degradation of MB, it was confirmed that MB molecules are mineralized instead of adsorbed by ACFs.

  17. Photocatalytic Degradation of Humic Acid by Fe-TiO2 Supported on Spherical Activated Carbon with Enhanced Activity

    Directory of Open Access Journals (Sweden)

    Mi-Hwa Baek

    2013-01-01

    Full Text Available Fe-TiO2 supported on spherical activated carbon (Fe-TiO2/SAC with different Fe contents was prepared by heat treatment process after ion exchange method. The prepared Fe-TiO2/SAC was characterized by SEM, EDS, and BET. Batch experiments for photocatalytic degradation of humic acid by Fe-TiO2/SAC were carried out in the fluidized bed photoreactor. It was found that 0 wt% Fe-TiO2/SAC had high photocatalytic activity in the wavelength range of 100~280 nm. However, Fe-TiO2/SAC with Fe contents of 0.4, 0.6, and 0.8 wt% exhibited higher photocatalytic activity than 0 wt% Fe-TiO2/SAC in the wavelength range of 315~400 nm compared to that of 100~280 nm. The optimum Fe content was 0.6 wt% for maximum photocatalytic degradation of humic acid. Moreover, Fe-TiO2/SAC does not require an additional process step for separation of photocatalyst from treated water after photocatalysis.

  18. Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV-vis irradiation.

    Science.gov (United States)

    Matos, Juan; Montaña, Ricmary; Rivero, Eliram

    2015-01-01

    Photodegradation of methylene blue (MB) was studied on TiO2 in the presence of activated carbon (AC) prepared from the sawdust of a soft wood by physical activation under CO2 flow, by pyrolysis under N2 flow, and by chemical activation with ZnCl2 and H3PO4 under N2 flow. MB photodegradation was performed under UV and UV-visible irradiation to verify the scaling-up of the present TiO2-AC binary materials. It was verified that oxygenated surface groups on carbon were intrinsically photoactive, and a synergy effect between both solids has been estimated from the first-order apparent rate constants in the photodegradation of MB. This effect enhances the photoactivity of TiO2 up to a factor of about 9 under visible irradiation, and it was associated to the surface properties of AC.

  19. In-situ evaluation of the degradable carbon influence for industrial waste water treatment

    Science.gov (United States)

    Fayomi, O. S. I.; Olukanni, D. O.; Fayomi, G. U.; Joseph, O. O.; Popoola, A. P. I.

    2016-07-01

    A photochemical investigation and synergetic blend for wastewater purification was carried out. Blends of different peels: Potato-, Apple and Pineapples-peals (PAP-peals) were impregnated with aqueous solutions of ZnCl2 following the variant of the incipient wetness method for activation of activated carbon (AC). Different concentrations were used to produce impregnation ratios. Activation was carried out in a tube furnace by heating to 700°C with 1 hour soaking time. Scanning Electron Microscopic with attached energy dispersive spectrometer (SEM/EDS), Atomic Adsorption Spectrometry (AAS) and Fourier Transform Infrared spectrometer (FTIS) equipments were used for the characterization of the AC produced. The result shows that PAP-peals derived activated carbons had micro porous characteristics. The study revealed that these new combined adsorbents materials are inexpensive, easily available and they have applications for the removal of Cu, Pb and Cr contained in industrial effluents.

  20. Estimating rainforest biomass stocks and carbon loss from deforestation and degradation in Papua New Guinea 1972-2002: Best estimates, uncertainties and research needs.

    Science.gov (United States)

    Bryan, Jane; Shearman, Phil; Ash, Julian; Kirkpatrick, J B

    2010-01-01

    Reduction of carbon emissions from tropical deforestation and forest degradation is being considered a cost-effective way of mitigating the impacts of global warming. If such reductions are to be implemented, accurate and repeatable measurements of forest cover change and biomass will be required. In Papua New Guinea (PNG), which has one of the world's largest remaining areas of tropical forest, we used the best available data to estimate rainforest carbon stocks, and emissions from deforestation and degradation. We collated all available PNG field measurements which could be used to estimate carbon stocks in logged and unlogged forest. We extrapolated these plot-level estimates across the forested landscape using high-resolution forest mapping. We found the best estimate of forest carbon stocks contained in logged and unlogged forest in 2002 to be 4770 Mt (+/-13%). Our best estimate of gross forest carbon released through deforestation and degradation between 1972 and 2002 was 1178 Mt (+/-18%). By applying a long-term forest change model, we estimated that the carbon loss resulting from deforestation and degradation in 2001 was 53 Mt (+/-18%), rising from 24 Mt (+/-15%) in 1972. Forty-one percent of 2001 emissions resulted from logging, rising from 21% in 1972. Reducing emissions from logging is therefore a priority for PNG. The large uncertainty in our estimates of carbon stocks and fluxes is primarily due to the dearth of field measurements in both logged and unlogged forest, and the lack of PNG logging damage studies. Research priorities for PNG to increase the accuracy of forest carbon stock assessments are the collection of field measurements in unlogged forest and more spatially explicit logging damage studies.

  1. Evaluation of carbon degradation during co-composting of exhausted grape marc with different biowastes.

    Science.gov (United States)

    Fernández, F J; Sánchez-Arias, V; Villaseñor, J; Rodríguez, L

    2008-10-01

    In this work the carbon biodegradation of exhausted grape marc (EGM) combined with other organic wastes using the turned pile composting system was studied. Four different piles were made of EGM in Pile 1, EGM mixed with cow manure and straw (CMS) in Pile 2, EGM mixed with municipal solid waste (MSW) in Pile 3 and EGM mixed with grape stalks (GS) in Pile 4. The results obtained were modelled to determine the main kinetic and stoichiometric parameters. Regarding to the rate constants of the composting processes they were increased from 0.033d(-1), the value obtained when EGM was composted alone, to 0.040 and 0.044d(-1) when MSW and GS were added, respectively as co-substrates. However, the addition of CMS reduced the rate constant. About the biodegradable carbon fractions, it was observed that the co-composting reduced significantly the remanent carbon concentration after composting in all the piles whilst increased the readily biodegradable carbon fractions from 35, the value obtained when EGM was composted alone, to 50 and 60%, respectively when MSW or GS were added. As regards the temperature profiles, only Piles 1 and 4 achieved thermal hygienization values and about the nitrogen losses, the lowest percentage of nitrogen loss took place when GS were added, because of its optimum pH and C/N initial ratio. Thus, though any of these wastes could be used for co-composting with EGM, the use of GS as co-substrate and bulking agent for the co-composting process of EGM was recommended.

  2. Degradation pathways of aniline in aqueous solutions during electro-oxidation with BDD electrodes and UV/H2O2 treatment.

    Science.gov (United States)

    Benito, Aleix; Penadés, Aida; Lliberia, Josep Lluis; Gonzalez-Olmos, Rafael

    2017-01-01

    In this work, it has been studied the mineralization of aniline, a toxic substance of low biodegradability typically found in many industrial wastewaters, through electro-oxidation using boron doped diamond (BDD) electrodes and photo-oxidation (UV photolysis and UV/H2O2 treatments). It was observed that in electro-oxidation and UV/H2O2, it was feasible to reach aniline mineralizations higher than 85%. Two different degradation routes have been observed during the aniline oxidation in these two treatments. The first route was the mineralization pathway, in which aniline was oxidized to CO2, water and nitrate. The second route was the polyaniline pathway in which polyanilines of high molecular weight are formed. The intermediate compounds involved in both degradation routes are different depending on the treatment used. In the electro-oxidation, denitrification processes were also observed. From an economical point of view, electro-oxidation of aniline using BDD electrodes is more interesting than UV/H2O2 due it has an 87% lower operational cost. So, electro-oxidation using BDD electrodes seems to be a more suitable technique for the mineralization of wastewater containing aniline than UV or H2O2 based technologies.

  3. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins.

    Science.gov (United States)

    Dhar, Jayeeta; Barik, Sailen

    2016-12-01

    Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.

  4. Silver/Carbon Codoped Titanium Dioxide Photocatalyst for Improved Dye Degradation under Visible Light

    Directory of Open Access Journals (Sweden)

    P. Nyamukamba

    2017-01-01

    Full Text Available Herein, we report the synthesis of quartz supported TiO2 photocatalysts codoped with carbon and silver through the hydrolysis of titanium tetrachloride followed by calcination at 500°C. The prepared samples were characterized by UV-Vis diffuse reflectance spectroscopy, high resolution scanning electron microscopy (HRSEM, Raman spectroscopy, thermogravimetric analysis (TGA, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD. Codoping of TiO2 with Ag and carbon resulted in an increase in the surface area of the photocatalyst and altered the ratio of the anatase to rutile phase. The absorption edge of all the doped TiO2 photocatalysts redshifted and the band gap was reduced. The lowest band gap of 1.95 eV was achieved by doping with 0.5% Ag. Doping TiO2 using carbon as the only dopant resulted in a quartz supported photocatalyst that showed greater photocatalytic activity towards methyl orange than undoped TiO2 and also all codoped TiO2 photocatalysts under visible light irradiation.

  5. Degradation of 2,4-dihydroxibenzoic acid by vacuum UV process in aqueous solution: Kinetic, identification of intermediates and reaction pathway

    Energy Technology Data Exchange (ETDEWEB)

    Azrague, Kamal [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Department for Water and Environment, SINTEF, Klaebuveien 153, Trondheim 7465 (Norway); Pradines, Vincent; Bonnefille, Eric [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Laboratoire LCC, CNRS, 205 route de Narbonne, F31077 Toulouse Cedex 4 (France); Claparols, Catherine [Laboratoire LCC, CNRS, 205 route de Narbonne, F31077 Toulouse Cedex 4 (France); Universite de Toulouse, UPS, Service Commun de Spectrometrie de Masse, 118 route de Narbonne, F31062 Toulouse Cedex 9 (France); Maurette, Marie-Therese [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Benoit-Marquie, Florence, E-mail: florence@chimie.ups-tlse.fr [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Degradation of 2,4-dihydroxybenzoic acid (DHBA) by vacuum UV photolysis of water. Black-Right-Pointing-Pointer V-UV Xe-excimer lamps produced essentially hydroxyl radicals (HO Degree-Sign ). Black-Right-Pointing-Pointer Identification of all intermediates formed allowed us to propose a reaction pathway. Black-Right-Pointing-Pointer This reaction pathway showed that DHBA reacts differently with HO Degree-Sign and h+. Black-Right-Pointing-Pointer DHBA would be used as a probe to determine which of these entities were involved. - Abstract: 2,4-Dihydroxybenzoic acid (2,4-DHBA) is found frequently as a pollutant in natural waters and represents a threat to water quality because it is a precursor to the formation of quinones which are highly toxic. The degradation of 2,4-DHBA using the vacuum UV photolysis of water has been investigated. Irradiation was carried out in an annular photoreactor equipped with a Xe-excimer lamp situated in the centre and emitting at 172 nm. The degradation kinetic followed a pseudo first order and the reaction has been found to be very heterogeneous, especially at low concentration. Impacts of oxygen or temperature have also been investigated but no effect has been shown. LC-MS and HPLC-UV combined with other analytical techniques allowed the identification of the formation of trihydroxybenzoiec acids and trihydroxybenzenes which underwent a ring opening, conducting to the formation of aliphatic products named {alpha}, {beta}, {delta} and {gamma}. These products were in turn degraded successively into maleiec acid, malic and succinic acid, malonic acid, glyoxalic acid and oxalic acid before reaching the complete mineralization in about 180 min. The proposed reaction pathway has shown to be very different from the one observed for the TiO{sub 2} photocatalysis which involves only holes (h{sup +}) without any formation of aromatic intermediates. The different behaviours of 2,4-DHBA towards the h

  6. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana

    Science.gov (United States)

    Li, Fangfang; Zhao, Nan; Xu, Xiongbiao; Wang, Yaqin; Yang, Xiuling; Liu, Shu-Sheng; Wang, Aiming; Zhou, Xueping

    2017-01-01

    A recently characterized calmodulin-like protein is an endogenous RNA silencing suppressor that suppresses sense-RNA induced post-transcriptional gene silencing (S-PTGS) and enhances virus infection, but the mechanism underlying calmodulin-like protein-mediated S-PTGS suppression is obscure. Here, we show that a calmodulin-like protein from Nicotiana benthamiana (NbCaM) interacts with Suppressor of Gene Silencing 3 (NbSGS3). Deletion analyses showed that domains essential for the interaction between NbSGS3 and NbCaM are also required for the subcellular localization of NbSGS3 and NbCaM suppressor activity. Overexpression of NbCaM reduced the number of NbSGS3-associated granules by degrading NbSGS3 protein accumulation in the cytoplasm. This NbCaM-mediated NbSGS3 degradation was sensitive to the autophagy inhibitors 3-methyladenine and E64d, and was compromised when key autophagy genes of the phosphatidylinositol 3-kinase (PI3K) complex were knocked down. Meanwhile, silencing of key autophagy genes within the PI3K complex inhibited geminivirus infection. Taken together these data suggest that NbCaM acts as a suppressor of RNA silencing by degrading NbSGS3 through the autophagy pathway. PMID:28212430

  7. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444 issue 3)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhen [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China); Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Shao, Genze, E-mail: gzshao@bjmu.edu.cn [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China)

    2014-02-14

    Highlights: • The 2000–2634 aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  8. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444, isse 4)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhen [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China); Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Shao, Genze, E-mail: gzshao@bjmu.edu.cn [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China)

    2014-02-21

    Highlights: • The 2000–2634aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1 binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  9. Biodegradation of RDX and MNX with Rhodococcus sp. Strain DN22: New Insights into the Degradation Pathway

    Science.gov (United States)

    2010-11-15

    ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 44, NO. 24, 2010 10.1021/es1023724  2010 American Chemical Society Published on Web 11/24/2010 Report...exclusively; how- FIGURE 1. Time course of aerobic biodegradation of RDX with Rhodococcus sp. DN22 VOL. 44, NO. 24, 2010 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 9...water (H216O) (C) or H218O (D). 9332 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 44, NO. 24, 2010 Degradation of MNX with Rhodococcus sp. strain

  10. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  11. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.

    Science.gov (United States)

    Li, Ya-Han; Ou-Yang, Fan-Yu; Yang, Cheng-Han; Li, Si-Yu

    2015-01-01

    In this study, Rubisco-based engineered Escherichia coli, containing two heterologous enzymes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoribulokinase (PrkA), has been shown to be capable of the in situ recycling of carbon dioxide (CO2) during glycolysis. Two alternative approaches have been proposed to further enhance the carbon flow from glycolysis to a Rubisco-based pathway through the non-oxidative pentose phosphate pathway (NOPPP). The first is achieved by elevating the expression of transketolase I (TktA) and the second by blocking the native oxidation-decarboxylation reaction of E. coli by deleting the zwf gene from the chromosome (designated as JB/pTA and MZB, respectively). Decreases in the CO2 yield and the CO2 evolution per unit mole of ethanol production by at least 81% and 40% are observed. It is demonstrated in this study that the production of one mole of ethanol using E. coli strain MZB, the upper limit of CO2 emission is 0.052mol.

  12. Silver quantum cluster (ag9 )-grafted graphitic carbon nitride nanosheets for photocatalytic hydrogen generation and dye degradation.

    Science.gov (United States)

    Sridharan, Kishore; Jang, Eunyong; Park, Jung Hyun; Kim, Jong-Ho; Lee, Jung-Ho; Park, Tae Joo

    2015-06-15

    We report the visible-light photocatalytic properties of a composite system consisting of silver quantum clusters [Ag9 (H2 MSA)7 ] (H2 MSA=mercaptosuccinic acid) embedded on graphitic carbon nitride nanosheets (AgQCs-GCN). The composites were prepared through a simple chemical route; their structural, chemical, morphological, and optical properties were characterized by using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, transmission electron microscopy, UV/Vis diffuse reflectance spectroscopy, and photoluminescence spectroscopy. Embedment of [Ag9 (H2 MSA)7 ] on graphitic carbon nitride nanosheets (GCN) resulted in extended visible-light absorption through multiple single-electron transitions in Ag quantum clusters and an effective electronic structure for hydroxyl radical generation, which enabled increased activity in the photocatalytic degradation of methylene blue and methyl orange dye molecules compared with pristine GCN and silver nanoparticle-grafted GCN (AgNPs-GCN). Similarly, the amount of hydrogen generated by using AgQCs-GCN was 1.7 times higher than pristine GCN. However, the rate of hydrogen generated using AgQCs-GCN was slightly less than that of AgNPs-GCN because of surface hydroxyl radical formation. The plausible photocatalytic processes are discussed in detail.

  13. Preparation, characterization of a ceria loaded carbon nanotubes nanocomposites photocatalyst and degradation of azo dye Acid Orange 7

    Directory of Open Access Journals (Sweden)

    Wen Tao

    2016-06-01

    Full Text Available A ceria loaded carbon nanotubes (CeO2/CNTs nanocomposites photocatalyst was prepared by chemical precipitation, and the preparation conditions were optimized using an orthogonal experiment method. HR-TEM, XRD, UV-Vis/DRS, TGA and XPS were used to characterize the photocatalyst. Nitrogen adsorption-desorption was employed to determine the BET specific surface area. The results indicated that the photocatalyst has no obvious impurities. CeO2 was dispersed on the carbon nanotubes with a good loading effect and high loading efficiency without agglomeration. The catalyst exhibits a strong ability to absorb light in the ultraviolet region and some ability to absorb light in the visible light region. The CeO2/CNTs nanocomposites photocatalyst was used to degrade azo dye Acid Orange 7 (40 mg/L. The optical decolorization rate was 66.58% after xenon lamp irradiation for 4 h, which is better than that of commercial CeO2 (43.13%. The results suggested that CeO2 loading on CNTs not only enhanced the optical decolorization rate but also accelerated the separation of CeO2/CNTs and water.

  14. Soil organic carbon and nitrogen content of density fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine Kobresia meadow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This research was conducted on the non-disturbed native alpine Kobresia meadow(YF) and the severely degraded meadow(SDL) of Dari County of Qinghai Province.By a density fractionation approach,each soil sample was divided into two fractions:light fraction(LF) and heavy fraction(HF).The obtained fractions were analyzed for organic carbon(OC) and nitrogen(N) concentrations.The results showed:(1) the OC concentration in HF and LF was 3.84% and 28.63% respectively while the nitrogen concentration in HF and LF was 0.362% and 1.192% respectively in 0-10 cm depth.C:N ratio was 10.6 in HF and 23.8 in LF respectively.(2) As far as the ratio of OC in given fraction to that in gross sample was concerned,dominance of OC in HF was obvious in the whole soil profile.OC in HF increased from 78.95% to 90.33%,while OC in LF decreased from 21.05% to 9.68% with depths.(3) Soil total OC amounted to 47.47 in YF while 17.63 g.kg-1 in SDL,in which the OC content in HF decreased from 37.31 to 16.01 g.kg-1 while OC content in LF decreased from 10.01 to 1.62 g.kg-1.In other words,results of OC and N content show meadow degradation led to the loss of 57% OC in HF and 84% OC in LF from originally native ecosystem on alpine meadow.In addition,meadow degradation led to the loss of 43% N in HF and 79% N in LF from originally native ecosystem on alpine meadow.(4) The main reason for loss of C and N in LF during meadow degradation was not attributed to the decrease of OC and N concentration in LF and LF,but to the decrease in LF dry weight.Loss of N was far lower than loss of C in HF.This may suggest that there is difference in protection mode of C and N in HF.

  15. Nitrogen Additions Increase the Diversity of Carbon Compounds Degraded by Fungi in Boreal Forests

    Science.gov (United States)

    Gartner, T. B.; Turner, K. M.; Treseder, K. K.

    2004-12-01

    Boreal forest soils in North America harbor a large reservoir of organic C, and this region is increasingly exposed to long-range atmospheric N transport from Eurasia. By examining the responses of decomposers to N deposition in these forests, we hope to improve predictions of the fate of boreal carbon pools under global change. We tested the hypothesis that the functional diversity of decomposer fungi would increase under N fertilization in boreal forests where fungal growth was otherwise N-limited, owing to a reduction in competitive exclusion of fungal groups. We collected soil and leaf litter from three Alaskan sites that represent different successional stages at 5, 17, or 80 years following severe forest fire. Each site had been exposed for two years to nitrogen and phosphorus fertilization in a factorial design, with four plots per treatment. Nutrient limitation of fungal growth varied depending on successional stage. The standing hyphal length of decomposer fungi in soil (i.e. Ascomycota and Basidiomycota) responded to neither N nor P in the 5-year old site, increased under N fertilization in the 17-year old site, and increased where N and P was added simultaneously in the 80-year old site (site x N x P interaction: P = 0.001). We used BIOLOG microplates for filamentous fungi to obtain an index of the diversity of carbon use by decomposer fungi; each of 95 wells of these plates contains a different carbon-based compound, as well as a dye that changes color upon metabolism of the compound. Saline leaf litter extracts were mixed with fungal growth medium and then added to the microplates. The number of wells displaying metabolic activity was counted following incubation for five days. We found that N fertilization raised the average number of positive wells per plate from 14 to 27 (P = 0.012), with no significant differences in responses among sites. Phosphorus additions did not alter functional diversity of fungi in any site. Since increases in functional

  16. Measurement of black carbon at Syowa station, Antarctica: seasonal variation, transport processes and pathways

    Directory of Open Access Journals (Sweden)

    K. Hara

    2008-05-01

    Full Text Available Measurement of black carbon (BC was carried out at Syowa station Antarctica (69° S, 39° E from February 2004 until January 2007. The BC concentration at Syowa ranged from below detection to 176 ng m−3 during the measurements. Higher BC concentrations were observed mostly under strong wind (blizzard conditions due to the approach of a cyclone and blocking event. The BC-rich air masses traveled from the lower troposphere of the Atlantic and Indian Oceans to Syowa (Antarctic coast. During the summer (November–February, the BC concentration showed a diurnal variation together with surface wind speed and increased in the katabatic wind from the Antarctic continent. Considering the low BC source strength in the Antarctic continent, the higher BC concentration in the continental air (katabatic wind might be caused by long range transport of BC via the free troposphere from mid- and low- latitudes. The seasonal variation of BC at Syowa had a maximum in August, while at the other coastal stations (Halley, Neumayer, and Ferraz and the continental station (Amundsen-Scott, the maximum occurred in October. This difference may result from different transport pathways and scavenging of BC by precipitation during the transport from the source regions. During the austral summer, long-range transport of BC via the free troposphere is likely to make an important contribution to the ambient BC concentration. The BC transport flux indicated that BC injection into the Antarctic region strongly depended on the frequency of storm (blizzard conditions. The seasonal variation of BC transport flux increased by 290 mg m−2 month−1 in winter–spring when blizzards frequently occurred, whereas the flux decreased to lower than 50 mg m−2 month−1 in the summer with infrequent blizzards.

  17. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use

    Energy Technology Data Exchange (ETDEWEB)

    Kleiner, Manuel [Max Planck Institute for Marine Microbiology; Wentrop, C. [Max Planck Institute for Marine Microbiology; Lott, C. [Max Planck Institute for Marine Microbiology; Teeling, Hanno [Max Planck Institute for Marine Microbiology; Wetzel, Silke [Max Planck Institute for Marine Microbiology; Young, Jacque C [ORNL; Chang, Y. [Oak Ridge National Laboratory (ORNL); Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Zarzycki, Jan [University of Freiburg, Germany; Fuchs, Georg [University of Freiburg, Germany; Markert, Stephanie [Institute of Marine Biotechnology, Germany; Hempel, Kristina [Institute for Microbiology, Germany

    2012-01-01

    Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep-sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO2. Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose novel pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate, (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses, (iii) the potential use of hydrogen as an energy source, (iv) the strong expression of high affinity uptake transporters, and (v) novel energy efficient steps in CO2 fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.

  18. Hyphenation of infrared spectroscopy to liquid chromatography for qualitative and quantitative polymer analysis: Degradation of poly(bisphenol A)carbonate

    NARCIS (Netherlands)

    Coulier, L.; Kaal, E.; Hankemeier, T.

    2006-01-01

    Hyphenation of infrared spectroscopy (IR) to liquid chromatography (LC) has been applied to study chemical changes in poly(bisphenol A)carbonate (PC) as a result of degradation. Especially coupling of LC to FTIR through solvent elimination is a sensitive approach to identify changes in functionality

  19. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    Science.gov (United States)

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions...

  20. Synthesized TiO2/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity

    Science.gov (United States)

    Zhou, Kefu; Hu, Xin-Yan; Chen, Bor-Yann; Hsueh, Chung-Chuan; Zhang, Qian; Wang, Jiajie; Lin, Yu-Jung; Chang, Chang-Tang

    2016-10-01

    In this study, a one-step solid dispersion method was used to synthesize titanium dioxide (TiO2)/Zeolite Socony Mobil-5 (ZSM-5) composites with substantially reduced time and energy consumption. A degradation efficiency of more than 95% was achieved within 10 min using 50% PTZ (synthesized TiO2/ZSM-5 composites with TiO2 contents of 50 wt% loaded on ZSM-5) at pH 7 and 25 °C. The possible degradation pathway of azo-dye Reactive Black 5 (RB5) was investigated using gas chromatography-mass spectrometry and ion chromatography (IC). The bonds between the N atoms and naphthalene groups are likely attacked first and cleaved by hydroxyl radicals, ultimately resulting in the decolorization and mineralization of the azo dye. A comparative assessment of the characteristics of abiotic and biotic dye decolorization was completed. In addition, the toxicity effects of the degradation intermediates of azo-dye RB5 on cellular respiratory activity were analyzed. The bio-toxicity results showed that the decay rate constants of CO2 production from the azo-dye RB5 samples at different degradation times increased initially and subsequently decreased, indicating that intermediates of higher toxicity could adhere to the catalyst surface and gradually destroyed by further photocatalytic oxidation. Additionally, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the hydroxyl radicals are the main oxidation species in the photocatalytic process.

  1. Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway.

    Science.gov (United States)

    Fournier, Diane; Halasz, Annamaria; Thiboutot, Sonia; Ampleman, Guy; Manno, Dominic; Hawari, Jalal

    2004-08-01

    Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is a recalcitrant energetic chemical that tends to accumulate in soil, close to the surface. The present study describes the aerobic biodegradability of HMX using Phanerochaete chrysosporium. When added to 7 day old static P. chrysosporium liquid cultures, HMX (600 nmol) degraded within 25 days of incubation. The removal of HMX was concomitant with the formation of transient amounts of its mono-nitroso derivative (1-NO-HMX). The latter apparently degraded via two potential routes: the first involved N-denitration followed by hydrolytic ring cleavage, and the second involved alpha-hydroxylation prior to ring cleavage. The degradation of 1-NO-HMX gave the ring-cleavage product 4-nitro-2,4-diazabutanal (NDAB), nitrite (NO2 -), nitrous oxide (N2O), and formaldehyde (HCHO). Using [14C]-HMX, we obtained 14CO2 (70% in 50 days), representing three C atoms of HMX. Incubation of real soils, contaminated with either HMX (403 micromol kg(-1)) (military base soil) or HMX (3057 micromol kg(-1)), and RDX (342 micromol kg(-1)) (ammunition soil) with the fungus led to 75 and 19.8% mineralization of HMX (liberated 14CO2), respectively, also via the intermediary formation of 1-NO-HMX. Mineralization in the latter soil increased to 35% after the addition of glucose, indicating that a fungus-based remediation process for heavily contaminated soils is promising. The present findings improve our understanding about the degradation pathway of HMX and demonstrate the utility of using the robust and versatile fungus P. chrysosporium to develop effective remediation processes for the removal of HMX.

  2. Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations.

    Science.gov (United States)

    Shaban, Yasser A; El Sayed, Mohamed A; El Maradny, Amr A; Al Farawati, Radwan Kh; Al Zobidi, Mousa I

    2013-04-01

    The photocatalytic degradation of phenol in seawater was investigated under UV and natural sunlight using visible light active carbon modified (CM)-n-TiO2 nanoparticles, synthesized via a sol-gel method. Carbon modification of n-TiO2 was performed using titanium butoxide, carbon-containing precursor, as a source of both carbon and titanium. For comparison, unmodified n-TiO2 was also synthesized by hydrolysis and oxidation of titanium trichloride in the absence of any carbon source. The presence of carbon in CM-n-TiO2 nanoparticles was confirmed by energy dispersive spectroscopy (EDS) analysis. Carbon modification was found to be responsible for lowering the bandgap energy from 3.14eV for n-TiO2 to 1.86eV for CM-n-TiO2 which in turn enhanced the photocatalytic activity of CM-n-TiO2 towards the degradation of phenol in seawater under illumination of UV light as well as natural sunlight. This enhanced photoresponse of CM-n-TiO2 is in agreement with the UV-Vis spectroscopic results that showed higher absorption of light in both UV and visible regions. The effects of catalyst dose, initial concentration of phenol, and pH were studied. The highest degradation rate was obtained at pH 3 and catalyst dose of 1.0gL(-1). The data photocatalytic degradation of phenol in seawater using CM-n-TiO2 were successfully fitted to Langmuir-Hinshelwood model, and can be described by pseudo-first order kinetics.

  3. Structural Modifications And Mechanical Degradation Of Ion Irradiated Glassy Polymer Carbon

    Science.gov (United States)

    Abunaemeh, Malek; Seif, Mohamed; Elsamadicy, Abdalla; Muntele, Claudiu; Ila, Daryush

    2011-06-01

    The TRISO fuel has been used in some of the Generation IV nuclear reactor designs. It consists of a fuel kernel of UOx coated with several layers of materials with different functions. Pyrolytic carbon (PyC) is one of the materials in the layers. In this study we investigate the possibility of using Glassy Polymeric Carbon (GPC) as an alternative to PyC. GPC is used for artificial heart valves, heat-exchangers, and other high-tech products developed for the space and medical industries. This lightweight material can maintain dimensional and chemical stability in adverse environment and very high temperatures (up to 3000 °C). In this work, we are comparing the changes in physical and microstructure properties of GPC after exposure to irradiation fluence of 5 MeV Ag equivalent to a 1 displacement per atom (dpa) at samples prepared at 1000, 1500 and 2000 °C. The GPC material is manufactured and tested at the Center for Irradiation Materials (CIM) at Alabama A&M University. Transmission electron microscopy (TEM) and Raman spectroscopy were used for analysis.

  4. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon.

    Science.gov (United States)

    Lee, Yu-Chi; Lo, Shang-Lien; Kuo, Jeff; Huang, Chin-Pao

    2013-10-15

    Treatment of persistent perfluorooctanoic acid (PFOA) in water using persulfate (PS) oxidation typically requires an elevated temperature or UV irradiation, which is energy-consuming. Under relatively low temperatures of 25-45°C, activated carbon (AC) activated PS oxidation of PFOA was evaluated for its potential of practical applications. With presence of AC in PS oxidation, PFOA removal efficiency at 25°C reached 682% with a high defluorination efficiency of 549% after 12h and few intermediates of short-chain perfluorinated carboxylic acids (PFCAs) were found. The removal and defluorination rates with the combined AC/PS system were approximately 12 and 19 times higher than those of the PS-only system, respectively. Activated carbon not only removes PFOA through adsorption, but also activates PS to form sulfate radicals that accelerate the decomposition and mineralization of PFOA. The activation energy for PS oxidation of PFOA was reduced from 668 to 261kJ/mol by the catalytic effect of AC, which implies a lower reaction temperature and a shorter reaction time would suffice. A 2-cycle schematic reaction mechanism was used to describe PS oxidation of PFOA with the generation of various intermediates and end-products.

  5. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes

    Science.gov (United States)

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  6. Selection of Pseudomonas sp. strain HBP1 Prp for metabolism of 2-propylphenol and elucidation of the degradative pathway

    NARCIS (Netherlands)

    Kohler, Hans-Peter E.; Maarel, Marc J.E.C. van der; Kohler-Staub, Doris

    1993-01-01

    A mutant of Pseudomonas sp. strain HBP1, originally isolated on 2-hydroxybiphenyl, was selected for the ability to grow on 2-propylphenol as the sole carbon and energy source. In the mutant strain, which was designated as Pseudomonas sp. strain HBP1 Prp, the cellular induction mechanism involved in

  7. Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism.

    Directory of Open Access Journals (Sweden)

    Bin Rui

    Full Text Available NADPH regeneration capacity is attracting growing research attention due to its important role in resisting oxidative stress. Besides, NADPH availability has been regarded as a limiting factor in production of industrially valuable compounds. The central carbon metabolism carries the carbon skeleton flux supporting the operation of NADPH-regenerating enzyme and offers flexibility in coping with NADPH demand for varied intracellular environment. To acquire an insightful understanding of its NADPH regeneration capacity, the elementary mode method was employed to compute all elementary flux modes (EFMs of a network representative of central carbon metabolism. Based on the metabolic flux distributions of these modes, a cluster analysis of EFMs with high NADPH regeneration rate was conducted using the self-organizing map clustering algorithm. The clustering results were used to study the relationship between the flux of total NADPH regeneration and the flux in each NADPH producing enzyme. The results identified several reaction combinations supporting high NADPH regeneration, which are proven to be feasible in cells via thermodynamic analysis and coincident with a great deal of previous experimental report. Meanwhile, the reaction combinations showed some common characteristics: there were one or two decarboxylation oxidation reactions in the combinations that produced NADPH and the combination constitution included certain gluconeogenesis pathways. These findings suggested cyclization pathways as a powerful way for NADPH regeneration capacity of bacterial central carbon metabolism.

  8. Graphene/single-walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway

    Science.gov (United States)

    Yan, Xinxin; Yang, Wen; Shao, Zengwu; Yang, Shuhua; Liu, Xianzhe

    2016-01-01

    Carbon nanomaterials are becoming increasingly significant in biomedical fields since they exhibit exceptional physicochemical and biocompatible properties. Today, the stem cells offer potentially new therapeutic approaches in tissue engineering and regenerative medicine. However, the induction of differentiation into specific lineages remains challenging, which provoked us to explore the biomedical applications of carbon nanomaterials in stem cells. In this study, we investigated the interactions between graphene/single-walled carbon nanotube (G/SWCNT) hybrids and rat mesenchymal stem cells (rMSCs) and focused on the proliferation and differentiation of rMSCs treated with G/SWCNT hybrids. Cell viability and morphology were evaluated using cell counting kit-8 assay and immunofluorescence staining, respectively. Osteogenic differentiation evaluated by alkaline phosphatase activity of MSCs proved to be higher after treatment with G/SWCNT hybrids, and the mineralized matrix nodule formation was also enhanced. In addition, the expression levels of osteogenic-associated genes were upregulated, while the adipocyte-specific markers were downregulated. Consistent with these results, we illustrated that the effect of G/SWCNT hybrids on the process of osteogenic differentiation of rMSCs can be modulated by activating the p38 signaling pathway and inhibiting the extracellular signal-regulated kinase 1/2 pathway. Nevertheless, our study suggests that carbon nanomaterials offer a promising platform for regenerative medicine in the near future.

  9. Isolation,identification,degradation characteristics and pathway of a pyrethroid-degrading bacterial strain%一株拟除虫菊酯农药降解菌的分离鉴定及其降解特性与途径

    Institute of Scientific and Technical Information of China (English)

    陈少华; 罗建军; 胡美英; 赖开平; 耿鹏; 肖盈

    2011-01-01

    A bacterial strain named P-01 was newly isolated by enrichment culture from the activated sludge in the wastewater of a pyrethroid-manufacturer in Zhongshan.Based on the morphology,physio-biochemical characteristics,and 16S rDNA sequence analysis,strain P-01 was temporarily identified as Achromobacter sp.P-01.Response surface methodology(RSM) was used to optimize degradation conditions.The optimal conditions for biodegradation were obtained as follows:31.4℃,pH 7.6 and inoculum biomass 0.4 g · L-1.Under the optimal degradation conditions,strain P-01 could effectively degrade deltamethrin,fenvalerate,beta-cypermethrin,beta-cyfluthrin and cyhalothrin with degradation rates of 98.9%,92.2%,91.0%,85.1% and 77.3%,respectively,within 7 days of incubation.Strain P-01 not only could utilize deltamethrin as the sole carbon source and energy for growth in mineral salt medium(MSM),but also could tolerate and efficiently degrade high concentrations of deltamethrin(100~500 mg · L-1).Furthermore,the degradation reaction followed first-order kinetics and half lives(T1/2) were 1.3,1.8,2.0,2.5 and 3.0 d,respectively.Studies on the degradation pathway showed that deltamethrin was degraded by hydrolysis of the carboxylester linkage to yield alpha-hydroxy-3-phenoxy-benzeneacetonitrile and 3-phenoxy benzaldehyde,and then the intermediates were further degraded by oxygenolysis to form 2-hydroxy-4-methoxy benzophenone and 1,2-benzenedicarboxylic acid,mono ester,finally resulting in complete detoxification.%采用富集培养法,从拟除虫菊酯农药厂废水排放口的活性污泥中分离到1株菊酯农药高效降解菌P-01.经形态、生理生化特征及16S rDNA序列分析,初步鉴定其为无色杆菌属(Achromobacter sp.).响应曲面法优化菌株P-01的降解条件,其降解最优条件为31.4℃、初始pH7.6和接种量0.4g·L-1,在此条件下,该菌株培养7d对50mg·L-1溴氰菊酯、氰戊菊酯、高效氯氰菊酯、高效氟

  10. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China

    Science.gov (United States)

    Peng, F.; Quangang, Y.; Xue, X.; Guo, J.; Wang, T.

    2015-03-01

    The widespread land degradation in an alpine meadow ecosystem would affect ecosystem carbon (C) balance. Biomass, soil chemical properties and carbon dioxide (CO2) of six levels of degraded lands (D1-D6, according to the number of rodent holes and coverage) were investigated to examine the effects of rodent-induced land degradation on an alpine meadow ecosystem. Soil organic carbon (SOC), labile soil carbon (LC), total nitrogen (TN) and inorganic nitrogen (N) were obtained by chemical analysis. Soil respiration (Rs), net ecosystem exchange (NEE) and ecosystem respiration (ER) were measured by a Li-Cor 6400XT. Gross ecosystem production (GEP) was the sum of NEE and ER. Aboveground biomass (AGB) was based on a linear regression with coverage and plant height as independent variables. Root biomass (RB) was obtained by using a core method. Soil respiration, ER, GEP and AGB were significantly higher in slightly degraded (D3 and D6, group I) than in severely degraded land (D1, D2, D4 and D5, group II). Positive values of NEE average indicate that the alpine meadow ecosystem is a weak C sink during the growing season. The only significant difference was in ER among different degradation levels. Rs, ER and GEP were 38.2, 44.3 and 46.5% higher in group I than in group II, respectively. Similar difference of ER and GEP between the two groups resulted in an insignificant difference of NEE. Positive correlations of AGB with ER, NEE and GEP, and relatively small AGB and lower CO2 fluxes in group II, suggest the control of AGB on ecosystem CO2 fluxes. Correlations of RB with SOC, LC, TN and inorganic N indicate the regulation of RB on soil C and N with increasing number of rodent holes in an alpine meadow ecosystem in the permafrost region of the Qinghai-Tibet Plateau (QTP).

  11. Degradation characteristics and identification and the degradation pathway of the atrazine-degrading strain DNS32%阿特拉津降解菌株DNS32的降解特性及分类鉴定与降解途径研究

    Institute of Scientific and Technical Information of China (English)

    郭火生; 王志刚; 孟冬芳; 王洋; 张庆媛; 张颖

    2012-01-01

    [Objective] The objective was to study the identification, degradation characteristics and the degradation pathway of the atrazine-degrading strain DNS32, and enrich the resources of atrazine-degrading bacteria. [Methods] Strain DNS32, which was isolated from black soil in this study, could utilize atrazine as the sole nitrogen source for growth, and its basic degradation characteristics were studied. The 16S rRNA gene phylogenetic analysis was used to identify of the strain DNS32. The degradation pathway was studied by degrading genes amplification and the measurement of the content of the final catabolite. [Results] The results showed that strain DNS32 had greater degradation capacity and could utilize certain amount of atrazine even under a relative low temperature. The 16S rRNA gene phylogenetic analysis showed that the 16S rRNA gene sequence of the strain DNS32 had a 99% similarity with that of Acinetobacter lwoffii. Atrazine-degrading genes trzN, atzB and atzC were amplified by PCR, and these genes enabled strain DNS32 decompose atrazine to cyanuric acid, in accordance with the degradation pathway of Arthrobacter aurescens TC1 proved by the measurement of the atrazine degradation rate and the content of the final catabolite. [Conclusion] This study enriched the resources of atrazine-degrading bacteria and provided useful informations to the study of the atrazine-degrading strains belonging to Acinetobacter.%[目的]研究阿特拉津降解菌株DNS32的菌种分类、降解特性及降解途径,丰富阿特拉津降解菌菌种资源.[方法]在长期施用阿特拉津的东北地区寒地黑土中筛选出一株以阿特拉津为唯一氮源生长的降解菌株DNS32,测定其基本降解特性,通过16SrRNA序列分析进行分类鉴定,并利用阿特拉津降解基因PCR扩增技术及降解产物生成量的测定,进一步揭示其降解途径.[结果]实验结果发现DNS32菌株具有较好的降解能力,且在相对较低温度下

  12. Degradation State and Sequestration Potential of Carbon in Coastal Wetlands of Texas: Mangrove Vs. Saltmarsh Ecosystems

    Science.gov (United States)

    Sterne, A. M. E.; Kaiser, K.; Louchouarn, P.; Norwood, M. J.

    2015-12-01

    The estimated magnitude of the organic carbon (OC) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire OC stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of OC under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze the major classes of biochemicals including total hydrolysable neutral carbohydrates, enantiomeric amino acids, phenols, and cutins/suberins at two study sites located on the Texas coastline to investigate chemical composition and its controls on organic carbon preservation in mangrove (Avicennia germinans) and saltmarsh grass (Spartina alterniflora) dominated wetlands. Results show neutral carbohydrates and lignin contribute 30-70% and 10-40% of total OC, respectively, in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Contrasts in the compositions and relative abundances of all previously mentioned compound classes are further discussed to examine the role of litter biochemistry in OC preservation. For example, the selective preservation of cellulose over hemicellulose in sediments indicates macromolecular structure plays a key role in preservation between plant types. It is concluded that the chemical composition of litter material controls the composition and magnitude of OC stored in sediments. Ultimately, as these ecosystems transition from one dominant plant type to another, as is currently observed along the Texas coastline, there is the potential for OC sequestration efficiency to shift due to the changing composition of OC input to sediments.

  13. Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material.

    Science.gov (United States)

    Andriantsiferana, C; Mohamed, E F; Delmas, H

    2014-01-01

    A sequential adsorption/photocatalytic regeneration process to remove tartrazine, an azo-dye in aqueous solution, has been investigated. The aim ofthis work was to compare the effectiveness of an adsorbent/photocatalyst composite-TiO2 deposited onto activated carbon (AC) - and a simple mixture of powders of TiO2 and AC in same proportion. The composite was an innovative material as the photocatalyst, TiO2, was deposited on the porous surface ofa microporous-AC using metal-organic chemical vapour deposition in fluidized bed. The sequential process was composed of two-batch step cycles: every cycle alternated a step of adsorption and a step of photocatalytic oxidation under ultra-violet (365 nm), at 25 degreeC and atmospheric pressure. Both steps, adsorption and photocatalytic oxidation, have been investigated during four cycles. For both materials, the cumulated amounts adsorbed during four cycles corresponded to nearly twice the maximum adsorption capacities qmax proving the photocatalytic oxidation to regenerate the adsorbent. Concerning photocatalytic oxidation, the degree of mineralization was higher with the TiO2/AC composite: for each cycle, the value of the total organic carbon removal was 25% higher than that obtained with the mixture powder. These better photocatalytic performances involved better regeneration than higher adsorbed amounts for cycles 2, 3 and 4. Better performances with this promising material - TiO2 deposited onto AC - compared with TiO2 powder could be explained by the vicinity of photocatalytic and AC adsorption sites.

  14. GPG-NH2 acts via the metabolite αHGA to target HIV-1 Env to the ER-associated protein degradation pathway

    Directory of Open Access Journals (Sweden)

    Vahlne Anders

    2010-03-01

    Full Text Available Abstract Background The synthetic peptide glycyl-prolyl-glycine amide (GPG-NH2 was previously shown to abolish the ability of HIV-1 particles to fuse with the target cells, by reducing the content of the viral envelope glycoprotein (Env in progeny HIV-1 particles. The loss of Env was found to result from GPG-NH2 targeting the Env precursor protein gp160 to the ER-associated protein degradation (ERAD pathway during its maturation. However, the anti-viral effect of GPG-NH2 has been shown to be mediated by its metabolite α-hydroxy-glycineamide (αHGA, which is produced in the presence of fetal bovine serum, but not human serum. In accordance, we wanted to investigate whether the targeting of gp160 to the ERAD pathway by GPG-NH2 was attributed to its metabolite αHGA. Results In the presence of fetal bovine serum, GPG-NH2, its intermediary metabolite glycine amide (G-NH2, and final metabolite αHGA all induced the degradation of gp160 through the ERAD pathway. However, when fetal bovine serum was replaced with human serum only αHGA showed an effect on gp160, and this activity was further shown to be completely independent of serum. This indicated that GPG-NH2 acts as a pro-drug, which was supported by the observation that it had to be added earlier to the cell cultures than αHGA to induce the degradation of gp160. Furthermore, the substantial reduction of Env incorporation into HIV-1 particles that occurs during GPG-NH2 treatment was also achieved by treating HIV-1 infected cells with αHGA. Conclusions The previously observed specificity of GPG-NH2 towards gp160 in HIV-1 infected cells, resulting in the production of Env (gp120/gp41 deficient fusion incompetent HIV-1 particles, was most probably due to the action of the GPG-NH2 metabolite αHGA.

  15. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  16. Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine

    Directory of Open Access Journals (Sweden)

    Raman Gurusamy

    2013-01-01

    Full Text Available Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites.

  17. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst.

    Science.gov (United States)

    Wang, Yamin; Wei, Huangzhao; Zhao, Ying; Sun, Wenjing; Sun, Chenglin

    2017-03-15

    The sludge-derived carbon catalyst modified with 0°C HNO3 solution was tested in catalytic wet peroxide oxidation of m-cresol (100mgL(-1)) with systematical mathematical models and theoretical calculation for the first time. The reaction conditions were optimized by response surface methodology (RSM) as T=60°C, initial pH=3.0, C0,H2O2(30%)=1.20gL(-1) (lower than the stoichiometric amount of 1.80gL(-1)) and Ccat=0.80gL(-1), with 96% of m-cresol and 47% of TOC converted after 16min and 120min of reaction, respectively, and ξ (mg TOC/g H2O2 fed)=83.6mg/g. The end time of the first kinetic period in m-cresol model was disclosed to be correlated with the fixed residue m-cresol concentration of about 33%. Furthermore, the kinetic constants in models of TOC and H2O2 exactly provide convincing proof of three-dimensional response surfaces analysis by RSM, which showed the influence of the interaction between organics and H2O2 on effective H2O2 utilization. The reaction intermediates over time were identified by gas chromatography-mass spectrometer based on kinetics analysis. Four degradation pathways for m-cresol were proposed, of which the possibility and feasibility were well proven by frontier molecule orbital theory and atomic charge distribution via density functional theory method.

  18. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Directory of Open Access Journals (Sweden)

    Eleftheria eAntoniou

    2015-04-01

    Full Text Available Biosurfactants (BS are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on biosurfactant production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography (TLC and Fourier transform infrared spectroscopy (FT-IR. Results indicate that biosurfactant production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil implies that the BS producing microbes generate no more than the required amount of biosurfactants that enables biodegradation of the crude oil. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of crude oil has emerged as a promising substrate for BS production (by marine BS producers with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  19. Genetic Variation in the Histamine Production, Response, and Degradation Pathway Is Associated with Histamine Pharmacodynamic Response in Children with Asthma

    Science.gov (United States)

    Jones, Bridgette L.; Sherwin, Catherine M. T.; Liu, Xiaoxi; Dai, Hongying; Vyhlidal, Carrie A.

    2017-01-01

    Introduction: There is growing knowledge of the wide ranging effects of histamine throughout the body therefore it is important to better understand the effects of this amine in patients with asthma. We aimed to explore the association between histamine pharmacodynamic (PD) response and genetic variation in the histamine pathway in children with asthma. Methods: Histamine Iontophoresis with Laser Doppler Monitoring (HILD) was performed in children with asthma and estimates for area under the effect curve (AUEC), maximal response over baseline (Emax), and time of Emax (Tmax) were calculated using non-compartmental analysis and non-linear mixed-effects model with a linked effect PK/PD model. DNA isolation and genotyping were performed among participants to detect known single nucleotide polymorphisms (SNPs) (n = 10) among genes (HDC, HNMT, ABP1, HRH1, HRH4) within the histamine pathway. General linear model was used to identify associations between histamine related genetic variants and measured histamine PD response parameters. Results: Genotyping and HILD response profiles were completed for 163 children. ABP1 47 C/T, ABP1 4107, and HNMT-1639 C/Twere associated with Emax (ABP1 47 CC genotype mean Emax 167.21 vs. CT/TT genotype mean Emax 139.20, p = 0.04; ABP1 4107 CC genotype mean Emax 141.72 vs. CG/GG genotype mean Emax 156.09, p = 0.005; HNMT-1639 CC genotype mean Emax 132.62 vs. CT/TT genotype mean Emax 155.3, p = 0.02). In a stratified analysis among African American children only, ABP1 and HNMT SNPs were also associated with PD response; HRH4 413 CC genotype was associated with lower Emax, p = 0.009. Conclusions: We show for the first time that histamine pathway genetic variation is associated with measureable changes in histamine response in children with asthma. The variability in histamine response and impact of histamine pathway genotype is important to further explore in patients with asthma so as to improve disease phenotyping leading to more

  20. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahuactzin-Pérez, Miriam [Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) (Mexico); Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala (Mexico); Tlecuitl-Beristain, Saúl; García-Dávila, Jorge [Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala CP 90180 (Mexico); González-Pérez, Manuel [Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410 (Mexico); Gutiérrez-Ruíz, María Concepción [Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, D.F (Mexico); Sánchez, Carmen, E-mail: sanher6@hotmail.com [Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala CP. 90062 (Mexico)

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X{sub max}), biodegradation constant of DEHP (k), half-life (t{sub 1/2}) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X{sub max} occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t{sub 1/2} were 0.024 h{sup −1} and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  1. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiyuan; Li, Yanli [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Xiang, Luojing [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Huang, Qianqian; Qiu, Juanjuan [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Valange, Sabine, E-mail: sabine.valange@univ-poitiers.fr [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France)

    2015-04-28

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al{sub 2}O{sub 3} pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment.

  2. Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells - Local H2 Starvation and Start-Stop Induced Carbon-Support Corrosion

    Science.gov (United States)

    Gu, Wenbin; Yu, Paul T.; Carter, Robert N.; Makharia, Rohit; Gasteiger, Hubert A.

    Carbon-support corrosion causes electrode structure damage and thus electrode degradation. This chapter discusses fundamental models developed to predict cathode carbon-support corrosion induced by local H2 starvation and start-stop in a proton-exchange-membrane (PEM) fuel cell. Kinetic models based on the balance of current among the various electrode reactions are illustrative, yielding much insight on the origin of carbon corrosion and its implications for future materials developments. They are particularly useful in assessing carbon corrosion rates at a quasi-steady-state when an H2-rich region serves as a power source that drives an H2-free region as a load. Coupled kinetic and transport models are essential in predicting when local H2 starvation occurs and how it affects the carbon corrosion rate. They are specifically needed to estimate length scales at which H2 will be depleted and time scales that are valuable for developing mitigation strategies. To predict carbon-support loss distributions over an entire active area, incorporating the electrode pseudo-capacitance appears necessary for situations with shorter residence times such as start-stop events. As carbon-support corrosion is observed under normal transient operations, further model improvement shall be focused on finding the carbon corrosion kinetics associated with voltage cycling and incorporating mechanisms that can quantify voltage decay with carbon-support loss.

  3. Sonolytic degradation of 2-chlorobiphenyl

    Institute of Scientific and Technical Information of China (English)

    张光明; 华天星; 常爱敏

    2004-01-01

    The sonolytic degradation of 2-chlorobiphenyl was investigated. Mass spectroscopy was used to detect the products of sonolytic degradation of 2-chlorobiphenyl. The results show that the products of sonolytic degradation, such as biphenyl, ethyl benzene, diethylbiphenyl, dibutylbiphenyl, phenol, propylphenol and di-tert-butyl phenol are produced by thermolysis and hydroxyl free radical reactions, in which biphenyl counts for almost 40%(mole fraction) of the mother compound and others are at trace level. Rapid accumulation of chloride ion shows quick dechlorination, and 78% organic chlorine is converted into chloride ion. Free radical scavengers, bicarbonate and carbonate, decrease the reaction rate of sonolytic degradation of 2-chlorobiphenyl significantly, and the pseudo 1st order rate constant of sonolytic degradation of 2-chlorobiphenyl decreases linearly with the natural logarithm of the concentration of the added free radical scavenger, showing that the pyrolysis and hydroxyl free radical reaction are the two major pathways for the sonolytic degradation of 2-chlorobiphenyl, in which the hydroxyl radical concentration is estimated to be 1 × 10 10mol/L.

  4. Visible Light Assisted Heterogeneous Fenton-like Degradation of Organic Pollutant via α-FeOOH/Mesoporous Carbon Composites.

    Science.gov (United States)

    Qian, Xufang; Ren, Meng; Zhu, Yao; Yue, Dongting; Han, Yu; Jia, Jinping; Zhao, Yixin

    2017-03-03

    A α-FeOOH/mesoporous carbon (α-FeOOH/MesoC) composite prepared by in situ crystallization of adsorbed ferric ions within carboxyl functionalized mesoporous carbon was developed as a novel visible light assisted heterogeneous Fenton-like catalyst. The visible light active α-FeOOH nanocrystals were encapsulated in the mesoporous frameworks accompanying with surface attached large α-FeOOH microcrystals via C-O-Fe bonding. Assisting with visible light irradiation on α-FeOOH/MesoC, the mineralization efficiency increased owing to the photocatalytic promoted catalyzing H2O2 beyond the photo-thermal effect. The synergistic effect between α-FeOOH and MesoC in α-FeOOH/MesoC composite improved the mineralization efficiency than the mixture catalyst of α-FeOOH and MesoC. The iron leaching is greatly suppressed on the α-FeOOH/MesoC composite. Interestingly, the reused α-FeOOH/MesoC composites showed much higher phenol oxidation and mineralization efficiencies than the fresh catalyst and homogeneous Fenton system (FeSO4/H2O2). The XPS, XRD, FTIR and textural property results reveal that the great enhancement comes from the interfacial emerged oxygen containing groups between α-FeOOH and MesoC after the first heterogeneous Fenton-like reaction. In summary, visible light induced photocatalysis assisted heterogeneous Fenton-like process in the α-FeOOH/MesoC composite system improved the HO• production efficiency and Fe(III)/Fe(II) cycle and further activated the interfacial catalytic sites, which finally realize an extraordinary higher degradation and mineralization efficiency.

  5. Kinetic analysis and degradation pathway for m-dichlorobenzene removal by Brevibacillus agri DH-1 and its performance in a biotrickling filter.

    Science.gov (United States)

    Yang, Bai-Ren; Sun, Zhu-Qiu; Wang, Li-Ping; Li, Zhao-Xia; Ding, Cheng

    2017-05-01

    A strain, Brevibacillus agri DH-1, isolated from dry lands was used to remove m-dichlorobenzene. After 48h culturing, the concentrations of m-dichlorobenzene decreased from 26-130 to 7.87-28.87mg/L and dry cell weight for bacterial growth reached 52.43-75.05mg/L. The growth and degradation kinetics were analyzed by the fitting of Haldane-Andrews model and pseudo first-order model. A degradation pathway was proposed according to major intermediates (phenol), chloride ion variation, ring-opening enzyme activity, and high mineralization (0.47gCl-/gm-dichlorobenzene, 0.65 gco2/gm-dichlorobenzene, 0.15 gDCW/gm-dichlorobenzene). In addition, the performance in a biotrickling filter (BTF) was evaluated through removal efficiency and pressure drop values with increasing inlet loading rate from 4.10 to 122.57g/m(3)/h at three empty bed residence time points (30s, 60s, and 90s). The results demonstrated that strain DH-1 possessed high removal efficiency and stable operation in a BTF.

  6. Electroacupuncture inhibits apoptosis in annulus fibrosis cells through suppression of the mitochondria-dependent pathway in a rat model of cervical intervertebral disc degradation

    Directory of Open Access Journals (Sweden)

    Jun Liao

    2012-01-01

    Full Text Available The purpose of this study was to investigate whether treatment with electroacupuncture (EA inhibited mitochondria-dependent apoptosis in annulus fibrosis (AF cells in a rat model of cervical intervertebral disc degradation induced by unbalanced dynamic and static forces. Forty Sprague-Dawley rats were used in this study, of which 30 underwent surgery to induce cervical intervertebral disc degradation, 10 rats received EA at acupoints Dazhui (DU 14 and Shousanli (LI 10. TUNEL staining was measured to assess apoptosis in AF cells, immunohistochemistry was used to examine Bcl-2 and Bax expression, colorimetric assays were used to determine caspase 9 and caspase 3 activities and RT-PCR and western blotting were used to assess the mRNA and protein expression of Crk and ERK2. Treatment with EA reduced the number of AF-positive cells in TUNEL staining, increased Bcl-2-positive cells and decreased Bax-positive cells in immunohistochemical staining, significantly inhibited the activation of caspases-9 and -3, and enhanced the mRNA and protein expression of Crk and ERK2. Our data show that EA inhibits AF cell apoptosis via the mitochondria-dependent pathway and up-regulates Crk and ERK2 expression. These results suggest that treatment with may be a good alternative therapy for preventing cervical spondylosis.

  7. DDE remediation and degradation.

    Science.gov (United States)

    Thomas, John E; Ou, Li-Tse; All-Agely, Abid

    2008-01-01

    DDT and its metabolites, DDD and DDE, have been shown to be recalcitrant to degradation. The parent compound, DDT, was used extensively worldwide starting in 1939 and was banned in the United States in 1973. The daughter compound, DDE, may result from aerobic degradation, abiotic dehydrochlorination, or photochemical decomposition. DDE has also occurred as a contaminant in commercial-grade DDT. The p,p'-DDE isomer is more biologically active than the o,p-DDE, with a reported half-life of -5.7 years. However, when DDT was repeatedly applied to the soil, the DDE concentration may remain unchanged for more than 20 yr. Remediation of DDE-contaminated soil and water may be done by several techniques. Phytoremediation involves translocating DDT, DDD, and DDE from the soil into the plant, although some aquatic species (duckweed > elodea > parrot feather) can transform DDT into predominantly DDD with some DDE being formed. Of all the plants that can uptake DDE, Cucurbita pepo has been the most extensively studied, with translocation values approaching "hyperaccumulation" levels. Soil moisture, temperature, and plant density have all been documented as important factors in the uptake of DDE by Cucurbita pepo. Uptake may also be influenced positively by amendments such as biosurfactants, mycorrhizal inoculants, and low molecular weight organic acids (e.g., citric and oxalic acids). DDE microbial degradation by dehalogenases, dioxygenases, and hydrolases occurs under the proper conditions. Although several aerobic degradation pathways have been proposed, none has been fully verified. Very few aerobic pure cultures are capable of fully degrading DDE to CO2. Cometabolism of DDE by Pseudomonas sp., Alicaligens sp., and Terrabacter sp. grown on biphenyl has been reported; however, not all bacterial species that produce biphenyl dioxygenase degraded DDE. Arsenic and copper inhibit DDE degradation by aerobic microorganisms. Similarly, metal chelates such as EDTA inhibit the

  8. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway

    Science.gov (United States)

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-09-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the u