WorldWideScience

Sample records for carbon degradation pathways

  1. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway.

    Science.gov (United States)

    Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien

    2015-10-27

    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs.

  2. Use of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater.

    Science.gov (United States)

    Palau, Jordi; Jamin, Pierre; Badin, Alice; Vanhecke, Nicolas; Haerens, Bruno; Brouyère, Serge; Hunkeler, Daniel

    2016-04-01

    Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ(13)C/Δδ(37)Cl) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r(2) = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field. PMID:26874254

  3. Lysosome: regulator of lipid degradation pathways

    OpenAIRE

    Settembre, Carmine; Ballabio, Andrea

    2014-01-01

    Autophagy is a catabolic pathway that has a fundamental role in the adaptation to fasting and primarily relies on the activity of the endolysosomal system, to which the autophagosome targets substrates for degradation. Recent studies have revealed that the lysosomal–autophagic pathway plays an important part in the early steps of lipid degradation. In this review, we discuss the transcriptional mechanisms underlying co-regulation between lysosome, autophagy, and other steps of lipid catabolis...

  4. Structure of PhnP: a phosphodiesterase of the carbon-phosphorous lyase pathway for phosphonate degradation

    DEFF Research Database (Denmark)

    Podzelinska, Kateryna; He, Shu-Mei; Wathier, Matthew;

    2009-01-01

    Carbon-phosphorus lyase is a multienzyme system encoded by the phn operon that enables bacteria to metabolize organophosphonates when the preferred nutrient, inorganic phosphate, is scarce. One of the enzymes encoded by this operon, PhnP, is predicted by sequence homology to be a metal-dependent ......Carbon-phosphorus lyase is a multienzyme system encoded by the phn operon that enables bacteria to metabolize organophosphonates when the preferred nutrient, inorganic phosphate, is scarce. One of the enzymes encoded by this operon, PhnP, is predicted by sequence homology to be a metal....... A second, remote Zn2+ binding site is also observed, composed of a set of cysteine and histidine residues that are strictly conserved in the PhnP family. This second metal ion site appears to stabilize a structural motif....

  5. Degradation of endogenous hepatic heme by pathways not yielding carbon monoxide. Studies in normal rat liver and in primary hepatocyte culture.

    OpenAIRE

    Bissell, D. M.; Guzelian, P S

    1980-01-01

    The conversion of endogenous hepatic heme to bilirubin and CO is established. However, it is unknown whether this process is quantitative or whether heme may be degraded to other products as well. To study this question, we administered the heme precursor, delta-amino-[5-14C]levulinic acid to rats in vivo. In liver, [14C]heme was predominately associated with microsomal cytochromes, and its degradation was examined over a period of 12--14 h; concurrently, excretion of labeled carbon monoxide ...

  6. Degradation of aromatic compounds and degradative pathway of 4-nitrocatechol by Ochrobactrum sp. B2.

    Science.gov (United States)

    Zhong, Qiuzan; Zhang, Haiyan; Bai, Wenqin; Li, Mei; Li, Baotong; Qiu, Xinghui

    2007-12-01

    The potential capacity of a soil methyl parathion-degrading bacterium strain, Ochrobactrum sp. B2, for degrading various aromatic compounds were investigated. The results showed B2 was capable of degrading diverse aromatic compounds, but amino-substituted benzene compounds, at a concentration up to 100 mg L(-1) in 4 days. B2 could use 4-nitrocatechol (4-NC) as a sole carbon and energy source with release of nitrite ion. The pathway for 4-NC degradation via 1,2,4-benzenetriol (BT) and hydroquinone (HQ) formation in B2 was proposed based on the identification and quantification of intermediates by gas chromatography-mass spectrometry (GC-MS), and high performance liquid chromatography (HPLC). Degradation studies carried out on a plasmid-cured derivative showed that the genes for 4-NC degradative pathway was plasmid-borne in B2, suggesting that B2 degrades both p-nitrophenol and 4-NC by enzymes encoded by genes on the same plasmid.

  7. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  8. Improving Carbon Fixation Pathways

    OpenAIRE

    Ducat, Daniel C.; Silver, Pamela A

    2012-01-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing...

  9. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14C-labeled MWCNTs into 14CO2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14C-labeled multiwall carbon nanotubes can be degraded to 14CO2 and other byproducts by a bacteria community under natural conditions

  10. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    Science.gov (United States)

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments. PMID:27079576

  11. Mechanochemical degradation of tetrabromobisphenol A: Performance, products and pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kunlun; Huang, Jun; Zhang, Wang; Yu, Yunfei; Deng, Shubo [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Yu, Gang, E-mail: yg-den@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Fe + SiO{sub 2} shows better performance than CaO in mechanochemical destruction of TBBPA. Black-Right-Pointing-Pointer Nonhazardous inorganic carbon and soluble bromide were the final products. Black-Right-Pointing-Pointer Raman and FTIR imply the generation of inorganic carbon and removal of bromine atom. Black-Right-Pointing-Pointer Tri-BBPA, bi-BBPA, mono-BBPA, BPA were the main intermediates during ball milling. Black-Right-Pointing-Pointer The bromine was balanced and the degradation pathway was proposed. - Abstract: Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant (BFR), which has received more and more concerns due to its high lipophilicity, persistency and endocrine disrupting property in the environment. Considering the possible need for the safe disposal of TBBPA containing wastes in the future, the potential of mechanochemical (MC) destruction as a promising non-combustion technology was investigated in this study. TBBPA was co-ground with calcium oxide (CaO) or the mixture of iron powder and quartz sand (Fe + SiO{sub 2}) in a planetary ball mill at room temperature. The method of Fe + SiO{sub 2} destructed over 98% of initial TBBPA after 3 h and acquired 95% debromination rate after 5 h, which showed a better performance than the CaO method. Raman spectra and Fourier transform infrared spectroscopy (FTIR) demonstrated the generation of inorganic carbon with the disappearance of benzene ring and C-Br bond, indicating the carbonization and debromination process during mechanochemical reaction. LC-MS-MS screening showed that the intermediates of the treatment with Fe + SiO{sub 2} were tri-, bi-, mono-brominated BPA, BPA and other fragments. Finally all the intermediates were also destroyed after 5 h grinding. The bromine balance was calculated and a possible reaction pathway was proposed.

  12. Microbial PAH-Degradation in Soil: Degradation Pathways and Contributing Factors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu-Xiang; CHENG Shu-Pei; ZHU Cheng-Jun; SUN Shi-Lei

    2006-01-01

    Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.

  13. Metabolic pathway engineering of the toluene degradation pathway

    OpenAIRE

    Regan, L.

    1995-01-01

    This thesis addresses the problem of how to examine a metabolic pathway and identify what are the key elements, specifically with respect to rate-limitation. The aim is to be able to analyze a pathway, identify the bottlenecks and implement genetic modifications to remove these bottlenecks. This is done by defining the system of interest and developing a predictive model using kinetic data. The model predictions can then be verified using fermentation data and genetic technique...

  14. Phenanthrene-degrading pathway of Agrobacterium sp. Phx1

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; YUAN Hongli; WANG Shuangqing; HUANG Huaizeng

    2005-01-01

    The metabolic pathway of phenanthrene-degrading strain Agrobacterium sp. Phx1 was investigated. Phx1 almost was able to transform 100 υg/mL of phenanthrene completely in 1 day in broth media of beef extract-peptone (BP), Luria-Bertani (LB) and mineral salts media (MS), and LB and BP could promote the growth and degradation efficiency of Phx1. The GC-MS was employed to analyze the metabolites of the 1st, 3rd, 7th days of phenanthrene degradation in MS. As a result, the 1-Hydroxy-2-naphthoic acid (1H2N) and 1-naphthol (NOL) were detected in the metabolites of the 1st day. Only NOL was observed on the 3rd day and it disappeared on the 7th day. The accumulated NOL did not pertain to the defined pathway of phenanthrene degradation by bacteria. The further HPLC study confirmed the finding in GC-MS analysis and found the production of catechol (CAT) from o-phthalic acid (OPA) in the phenanthrene metabolizing, which has never been reported in the defined degrading pathways. This production was also evidenced by the production of CAT using OPA as substrate. All of our results showed that the Agrobacterium sp. Phx1 had a novel phenanthrene-degrading pathway.

  15. Growth of carbon nanotubes on carbon fibers without strength degradation

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Niels [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Magrez, Arnaud; Forro, Laszlo [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Couteau, Edina; Locquet, Jean-Pierre [Laboratory of Solid-State Physics and Magnetism, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Seo, Jin Won [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2012-12-15

    Carbon nanotubes (CNTs) are grown on PAN-based carbon fibers by means of catalytic chemical vapor deposition technique. By using catalytic thermal decomposition of hydrocarbon, CNTs can be grown in the temperature range of 650-750 C. However, carbon fibers suffer significant damages resulting in decrease of initial tensile strength. By applying the oxidative dehydrogenation reaction of C{sub 2}H{sub 2} with CO{sub 2}, we found an alternative way to grow CNTs on carbon fibers at low temperatures, such as 500 C. Scanning electron microscope results combined with single fiber tests indicate that this low temperature growth enables homogeneous grafting of CNTs onto carbon fibers without degradation of tensile strength. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134.

    OpenAIRE

    Harker, A R; Kim, Y.

    1990-01-01

    The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent p...

  17. Epoxy Coenzyme A Thioester pathways for degradation of aromatic compounds.

    Science.gov (United States)

    Ismail, Wael; Gescher, Johannes

    2012-08-01

    Aromatic compounds (biogenic and anthropogenic) are abundant in the biosphere. Some of them are well-known environmental pollutants. Although the aromatic nucleus is relatively recalcitrant, microorganisms have developed various catabolic routes that enable complete biodegradation of aromatic compounds. The adopted degradation pathways depend on the availability of oxygen. Under oxic conditions, microorganisms utilize oxygen as a cosubstrate to activate and cleave the aromatic ring. In contrast, under anoxic conditions, the aromatic compounds are transformed to coenzyme A (CoA) thioesters followed by energy-consuming reduction of the ring. Eventually, the dearomatized ring is opened via a hydrolytic mechanism. Recently, novel catabolic pathways for the aerobic degradation of aromatic compounds were elucidated that differ significantly from the established catabolic routes. The new pathways were investigated in detail for the aerobic bacterial degradation of benzoate and phenylacetate. In both cases, the pathway is initiated by transforming the substrate to a CoA thioester and all the intermediates are bound by CoA. The subsequent reactions involve epoxidation of the aromatic ring followed by hydrolytic ring cleavage. Here we discuss the novel pathways, with a particular focus on their unique features and occurrence as well as ecological significance.

  18. Enzyme-catalyzed degradation of carbon nanomaterials

    Science.gov (United States)

    Kotchey, Gregg P.

    Carbon nanotubes and graphene, the nanoscale sp 2 allotropes of carbon, have garnered widespread attention as a result of their remarkable electrical, mechanical, and optical properties and the promise of new technologies that harness these properties. Consequently, these carbon nanomaterials (CNMs) have been employed for diverse applications such as electronics, sensors, composite materials, energy conversion devices, and nanomedicine. The manufacture and eventual disposal of these products may result in the release of CNMs into the environment and subsequent exposure to humans, animals, and vegetation. Given the possible pro-inflammatory and toxic effects of CNMs, much attention has been focused on the distribution, toxicity, and persistence of CNMs both in living systems and the environment. This dissertation will guide the reader though recent studies aimed at elucidating fundamental insight into the persistence of CNMs such as carbon nanotubes (CNTs) and graphene derivatives (i.e., graphene oxide and reduced graphene oxide). In particular, in-testtube oxidation/degradation of CNMs catalyzed by peroxidase enzymes will be examined, and the current understanding of the mechanisms underlying these processes will be discussed. Finally, an outlook of the current field including in vitro and in vivo biodegradation experiments, which have benefits in terms of human health and environmental safety, and future directions that could have implications for nanomedical applications such as imaging and drug delivery will be presented. Armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation/biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. For example, in nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. Also, the incorporation of CNMs with defect sites in consumer

  19. Vacuole import and degradation pathway:Insights into a specialized autophagy pathway

    Institute of Scientific and Technical Information of China (English)

    Abbas; A; Alibhoy; Hui-Ling; Chiang

    2011-01-01

    Glucose deprivation induces the synthesis of pivotagluconeogenic enzymes such as fructose-1,6-bisphos-phatase, malate dehydrogenase, phosphoenolpyruvatecarboxykinase and isocitrate lyase in Saccharomycescerevisiae. However, following glucose replenishment,these gluconeogenic enzymes are inactivated and de-graded. Studies have characterized the mechanismsby which these enzymes are inactivated in response toglucose. The site of degradation of these proteins hasalso been ascertained to be dependent on the dura-tion of starvation. Glucose replenishment of short-termstarved cells results in these proteins being degradedin the proteasome. In contrast, addition of glucose tocells starved for a prolonged period results in theseproteins being degraded in the vacuole. In the vacuoledependent pathway, these proteins are sequestered inspecialized vesicles termed vacuole import and degra-dation (Vid). These vesicles converge with the endo-cytic pathway and deliver their cargo to the vacuolefor degradation. Recent studies have identified thatinternalization, as mediated by actin polymerization, isessential for delivery of cargo proteins to the vacuolefor degradation. In addition, components of the targetof rapamycin complex 1 interact with cargo proteins during glucose starvation. Furthermore, Tor1p dissoci-ates from cargo proteins following glucose replenish-ment. Future studies will be needed to elaborate on the importance of internalization at the plasma membrane and the subsequent import of cargo proteins into Vid vesicles in the vacuole dependent degradation pathway.

  20. Kynurenine pathway in psychosis: evidence of increased tryptophan degradation.

    LENUS (Irish Health Repository)

    Barry, Sandra

    2009-05-01

    The kynurenine pathway of tryptophan degradation may serve to integrate disparate abnormalities heretofore identified in research aiming to elucidate the complex aetiopathogenesis of psychotic disorders. Post-mortem brain tissue studies have reported elevated kynurenine and kynurenic acid in the frontal cortex and upregulation of the first step of the pathway in the anterior cingulate cortex of individuals with schizophrenia. In this study, we examined kynurenine pathway activity by measuring tryptophan breakdown, a number of pathway metabolites and interferon gamma (IFN-gamma), which is the preferential activator of the first-step enzyme, indoleamine dioxygenase (IDO), in the plasma of patients with major psychotic disorder. Plasma tryptophan, kynurenine pathway metabolites were measured using high-performance liquid chromatography (HPLC) in 34 patients with a diagnosis on the psychotic spectrum (schizophrenia or schizoaffective disorder) and in 36 healthy control subjects. IFN-gamma was measured using enzyme-linked immunosorbent assay (ELISA). The mean tryptophan breakdown index (kynurenine\\/tryptophan) was significantly higher in the patient group compared with controls (P < 0.05). IFN-gamma measures did not differ between groups (P = 0.23). No relationship was found between measures of psychopathology, symptom severity and activity in the first step in the pathway. A modest correlation was established between the tryptophan breakdown index and illness duration. These results provide evidence for kynurenine pathway upregulation, specifically involving the first enzymatic step, in patients with major psychotic disorder. Increased tryptophan degradation in psychoses may have potential consequences for the treatment of these disorders by informing the development of novel therapeutic compounds.

  1. Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway.

    Science.gov (United States)

    Chauhan, A; Samanta, S K; Jain, R K

    2000-05-01

    Pseudomonas cepacia RKJ200 (now described as Burkholderia cepacia) has been shown to utilize p-nitrophenol (PNP) as sole carbon and energy source. The present work demonstrates that RKJ200 utilizes 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy, and is degraded with concomitant release of nitrite ions. Several lines of evidence, including thin layer chromatography, gas chromatography, 1H-nuclear magnetic resonance, gas chromatography-mass spectrometry, spectral analyses and quantification of intermediates by high performance liquid chromatography, have shown that NC is degraded via 1,2, 4-benzenetriol (BT) and hydroquinone (HQ) formation. Studies carried out on a PNP- derivative and a PNP+ transconjugant also demonstrate that the genes for the NC degradative pathway reside on the plasmid present in RKJ200; the same plasmid had earlier been shown to encode genes for PNP degradation, which is also degraded via HQ formation. It is likely, therefore, that the same sets of genes encode the further metabolism of HQ in NC and PNP degradation.

  2. Iodinated contrast media electro-degradation: Process performance and degradation pathways

    International Nuclear Information System (INIS)

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm2 with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm2 with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm2 with energy consumption higher than 370 kWh/m3. Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. - Highlights: • The electrochemical degradation of six iodinated contrast media were investigated. • Treatment feasibility as well as reaction by-products and toxicity were investigated. • In all the investigated cases, the removal efficiency was higher than 80%. • Two main degradation pathways were identified

  3. Iodinated contrast media electro-degradation: Process performance and degradation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe, E-mail: giuseppe.mascolo@ba.irsa.cnr.it

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm{sup 2} with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm{sup 2} with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm{sup 2} with energy consumption higher than 370 kWh/m{sup 3}. Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. - Highlights: • The electrochemical degradation of six iodinated contrast media were investigated. • Treatment feasibility as well as reaction by-products and toxicity were investigated. • In all the investigated cases, the removal efficiency was higher than 80%. • Two main degradation pathways were identified.

  4. Complementary roles of intracellular and pericellular collagen degradation pathways in vivo

    DEFF Research Database (Denmark)

    Wagenaar-Miller, Rebecca A; Engelholm, Lars H; Gavard, Julie;

    2007-01-01

    Collagen degradation is essential for cell migration, proliferation, and differentiation. Two key turnover pathways have been described for collagen: intracellular cathepsin-mediated degradation and pericellular collagenase-mediated degradation. However, the functional relationship between these ...

  5. Degradation of phenazone in aqueous solution with ozone: influencing factors and degradation pathways.

    Science.gov (United States)

    Miao, Heng-Feng; Cao, Meng; Xu, Dan-Yao; Ren, Hong-Yan; Zhao, Ming-Xing; Huang, Zhen-Xing; Ruan, Wen-Quan

    2015-01-01

    Oxidation kinetics and degradation pathways of phenazone (an analgesic and antipyretic drug) upon reaction with O3 were investigated. Kinetic studies on degradation of phenazone were carried out under different operating conditions such as temperature, pH, anions and H2O2 addition. Results showed that the degradation followed the pseudo-first-order kinetic model. The reaction rate constant (kobs) of phenazone reached the maximum at 20 °C (9.653×10(-3) s(-1)). The presence of NO3(-) could enhance the degradation rate, while the addition of HCO3(-), SO4(2)(-), Cl(-) and the rise of pH showed negative effects on the ozonation of phenazone. H2O2 addition increased the phenazone degradation efficiency by 45.9% with the optimal concentration of 0.135 mM. Reaction by-products were evaluated by UPLC-Q-TOF-MS, which allowed the identification of a total of 10 by-products. The transformation pathways of phenazone ozonation consisted mainly of electrophilic addition and substitution, pyrazole ring opening, hydroxylation, dephenylization and coupling. The toxicity of these intermediate products showed that they are expected not to be more toxic than phenazone, with the exception of P7 (aniline) and P10 (1,5-dimethyl-4-((1-methyl-2-phenylhydrazinyl)methoxy)-2-phenyl-1H-pyrazol-3(2H)-one).

  6. Aerobic Degradation of Dinitrotoluenes and Pathway for Bacterial Degradation of 2,6-Dinitrotoluene

    OpenAIRE

    Nishino, Shirley F.; Paoli, George C.; Spain, Jim C.

    2000-01-01

    An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2,6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon...

  7. Degradation changes stable carbon isotope depth profiles in palsa peatlands

    Directory of Open Access Journals (Sweden)

    J. P. Krüger

    2014-01-01

    Full Text Available Palsa peatlands are a significant carbon pool in the global carbon cycle and are projected to change by global warming due to accelerated permafrost thaw. Our aim was to use stable carbon isotopes as indicators of palsa degradation. Depth profiles of stable carbon isotopes generally reflect organic matter dynamics in soils with an increase of δ13C values during aerobic decomposition and stable or decreasing δ13C values with depth during anaerobic decomposition. Stable carbon isotope depth profiles of undisturbed and degraded sites of hummocks as well as hollows at three palsa peatlands in northern Sweden were used to investigate the degradation processes. The depth patterns of stable isotopes clearly differ between intact and degraded hummocks at all sites. Erosion and cryoturbation at the degraded sites significantly changes the stable carbon isotope depth profiles. At the intact hummocks the uplifting of peat material by permafrost is indicated by a turning in the δ13C depth trend and this assessment is supported by a change in the C / N ratios. For hollows isotope patterns were less clear, but some hollows and degraded hollows in the palsa peatlands show differences in their stable carbon isotope depth profiles indicating enhanced degradation rates. We conclude that the degradation of palsa peatlands by accelerated permafrost thawing could be identified with stable carbon isotope depth profiles. At intact hummocks δ13C depth patterns display the uplifting of peat material by a change in peat decomposition processes.

  8. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB.

    Science.gov (United States)

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2014-03-01

    Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin- or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207

  9. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    Science.gov (United States)

    Arora, Pankaj K.; Sharma, Ashutosh

    2015-01-01

    Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography–mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate, whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis,cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10–12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil. PMID:26082768

  10. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-06-01

    Full Text Available Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography-mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis, cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10-12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil.

  11. A carbon sink pathway increases carbon productivity in cyanobacteria.

    Science.gov (United States)

    Oliver, John W K; Atsumi, Shota

    2015-05-01

    The burning of fossil reserves, and subsequent release of carbon into the atmosphere is depleting the supply of carbon-based molecules used for synthetic materials including plastics, oils, medicines, and glues. To provide for future society, innovations are needed for the conversion of waste carbon (CO2) into organic carbon useful for materials. Chemical production directly from photosynthesis is a nascent technology, with great promise for capture of CO2 using sunlight. To improve low yields, it has been proposed that photosynthetic capacity can be increased by a relaxation of bottlenecks inherent to growth. The limits of carbon partitioning away from growth within the cell and the effect of partitioning on carbon fixation are not well known. Here we show that expressing genes in a pathway between carbon fixation and pyruvate increases partitioning to 2,3-butanediol (23BD) and leads to a 1.8-fold increase in total carbon yield in the cyanobacterium Synechococcus elongatus PCC 7942. Specific 2,3-butanediol production increases 2.4-fold. As partitioning increases beyond 30%, it leads to a steep decline in total carbon yield. The data suggests a local maximum for carbon partitioning from the Calvin Benson cycle that is scalable with light intensity.

  12. Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp.

    Science.gov (United States)

    Wang, Guangli; Xu, Dayong; Xiong, Minghua; Zhang, Hui; Li, Feng; Liu, Yuan

    2016-09-15

    Given the intensive and widespread application of the pesticide, buprofezin, its environmental residues potentially pose a problem; yet little is known about buprofezin's kinetic and metabolic behaviors. In this study, a novel gram-positive strain, designated BF-5, isolated from aerobic activated sludge, was found to be capable of metabolizing buprofezin as its sole energy, carbon, and nitrogen source. Based on its physiological and biochemical characteristics, other aspects of its phenotype, and a phylogenetic analysis, strain BF-5 was identified as Bacillus sp. This study investigated the effect of culture conditions on bacterial growth and substrate degradation, such as pH, temperature, initial concentration, different nitrogen source, and additional nitrogen sources as co-substrates. The degradation rate parameters, qmax, Ks, Ki and Sm were determined to be 0.6918 h(-1), 105.4 mg L(-1), 210.5 mg L(-1), and 148.95 mg L(-1) respectively. The capture of unpublished potential metabolites by gas chromatography-mass spectrometry (GC-MS) analysis has led to the proposal of a novel degradation pathway. Taken together, our results clarify buprofezin's biodegradation pathway(s) and highlight the promising potential of strain BF-5 in bioremediation of buprofezin-contaminated environments. PMID:27208995

  13. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways.

    Science.gov (United States)

    Brugmans, M C P; Sӧntjens, S H M; Cox, M A J; Nandakumar, A; Bosman, A W; Mes, T; Janssen, H M; Bouten, C V C; Baaijens, F P T; Driessen-Mol, A

    2015-11-01

    The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TE applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications. PMID:26316031

  14. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways.

    Science.gov (United States)

    Brugmans, M C P; Sӧntjens, S H M; Cox, M A J; Nandakumar, A; Bosman, A W; Mes, T; Janssen, H M; Bouten, C V C; Baaijens, F P T; Driessen-Mol, A

    2015-11-01

    The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TE applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications.

  15. Iodinated contrast media electro-degradation: process performance and degradation pathways.

    Science.gov (United States)

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. PMID:25433384

  16. Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1.

    Science.gov (United States)

    Felux, Ann-Katrin; Spiteller, Dieter; Klebensberger, Janosch; Schleheck, David

    2015-08-01

    Sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose) is the polar head group of the plant sulfolipid SQ-diacylglycerol, and SQ comprises a major proportion of the organosulfur in nature, where it is degraded by bacteria. A first degradation pathway for SQ has been demonstrated recently, a "sulfoglycolytic" pathway, in addition to the classical glycolytic (Embden-Meyerhof) pathway in Escherichia coli K-12; half of the carbon of SQ is abstracted as dihydroxyacetonephosphate (DHAP) and used for growth, whereas a C3-organosulfonate, 2,3-dihydroxypropane sulfonate (DHPS), is excreted. The environmental isolate Pseudomonas putida SQ1 is also able to use SQ for growth, and excretes a different C3-organosulfonate, 3-sulfolactate (SL). In this study, we revealed the catabolic pathway for SQ in P. putida SQ1 through differential proteomics and transcriptional analyses, by in vitro reconstitution of the complete pathway by five heterologously produced enzymes, and by identification of all four organosulfonate intermediates. The pathway follows a reaction sequence analogous to the Entner-Doudoroff pathway for glucose-6-phosphate: It involves an NAD(+)-dependent SQ dehydrogenase, 6-deoxy-6-sulfogluconolactone (SGL) lactonase, 6-deoxy-6-sulfogluconate (SG) dehydratase, and 2-keto-3,6-dideoxy-6-sulfogluconate (KDSG) aldolase. The aldolase reaction yields pyruvate, which supports growth of P. putida, and 3-sulfolactaldehyde (SLA), which is oxidized to SL by an NAD(P)(+)-dependent SLA dehydrogenase. All five enzymes are encoded in a single gene cluster that includes, for example, genes for transport and regulation. Homologous gene clusters were found in genomes of other P. putida strains, in other gamma-Proteobacteria, and in beta- and alpha-Proteobacteria, for example, in genomes of Enterobacteria, Vibrio, and Halomonas species, and in typical soil bacteria, such as Burkholderia, Herbaspirillum, and Rhizobium. PMID:26195800

  17. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    Science.gov (United States)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  18. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways

    Energy Technology Data Exchange (ETDEWEB)

    Haigler, B.E.; Spain, J.C. (Air Force Civil Engineering Support Agency, Tyndall AFB, FL (United States))

    1991-11-01

    Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. The authors have investigate the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of {sup 18}O{sub 2} indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1, 2-dihydroxy-3-nitrocyclohexa-3, 5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation.

  19. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells.

    Science.gov (United States)

    Huber, S C; Akazawa, T

    1986-08-01

    Enzymes of sucrose degradation and glycolysis in cultured sycamore (Acer pseudoplatanus L.) cells were assayed and characterized in crude extracts and after partial purification, in an attempt to identify pathways for sucrose catabolism. Desalted cell extracts contained similar activities (20-40 nanomoles per milligram protein per minute) of sucrose synthase, neutral invertase, glucokinase, fructokinase, phosphofructokinase, and UDPglucose pyrophosphorylase (assayed with 2 micromolar pyrophosphate (PPi). PPi-linked phosphofructokinase activity was virtually dependent upon fructose 2,6-bisphosphate, and the maximum activity exceeded that of ATP-linked phosphofructokinase. Hexokinase activity, with glucose as substrate, was highly specific for ATP, whereas fructokinase activity was relatively nonspecific. At 1 millimolar nucleoside triphosphate, fructokinase activity decreased in the order: UTP > ATP > CTP > GTP. We propose two pathways for sucrose degradation. One involves invertase action, followed by classical glycolysis of hexose sugars, and the other is a novel pathway initiated by sucrose synthase. The K(m) for sucrose of sucrose synthase was severalfold lower than that of neutral invertase (15 versus 65 millimolar), which may determine carbon partitioning between the two pathways. The sucrose synthase pathway proposed involves cycling of uridylates and PPi. UDPglucose pyrophosphorylase, which is shown to be an effective ;PPi-scavenger,' would consume PPi and form UTP. The UTP could be then utilized in the UTP-linked fructokinase reaction, thereby forming UDP for sucrose synthase. The source of PPi is postulated to arise from the back reaction of PPi-linked phosphofructokinase. Sycamore cells contained a substantial endogenous pool of PPi (about 3 nanomoles per gram fresh weight, roughly 1/10 the amount of ATP in these cells), and sufficient fructose 2,6-bisphosphate (0.09 nanomole per gram fresh weight) to activate the PPi-linked phosphofructokinase. Possible

  20. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway

    International Nuclear Information System (INIS)

    During the ozonation of tetracycline (TC) in aqueous media at pHs 2.2 and 7.0, the effects of pH variations, protonation and dissociation of functional groups and variation in free radical exposure were investigated to elucidate the transformation pathway. Liquid chromatography-triple quadrupole mass spectrometry detected around 15 ozonation products, and uncovered their production and subsequent degradation patterns. During ozonation at pH 2.2, the TC degradation pathway was proposed on the basis of the structure, ozonation chemistry and mass spectrometry data of TC. Ozonation of TC at the C11a-C12 and C2-C3 double bonds, aromatic ring and amino group generated products of m/z 461, 477, 509 and 416, respectively. Further ozonation at the above mentioned sites gave products of m/z 432, 480, 448, 525 and 496. The removal of TOC reached a maximum of ∼40% after 2 h of ozonation, while TC was completely removed within 4-6 min at both pHs. The low TOC removal efficiency might be due to the generation of recalcitrant products and the low ozone supply for high TC concentration. Ozonation decreased the acute toxicity of TC faster at pH 7.0 than pH 2.2, but the maximum decrease was only about 40% at both pHs after 2 h of ozonation. In this study, attempts were made to understand the correlation between the transformation products, pathway, acute toxicity and quantity of residual organics in solution. Overall, ozonation was found to be a promising process for removing TC and the products initially generated.

  1. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M. Hammad; Bae, Hyokwan [Water Environment Center, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791 (Korea, Republic of); Jung, Jin-Young, E-mail: jinjung@ynu.ac.kr [Department of Environmental Engineering, Yeungnam University, 214-1 Dae-Dong, Gyeongsan-Si, Gyeongsangbuk-Do 712-749 (Korea, Republic of)

    2010-09-15

    During the ozonation of tetracycline (TC) in aqueous media at pHs 2.2 and 7.0, the effects of pH variations, protonation and dissociation of functional groups and variation in free radical exposure were investigated to elucidate the transformation pathway. Liquid chromatography-triple quadrupole mass spectrometry detected around 15 ozonation products, and uncovered their production and subsequent degradation patterns. During ozonation at pH 2.2, the TC degradation pathway was proposed on the basis of the structure, ozonation chemistry and mass spectrometry data of TC. Ozonation of TC at the C11a-C12 and C2-C3 double bonds, aromatic ring and amino group generated products of m/z 461, 477, 509 and 416, respectively. Further ozonation at the above mentioned sites gave products of m/z 432, 480, 448, 525 and 496. The removal of TOC reached a maximum of {approx}40% after 2 h of ozonation, while TC was completely removed within 4-6 min at both pHs. The low TOC removal efficiency might be due to the generation of recalcitrant products and the low ozone supply for high TC concentration. Ozonation decreased the acute toxicity of TC faster at pH 7.0 than pH 2.2, but the maximum decrease was only about 40% at both pHs after 2 h of ozonation. In this study, attempts were made to understand the correlation between the transformation products, pathway, acute toxicity and quantity of residual organics in solution. Overall, ozonation was found to be a promising process for removing TC and the products initially generated.

  2. A method to detect soil carbon degradation during soil erosion

    Directory of Open Access Journals (Sweden)

    F. Conen

    2009-11-01

    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 4.6 tha−1 yr−1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 500–600 and 350–400 years of erosion input into the wetlands Laui and Spissen, respectively. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  3. A method to detect soil carbon degradation during soil erosion

    Directory of Open Access Journals (Sweden)

    C. Alewell

    2009-06-01

    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 2.6 t ha−1 yr−1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 800 and 400 years of erosion input into the wetlands. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  4. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    Science.gov (United States)

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program.

  5. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?

    Science.gov (United States)

    Pfeifer, Marion; Lefebvre, Veronique; Turner, Edgar; Cusack, Jeremy; Khoo, MinSheng; Chey, Vun K.; Peni, Maria; Ewers, Robert M.

    2015-04-01

    Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in deadwood across a tropical forest degradation gradient at the landscape scale remains poorly documented. Many carbon stock studies have either focused exclusively on live standing biomass or have been carried out in primary forests that are unaffected by logging, despite the fact that coarse woody debris (deadwood with ≥10 cm diameter) can contain significant portions of a forest’s carbon stock. We used a field-based assessment to quantify how the relative contribution of deadwood to total above-ground carbon stock changes across a disturbance gradient, from unlogged old-growth forest to severely degraded twice-logged forest, to oil palm plantation. We measured in 193 vegetation plots (25 × 25 m), equating to a survey area of >12 ha of tropical humid forest located within the Stability of Altered Forest Ecosystems Project area, in Sabah, Malaysia. Our results indicate that significant amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased exponentially with increasing forest degradation 7-10 years after logging while deadwood accounted for >50% of above-ground carbon stocks in salvage-logged forest stands, more than twice the proportion commonly assumed in the literature. This carbon will be released as decomposition proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia, our findings have important implications for the calculation of current carbon stocks and sources as a result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout the tropics, our data may indicate a significant global challenge to calculating global carbon fluxes, as selectively-logged forests now represent more than one third of all standing tropical humid forests worldwide.

  6. Insights from 14C into C loss pathways in degraded peatlands

    Science.gov (United States)

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This

  7. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  8. Restoring degraded tropical forests for carbon and biodiversity

    International Nuclear Information System (INIS)

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity. (letter)

  9. Restoring degraded tropical forests for carbon and biodiversity

    Science.gov (United States)

    Budiharta, Sugeng; Meijaard, Erik; Erskine, Peter D.; Rondinini, Carlo; Pacifici, Michela; Wilson, Kerrie A.

    2014-11-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity.

  10. The oxalate-carbonate pathway: at the interface between biology and geology

    Science.gov (United States)

    Junier, P.; Cailleau, G.; Martin, G.; Guggiari, M.; Bravo, D.; Clerc, M.; Aragno, M.; Job, D.; Verrecchia, E.

    2012-04-01

    The formation of calcite in otherwise carbonate-free acidic soils through the biological degradation of oxalate is a mechanism termed oxalate-carbonate pathway. This pathway lies at the interface between biological and geological systems and constitutes an important, although underestimated, soil mineral carbon sink. In this case, atmospheric CO2 is fixed by the photosynthetic activity of oxalogenic plants, which is partly destined to the production of oxalate used for the chelation of metals, and particularly, calcium. Fungi are also able to produce oxalate to cope with elevated concentrations of metals. In spite of its abundance as a substrate, oxalate is a very stable organic anion that can be metabolized only by a group of bacteria that use it as carbon and energy sources. These bacteria close the biological cycle by degrading calcium oxalate, releasing Ca2+ and inducing a change in local soil pH. If parameters are favourable, the geological part of the pathway begins, because this change in pH will indirectly lead to the precipitation of secondary calcium carbonate (calcite) in unexpected geological conditions. Due to the initial acidic soil conditions, and the absence of geological carbonate in the basement, it is unexpected to find C in the form of calcite. The activity of the oxalate-carbonate pathway has now been demonstrated in several places around the world, suggesting that its importance can be even greater than expected. In addition, new roles for each of the biological players of the pathway have been revealed recently forcing us to reconsider a global biogeochemical model for oxalate cycling.

  11. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  12. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-07-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  13. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  14. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  15. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation--divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B-C; Schultz, N; Madsen, S H;

    2010-01-01

    Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase-mediated ...

  16. ORGANOPHOSPHORUS PESTICIDE DEGRADATION PATHWAYS DURING DRINKING WATER TREATMENT

    Science.gov (United States)

    The objective of this work was to investigate organophosphorus (OP) pesticide transformation pathways as a class in the presence of aqueous chlorine. Seven priority OP pesticides were examined for their reactivity with aqueous chlorine: chlorpyrifos (CP), parathion (PA), diazino...

  17. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans

    Directory of Open Access Journals (Sweden)

    Lüddeke Frauke

    2012-09-01

    Full Text Available Abstract Background Monoterpenes present a large and versatile group of unsaturated hydrocarbons of plant origin with widespread use in the fragrance as well as food industry. The anaerobic β-myrcene degradation pathway in Castellaniella defragrans strain 65Phen differs from well known aerobic, monooxygenase-containing pathways. The initial enzyme linalool dehydratase-isomerase ldi/LDI catalyzes the hydration of β-myrcene to (S-(+-linalool and its isomerization to geraniol. A high-affinity geraniol dehydrogenase geoA/GeDH and a geranial dehydrogenase geoB/GaDH contribute to the formation of geranic acid. A genetic system was for the first time applied for the betaproteobacterium to prove in vivo the relevance of the linalool dehydratase-isomerase and the geraniol dehydrogenase. In-frame deletion cassettes were introduced by conjugation and two homologous recombination events. Results Polar effects were absent in the in-frame deletion mutants C. defragrans Δldi and C. defragrans ΔgeoA. The physiological characterization of the strains demonstrated a requirement of the linalool dehydratase-isomerase for growth on acyclic monoterpenes, but not on cyclic monoterpenes. The deletion of geoA resulted in a phenotype with hampered growth rate on monoterpenes as sole carbon and energy source as well as reduced biomass yields. Enzyme assays revealed the presence of a second geraniol dehydrogenase. The deletion mutants were in trans complemented with the broad-host range expression vector pBBR1MCS-4ldi and pBBR1MCS-2geoA, restoring in both cases the wild type phenotype. Conclusions In-frame deletion mutants of genes in the anaerobic β-myrcene degradation revealed novel insights in the in vivo function. The deletion of a high-affinity geraniol dehydrogenase hampered, but did not preclude growth on monoterpenes. A second geraniol dehydrogenase activity was present that contributes to the β-myrcene degradation pathway. Growth on cyclic monoterpenes

  18. Enzymatic `stripping' and degradation of PEGylated carbon nanotubes

    Science.gov (United States)

    Bhattacharya, Kunal; Sacchetti, Cristiano; El-Sayed, Ramy; Fornara, Andrea; Kotchey, Gregg P.; Gaugler, James A.; Star, Alexander; Bottini, Massimo; Fadeel, Bengt

    2014-11-01

    Single-walled carbon nanotubes (SWCNTs) coated or functionalized with PEG chains of different molecular weight were assessed for their propensity to undergo biodegradation under in vitro conditions using recombinant myeloperoxidase (MPO) or ex vivo using freshly isolated primary human neutrophils. Our findings suggest that under natural conditions, a combined process of `stripping' (i.e., defunctionalization) and biodegradation of PEG-SWCNTs might occur and that PEG-SWCNTs are a promising - and degradable - nanomedicine vector.Single-walled carbon nanotubes (SWCNTs) coated or functionalized with PEG chains of different molecular weight were assessed for their propensity to undergo biodegradation under in vitro conditions using recombinant myeloperoxidase (MPO) or ex vivo using freshly isolated primary human neutrophils. Our findings suggest that under natural conditions, a combined process of `stripping' (i.e., defunctionalization) and biodegradation of PEG-SWCNTs might occur and that PEG-SWCNTs are a promising - and degradable - nanomedicine vector. Electronic supplementary information (ESI) available: Experimental protocols and supplementary data [Suppl. Fig. S1: Characterization of ox-SWCNTs and PEG-modified SWCNTs by AFM; Suppl. Fig. S2: Recombinant MPO-mediated degradation of SWCNTs determined using Raman spectroscopy; Suppl. Fig. S3: Recombinant MPO-mediated degradation of SWCNTs visualized by UV/Vis-NIR spectroscopy; Suppl. Fig. S4: Recombinant MPO-mediated degradation of SWCNTs visualized by TEM; Suppl. Fig. S5: Neutrophil-mediated degradation of SWCNTs determined using Raman spectroscopy; Suppl. Fig. S6 and Suppl. Fig. S7: Interaction of fluorochrome-conjugated SWCNTs with neutrophils at 3 and 6 h of co-culture, respectively, shown by confocal microscopy]. See DOI: 10.1039/c4nr03604b

  19. 3'-5' RNA degradation pathways in human cells

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon

    revealed the interaction network of the main 3'-5' RNA degradation machinery – the RNA exosome complex. One of the key findings was the identification and characterisation of the Nuclear Exosome Targeting (NEXT) complex, important for nuclear functions of the exosome. Michal Lubas also studied the role...

  20. Controlled degradation pattern of hydroxyapatite/calcium carbonate composite microspheres.

    Science.gov (United States)

    Yang, Ning; Zhong, Qiwei; Zhou, Ying; Kundu, Subhas C; Yao, Juming; Cai, Yurong

    2016-06-01

    Hydroxyapatite (HAP) is widely used in clinic due to its good biocompatibility and osteoconductivity except for its slow degradation speed. In the present study, spherical calcium carbonate (CaCO3 ) is fabricated in the presence of silk protein sericin, which is transmuted into HAP microsphere in phosphate solution with the assistance of microwave irradiation. The effect of reaction conditions on the conversion of CaCO3 is investigated including reaction time, chemical composition of phosphate solution, and microwave power to get a series of HAP/CaCO3 composites. The degradation property of the composites is evaluated in vitro. Results show the degradation speed of the composite with higher HAP content is slower. The degradation rate of the composite could be changed effectively by modulating the proportion of HAP and CaCO3 . This work provides a feasible method for the preparation of spherical HAP/CaCO3 composite with controllable degradability. The composite thus obtained may be an ideal material for bone tissue engineering application. Microsc. Res. Tech. 79:518-524, 2016. © 2016 Wiley Periodicals, Inc. PMID:27037606

  1. Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Degradation mechanism studied for demineralised coal in a direct carbon fuel cell. • Diffusion limited processes dominate the electrode polarisation losses in pure N2. • Major fuel cell performance loss occurred due to loss of carbon/anode contacts. • The anode retained its phase structure with minor other phases formed in operation. - Abstract: The performance of a demineralised and devolatilised coal from the Morwell mine in the Latrobe Valley, Victoria, has been investigated in a direct carbon fuel cell (DCFC) operated at 850 °C. The focus of the investigation has been on understanding degradation issues as a function of time involving a sequence of electrochemical impedance spectroscopy and voltage-current characteristic. Diffusion limited processes dominate the electrode polarisation losses in pure N2 atmosphere, however, these decrease substantially in the presence of CO2 as the anode chamber purge gas, due to in situ generation of fuel species by the reaction of CO2 with carbon. Post-mortem analysis of anode by SEM and XRD revealed only a minor degradation due to its reduction, particle agglomeration as well as the formation of small quantity of new phases. However, major fuel cell performance degradation (increase of ohmic resistive and electrode polarisation losses) occurred due to loss of carbon/anode contacts and a reduction in the electron-conducting pathways as the fuel was consumed. The investigations revealed that the demineralised coal char can be used as a viable fuel for DCFC, however, further developments on anode materials and fuel feed mechanism would be required to achieve long-term sustained performance

  2. Anoxic carbon degradation in Arctic sediments: Microbial transformations of complex substrates

    Science.gov (United States)

    Arnosti, C.; Finke, N.; Larsen, O.; Ghobrial, S.

    2005-05-01

    Complex substrates are degraded in anoxic sediments by the concerted activities of diverse microbial communities. To explore the effects of substrate complexity on carbon transformations in permanently cold anoxic sediments, four substrates— Spirulina cells, Isochrysis cells, and soluble high molecular weight carbohydrate-rich extracts of these cells (Spir-Ex and Iso-Ex)—were added to sediments collected from Svalbard. The sediments were homogenized, incubated anaerobically in gas-tight bags at 0°C, and enzyme activities, fermentation, and terminal respiration were monitored over a 1134 h time course. All substrate additions yielded a fraction (8%-13%) of carbon that was metabolized to CO 2 over the first 384 h of incubation. The timecourse of VFA (volatile fatty acid) production and consumption, as well as the suite of VFAs produced, was similar for all substrates. After this phase, pathways of carbon degradation diverged, with an additional 43%, 32%, 33%, and 8% of Isochrysis, Iso-Ex, Spirulina, and Spir-Ex carbon respired to CO 2 over the next 750 h of incubation. Somewhat surprisingly, the soluble, carbohydrate-rich extracts did not prove to be more labile substrates than the whole cells from which they were derived. Although Spirulina and Iso-Ex differed in physical and chemical characteristics (solid/soluble, C/N ratio, lipid and carbohydrate content), nearly identical quantities of carbon were respired to CO 2. In contrast, only 15% of Spir-Ex carbon was respired, despite the initial burst of activity that it fueled, its soluble nature, and its relatively high (50%) carbohydrate content. The microbial community in these cold anoxic sediments clearly has the capacity to react rapidly to carbon input; extent and timecourse of remineralization of added carbon is similar to observations made at much higher temperatures in temperate sediments. The extent of carbon remineralization from these specific substrates, however, would not likely have been predicted

  3. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    DEFF Research Database (Denmark)

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    algae in our laboratory earlier. In the present study, two 1,5AnFru metabolizing enzymes were discovered in the fungus Anthracobia melaloma for the formation of ascopyrone P (APP), a fungal secondary metabolite exhibiting antibacterial and antioxidant activity. These are 1,5AnFru dehydratase (AFDH...... possessed all enzymes needed for conversion of glycogen to APP, an a-1,4-glucan lyase from this fungus was isolated and partially sequenced. Based on this work, a scheme of the enzymatic description of the anhydrofructose pathway in A. melaloma was proposed. Keywords: Anhydrofructose pathway; Anthracobia...

  4. Grassland Degradation Alters Soil Carbon Turnover through Depth

    Science.gov (United States)

    Creamer, C.; Prober, S. M.; Chappell, A.; Farrell, M.; Baldock, J.

    2015-12-01

    Ecosystem degradation is widespread and changes in aboveground plant communities alter belowground soil processes. In Australia, grassy eucalyptus woodlands dominated by kangaroo grasses (Themeda trianda) were widely cleared during European settlement for agriculture, with only fragments remaining of this now threatened ecosystem. As remnant grassland fragments are used for livestock grazing, Themeda transitions through states of degradation, starting with red grasses (Bothriochloa spp) and then proceeding to less productive, increasingly degraded states dominated by either annual exotic weeds or native wallaby grasses (Rytidosperma spp) and spear grasses (Austrastipa spp). The aim of our experiment was to determine how soil organic matter dynamics (including erosion, root biomass, C storage and turnover) have been altered by the transition from deeply-rooted Themeda grass systems to more shallowly-rooted annual exotic weeds and wallaby/spear grass states. We sampled soils in five depth-based increments (0-5, 5-15, 15-30, 30-60, 60-100 cm) across this ecosystem transition at five sites across New South Wales, Australia. Caseium-137 analysis indicated erosion rates were similar among all ecosystems and were consistent with levels for grasslands in the region. Compared to the remnant Themeda grass systems, the degraded states had lower root biomass, lower carbon stocks and C:N ratios in the coarse fraction (> 50 μm), lower fungal : bacterial ratios, higher available phosphate, higher alkyl : O-alkyl C ratios, and faster mineralization of synthetic root-exudate carbon. All these metrics indicate the surprising finding of more microbially processed OM and faster turnover of newly added C in the degraded sites. Compared to one another, the two degraded sites differed in both C and N turnover, with the exotic weeds having higher dissolved organic N, inorganic N, and coarse fraction N, higher fine fraction C stocks, and greater microbial biomass. These differences likely

  5. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    Science.gov (United States)

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  6. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  7. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai;

    2011-01-01

    climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir...... molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing......, such a change could profoundly affect the global carbon cycle....

  8. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway.

    Science.gov (United States)

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng

    2016-03-01

    Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03°C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography-mass spectrometry (GC-MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane-Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h(-1) and 0.63 gs gx(-1)h(-1). A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions. PMID:26623933

  9. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Wei eWang

    2014-05-01

    Full Text Available To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose and lignin, through pretreatment and hydrolysis (both enzymatic and chemical, and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pretreatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB, a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pretreated corn stover slurry as well as individually in the presence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pretreated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF, benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  10. Connecting Lignin-Degradation Pathway with Pre-Treatment Inhibitor Sensitivity of Cupriavidus necator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunsinger, G. B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, P. T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, D. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-05-27

    In order to produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  11. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    DEFF Research Database (Denmark)

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia;

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces...... kluyveri, we show that during degradation, uracil is not reduced to dihydrouracil. Six loci, named URC1-6 (for uracil catabolism), are involved in the novel catabolic pathway. Four of them, URC3,5, URC6, and URC2 encode urea amidolyase, uracil phosphoribosyltransferase, and a putative transcription factor...

  12. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil

    Science.gov (United States)

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-01-01

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H′), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments. PMID:27311984

  13. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil

    Science.gov (United States)

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-06-01

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H‧), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments.

  14. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil.

    Science.gov (United States)

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-01-01

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H'), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments. PMID:27311984

  15. Carbon budgets and energy transition pathways

    NARCIS (Netherlands)

    Van Vuuren, Detlef P.; Van Soest, Heleen; Riahi, Keywan; Clarke, Leon; Krey, Volker; Kriegler, Elmar; Rogelj, Joeri; Schaeffer, Michiel; Tavoni, Massimo

    2016-01-01

    Scenarios from integrated assessment models can provide insights into how carbon budgets relate to other policy-relevant indicators by including information on how fast and by how much emissions can be reduced. Such indicators include the peak year of global emissions, the decarbonisation rate and t

  16. Carbon budgets and energy transition pathways

    NARCIS (Netherlands)

    Vuuren, Van Detlef P.; Soest, van Heleen; Riahi, Keywan; Clarke, Leon; Krey, Volker; Kriegler, Elmar; Rogelj, Joeri; Schaeffer, Michiel; Tavoni, Massimo

    2016-01-01

    Scenarios from integrated assessment models can provide insights into how carbon budgets relate to other policy-relevant indicators by including information on how fast and by how much emissions can be reduced. Such indicators include the peak year of global emissions, the decarbonisation rate an

  17. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    Science.gov (United States)

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  18. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1.

    Directory of Open Access Journals (Sweden)

    Fazlurrahman Khan

    Full Text Available 2-chloro-4-nitroaniline (2-C-4-NA is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP, which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium.

  19. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1.

    Science.gov (United States)

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  20. Carbon pathways in the Seine river system

    Science.gov (United States)

    Marescaux, Audrey; Garnier, Josette; Thieu, Vincent

    2016-04-01

    Many papers have recently suggested that the anthropogenic perturbations of the carbon cycle have led to a significant increase in carbon export from terrestrial ecosystems to inland waters. The quantification of the carbon cascade (including fate of CO2 emissions) in highly anthropized river systems is thus essential to understand the response of aquatic systems. The Seine Basin where Paris and its environs represent 2/3 of its population, and agriculture is particularly intensive, is a eutrophic system. The main aim of this research is to understand and quantify how an excess of anthropogenic nutrients entering the Seine River system may locally enhance primary production, C sequestration, C respiration and CO2 emissions. The development of a new CO2 module in the pre-existing biogeochemical Riverstrahler model (Billen et al., 2007) should enable a refined calculation of the carbon budget. Besides calculation of the Respiration and Production activities along the entire river continuum, it will directly associate CO2 emissions. The CO2 modelling results will be confronted to (i) direct (in-situ) measurements with a non-dispersive infrared gas analyzer and (ii) indirect measurements based on total alkalinity, carbonate and pH along the Seine river system during the last decades, and (iii) calculations of a C metabolism budget. Billen, G., Garnier, J., Némery, J., Sebilo, M., Sferratore, A., Barles, S., Benoit P., Benoît, M. (2007). A long-term view of nutrient transfers through the Seine river continuum. Science of the Total Environment, 375(1-3), 80-97. http://doi.org/10.1016/j.scitotenv.2006.12.005

  1. Photo-cross-linked poly(ethylene carbonate) elastomers: synthesis, in vivo degradation, and determination of in vivo degradation mechanism.

    Science.gov (United States)

    Cornacchione, L A; Qi, B; Bianco, J; Zhou, Z; Amsden, B G

    2012-10-01

    Low-molecular-weight poly(ethylene carbonate) diols of varying molecular weight were generated through catalyzed thermal degradation of high-molecular-weight poly(ethylene carbonate). These polymers were then end functionalized with acrylate groups. The resulting α,ω-diacrylates were effectively photo-cross-linked upon exposure to long-wave UV light in the presence of a photoinitiator to yield rubbery networks of low sol content. The degree of cross-linking effectively controlled the in vivo degradation rate of the networks by adherent macrophages; higher cross-link densities yielded slower degradation rates. The cross-link density did not affect the number of adherent macrophages at the elastomer/tissue interface, indicating that cross-linking affected the susceptibility of the elastomer to degradative species released by the macrophages. The reactive species likely responsible for in vivo degradation appears to be superoxide anion, as the in vivo results were in agreement with in vitro degradation via superoxide anion, while cholesterol esterase, known to degrade similar poly(alkylene carbonate)s, had no affect on elastomer degradation.

  2. Photo-cross-linked poly(ethylene carbonate) elastomers: synthesis, in vivo degradation, and determination of in vivo degradation mechanism.

    Science.gov (United States)

    Cornacchione, L A; Qi, B; Bianco, J; Zhou, Z; Amsden, B G

    2012-10-01

    Low-molecular-weight poly(ethylene carbonate) diols of varying molecular weight were generated through catalyzed thermal degradation of high-molecular-weight poly(ethylene carbonate). These polymers were then end functionalized with acrylate groups. The resulting α,ω-diacrylates were effectively photo-cross-linked upon exposure to long-wave UV light in the presence of a photoinitiator to yield rubbery networks of low sol content. The degree of cross-linking effectively controlled the in vivo degradation rate of the networks by adherent macrophages; higher cross-link densities yielded slower degradation rates. The cross-link density did not affect the number of adherent macrophages at the elastomer/tissue interface, indicating that cross-linking affected the susceptibility of the elastomer to degradative species released by the macrophages. The reactive species likely responsible for in vivo degradation appears to be superoxide anion, as the in vivo results were in agreement with in vitro degradation via superoxide anion, while cholesterol esterase, known to degrade similar poly(alkylene carbonate)s, had no affect on elastomer degradation. PMID:22920572

  3. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB

    OpenAIRE

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2013-01-01

    R hodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the napht...

  4. Phosphoketolase Pathway Engineering for Carbon-Efficient Biocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Henard, Calvin Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Freed, Emily Frances [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guarnieri, Michael Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-08

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Moreover, conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Here, we discuss recent advances and prospects for employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.

  5. Bis(2-chloroethoxy)methane degradation by TiO2 photocatalysis: Parameter and reaction pathway investigations

    International Nuclear Information System (INIS)

    Haloethers are widely used in industry, and the release of these species into the environment is of great concern because of their toxicity and carcinogenicity. The present study deals with the photocatalytic degradation of the haloether, bis(2-chloroethoxy)methane (BCEXM), in the presence of TiO2 particles and UV-A (λ = 365 nm) radiation. About 99.5% of BCEXM was degraded after UV irradiation for 16 h. Factors such as solution pH, TiO2 dosage, and the presence of anions were found to influence the degradation rate. To obtain a better understanding of the mechanistic details of this TiO2-assisted photodegradation of BCEXM with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. To the best of our knowledge, this is the first report on the degradation pathways of BCEXM. The first step in the destruction of BCEXM is thought to be abstraction of a hydrogen by ·OH to form a carbon-centered radical which then reacts with O2 to form a peroxyl radical. Peroxyl radicals react with one another and produce an alkoxy radical. The β-bond fragmentation of the alkoxy radical produces different intermediates.

  6. Bis(2-chloroethoxy)methane degradation by TiO{sub 2} photocatalysis: Parameter and reaction pathway investigations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiing-Chang [Department of Science Application and Dissemination, National Taichung University, Taichung 403, Taiwan (China); Wu, Ren-Jang; Yao, I.-Chun [Department of Applied Chemistry, Providence University, Taichung 433, Taiwan (China); Lu, Chung-Shin, E-mail: cslu6@ntcnc.edu.tw [Department of General Education, National Taichung Nursing College, No. 193, Sec. 1, San-Min Road, Taichung 403, Taiwan (China)

    2009-12-30

    Haloethers are widely used in industry, and the release of these species into the environment is of great concern because of their toxicity and carcinogenicity. The present study deals with the photocatalytic degradation of the haloether, bis(2-chloroethoxy)methane (BCEXM), in the presence of TiO{sub 2} particles and UV-A ({lambda} = 365 nm) radiation. About 99.5% of BCEXM was degraded after UV irradiation for 16 h. Factors such as solution pH, TiO{sub 2} dosage, and the presence of anions were found to influence the degradation rate. To obtain a better understanding of the mechanistic details of this TiO{sub 2}-assisted photodegradation of BCEXM with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. To the best of our knowledge, this is the first report on the degradation pathways of BCEXM. The first step in the destruction of BCEXM is thought to be abstraction of a hydrogen by {sup {center_dot}}OH to form a carbon-centered radical which then reacts with O{sub 2} to form a peroxyl radical. Peroxyl radicals react with one another and produce an alkoxy radical. The {beta}-bond fragmentation of the alkoxy radical produces different intermediates.

  7. Transitions in pathways of human development and carbon emissions

    International Nuclear Information System (INIS)

    Countries are known to follow diverse pathways of life expectancy and carbon emissions, but little is known about factors driving these dynamics. In this letter we estimate the cross-sectional economic, demographic and geographic drivers of consumption-based carbon emissions. Using clustering techniques, countries are grouped according to their drivers, and analysed with respect to a criteria of one tonne of carbon emissions per capita and a life expectancy over 70 years (Goldemberg’s Corner). Five clusters of countries are identified with distinct drivers and highly differentiated outcomes of life expectancy and carbon emissions. Representatives from four clusters intersect within Goldemberg’s Corner, suggesting diverse combinations of drivers may still lead to sustainable outcomes, presenting many countries with an opportunity to follow a pathway towards low-carbon human development. By contrast, within Goldemberg’s Corner, there are no countries from the core, wealthy consuming nations. These results reaffirm the need to address economic inequalities within international agreements for climate mitigation, but acknowledge plausible and accessible examples of low-carbon human development for countries that share similar underlying drivers of carbon emissions. In addition, we note differences in drivers between models of territorial and consumption-based carbon emissions, and discuss interesting exceptions to the drivers-based cluster analysis. (paper)

  8. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  9. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill.

    Science.gov (United States)

    Dombrowski, Nina; Donaho, John A; Gutierrez, Tony; Seitz, Kiley W; Teske, Andreas P; Baker, Brett J

    2016-01-01

    The Deepwater Horizon blowout in the Gulf of Mexico in 2010, one of the largest marine oil spills(1), changed bacterial communities in the water column and sediment as they responded to complex hydrocarbon mixtures(2-4). Shifts in community composition have been correlated to the microbial degradation and use of hydrocarbons(2,5,6), but the full genetic potential and taxon-specific metabolisms of bacterial hydrocarbon degraders remain unresolved. Here, we have reconstructed draft genomes of marine bacteria enriched from sea surface and deep plume waters of the spill that assimilate alkane and polycyclic aromatic hydrocarbons during stable-isotope probing experiments, and we identify genes of hydrocarbon degradation pathways. Alkane degradation genes were ubiquitous in the assembled genomes. Marinobacter was enriched with n-hexadecane, and uncultured Alpha- and Gammaproteobacteria populations were enriched in the polycyclic-aromatic-hydrocarbon-degrading communities and contained a broad gene set for degrading phenanthrene and naphthalene. The repertoire of polycyclic aromatic hydrocarbon use varied among different bacterial taxa and the combined capabilities of the microbial community exceeded those of its individual components, indicating that the degradation of complex hydrocarbon mixtures requires the non-redundant capabilities of a complex oil-degrading community. PMID:27572965

  10. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC. PMID:26452660

  11. Carbon emissions from tropical forest degradation caused by logging

    International Nuclear Information System (INIS)

    The focus of land-use related efforts in developing countries to reduce carbon emissions has been on slowing deforestation, yet international agreements are to reduce emissions from both deforestation and forest degradation (REDD). The second ‘D’ is poorly understood and accounted for a number of technical and policy reasons. Here we introduce a complete accounting method for estimating emission factors from selective timber harvesting, a substantial form of forest degradation in many tropical developing countries. The method accounts separately for emissions from the extracted log, from incidental damage to the surrounding forest, and from logging infrastructure, and emissions are expressed as units of carbon per cubic meter of timber extracted to allow for simple application to timber harvesting statistics. We applied the method in six tropical countries (Belize, Bolivia, Brazil, Guyana, Indonesia, and Republic of Congo), resulting in total emission factors of 0.99−2.33 Mg C m−3. In all cases, emissions were dominated by damage to surrounding vegetation and the infrastructure rather than the logs themselves, and total emissions represented about 3–15% of the biomass carbon stocks of the associated unlogged forests. We then combined the emission factors with country level logging statistics for nine key timber producing countries represented by our study areas to gain an understanding of the order of magnitude of emissions from degradation compared to those recently reported for deforestation in the same countries. For the nine countries included, emissions from logging were on average equivalent to about 12% of those from deforestation. For those nine countries with relatively low emissions from deforestation, emissions from logging were equivalent to half or more of those from deforestation, whereas for those countries with the highest emissions from deforestation, emissions from logging were equivalent to <10% of those from deforestation

  12. Tissue factor pathway inhibitor relates to fibrin degradation in patients with acute deep venous thrombosis

    DEFF Research Database (Denmark)

    Sidelmann, Johannes J; Bladbjerg, Else-Marie; Gram, Jørgen;

    2008-01-01

    Reduced concentration of tissue factor pathway inhibitor is a risk factor for development of deep venous thrombosis, whereas elevated concentrations of tissue factor pathway inhibitor are observed in patients with acute myocardial infarction and disseminated intravascular coagulation. Presently, we...... studied the association between inflammation, endothelial cell perturbation, fibrin degradation and the concentration of tissue factor pathway inhibitor in patients suspected for acute deep venous thrombosis. We determined the tissue factor pathway inhibitor -33T/C polymorphism, free and total tissue...... factor pathway inhibitor, C-reactive protein, von Willebrand factor and D-Dimer in 160 consecutive patients admitted to hospital with a tentative diagnosis of acute deep venous thrombosis. Deep venous thrombosis was identified in 57 patients (18 distal and 39 proximal). The distribution of the tissue...

  13. Nuclear mRNA degradation pathway(s are implicated in Xist regulation and X chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Constance Ciaudo

    2006-06-01

    Full Text Available A critical step in X-chromosome inactivation (XCI, which results in the dosage compensation of X-linked gene expression in mammals, is the coating of the presumptive inactive X chromosome by the large noncoding Xist RNA, which then leads to the recruitment of other factors essential for the heterochromatinisation of the inactive X and its transcriptional silencing. In an approach aimed at identifying genes implicated in the X-inactivation process by comparative transcriptional profiling of female and male mouse gastrula, we identified the Eif1 gene involved in translation initiation and RNA degradation. We show here that female embryonic stem cell lines, silenced by RNA interference for the Eif1 gene, are unable to form Xist RNA domains upon differentiation and fail to undergo X-inactivation. To probe further an effect involving RNA degradation pathways, the inhibition by RNA interference of Rent1, a factor essential for nonsense-mediated decay and Exosc10, a specific nuclear component of the exosome, was analysed and shown to similarly impair Xist upregulation and XCI. In Eif1-, Rent1-, and Exosc10-interfered clones, Xist spliced form(s are strongly downregulated, while the levels of unspliced form(s of Xist and the stability of Xist RNA remain comparable to that of the control cell lines. Our data suggests a role for mRNA nuclear degradation pathways in the critical regulation of spliced Xist mRNA levels and the onset of the X-inactivation process.

  14. Pathways for implementing REDD+. Experiences from carbon markets and communities

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.; Ravnkilde Moeller, L.; Lopez, T. De; Romero, M.Z.

    2011-07-01

    This issue of Carbon Market Perspectives on 'Pathways for implementing REDD+: Experience from carbon markets and communities' discusses the role of carbon markets in scaling up investments for REDD+ in developing countries. Nine articles authored by experienced negotiators on REDD+, carbon market actors, project developers and other leading experts share experiences and make suggestions on the key elements of a future international REDD+ regime: Architecture and underlying principles, measuring, reporting and verification (MRV), private-sector involvement, the rights of indigenous people and local communities, biodiversity conservation and environmental integrity. The articles are grouped under three main topics: the lessons of existing REDD+ projects; the future REDD+ regime and the role of carbon markets; and experiences and ideas about the involvement of indigenous people and local communities. (LN)

  15. Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues.

    Directory of Open Access Journals (Sweden)

    Jan Zarzycki-Siek

    Full Text Available The fatty acid (FA degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300, which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924 were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617 contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h.

  16. Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues.

    Science.gov (United States)

    Zarzycki-Siek, Jan; Norris, Michael H; Kang, Yun; Sun, Zhenxin; Bluhm, Andrew P; McMillan, Ian A; Hoang, Tung T

    2013-01-01

    The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924) were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617) contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h. PMID:23737986

  17. Catalytic thermolysis in treating Cibacron Blue in aqueous solution: Kinetics and degradation pathway.

    Science.gov (United States)

    Su, Claire Xin-Hui; Teng, Tjoon-Tow; Wong, Yee-Shian; Morad, Norhashimah; Rafatullah, Mohd

    2016-03-01

    A thermal degradation pathway of the decolourisation of Reactive Cibacron Blue F3GA (RCB) in aqueous solution through catalytic thermolysis is established. Catalytic thermolysis is suitable for the removal of dyes from wastewater as it breaks down the complex dye molecules instead of only transferring them into another phase. RCB is a reactive dye that consists of three main groups, namely anthraquinone, benzene and triazine groups. Through catalytic thermolysis, the bonds that hold the three groups together were effectively broken and at the same time, the complex molecules degraded to form simple molecules of lower molecular weight. The degradation pathway and products were characterized and determined through UV-Vis, FT-IR and GCMS analysis. RCB dye molecule was successfully broken down into simpler molecules, namely, benzene derivatives, amines and triazine. The addition of copper sulphate, CuSO4, as a catalyst, hastens the thermal degradation of RCB by aiding in the breakdown of large, complex molecules. At pH 2 and catalyst mass loading of 5 g/L, an optimum colour removal of 66.14% was observed. The degradation rate of RCB is well explained by first order kinetics model. PMID:26741557

  18. Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in lake erie.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Mou

    Full Text Available Cyanobacterial harmful blooms (CyanoHABs that produce microcystins are appearing in an increasing number of freshwater ecosystems worldwide, damaging quality of water for use by human and aquatic life. Heterotrophic bacteria assemblages are thought to be important in transforming and detoxifying microcystins in natural environments. However, little is known about their taxonomic composition or pathways involved in the process. To address this knowledge gap, we compared the metagenomes of Lake Erie free-living bacterioplankton assemblages in laboratory microcosms amended with microcystins relative to unamended controls. A diverse array of bacterial phyla were responsive to elevated supply of microcystins, including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria of the alpha, beta, gamma, delta and epsilon subdivisions and Verrucomicrobia. At more detailed taxonomic levels, Methylophilales (mainly in genus Methylotenera and Burkholderiales (mainly in genera Bordetella, Burkholderia, Cupriavidus, Polaromonas, Ralstonia, Polynucleobacter and Variovorax of Betaproteobacteria were suggested to be more important in microcystin degradation than Sphingomonadales of Alphaproteobacteria. The latter taxa were previously thought to be major microcystin degraders. Homologs to known microcystin-degrading genes (mlr were not overrepresented in microcystin-amended metagenomes, indicating that Lake Erie bacterioplankton might employ alternative genes and/or pathways in microcystin degradation. Genes for xenobiotic metabolism were overrepresented in microcystin-amended microcosms, suggesting they are important in bacterial degradation of microcystin, a phenomenon that has been identified previously only in eukaryotic systems.

  19. Degradation kinetics and pathways of three calcium channel blockers under UV irradiation.

    Science.gov (United States)

    Zhu, Bing; Zonja, Bozo; Gonzalez, Oscar; Sans, Carme; Pérez, Sandra; Barceló, Damia; Esplugas, Santiago; Xu, Ke; Qiang, Zhimin

    2015-12-01

    Calcium channel blockers (CCBs) are a group of pharmaceuticals widely prescribed to lower blood pressure and treat heart diseases. They have been frequently detected in wastewater treatment plant (WWTP) effluents and downstream river waters, thus inducing a potential risk to aquatic ecosystems. However, little is known about the behavior and fate of CCBs under UV irradiation, which has been adopted as a primary disinfection method for WWTP effluents. This study investigated the degradation kinetics and pathways of three commonly-used CCBs, including amlodipine (AML), diltiazem (DIL), and verapamil (VER), under UV (254 nm) irradiation. The chemical structures of transformation byproducts (TBPs) were first identified to assess the potential ecological hazards. On that basis, a generic solid-phase extraction method, which simultaneously used four different cartridges, was adopted to extract and enrich the TBPs. Thereafter, the photo-degradation of target CCBs was performed under UV fluences typical for WWTP effluent disinfection. The degradation of all three CCBs conformed to the pseudo-first-order kinetics, with rate constants of 0.031, 0.044 and 0.011 min(-1) for AML, DIL and VER, respectively. By comparing the MS(2) fragments and the evolution (i.e., formation or decay) trends of identified TBPs, the degradation pathways were proposed. In the WWTP effluent, although the target CCBs could be degraded, several TBPs still contained the functional pharmacophores and reached peak concentrations under UV fluences of 40-100 mJ cm(-2).

  20. Degradation of ibuprofen by hydrodynamic cavitation: Reaction pathways and effect of operational parameters.

    Science.gov (United States)

    Musmarra, Dino; Prisciandaro, Marina; Capocelli, Mauro; Karatza, Despina; Iovino, Pasquale; Canzano, Silvana; Lancia, Amedeo

    2016-03-01

    Ibuprofen (IBP) is an anti-inflammatory drug whose residues can be found worldwide in natural water bodies resulting in harmful effects to aquatic species even at low concentrations. This paper deals with the degradation of IBP in water by hydrodynamic cavitation in a convergent-divergent nozzle. Over 60% of ibuprofen was degraded in 60 min with an electrical energy per order (EEO) of 10.77 kWh m(-3) at an initial concentration of 200 μg L(-1) and a relative inlet pressure pin=0.35 MPa. Five intermediates generated from different hydroxylation reactions were identified; the potential mechanisms of degradation were sketched and discussed. The reaction pathways recognized are in line with the relevant literature, both experimental and theoretical. By varying the pressure upstream the constriction, different degradation rates were observed. This effect was discussed according to a numerical simulation of the hydroxyl radical production identifying a clear correspondence between the maximum kinetic constant kOH and the maximum calculated OH production. Furthermore, in the investigated experimental conditions, the pH parameter was found not to affect the extent of degradation; this peculiar feature agrees with a recently published kinetic insight and has been explained in the light of the intermediates of the different reaction pathways.

  1. NIR is degraded by the anaphase-promoting complex proteasome pathway

    Directory of Open Access Journals (Sweden)

    Jeong Ho Myong

    2014-01-01

    Full Text Available Novel INHAT Repressor (NIR is a histone acetylation inhibitor that can directly bind histone complexes and the tumor suppressors p53 and p63. Because NIR is mainly localized in the nucleolus and disappears from the nucleolus upon RNase treatment, it is thought to bind RNA or ribonucleoproteins. When NIR moves to the cytoplasm, it is immediately degraded; this degradation was blocked by MG132, a proteasome inhibitor. Furthermore, the central domain of NIR specifically bound APC-CCdh1. These data show that the stability of NIR is governed by the ubiquitin/proteasome pathway.

  2. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Leonard, Daniel; Masedunskas, Andrius;

    2013-01-01

    routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation...... of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor-associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies...

  3. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity.

    Science.gov (United States)

    Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G

    2016-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation.

  4. Impacts of management practices on soil organic carbon in degraded alpine meadows on the Tibetan Plateau

    OpenAIRE

    X. F. Chang; Wang, S.P.; X. X. ZHU; Cui, S. J.; Luo, C. Y.; Zhang, Z. H.; A. Wilkes

    2014-01-01

    Grassland soil organic carbon (SOC) is sensitive to anthropogenic activities. Increased anthropogenic disturbance related to overgrazing has led to widespread alpine grassland degradation on the Tibetan Plateau. The degraded grasslands are considered to have great potential for carbon sequestration after adoption of improved management practices. Here, we calibrated and employed the Century model to investigate the effects of overgrazing and improved managem...

  5. Pathways of human development and carbon emissions embodied in trade

    Science.gov (United States)

    Steinberger, Julia K.; Timmons Roberts, J.; Peters, Glen P.; Baiocchi, Giovanni

    2012-02-01

    It has long been assumed that human development depends on economic growth, that national economic expansion in turn requires greater energy use and, therefore, increased greenhouse-gas emissions. These interdependences are the topic of current research. Scarcely explored, however, is the impact of international trade: although some nations develop socio-economically and import high-embodied-carbon products, it is likely that carbon-exporting countries gain significantly fewer benefits. Here, we use new consumption-based measures of national carbon emissions to explore how the relationship between human development and carbon changes when we adjust national emission rates for trade. Without such adjustment of emissions, some nations seem to be getting far better development `bang' for the carbon `buck' than others, who are showing scant gains for disproportionate shares of global emissions. Adjusting for the transfer of emissions through trade explains many of these outliers, but shows that further socio-economic benefits are accruing to carbon-importing rather than carbon-exporting countries. We also find that high life expectancies are compatible with low carbon emissions but high incomes are not. Finally, we see that, despite strong international trends, there is no deterministic industrial development trajectory: there is great diversity in pathways, and national histories do not necessarily follow the global trends.

  6. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik;

    1993-01-01

    that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...... organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most...... important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe...

  7. Sodium persulfate-assisted mechanochemical degradation of tetrabromobisphenol A: Efficacy, products and pathway.

    Science.gov (United States)

    Liu, Xitao; Zhang, Xiaohui; Zhang, Kunlun; Qi, Chengdu

    2016-05-01

    In recent years, activated persulfate (PS) oxidation has been developed as a new advanced oxidation process for the degradation of organic pollutants. On the other hand, the mechanochemical method has exhibited a unique advantage in dealing with chemical wastes. The degradation of tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant (BFR), in wastes has attracted considerable attention. In this study, the efficacy of a CaO-mechanochemical (CaO-MC) treatment system assisted by the addition of PS for the degradation of TBBPA was investigated. Under the optimum reaction conditions with a mole ratio of PS:CaO = 1:4 and less than 12.5% of TBBPA by mass, the degradation and debromination of TBBPA were completed within 2 h, while the mineralization was completed within 4 h. Characterization of the milled sample by XRD revealed that CaSO4 crystallization occurred. The TG results illustrate that there was little organic matter left after 4 h of milling. Raman and FT-IR spectra exhibited the TBBPA destruction process and disappearance of the organic groups. Through analysis by LC/MS/MS, seventeen intermediates were identified. The mechanism of TBBPA degradation by the PS-assisted CaO-MC treatment system was explained from two aspects, the course of crystallization and the degradation of TBBPA by activated PS, and two parallel initiation pathways were proposed. PMID:26359264

  8. Molecular and biochemical characterization of the tetralin degradation pathway in Rhodococcus sp. strain TFB

    OpenAIRE

    Tomás‐Gallardo, Laura; Santero, Eduardo; Camafeita, Emilio; Calvo, Enrique; Schlömann, Michael; Floriano, Belén

    2009-01-01

    Summary The tetralin biodegradation pathway in Rhodococcus sp. strain TFB, a Gram‐positive bacterium resistant to genetic manipulation, was characterized using a proteomic approach. Relative protein expression in cell free extracts from tetralin‐ and glucose‐grown cells was compared using the 2D‐DIGE technique. Identification of proteins specifically expressed in tetralin‐grown cells was used to characterize a complete set of genes involved in tetralin degradation by reverse genetics. We prop...

  9. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Science.gov (United States)

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO4(3-) uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential. PMID:27020120

  10. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Science.gov (United States)

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-03-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43‑ uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  11. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    KAUST Repository

    Scoma, Alberto

    2016-03-29

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  12. Thermally induced degradation pathways of three different antibody-based drug development candidates.

    Science.gov (United States)

    Fincke, Anja; Winter, Jonas; Bunte, Thomas; Olbrich, Carsten

    2014-10-01

    Protein-based medicinal products are prone to undergo a variety of chemical and physical degradation pathways. One of the most important exogenous stress condition to consider during manufacturing, transport and storage processes is temperature, because antibody-based therapeutics are only stable in a limited temperature range. In this study, three different formats of antibody-based molecules (IgG1, a bispecific scFv and a fab fragment) were exposed to thermal stress conditions occurring during transport and storage. For evaluation, an analytical platform was developed for the detection and characterization of relevant degradation pathways of different antibody-based therapeutics. The effect of thermal stress conditions on the stability of the three antibody-based formats was therefore investigated using visual inspection, different spectroscopic measurements, dynamic light scattering (DLS), differential scanning calorimetry (DSC), electrophoresis, asymmetric flow field-flow fractionation (AF4) and surface plasmon resonance technology (SPR). In summary, thermal stress led to heterogeneous chemical and physical degradation pathways of all three antibody-based formats used. In addition, identical exogenous stress conditions resulted in different kinds and levels of aggregates and fragmentation products. This knowledge is fundamental for a systematic and successful stabilization of protein-based therapeutics by the use of formulation additives.

  13. Cadmium interferes with the degradation of ATF5 via a post-ubiquitination step of the proteasome degradation pathway

    International Nuclear Information System (INIS)

    ATF5 is a member of the CREB/ATF family of transcription factors. In the current study, using a transient transfection system to express FLAG epitope fusion proteins of ATF5, we have shown that CdCl2 or NaAsO3 increases the protein levels of ATF5 in cells, and that cadmium stabilizes the ATF5 protein. Proteasome inhibitors had a similar effect to cadmium on the cellular accumulation of ATF5. Proteasome inhibition led to an increase in ubiquitinated ATF5, while cadmium did not appear to reduce the extent of ATF5 ubiquitination. ATF5 contains a putative nuclear export signal within its N-terminus. We demonstrated that whereas deletion of N-terminal region resulted in a increase of ATF5 levels, this region does not appear to be involved in the ubiquitination of ATF5. These results indicate that ATF5 is targeted for degradation by the ubiquitin-proteasome pathway, and that cadmium slows the rate of ATF5 degradation via a post-ubiquitination mechanism.

  14. Degradation of poly(carbonate urethane) by gamma irradiation

    Science.gov (United States)

    Özdemir, T.; Usanmaz, A.

    2007-06-01

    Poly(carbonate urethane) (PCU), is a valuable commercial engineering polymer. In order to understand the possible use of PCU in radioactive waste management as a solidifying agent or as a disposal container, radiation stability of the PCU is studied by Co-60 gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h. The total dose of irradiation was up to 6.24 MGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with rate and total dose of irradiation. Ultimate tensile strength and toughness first increased and then decreased with the irradiation dose. Half value dose (HVD) for elongation was 4010 kGy and for tensile strength 6010 kGy at the dose rate of 1540 Gy/h. The non-irradiated PCU transparent color changed to yellow and then brown with increased irradiation dose. The FTIR spectral analysis showed a random scission of polymer with irradiation. From the experimental observation, it was shown that PCU can be used for embedding radioactive waste for about 300 years.

  15. Identification of the degradation pathways of alkanolamines with TiO{sub 2} photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chung-Shin, E-mail: cslu6@ntcnc.edu.tw [Department of General Education, National Taichung Nursing College, Taichung 403, Taiwan (China); Chen, Chiing-Chang [Department of Science Application and Dissemination, National Taichung University, Taichung 403, Taiwan (China); Mai, Fu-Der [Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Li, Hua-Kuang [Department of General Education, National Taichung Nursing College, Taichung 403, Taiwan (China)

    2009-06-15

    The present study deals with the photocatalytic degradation of the alkanolamine, 2-dimethylamino-2-methyl-1-propanol (DMAMP), in the presence of TiO{sub 2} particles and UV-A ({lambda} = 365 nm) radiation. The obtained results show complete oxidation of DMAMP after 20 h, and a little over 90% of DMAMP was mineralization after 64-h of treatment. The effects of the solution pH, catalyst loading, and anions on the photocatalytic degradation of DMAMP were investigated, as well as the reaction intermediates that were formed during treatment. To the best of our knowledge, this is the first time that reports the degradation pathways of DMAMP. A number of intermediates were identified by GC/MS techniques during the treatment of DMAMP, following three tentative degradation routes. The first one is based on the oxidation of the primary alcohol group leading to the formation of corresponding aldehyde and carboxylic acid. The second route is based on the rupture of the N-C bond to form 2-methylpropanal and acetone. The last degradation route is based on the cyclization of the {beta}-amino alcohol group to form the oxazolidine derivatives.

  16. Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis

    International Nuclear Information System (INIS)

    The present study deals with the photocatalytic degradation of the alkanolamine, 2-dimethylamino-2-methyl-1-propanol (DMAMP), in the presence of TiO2 particles and UV-A (λ = 365 nm) radiation. The obtained results show complete oxidation of DMAMP after 20 h, and a little over 90% of DMAMP was mineralization after 64-h of treatment. The effects of the solution pH, catalyst loading, and anions on the photocatalytic degradation of DMAMP were investigated, as well as the reaction intermediates that were formed during treatment. To the best of our knowledge, this is the first time that reports the degradation pathways of DMAMP. A number of intermediates were identified by GC/MS techniques during the treatment of DMAMP, following three tentative degradation routes. The first one is based on the oxidation of the primary alcohol group leading to the formation of corresponding aldehyde and carboxylic acid. The second route is based on the rupture of the N-C bond to form 2-methylpropanal and acetone. The last degradation route is based on the cyclization of the β-amino alcohol group to form the oxazolidine derivatives.

  17. Degradation of retinoid X receptor α by TPA through proteasome pathway in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Ye; Su Liu; Qiao Wu; Xiao-Feng Lin; Bing Zhang; Jia-Fa Wu; Ming-Qing Zhang; Wen-Jin Su

    2003-01-01

    AIM: To investigate and determine the mechanism and signal pathway of tetradecanoylphorbol-1, 3-acetate (TPA) in degradation of RXRα.METHODS: Gastric cancer cell line, BGC-823 was used in the experiments. The expression level of R XRα protein was detected by Western blot. Nuclear and cytoplasmic protein fractions were prepared through lysis of cell and centrifugation.Localization and translocation of RXRα were observed under laser-scanning confocal microscope through labeling specific anti-RXRα antibody and corresponding immunofiuorescent antibody as secondary antibody. Different inhibitors were used as required.RESULTS: In BGC-823 cells, RXRα was expressed in the nucleus. When cells were treated with TPA, expression of RXRα was repressed in a time-dependent and TPAconcentration-dependent manner. Meanwhile, translocation of RXR from the nucleus to the cytoplasm occurred, also in a time-dependent manner. When cells were pre-incubated with proteasome inhibitor MG132 for 3 hrs, followed by TPA for another 12 hrs, TPA-induced RXRα degradation was inhibited. Further observation of RXRα translocation in the presence of MG132 showed that MG-132 could block TPAinduced RXRα redistribution. Conversely, when RXRαtranslocation was inhibited by LMB, an inhibitor for blocking protein export from the nucleus, TPA could not repress expression of RXRα.CONCLUSION: TPA could induce the degradation of RXRα protein in BGC-823 cells, and this degradation is time-and TPA-concentration-dependent. Furthermore, the degradation of RXRα by TPA is via a proteasome pathway and associated with RXRα translocation from the nucleus to the cytoplasm.

  18. KCTD1 suppresses canonical Wnt signaling pathway by enhancing β-catenin degradation.

    Directory of Open Access Journals (Sweden)

    Xinxin Li

    Full Text Available The canonical Wnt signaling pathway controls normal embryonic development, cellular proliferation and growth, and its aberrant activity results in human carcinogenesis. The core component in regulation of this pathway is β-catenin, but molecular regulation mechanisms of β-catenin stability are not completely known. Here, our recent studies have shown that KCTD1 strongly inhibits TCF/LEF reporter activity. Moreover, KCTD1 interacted with β-catenin both in vivo by co-immunoprecipitation as well as in vitro through GST pull-down assays. We further mapped the interaction regions to the 1-9 armadillo repeats of β-catenin and the BTB domain of KCTD1, especially Position Ala-30 and His-33. Immunofluorescence analysis indicated that KCTD1 promotes the cytoplasmic accumulation of β-catenin. Furthermore, protein stability assays revealed that KCTD1 enhances the ubiquitination/degradation of β-catenin in a concentration-dependent manner in HeLa cells. And the degradation of β-catenin mediated by KCTD1 was alleviated by the proteasome inhibitor, MG132. In addition, KCTD1-mediated β-catenin degradation was dependent on casein kinase 1 (CK1- and glycogen synthase kinase-3β (GSK-3β-mediated phosphorylation and enhanced by the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP. Moreover, KCTD1 suppressed the expression of endogenous Wnt downstream genes and transcription factor AP-2α. Finally, we found that Wnt pathway member APC and tumor suppressor p53 influence KCTD1-mediated downregulation of β-catenin. These results suggest that KCTD1 functions as a novel inhibitor of Wnt signaling pathway.

  19. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin.

    Science.gov (United States)

    Liebl, Martina P; Hoppe, Thorsten

    2016-08-01

    Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases. PMID:27225656

  20. Impacts of management practices on soil organic carbon in degraded alpine meadows on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    X. F. Chang

    2014-01-01

    Full Text Available Grassland soil organic carbon (SOC is sensitive to anthropogenic activities. Increased anthropogenic disturbance related to overgrazing has led to widespread alpine grassland degradation on the Tibetan Plateau. The degraded grasslands are considered to have great potential for carbon sequestration after adoption of improved management practices. Here, we calibrated and employed the Century model to investigate the effects of overgrazing and improved managements on the SOC dynamics in alpine meadows. We calibrated Century model against plant productivity at Haibei Research Station. SOC stocks for validation were obtained in 2009–2010 from degraded alpine meadows in two communes. We found that Century model can successfully capture grassland SOC changes. Overall, our simulation suggests that degraded alpine meadow SOC significantly increased with the advent of restoration managements from 2011 to 2030. Carbon sequestration rates ranged between 0.04 Mg C ha−1 yr−1 in lightly degraded winter grasslands and 2.0 Mg C ha−1 yr−1 in moderately degraded summer grasslands. Our modeling work also predicts that improve management in Tibetan degraded grasslands will contribute to an annual carbon sink of 0.022–0.059 Pg C yr−1. These results imply that restoration of degraded grasslands in Tibetan Plateau has great potential for soil carbon sequestration to mitigate greenhouse gases.

  1. Impacts of management practices on soil organic carbon in degraded alpine meadows on the Tibetan Plateau

    Science.gov (United States)

    Chang, X. F.; Zhu, X. X.; Wang, S. P.; Cui, S. J.; Luo, C. Y.; Zhang, Z. H.; Wilkes, A.

    2014-07-01

    Grassland soil organic carbon (SOC) is sensitive to anthropogenic activities. Increased anthropogenic disturbance related to overgrazing has led to widespread alpine grassland degradation on the Tibetan Plateau. The degraded grasslands are considered to have great potential for carbon sequestration after adoption of improved management practices. Here, we calibrated and employed the Century model to investigate the effects of overgrazing and improved managements on the SOC dynamics in alpine meadows. We calibrated the Century model against plant productivity at the Haibei Research Station. SOC stocks for validation were obtained in 2009-2010 from degraded alpine meadows in two communes. We found that Century model can successfully capture grassland SOC changes. Overall, our simulation suggests that degraded alpine meadow SOC significantly increased with the advent of restoration management from 2011 to 2030. Carbon sequestration rates ranged between 0.04 Mg C ha-1 yr-1 in lightly degraded winter grazing grasslands and 2.0 Mg C ha-1 yr-1 in moderately degraded summer grazing grasslands. Our modelling work also predicts that improve management in degraded Tibetan grasslands will contribute to an annual carbon sink of 0.022-0.059 Pg C yr-1. These results imply that restoration of degraded grasslands in the Tibetan Plateau has great potential for soil carbon sequestration to mitigate greenhouse gases.

  2. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Bin [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Hiromatsu, Kenji, E-mail: khiromatsu@fukuoka-u.ac.jp [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Hisaeda, Hajime; Duan, Xuefeng; Imai, Takashi [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Murata, Shigeo; Tanaka, Keiji [Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613 (Japan); Himeno, Kunisuke [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2010-02-12

    Cytotoxic CD8{sup +} T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8{sup +} T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8{sup +} T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4{sup +} T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8{sup +} T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.

  3. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Cytotoxic CD8+ T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8+ T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8+ T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4+ T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8+ T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.

  4. Organelle interactions and possible degradation pathways visualized in high-pressure frozen algal cells.

    Science.gov (United States)

    Aichinger, N; Lütz-Meindl, U

    2005-08-01

    Summary Organelle interactions, although essential for both anabolic and catabolic pathways in plant cells have not been examined in detail so far. In the present study the structure of different organelle-organelle, organelle-vesicle and organelle-membrane interactions were investigated in growing and nongrowing cells of the green alga Micrasterias denticulata by use of high pressure freeze fixation and energy filtering transmission electron microscopy. It became clear that contacts between mitochondria always occur by formation of a cone-shaped protuberance of one of the mitochondria which penetrates into its fusion partner. In the same way, structural interactions between mitochondria and mucilage vesicles and between microbodies and mucilage vesicles are achieved. Lytic compartments contact mitochondria or mucilage vesicles again by forming protuberances and by extending their contents into the respective compartment. Detached portions of mitochondria are found inside lytic compartments as a consequence of such interactions. Mitochondria found in contact with the plasma membrane reveal structural disintegration. Our study shows that interactions of organelles and vesicles are frequent events in Micrasterias cells of different ages. The interactive contacts between lytic compartments and organelles or vesicles suggest a degradation pathway different from autophagy processes described in the literature. Both the interactions between vesicles and organelles and the degradation pathways occur independently from cytoskeleton function as demonstrated by use of cytochalasin D and the microtubule inhibitor amiprophos-methyl. PMID:16159344

  5. Pathways of organic carbon oxidation in three continental margin sediments

    Science.gov (United States)

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  6. Chemical modification and degradation of atrazine in Medicago sativa through multiple pathways.

    Science.gov (United States)

    Zhang, Jing Jing; Lu, Yi Chen; Yang, Hong

    2014-10-01

    Atrazine is a member of the triazine herbicide family intensively used to control weeds for crop production. In this study, atrazine residues and its degraded products in alfalfa (Medicago sativa) were characterized using UPLC-TOF-MS/MS. Most of atrazine absorbed in plants was found as chemically modified derivatives like deisopropylated atrazine (DIA), dehydrogenated atrazine (DHA), or methylated atrazine (MEA), and some atrazine derivatives were conjugated through different functional groups such as sugar, glutathione, and amino acids. Interestingly, the specific conjugates DHA+hGSH (homoglutathione) and MEA-HCl+hGSH in alfalfa were detected. These results suggest that atrazine in alfalfa can be degraded through different pathways. The increased activities of glycosyltransferase and glutathione S-transferase were determined to support the atrazine degradation models. The outcome of the work uncovered the detailed mechanism for the residual atrazine accumulation and degradation in alfalfa and will help to evaluate whether the crop is suitable to be cultivated in the atrazine-polluted soil.

  7. Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos: Parameter study and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.-J. [Department of Applied Chemistry, Providence University, Taichung 433, Taiwan (China); Chen, C.-C. [Department of General Education, National Taichung Nursing College, Taichung 403, Taiwan (China); Chen, M.-H. [Department of Applied Chemistry, Providence University, Taichung 433, Taiwan (China); Lu, C.-S. [Department of General Education, National Taichung Nursing College, Taichung 403, Taiwan (China)], E-mail: cslu6@ntcnc.edu.tw

    2009-03-15

    The photocatalytic degradation of terbufos in aqueous suspensions was investigated by using titanium dioxide (TiO{sub 2}) as a photocatalyst. About 99% of terbufos was degraded after UV irradiation for 90 min. Factors such as pH of the system, TiO{sub 2} dosage, and presence of anions were found to influence the degradation rate. Photodegradation of terbufos by TiO{sub 2}/UV exhibited pseudo-first-order reaction kinetics, and a reaction quantum yield of 0.289. The electrical energy consumption per order of magnitude for photocatalytic degradation of terbufos was calculated and showed that a moderated efficiency (E{sub EO} = 71 kWh/(m{sup 3} order)) was obtained in TiO{sub 2}/UV process. To obtain a better understanding of the mechanistic details of this TiO{sub 2}-assisted photodegradation of terbufos with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. The probable photodegradation pathways were proposed and discussed.

  8. Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos: Parameter study and reaction pathways

    International Nuclear Information System (INIS)

    The photocatalytic degradation of terbufos in aqueous suspensions was investigated by using titanium dioxide (TiO2) as a photocatalyst. About 99% of terbufos was degraded after UV irradiation for 90 min. Factors such as pH of the system, TiO2 dosage, and presence of anions were found to influence the degradation rate. Photodegradation of terbufos by TiO2/UV exhibited pseudo-first-order reaction kinetics, and a reaction quantum yield of 0.289. The electrical energy consumption per order of magnitude for photocatalytic degradation of terbufos was calculated and showed that a moderated efficiency (EEO = 71 kWh/(m3 order)) was obtained in TiO2/UV process. To obtain a better understanding of the mechanistic details of this TiO2-assisted photodegradation of terbufos with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. The probable photodegradation pathways were proposed and discussed

  9. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  10. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  11. Current-induced strength degradation of activated carbon spheres in carbon supercapacitors

    Science.gov (United States)

    Sun, Yuan; Chen, Rong; Lipka, Stephen M.; Yang, Fuqian

    2016-05-01

    Activated carbon microspheres (ACSs), which are prepared using hydrothermal synthesis and ammonia activation, are used as the active materials in the anode and cathode of electric double layer capacitors (EDLCs). The ACS-based EDLCs of symmetrical electrodes exhibit good stability and a high degree of reversibility over 2000 charge-discharge cycles for electric current up to 10 A g-1. The ACSs maintain a nongraphitized carbon structure after over 2000 charge-discharge cycles. Nanoindentation experiments are performed on the ACSs, which are electrochemically cycled in a voltage window of 0-1 V at three electric currents of 0.5, 5, and 10 A g-1. For the same indentation load, both the contact modulus and indentation hardness of the ACSs decrease with the increase of the electric current used in the electrical charging and discharging. These results suggest that there exists strength degradation introduced by the electric current. A larger electric current will cause more strength degradation than a smaller electric current.

  12. Dysfunction of two lysosome degradation pathways of α-synuclein in Parkinson's disease: potential therapeutic targets?

    Institute of Scientific and Technical Information of China (English)

    Tian-Fang Jiang; Sheng-Di Chen

    2012-01-01

    Parkinson's disease (PD) is pathologically characterized by the presence of α-synuclein (α-syn)-positive intracytoplasmic inclusions named Lewy bodies in the dopaminergic neurons of the substantia nigra.A series of morbid consequences are caused by pathologically high amounts or mutant forms of α-syn,such as defects of membrane trafficking and lipid metabolism.In this review,we consider evidence that both point mutation and overexpression of α-syn result in aberrant degradation in neurons and microglia,and this is associated with the autophagy-lysosome pathway and endosomelysosome system,leading directly to pathological intracellular aggregation,abnormal externalization and re-internalization cycling (and,in turn,internalization and re-externalization),and exocytosis.Based on these pathological changes,an increasing number of researchers have focused on these new therapeutic targets,aiming at alleviating the pathological accumulation of α-syn and re-establishing normal degradation.

  13. The non-phagocytic route of collagen uptake: a distinct degradation pathway

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Ingvarsen, Signe; Jürgensen, Henrik J;

    2011-01-01

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments......, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional...... mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include ß1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down...

  14. FTIR study of degradation products of aliphatic polyesters carbon fibres composites

    Science.gov (United States)

    Pamuła, Elżbieta; Błażewicz, Marta; Paluszkiewicz, Czesława; Dobrzyński, Piotr

    2001-09-01

    Biodegradable polymer composites based on polylactides and polyglycolides constitute a group of materials characterised by good biocompatibility. They are considered in tissue engineering as scaffolds for cells proliferation and controlled tissue regeneration. Two types of biodegradable polymers possessing different chemical structure, molecular weights and crystallinity degrees and two composite materials made up of them and carbon fibres were analysed in this study. The samples were incubated in aqueous media for 8 weeks and analysed by means of Fourier transform infrared spectroscopy in the attenuated total reflection mode (FTIR-ATR). Infrared spectroscopy enabled identification of degradation products and estimation of the influence of carbon fibres on hydrolytic degradation of analysed polymers. Analysis of the infrared spectra showed that hydrolytic degradation process depends on chemical structure, molecular weight and crystallinity of polymers. Catalytic effect of carbon fibres at the initial stage of polymer degradation was observed. Further degradation is dependent on the properties of polymer.

  15. Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents

    OpenAIRE

    Liebgott, Pierre-Pol; Labat, Marc; Amouric, Agnès; Tholozan, Jean-Luc; LORQUIN, Jean

    2008-01-01

    To isolate a new Halomonas sp. strain capable of degrading tyrosol, a toxic compound present in olive mill wastewater, through the homogentisic acid (HGA) pathway. A moderately halophilic Gram-negative bacterium belonging to the Halomonas genus and designated strain TYRC17 was isolated from olive processing effluents. This strain was able to completely degrade tyrosol (2-(p-hydroxyphenyl)-ethanol), a toxic compound found in such effluent. Tyrosol degradation begins by an oxidation to 4-hydrox...

  16. Insulin-degrading enzyme is exported via an unconventional protein secretion pathway

    Directory of Open Access Journals (Sweden)

    Leissring Malcolm A

    2009-01-01

    Full Text Available Abstract Insulin-degrading enzyme (IDE is a ubiquitously expressed zinc-metalloprotease that degrades several pathophysiologically significant extracellular substrates, including insulin and the amyloid β-protein (Aβ, and accumulating evidence suggests that IDE dysfunction may be operative in both type 2 diabetes mellitus and Alzheimer disease (AD. Although IDE is well known to be secreted by a variety of cell types, the underlying trafficking pathway(s remain poorly understood. To address this topic, we investigated the effects of known inhibitors or stimulators of protein secretion on the secretion of IDE from murine hepatocytes and HeLa cells. IDE secretion was found to be unaffected by the classical secretion inhibitors brefeldin A (BFA, monensin, or nocodazole, treatments that readily inhibited the secretion of α1-antitrypsin (AAT overexpressed in the same cells. Using a novel cell-based Aβ-degradation assay, we show further that IDE secretion was similarly unaffected by multiple stimulators of protein secretion, including glyburide and 3'-O-(4-benzoylbenzoyl-ATP (Bz-ATP. The calcium ionophore, A23187, increased extracellular IDE activity, but only under conditions that also elicited cytotoxicity. Our results provide the first biochemical evidence that IDE export is not dependent upon the classical secretion pathway, thereby identifying IDE as a novel member of the select class of unconventionally secreted proteins. Further elucidation of the mechanisms underlying IDE secretion, which would be facilitated by the assays described herein, promises to uncover processes that might be defective in disease or manipulated for therapeutic benefit.

  17. Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi; Pétrier, Christian

    2010-03-15

    The influence of bicarbonate and carbonate ions on sonolytic degradation of cationic dye, Rhodamine B (RhB), in water was investigated. As a consequence of ultrasonic cavitation that generates .OH radicals, carbonate radicals were secondary products of water sonochemistry when it contains dissolved bicarbonate or carbonate ions. The results clearly demonstrated the significant intensification of sonolytic destruction of RhB in the presence of bicarbonate and carbonate, especially at lower dye concentrations. Degradation intensification occurs because carbonate radicals sonochemically formed undergo radical-radical recombination at a lesser extent than hydroxyl radicals. The generated carbonate radicals are likely able to migrate far from the cavitation bubbles towards the solution bulk and are suitable for degradation of an organic dye such as RhB. Therefore, at low dye concentrations, carbonate radical presents a more selective reactivity towards RhB molecules than hydroxyl radical. In the presence of bicarbonate, degradation rate reached a maximum at 3 g L(-1) bicarbonate, but subsequent addition retards the destruction process. In RhB solutions containing carbonate, the oxidation rate gradually increased with increasing carbonate concentration up to 10 g L(-1) and slightly decreased afterward. Carbonate radicals sonochemically generated are suitable for total removal of COD of sonicated RhB solutions. PMID:19910116

  18. Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway

    Directory of Open Access Journals (Sweden)

    Scheuring David

    2012-09-01

    Full Text Available Abstract Background In yeast and mammals, many plasma membrane (PM proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. Results Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. Conclusions Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route

  19. Electrochemical treatment of trypan blue synthetic wastewater and its degradation pathway

    Directory of Open Access Journals (Sweden)

    ANANTHA N. SUBBA RAO

    2013-11-01

    Full Text Available The trypan blue (TB dye synthetic wastewater was treated in presence of chloride ions by electrochemical method. The effect of current density, pH, initial concentration of dye and supporting electrolyte on color and COD removal were investigated. The UV-Vis ab­sorption intensity, chemical oxygen demand (COD, cyclic voltammetry (CV, Fourier transform- infrared spectroscopy (FT-IR, gas chromatography – mass spectrometry (GC-MS analysis were conducted to investigate the kinetics and degradation pathway of TB dye.

  20. Elimination of paternal mitochondria through the lysosomal degradation pathway in C.elegans

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou; Haimin Li; Ding Xue

    2011-01-01

    In mammals,the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal,despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization.The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown.We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans,and that the lysosomal pathway actively participates in this process.Molecular and cell biological analyses indicate that in wild-type animals paternal mitoehondria and mtDNA are destroyed within two hours after fertilization.In animals with compromised lysosomes,paternal mitochondria persist until late embryonic stages.Therefore,the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization.Our study indicates that C.elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.

  1. Characterization of the KstR2 regulator responsible of the lower cholesterol degradative pathway in Mycobacterium smegmatis.

    Science.gov (United States)

    García-Fernández, Julia; Galán, Beatriz; Medrano, Francisco J; García, José L

    2015-02-01

    The interaction of KstR2-dependent promoters of the divergon constituted by the MSMEG_6000-5999 and MSMEG_6001-6004 operons of Mycobacterium smegmatis which encode the genes involved in the lower cholesterol degradative pathway has been characterized. Footprint analyses have demonstrated experimentally for the first time that KstR2 specifically binds to an operator region of 29 nucleotides containing the palindromic sequence AAGCAAGNNCTTGCTT. This region overlaps with the -10 and -35 boxes of the putative P(6000) and P(6001) divergent promoters, suggesting that KstR2 represses their transcription by preventing the binding of the ribonucleic acid polymerase. A three-dimensional model of the KstR2 protein revealed a typical TetR-type regulator folding with two domains, a deoxyribonucleic acid (DNA)-binding N-terminal domain and a regulator-binding C-terminal domain composed by three and six helices respectively. KstR2 is an all alpha protein as confirmed by circular dichroism. We have determined that M. smegmatis is able to grow using sitolactone (HIL) as the only carbon source and that this compound induces the kstR2 regulon in vivo. HIL or its open form 5OH-HIP were unable to release in vitro the KstR2-DNA operator interaction, suggesting that 5OH-HIP-CoA or a further derivative would induce the lower cholesterol catabolic pathway. PMID:25511435

  2. Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum

    Institute of Scientific and Technical Information of China (English)

    SHEN; Xihui; LIU; Shuangjiang

    2005-01-01

    Although the protocatechuate branch of the β-ketoadipate pathway in Gram bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study,Corynebacterium glutamicum was cultivated with protocatechuate, p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locus ncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes,ncg12314 and ncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). Recombinant Escherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted in C. glutamicum, the ability to degrade and assimilate protocatechuate, p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity of C.glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded by ncg12314 and ncg12315. The additional genes involved in the protocatechuate branch of the β-ketoadipate pathway were identified by mining the genome data publically available in the GenBank. The functional identification of genes and their unique organization in C. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.

  3. Impacts of management practices on soil organic carbon in degraded alpine meadows on the Tibetan Plateau

    OpenAIRE

    X. F. Chang; X. X. ZHU; Wang, S.P.; Cui, S. J.; Luo, C. Y.; Zhang, Z. H.; A. Wilkes

    2014-01-01

    Grassland soil organic carbon (SOC) is sensitive to anthropogenic activities. Increased anthropogenic disturbance related to overgrazing has led to widespread alpine grassland degradation on the Tibetan Plateau. The degraded grasslands are considered to have great potential for carbon sequestration after adoption of improved management practices. Here, we calibrated and employed the Century model to investigate the effects of overgrazing and improved managements on the SOC d...

  4. Salinity, dissolved organic carbon and water hardness affect peracetic acid (PAA) degradation in aqueous solutions

    DEFF Research Database (Denmark)

    Liu, Dibo; Steinberg, Christian E.W.; Straus, David L.;

    2014-01-01

    -degradation of three commercial products, Wofasteril® E400, Wofasteril® E250 and Wofasteril® Lspez, at a nominal concentration of 1 mg L−1 in relation to two levels of salinity, water hardness, or dissolved organic carbon (DOC). The results showed that salinity and DOC stimulate PAA-degradation, while water hardness...

  5. Molecular characterization of the Akt-TOR signaling pathway in rainbow trout: potential role in muscle growth/degradation

    Science.gov (United States)

    The Akt-TOR signaling pathway plays a key role in cellular metabolism and muscle growth. Hormone, nutrition and stress factors affect the Akt-TOR pathway by regulating gene transcription, protein synthesis and degradation. In addition, we previously showed that energetic demands elevate during vit...

  6. Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation

    Institute of Scientific and Technical Information of China (English)

    Ting Tao; Hui Shi; Yihong Guan; Delai Huang; Ye Chen; David P Lane; Jun Chen

    2013-01-01

    p53 protein turnover through the ubiquitination pathway is a vital mechanism in the regulation of its transcriptional activity; however,little is known about p53 turnover through proteasome-independent pathway(s).The digestive organ expansion factor (Def) protein is essential for the development of digestive organs.In zebrafish,loss of function of defselectively upregulates the expression of p53 response genes,which raises a question as to what is the relationship between Def and p53.We report here that Def is a nucleolar protein and that loss of function of defleads to the upregulation of p53 protein,which surprisingly accumulates in the nucleoli.Our extensive studies have demonstrated that Def can mediate the degradation of p53 protein and that this process is independent of the proteasome pathway,but dependent on the activity of Calpain3,a cysteine protease.Our findings define a novel nucleolar pathway that regulates the turnover function of p53,which will advance our understanding of p53's role in organogenesis and tumorigenesis.

  7. 13C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H

    Directory of Open Access Journals (Sweden)

    Steffen Ostermann

    2015-09-01

    Full Text Available Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner–Doudoroff pathway (EDP and the pentose phosphate pathway (PPP. Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically 13C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from 13C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with 13C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments.

  8. Kinetics and reaction pathways of formaldehyde degradation using the UV-fenton method.

    Science.gov (United States)

    Liu, Xiangxuan; Liang, Jiantao; Wang, Xuanjun

    2011-05-01

    This study was based on the purpose of investigating the reaction rules of formaldehyde (HCHO) as an intermediate product in the degradation of many other organic wastewaters. The process conditions of UV-Fenton method for the degradation of the low concentrations of HCHO were studied in a batch photochemical reactor. The results showed that, when the original HCHO concentration was 30 mg/L, at an operating temperature of 23 degrees C, pH = 3, an H202 dosage of 68 mg/L, and an H2O2-to-Fe2+ mole ratio (H2O2:Fe2+) of 5, 91.89% of the HCHO was removed after 30 minutes. The degradation of HCHO in the UV-Fenton system was basically in accordance with the exponential decay. The kinetic study results showed that the reaction orders of HCHO, Fe2+, and H2O2 in the system were 1.054, 0.510, and 0.728, respectively, and the activation energy (Ea) was 9.85 kJ/mol. The comparison of UV/H2O2, Fenton, and UV-Fenton systems for the degradation of HCHO, and the results of iron catalyst tests showed that the mechanism of UV-Fenton on the degradation of HCHO was through a synergistic effect of Fe2+ and UV light to catalyze the decomposition of H2O2. The introduction of UV irradiation to the Fenton system largely increased the degradation rate of HCHO, mainly as a result of the accelerating effect on the formation of the Fe2+/Fe3+ cycle. The reaction products were analyzed by gas chromatography-mass spectrometry and a chemical oxygen demand (COD) analyzer. The effluent gases also were analyzed by gas chromatography. Based on those results, the reaction pathways of HCHO in the UV-Fenton system were proposed. The qualitative and quantitative analysis of the reaction products and the COD showed that the main intermediate product of the reaction was formic acid, and the further oxidation of it was the rate-limiting step for the degradation of HCHO.

  9. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.

    Science.gov (United States)

    Xiang, Yingying; Fang, Jingyun; Shang, Chii

    2016-03-01

    The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed.

  10. Pathways and Determinants of Early Spontaneous Vegetation Succession in Degraded Lowland of South China

    Institute of Scientific and Technical Information of China (English)

    Wen-Jun Duan; Hai Ran; Sheng-Lei Fu; Qin-Feng Guo; Jun Wang

    2008-01-01

    Continuous and prolonged human disturbances have caused severe degradation of a large portion of lowland in South China, and how to restore such degraded ecosystems becomes an increasing concern. The process and mechanisms of spontaneous succession, which plays an important role in vegetation restoration, have not been adequately examined. To identify the pathways of early spontaneous vegetation succession, 41 plots representing plant communities abandoned over different times were established and Investigated. The communities and indicator species of the vegetation were classified by analyzing the important values of plant species using multivariate analyses. The reaults indicated that the plant species could be classified into nine plant communities repreaenting six succession staages. The pathway and species composition alao changed in the process of succession. We also meaeurad 13 environmental variables of microtopography, soil structure and soil nutrition in each plot to examine the driving forces of auccession and the vegetation-environment relationships. Our resulta ahowed that the environmental variables changed in diverse directions, and that aoil bulk density, soil water capacity and soU acidity were the most important factors.

  11. Abiotic degradation rates for carbon tetrachloride and chloroform: Final report.

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Humphrys, Daniel R.; Wietsma, Thomas W.; Truex, Michael J.

    2012-12-01

    This report documents the objectives, technical approach, and progress made through FY 2012 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The project also sought to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. We conducted 114 hydrolysis rate experiments in sealed vessels across a temperature range of 20-93 °C for periods as long as 6 years, and used the Arrhenius equation to estimate activation energies and calculate half-lives for typical Hanford groundwater conditions (temperature of 16 °C and pH of 7.75). We calculated a half-life of 630 years for hydrolysis for CT under these conditions and found that CT hydrolysis was unaffected by contact with sterilized, oxidized minerals or Hanford sediment within the sensitivity of our experiments. In contrast to CT, hydrolysis of CF was generally slower and very sensitive to pH due to the presence of both neutral and base-catalyzed hydrolysis pathways. We calculated a half-life of 3400 years for hydrolysis of CF in homogeneous solution at 16 °C and pH 7.75. Experiments in suspensions of Hanford sediment or smectite, the dominant clay mineral in Hanford sediment, equilibrated to an initial pH of 7.2, yielded calculated half-lives of 1700 years and 190 years, respectively, at 16 °C. Experiments with three other mineral phases at the same pH (muscovite mica, albite feldspar, and kaolinite) showed no change from the homogeneous solution results (i.e., a half-life of 3400 years). The strong influence of Hanford sediment on CF hydrolysis was attributed to the presence of smectite and its ability to adsorb protons, thereby buffering the solution pH at a higher level than would otherwise occur. The project also determined liquid-vapor partition coefficients for CT under the temperatures and pressures encountered in the sealed vessels that

  12. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment.

    Science.gov (United States)

    Wu, Yanlin; Shi, Jin; Chen, Hongche; Zhao, Jianfu; Dong, Wenbo

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC-MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO) was also studied and H2O2 was added to produce HO. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16h irradiation. PMID:27213674

  13. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin–proteasome pathway

    Science.gov (United States)

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Dong, Xing-yu; Liu, Ru-en; Xu, Ru-xiang

    2015-01-01

    We investigated the underlying mechanism for the potent proapoptotic effect of paeoniflorin (PF) on human glioma cells in vitro, focusing on signal transducer and activator of transcription 3 (STAT3) signaling. Significant time- and dose-dependent apoptosis and inhibition of proliferation were observed in PF-treated U87 and U251 glioma cells. Expression of STAT3, its active form phosphorylated STAT3 (p-STAT3), and several downstream molecules, including HIAP, Bcl-2, cyclin D1, and Survivin, were significantly downregulated upon PF treatment. Overexpression of STAT3 induced resistance to PF, suggesting that STAT3 was a critical target of PF. Interestingly, rapid downregulation of STAT3 was consistent with its accelerated degradation, but not with its dephosphorylation or transcriptional modulation. Using specific inhibitors, we demonstrated that the prodegradation effect of PF on STAT3 was mainly through the ubiquitin–proteasome pathway rather than via lysosomal degradation. These findings indicated that PF-induced growth suppression and apoptosis in human glioma cells through the proteasome-dependent degradation of STAT3. PMID:26508835

  14. Degradation pathway of quinolines in a biofilm system under denitrifying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, S.S.; Arvin, E.; Mosbaek, H. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Environmental Science and Engineering; Hansen, A.B. [National Environmental Research Inst., Roskilde (Denmark). Dept. of Environmental Chemistry

    1997-09-01

    This article reports for the first time the degradation pathways of quinoline, isoquinoline, and methylquinolines by a mixed culture in a biofilm under nitrate-reducing conditions. A simple reverse-phase high-performance liquid chromatography method using ultraviolet detection at 223 nm for determination of seven quinoline analogues and 15 metabolites was developed, and gas chromatography--mass spectrometry and thin-layer chromatography analyses were used for identification. The inhibition of nitrification by the parent compounds and their degradation products was assessed by a nitrification toxicity test called MINNTOX. Quinoline and 3-, 4-, 6-, and 8-methylquinoline were all transformed by hydroxylation into their 2-hydroxyquinoline analogues (2-quinolinones), and isoquinoline was transformed into 1-hydroxyisoquinoline. 2-Methylquinoline was not transformed by this microcosm, likely due to the blockage at position 2 by the methyl group. The hydroxylated metabolites of isoquinoline and quinolines methylated at the heterocyclic ring were not transformed further, whereas metabolites of quinoline and quinolines methylated at the homocyclic ring were hydrogenated at position 3 and 4, and the resulting 3,4-dihydro-2-quinolinone analogues accumulated. Of these metabolites, only 3,4-dihydro-2-quinolinone from the degradation of quinoline was further transformed into unidentified products. All quinolines and their metabolites had inhibiting effects on the nitrifying bacteria at the same level (ppm) in the applied bioassay, indicating that the inhibition of the compounds was not influenced by the initial transformation reactions.

  15. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  16. Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways.

    Science.gov (United States)

    Ma, Jingshuai; Lv, Wenying; Chen, Ping; Lu, Yida; Wang, Fengliang; Li, Fuhua; Yao, Kun; Liu, Guoguang

    2016-07-01

    The lipid regulator gemfibrozil (GEM) has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photolytic behavior, toxicity of intermediate products, and degradation pathways of GEM in aqueous solutions under UV irradiation. The results demonstrated that the photodegradation of GEM followed pseudo-first-order kinetics, and the pseudo-first-order rate constant was decreased markedly with increasing initial concentrations of GEM and initial pH. The photodegradation of GEM included direct photolysis via (3)GEM(*) and self-sensitization via ROS, where the contribution rates of degradation were 0.52, 90.05, and 8.38 % for ·OH, (1)O2, and (3)GEM(*), respectively. Singlet oxygen ((1)O2) was evidenced by the molecular probe compound, furfuryl alcohol (FFA), and was identified as the primary reactive species in the photolytic process. The steady-state concentrations of (1)O2 increased from (0.324 ± 0.014) × 10(-12) to (1.021 ± 0.040) × 10(-12) mol L(-1), as the initial concentrations of GEM were increased from 5 to 20 mg L(-1). The second-order rate constant for the reaction of GEM with (1)O2 was calculated to be 2.55 × 10(6) M(-1) s(-1). The primary transformation products were identified using HPLC-MS/MS, and possible photodegradation pathways were proposed by hydroxylation, aldehydes reactions, as well as the cleavage of ether side chains. The toxicity of phototransformation product evaluation revealed that photolysis potentially provides a critical pathway for GEM toxicity reduction in potable water and wastewater treatment facilities.

  17. Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival.

    Directory of Open Access Journals (Sweden)

    Kevin Roy

    2014-09-01

    Full Text Available Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2 is limited by spliceosome-mediated decay (SMD. Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD. We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress.

  18. Computational protein design enables a novel one-carbon assimilation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, JB; Smith, AL; Poust, S; Wargacki, AJ; Bar-Even, A; Louw, C; Shen, BW; Eiben, CB; Tran, HM; Noor, E; Gallaher, JL; Bale, J; Yoshikuni, Y; Gelb, MH; Keasling, JD; Stoddard, BL; Lidstrom, ME; Baker, D

    2015-03-09

    We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.

  19. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins

    Science.gov (United States)

    Sung, Min-Kyung; Porras-Yakushi, Tanya R; Reitsma, Justin M; Huber, Ferdinand M; Sweredoski, Michael J; Hoelz, André; Hess, Sonja; Deshaies, Raymond J

    2016-01-01

    Overproduced yeast ribosomal protein (RP) Rpl26 fails to assemble into ribosomes and is degraded in the nucleus/nucleolus by a ubiquitin-proteasome system quality control pathway comprising the E2 enzymes Ubc4/Ubc5 and the ubiquitin ligase Tom1. tom1 cells show reduced ubiquitination of multiple RPs, exceptional accumulation of detergent-insoluble proteins including multiple RPs, and hypersensitivity to imbalances in production of RPs and rRNA, indicative of a profound perturbation to proteostasis. Tom1 directly ubiquitinates unassembled RPs primarily via residues that are concealed in mature ribosomes. Together, these data point to an important role for Tom1 in normal physiology and prompt us to refer to this pathway as ERISQ, for excess ribosomal protein quality control. A similar pathway, mediated by the Tom1 homolog Huwe1, restricts accumulation of overexpressed hRpl26 in human cells. We propose that ERISQ is a key element of the quality control machinery that sustains protein homeostasis and cellular fitness in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.19105.001 PMID:27552055

  20. Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4).

    OpenAIRE

    Don, R H; Weightman, A J; Knackmuss, H J; Timmis, K N

    1985-01-01

    Plasmid pJP4 permits its host bacterium, strain JMP134, to degrade and utilize as sole sources of carbon and energy 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981). Mutagenesis of pJP4 by transposons Tn5 and Tn1771 enabled localization of five genes for enzymes involved in these catabolic pathways. Four of the genes, tfdB, tfdC, tfdD, and tfdE, encoded 2,4-dichlorophenol hydroxylase, dichlorocatechol 1,2-dioxygenase, chlorom...

  1. Anoxic carbon degradation in Arctic sediments: Microbial transformations of complex substrates

    DEFF Research Database (Denmark)

    Arnosti, Carol; Finke, Niko; Larsen, Ole;

    2005-01-01

    Complex substrates are degraded in anoxic sediments by the concerted activities of diverse microbial communities. To explore the effects of substrate complexity on carbon transformations in permanently cold anoxic sediments, four substrates—Spirulina cells, Isochrysis cells, and soluble high...... of carbon degradation diverged, with an additional 43%, 32%, 33%, and 8% of Isochrysis, Iso-Ex, Spirulina, and Spir-Ex carbon respired to CO2 over the next 750 h of incubation. Somewhat surprisingly, the soluble, carbohydrate-rich extracts did not prove to be more labile substrates than the whole cells from...

  2. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.

    Science.gov (United States)

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto

    2015-12-01

    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. PMID:26342557

  3. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products.

    Science.gov (United States)

    Gomi, Nichina; Yoshida, Shuji; Matsumoto, Kazutsugu; Okudomi, Masayuki; Konno, Hiroki; Hisabori, Toru; Sugano, Yasushi

    2011-11-01

    We examined the degradation of amaranth, a representative azo dye, by Bjerkandera adusta Dec 1. The degradation products were analyzed by high performance liquid chromatography (HPLC), visible absorbance, and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). At the primary culture stage (3 days), the probable reaction intermediates were 1-aminonaphthalene-2,3,6-triol, 4-(hydroxyamino) naphthalene-1-ol, and 2-hydroxy-3-[2-(4-sulfophenyl) hydrazinyl] benzenesulfonic acid. After 10 days, the reaction products detected were 4-nitrophenol, phenol, 2-hydroxy-3-nitrobenzenesulfonic acid, 4-nitrobenzene sulfonic acid, and 3,4'-disulfonyl azo benzene, suggesting that no aromatic amines were created. Manganese-dependent peroxidase activity increased sharply after 3 days culture. Based on these results, we herein propose, for the first time, a degradation pathway for amaranth. Our results suggest that Dec 1 degrades amaranth via the combined activities of peroxidase and hydrolase and reductase action.

  4. Removal and Degradation Pathways of Sulfamethoxazole Present in Synthetic Municipal Wastewater via an Anaerobic Membrane Bioreactor

    KAUST Repository

    Sanchez Huerta, Claudia

    2016-05-01

    The current global water crisis in addition to continues contamination of natural water bodies with harmful organic micropollutants (OMPs) have driven the development of new water treatment technologies that allow the efficient removal of such compounds. Among a long list of OMPs, antibiotics are considered as top priority pollutants to be treated due to their great resistance to biological treatments and their potential to develop bacterial resistance. Different approaches, such as membrane-based and advance oxidation processes have been proposed to alleviate or minimize antibiotics discharge into aquatic environments. However most of these processes are costly and generate either matrices with high concentration of OMPs or intermediate products with potentially greater toxicity or persistence. Therefore, this thesis proposes the study of an anaerobic membrane bioreactor (AnMBR) for the treatment of synthetic municipal wastewater containing sulfamethoxazole (SMX), a world widely used antibiotic. Besides the general evaluation of AnMBR performance in the COD removal and biogas production, this research mainly focuses on the SMX removal and its degradation pathway. Thus 5 SMX quantification was performed through solid phase extraction-liquid chromatography/mass spectrometry and the identification of its transformation products (TPs) was assessed by gas chromatography/mass spectrometry technique. The results achieved showed that, working under optimal conditions (35°C, pH 7 and ORP around -380 to -420 mV) and after a biomass adaptation period (maintaining 0.85 VSS/TSS ratio), the AnMBR process provided over 95% COD removal and 95-98% SMX removal, while allowing stable biogas composition and methane production (≈130 mL CH4/g CODremoved). Kinetic analysis through a batch test showed that after 24 h of biological reaction, AnMBR process achieved around 94% SMX removal, indicating a first order kinetic reaction with K= 0.119, which highlights the high degradation

  5. Enhanced degradation of carbon tetrachloride by surfactant-modified zero-valent iron

    Institute of Scientific and Technical Information of China (English)

    MENG Ya-feng; GUAN Bao-hong; WU Zhong-biao; WANG Da-hui

    2006-01-01

    Sorption of carbon tetrachloride (CT) by zero-valent iron (ZVI) is the rate-limiting step in the degradation of CT, so the sorption capacity of ZVI is of great importance. This experiment was aimed at enhancing the sorption of CT by ZVI and the degradation rate of CT by modification of surfactants. This study showed that ZVI modified by cationic surfactants has favorable synergistic effect on the degradation of CT. The CT degradation rate of ZVI modified by cetyl pyridinium bromide (CPB) was higher than that of the unmodified ZVI by 130%, and the CT degradation rate of ZVI modified by cetyl trimethyl ammonium bromide (CTAB) was higher than that of the unmodified ZVI by 81%. This study also showed that the best degradation effect is obtained at the near critical micelle concentrations (CMC) and that high loaded cationic surfactant does not have good synergistic effect on the degradation due to its hydrophilicity and the block in surface reduction sites. Furthermore degradation of CT by ZVI modified by nonionic surfactant has not positive effect on the degradation as the ionic surfactant and the ZVI modified by anionic surfactant has hardly any obvious effects on the degradation.

  6. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.

    Science.gov (United States)

    Keen, Olya S; Ferrer, Imma; Michael Thurman, E; Linden, Karl G

    2014-12-01

    Lamotrigine is recently recognized as a persistent pharmaceutical in the water environment and wastewater effluents. Its degradation was studied under UV and ozone advanced oxidation treatments with reaction kinetics of lamotrigine with ozone (≈4 M(-1)s(-1)), hydroxyl radical [(2.1 ± 0.3) × 10(9)M(-1)s(-1)] and by UV photolysis with low and medium pressure mercury vapor lamps [quantum yields ≈0 and (2.7 ± 0.4)× 10(-4) respectively] determined. All constants were measured at pH 6 and at temperature ≈20°C. The results indicate that lamotrigine is slow to respond to direct photolysis or oxidation by ozone and no attenuation of the contaminant is expected in UV or ozone disinfection applications. The compound reacts rapidly with hydroxyl radicals indicating that advanced oxidation processes would be effective for its treatment. Degradation products were identified under each treatment process using accurate mass time-of-flight spectrometry and pathways of decay were proposed. The main transformation pathways in each process were: dechlorination of the benzene ring during direct photolysis; hydroxyl group addition to the benzene ring during the reaction with hydroxyl radicals; and triazine ring opening after reaction with ozone. Different products that form in each process may be to a varying degree less environmentally stable than the parent lamotrigine. In addition, a novel method of ozone quenching without addition of salts is presented. The new quenching method would allow subsequent mass spectrometry analysis without a solid phase extraction clean-up step. The method involves raising the pH of the sample to approximately 10 for a few seconds and lowering it back and is therefore limited to applications for which temporary pH change is not expected to affect the outcome of the analysis.

  7. Excretion pathways and ruminal disappearance of glyphosate and its degradation product aminomethylphosphonic acid in dairy cows.

    Science.gov (United States)

    von Soosten, D; Meyer, U; Hüther, L; Dänicke, S; Lahrssen-Wiederholt, M; Schafft, H; Spolders, M; Breves, G

    2016-07-01

    From 6 balance experiments with total collection of feces and urine, samples were obtained to investigate the excretion pathways of glyphosate (GLY) in lactating dairy cows. Each experiment lasted for 26d. The first 21d served for adaptation to the diet, and during the remaining 5d collection of total feces and urine was conducted. Dry matter intake and milk yield were recorded daily and milk and feed samples were taken during the sampling periods. In 2 of the 6 experiments, at the sampling period for feces and urine, duodenal contents were collected for 5d. Cows were equipped with cannulas at the dorsal sac of the rumen and the proximal duodenum. Duodenal contents were collected every 2h over 5 consecutive days. The daily duodenal dry matter flow was measured by using chromium oxide as a volume marker. All samples (feed, feces, urine, milk and duodenal contents were analyzed for GLY and aminomethylphosphonic acid (AMPA). Overall, across the 6 experiments (n=32) the range of GLY intake was 0.08 to 6.67mg/d. The main proportion (61±11%; ±SD) of consumed GLY was excreted with feces; whereas excretion by urine was 8±3% of GLY intake. Elimination via milk was negligible. The GLY concentrations above the limit of quantification were not detected in any of the milk samples. A potential ruminal degradation of GLY to AMPA was derived from daily duodenal GLY flow. The apparent ruminal disappearance of GLY intake was 36 and 6%. In conclusion, the results of the present study indicate that the gastrointestinal absorption of GLY is of minor importance and fecal excretion represents the major excretion pathway. A degradation of GLY to AMPA by rumen microbes or a possible retention in the body has to be taken into account. PMID:27108173

  8. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  9. Ni-YSZ Substrate Degradation during Carbon Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Marinsek, M.

    2011-07-01

    Carbon deposition on various Ni-YSZ catalytic composites with average Ni particle size from 0.44 {mu}m to 0.98 mm was studied under dry CH{sub 4}-Ar and humidified CH{sub 4}-Ar conditions. The change in the catalytic activity was monitored both as a mass gain due to carbon deposition and hydrogen evolution due to CH{sub 4} dehydrogenation on Ni-YSZ. Regarding the start of methane decomposition and subsequent catalyst deactivation rate, composites with smaller Ni-grains were much more active in comparison to those with relatively large grains. Dry methane conditions always caused coking of the catalyst substrate with substantial activity loss. In contrast, under humidified methane atmosphere conditions with a steam to carbon (S/C) ratio of 0.82, catalytic activity of the Ni-YSZ composites remained nearly undiminished after 2,000 minutes at chosen deposition temperatures (600-800 degree centigrade). On the catalyst surface, some encapsulation of Ni with the deposited carbon was noticed while carbon filaments grew inside the treated samples. The dimensions of C-filaments were influenced by treatment conditions and Ni-YSZ substrate morphology. (Author) 42 refs.

  10. Peroxidase-induced degradation of single-walled carbon nanotubes: hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, I I; Vakhrusheva, T V; Sokolov, A V; Kostevich, V A [Research Institute for Physico-Chemical Medicine, FMBA, M. Pirogovskaya Str. 1a, Moscow (Russian Federation); Ragimov, A A, E-mail: irina.vlasova@yahoo.com [National Research Centre of Surgery, RAMS, Abrikosovskiy per. 2, Moscow (Russian Federation)

    2011-04-01

    Due to their extraordinary properties, single-walled carbon nanotubes (SWNTs) have a tremendous potential for medical applications such as clinical diagnostics, targeted drug (or gene) delivery and cancer therapy. Hence, effects of SWNTs on living systems as well as mechanisms for biodegradation of SWTNs are of great importance and must be studied before starting to explore SWNTs for medical use. This study was undertaken to compare the potential of different peroxidases in degrading carboxylated SWNT (c-SWNT) and to elucidate the role of peroxidase-generated reactive products in this process. A detailed study showed that neither reactive intermediate products nor free radicals generated via peroxidase cycle can considerably oxidize c-SWNT. Biodegradation of c-SWNT in model system can be induced by free radicals generated as a result of heme degradation. The latter explains why hemoglobin, which is a pseudo-peroxidase possessing low peroxidase activity, is able to oxidize carbon nanotubes with a higher efficiency than horseradish peroxidase. However, c-SWNT in the presence of blood plasma (15 vol %) demonstrated no degradation even at high concentrations of hemoglobin and H{sub 2}O{sub 2}. The comparison of the ability of various peroxidases to degrade SWNTs in vitro revealed that MPO, due to its ability to produce hypochlorite, and lactoperoxidase, due to its ability to produce hypobromite, are extremely efficient in degrading carbon nanotubes. Since neutrophils are a main source of human MPO, we tested the effect of SWNTs on these cells. SWNTs were unable to stimulate neutrophils. On the other hand, they dose-dependently enhanced opsonized zymosan-induced cell stimulation as detected by measuring the amount of hypochlorite produced. This finding may be relevant to the in vivo situation, for example, at inflammatory sites. In order to imitate conditions characteristic of phagosomes and inflammatory sites, we titrated the suspension of c-SWNT in the presence of

  11. Unusual starch degradation pathway via cyclodextrins in the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324.

    Science.gov (United States)

    Labes, Antje; Schönheit, Peter

    2007-12-01

    The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, alpha-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly beta-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway.

  12. Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon

    Indian Academy of Sciences (India)

    A K Subramani; K Byrappa; S Ananda; K M Lokanatha Rai; C Ranganathaiah; M Yoshimura

    2007-02-01

    The photocatalytic degradation of indigo carmine dye was studied using hydrothermally prepared TiO2 impregnated activated carbon (TiO2 : AC). A comparison between the degradation of the indigo carmine dye using commercial TiO2 and TiO2 : AC revealed the efficiency of the title compound. The degradation reaction was optimized with respect to the dye concentration and catalyst amount. The reduction in the chemical oxygen demand (COD) revealed the mineralization of dye along with colour removal. The active compound like TiO2 was impregnated onto the activated carbon surface under mild hydrothermal conditions (< 250°C, P ∼ 40 bars). The impregnated activated carbon samples were characterized using powder X-ray diffraction (XRD) and scanning electron microscope (SEM).

  13. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands

    Directory of Open Access Journals (Sweden)

    W. Babel

    2014-12-01

    Full Text Available The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.

  14. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands

    Science.gov (United States)

    Babel, W.; Biermann, T.; Coners, H.; Falge, E.; Seeber, E.; Ingrisch, J.; Schleuß, P.-M.; Gerken, T.; Leonbacher, J.; Leipold, T.; Willinghöfer, S.; Schützenmeister, K.; Shibistova, O.; Becker, L.; Hafner, S.; Spielvogel, S.; Li, X.; Xu, X.; Sun, Y.; Zhang, L.; Yang, Y.; Ma, Y.; Wesche, K.; Graf, H.-F.; Leuschner, C.; Guggenberger, G.; Kuzyakov, Y.; Miehe, G.; Foken, T.

    2014-12-01

    The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.

  15. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands

    Directory of Open Access Journals (Sweden)

    W. Babel

    2014-06-01

    Full Text Available The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments coupling changes of surface properties and processes with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan plateau. We coupled measurements of micro-lysimeter, chamber, 13C labeling, and eddy-covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyze how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while the total sum of evapotranspiration remains unaffected. The results show an earlier onset of convection and cloud generation, likely triggered by enhanced evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a~significant influence on larger scales.

  16. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  17. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    International Nuclear Information System (INIS)

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min−1. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell

  18. Reducing emissions from deforestation and degradation: What contribution from carbon markets?

    OpenAIRE

    Bellassen, Valentin; Crassous, R.; Dietzsch, L.; Schwartzman, S.

    2008-01-01

    Tropical deforestation is responsible for 15-20% of total man-made emissions of greenhouse gases. In December 2007, at the international conference of Bali, the United Nations acknowledged that a viable solution to climate change must include a mechanism to limit deforestation and forest degradation. Today, the most widely used economic tool to reduce emissions is carbon markets: caps on emitters, and trade allowed between emitters and reducers, drive a price signal on carbon and provide ince...

  19. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil

    OpenAIRE

    Ning Hu; Hui Li; Zheng Tang; Zhongfang Li; Jing Tian; Yilai Lou; Jianwei Li; Guichun Li; Xiaomin Hu

    2016-01-01

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H′), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nem...

  20. The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Copley, Shelley D. [University of Colorado; Rokicki, Joseph [University of Colorado; Turner, Pernilla [University of Colorado; Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL

    2012-01-01

    Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria.

  1. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    OpenAIRE

    G. Cailleau; Braissant, O; E. P. Verrecchia

    2011-01-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the theoretical acidic conditions of these soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from fi...

  2. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    OpenAIRE

    G. Cailleau; Braissant, O; E. P. Verrecchia

    2011-01-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and e...

  3. Ubiquitin proteasome-dependent degradation of the transcriptional coactivator PGC-1{alpha} via the N-terminal pathway.

    Science.gov (United States)

    Trausch-Azar, Julie; Leone, Teresa C; Kelly, Daniel P; Schwartz, Alan L

    2010-12-17

    PGC-1α is a potent, inducible transcriptional coactivator that exerts control on mitochondrial biogenesis and multiple cellular energy metabolic pathways. PGC-1α levels are controlled in a highly dynamic manner reflecting regulation at both transcriptional and post-transcriptional levels. Here, we demonstrate that PGC-1α is rapidly degraded in the nucleus (t(½ 0.3 h) via the ubiquitin proteasome system. An N-terminal deletion mutant of 182 residues, PGC182, as well as a lysine-less mutant form, are nuclear and rapidly degraded (t(½) 0.5 h), consistent with degradation via the N terminus-dependent ubiquitin subpathway. Both PGC-1α and PGC182 degradation rates are increased in cells under low serum conditions. However, a naturally occurring N-terminal splice variant of 270 residues, NT-PGC-1α is cytoplasmic and stable (t(½>7 h), providing additional evidence that PGC-1α is degraded in the nucleus. These results strongly suggest that the nuclear N terminus-dependent ubiquitin proteasome pathway governs PGC-1α cellular degradation. In contrast, the cellular localization of NT-PCG-1α results in a longer-half-life and possible distinct temporal and potentially biological actions.

  4. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid)

    NARCIS (Netherlands)

    Jansen, Janine; Koopmans, Steven A.; Los, Leonoor I.; van der Worp, Roelofje J.; Podt, Johanna G.; Hooymans, Johanna M. M.; Feijen, Jan; Grijpma, Dirk W.

    2011-01-01

    The intraocular degradation behavior of poly(trimethylene carbonate) (PTMC) networks and poly(-D,L-lactic acid) (PDLLA) networks and of linear high molecular weight PTMC and PDLLA was evaluated. PTMC is known to degrade by enzymatic surface erosion in vivo, whereas PDLLA degrades by hydrolytic bulk

  5. Carbon storage in degraded cork oak (Quercus suber) forests on flat lowlands in Morocco

    OpenAIRE

    Oubrahim H; Boulmane M; Bakker MR; Augusto L; Halim M

    2016-01-01

    The present study aims to quantify the carbon stored in a degraded cork oak (Quercus suber L.) ecosystem in the north west of Morocco, in view of potential management implications. To this end, carbon stocks were evaluated in the first 100 cm of the soil, the cork oak trees, and the understorey species (both above- and belowground). Results show that the total carbon stocks in the cork oak ecosystem ranges from 65 to 237 Mg ha-1 with a mean value of 121 Mg ha-1. The first 100 cm of the soil (...

  6. Ozonation degradation of microcystin-LR in aqueous solution: intermediates, byproducts and pathways.

    Science.gov (United States)

    Chang, Jing; Chen, Zhong-lin; Wang, Zhe; Shen, Ji-min; Chen, Qian; Kang, Jing; Yang, Lei; Liu, Xiao-wei; Nie, Chang-xin

    2014-10-15

    The intermediates and byproducts formed during the ozonation of microcystin-LR (MC-LR, m/z = 995.5) and the probable degradation pathway were investigated at different initial molar ratios of ozone to MC-LR ([O3]0/[MC-LR]0). Seven reaction intermediates with m/z ≥ 795.4 were observed by LC/MS, and four of them (m/z = 815.4, 827.3, 853.3 and 855.3) have not been previously reported. Meanwhile, six aldehyde-based byproducts with molecular weights of 30-160 were detected for the first time. Intermediates structures demonstrated that ozone reacted with two sites of MC-LR: the diene bonds in the Adda side chain and the Mdha amino acid in the cyclic structure. The fragment from the Adda side chain oxidative cleavage could be further oxidized to an aldehyde with a molecular weight of 160 at low [O3]0/[MC-LR]0. Meanwhile, the polypeptide structure of MC-LR was difficult to be further oxidized, unless [O3]0/[MC-LR]0 > 10. After further oxidation of the intermediates, five other aldehyde-based byproducts were detected by GC/MS: formaldehyde, acetaldehyde, isovaleraldehyde, glyoxal and methylglyoxal. Formaldehyde, isovaleraldehyde and methylglyoxal were the dominant species. The yields of the aldehydes varied greatly, depending on the value of [O3]0/[MC-LR]0.

  7. REGγ regulates ERα degradation via ubiquitin–proteasome pathway in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Fan; Liang, Yan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Bi, Jiong [Laboratory of General Surgery, First Affiliated Hospital, Sun Yet-sen University, Guangzhou 510080 (China); Chen, Li; Zhang, Fan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cui, Youhong [Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Jiang, Jun, E-mail: jcbd@medmail.com.cn [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2015-01-02

    Highlights: • High expression of REGγ is correlated with ERα status and poor clinical features. • Cell growth, mobility and invasion are significantly impaired by REGγ knockdown. • REGγ indirectly regulates ERα protein expression. - Abstract: REGγ is a proteasome coactivator which regulates proteolytic activity in eukaryotic cells. Abundant lines of evidence have showed that REGγ is over expressed in a number of human carcinomas. However, its precise role in the pathogenesis of cancer is still unclear. In this study, by examining 200 human breast cancer specimens, we demonstrated that REGγ was highly expressed in breast cancers, and the expression of REGγ was positively correlated with breast cancer patient estrogen receptor alpha (ERα) status. Moreover, the expression of REGγ was found positively associated with poor clinical features and low survival rates in ERα positive breast cancer patients. Further cell culture studies using MCF7 and BT474 breast cancer cell lines showed that cell proliferation, motility, and invasion capacities were decreased significantly by REGγ knockdown. Lastly, we demonstrated that REGγ indirectly regulates the degradation of ERα protein via ubiquitin–proteasome pathway. In conclusion, our findings provide the evidence that REGγ expression was positively correlated with ERα status and poor clinical prognosis in ERα positive breast cancer patients. As well, we disclose a new connection between the two molecules that are both highly expressed in most breast cancer cases.

  8. Sulfamethoxazole in poultry wastewater: Identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor.

    Science.gov (United States)

    Asha, Raju C; Kumar, Mathava

    2015-01-01

    The presence of sulfamethoxazole (SMX) in a real-time poultry wastewater was identified via HPLC analysis. Subsequently, SMX removal from the poultry wastewater was investigated using a continuous-mode membrane-photocatalytic slurry reactor (MPSR). The real-time poultry wastewater was found to have an SMX concentration of 0-2.3 mg L(-1). A granular activated carbon supported TiO2 (GAC-TiO2) was synthesized, characterized and used in MPSR experiments. The optimal MPSR condition, i.e., HRT ∼ 125 min and catalyst dosage 529.3 mg L(-1), for complete SMX removal was found out using unconstrained optimization technique. Under the optimized condition, the effect of SMX concentration on MPSR performance was investigated by synthetic addition of SMX (i.e., 1, 25, 50, 75 and 100 mg L(-1)) into the wastewater. Interestingly, complete removals of total volatile solids (TVS), biochemical oxygen demand (BOD) and SMX were observed under all SMX concentrations investigated. However, a decline in SMX removal rate and proportionate increase in transmembrane-pressure (TMP) were observed when the SMX concentration was increased to higher levels. In the MPSR, the SMX mineralization was through one of the following degradation pathways: (i) fragmentation of the isoxazole ring and (ii) the elimination of methyl and amide moieties followed by the formation of phenyl sulfinate ion. These results show that the continuous-mode MPSR has great potential in the removal for SMX contaminated real-time poultry wastewater and similar organic micropollutants from wastewater. PMID:26121016

  9. Carbon Cycling in Alpine and Arctic watersheds affected by permafrost degradation: An insight from Sweden

    Science.gov (United States)

    Roehm, C. L.; Giesler, R.; Karlsson, J.

    2009-05-01

    Linking the processes and dynamics acting within and between terrestrial and aquatic ecosystems is crucial in order to understand the impacts of environmental change on the re-distribution and transformation of energy within watersheds. Nearly 1300 Pg of carbon are stored in permafrost soils in boreal and arctic ecosystems. Permafrost degradation can result in the loss of significant amounts of terrestrial carbon, both through the release to the atmosphere in the form of carbon dioxide and methane, or through export downstream to lakes and rivers. The fate and effects of this carbon in lake ecosystems is poorly understood. We investigated the capacity of lake bacteria to utilize carbon from different adjacent mire soils in a discontinuous permafrost region of northern Sweden. We, additionally, studied other lake ecosystems by using organic matter quality as a proxy for the state of permafrost degradation within the watershed. Finally, we propose simple predictive models for the bioavailability of soils to aquatic bacteria. Our study identified three distinctive time sensitive pools of bacterial respiration whose carbon availability varied according to chemical characteristics. Soil dissolved organic carbon (DOC) was rapidly consumed by lake bacteria with nearly 85% consumed within the first 24 hours. Bacterial production was higher in the soil bioassays and increased in a lag fashion relative to bacterial respiration, resulting in increasing bacterial growth efficiencies over time as a function of C pool and soil type. The mean DOC consumption by lake bacteria was 0.087 mg C L-1 d-1 and varied between 0.382 mg L-1 d-1 and 0.491 mg L-1 d-1 when supplied with terrestrial DOC. The lake water bacterial respiration could explain a varying degree of pCO2 saturation in lakes as a function of both carbon quality and course. Carbon quality and end members can be used as proxies for the degree of permafrost degradation within the watershed. The data clearly show that export

  10. Surface and sub-surface degradation of unidirectional carbon fiber reinforced epoxy composites under dry and wet reciprocating sliding

    OpenAIRE

    Dhieb, H.; Buijnsters, J.G.; Eddoumy, F.; Vázquez, Luis; Celis, J. P.

    2013-01-01

    The role of water on the sub-surface degradation of unidirectional carbon fiber reinforced epoxy composite is examined. The correlation between the debonding of carbon fibers at the fiber-epoxy interface, and the wear behavior of the carbon fiber composite are discussed based on an in-depth analysis of the worn surfaces. We demonstrate that a reciprocating sliding performed along an anti-parallel direction to the fiber orientation under dry conditions results in a large degradation by debondi...

  11. Effects of Deforestation and Forest Degradation on Forest Carbon Stocks in Collaborative Forests, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2012-12-01

    Full Text Available There are some key drivers that favor deforestation and forest degradation. Consequently, levels of carbon stock are affected in different parts of same forest types. But the problem lies in exploring the extent of the effects on level of carbon stocking. This paper highlights the variations in levels of carbon stocks in three different collaborative forests of same forest type i.e. tropical sal (Shorea robusta forest in Mahottari district of the central Terai in Nepal. Three collaborative forests namely Gadhanta-Bardibas Collaborative Forest (CFM, Tuteshwarnath CFM and Banke- Maraha CFM were selected for research site. Interview and workshops were organized with the key informants that include staffs, members and representatives of CFMs to collect the socio-economic data and stratified random sampling was applied to collect the bio-physical data to calculate the carbon stocks. Analysis was carried out using statistical tools. It was found five major drivers namely grazing, fire, logging, growth of invasive species and encroachment. It was found highest carbon 269.36 ton per ha in Gadhanta- Bardibash CFM. The findings showed that the levels of carbon stocks in the three studied CFMs are different depending on how the drivers of deforestation and forest degradation influence over them.

  12. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  13. Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record

    Directory of Open Access Journals (Sweden)

    Helen eBennion

    2015-08-01

    Full Text Available Efforts to restore enriched lakes have increased yet there remains uncertainty about whether restoration targets can be achieved and over what timescale. Paleoecological techniques, principally diatom analyses, were used to examine the degree of impact and recovery in 12 European lakes subject to eutrophication and subsequent reduction in nutrient loading. Dissimilarity scores showed that all sites experienced progressive deviation from the reference sample (core bottom prior to nutrient reduction, and principal curves indicated gradual compositional change with enrichment. When additive models were applied to the latter, the changes were statistically significant in 9 of the 12 sites. Shifts in diatom composition following reduction in nutrient loading were more equivocal, with a reversal towards the reference flora seen only in four of the deep lakes and one of the shallow lakes. Of these, only two were significant (Lake Bled and Mjøsa. Alternative nutrient sources seem to explain the lack of apparent recovery in the other deep lakes. In three shallow lakes diatom assemblages were replaced by a community associated with lower productivity but not the one seen prior to enrichment. Internal loading and top down control may influence recovery in shallow lakes and climate change may have confounded recovery in several of the study sites. Hence, ecosystem recovery is not simply a reversal of the degradation pathway and may take several decades to complete or, for some lakes, may not take place at all. By assessing ecological change over a decadal to centennial timescale, the study highlights the important role that paleolimnology can play in establishing a benchmark against which managers can evaluate the degree to which their restoration efforts are successful.

  14. Avoiding, transforming, transitioning: pathways to sustainable low carbon passenger transport in developing countries

    DEFF Research Database (Denmark)

    Meza, Maria Josefina Figueroa; Fulton, Lewis; Tiwari, Geetam;

    2013-01-01

    This review examines conditions affecting road passenger transport in developing countries that can be instrumental to building a pathway for reducing carbon emissions while concurrently meeting sustainable development goals. By contrasting present and future status of these conditions a vision...

  15. Different pathways of degradation of SP-A and saturated phosphatidylcholine by alveolar macrophages.

    Science.gov (United States)

    Baritussio, A; Alberti, A; Armanini, D; Meloni, F; Bruttomesso, D

    2000-07-01

    Alveolar macrophages degrade surfactant protein (SP) A and saturated phosphatidycholine [dipalmitoylphosphatidylcholine (DPPC)]. To clarify this process, using rabbit alveolar macrophages, we analyzed the effect of drugs known to affect phagocytosis, pinocytosis, clathrin-mediated uptake, caveolae, the cytoskeleton, lysosomal pH, protein kinase C, and phosphatidylinositol 3-kinase (PI3K) on the degradation of SP-A and DPPC. We found the following: 1) SP-A binds to the plasma membrane, is rapidly internalized, and then moves toward degradative compartments. Uptake could be clathrin mediated, whereas phagocytosis, pinocytosis, or the use of caveolae are less likely. An intact cytoskeleton and an acidic milieu are necessary for the degradation of SP-A. 2) Stimulation of protein kinase C increases the degradation of SP-A. 3) PI3K influences the degradation of SP-A by regulating both the speed of internalization and subsequent intracellular steps, but its inhibition does not prevent SP-A from reaching the lysosomal compartment. 4) The degradation of DPPC is unaffected by most of the treatments able to influence the degradation of SP-A. Thus it appears that DPPC is degraded by alveolar macrophages through mechanisms very different from those utilized for the degradation of SP-A. PMID:10893207

  16. Use of 13C NMR and ftir for elucidation of degradation pathways during natural litter decomposition and composting I. early stage leaf degradation

    Science.gov (United States)

    Wershaw, R. L.; Leenheer, J.A.; Kennedy, K.R.; Noyes, T.I.

    1996-01-01

    Oxidative degradation of plant tissue leads to the formation of natural dissolved organic carbon (DOC) and humus. Infrared (IR) and 13C nuclear magnetic resonance (NMR) spectrometry have been used to elucidate the chemical reactions of the early stages of degradation that give rise to DOC derived from litter and compost. The results of this study indicate that oxidation of the lignin components of plant tissue follows the sequence of O-demethylation, and hydroxylation followed by ring-fission, chain-shortening, and oxidative removal of substituents. Oxidative ring-fission leads to the formation of carboxylic acid groups on the cleaved ends of the rings and, in the process, transforms phenolic groups into aliphatic alcoholic groups. The carbohydrate components are broken down into aliphatic hydroxy acids and aliphatic alcohols.

  17. Use of 13C NMR and FTIR for elucidation of degradation pathways during natural litter decomposition and composting. I. Early stage leaf degradation

    International Nuclear Information System (INIS)

    Oxidative degradation of plant tissue leads to the formation of natural dissolved organic carbon (DOC) and humus. Infrared (IR) and 13C nuclear magnetic resonance (NMR) spectrometry have been used to elucidate the chemical reactions of the early stages of degradation that give rise to DOC derived from litter and compost. The results of this study indicate that oxidation of the lignin components of plant tissue follows the sequence of O-demethylation, and hydroxylation followed by ring-fission, chain-shortening, and oxidative removal of substituents. Oxidative ring-fission leads to the formation of carboxylic acid groups on the cleaved ends of the rings and, in the process, transforms phenolic groups into aliphatic alcoholic groups. The carbohydrate components are broken down into aliphatic hydroxy acids and aliphatic alcohols. (author)

  18. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus.

    OpenAIRE

    Goszczynski, S; Paszczynski, A; Pasti-Grigsby, M B; Crawford, R L; Crawford, D. L.

    1994-01-01

    Pathways for the degradation of 3,5-dimethyl-4-hydroxy-azobenzene-4'-sulfonic acid (I) and 3-methoxy-4-hydroxyazobenzene-4'-sulfonamide (II) by the manganese peroxidase and ligninase of Phanerochaete chrysosporium and by the peroxidase of Streptomyces chromofuscus have been proposed. Twelve metabolic products were found, and their mechanisms of formation were explained. Preliminary oxidative activation of the dyes resulted in the formation of cationic species, making the molecules vulnerable ...

  19. [Modification of activated carbon fiber for electro-Fenton degradation of phenol].

    Science.gov (United States)

    Ma, Nan; Tian, Yao-Jin; Yang, Guang-Ping; Xie, Xin-Yuan

    2014-07-01

    Microwave-modified activated carbon fiber (ACF-1), nitric acid-modified activated carbon fiber (ACF-2), phosphoric acid-modified activated carbon fiber (ACF-3) and ammonia-modified activated carbon fiber (ACF-4) were successfully fabricated. The electro-Fenton catalytic activities of modified activated carbon fiber were evaluated using phenol as a model pollutant. H2O2 formation, COD removal efficiency and phenol removal efficiency were investigated compared with the unmodified activated carbon fiber (ACF-0). Results indicated that ACF-1 showed the best adsorption and electrocatalytic activity. Modification was in favor of the formation of H2O2. The performance of different systems on phenol degradation and COD removal were ACF-1 > ACF-3 > ACF-4 > ACF-2 > ACF-0 and ACF-1 > ACF-4 > ACF-3 > ACF-2 > ACF-0, respectively, which confirmed that electrocatalytic activities of modified activated carbon fiber were better than the unmodified. In addition, phenol intermediates were not the same while using different modified activated carbon fibers.

  20. Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase.

    Science.gov (United States)

    Kozliak, E I; Guilloton, M B; Gerami-Nejad, M; Fuchs, J A; Anderson, P M

    1994-09-01

    Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.

  1. Degradation of azurite in mural paintings: distribution of copper carbonate, chlorides and oxalates by SRFTIR

    Science.gov (United States)

    Lluveras, A.; Boularand, S.; Andreotti, A.; Vendrell-Saz, M.

    2010-05-01

    This article illustrates the analysis by synchrotron micro-analytical techniques of an azurite painting presenting greenish chromatic degradation. The challenge of the experiments was to obtain the spatial distribution of the degradation products of azurite. Copper hydroxychlorides, carbonates and copper oxalates have been mapped by SR FTIR imaging of cross sections in transmission mode. To complement the information, Py/GC/MS and GC/MS techniques were applied in order to characterize the binding media and organic materials present as well as their degradation products. Results contribute to a better understanding of the decay of blue areas in ancient paintings not only from the particular point of view of azurite weathering, but also by adding information regarding the oxalates’ formation and their distribution in painting samples. Synchrotron radiation demonstrates its capability for the mapping in painting cross sections.

  2. Tissue Response to, and Degradation Rate of, Photocrosslinked Trimethylene Carbonate-Based Elastomers Following Intramuscular Implantation

    Directory of Open Access Journals (Sweden)

    Brian G. Amsden

    2010-02-01

    Full Text Available Cylindrical elastomers were prepared through the UV-initiated crosslinking of terminally acrylated, 8,000 Da star-poly(trimethylene carbonate-co-ε-caprolactone and star-poly(trimethylene carbonate-co-D,L-lactide. These elastomers were implanted intramuscularly into the hind legs of male Wistar rats to determine the influence of the comonomer on the weight loss, tissue response, and change in mechanical properties of the elastomer. The elastomers exhibited only a mild inflammatory response that subsided after the first week; the response was greater for the stiffer D,L-lactide-containing elastomers. The elastomers exhibited weight loss and sol content changes consistent with a bulk degradation mechanism. The D,L-lactide-containing elastomers displayed a nearly zeroorder change in Young’s modulus and stress at break over the 30 week degradation time, while the ε-caprolactone-containing elastomers exhibited little change in modulus or stress at break.

  3. Electron emission degradation of nano-structured sp2-bonded amorphous carbon films

    Institute of Scientific and Technical Information of China (English)

    Lu Zhan-Ling; Wang Chang-Qing; Jia Yu; Zhang Bing-Lin; Yao Ning

    2007-01-01

    The initial field electron emission degradation behaviour of original nano-structured sp2-bonded amorphous carbon films has been observed.which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot.The possible re.on for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating.For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film,a cluster model with a series of graphite(0001) basal surfaces has been presented,and the theoretical calculations have been performed to investigate work functions of graphite(0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.

  4. Stable carbon isotope fractionation in chlorinated ethene degradation by bacteria expressing three toluene oxygenases

    Directory of Open Access Journals (Sweden)

    Scott eClingenpeel

    2012-02-01

    Full Text Available One difficulty in using bioremediation at a contaminated site is demonstrating that biodegradation is actually occurring in situ. The stable isotope composition of contaminants may help with this, since they can serve as an indicator of biological activity. To use this approach it is necessary to establish how a particular biodegradation pathway affects the isotopic composition of a contaminant. This study examined bacterial strains expressing three aerobic enzymes for their effect on the 13C/12C ratio when degrading both trichloroethene (TCE and cis-1,2-dichloroethene (c-DCE: toluene 3-monoxygenase, toluene 4-monooxygenase, and toluene 2,3-dioxygenase. We found no significant differences in fractionation among the three enzymes for either compound. Aerobic degradation of c-DCE occurred with low fractionation producing δ13C enrichment factors of -0.9±0.5 to -1.2±0.5, in contrast to reported anaerobic degradation δ13C enrichment factors of -14.1‰ to -20.4‰. Aerobic degradation of TCE resulted in δ13C enrichment factors of -11.6±4.1‰ to -14.7±3.0‰ which overlap reported δ13C enrichment factors for anaerobic TCE degradation of -2.5‰ to -13.8‰. The data from this study suggest that stable isotopes could serve as a diagnostic for detecting aerobic biodegradation of TCE by toluene oxygenases at contaminated sites.

  5. Effective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane

    OpenAIRE

    Zhimeng Liu; Mengfu Zhu; Zheng Wang; Hong Wang; Cheng Deng; Kui Li

    2016-01-01

    In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC) using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD) removal rate increased with increasing residence time while it ...

  6. In-vivo degradation of poly(carbonate-urethane) based spine implants

    OpenAIRE

    Cipriani, E.; Bracco, P.; Kurtz, S.M.; Costa, L.; Zanetti, M.

    2013-01-01

    Fourteen explanted Dynesys® spinal devices were analyzed for biostability and compared with a reference, never implanted, control. Both poly(carbonate-urethane) (PCU) spacers and polyethylene-terephthalate (PET) cords were analyzed. The effect of implantation was evaluated through the observation of physical alterations of the device surfaces, evaluation of the chemical degradation and fluids absorption on the devices and examination of the morphological and mechanical features. PCU spacers e...

  7. Recovery of energy, water and carbon exchange in degraded forests in eastern Amazonia

    Science.gov (United States)

    Trumbore, Susan; Brando, Paulo; Oliveira dos Santos, Claudinei; Silvério, Divino; Coe, Michael

    2016-04-01

    Large regions in the state of Mato Grosso in Brazil have been deforested and converted to pasture and soy agriculture. In addition to deforestation, remnant forests in the region are degraded by repeated fire and edge related effects. We are combining eddy covariance with other measures to study the impact of these changes in land cover on energy, water and carbon balance, in a region that sits at the ecotone between continuous forest and savanna. The degraded forest plot is part of a multi-year experimental fire treatment and had experienced large-scale mortality in the years prior to tower installation. Leaf area was strongly reduced in degraded forest, but surprisingly latent energy fluxes nearly equaled those in the intact forest. Carbon uptake rates in the intact forest exceeded those in the degraded forest, though not when expressed on a leaf-area basis. Overall, these results corroborate those found in experimentally logged tropical forest showing rapid recovery of fluxes, despite losses of biomass. Compared to both forests, the soy field reflected more incoming energy, and lost a greater proportion of absorbed radiation as sensible rather than latent heat.

  8. Photocatalytic degradation of L-acid by TiO2 supported on the activated carbon

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ping; WANG Lian-jun; PENG Pan-ying

    2006-01-01

    TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount ofphotocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34 × 10-3 mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89.88%.The catalyst was reused 6 times and its degradation efficiency hardly changed.

  9. TRIM22 Inhibits the TRAF6-stimulated NF-κB Pathway by Targeting TAB2 for Degradation

    Institute of Scientific and Technical Information of China (English)

    Hui Qiu; Fang Huang; Han Xiao; Binlian Sun; Rongge Yang

    2013-01-01

    Tripartite motif containing 22 (TRIM22),a member of the TRIM/RBCC family,has been reported to activate the nuclear factor-kappa B (NF-κB) pathway in unstimulated macrophage cell lines,but the detailed mechanisms governing this activation remains unclear.We investigated this mechanism in HEK293T cells.We found that overexpression of TRIM22 could activate the NF-κB pathway and conversely,could inhibit the tumor necrosis factor receptor-associated factor 6 (TRAF6)-stimulated NF-κB pathway in HEK293T cells.Further experiments showed that TRIM22 could decrease the self-ubiquitination of TRAF6,and interact with and degrade transforming growth factor-β activated kinase 1 binding protein 2 (TAB2),and that these effects could be partially rescued by a TRIM22 RING domain deletion mutant.Collectively,our data indicate that overexpression of TRIM22 may negatively regulate the TRAF6-stimulated NF-κB pathway by interacting with and degrading TAB2.

  10. Adsorption and Photocatalytic Decomposition of the β-Blocker Metoprolol in Aqueous Titanium Dioxide Suspensions: Kinetics, Intermediates, and Degradation Pathways

    Directory of Open Access Journals (Sweden)

    Violette Romero

    2013-01-01

    Full Text Available This study reports the photocatalytic degradation of the β-blocker metoprolol (MET using TiO2 suspended as catalyst. A series of photoexperiments were carried out by a UV lamp, emitting in the 250–400 nm range, providing information about the absorption of radiation in the photoreactor wall. The influence of the radiation wavelength on the MET photooxidation rate was investigated using a filter cutting out wavelengths shorter than 280 nm. Effects of photolysis and adsorption at different initial pH were studied to evaluate noncatalytic degradation for this pharmaceutical. MET adsorption onto titania was fitted to two-parameter Langmuir isotherm. From adsorption results it appears that the photocatalytic degradation can occur mainly on the surface of TiO2. MET removed by photocatalysis was 100% conditions within 300 min, while only 26% was achieved by photolysis at the same time. TiO2 photocatalysis degradation of MET in the first stage of the reaction followed approximately a pseudo-first-order model. The major reaction intermediates were identified by LC/MS analysis such as 3-(propan-2-ylaminopropane-1,2-diol or 3-aminoprop-1-en-2-ol. Based on the identified intermediates, a photocatalytic degradation pathway was proposed, including the cleavage of side chain and the hydroxylation addition to the parent compounds.

  11. Carbon storage in degraded cork oak (Quercus suber forests on flat lowlands in Morocco

    Directory of Open Access Journals (Sweden)

    Oubrahim H

    2016-02-01

    Full Text Available The present study aims to quantify the carbon stored in a degraded cork oak (Quercus suber L. ecosystem in the north west of Morocco, in view of potential management implications. To this end, carbon stocks were evaluated in the first 100 cm of the soil, the cork oak trees, and the understorey species (both above- and belowground. Results show that the total carbon stocks in the cork oak ecosystem ranges from 65 to 237 Mg ha-1 with a mean value of 121 Mg ha-1. The first 100 cm of the soil (including the forest floor represents the largest carbon pool (~51% of the total organic carbon of the ecosystem. Tree biomass (above- and belowground tissues of cork oak represents the second largest pool (47%, whereas the contribution of the understorey is less than 2%. Within the first 100 cm of the soil, over 87% of all the soil organic carbon is situated in the first 40 cm of the soil depth. The amount of carbon stored here ranges from 30 to 110 Mg ha-1and these organic carbon stocks vary considerably with the stand basal area of the cork oak (R2 = 0.82. In practice, the carbon stocks of the different pools considered are strongly correlated with the stand density of the cork oak stands. In the semi-arid forest ecosystems of our study, management prescriptions aiming at increasing the standing biomass of the cork oak should thus considerably contribute, both directly through tree biomass and indirectly through increased soil organic matter, to efficient carbon sequestration.

  12. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: A typical case of alteration of degradation pathway of one drug by another.

    Science.gov (United States)

    Handa, Tarun; Singh, Saranjit; Singh, Inder Pal

    2014-02-01

    An increasing interest is being shown throughout the world on the use of fixed-dose combinations of drugs in the therapy of select diseases, like cardiovascular diseases, due to their multiple advantages. Though the main criterion for combining drugs in a single dosage form is the rationale, but consideration like stability of formulation is equally important, due to an added aspect of drug-drug interaction. The objective of this study was to evaluate interaction among the drugs in an antihypertensive combination of nifedipine and atenolol. Nifedipine is a known light sensitive drug, which degrades via intra-molecular mechanisms to nitro- and nitroso-pyridine analogs, along with a few minor secondary products that are formed through inter-molecular interactions amongst primary degradation products and their intermediates. Atenolol is reasonably stable weakly basic drug that is mainly hydrolyzed at acetamide terminal amide moiety to its corresponding carboxylic acid. To the best of our knowledge, there is no known information on chemical compatibility among the two drugs. The present study involved subjecting of nifedipine, atenolol and their combination to a variety of accelerated and stress conditions. HPLC studies revealed formation of a new product in the mixture of two drugs (∼2%), which was also generated from nifedipine alone, but at trace levels (<0.1%). The product was isolated by preparative chromatography and subjected to indepth studies for its characterization. Ultra-violet, FT-IR, mass spectrometric and nuclear magnetic resonance spectroscopic studies highlighted that the principal photo-degradation pathway of nifedipine was modified and diverted in the presence of atenolol. To verify the same, a study was conducted employing two other β-blockers with similar structures to atenolol, and the same product was formed in relatively higher quantity therein also. The new product is postulated to be produced as a result of rearrangement of hydroxylamine

  13. Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cesarino, Ivana, E-mail: ivana@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, 13560-970, São Carlos, SP (Brazil); Cesarino, Vivian; Moraes, Fernando C.; Ferreira, Tanare C.R.; Lanza, Marcos R.V. [Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, 13560-970, São Carlos, SP (Brazil); Mascaro, Lucia H. [Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970, São Carlos, SP (Brazil); Machado, Sergio A.S. [Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, 13560-970, São Carlos, SP (Brazil)

    2013-08-15

    In this study, a novel methodology for the electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes has been investigated. The morphology, the structure, and the electrochemical performance of the multi-walled carbon nanotubes-silver (MWCNT-Ag) nanocomposite film were characterised by transmission electron microscopy (TEM), X-ray diffraction (XRD), and cyclic voltammetry (CV), respectively. Electrocatalytic oxidation of benzene in an aqueous solution was studied to evaluate potential applications of the MWCNT-Ag modified glassy carbon (GC) electrode in environmental science. The benzene removal efficiency in natural water containing 10 mg L{sup −1} benzene yielded 77.9% at an applied potential of +2.0 V for 2 h using the MWCNT-Ag-GC electrode. In comparison, the removal efficiency reached only 8.0% with the bare GC electrode, showing the suitability of the MWCNT-Ag nanocomposite modified GC electrode for electro-oxidation of benzene in natural water. - Graphical abstract: Display Omitted - Highlights: • A novel methodology for the electrochemical degradation of benzene was developed. • Sensor based on silver nanoparticle-decorated carbon nanotubes was used. • The proposed method is suitable and efficient for the removal of benzene.

  14. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene.

    Science.gov (United States)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-05-01

    Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from -6.3±0.8 to 10±1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes. PMID:26835895

  15. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model

    Science.gov (United States)

    Bussy, Cyrill; Hadad, Caroline; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2015-12-01

    Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as resident macrophages of the brain - play a critical role in the internalization of f-CNTs and their partial in situ biodegradation following a stereotactic administration in the cortex. At the same time, several reports have indicated that immune cells such as neutrophils, eosinophils and even macrophages could participate in the processing of carbon nanomaterials via oxidation processes leading to degradation, with surface properties acting as modulators of CNT biodegradability. In this study we questioned whether degradability of f-CNTs within microglia could be modulated depending on the type of surface functionalization used. We investigated the kinetics of degradation of multi-walled carbon nanotubes (MWNTs) functionalized via different chemical strategies that were internalized within isolated primary microglia over three months. A cellular model of rat primary microglia that can be maintained in cell culture for a long period of time was first developed. The Raman structural signature of the internalized f-CNTs was then studied directly in cells over a period of up to three months, following a single exposure to a non-cytotoxic concentration of three different f-CNTs (carboxylated, aminated and both carboxylated and aminated). Structural modifications suggesting partial but continuous degradation were observed for all nanotubes irrespective of their surface functionalization. Carboxylation was shown to promote more pronounced structural changes inside microglia over the first two weeks of the study.Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as

  16. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Adriana C Lambertucci

    Full Text Available In this study, we investigated the effect of glutamine (Gln supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1 and the degradation pathways (MuRF-1 and MAFbx were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1 control, non-supplemented with glutamine; 2 control, supplemented with glutamine; 3 diabetic, non-supplemented with glutamine; and 4 diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2; the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  17. Mechanisms of soil degradation and consequences for carbon stocks on Tibetan grasslands

    Science.gov (United States)

    Kuzyakov, Yakov; Schleuss, Per-Marten; Miehe, Georg; Heitkamp, Felix; Sebeer, Elke; Spielvogel, Sandra; Xu, Xingliang; Guggenberger, Georg

    2016-04-01

    Tibetan grasslands provide tremendous sinks for carbon (C) and represent important grazing ground. Strong degradation - the destroying the upper root-mat/soil horizon of Kobresia pastures, has dramatic consequences for soil organic carbon (SOC) and nutrient storage. To demonstrate specific degradation patterns and elucidate mechanisms, as well as to assess consequences for SOC storage, we investigated a sequence of six degradation stages common over the whole Kobresia ecosystem. The soil degradation sequence consists of following mechanisms: Overgrazing and trampling by livestock provide the prerequisite for grassland degradation as both (a) cause plant dying, (b) reduce grassland recovery and (c) destroy protective Kobresia root-mats. These anthropogenic induced processes are amplified by naturally occurring degradation in harsh climate. The frequently repeated soil moisture and temperature fluctuations induce volume changes and tensions leading to polygonal cracking of the root mats. Then the plants die and erosion gradually extend the surface cracks. Soil erosion cause a high SOC loss from the upper horizons (0-10 cm: ~5.1 kg C m-2), whereas SOC loss beneath the surface cracks is caused by both, decreasing root C-input and SOC mineralization (SOC losses by mineralization: ~2.5 kg C m-2). Root biomass decreases with degradation and indicated lower C input. The negative δ13C shift of SOC reflects intensive decomposition and corresponds to a relative enrichment of 13C depleted lignin components. We conclude that the combined effects of overgrazing and harsh climate reduce root C input, increase SOC decomposition and initiate erosion leading to SOC loss up to 70% of intact soil (0-30 cm: ~7.6 kg C m-2). Consequently, a high amount of C is released back to the atmosphere as CO2, or is deposited in depressions and river beds creating a potential source of N2O and CH4. Concluding, anthropogenically induced overgrazing makes the Kobresia root-mat sensitive to natural

  18. Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation

    OpenAIRE

    Tao, Ting; Hui SHI; Guan, Yihong; Huang, Delai; Chen, Ye; Lane, David P; Chen, Jun; Peng, Jinrong

    2013-01-01

    p53 protein turnover through the ubiquitination pathway is a vital mechanism in the regulation of its transcriptional activity; however, little is known about p53 turnover through proteasome-independent pathway(s). The digestive organ expansion factor (Def) protein is essential for the development of digestive organs. In zebrafish, loss of function of def selectively upregulates the expression of p53 response genes, which raises a question as to what is the relationship between Def and p53. W...

  19. Modeling Aerobic Carbon Source Degradation Processes using Titrimetric Data and Combined Respirometric-Titrimetric Data: Experimental Data and Model Structure

    DEFF Research Database (Denmark)

    Gernaey, Krist; Petersen, B.; Nopens, I.;

    2002-01-01

    Experimental data are presented that resulted from aerobic batch degradation experiments in activated sludge with simple carbon sources (acetate and dextrose) as substrates. Data collection was done using combined respirometric-titrimetric measurements. The respirometer consists of an open aerate...

  20. Organic carbon degradation in arctic marine sediments, Svalbard: A comparison of initial and terminal steps

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2006-01-01

    carbohydrate concentrations were comparable to those measured in more temperate sediments, and likely comprise a considerable fraction of porewater dissolved organic carbon. A comparison of dissolved carbohydrate inventories with hydrolysis and sulfate reduction rates suggests that the turnover of carbon......Degradation of marine organic matter under anoxic conditions involves microbial communities working in concert to remineralize complex substrates to CO2. In order to investigate the coupling between the initial and terminal steps of this sequence in permanently cold sediments, rates of...... extracellular enzymatic hydrolysis and sulfate reduction were measured in parallel cores collected from 5 fjords on the west and northwest coast of Svalbard, in the high Arctic. Inventories of total dissolved carbohydrates were also measured in order to evaluate their potential role in carbon turnover...

  1. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    Science.gov (United States)

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-01

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all. PMID:27262272

  2. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Linwood Pendleton

    Full Text Available Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'. Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

  3. The regulatory role of reversible phosphorylation in the chlorophyll degradation pathway

    Science.gov (United States)

    Senescence represents the final stage of plant development and is characterized by several processes including the systematic degradation of the photosynthetic apparatus and chlorophyll molecules inside chloroplasts. Normally, chlorophyll is catabolized to colorless compounds through a series of enz...

  4. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    Directory of Open Access Journals (Sweden)

    G. Cailleau

    2011-07-01

    Full Text Available An African oxalogenic tree, the iroko tree (Milicia excelsa, has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi. Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate

  5. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    Directory of Open Access Journals (Sweden)

    G. Cailleau

    2011-02-01

    Full Text Available An African oxalogenic tree, the iroko tree (Milicia excelsa, has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the theoretical acidic conditions of these soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. Regarding the carbonate flux, another direct consequence of wood feeding is a concomitant flux of carbonate formed in wood tissues, which is not consumed by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter. Therefore, an oxalate pool is formed on the forest ground. Then, wood rotting gents (mainly termites, fungi, and bacteria release significant amounts of oxalate crystals from decaying plant tissues. In addition some of these gents are themselves producers of oxalate (fungi. Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped

  6. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    Science.gov (United States)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-07-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is

  7. Alteration of Dynein Function Affects α-Synuclein Degradation via the Autophagosome-Lysosome Pathway

    OpenAIRE

    Da Li; Ji-Jun Shi; Cheng-Jie Mao; Sha Liu; Jian-Da Wang; Jing Chen; Fen Wang; Ya-Ping Yang; Wei-Dong Hu; Li-Fang Hu; Chun-Feng Liu

    2013-01-01

    Growing evidence suggests that dynein dysfunction may be implicated in the pathogenesis of neurodegeneration. It plays a central role in aggresome formation, the delivery of autophagosome to lysosome for fusion and degradation, which is a pro-survival mechanism essential for the bulk degradation of misfolded proteins and damaged organells. Previous studies reported that dynein dysfuntion was associated with aberrant aggregation of α-synuclein, which is a major component of inclusion bodies in...

  8. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    OpenAIRE

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  9. Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Mohammad M.; Fredrickson, Herbert L.; Honea, P.; Furey, John; Leszczynski, Jerzy; Okovytyy, S.; Szecsody, Jim E.; Kholod, Y.

    2005-10-01

    Highest occupied and lowest unoccupied molecular orbital energies, formation energies, bond lengths and FTIR spectra all suggest competing CL-20 degradation mechanisms. This second of two studies investigates recalcitrant, toxic, aromatic CL-20 intermediates that absorb from 370 to 430 nm. Our earlier study (Struct. Chem., 15, 2004) revealed that these intermediates were formed at high OH- concentrations via the chemically preferred pathway of breaking the C-C bond between the two cyclopentanes, thereby eliminating nitro groups, forming conjugated π bonds, and resulting in a pyrazine three-ring aromatic intermediate. In attempting to find and make dominant a more benign CL-20 transformation pathway, this current research validates hydroxylation results from both studies and examines CL-20 transformations via photo-induced free radical reactions. This article discusses CL-20 competing modes of degradation revealed through: computational calculation; UV/VIS and SF spectroscopy following alkaline hydrolysis; and photochemical irradiation to degrade CL-20 and its byproducts at their respective wavelengths of maximum absorption.

  10. Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction.

    Science.gov (United States)

    Qasim, M; Fredrickson, H; Honea, P; Furey, J; Leszczynski, J; Okovytyy, S; Szecsody, J; Kholod, Y

    2005-10-01

    Highest occupied and lowest unoccupied molecular orbital energies, formation energies, bond lengths and FTIR spectra all suggest competing CL-20 degradation mechanisms. This second of two studies investigates recalcitrant, toxic, aromatic CL-20 intermediates that absorb from 370 to 430 nm. Our earlier study (Struct. Chem., 15, 2004) revealed that these intermediates were formed at high OH(-) concentrations via the chemically preferred pathway of breaking the C-C bond between the two cyclopentanes, thereby eliminating nitro groups, forming conjugated pi bonds, and resulting in a pyrazine three-ring aromatic intermediate. In attempting to find and make dominant a more benign CL-20 transformation pathway, this current research validates hydroxylation results from both studies and examines CL-20 transformations via photo-induced free radical reactions. This article discusses CL-20 competing modes of degradation revealed through: computational calculation; UV/VIS and SF spectroscopy following alkaline hydrolysis; and photochemical irradiation to degrade CL-20 and its byproducts at their respective wavelengths of maximum absorption. PMID:16272046

  11. Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway.

    Directory of Open Access Journals (Sweden)

    Milene Carmes Vallejo

    Full Text Available In Saccharomyces cerevisiae, the Hog1 mitogen-activated protein kinase (MAPK pathway coordinates the adaptation to osmotic stress and was recently reported to respond to acute changes in glucose levels. Similarly as in osmotic stress, glucose starvation leads to a transient accumulation of Hog1 in the nucleus. However, the kinetics and the mechanism of Hog1 activation are different for these stress conditions. During osmotic shock the activation of Hog1 can be transduced by either the Sho1 or the Sln1/Ypd1/Ssk1 branch. During glucose starvation the phosphorylation of Hog1 is slower and is completely dependent on Ssk1, but independent of Sho1. To characterize the mechanism of activation of Hog1 during carbon stress, we examined the turnover of Ssk1 protein levels upon glucose starvation in the presence of cycloheximide and monitored protein levels by western blotting. Our data demonstrate that unphosphorylated Ssk1 was quickly degraded during exponential growth and after osmotic stress but remained remarkably stable during glucose limitation. We conclude that glucose starvation induces a delay in the turnover of unphosphorylated Ssk1, which is sufficient to activate the Hog1 MAPK pathway. Although unphosphorylated Ssk1 is known to be degraded by the proteasome, its stabilization is apparently not due to changes in cellular localization or decrease in ubiquitination levels during glucose limitation.

  12. Mechanism and Reaction Pathways for Microcystin-LR Degradation through UV/H2O2 Treatment.

    Science.gov (United States)

    Liu, Yafeng; Ren, Jing; Wang, Xiangrong; Fan, Zhengqiu

    2016-01-01

    Microcystin-LR (MCLR) is the most common cyanotoxin in contaminated aquatic systems. MCLR inhibits protein phosphatases 1 and 2A, leading to liver damage and tumor formation. MCLR is relatively stable owing to its cyclic structures. The combined UV/H2O2 technology can degrade MCLR efficiently. The second-order rate constant of the reaction between MCLR and hydroxyl radical (·OH) is 2.79(±0.23)×1010 M-1 s-1 based on the competition kinetics model using nitrobenzene as reference compound. The probable degradation pathway was analyzed through liquid chromatography mass spectrometry. Results suggested that the major destruction pathways of MCLR were initiated by ·OH attack on the benzene ring and diene of the Adda side chain. The corresponding aldehyde or ketone peptide residues were formed through further oxidation. Another minor destruction pathway involved ·OH attack on the methoxy group of the Adda side chain, followed by complete removal of the methoxy group. The combined UV/H2O2 system is a promising technology for MCLR removal in contaminated aquatic systems.

  13. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway.

    Directory of Open Access Journals (Sweden)

    Laurence M Wood

    Full Text Available Ataxia Telangiectasia (A-T is an inherited immunodeficiency disorder wherein mutation of the ATM kinase is responsible for the A-T pathogenesis. Although the precise role of ATM in A-T pathogenesis is still unclear, its function in responding to DNA damage has been well established. Here we demonstrate that in addition to its role in DNA repair, ATM also regulates proteasome-mediated protein turnover through suppression of the ISG15 pathway. This conclusion is based on three major pieces of evidence: First, we demonstrate that proteasome-mediated protein degradation is impaired in A-T cells. Second, we show that the reduced protein turnover is causally linked to the elevated expression of the ubiquitin-like protein ISG15 in A-T cells. Third, we show that expression of the ISG15 is elevated in A-T cells derived from various A-T patients, as well as in brain tissues derived from the ATM knockout mice and A-T patients, suggesting that ATM negatively regulates the ISG15 pathway. Our current findings suggest for the first time that proteasome-mediated protein degradation is impaired in A-T cells due to elevated expression of the ISG15 conjugation pathway, which could contribute to progressive neurodegeneration in A-T patients.

  14. Gamma radiolytic eradication of methoxychlor in aqueous media. The degradation pathways using HPLC and SPME-GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Butt, S.B.; Zafar, A. [PINSTECH, Nilore, Islamabad (Pakistan). Central Analytical Facility Div.; Riaz, M. [PINSTECH, Nilore, Islamabad (Pakistan). Chemistry Div.

    2013-08-01

    The gamma radiation-induced degradation of environmental pollutant methoxychlor in water was investigated. A {sup 60}Co gamma radiation source with a dose rate of 372 Gy h{sup -1} was used for gamma irradiation of 1 mg L{sup -1} and 10 mg L{sup -1} methoxychlor in water with a varied absorbed dose of 1-5 kGy. A single step clean up and pre-concentration procedure based on solid phase micro-extraction was optimized. The extent of radiolytic degradation was monitored by reversed phase HPLC-UV and GC-ECD. The trace and ultra trace level degradation products were identified using GC-MS-SPME by comparing their mass spectra with the NIST 98 m mass spectral library. Most of the generated products for 4 kGy dose are substituted chlorophenols. The reaction pathways of these substituted chlorophenols and benzophenone formation are also proposed. However, generated chlorophenols disappeared along with methoxychlor for an absorbed dose of 5 kGy. The attained degradation of methoxychlor is {proportional_to} 95% that reflects the potential use of ionization radiation for wastewater treatment. (orig.)

  15. Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants.

    Science.gov (United States)

    Xu, Tiefeng; Ni, Dongjing; Chen, Xia; Wu, Fei; Ge, Pengfei; Lu, Wangyang; Hu, Hongguang; Zhu, ZheXin; Chen, Wenxing

    2016-11-01

    The effective elimination of micropollutants by an environmentally friendly method has received extensive attention recently. In this study, a photocatalyst based on polyacrylonitrile (PAN)-supported graphitic carbon nitride coupled with zinc phthalocyanine nanofibers (g-C3N4/ZnTcPc/PAN nanofibers) was successfully prepared, where g-C3N4/ZnTcPc was introduced as the catalytic entity and the PAN nanofibers were employed as support to overcome the defects of easy aggregation and difficult recycling. Herein, rhodamine B (RhB), 4-chlorophenol and carbamazepine (CBZ) were selected as the model pollutants. Compared with the typical hydroxyl radical-dominated catalytic system, g-C3N4/ZnTcPc/PAN nanofibers displayed the targeted adsorption and degradation of contaminants under visible light or solar irradiation in the presence of high additive concentrations. According to the results of the radical scavenging techniques and the electron paramagnetic resonance technology, the degradation of target substrates was achieved by the attack of active species, including photogenerated hole, singlet oxygen, superoxide radicals and hydroxyl radicals. Based on the results of ultra-performance liquid chromatography and mass spectrometry, the role of free radicals on the photocatalytic degradation intermediates was identified and the final photocatalytic degradation products of both RhB and CBZ were some biodegradable small molecules. PMID:27239724

  16. Decolorization of azo dye C.I. Reactive Black 5 by ozonation in aqueous solution: influencing factors, degradation products, reaction pathway and toxicity assessment.

    Science.gov (United States)

    Zheng, Qing; Dai, Yong; Han, Xiangyun

    2016-01-01

    In this study, ozonation treatment of C.I. Reactive Black 5 (RB5) was investigated at various operating parameters. The results showed that the aqueous solution initially containing 200 mg/L RB5 was quickly decolorized at pH 8.0 with an ozone dose of 3.2 g/h. Reaction intermediates with m/z 281, 546, 201, 350, 286 and 222 were elucidated using liquid chromatography-mass spectrometry, while sulfate ion, nitrate ion and three carboxylic acids (i.e., oxalic acid, formic acid, and acetic acid) were identified by ion exchange chromatography. Thus, the cleavage of the azo bond and the introduction of OH groups in the corresponding positions were proposed as the predominant reaction pathway. The detachment of sulfonic groups was also commonly observed during the ozonation treatment. The proposed degradation mechanism was confirmed by frontier electron density calculations, suggesting the feasibility of predicting the major events in the whole ozonation process with the computational method. Compared with RB5 degradation, the reduction of total organic carbon (TOC) proceeded much more slowly, and approximately 54% TOC was removed after 4 h of ozonation. Acute toxicity tests with Photobacterium phosphoreum showed that the toxicity of reaction solution was firstly increased and then decreased to a negligible level after 160 min.

  17. Decolorization of azo dye C.I. Reactive Black 5 by ozonation in aqueous solution: influencing factors, degradation products, reaction pathway and toxicity assessment.

    Science.gov (United States)

    Zheng, Qing; Dai, Yong; Han, Xiangyun

    2016-01-01

    In this study, ozonation treatment of C.I. Reactive Black 5 (RB5) was investigated at various operating parameters. The results showed that the aqueous solution initially containing 200 mg/L RB5 was quickly decolorized at pH 8.0 with an ozone dose of 3.2 g/h. Reaction intermediates with m/z 281, 546, 201, 350, 286 and 222 were elucidated using liquid chromatography-mass spectrometry, while sulfate ion, nitrate ion and three carboxylic acids (i.e., oxalic acid, formic acid, and acetic acid) were identified by ion exchange chromatography. Thus, the cleavage of the azo bond and the introduction of OH groups in the corresponding positions were proposed as the predominant reaction pathway. The detachment of sulfonic groups was also commonly observed during the ozonation treatment. The proposed degradation mechanism was confirmed by frontier electron density calculations, suggesting the feasibility of predicting the major events in the whole ozonation process with the computational method. Compared with RB5 degradation, the reduction of total organic carbon (TOC) proceeded much more slowly, and approximately 54% TOC was removed after 4 h of ozonation. Acute toxicity tests with Photobacterium phosphoreum showed that the toxicity of reaction solution was firstly increased and then decreased to a negligible level after 160 min. PMID:27054721

  18. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.

    Science.gov (United States)

    Liao, Xiaoping; Zhang, Caixiang; Liu, Yuan; Luo, Yinwen; Wu, Sisi; Yuan, Songhu; Zhu, Zhenli

    2016-05-01

    Methyl parathion, a widely used insecticide around the world, has aroused gradually extensive concern of researchers due to its degradation product such as methyl paraoxon, with higher toxicity for mammals and more recalcitrant. Given the ubiquity of manganese dioxide (MnO2) in soils and aquatic sediments, the abiotic degradation of methyl parathion by α-MnO2 was investigated in batch experiments. It was found that methyl parathion was decomposed up to 90% by α-MnO2 in 30 h and the removal efficiency of methyl parathion depended strongly on the loading of α-MnO2 and pH value in the solution where the reactions followed pseudo-first-order model well. The coexisting metal ions (such as Ca(2+), Mg(2+) and Mn(2+)) weakened markedly the degradation of methyl parathion by α-MnO2. However, the effect of dissolved organic matter (HA-Na) on reaction rates presented two sides: to improve hydrolysis rate but deteriorate oxidation rate of methyl parathion. Based on the degradation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high-resolution mass spectrometer (LC/HRMS), both hydrolysis and oxidation processes were proposed to be two predominant reaction mechanisms contributing to methyl parathion degradation by α-MnO2. This study provided meaningful information to elucidate the abiotic dissipation of methyl parathion by manganese oxide minerals in the environment. PMID:26891361

  19. Pioneering in Marginal Fields: Jatropha for Carbon Credits and Restoring Degraded Land in Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Loes Willemijn van Rooijen

    2014-04-01

    Full Text Available This paper highlights the role of a national Non-Governmental Organization (NGO in Indonesia as “pioneer” actor in the jatropha global production network, linking solutions for local problems with narratives concerning global concerns. Analysis of previous activities of the NGO positions their jatropha project as one period in a sequence of donor-funded appropriate technology programs. On the island of Flores in Eastern Indonesia the NGO aimed to establish community based jatropha cultivation exclusively on “degraded land”, avoiding threats to food cultivation, and responding to local problems of land degradation and water resources depletion. In contrast with investors interested in jatropha based biofuel production for export, the NGO aimed at developing biofuel for local needs, including jatropha based electricity generation in the regional state-owned power plant. Anticipating progress in international and national regulations concerning the Clean Development Mechanism (CDM the 2008 project’s design included carbon credit income as a main source of future project financing. Using methods of socio-legal studies and political ecology, this study indicates that when the economic feasibility of a project is based on the future financial value of a legally constructed commodity like carbon credits, the sustainability of the project outcome can be questionable. The author recommends precaution when it comes to including anticipated income from carbon credits in calculating the economic viability of a project, as price developments can fluctuate when political support and regulations change.

  20. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway.

    Science.gov (United States)

    Liu, Yu-Jiao; Liu, Chao; Chang, ZeNan; Wadas, Brandon; Brower, Christopher S; Song, Zhen-Hua; Xu, Zhi-Liang; Shang, Yong-Liang; Liu, Wei-Xiao; Wang, Li-Na; Dong, Wen; Varshavsky, Alexander; Hu, Rong-Gui; Li, Wei

    2016-04-01

    The Ate1 arginyltransferase (R-transferase) is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. Ate1 arginylates N-terminal Asp, Glu, or (oxidized) Cys. The resulting N-terminal Arg is recognized by ubiquitin ligases of the N-end rule pathway. In the yeastSaccharomyces cerevisiae, the separase-mediated cleavage of the Scc1/Rad21/Mcd1 cohesin subunit generates a C-terminal fragment that bears N-terminal Arg and is destroyed by the N-end rule pathway without a requirement for arginylation. In contrast, the separase-mediated cleavage of Rec8, the mammalian meiotic cohesin subunit, yields a fragment bearing N-terminal Glu, a substrate of the Ate1 R-transferase. Here we constructed and used a germ cell-confinedAte1(-/-)mouse strain to analyze the separase-generated C-terminal fragment of Rec8. We show that this fragment is a short-lived N-end rule substrate, that its degradation requires N-terminal arginylation, and that maleAte1(-/-)mice are nearly infertile, due to massive apoptotic death ofAte1(-/-)spermatocytes during the metaphase of meiosis I. These effects ofAte1ablation are inferred to be caused, at least in part, by the failure to destroy the C-terminal fragment of Rec8 in the absence of N-terminal arginylation. PMID:26858254

  1. The role of oxidation and enzymatic hydrolysis on the in vivo degradation of trimethylene carbonate based photocrosslinkable elastomers.

    Science.gov (United States)

    Chapanian, Rafi; Tse, M Yat; Pang, Stephen C; Amsden, Brian G

    2009-01-01

    The in vivo degradation of trimethylene carbonate (TMC) containing elastomers was investigated, and the mechanism of degradation explored through in vitro degradation under enzymatic and oxidative conditions. The elastomers were prepared via UV initiated crosslinking of prepolymers of TMC and equimolar amounts of TMC and epsilon-caprolactone (CL). The degradation process was followed by investigating the changes in the mechanical properties, mass loss, water uptake, sol content, differential scanning calorimetry, and surface chemistry through attenuated total reflectance infrared (ATR-FTIR) spectroscopy. During in vivo degradation, TMC and TMCCL elastomers exhibited surface erosion. The tissue response was of greater intensity in the case of the TMC elastomer. Both elastomers exhibited degradation in cholesterol esterase containing solutions in vitro, but no parallels were found between the rate of in vivo degradation and the rate of in vitro degradation. Only the TMCCL elastomer degraded in lipase. Degradation in a stable superoxide anion in vitro medium was consistent with the observed in vivo degradation results, indicating a dominant role of oxidation through the secretion of this reactive oxygen species by adherent phagocytic cells in the degradation of these elastomers. PMID:18947866

  2. Funding pathways to a low-carbon transition

    Science.gov (United States)

    Foulds, Chris; Christensen, Toke Haunstrup

    2016-07-01

    The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low-carbon aspirations.

  3. A review of degradation modes of low carbon steel in brine environments

    International Nuclear Information System (INIS)

    A literature search was conducted to review information on degradation modes of low carbon steel in brine solutions. A computer search was used to obtain articles from 1970 to present while a manual search was conducted for articles published prior to 1970. The published articles and reports indicated that uniform corrosion occurred in sea water, geothermal brines and simulated repository brines. The uniform corrosion rate increased with decreasing pH, increasing oxygen contest of brine and increasing temperature. Pitting of low carbon steel in brine solutions was related to scale formation due to presences of sulfur and heavy metal ions or mill scale present prior to exposure. Low carbon steel did not appear to be susceptible to stress corrosion cracking, but data was limited. The presence of anaerobic bacteria greatly increased the rate of corrosion of low carbon steel as compared to sterile conditions. If sufficient hydrogen is present, low carbon steel could fail due to hydrogen embrittlement in brine solutions. However, this is an area where experimental work needs to be done under more specific conditions related to salt repositories. Corrosion fatigue and stray current corrosion require specific conditions to occur which can be avoided during waste storage and were there fore not addressed. Also, galvanic effects were not addressed as it will be possible to minimize galvanic effects by design. 226 refs., 4 tabs

  4. Elucidating the Pseudomonas aeruginosa Fatty Acid Degradation Pathway: Identification of Additional Fatty Acyl-CoA Synthetase Homologues

    OpenAIRE

    Zarzycki-Siek, Jan; Norris, Michael H.; Kang, Yun (Kenneth); Sun, Zhenxin; Bluhm, Andrew P.; McMillan, Ian A.; Hoang, Tung T.

    2013-01-01

    The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. T...

  5. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G., E-mail: ganesansekaran@gmail.com [Environmental Technology Division, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Adyar, Chennai-600 020 (India); Karthikeyan, S. [Environmental Technology Division, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Adyar, Chennai-600 020 (India); Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247 667 (India); Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Boopathy, R.; Maharaja, P. [Environmental Technology Division, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Adyar, Chennai-600 020 (India)

    2013-03-01

    Xenobiotic compounds are used in considerable quantities in leather industries besides natural organic and inorganic compounds. These compounds resist biological degradation and thus they remain in the treated wastewater in the unaltered molecular configurations. Immobilization of organisms in carrier matrices protects them from shock load application and from the toxicity of chemicals in bulk liquid phase. Mesoporous activated carbon (MAC) has been considered in the present study as the carrier matrix for the immobilization of Bacillus sp. isolated from Effluent Treatment Plant (ETP) employed for the treatment of wastewater containing sulphonated phenolic (SP) compounds. Temperature, pH, concentration, particle size and mass of MAC were observed to influence the immobilization behavior of Bacillus sp. The percentage immobilization of Bacillus sp. was the maximum at pH 7.0, temperature 20 Degree-Sign C and at particle size 300 {mu}m. Enthalpy, free energy and entropy of immobilization were - 46.9 kJ mol{sup -1}, - 1.19 kJ mol{sup -1} and - 161.36 J K{sup -1} mol{sup -1} respectively at pH 7.0, temperature 20 Degree-Sign C and particle size 300 {mu}m. Higher values of {Delta}H{sup 0} indicate the firm bonding of the Bacillus sp. in MAC. Degradation of aqueous sulphonated phenolic compound by Bacillus sp. immobilized in MAC followed pseudo first order rate kinetics with rate constant 1.12 Multiplication-Sign 10{sup -2} min{sup -1}. Highlights: Black-Right-Pointing-Pointer Degradation on phenolic syntan using immobilized activated carbon as catalyst. Black-Right-Pointing-Pointer Bacillus sp. immobilized cell reactor removed all refractory organic loads. Black-Right-Pointing-Pointer The removal mechanism is due to co-metabolism between carbon and organisms. Black-Right-Pointing-Pointer The organics are completely metabolized rather than adsorption.

  6. Effect of Adventitious Carbon on the Environmental Degradation of SiC/BN/SiC Composites

    Science.gov (United States)

    Ogbuji, L. U. J. T.; Yun, H. M.; DiCarlo, J.

    2002-01-01

    Pesting remains a major obstacle to the application of SiC/SiC composites in engine service and selective degradation of the boron nitride interphase at intermediate temperatures is of primary concern. However, significant progress has been made on interphase improvement recently and we now know more about the phenomenon and ways to suppress it. By screening SiC/BN/SiC materials through characterization of strength and microstructures after exposure in a burner rig, some factors that control pesting in these composites have been determined. A key precaution is careful control of elemental carbon presence in the interphase region.

  7. Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure

    International Nuclear Information System (INIS)

    This is the first detailed study of metabolite production during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenil). Degradation of dichlobenil and three potential metabolites: 2,6-dichlorobenzamide (BAM), 2,6-dichlorobenzoic acid (2,6-DCBA) and ortho-chlorobenzamide (OBAM) was studied in soils either previously exposed or not exposed to dichlobenil using a newly developed HPLC method. Dichlobenil was degraded in all four soils; BAM and 2,6-DCBA were only degraded in soils previously exposed to dichlobenil (100% within 35-56 days and 85-100% in 56 days, respectively), and OBAM in all four soils (25-33% removal in 48 days). BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid. BAM was rapidly mineralized in previously exposed soils only. All potential metabolites and the finding that BAM was a dead-end metabolite of dichlobenil in soils not previously exposed to dichlobenil needs to be included in risk assessments of the use of dichlobenil. - BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid

  8. UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects.

    Science.gov (United States)

    Kovacic, Marin; Juretic Perisic, Daria; Biosic, Martina; Kusic, Hrvoje; Babic, Sandra; Loncaric Bozic, Ana

    2016-08-01

    In this study, the photolysis behavior of commonly used anti-inflammatory drug diclofenac (DCF) was investigated using UV-C and UV-A irradiation. In that purpose, DCF conversion kinetics, mineralization of organic content, biodegradability, and toxicity were monitored and compared. The results showed different kinetics of DCF conversion regarding the type of UV source applied. However, in both cases, the mineralization extent reached upon complete DCF conversion is rather low (≤10 %), suggesting that the majority of DCF was transformed into by-products. Formation/degradation of main degradation by-products was monitored using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), whereas different profiles were obtained by UV-C and UV-A photolysis. The results of bioassays revealed that biodegradability of DCF solutions remained low through the applied treatments. The toxicity of irradiated DCF solutions was evaluated using Vibrio fischeri. A significant reduction of toxicity, especially in the case of UV-A radiation, was observed upon complete degradation of DCF. In addition to toxicity reduction, calculated Log K OW values of DCF degradation by-products indicate their low potential for bioaccumulation (Log K OW ≤ 3) in comparison to the parent substance.

  9. Advances in mechanisms and signaling pathways of carbon nanotube toxicity

    OpenAIRE

    Dong, Jie; Ma, Qiang

    2015-01-01

    Carbon nanotubes (CNT) have been developed into new materials with a variety of industrial and commercial applications. In contrast, the physicochemical properties of CNT at the nanoscale render them the potency to generate toxic effects. Indeed, the potential health impacts of CNT have drawn a great deal of attention in recent years, owing to their identified toxicological and pathological consequences including cytotoxicity, inflammation, fibrosis, genotoxicity, tumorigenesis, and immunotox...

  10. Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles.

    Science.gov (United States)

    Bootharaju, M S; Pradeep, T

    2012-02-01

    Application of nanoparticles (NPs) in environmental remediation such as water purification requires a detailed understanding of the mechanistic aspects of the interaction between the species involved. Here, an attempt was made to understand the chemistry of noble metal nanoparticle-pesticide interaction, as these nanosystems are being used extensively for water purification. Our model pesticide, chlorpyrifos (CP), belonging to the organophosphorothioate group, is shown to decompose to 3,5,6-trichloro-2-pyridinol (TCP) and diethyl thiophosphate at room temperature over Ag and Au NPs, in supported and unsupported forms. The degradation products were characterized by absorption spectroscopy and electrospray ionization mass spectrometry (ESI MS). These were further confirmed by ESI tandem mass spectrometry. The interaction of CP with NP surfaces was investigated using transmission electron microscopy, energy dispersive analysis of X-rays, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). XPS reveals no change in the oxidation state of silver after the degradation of CP. It is proposed that the degradation of CP proceeds through the formation of AgNP-S surface complex, which is confirmed by Raman spectroscopy. In this complex, the P-O bond cleaves to yield a stable aromatic species, TCP. The rate of degradation of CP increases with increase of temperature and pH. Complete degradation of 10 mL of 2 ppm CP solution is achieved in 3 h using 100 mg of supported Ag@citrate NPs on neutral alumina at room temperature at a loading of ∼0.5 wt %. The effect of alumina and monolayer protection of NPs on the degradation of CP is also investigated. The rate of degradation of CP by Ag NPs is greater than that of Au NPs. The results have implications to the application of noble metal NPs for drinking water purification, as pesticide contamination is prevalent in many parts of the world. Study shows that supported Ag and Au NPs may be employed in sustainable

  11. Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway.

    Science.gov (United States)

    Yang, Xiaoling; Huang, Jun; Zhang, Kunlun; Yu, Gang; Deng, Shubo; Wang, Bin

    2014-03-01

    Perfluorooctane sulfonate (PFOS), a widely used mist suppressant in hard chrome electroplating industry, has been listed in the Stockholm Convention for global ban. 6:2 Fluorotelomer sulfonate (6:2 FTS) acid and salts have been adopted as alternative products in the market, but no data about their abiotic degradation has been reported. In the present study, the degradability of 6:2 FTS potassium salt (6:2 FTS-K) was evaluated under various advanced oxidation processes, including ultraviolet (UV) irradiation, UV with hydrogen peroxide (H2O2), alkaline ozonation (O3, pH = 11), peroxone (O3/H2O2), and Fenton reagent oxidation (Fe(2+)/H2O2). UV/H2O2 was found to be the most effective approach, where the degradation of 6:2 FTS-K followed the pseudo-first-order kinetics. The intermediates were mainly shorter chain perfluoroalkyl carboxylic acid (C7 to C2), while sulfate (SO4 (2-)) and fluoride (F(-)) were found to be the final products. The high yields of SO4 (2-) and F(-) indicate that 6:2 FTS-K can be nearly completely desulfonated and defluorinated under UV/H2O2 condition. The degradation should firstly begin with the substitution of hydrogen atom by hydroxyl radicals, followed by desulfonation, carboxylation, and sequential "flake off" of CF2 unit. Compared with PFOS which is inert in most advanced oxidation processes, 6:2 FTS-K is more degradable as the alternative.

  12. Microbial Degradation and Carbon Biosequestration Potential of Biochar in Contrasting Soils

    Science.gov (United States)

    Tas, N.; Castanha, C.; Reichl, K.; Fischer, M. L.; Brodie, E. L.; Torn, M. S.; Jansson, J. K.

    2012-12-01

    Biochar is a carbon-rich product that is produced by high-temperature and low-oxygen pyrolysis of biomass, whose addition to soil has been proposed as a promising method for carbon sequestration. Biochar carbon has been assumed to be stable in soil, but recent research shows that it is at least partly degradable by soil microbes. However, the influence of environmental conditions on microbial transformation of biochar is poorly understood. Our overall goal is to determine the factors that regulate microbial decomposition of biochar in soils. We performed laboratory incubation experiments to compare the potential for biochar decomposition in soils from contrasting ecosystems (tropical forest from Puerto Rico and Mediterranean grassland from California), varied temperatures (ambient and +6°C) and depths (A and B horizons). Soil incubations with pyrolyzed 13C-enriched wood were continuously monitored for heterotrophic respiration using an online Cavity Ringdown Spectrometer. Samples collected after 10 and 150 days of incubation were analyzed for the activity of extracellular enzymes while changes in microbial community composition were assessed via pyrotag sequencing of both 16S rRNA and 16S rRNA genes. 13C-CO2 measurements confirmed that a fraction of added biochar was degraded in both soils during the one-year incubation period. Biochar addition was associated with a decline in cellulose and hemicellulose degrading enzyme activity in grassland soils, although not in tropical soils. In both soils, native soil organic carbon decomposition was not significantly impacted by biochar addition. Principle coordinates analysis of microbial composition showed that both soils harbored different microbial communities and those communities at different depths were distinct. The main bacterial groups enriched by biochar addition were Actinobacteria in the grassland soil, and α-Proteobacteria, Actinobacteria and Acidobacteria in the tropical soil. Analysis of 16S r

  13. Funding pathways to a low-carbon transition

    DEFF Research Database (Denmark)

    Foulds, Chris; Christensen, Toke Haunstrup

    2016-01-01

    The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low-carbon aspirat......The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low...

  14. Non-riverine pathways of terrigenous carbon to the ocean

    Science.gov (United States)

    Dittmar, T.

    2007-12-01

    The extent and nature of non-riverine fluxes of carbon from land to ocean are poorly understood. Tidal pumping from highly productive coastal environments, atmospheric deposition and submarine groundwater discharge can be significant transport mechanisms for carbon to the ocean. Evidence is mounting that tidally-induced porewater fluxes ("outwelling") of dissolved organic matter (DOM) from mangroves and salt marshes alone may be similar in magnitude as the global riverine flux of DOM. Tidal pumping of dissolved inorganic carbon (DIC) might exceed organic carbon fluxes by far, but the existing knowledge on DIC outwelling is too scarce for a first global estimate. Results from two case studies on the biogeochemistry of DOM outwelling are presented, from the mangroves in Northern Brazil and the salt marshes in the Northern Gulf of Mexico. Ongoing research in the Northern Gulf of Mexico indicates that outwelling and groundwater inputs probably exceed riverine DOM fluxes in this region. Similar observations were made in Northern Brazil. There, the fate of mangrove-derived DOM could be traced from its source in the mangrove sediments to the outer North Brazil shelf by using a combination of isotopic and molecular approaches. Reversed-phase liquid chromatography / mass spectrometry (LC/MS) provided a multifaceted array of information that mirrors the molecular complexity of DOM. Statistical analyses on these data revealed significant differences between mangrove and open-ocean DOM which successively disappeared by irradiating the samples with natural sunlight. Nuclear magnetic resonance analyses yielded concurrent results. Ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) is the only technique capable of resolving and identifying individual elemental compositions in these complex mixtures. We applied this technique for characterizing mangrove-derived DOM and to assess the molecular changes that occur in the initial stages of

  15. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    Science.gov (United States)

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation. PMID:26468606

  16. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    Science.gov (United States)

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation.

  17. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); Stolte, Stefan [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); UFT-Centre of Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Siedlecka, Ewa Maria, E-mail: ewa.siedlecka@ug.edu.pl [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland)

    2014-09-15

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na{sub 2}SO{sub 4}. The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test.

  18. Electrochemical treatment of trypan blue synthetic wastewater and its degradation pathway

    OpenAIRE

    ANANTHA N. SUBBA RAO; ENKATESHA T. VENKATARANGAIAH

    2013-01-01

    The trypan blue (TB) dye synthetic wastewater was treated in presence of chloride ions by electrochemical method. The effect of current density, pH, initial concentration of dye and supporting electrolyte on color and COD removal were investigated. The UV-Vis ab­sorption intensity, chemical oxygen demand (COD), cyclic voltammetry (CV), Fourier transform- infrared spectroscopy (FT-IR), gas chromatography – mass spectrometry (GC-MS) analysis were conducted to investigate the kinetics and degrad...

  19. Low viscosity poly(trimethylene carbonate) for localized drug delivery: rheological properties and in vivo degradation.

    Science.gov (United States)

    Timbart, Laurianne; Tse, M Yat; Pang, Stephen C; Babasola, Oladunni; Amsden, Brian G

    2009-08-11

    The purpose of this study is to examine the potential of low-molecular-weight poly(trimethylene carbonate) for localized delivery for acid-sensitive drugs. Poly(trimethylene carbonate) of various molecular weights is prepared by ring-opening polymerization initiated by octan-1-ol and co-initiated/catalyzed by tin 2-ethylhexanoate. The resultant polymers are amorphous with low glass transition temperatures and viscosities at 37 degrees C that permit their injection through an 18(1\\2) G 1.5'' needle. Their biocompatibility and the influence of the molecular weight on the rate of degradation are assessed in vivo through subcutaneous implantation in rats over 40 weeks. The polymers are well tolerated in vivo, and degrade in a fashion dependent on their initial molecular weight. For very low initial molecular weight (620 Da) and for high initial molecular weight (2,400 Da), polymer mass loss is a result of dissolution of the soluble low molecular chains from the bulk. This is contrasted by the results obtained for an intermediate initial molecular weight (1,600 Da), for which polymer mass loss is a result of both dissolution and enzymatic hydrolysis or oxidation as a result of reactive species secreted by activated macrophages at the implant surface. PMID:19253418

  20. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  1. Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet

    Directory of Open Access Journals (Sweden)

    Gilberto Petraconi

    2010-04-01

    Full Text Available A stationary experiment was performed to study the degradation of carbon-based materials by immersion in a plasma jet. In the experiment, graphite and C/C composite were chosen as the target materials, and the reactive plasma jet was generated by an air plasma torch. For macroscopic study of the material degradation, the sample’s mass losses were measured as function of the exposure time under various temperatures on the sample surface. A microscopic analysis was then carried out for the study of microscopic aspects of the erosion of material surface. These experiments showed that the mass loss per unit area is approximately proportional to the exposure time and strongly depends on the temperature of the material surface. The mass erosion rate of graphite was appreciably higher than the C/C composite. The ablation rate in the carbon matrix region in C/C composite was also noticeably higher than that in the fiber region. In addition, the latter varied according to the orientation of fibers relatively to the flow direction. These tests indicated an excellent ablation resistance of the C/C composite, thus being a reliable material for rocket nozzles and heat shielding elements of the protection systems of hypersonic apparatuses from aerodynamic heating.

  2. Role of PF6- in the radiolytical and electrochemical degradation of propylene carbonate solutions

    Science.gov (United States)

    Ortiz, Daniel; Jimenez Gordon, Isabel; Legand, Solène; Dauvois, Vincent; Baltaze, Jean-Pierre; Marignier, Jean-Louis; Martin, Jean-Frédéric; Belloni, Jacqueline; Mostafavi, Mehran; Le Caër, Sophie

    2016-09-01

    The behavior under irradiation of neat propylene carbonate (PC), a co-solvent usually used in Li-ion batteries (LIB), and also of Li salt solutions is investigated. The decomposition of neat PC is studied using radiolysis in the pulse and steady state regime and is assigned to the ultrafast formation, in the reducing channel, of the radical anion PCrad - by electron attachment, followed by the ring cleavage, leading to CO. In the oxidative channel, the PC(sbnd H)rad radical is formed, generating CO2. The CO2 and CO yields are both close to the ionization yield of PC. The CO2 and CO productions in LiClO4, LiBF4 and LiN(CF3)2(SO2)2 solutions are similar as in neat PC. In contrast, in LiPF6/PC a strong impact on PC degradation is measured with a doubling of the CO2 yield due to the high reactivity of the electron towards PF6- observed in the picosecond range. A small number of oxide phosphine molecules are detected among the various products of the irradiated solutions, suggesting that most of them, observed in carbonate mixtures used in LIBs, arise from linear rather than from cyclical molecules. The similarity between the degradation by radiolysis or electrolysis highlights the interest of radiolysis as an accelerated aging method.

  3. New Biochemical Pathway for Biphenyl Degradation in Plants: Structural, Mechanistic and Biotechnological Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pacios, L. F.; Campos, V. M.; Merino, I.; Gomez, L.

    2009-07-01

    Polychlorinated biphenyls (PVBs) and other structurally-related xenobiotics are amongst the most relevant organic pollutants known today. while some bacterial species can metabolize PCBs, with varying efficiency, no catabolic pathways have yet been described in plants. This is so despite the great potential of (at least some) plant species for soil and groundwater decontamination, a technology known as phyto remediation. (Author)

  4. Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1.

    Science.gov (United States)

    Liu, Hong; Wang, Shu-Jun; Zhang, Jun-Jie; Dai, Hui; Tang, Huiru; Zhou, Ning-Yi

    2011-07-01

    Pseudomonas stutzeri ZWLR2-1 utilizes 2-chloronitrobenzene (2CNB) as a sole source of carbon, nitrogen, and energy. To identify genes involved in this pathway, a 16.2-kb DNA fragment containing putative 2CNB dioxygenase genes was cloned and sequenced. Of the products from the 19 open reading frames that resulted from this fragment, CnbAc and CnbAd exhibited striking identities to the respective α and β subunits of the Nag-like ring-hydroxylating dioxygenases involved in the metabolism of nitrotoluene, nitrobenzene, and naphthalene. The encoding genes were also flanked by two copies of insertion sequence IS6100. CnbAa and CnbAb are similar to the ferredoxin reductase and ferredoxin for anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. Escherichia coli cells expressing cnbAaAbAcAd converted 2CNB to 3-chlorocatechol with concomitant nitrite release. Cell extracts of E. coli/pCNBC exhibited chlorocatechol 1,2-dioxygenase activity. The cnbCDEF gene cluster, homologous to a 3-chlorocatechol degradation cluster in Sphingomonas sp. strain TFD44, probably contains all of the genes necessary for the conversion of 3-chlorocatechol to 3-oxoadipate. The patchwork-like structure of this catabolic cluster suggests that the cnb cluster for 2CNB degradation evolved by recruiting two catabolic clusters encoding a nitroarene dioxygenase and a chlorocatechol degradation pathway. This provides another example to help elucidate the bacterial evolution of catabolic pathways in response to xenobiotic chemicals.

  5. Carbazole-degradative IncP-7 plasmid pCAR1.2 is structurally unstable in Pseudomonas fluorescens Pf0-1, which accumulates catechol, the intermediate of the carbazole degradation pathway.

    Science.gov (United States)

    Takahashi, Yurika; Shintani, Masaki; Li, Li; Yamane, Hisakazu; Nojiri, Hideaki

    2009-06-01

    We determined the effect of the host on the function and structure of the nearly identical IncP-7 carbazole-degradative plasmids pCAR1.1 and pCAR1.2. We constructed Pseudomonas aeruginosa PAO1(pCAR1.2) and P. fluorescens Pf0-1Km(pCAR1.2) and compared their growth on carbazole- and succinate-containing media with that of P. putida KT2440(pCAR1.1). We also assessed the stability of the genetic structures of the plasmids in each of the three hosts. Pf0-1Km(pCAR1.2) showed dramatically delayed growth when carbazole was supplied as the sole carbon source, while the three strains grew at nearly the same rate on succinate. Among the carbazole-grown Pf0-1Km(pCAR1.2) cells, two types of deficient strains appeared and dominated the population; such dominance was not observed in the other two strains or for succinate-grown Pf0-1Km(pCAR1.2). Genetic analysis showed that the two deficient strains possessed pCAR1.2 derivatives in which the carbazole-degradative car operon was deleted or its regulatory gene, antR, was deleted by homologous recombination between insertion sequences. From genomic information and quantitative reverse transcription-PCR analyses of the genes involved in carbazole mineralization by Pf0-1Km(pCAR1.2), we found that the cat genes on the chromosome of Pf0-1Km, which are necessary for the degradation of catechol (a toxic intermediate in the carbazole catabolic pathway), were not induced in the presence of carbazole. The resulting accumulation of catechol may have enabled the strain that lost its carbazole-degrading ability to have overall higher fitness than the wild-type strain. These results suggest that the functions of the chromosomal genes contributed to the selection of plasmid derivatives with altered structures.

  6. CARBON MONOXIDE: ITS ROLE IN MITOCHONDRIAL PATHWAY OF APOPTOSIS INDUCTION IN JURKAT CANCER CELLS

    Directory of Open Access Journals (Sweden)

    E. G. Starikova

    2012-01-01

    Full Text Available  Abstract. This study demonstrates ability of carbon monoxide to trigger mitochondrial pathway of apoptosis induction of Jurcat cells. We have shown that proapoptotic action of carbon monoxide is coupled to permeabilization of cellular mitochondrial membranes. Imbalance in Bcl-2 family of regulatory proteins may be considered among possible reasons of the membrane pore formation. We have shown downregulated cl-2 and Bcl-xl mRNA expression and decreased levels of antiapoptotic proteins, along wih decreased mRNA expression and increase of Bad proapototic protein level in Jurkat cells following incubation with 50 μm of CORM-2, a carbon monoxide donor.

  7. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Hunkeler, Daniel; Tuxen, Nina;

    2014-01-01

    dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in 13C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation...... not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1......,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA 13C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1...

  8. Carbon capture and sequestration: an exploratory inhalation toxicity assessment of amine-trapping solvents and their degradation products.

    Science.gov (United States)

    McDonald, Jacob D; Kracko, Dean; Doyle-Eisele, Melanie; Garner, C Edwin; Wegerski, Chris; Senft, Al; Knipping, Eladio; Shaw, Stephanie; Rohr, Annette

    2014-09-16

    Carbon dioxide (CO2) absorption with aqueous amine solvents is a method of carbon capture and sequestration (CCS) from flue gases. One concern is the possible release of amine solvents and degradation products into the atmosphere, warranting evaluation of potential pulmonary effects from inhalation. The CCS amines monoethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP) underwent oxidative and CO2-mediated degradation for 75 days. C57bl/6N mice were exposed for 7 days by inhalation of 25 ppm neat amine or equivalant concentration in the degraded mixture. The aqueous solutions were nebulized to create the inhalation atmospheres. Pulmonary response was measured by changes in inflammatory cells in bronchoalveolar lavage fluid and cytokine expression in lung tissue. Ames mutagenicity and CHO-K1 micronucleus assays were applied to assess genotoxicity. Chemical analysis of the test atmosphere and liquid revealed complex mixtures, including acids, aldehydes, and other compounds. Exposure to oxidatively degraded MEA increased (p < 0.05) total cells, neutrophils, and lymphocytes compared to control mice and caused inflammatory cytokine expression (statistical increase at p < 0.05). MEA and CO2-degraded MEA were the only atmospheres to show statistical (p < 0.05) increase in oxidative stress. CO2 degradation resulted in a different composition, less degradation, and lower observed toxicity (less magnitude and number of effects) with no genotoxicity. Overall, oxidative degradation of the amines studied resulted in enhanced toxicity (increased magnitude and number of effects) compared to the neat chemicals.

  9. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease.

    Science.gov (United States)

    Son, Sung Min; Cha, Moon-Yong; Choi, Heesun; Kang, Seokjo; Choi, Hyunjung; Lee, Myung-Shik; Park, Sun Ah; Mook-Jung, Inhee

    2016-05-01

    The secretion of proteins that lack a signal sequence to the extracellular milieu is regulated by their transition through the unconventional secretory pathway. IDE (insulin-degrading enzyme) is one of the major proteases of amyloid beta peptide (Aβ), a presumed causative molecule in Alzheimer disease (AD) pathogenesis. IDE acts in the extracellular space despite having no signal sequence, but the underlying mechanism of IDE secretion extracellularly is still unknown. In this study, we found that IDE levels were reduced in the cerebrospinal fluid (CSF) of patients with AD and in pathology-bearing AD-model mice. Since astrocytes are the main cell types for IDE secretion, astrocytes were treated with Aβ. Aβ increased the IDE levels in a time- and concentration-dependent manner. Moreover, IDE secretion was associated with an autophagy-based unconventional secretory pathway, and depended on the activity of RAB8A and GORASP (Golgi reassembly stacking protein). Finally, mice with global haploinsufficiency of an essential autophagy gene, showed decreased IDE levels in the CSF in response to an intracerebroventricular (i.c.v.) injection of Aβ. These results indicate that IDE is secreted from astrocytes through an autophagy-based unconventional secretory pathway in AD conditions, and that the regulation of autophagy is a potential therapeutic target in addressing Aβ pathology.

  10. Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways

    NARCIS (Netherlands)

    Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S.A.B.; Stams, A.J.M.; Richnow, H.H.; Vogt, C.

    2008-01-01

    Recently, combined carbon and hydrogen isotope fractionation investigations have emerged as a powerful tool for the characterization of reaction mechanisms relevant for the removal of organic pollutants. Here, we applied this approach in order to differentiate benzene biodegradation pathways under o

  11. Structure and Mechanism of PhnP, a Phosphodiesterase of the Carbon-Phosphorus Lyase Pathway

    DEFF Research Database (Denmark)

    He, Shu-Mei; Wathier, Matthew; Podzelinska, Kateryna;

    2011-01-01

    PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase s...

  12. Pathways of carbon oxidation in continental margin sediments off central Chile

    DEFF Research Database (Denmark)

    Thamdrup, B; Canfield, Donald Eugene

    1996-01-01

    Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubatio...

  13. Population sinks resulting from degraded habitats of an obligate life-history pathway.

    Science.gov (United States)

    Hickford, Michael J H; Schiel, David R

    2011-05-01

    Many species traverse multiple habitats across ecosystems to complete their life histories. Degradation of critical, life stage-specific habitats can therefore lead to population bottlenecks and demographic deficits in sub-populations. The riparian zone of waterways is one of the most impacted areas of the coastal zone because of urbanisation, deforestation, farming and livestock grazing. We hypothesised that sink populations can result from alterations of habitats critical to the early life stages of diadromous fish that use this zone, and tested this with field-based sampling and experiments. We found that for Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, obligate riparian spawning habitat was very limited and highly vulnerable to disturbance across 14 rivers in New Zealand. Eggs were laid only during spring tides, in the highest tidally influenced vegetation of waterways. Egg survival increased to >90% when laid in three riparian plant species and where stem densities were great enough to prevent desiccation, compared to no survival where vegetation was comprised of other species or was less dense. Experimental exclusion of livestock, one of the major sources of riparian degradation in rural waterways, resulted in quick regeneration, a tenfold increase in egg laying by fish and a threefold increase in survival, compared to adjacent controls. Overall, there was an inverse relationship between river size and egg production. Some of the largest rivers had little or no spawning habitat and very little egg production, effectively becoming sink populations despite supporting large adult populations, whereas some of the smallest pristine streams produced millions of eggs. We demonstrate that even a wide-ranging species with many robust adult populations can be compromised if a stage-specific habitat required to complete a life history is degraded by localised or more diffuse impacts. PMID:21076966

  14. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Institute of Scientific and Technical Information of China (English)

    Agus Suryawan; Teresa ADavis

    2014-01-01

    Background:The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6-and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. Results:Abundance of atrogin-1, but not MuRF1, was greater in 26-than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6-than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the

  15. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    OpenAIRE

    Fazlurrahman Khan; Deepika Pal; Surendra Vikram; Swaranjit Singh Cameotra

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium...

  16. Photocatalytic degradating methyl orange in water phase by UV-irradiated CdS carried by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; TANG YaPing; KANG BoNan; WANG BinSong; ZHOU Feng; MA Qiang; XIAO Ji; WANG DaZhi; LIANG Ji

    2007-01-01

    A new candidate for photocatalytic degradating organic dyes, CdS carried by carbon nanotubes (CdS/CNTs), is reported. The degradation ratio curves of methyl orange in water phase show that the capability for degradating organic molecules of CdS/CNTs is obviously higher than that of separated CdS. The degradation capability enhances as the increase of the amount of net CdS catalyst, the ratio of carbon nanotubes to CdS, and the area of the template, and is influenced by the pH value and the temperature of aqueous solution. These results suggest that the photocatalyst of CdS/CNTs is very suitable for potential applications in organic waste removal from water.

  17. Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo.

    Science.gov (United States)

    Petiwala, Sakina M; Li, Gongbo; Bosland, Maarten C; Lantvit, Daniel D; Petukhov, Pavel A; Johnson, Jeremy J

    2016-08-01

    Androgen deprivation therapy in prostate cancer is extremely effective; however, due to the continuous expression and/or mutagenesis of androgen receptor (AR), the resistance to antihormonal therapy is a natural progression. Consequently, targeting the AR for degradation offers an alternate approach to overcome this resistance in prostate cancer. In this study, we demonstrate that carnosic acid, a benzenediol diterpene, binds the ligand-binding domain of the AR and degrades the AR via endoplasmic reticulum (ER) stress-mediated proteasomal degradative pathway. In vitro, carnosic acid treatment induced degradation of AR and decreased expression of prostate-specific antigen in human prostate cancer cell lines LNCaP and 22Rv1. Carnosic acid also promoted the expression of ER proteins including BiP and CHOP in a dose-dependent manner. Downregulation of CHOP by small interfering RNA somewhat restored expression of AR suggesting that AR degradation is dependent on ER stress pathway. Future studies will need to evaluate other aspects of the unfolded protein response pathway to characterize the regulation of AR degradation. Furthermore, cotreating cells individually with carnosic acid and proteasome inhibitor (MG-132) and carnosic acid and an ER stress modulator (salubrinal) restored protein levels of AR, suggesting that AR degradation is mediated by ER stress-dependent proteasomal degradation pathway. Degradation of AR and induction of CHOP protein were also evident in vivo along with a 53% reduction in growth of xenograft prostate cancer tumors. In addition, carnosic acid-induced ER stress in prostate cancer cells but not in normal prostate epithelial cells procured from patient biopsies. In conclusion, these data suggest that molecules such as carnosic acid could be further evaluated and optimized as a potential therapeutic alternative to target AR in prostate cancer. PMID:27267997

  18. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  19. Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation.

    Science.gov (United States)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr; Stolte, Stefan; Siedlecka, Ewa Maria

    2014-09-15

    The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na2SO4. The intermediates identified by LC-MS and GC-MS analysis suggested that the hydroxyl radicals attack mainly the SN bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test. PMID:25215656

  20. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota.

    Directory of Open Access Journals (Sweden)

    Steven J Hallam

    2006-04-01

    Full Text Available Marine Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote, Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore, C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems.

  1. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D

    2016-05-15

    Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically.

  2. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D

    2016-05-15

    Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically. PMID:27131094

  3. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  4. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, Katherine A.; Ealick, Steven E.

    2016-05-25

    HpxW from the ubiquitous pathogenKlebsiella pneumoniaeis involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide further insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed.

  5. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    Science.gov (United States)

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-01

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases.

  6. High Voltage Surface Degradation on Carbon Blacks in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza

    In order to increase the power density of Li-ion batteries, much research is focused on developing cathode materials that can operate at high voltages above 4.5 V with a high capacity, high cycling stability, and rate capability. However, at high voltages all the components of positive electrodes...... including carbon black (CB) additives have a potential risk of degradation. Though the weight percentage of CB in commercial batteries is generally very small, the volumetric amount and thus the surface area of CB compose a rather large part of a cathode due to its small particle size (≈ 50 nm) and high...... surface area. In this work, the performance of Super P in Li-ion cells at high voltages up to 4.9 V is studied using electrochemical measurements as well as surface characterizations....

  7. Copper Phthalocyanine-Functionalized Graphitic Carbon Nitride: A Hybrid Heterostructure toward Photoelectrochemical and Photocatalytic Degradation Applications.

    Science.gov (United States)

    Liu, Zhong-Guo; Wan, Jia-Yun; Yang, Ze; Wang, Shi-Quan; Wang, Hang-Xing

    2016-07-01

    In this work, alcian blue 8GX (AB), a copper(II) phthalocyanine derivative, was employed to functionalize graphitic carbon nitride (g-C3 N4 ) for the preparation of a highly efficient photocatalyst. The approach relies on a facile AB-assisted ethanol/water mixed-solvent exfoliation of bulk g-C3 N4 . The as-prepared g-C3 N4 /AB hybrid possesses significantly enhanced solution dispersibility and photoelectrochemical performance resulting from the synergistic effect between g-C3 N4 and AB, which involves the optimization of intimate interfacial contact, extension of light absorption range, and enhancement of charge-transfer efficiency. This synergy contributes enormously to the photocatalytic degradation of rhodamine 6G (R6G) under light irradiation.

  8. Soil organic carbon stocks in rangelands of SW Iberian Peninsula as influenced by land degradation

    Science.gov (United States)

    Pulido-Fernández, Manuel; Schnabel, Susanne; Francisco Lavado-Contador, Joaquín

    2014-05-01

    Rangelands in SW Iberian Peninsula occupy approximately 95,000 km2 of land grazed by millions of domestic animals. They are characterised by grasslands with varying tree density, interspersed in some areas with shrubs. The herbaceous layer is dominated by annual species and the tree layer is mainly formed of evergreen oak. Most rangelands are exploited in large farms (>100 ha), held mainly on private ownership and dedicated to extensive livestock breeding. Soil organic carbon (SOC) is an essential component of the fertility and productivity in both, natural and human-induced ecosystems. Previous research evidenced SOC is concentrated mainly in the top 5 cm soil layer, displaying large spatial variability, with higher values beneath tree canopies as compared to the open spaces. Traditional practices such as cereal cultivation, as well as an increasing number of domestic animals in the last decades, have been remarked as some of the main causes of SOC depletion in rangelands. However, a better understanding of how livestock grazing affects soil organic carbon stock is still needed. The main objective of this study is to investigate the possible relationships between land degradation and SOC stock in rangelands of SW Iberian Peninsula. Previous studies have shown that sheet erosion is one of the main soil degradation processes. In this study, we have compared SOC stock values from reference soils belonging to a farm where no livestock exists for more than 100 years, with those from 10 farms grazed by domestic animals in the Spanish region of Extremadura. The reference farm is an example of an undisturbed natural area composed of Mediterranean forest and dense scrub. In each farm at least 2 areas were selected, constituting in the case of the grazed farms fenced areas, where the stocking rates could be determined. These units are representative of different rangeland types: wooded rangelands (dehesas), treeless grasslands and scrublands of Retama sphaerocarpa with

  9. Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk.

    Science.gov (United States)

    Tsunematsu, Yuta; Ishikawa, Noriyasu; Wakana, Daigo; Goda, Yukihiro; Noguchi, Hiroshi; Moriya, Hisao; Hotta, Kinya; Watanabe, Kenji

    2013-12-01

    Spirotryprostatins, an indole alkaloid class of nonribosomal peptides isolated from Aspergillus fumigatus, are known for their antimitotic activity in tumor cells. Because spirotryprostatins and many other chemically complex spiro-carbon-bearing natural products exhibit useful biological activities, identifying and understanding the mechanism of spiro-carbon biosynthesis is of great interest. Here we report a detailed study of spiro-ring formation in spirotryprostatins from tryprostatins derived from the fumitremorgin biosynthetic pathway, using reactants and products prepared with engineered yeast and fungal strains. Unexpectedly, FqzB, an FAD-dependent monooxygenase from the unrelated fumiquinazoline biosynthetic pathway, catalyzed spiro-carbon formation in spirotryprostatin A via an epoxidation route. Furthermore, FtmG, a cytochrome P450 from the fumitremorgin biosynthetic pathway, was determined to catalyze the spiro-ring formation in spirotryprostatin B. Our results highlight the versatile role of oxygenating enzymes in the biosynthesis of structurally complex natural products and indicate that cross-talk of different biosynthetic pathways allows product diversification in natural product biosynthesis.

  10. Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk.

    Science.gov (United States)

    Tsunematsu, Yuta; Ishikawa, Noriyasu; Wakana, Daigo; Goda, Yukihiro; Noguchi, Hiroshi; Moriya, Hisao; Hotta, Kinya; Watanabe, Kenji

    2013-12-01

    Spirotryprostatins, an indole alkaloid class of nonribosomal peptides isolated from Aspergillus fumigatus, are known for their antimitotic activity in tumor cells. Because spirotryprostatins and many other chemically complex spiro-carbon-bearing natural products exhibit useful biological activities, identifying and understanding the mechanism of spiro-carbon biosynthesis is of great interest. Here we report a detailed study of spiro-ring formation in spirotryprostatins from tryprostatins derived from the fumitremorgin biosynthetic pathway, using reactants and products prepared with engineered yeast and fungal strains. Unexpectedly, FqzB, an FAD-dependent monooxygenase from the unrelated fumiquinazoline biosynthetic pathway, catalyzed spiro-carbon formation in spirotryprostatin A via an epoxidation route. Furthermore, FtmG, a cytochrome P450 from the fumitremorgin biosynthetic pathway, was determined to catalyze the spiro-ring formation in spirotryprostatin B. Our results highlight the versatile role of oxygenating enzymes in the biosynthesis of structurally complex natural products and indicate that cross-talk of different biosynthetic pathways allows product diversification in natural product biosynthesis. PMID:24121553

  11. Oncogenic activation of the Met receptor tyrosine kinase fusion protein, Tpr-Met, involves exclusion from the endocytic degradative pathway.

    Science.gov (United States)

    Mak, H H L; Peschard, P; Lin, T; Naujokas, M A; Zuo, D; Park, M

    2007-11-01

    Multiple mechanisms of dysregulation of receptor tyrosine kinases (RTKs) are observed in human cancers. In addition to gain-of-function, loss of negative regulation also contributes to oncogenic activation of RTKs. Negative regulation of many RTKs involves their internalization and degradation in the lysosome, a process regulated through ubiquitination. RTK oncoproteins activated following chromosomal translocation, are no longer transmembrane proteins, and are predicted to escape lysosomal degradation. To test this, we used the Tpr-Met oncogene, generated following chromosomal translocation of the hepatocyte growth factor receptor (Met). Unlike Met, Tpr-Met is localized in the cytoplasm and also lacks the binding site for Cbl ubiquitin ligases. We determined whether subcellular localization of Tpr-Met, and/or loss of its Cbl-binding site, is important for oncogenic activity. Presence of a Cbl-binding site and ubiquitination of cytosolic Tpr-Met oncoproteins does not alter their transforming activity. In contrast, plasma membrane targeting allows Tpr-Met to enter the endocytic pathway, and Tpr-Met transforming activity as well as protein stability are decreased in a Cbl-dependent manner. We show that transformation by Tpr-Met is in part dependent on its ability to escape normal downregulatory mechanisms. This provides a paradigm for many RTK oncoproteins activated following chromosomal translocation.

  12. Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2.

    Directory of Open Access Journals (Sweden)

    Alexia Comte

    Full Text Available Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D and meta involving a catechol 2,3 dioxygenase (C23D. Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively and thus, evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at low dissolved-oxygen concentration (DOC  =  0.06 mg x L(-1 suggested, apart for catechol, the presence of 2-hydroxymuconic acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S. solfataricus 98/2 degrade phenol through the meta route.

  13. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway.

    Science.gov (United States)

    Ducker, Gregory S; Chen, Li; Morscher, Raphael J; Ghergurovich, Jonathan M; Esposito, Mark; Teng, Xin; Kang, Yibin; Rabinowitz, Joshua D

    2016-06-14

    One-carbon (1C) units for purine and thymidine synthesis can be generated from serine by cytosolic or mitochondrial folate metabolism. The mitochondrial 1C pathway is consistently overexpressed in cancer. Here, we show that most but not all proliferating mammalian cell lines use the mitochondrial pathway as the default for making 1C units. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mitochondrial pathway knockout activates cytosolic 1C-unit production. This reversal in cytosolic flux is triggered by depletion of a single metabolite, 10-formyl-tetrahydrofolate (10-formyl-THF), and enables rapid cell growth in nutrient-replete conditions. Loss of the mitochondrial pathway, however, renders cells dependent on extracellular serine to make 1C units and on extracellular glycine to make glutathione. HCT-116 colon cancer xenografts lacking mitochondrial 1C pathway activity generate the 1C units required for growth by cytosolic serine catabolism. Loss of both pathways precludes xenograft formation. Thus, either mitochondrial or cytosolic 1C metabolism can support tumorigenesis, with the mitochondrial pathway required in nutrient-poor conditions. PMID:27211901

  14. Sources and Input Pathways of Glyphosate and its Degradation Product AMPA

    Science.gov (United States)

    Bischofberger, S.; Hanke, I.; Wittmer, I.; Singer, H.; Stamm, C.

    2009-04-01

    Despite being the pesticide used in the largest quantities worldwide, the environmental relevance of glyphosate has been considered low for many years. Reasons for this assessment were the observations that glyphosate degrades quickly into its degradation product AMPA and that it sorbs strongly to soil particles. Hence, little losses to water bodies had been expected. Research during the last few years however contradicts this expectation. Although glyphosate is a dominant pesticide used in agriculture, recent studies on other pesticides revealed that urban sources may play a significant role for water quality. Therefore this study compares glyphosate input into streams from agricultural and urban sources. For that purpose, a catchment of an area of 25 km2 was selected. It has by about 12'000 inhabitants and about 15 % of the area is used as arable land. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a waste water treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. To analyze the concentration of glyphosate and its degradation product AMPA, the samples were derivatized with FMOC-Cl at low pH conditions and then filtrated. The solid phase extraction was conducted with Strata-X sorbent cartridge. Glyphosate and AMPA were detected with API 4000 after the chromatography with X bridge column C18. To assure the data quality, interne standards of Glyphosate and AMPA were added to every sample. The limit of detection and quantification for glyphosate and AMPA are bellow 1ng/l. We analyzed two rain events at a high resolution for all stations and several events at the outlet of the catchment. We measured high glyphosate concentration in urban and agriculture dominated catchments with up to

  15. Evidence for isofunctional enzymes in the degradation of phenol, m- and p-toluate, and p-cresol via catechol meta-cleavage pathways in Alcaligenes eutrophus.

    OpenAIRE

    Hughes, E J; Bayly, R C; Skurray, R A

    1984-01-01

    A study of the degradation of phenol, p-cresol, and m- and p-toluate by Alcaligenes eutrophus 345 has provided evidence that these compounds are metabolized via separate catechol meta-cleavage pathways. Analysis of the enzymes synthesized by wild-type and mutant strains and by strains cured of the plasmid pRA1000, which encodes m- and p-toluate degradation, indicated that two or more isofunctional enzymes mediated several steps in the pathway. The formation of three catechol 2,3-oxygenases an...

  16. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Fupo [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Zhang, Jing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Chen, Xiaoming, E-mail: xmchenw@126.com [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China)

    2015-05-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials.

  17. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    International Nuclear Information System (INIS)

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials

  18. Abatement and degradation pathways of toluene in indoor air by positive corona discharge.

    Science.gov (United States)

    Van Durme, J; Dewulf, J; Sysmans, W; Leys, C; Van Langenhove, H

    2007-08-01

    Indoor air concentrations of volatile organic compounds often exceed outdoor levels by a factor of 5. There is much interest in developing new technologies in order to improve indoor air quality. In this work non-thermal plasma (DC positive corona discharge) is explored as an innovative technology for indoor air purification. An inlet gas stream of 10 l min(-1) containing 0.50+/-0.02 ppm toluene was treated by the plasma reactor in atmospheric conditions. Toluene removal proved to be achievable with a characteristic energy density epsilon(0) of 50 J l(-1). Removal efficiencies were higher for 26% relative humidity (epsilon(0)=35 J l(-1)), compared with those at increased humidities (50% relative humidity, epsilon(0)=49 J l(-1)). Reaction products such as formic acid, benzaldehyde, benzyl alcohol, 3-methyl-4-nitrophenol, 4-methyl-2-nitrophenol, 4-methyl-2-propyl furan, 5-methyl-2-nitrophenol, 4-nitrophenol, 2-methyl-4,6-dinitrophenol are identified by means of mass spectrometry. Based on these by-products a toluene degradation mechanism is proposed. PMID:17490711

  19. Stable carbon and hydrogen isotopic fractionations of alkane compounds and crude oil during aerobically microbial degradation

    Institute of Scientific and Technical Information of China (English)

    PENG Xianzhi; ZHANG Gan; CHEN Fanzhong; LIU Guoqing

    2004-01-01

    Normal alkane compounds dodecane, pentadecane, hexadecane, octadecane, tetracosane, isoprenoid alkane pristane and a crude oil sample were aerobically biodegraded with a pure bacterial strain GIM2.5 and white rot fungus Phanerochaete Chrysosporium-1767 to monitor the kinetic fractionation of the molecular stable carbon (δ13C) and hydrogen (δD) isotopes in the course of biodegradation. Both δ13C (V-PDB) and δ D (V-SMOW) remained stable for the standard alkane compounds and n-alkane components (from n-C13 to n-C25) of the crude oil, generally varying in the range of ±0.5‰ and ±5‰ respectively, within the range of the instrumental precisions, especially for those molecularly heavier than n-C16 during microbial degradation. These results indicate that molecular stable carbon and hydrogen isotopic fingerprints can be promising indicators for tracing the sources of petroleum-related contaminants in the environment, especially in the case of severe weathering when they are difficult to be unambiguously identified by the chemical fingerprints alone.

  20. Urothelial endocytic vesicle recycling and lysosomal degradative pathway regulated by lipid membrane composition.

    Science.gov (United States)

    Grasso, E J; Calderón, R O

    2013-02-01

    The urothelium, a specialized epithelium that covers the mucosa cell surface of the urinary bladder, undergoes dramatic morphological changes during the micturition cycle that involve a membrane apical traffic. This traffic was first described as a lysosomal pathway, in addition to the known endocytosis/exocytosis membrane recycling. In an attempt to understand the role of membrane lipid composition in those effects, we previously described the lipid-dependent leakage of the endocytosed vesicle content. In this work, we demonstrated clear differences in the traffic of both the fluid probe and the membrane-bound probe in urothelial umbrella cells by using spectrofluorometry and/or confocal and epifluorescence microscopy. Different membrane lipid compositions were established by using three diet formulae enriched in oleic acid, linoleic acid and a commercial formula. Between three and five animals for each dietary treatment were used for each analysis. The decreased endocytosis of both fluid and membrane-bound probes (approximately 32 and 49 % lower, respectively) in oleic acid-derived umbrella cells was concomitant with an increased recycling (approximately 4.0 and 3.7 times, respectively) and diminished sorting to the lysosome (approximately 23 and 37 %, respectively) when compared with the control umbrella cells. The higher intravesicular pH and the impairment of the lysosomal pathway of oleic acid diet-derived vesicles compared to linoleic acid diet-derived vesicles and control diet-derived vesicles correlate with our findings of a lower V-ATPase activity previously reported. We integrated the results obtained in the present and previous work to determine the sorting of endocytosed material (fluid and membrane-bound probes) into the different cell compartments. Finally, the weighted average effect of the individual alterations on the intracellular distribution was evaluated. The results shown in this work add evidences for the modulatory role of the membrane

  1. Cx31 is assembled and trafficked to cell surface by ER-Golgi pathway and degraded by proteasomal or lysosomal pathways

    Institute of Scientific and Technical Information of China (English)

    Li Qiang HE; Zhi Gao LONG; He Ping DAI; Kun XIA; Jia Hui XIA; Zhuo Hua ZHANG; Fang CAI; Yu LIU; Mu Jun LIU; Zhi Ping TAN; Qian PAN; Fai Yan FANG; De Sheng LIANG; Ling Qian WU

    2005-01-01

    Gap junctions, consisting of connexins, allow the exchange of small molecules (<1 kD) between adjacent cells, thus providing a mechanism for synchronizing the responses of groups of cells to environmental stimuli. Connexin 31 is a member of the connexin family. Mutations on connexin 31 are associated with erythrokeratodermia variabilis, hearing impairment and peripheral neuropathy. However, the pathological mechanism for connexin 31 mutants in these diseases are still unknown. In this study, we analyzed the assembly, trafficking and metabolism of connexin 31 in HeLa cells stably expressing connexin 31. Calcein transfer assay showed that calcein transfer was inhibited when cells were treated with Brefeldin A or cytochalasin D, but not when treated with nocodazole or α-glycyrrhetinic acid, suggesting that Golgi apparatus and actin filaments, but not microtubules, are crucial to the trafficking and assembly of connexin 31, as well as the formation of gap junction intercellular communication by connexin 31. Additionally, α-glycyrrhetinic acid did not effectively inhibit gap junctional intercellular communication formed by connexin 31. Pulse-chase assay revealed that connexin 31 had a half-life of about 6 h. Moreover, Western blotting and fluorescent staining demonstrated that in HeLa cells stably expressing connexin 31, the amount of connexin 31 was significantly increased after these cells were treated with proteasomal or lysosomal inhibitors. These findings indicate that connexin 31 was rapidly renewed,and possibly degraded by both proteasomal and lysosomal pathways.

  2. Interaction between Carbon Nanotubes and Aromatic Hydrocarbon-degrading Microbes and its Effect on Carbon Nanotubes Transformation

    Science.gov (United States)

    You, Y.; Wang, L.; Poulson, S.; Wang, X.; Xing, B.; Yang, Y.

    2015-12-01

    Due to their unique electrical, optical and mechanical properties, carbon nanotubes (CNTs) have been substantially produced and widely applied during the past decades, leading to their increased probability of entering the environment. Some estimation suggests that CNTs are accumulated in agricultural systems with their soil concentration increasing by 0.4-157 ng/kg/year. This has raised concerns about environmental impacts of these emerging contaminants including their ecotoxicity. Meanwhile, transformation of CNTs in the environment can significantly affect their transport, bioavailability and thereby ecotoxicity. So far, environmental biodegradation of CNTs remains obscure. Given the high diversity of soil microorganisms and their metabolic potentials, it is important to investigate microbial biodegradation of CNTs under various environmental conditions. This study focuses on an aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, as a model microorganism capable of ring cleavage. We hypothesize that bacterial activities could transform CNTs to more hydrophilic forms, increasing their aqueous stability and environmental reactivity. We incubated M. vanbaalenii PYR-1 with 13C-labeded multiwall carbon nanotubes (MWCNTs) for 30 days, monitored δ13C in the system, characterized MWCNTs before and after the reaction, and compared the results with culture-negative controls. To investigate effects of various environmental conditions, including the presence of extracellular oxidative enzymes from white-rot fungi, additional experiments will be conducted and results compared will be compared among different setups. Moreover, we will measure adverse impacts of CNTs on the metabolic activities of M. vanbaalenii PYR-1, particularly its biodegradation of polycyclic aromatic hydrocarbons.

  3. Influence of the atmospheric species water, oxygen, nitrogen and carbon dioxide on the degradation of aluminum doped zinc oxide layers

    NARCIS (Netherlands)

    Theelen, M.; Dasgupta, S.; Vroon, Z.; Kniknie, B.; Barreau, N.; Berkum, J. van; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N 2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical,

  4. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells

    OpenAIRE

    Baeza-Squiban Armelle; Fleury Jocelyne; Martens Johan A; Andreau Karine; Borot Marie-Caroline; Ferecatu Ioana; Thomassen Leen CJ; Hussain Salik; Marano Francelyne; Boland Sonja

    2010-01-01

    Abstract Background Increasing environmental and occupational exposures to nanoparticles (NPs) warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB) and titanium dioxide (TiO2) NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells) and to investigate the implicated molecular pathways. Results Detailed time course studies revealed that both CB (13 nm) and...

  5. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution

    Science.gov (United States)

    Samanta, Saumik; Dalai, Tarun K.; Pattanaik, Jitendra K.; Rai, Santosh K.; Mazumdar, Aninda

    2015-09-01

    In this study, we present comprehensive data on dissolved Ca, dissolved inorganic carbon (DIC) and its carbon isotope composition (δ13CDIC) of (i) the Ganga (Hooghly) River estuary water sampled during six seasons of contrasting water discharge over 2 years (2012 and 2013), (ii) shallow groundwater from areas adjacent to the estuary and (iii) industrial effluent water and urban wastewater draining into the estuary. Mass balance calculations indicate that processes other than the conservative mixing of seawater and river water are needed to explain the measured DIC and δ13CDIC. Results of mixing calculations in conjunction with the estimated undersaturated levels of dissolved O2 suggest that biological respiration and organic carbon degradation dominate over biological production in the estuary. An important outcome of this study is that a significant amount of DIC and dissolved Ca is produced within the estuary at salinity ⩾10, particularly during the monsoon period. Based on consideration of mass balance and a strong positive correlation observed between the "excess" DIC and "excess" Ca, we contend that the dominant source of DIC generated within the estuary is carbonate dissolution that is inferred to be operating in conjunction with degradation of organic carbon. Calculations show that groundwater cannot account for the observed "excess" Ca in the high salinity zone. Estimated DIC contributions from anthropogenic activity are minor, and they constitute ca. 2-3% of the river water DIC concentrations. The estimated annual DIC flux from the estuary to the Bay of Bengal is ca. (3-4) × 1012 g, of which ca. 40-50% is generated within the estuary. The monsoon periods account for the majority (ca. 70%) of the annual DIC generation in the estuary. The annual DIC flux from the Hooghly estuary accounts for ca. 1% of the global river DIC flux to the oceans. This is disproportionately higher than the water contribution from the Hooghly River to the oceans, which

  6. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes

    Energy Technology Data Exchange (ETDEWEB)

    Brandstätter, Christian, E-mail: bran.chri@gmail.com; Laner, David, E-mail: david.laner@tuwien.ac.at; Fellner, Johann, E-mail: johann.fellner@tuwien.ac.at

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • 40 year old waste from an old MSW landfill was incubated in LSR experiments. • Carbon balances for anaerobic and aerobic waste degradation were established. • The transformation of carbon pools during waste degradation was investigated. • Waste aeration resulted in the formation of a new, stable organic carbon pool. • Water addition did not have a significant effect on aerobic waste degradation. - Abstract: Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were operated for 27 months, whereby the waste in one pair was kept under anaerobic conditions and the four other LSRs were aerated. Two of the aerated LSR were run with leachate recirculation and water addition and two without. The organic carbon in the solid waste was characterized at the beginning and at the end of the experiments and major carbon flows (e.g. TOC in leachate, gaseous CO{sub 2} and CH{sub 4}) were monitored during operation. After the termination of the experiments, the waste from the anaerobic LSRs exhibited a long-term gas production potential of more than 20 NL kg{sup −1} dry waste, which corresponded to the mineralization of around 12% of the initial TOC (67 g kg{sup −1} dry waste). Compared to that, aeration led to threefold decrease in TOC (32–36% of the initial TOC were mineralized), without apparent differences in carbon discharge between the aerobic set ups with and without water addition. Based on the investigation of the carbon pools it could be demonstrated that a bit more than 10% of the initially present organic carbon was transformed into more recalcitrant forms, presumably due to the formation of humic substances

  7. Bacterial degradation of fungicide captan.

    Science.gov (United States)

    Megadi, Veena B; Tallur, Preeti N; Mulla, Sikandar I; Ninnekar, Harichandra Z

    2010-12-22

    The phthalimide fungicide captan has been widely used to control plant pathogenic fungi. A strain of Bacillus circulans utilized the fungicide captan as sole source of carbon and energy. The organism degraded captan by a pathway involving its initial hydrolysis to yield cis-1,2,3,6-tetrahydrophthalimide, a compound without fungicidal activity. The formation of this compound was confirmed by HPLC, IR, NMR, and mass spectral analysis. The results also revealed that cis-1,2,3,6-tetrahydrophthalimide was further degraded to o-phthalic acid by a protocatechuate pathway. These findings indicated that there was a complete mineralization of fungicide captan by B. circulans.

  8. Isolation of Alcaligenes sp strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols

    NARCIS (Netherlands)

    Krooneman, J; Wieringa, EBA; Moore, ERB; Gerritse, J; Prins, RA; Gottschal, JC

    1996-01-01

    Isolations of 3-chlorobenzoate (3CBA)-degrading aerobic bacteria under reduced O-2, partial pressures yielded organisms which metabolized 3CBA via the gentisate or the protocatechuate pathway rather than via the catechol route. The 3CBA metabolism of one of these isolates, L6, which,vas identified a

  9. Degradation of {gamma}-HCH spiked soil using stabilized Pd/Fe{sup 0} bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ritu [Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Lucknow 226 025, UP (India); Misra, Virendra, E-mail: virendra_misra2001@yahoo.co.in [Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Mudiam, Mohana Krishna Reddy [Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Chauhan, Lalit Kumar Singh [Petroleum Toxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Singh, Rana Pratap [Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Lucknow 226 025, UP (India)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer This study explores the potential of CMC-Pd/nFe{sup 0} to degrade {gamma}-HCH in spiked soil. Black-Right-Pointing-Pointer Sorption-desorption characteristics and partitioning of {gamma}-HCH is investigated. Black-Right-Pointing-Pointer Three degradation pathways has been proposed and discussed. Black-Right-Pointing-Pointer {gamma}-HCH degradation mechanism and kinetics is elucidated. Black-Right-Pointing-Pointer Activation energy reveals that {gamma}-HCH degradation is a surface mediated reaction. - Abstract: This study investigates the degradation pathway of gamma-hexachlorocyclohexane ({gamma}-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe{sup 0} bimetallic nanoparticles (CMC-Pd/nFe{sup 0}). GC-MS analysis of {gamma}-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of {gamma}-HCH has been proposed. Batch studies showed complete {gamma}-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe{sup 0} within 6 h of incubation. The surface area normalized rate constant (k{sub SA}) was found to be 7.6 Multiplication-Sign 10{sup -2} L min{sup -1} m{sup -2}. CMC-Pd/nFe{sup 0} displayed {approx}7-fold greater efficiency for {gamma}-HCH degradation in comparison to Fe{sup 0} nanoparticles (nFe{sup 0}), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe{sup 0} loading and reaction temperature facilitates {gamma}-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial {gamma}-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that {gamma}-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of {gamma}-HCH contaminated soil using

  10. Simplifying the complexity of a coupled carbon turnover and pesticide degradation model

    Science.gov (United States)

    Marschmann, Gianna; Erhardt, André H.; Pagel, Holger; Kügler, Philipp; Streck, Thilo

    2016-04-01

    The mechanistic one-dimensional model PECCAD (PEsticide degradation Coupled to CArbon turnover in the Detritusphere; Pagel et al. 2014, Biogeochemistry 117, 185-204) has been developed as a tool to elucidate regulation mechanisms of pesticide degradation in soil. A feature of this model is that it integrates functional traits of microorganisms, identifiable by molecular tools, and physicochemical processes such as transport and sorption that control substrate availability. Predicting the behavior of microbially active interfaces demands a fundamental understanding of factors controlling their dynamics. Concepts from dynamical systems theory allow us to study general properties of the model such as its qualitative behavior, intrinsic timescales and dynamic stability: Using a Latin hypercube method we sampled the parameter space for physically realistic steady states of the PECCAD ODE system and set up a numerical continuation and bifurcation problem with the open-source toolbox MatCont in order to obtain a complete classification of the dynamical system's behaviour. Bifurcation analysis reveals an equilibrium state of the system entirely controlled by fungal kinetic parameters. The equilibrium is generally unstable in response to small perturbations except for a small band in parameter space where the pesticide pool is stable. Time scale separation is a phenomenon that occurs in almost every complex open physical system. Motivated by the notion of "initial-stage" and "late-stage" decomposers and the concept of r-, K- or L-selected microbial life strategies, we test the applicability of geometric singular perturbation theory to identify fast and slow time scales of PECCAD. Revealing a generic fast-slow structure would greatly simplify the analysis of complex models of organic matter turnover by reducing the number of unknowns and parameters and providing a systematic mathematical framework for studying their properties.

  11. Novel small molecule binders of human N-glycanase 1, a key player in the endoplasmic reticulum associated degradation pathway.

    Science.gov (United States)

    Srinivasan, Bharath; Zhou, Hongyi; Mitra, Sreyoshi; Skolnick, Jeffrey

    2016-10-01

    Peptide:N-glycanase (NGLY1) is an enzyme responsible for cleaving oligosaccharide moieties from misfolded glycoproteins to enable their proper degradation. Deletion and truncation mutations in this gene are responsible for an inherited disorder of the endoplasmic reticulum-associated degradation pathway. However, the literature is unclear whether the disorder is a result of mutations leading to loss-of-function, loss of substrate specificity, loss of protein stability or a combination of these factors. In this communication, without burdening ourselves with the mechanistic underpinning of disease causation because of mutations on the NGLY1 protein, we demonstrate the successful application of virtual ligand screening (VLS) combined with experimental high-throughput validation to the discovery of novel small-molecules that show binding to the transglutaminase domain of NGLY1. Attempts at recombinant expression and purification of six different constructs led to successful expression of five, with three constructs purified to homogeneity. Most mutant variants failed to purify possibly because of misfolding and the resultant exposure of surface hydrophobicity that led to protein aggregation. For the purified constructs, our threading/structure-based VLS algorithm, FINDSITE(comb), was employed to predict ligands that may bind to the protein. Then, the predictions were assessed by high-throughput differential scanning fluorimetry. This led to the identification of nine different ligands that bind to the protein of interest and provide clues to the nature of pharmacophore that facilitates binding. This is the first study that has identified novel ligands that bind to the NGLY1 protein as a possible starting point in the discovery of ligands with potential therapeutic applications in the treatment of the disorder caused by NGLY1 mutants. PMID:27567076

  12. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Valenzuela Jacob

    2012-06-01

    Full Text Available Abstract Background Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P and whole-genome transcripts were monitored over time via RNA-sequence determination. Results The specific Nile Red (NR fluorescence (NR fluorescence per cell increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO3- were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases. Conclusions The results indicate that P. tricornutum continued carbon dioxide reduction when population growth was arrested and different carbon-concentrating mechanisms were used dependent upon exogenous

  13. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang eTang

    2011-08-01

    Full Text Available Photosynthesis is the biological process that converts solar energy to biomass, bio-products and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and 13C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO2 assimilation pathways, acetate assimilation, carbohydrate catabolism, the TCA cycle and some key and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.

  14. Carbon and hydrogen isotopic composition and generation pathway of biogenic gas in China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; WANG Xiaofeng; XU Yin; SHI Baoguang; XU Yongchang

    2009-01-01

    The carbon and hydrogen isotopic composition of biogenic gas is of great importance for the study of its generation pathway and reservoiring characteristics. In this paper, the formation pathways and reservoiring characteristics of biogenic gas reservoirs in China are described in terms of the carbon and hydrogen isotopic compositions of 31 gas samples from 10 biogenic gas reservoirs. The study shows that the hydrogen isotopic compositions of these biogenic gas reservoirs can be divided into three intervals:δDCH4>-200‰,-250‰<δDCH4<-200‰ and δDCH4<-250‰. The forerunners believed that the main generation pathway of biogenic gas under the condition of continental fresh water is acetic fermentation. Our research results showed that the generation pathway of biogenic gas under the condition of marine facies is typical CO2- reduction, the biogenic gas has heavy hydrogen isotopic composition: its δDCH4 values are higher than -200‰; that the biogenic gas under the condition of continental facies also was generated by the same way, but its hydrogen isotopic composition is lighter than that of biogenetic gas generated under typical marine facies condition: -250‰<δDCH4<-200‰, the δDCH4 values may be related to the salinity of the water medium in ancient lakes. From the relevant data of the Qaidam Basin, it can be seen that the hydrogen isotopic composition of biogenic methane has the same variation trend with increasing salinity of water medium. There are biogenic gas reservoirs formed in transitional regions under the condition of continental facies. These gas reservoirs resulted from both CO2- reduction and acetic fermentation, the formation of which may be related to the non-variant salinity of ancient water medium and the relatively high geothermal gradient, as is the case encountered in the Baoshan Basin. The biogenic gas generating in these regions has light hydrogen isotopic composition: δDCH4<-250‰, and relatively heavy carbon isotopic

  15. Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator

    Directory of Open Access Journals (Sweden)

    Reiss Monika

    2008-11-01

    Full Text Available Abstract Background Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol. Results A 20.2 kb DNA fragment was isolated as a result of the DNA walk. Fifteen open reading frames residing on a low-copy megaplasmid were identified. Eleven genes are co-transcribed in one polycistronic mRNA as shown by reverse transcription-PCR. Ten genes encode proteins, that are directly linked with the meta-cleavage pathway. The deduced amino acid sequences display similarities to a two-component phenol hydroxylase, a catechol 2,3-dioxygenase, a 4-oxalocrotonate tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decarboxylase, a 4-hydroxy-2-oxovalerate aldolase, an acetaldehyde dehydrogenase, a plant-type ferredoxin involved in the reactivation of extradiol dioxygenases and a novel regulatory protein. The only enzymes missing for the complete mineralization of phenol are a 2-hydroxymuconic acid-6-semialdehyde hydrolase and/or 2-hydroxymuconic acid-6-semialdehyde dehydrogenase. Conclusion Research on the bacterial degradation of aromatic compounds on a sub-cellular level has been more intensively studied in gram-negative organisms than in gram-positive bacteria. Especially regulatory mechanisms in gram-positive (thermophilic prokaryotes remain mostly unknown. We isolated the first complete sequence of an operon from a thermophilic bacterium encoding the meta-pathway genes and analyzed the genetic organization. Moreover, the first transcriptional regulator of the phenol metabolism in gram-positive bacteria was identified. This is a first step to elucidate

  16. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    International Nuclear Information System (INIS)

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  17. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    Energy Technology Data Exchange (ETDEWEB)

    Mosedale, Merrie [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Wu, Hong [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Kurtz, C. Lisa [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Schmidt, Stephen P. [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Adkins, Karissa, E-mail: Karissa.Adkins@pfizer.com [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Harrill, Alison H. [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); University of Arkansas for Medical Sciences, Little Rock, AR72205 (United States)

    2014-10-01

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  18. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kajiho

    Full Text Available The Rab family of small guanosine triphosphatases (GTPases plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs. Ras and Rab interactor (or Ras interaction/interference-like (RINL, which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM domain-containing (Anks protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.

  19. Effective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD removal rate increased with increasing residence time while it decreased with increasing the initial concentration of tetracycline. Moreover, pH had little effect on the removal of tetracycline, and the electrocatalytic membrane could effectively remove tetracycline with initial concentration of 50 mg·L−1 (pH, 3.8–9.6. The 100% tetracycline and 87.8% COD removal rate could be achieved under the following operating conditions: tetracycline concentration of 50 mg·L−1, current density of 1 mA·cm−2, temperature of 25 °C, and residence time of 4.4 min. This study provides a new and feasible method for removing antibiotics in water with the synergistic effect of electrocatalytic oxidation and membrane separation. It is evident that there will be a broad market for the application of electrocatalytic membrane in the field of antibiotic wastewater treatment.

  20. Scenario analysis of China's emissions pathways in the 21st century for low carbon transition

    International Nuclear Information System (INIS)

    China's growing demand for energy - and its dependence on coal - has seen its carbon emissions increase more than 50% since 2000. Within the debate about mitigating global climate change, there is mounting pressure for emerging economies like China to take more responsibility for reducing their carbon emissions within a post-2012 international climate change policy framework. For China, this leads to fundamental questions about how feasible it is for the country to shift away from its recent carbon intensive pattern of growth. This paper presents some general results of scenarios that have been developed to investigate how China might continue to develop within a cumulative carbon emissions budget. The results show how changes in the key sectors of the Chinese economy could enable China to follow four different low carbon development pathways, each of which complies with a cumulative emissions constraint. Each scenario reflects different priorities for governmental decision making, infrastructure investments and social preferences. Having compared the key features of each scenario, the paper concludes with some implications for Chinese government policy.

  1. Scenario analysis of China's emissions pathways in the 21st century for low carbon transition

    International Nuclear Information System (INIS)

    China's growing demand for energy - and its dependence on coal - has seen its carbon emissions increase more than 50% since 2000. Within the debate about mitigating global climate change, there is mounting pressure for emerging economies like China to take more responsibility for reducing their carbon emissions within a post-2012 international climate change policy framework. For China, this leads to fundamental questions about how feasible it is for the country to shift away from its recent carbon intensive pattern of growth. This paper presents some general results of scenarios that have been developed to investigate how China might continue to develop within a cumulative carbon emissions budget. The results show how changes in the key sectors of the Chinese economy could enable China to follow four different low carbon development pathways, each of which complies with a cumulative emissions constraint. Each scenario reflects different priorities for governmental decision making, infrastructure investments and social preferences. Having compared the key features of each scenario, the paper concludes with some implications for Chinese government policy. (author)

  2. Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects.

    Science.gov (United States)

    Kampf, C J; Filippi, A; Zuth, C; Hoffmann, T; Opatz, T

    2016-07-21

    Dicarbonyls are known to be important precursors of so-called atmospheric brown carbon, significantly affecting aerosol optical properties and radiative forcing. In this systematic study we report the formation of light-absorbing nitrogen containing compounds from simple 1,2-, 1,3-, 1,4-, and 1,5-dicarbonyl + amine reactions. A combination of spectrophotometric and mass spectrometric techniques was used to characterize reaction products in solutions mimicking atmospheric particulates. Experiments with individual dicarbonyls and dicarbonyl mixtures in ammonium sulfate and glycine solutions demonstrate that nitrogen heterocycles are common structural motifs of brown carbon chromophores formed in such reaction systems. 1,4- and 1,5-dicarbonyl reaction systems, which were used as surrogates for terpene ozonolysis products, showed rapid formation of light-absorbing material and products with absorbance maxima at ∼450 nm. Synergistic effects on absorbance properties were observed in mixed (di-)carbonyl experiments, as indicated by the formation of a strong absorber in ammonium sulfate solutions containing acetaldehyde and acetylacetone. This cross-reaction oligomer shows an absorbance maximum at 385 nm, relevant for the actinic flux region of the atmosphere. This study demonstrates the complexity of secondary brown carbon formation via the imine pathway and highlights that cross-reactions with synergistic effects have to be considered an important pathway for atmospheric BrC formation. PMID:27334793

  3. Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway.

    Science.gov (United States)

    Laquitaine, L; Durimel, A; de Alencastro, L F; Jean-Marius, C; Gros, O; Gaspard, S

    2016-01-01

    Banana has been a main agricultural product in the French West Indies (Guadeloupe and Martinique) since the 1960s. This crop requires the intensive use of pesticides to prevent attacks by insect pests. Chlorinated pesticides, such as hexachlorocyclohexane (HCH), chlordecone and dieldrin, were used until the beginning of the 1990s, resulting in a generalized diffuse contamination of the soil and water in the areas of banana production, hence the need to develop solutions for cleanup of the polluted sites. The aims of this work were (i) to assess lindane degradation in soil slurry microcosms treated with lindane at 10 mg/L and (ii) to detect the catabolic genes involved in the HCH degradation pathway. The soil slurry microcosm system showed a 40% lindane degradation efficiency at the end of a 30-day experiment. Lower lindane removal was also detected in the abiotic controls, probably caused by pesticide adsorption to soil particles. Indeed, the lindane concentration decreased from 6000 to 1330 ng/mL and from 800 to 340 ng/mL for the biotic and abiotic soils, respectively. Nevertheless, some of the genes involved in the HCH degradation pathway were amplified by polymerase chain reaction (PCR) from crude deoxyribonucleic acid (DNA) extracted from the Guadeloupe agricultural soil, suggesting that HCH degradation is probably mediated by bacteria closely related to the family Sphingomonadaceae.

  4. Genetic associations of type 2 diabetes with islet amyloid polypeptide processing and degrading pathways in asian populations.

    Directory of Open Access Journals (Sweden)

    Vincent Kwok Lim Lam

    Full Text Available Type 2 diabetes (T2D is a complex disease characterized by beta cell dysfunctions. Islet amyloid polypeptide (IAPP is highly conserved and co-secreted with insulin with over 40% of autopsy cases of T2D showing islet amyloid formation due to IAPP aggregation. Dysregulation in IAPP processing, stabilization and degradation can cause excessive oligomerization with beta cell toxicity. Previous studies examining genetic associations of pathways implicated in IAPP metabolism have yielded conflicting results due to small sample size, insufficient interrogation of gene structure and gene-gene interactions. In this multi-staged study, we screened 89 tag single nucleotide polymorphisms (SNPs in 6 candidate genes implicated in IAPP metabolism and tested for independent and joint associations with T2D and beta cell dysfunctions. Positive signals in the stage-1 were confirmed by de novo and in silico analysis in a multi-centre unrelated case-control cohort. We examined the association of significant SNPs with quantitative traits in a subset of controls and performed bioinformatics and relevant functional analyses. Amongst the tag SNPs, rs1583645 in carboxypeptidase E (CPE and rs6583813 in insulin degrading enzyme (IDE were associated with 1.09 to 1.28 fold increased risk of T2D (P Meta = 9.4×10(-3 and 0.02 respectively in a meta-analysis of East Asians. Using genetic risk scores (GRS with each risk variant scoring 1, subjects with GRS≥3 (8.2% of the cohort had 56% higher risk of T2D than those with GRS = 0 (P = 0.01. In a subcohort of control subjects, plasma IAPP increased and beta cell function index declined with GRS (P = 0.008 and 0.03 respectively. Bioinformatics and functional analyses of CPE rs1583645 predicted regulatory elements for chromatin modification and transcription factors, suggesting differential DNA-protein interactions and gene expression. Taken together, these results support the importance of dysregulation of IAPP

  5. Towards a Biocatalyst for (S)-Styrene Oxide Production: Characterization of the Styrene Degradation Pathway of Pseudomonas sp. Strain VLB120

    OpenAIRE

    Panke, Sven; Witholt, Bernard; Schmid, Andreas; Wubbolts, Marcel G.

    1998-01-01

    In order to design a biocatalyst for the production of optically pure styrene oxide, an important building block in organic synthesis, the metabolic pathway and molecular biology of styrene degradation in Pseudomonas sp. strain VLB120 was investigated. A 5.7-kb XhoI fragment, which contained on the same strand of DNA six genes involved in styrene degradation, was isolated from a gene library of this organism in Escherichia coli by screening for indigo formation. T7 RNA polymerase expression e...

  6. Modeling Aerobic Carbon Source Degradation Processes using Titrimetric Data and Combined Respirometric-Titrimetric Data: Structural and Practical Identifiability

    DEFF Research Database (Denmark)

    Gernaey, Krist; Petersen, B.; Dochain, D.;

    2002-01-01

    considerably more for dextrose than for acetate degradation models. Noteworthy is the finding that the half-saturation substrate concentrations can be different depending on whether they are estimated from respirometric or titrimetric data. Moreover, this difference appears to be dependent on the carbon source...... the initial substrate concentration S-S(O) is known. The values found correspond to values reported in literature, but, interestingly, also seem able to reflect the occurrence of storage processes when pulses of acetate and dextrose are added. (C) 2002 Wiley Periodicals, Inc.......The structural and practical identifiability of a model for description of respirometric-titrimetric data derived from aerobic batch substrate degradation experiments of a CxHyOz carbon source with activated sludge was evaluated. The model processes needed to describe titrimetric data included...

  7. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  8. 'Rod and ring' formation from IMP dehydrogenase is regulated through the one-carbon metabolic pathway.

    Science.gov (United States)

    Calise, S John; Purich, Daniel L; Nguyen, Thuy; Saleem, Dania A; Krueger, Claire; Yin, Joyce D; Chan, Edward K L

    2016-08-01

    'Rods and rings' (RRs) are conserved, non-membrane-bound intracellular polymeric structures composed, in part, of inosine monophosphate dehydrogenase (IMPDH), a key enzyme leading to GMP and GTP biosynthesis. RR formation is induced by IMPDH inhibitors as well as glutamine deprivation. They also form upon treatment of cells with glutamine synthetase inhibitors. We now report that depriving cells of serine and glycine promotes RR formation, and we have traced these effects to dihydrofolate reductase (DHFR) and serine hydroxymethyltransferase-2 (SHMT2), pivotal enzymes in one-carbon metabolism and nucleotide biosynthesis. RR assembly is likewise induced upon DHFR inhibition by methotrexate or aminopterin as well as siRNA-mediated knockdown of DHFR or SHMT2. Because RR assembly occurs when guanine nucleotide biosynthesis is inhibited, and because RRs rapidly disassemble after the addition of guanine nucleotide precursors, RR formation might be an adaptive homeostatic mechanism, allowing IMPDH to sense changes in the one-carbon folate pathway. PMID:27343244

  9. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode

    Institute of Scientific and Technical Information of China (English)

    Sorina Motoc; Adriana Remes; Aniela Pop; Florica Manea; Joop Schoonman

    2013-01-01

    This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes,i.e.,multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes.The composite electrodes were obtained using two-roll mill procedure.SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix.AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area.The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry,differential-pulsed voltammetry,square-wave voltammetry and chronoamperometry.The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs.Ag/AgCl,and IBP concentration was determined comparatively by differential-pulsed voltammetry,under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode.AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.

  10. The ubiquitin+proteasome protein degradation pathway as a therapeutic strategy in the treatment of solid tumor malignancies.

    Science.gov (United States)

    Driscoll, James J; Minter, Alex; Driscoll, Daniel A; Burris, Jason K

    2011-02-01

    A concept that currently steers the development of cancer therapies has been that agents directed against specific proteins that facilitate tumorigenesis or maintain a malignant phenotype will have greater efficacy, less toxicity and a more sustained response relative to traditional cytotoxic chemotherapeutic agents. The clinical success of the targeted agent Imatinib mesylate as an inhibitor of the tyrosine kinase associated with the breakpoint cluster region-Abelson oncogene locus (BCR-ABL) in the treatment of Philadelphia-positive chronic myelogenous leukemia (CML) has served as a paradigm. While intellectually gratifying, the selective targeting of a single driver event by a small molecule, e.g., kinase inhibitor, to dampen a tumor-promoting pathway in the treatment of solid tumors is limited by many factors. Focus can alternatively be placed on targeting fundamental cellular processes that regulate multiple events, e.g., protein degradation, through the Ubiquitin (Ub)+Proteasome System (UPS). The UPS plays a critical role in modulating numerous cellular proteins to regulate cellular processes such as signal transduction, growth, proliferation, differentiation and apoptosis. Clinical success with the proteasome inhibitor bortezomib revolutionized treatment of B-cell lineage malignancies such as Multiple Myeloma (MM). However, many patients harbor primary resistance and do not respond to bortezomib and those that do respond inevitably develop resistance (secondary resistance). The lack of clinical efficacy of proteasome inhibitors in the treatment of solid tumors may be linked mechanistically to the resistance detected during treatment of hematologic malignancies. Potential mechanisms of resistance and means to improve the response to proteasome inhibitors in solid tumors are discussed.

  11. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene.

  12. Activation of the cAMP/PKA pathway induces UT-A1 urea transporter monoubiquitination and targets it for lysosomal degradation.

    Science.gov (United States)

    Su, Hua; Chen, Minguang; Sands, Jeff M; Chen, Guangping

    2013-12-15

    Regulation of urea transporter UT-A1 in the kidney is important for the urinary concentrating mechanism. We previously reported that activation of the cAMP/PKA pathway by forskolin (FSK) leads to UT-A1 ubiquitination, endocytosis, and degradation. In this study, we discovered that FSK-induced UT-A1 ubiquitination is monoubiquitination as judged by immunoblotting with specific ubiquitin antibodies to the different linkages of the ubiquitin chain. UT-A1 monoubiquitination induced by FSK was processed mainly on the cell plasma membrane. Monoubiquitination facilitates UT-A1 endocytosis, and internalized UT-A1 is accumulated in the early endosome. Inhibition of ubiquitination by E1 ubiquitin-activating enzyme inhibitor PYR-41 significantly reduced FSK-induced UT-A1 endocytosis and degradation. Interestingly, FSK-stimulated UT-A1 degradation occurs through a lysosomal protein degradation system. We further found that the PKA phosphorylation sites of UT-A1 at Ser486 and Ser499 are required for FSK-induced UT-A1 monoubiquitination. The physiological significance was confirmed using rat kidney inner medullary collecting duct suspensions, which showed that vasopressin treatment promotes UT-A1 ubiquitination. We conclude that unlike under basal conditions in which UT-A1 is subject to polyubiquitination and proteasome-mediated protein degradation, activation of UT-A1 by FSK induces UT-A1 monoubiquitination and protein lysosomal degradation.

  13. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration.

    Science.gov (United States)

    Guo, He; Wang, Huijuan; Wu, Qiangshun; Zhou, Guangshun; Yi, Chengwu

    2016-09-01

    The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value.

  14. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration.

    Science.gov (United States)

    Guo, He; Wang, Huijuan; Wu, Qiangshun; Zhou, Guangshun; Yi, Chengwu

    2016-09-01

    The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value. PMID:27295438

  15. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    Science.gov (United States)

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway.

  16. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    Science.gov (United States)

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway. PMID:23017406

  17. Transport and degradation of dissolved organic matter and associated freshwater pathways in the Laptev Sea (Siberian Arctic)

    Science.gov (United States)

    Hoelemann, Jens; Janout, Markus; Koch, Boris; Bauch, Dorothea; Hellmann, Sebastian; Eulenburg, Antje; Heim, Birgit; Kassens, Heidemarie; Timokhov, leonid

    2016-04-01

    The Siberian shelves are seasonally ice-covered and characterized by large freshwater runoff rates from some of the largest rivers on earth. These rivers also provide a considerable amount of dissolved organic carbon (DOC) to the Arctic Ocean. With an annual load of about 6 Tg DOC a-1 the Lena River contributes nearly 20 percent of the annual DOC discharge to the Arctic Ocean. We present a comprehensive dataset collected during multiple Laptev Sea expeditions carried out in spring, summer and fall (2010-15) in order to explore the processes controlling the dispersal and degradation of DOM during the river water's passage across the shelf. Our investigations are focused on CDOM (Colored Dissolved Organic Matter), which resembles the DOC concentration, interacts with solar radiation and forms a major fraction of the organic matter pool. Our results show an inverse correlation between salinity and CDOM, which emphasizes its terrigenous source. Further, the spectral slope of CDOM absorption indicates that photochemical bleaching is the main process that reduces the CDOM absorption (~ 20%) in freshwater along its transport across the shelf. The distribution of the Lena river water is primarily controlled by winds in summer. During summers with easterly or southerly winds, the plume remains on the central and northern Laptev shelf, and is available for export into the Arctic Basin. The CDOM-rich river water increases the absorption of solar radiation and enhances warming of a shallow surface layer. This emphasizes the importance of CDOM for sea surface temperatures and lateral ice melt on the shelf and adjacent basin. DOC concentrations in freshwater vary seasonally and become larger with increasing discharge. Our data indicate that the CDOM concentrations are highest during the freshet when landfast ice is still present. Subsequent mixing with local sea ice meltwater lowers CDOM to values that are characteristic for the Lena freshwater during the rest of the year.

  18. [Study on degradation of polycyclic aromatic hydrocarbons (PAHs) with different additional carbon sources in aged contaminated soil].

    Science.gov (United States)

    Yin, Chun-Qin; Jiang, Xin; Wang, Fang; Wang, Cong-Ying

    2012-02-01

    This study was conducted with different additional carbon sources (such as: glucose, DL-malic acid, citrate, urea and ammonium acetate) to elucidate the degradation of polycyclic aromatic hydrocarbons (PAHs) in aged contaminated soil under an indoor simulation experiment. The results showed that the quantity of CO2 emission in different additional carbon sources treatments was obviously much more than that of check treatment in the first week, and the quantity of CO2 emission in DL-malic acid treatment was the largest. The average CO2 production decreased in an order urea > glucose approximately citrate approximately DL-malic acid approximately ammonium acetate > check. Meanwhile, the amount of volatized PAHs in applied carbon sources treatments was significantly less than that in check treatment. The amount of three volatized PAHs decreased in an order phenanthrene > fluoranthene > benzo(b)fluoranthene. Compared with the check treatment, the average degradation rates of the three PAHs were significantly augmented in the supplied carbon sources treatments, in which rates of the three PAHs were much higher in DL-malic acid and urea treatments than those in other treatments. The largest proportion of residual was benzo(b)fluoranthene (from 72% to 81%) among three PAHs compounds, followed by fluoranthene (from 53% to 70% ) and phenanthrene (from 27% to 44%).

  19. Kenya's Climate Change Action Plan. Low Carbon Climate Resilient Development Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, D.; Sawyer, D.; Stiebert, S.; McFatridge, S. [International Institute for Sustainable Development IISD, Winnipeg, Manitoba (Canada); Wuertenberger, L.; Van Tilburg, X.; Hekkenberg, M. [Energy research Centre of the Netherlands ECN, Policy Studies, Amsterdam (Netherlands); Owino, T.; Battye, W. [ClimateCare, Nairobi (Kenya); Mutia, T. [Regional Institute for Social Enterprise Kenya RISE, Nairobi (Kenya); Olum, P. [Climate Change Consultant (Kenya)

    2012-12-15

    Kenya Vision 2030 - the long-term development blueprint for the country - aims to transform Kenya into 'a newly industrialising, middle-income country providing a high quality of life to all its citizens in a clean and secure environment'. A low carbon climate resilient development pathway, as set out in this Climate Change Action Plan, can help meet Vision 2030 goals through actions that address both sustainable development and climate change. This pathway can also help the Government achieve the Millennium Development Goals and other internationally agreed development goals without compromising the environment and its natural resources. As Kenya realizes its development aspirations, there will be gains and risks. A growing population and economy with migration to cities will mean increases in greenhouse gas (GHG) emissions. Resulting environmental and social conditions, including increased competition over resources, could intensify vulnerability to climate risks. Transitioning to a low carbon climate resilient development pathway can address future risks thereby improving Kenya's ability to prosper under a changing climate while reducing the emissions intensity of a growing economy. Moving forward on the 2010 National Climate Change Response Strategy will help Kenya transition to a low carbon climate resilient development pathway that puts people and livelihoods at the forefront. The strategy recognized the importance of climate change and development, and this Climate Change Action Plan is the logical next step. A yearlong multistakeholder participatory process involving the public sector, private sector and civil society resulted in this Action Plan that identifies priority climate change actions for Kenya for the short, medium and long term. The Government of Kenya takes climate change and its impact on development seriously. Climate change is considered a crosscutting issue that will be mainstreamed in the planning process both at the national

  20. Towards early detection of the hydrolytic degradation of poly(bisphenol A)carbonate by hyphenated liquid chromatography and comprehensive two-dimensional liquid chromatography

    NARCIS (Netherlands)

    Coulier, L.; Kaal, E.R.; Hankemeier, Th.

    2006-01-01

    The hydrolytic degradation of poly(bisphenol A)carbonate (PC) has been characterized by various liquid chromatography techniques. Size exclusion chromatography (SEC) showed a significant decrease in molecular mass as a result of hydrolytic degradation, while 'liquid chromatography at critical condit

  1. Air-ice carbon pathways inferred from a sea ice tank experiment

    Directory of Open Access Journals (Sweden)

    Marie Kotovitch

    2016-06-01

    Full Text Available Abstract Given rapid sea ice changes in the Arctic Ocean in the context of climate warming, better constraints on the role of sea ice in CO2 cycling are needed to assess the capacity of polar oceans to buffer the rise of atmospheric CO2 concentration. Air-ice CO2 fluxes were measured continuously using automated chambers from the initial freezing of a sea ice cover until its decay during the INTERICE V experiment at the Hamburg Ship Model Basin. Cooling seawater prior to sea ice formation acted as a sink for atmospheric CO2, but as soon as the first ice crystals started to form, sea ice turned to a source of CO2, which lasted throughout the whole ice growth phase. Once ice decay was initiated by warming the atmosphere, the sea ice shifted back again to a sink of CO2. Direct measurements of outward ice-atmosphere CO2 fluxes were consistent with the depletion of dissolved inorganic carbon in the upper half of sea ice. Combining measured air-ice CO2 fluxes with the partial pressure of CO2 in sea ice, we determined strongly different gas transfer coefficients of CO2 at the air-ice interface between the growth and the decay phases (from 2.5 to 0.4 mol m−2 d−1 atm−1. A 1D sea ice carbon cycle model including gas physics and carbon biogeochemistry was used in various configurations in order to interpret the observations. All model simulations correctly predicted the sign of the air-ice flux. By contrast, the amplitude of the flux was much more variable between the different simulations. In none of the simulations was the dissolved gas pathway strong enough to explain the large fluxes during ice growth. This pathway weakness is due to an intrinsic limitation of ice-air fluxes of dissolved CO2 by the slow transport of dissolved inorganic carbon in the ice. The best means we found to explain the high air-ice carbon fluxes during ice growth is an intense yet uncertain gas bubble efflux, requiring sufficient bubble nucleation and upwards rise. We

  2. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  3. Ecosystem Carbon Dynamics in Response to Five Winters of Experimental Soil Warming and Permafrost Degradation

    Science.gov (United States)

    Mauritz, M.; Schuur, E. A. G.; Bracho, R. G.; Celis, G.; Natali, S.; Hutchings, J. A.; Salmon, V. G.; Webb, E.

    2014-12-01

    Arctic permafrost soils store 1700 Pg carbon (C), almost half the global soil C. For millennia permafrost soil C has been protected from decomposition by cold, waterlogged conditions. Warming temperatures will likely thaw permafrost, however the impact on arctic C balance is uncertain. Nutrient availability is predicted to increase with thaw depth and promote plant growth, potentially creating an ecosystem C sink. However, deeper thaw could also increase microbial respiration and eventually exceed C gains. Using data from a warming experiment in sub-arctic moist acidic tundra, designed to insulate soils in winter and stimulate permafrost degradation, we investigated spatial and temporal drivers of ecosystem C balance. Net ecosystem exchange (NEE) was measured continuously from May-September 2009-2013 using clear automated chambers; ecosystem respiration (Reco) was extrapolated from low light NEE and gross primary productivity (GPP) was derived (GPP = NEE-Reco). Five years of warming led to progressive increases in active layer depth. Active layer depth was positively correlated with cumulative growing season NEE, GPP and Reco. Although warming increased Reco the ecosystem remained a C sink during the growing season because high Reco was offset by increased plant growth and GPP. Eriophorum vaginatum growth accounted for most of the increased plant biomass, and was correlated with cumulative growing season GPP and Reco. NEE, GPP and Reco all peaked mid-season, and the mid-season amplitudes increased annually leading to higher cumulative NEE, GPP and Reco. In the shoulder seasons NEE and GPP were similar among years. In contrast, Reco increased at the end of the growing season each year, and high mid-season GPP was positively correlated with end season Reco. Thus, conditions that promoted plant growth also promoted C loss. These results suggest plant responses to permafrost thaw are an important driver of C dynamics. Reco associated with high biomass may result from

  4. Cloning and expression of meta-cleavage enzyme (CarB of carbazole degradation pathway from Pseudomonas stutzeri

    Directory of Open Access Journals (Sweden)

    Ariane Leites Larentis

    2005-06-01

    Full Text Available In this work, the 1082bp PCR product corresponding to carBaBb genes that encode the heterotetrameric enzyme 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase (CarB, involved in the Pseudomonas stutzeri ATCC 31258 carbazole degradation pathway, was cloned using the site-specific recombination system. Recombinant clones were confirmed by PCR, restriction enzyme digestion and sequencing. CarB dioxygenase was expressed in high levels and in active form in Escherichia coli BL21-SI using the His-tagged expression vector pDEST TM17 and salt induction for 4h.Carbazol e seus derivados são compostos nitrogenados aromáticos, presentes comumente em petróleo e potencialmente poluentes. A rota de biodegradação de carbazol a ácido antranílico em Pseudomonas sp. é composta por três enzimas responsáveis, respectivamente, pelas reações de dioxigenação angular, meta-clivagem e hidrólise. A segunda enzima da rota, 2'-aminobifenil-2,3-diol 1,2-dioxigenase (CarB, codificada por dois genes (carBa e carBb, é um heterotetrâmero com atividade catalítica na quebra do anel catecol do susbtrato na posição meta. Neste trabalho, foi clonado o produto de PCR de 1082pb correspondente aos genes carBaBb da bactéria degradadora de carbazol Pseudomonas stutzeri ATCC 31258. A estratégia de clonagem empregada foi a de recombinação sítio-específica e a construção dos plasmídeos foi confirmada por PCR, digestão com enzima de restrição e seqüenciamento. A enzima ativa foi expressa em altas concentrações em vetor pDEST TM17 com cauda de histidina e promotor T7 em Escherichia coli BL21-SI com indução por NaCl durante 4h.

  5. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling.

  6. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling. PMID:26685062

  7. Gadolinium nanoparticle-decorated multiwalled carbon nanotube/titania nanocomposites for degradation of methylene blue in water under simulated solar light.

    Science.gov (United States)

    Mamba, G; Mbianda, X Y; Mishra, A K

    2014-04-01

    Gadolinium oxide nanoparticles of diameters gadolinium oxide nanoparticle-decorated multiwalled carbon nanotube/titania nanocomposites. The prepared nanocomposites were evaluated for the photocatalytic degradation of methylene blue under simulated solar light irradiation. Higher photocatalytic activity was observed for the gadolinium oxide-decorated multiwalled carbon nanotube-based nanocomposites compared to the neat multiwalled carbon nanotube/titania nanocomposite and commercial titania. This improvement in photocatalytic activity was ascribed to the gadolinium oxide nanoparticles supported at the interface of the carbon nanotubes and titania resulting in efficient electron transfer between the two components of the composite. Total organic carbon (TOC) analysis revealed a higher degree of complete mineralisation of methylene blue (80.0 % TOC removal) which minimise the possible formation of toxic by-products. The photocatalyst could be re-used for five times, reaching a maximum degradation efficiency of 85.9 % after the five cycles. The proposed photocatalytic degradation mechanism is outlined herein.

  8. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-10-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic

  9. The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida

    OpenAIRE

    Arias-Barrau, Elsa; Olivera, Elías R.; Luengo, José M.; Fernández, Cristina; Galán, Beatriz; García, José L.; Díaz, Eduardo; Miñambres, Baltasar

    2004-01-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Wherea...

  10. Comprehensive evaluation of one-carbon metabolism pathway gene variants and renal cell cancer risk.

    Directory of Open Access Journals (Sweden)

    Todd M Gibson

    Full Text Available INTRODUCTION: Folate and one-carbon metabolism are linked to cancer risk through their integral role in DNA synthesis and methylation. Variation in one-carbon metabolism genes, particularly MTHFR, has been associated with risk of a number of cancers in epidemiologic studies, but little is known regarding renal cancer. METHODS: Tag single nucleotide polymorphisms (SNPs selected to produce high genomic coverage of 13 gene regions of one-carbon metabolism (ALDH1L1, BHMT, CBS, FOLR1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, TYMS and the closely associated glutathione synthesis pathway (CTH, GGH, GSS were genotyped for 777 renal cell carcinoma (RCC cases and 1,035 controls in the Central and Eastern European Renal Cancer case-control study. Associations of individual SNPs (n = 163 with RCC risk were calculated using unconditional logistic regression adjusted for age, sex and study center. Minimum p-value permutation (Min-P tests were used to identify gene regions associated with risk, and haplotypes were evaluated within these genes. RESULTS: The strongest associations with RCC risk were observed for SLC19A1 (P(min-P = 0.03 and MTHFR (P(min-P = 0.13. A haplotype consisting of four SNPs in SLC19A1 (rs12483553, rs2838950, rs2838951, and rs17004785 was associated with a 37% increased risk (p = 0.02, and exploratory stratified analysis suggested the association was only significant among those in the lowest tertile of vegetable intake. CONCLUSIONS: To our knowledge, this is the first study to comprehensively examine variation in one-carbon metabolism genes in relation to RCC risk. We identified a novel association with SLC19A1, which is important for transport of folate into cells. Replication in other populations is required to confirm these findings.

  11. Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1

    Institute of Scientific and Technical Information of China (English)

    WU Haizhen; WEI Chaohai; WAMG Yaqin; HE Qincong; LIANG Shizhong

    2009-01-01

    A bacterial strain that utilized o-chloronitrobenzene (o-CNB) as the sole carbon, nitrogen and energy sources was isolated from an activated sludge collected from an industrial waste treatment plant. It was identified as Pseudomonas putida based on its morphology, physiological, and biochemical characteristics with an automatic biometrical system and the 16S rRNA sequence analysis. Microcosm study showed that the biodegradation of o-CNB was optimized at culture medium pH 8.0 and temperature of 32℃. At these conditions, the strain degraded 85% of o-CNB at a starting concentration of 1.1 mmol/L in 42 h. o-Chloroaniline was identified as the major metabolite with both high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The study showed that o-chloronitrobenzene degradation by Pseudomonas putida OCNB-1 was initiated by aniline dioxyenase, nitrobenzene reductase and catechol-1,2-dioxygenase.

  12. Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin.

    Science.gov (United States)

    Villegas-Guzman, Paola; Silva-Agredo, Javier; González-Gómez, Duván; Giraldo-Aguirre, Ana L; Flórez-Acosta, Oscar; Torres-Palma, Ricardo A

    2015-01-01

    The photocalytic degradation of dicloxacillin (DXC) using TiO2 was studied in synthetic and natural waters. The degradation route and the effect of different experimental variables such as pH, applied power, and the initial concentrations of DXC and the catalyst were investigated. The best performances were achieved at a natural pH 5.8 and using 2.0 g L(-1) of TiO2 with 150 W of applied power. The photodegradation process followed Langmuir-Hinshelwood kinetics. The water matrix effect was evaluated in terms of degradation efficiency in the presence of organic compounds (oxalic acid, glucose), Fe(2+) ion and natural water. An increase in degradation was observed when ferrous ion was part of the solution, but the process was inhibited with all evaluated organic compounds. Similarly, inhibition was observed when natural water was used instead of distilled water. The extent of degradation of the process was evaluated following the evolution of chemical oxygen demand (COD), antimicrobial activity (AA), total organic carbon (TOC) and biochemical oxygen demand (BOD5). Total removal of DXC was achieved after 120 min of treatment and 95% mineralization was observed after 480 min of treatment. Additionally, the total removal of antimicrobial activity and a high level of biodegradability were observed after the photocalytical system had been operating for 240 min. PMID:25438130

  13. Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber

    International Nuclear Information System (INIS)

    Highlights: • Fe2O3 with small particle size was highly dispersed on activated carbon fiber. • Fe2O3/ACF exhibited higher photo-Fenton activity toward ARB degradation. • Fe2O3/ACF has an excellent long-term stability without obvious deactivation. - Abstract: Fe2O3 supported on activated carbon fiber (Fe2O3/ACF) was prepared via an impregnation method and characterized by X-ray diffraction, scanning electron microscopy and BET analysis. The results indicated that Fe2O3 with small particle size was highly dispersed on the surface of the ACF and the introduction of Fe2O3 did not change the ACF pore structure. Fe2O3/ACF exhibited a higher Fenton efficiency for the degradation of acid red B (ARB), especially under simulated solar irradiation. Complete decoloration of the ARB solution and 43% removal of TOC could be achieved within 200 min under optimal conditions. It was verified that more ·OH radicals were generated in the photo-assisted Fenton process and involved as active species in ARB degradation. FTIR analysis indicated that the degradation of ARB was initiated through the cleavage of −N=N−, followed by hydroxylation and opening of phenyl rings to form aliphatic acids, and further oxidation of aliphatic acids would produce CO2 and H2O. Moreover, Fe2O3/ACF maintained its activity after being reused 4 times and the release of iron from the catalyst was found to be insignificant during the Fenton and photo-Fenton processes, indicating that Fe2O3/ACF had good long-term stability

  14. Using Phospholipids and Stable Carbon Isotopes to Assess Microbial Community Structures and Carbon Cycle Pathways in Kamchatka Hot Springs

    Science.gov (United States)

    Zhao, W.; Romanek, C. S.; Burgess, E. A.; Wiegel, J.; Mills, G.; Zhang, C. L.

    2006-12-01

    Phospholipid fatty acid (PLFA) and stable carbon isotopes were used to assess the microbial community structures in Kamchatka hot springs. Eighteen mats or surface sediments were collected from hot springs having temperatures of 31 to 91°C and pHs of 4.9 to 8.5. These samples were clearly separated into three groups according to the bacterial PLFA: 1) those dominated by terminally branched odd-numbered fatty acids, 2) those dominated by C18:1 and 3) those dominated by C20:1. With support from other minor PLFA components, group 2 may be used as biomarkers for Chloroflexales or other phototrophic bacteria and group 3 for Aquificales, respectively. Among the sampled hot springs, the Arkashin pool represents the simplest microbial structure with members of Aquificales being the dominant primary producers. On the other hand, the Zavarzin pool may represent the most heterogeneous pool that may include members of Chloroflexales and Aquificales as primary producers. Bacterial 16S rDNA clone libraries confirmed the presence of these microbial groups in the two pools. Results of stable carbon isotope fractionation between CO2 source, bulk biomass and total PLFA showed that primary producers in the Arkashin pool primarily used the reductive tricarboxylic acid (rTCA) cycle (e.g., members of Aquificales); whereas the Zavarzin pool may be a mixture of the 3-hydroxypropionate (3-HP) pathway (e.g. members of Chloroflexales) and the rTCA cycle. Bacterial contribution using the Calvin cycle was not significant and may be less important in Kamchatka hot springs.

  15. Photosynthetic carbon fixation pathways in Zostera marina and three Florida seagrasses

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S.; Wetzel, R.G.

    1982-06-01

    The photosynthetic carbon fixation pathways of four seagrass species, Zostera marina L. from Alaska and Thalassia testudinum Banks ex Konig, Syringodium filiforme Kutz. and Halodule wrightii Aschers. from the Gulf of Mexico, were investigated with a /sup 14/C pulse-chase technique. All species were found to be principally of the C/sub 3/ type. However, Thalassia and Halodule had higher initial incorporation rates into organic acids than is typical for terrestrial C/sub 3/ plants. Of 11 seagrass species investigated thus far for C/sub 3/ or C/sub 4/ metabolism using this technique, 10 were found to be principally of the C/sub 3/ type while only one exhibited C/sub 4/ metabolism.

  16. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    International Nuclear Information System (INIS)

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H2O2 system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of neutrophils in

  17. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Yuanqin Jiang

    Full Text Available Biomedical applications of carbon nanotubes (CNTs often involve improving their hydrophilicity and dispersion in biological media by modifying them through noncovalent or covalent functionalization. However, the potential adverse effects of surface-functionalized CNTs have not been well characterized. In this study, we functionalized multi-walled CNTs (MWCNTs via carboxylation, to produce MWCNTs-COOH, and via poly (ethylene glycol linking, to produce MWCNTs-PEG. We used these functionalized MWCNTs to study the effect of surface functionalization on MWCNTs-induced toxicity to macrophages, and elucidate the underlying mechanisms of action. Our results revealed that MWCNTs-PEG were less cytotoxic and were associated with less apoptotic cell death of macrophages than MWCNTs-COOH. Additionally, MWCNTs-PEG induced less generation of reactive oxygen species (ROS involving less activation of NADPH oxidase compared with MWCNTs-COOH, as evidenced by membrane translocation of p47(phox and p67(phox in macrophages. The less cytotoxic and apoptotic effect of MWCNTs-PEG compared with MWCNTs-COOH resulted from the lower cellular uptake of MWCNTs-PEG, which resulted in less activation of oxidative stress-responsive pathways, such as p38 mitogen-activated protein kinases (MAPK and nuclear factor (NF-κB. These results demonstrate that surface functionalization of CNTs may alter ROS-mediated cytotoxic and apoptotic response by modulating apoptotic signaling pathways. Our study thus provides new insights into the molecular basis for the surface properties affecting CNTs toxicity.

  18. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Baeza-Squiban Armelle

    2010-04-01

    Full Text Available Abstract Background Increasing environmental and occupational exposures to nanoparticles (NPs warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB and titanium dioxide (TiO2 NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells and to investigate the implicated molecular pathways. Results Detailed time course studies revealed that both CB (13 nm and TiO2(15 nm NP exposed cells exhibit typical morphological (decreased cell size, membrane blebbing, peripheral chromatin condensation, apoptotic body formation and biochemical (caspase activation and DNA fragmentation features of apoptotic cell death. A decrease in mitochondrial membrane potential, activation of Bax and release of cytochrome c from mitochondria were only observed in case of CB NPs whereas lipid peroxidation, lysosomal membrane destabilization and cathepsin B release were observed during the apoptotic process induced by TiO2 NPs. Furthermore, ROS production was observed after exposure to CB and TiO2 but hydrogen peroxide (H2O2 production was only involved in apoptosis induction by CB NPs. Conclusions Both CB and TiO2 NPs induce apoptotic cell death in bronchial epithelial cells. CB NPs induce apoptosis by a ROS dependent mitochondrial pathway whereas TiO2 NPs induce cell death through lysosomal membrane destabilization and lipid peroxidation. Although the final outcome is similar (apoptosis, the molecular pathways activated by NPs differ depending upon the chemical nature of the NPs.

  19. The Effect of Mesoporous Carbon Nitride Modification by Titanium Oxide Nanoparticles on Photocatalytic Degradation of 1,3-Dinitrobenzene

    Directory of Open Access Journals (Sweden)

    Seyyed Ershad Moradi

    2015-11-01

    Full Text Available In the present work, well ordered, mesoporous carbon nitride (MCN sorbent with uniform mesoporous wall, high surface area and pore volume has been fabricated using the simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and then modified by TiO2 nanoparticles (Ti-MCN. The structural order and textural properties of the nanoporous materials were studied by XRD, elemental analysis, and nitrogen adsorption–desorption experiments. Photodegradation experiments for 1,3-dinitrobenzene were conducted in batch mode, the Ti-MCN catalysts were found to be more active compared to the free TiO2 nanoparticles for 1,3-dinitrobenzene degradation.

  20. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C.

    Science.gov (United States)

    Mulla, Sikandar I; Hu, Anyi; Wang, Yuwen; Sun, Qian; Huang, Shir-Ly; Wang, Han; Yu, Chang-Ping

    2016-02-01

    Bacterial degradation plays a vital role in determining the environmental fate of micropollutants like triclocarban. The mechanism of triclocarban degradation by pure bacterium is not yet explored. The purpose of this study was to identify metabolic pathway that might be involved in bacterial degradation of triclocarban. Triclosan-degrading Sphingomonas sp. strain YL-JM2C was first found to degrade up to 35% of triclocarban (4 mg L(-1)) within 5 d. Gas chromatography-mass spectrometry detected 3,4-dichloroaniline, 4-chloroaniline and 4-chlorocatechol as the major metabolites of the triclocarban degradation. Furthermore, total organic carbon results confirmed that the intermediates, 3,4-dichloroaniline (4 mg L(-1)) and 4-chloroaniline (4 mg L(-1)) could be degraded up to 77% and 80% by strain YL-JM2C within 5 d.

  1. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C.

    Science.gov (United States)

    Mulla, Sikandar I; Hu, Anyi; Wang, Yuwen; Sun, Qian; Huang, Shir-Ly; Wang, Han; Yu, Chang-Ping

    2016-02-01

    Bacterial degradation plays a vital role in determining the environmental fate of micropollutants like triclocarban. The mechanism of triclocarban degradation by pure bacterium is not yet explored. The purpose of this study was to identify metabolic pathway that might be involved in bacterial degradation of triclocarban. Triclosan-degrading Sphingomonas sp. strain YL-JM2C was first found to degrade up to 35% of triclocarban (4 mg L(-1)) within 5 d. Gas chromatography-mass spectrometry detected 3,4-dichloroaniline, 4-chloroaniline and 4-chlorocatechol as the major metabolites of the triclocarban degradation. Furthermore, total organic carbon results confirmed that the intermediates, 3,4-dichloroaniline (4 mg L(-1)) and 4-chloroaniline (4 mg L(-1)) could be degraded up to 77% and 80% by strain YL-JM2C within 5 d. PMID:26364219

  2. Demonstration of Carbon Catabolite Repression in Naphthalene Degrading Soil Bacteria via Raman Spectroscopy Based Stable Isotope Probing.

    Science.gov (United States)

    Kumar B N, Vinay; Guo, Shuxia; Bocklitz, Thomas; Rösch, Petra; Popp, Jürgen

    2016-08-01

    Carbon catabolite repression (CCR) is a regulatory phenomenon occurring in both lower organisms like bacteria and higher organisms like yeast, which allows them to preferentially utilize a specific carbon source to achieve highest metabolic activity and cell growth. CCR has been intensely studied in the model organisms Escherichia coli and Bacillus subtilis by following diauxic growth curves, assays to estimate the utilization or depletion of carbon sources, enzyme assays, Western blotting and mass spectrometric analysis to monitor and quantify the involvement of specific enzymes and proteins involved in CCR. In this study, we have visualized this process in three species of naphthalene degrading soil bacteria at a single cell level via Raman spectroscopy based stable isotope probing (Raman-SIP) using a single and double labeling approach. This is achieved using a combination of (2)H and (13)C isotope labeled carbon sources like glucose, galactose, fructose, and naphthalene. Time dependent metabolic flux of (13)C and (2)H isotopes has been followed via semi quantification and 2D Raman correlation analysis. For this, the relative intensities of Raman marker bands corresponding to (2)H and (13)C incorporation in newly synthesized macromolecules like proteins and lipids have been utilized. The 2D correlation analysis of time dependent Raman spectra readily identified small sequential changes resulting from isotope incorporation. Overall, we show that Raman-SIP has the potential to be used to obtain information about regulatory processes like CCR in bacteria at a single cell level within a time span of 3 h in fast growing bacteria. We also demonstrate the potential of this approach in identifying the most efficient naphthalene degraders asserting its importance for use in bioremediation. PMID:27305464

  3. Stable carbon isotopic compositions of intact polar lipids reveal complex carbon flow patterns among hydrocarbon degrading microbial communities at the Chapopote asphalt volcano

    Science.gov (United States)

    Schubotz, Florence; Lipp, Julius S.; Elvert, Marcus; Hinrichs, Kai-Uwe

    2011-08-01

    Seepage of asphalt forms the basis of a cold seep system at 3000 m water depth at the Chapopote Knoll in the southern Gulf of Mexico. Anaerobic microbial communities are stimulated in the oil-impregnated sediments as evidenced by the presence of intact polar membrane lipids (IPLs) derived from archaea and Bacteria at depths up to 7 m below the seafloor. Detailed investigation of stable carbon isotope composition (δ 13C) of alkyl and acyl moieties derived from a range of IPL precursors with distinct polar head groups resolved the complexity of carbon metabolisms and utilization of diverse carbon sources by uncultured microbial communities. In surface sediments most of the polar lipid-derived fatty acids with phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG) head groups could be tentatively assigned to autotrophic sulfate-reducing bacteria, with a relatively small proportion involved in the anaerobic oxidation of methane. Derivatives of phosphatidyl-( N)-methylethanolamine (PME) were abundant and could be predominantly assigned to heterotrophic oil-degrading bacteria. Archaeal IPLs with phosphate-based hydroxyarchaeols and diglycosidic glyceroldibiphytanylglyceroltetraethers (GDGTs) were assigned to methanotrophic archaea of the ANME-2 and ANME-1 cluster, respectively, whereas δ 13C values of phosphate-based archaeols and mixed phosphate-based and diglycosidic GDGTs point to methanogenic archaea. At a 7 m deep sulfate-methane transition zone that is linked to the upward movement of gas-laden petroleum, a distinct increase in abundance of archaeal IPLs such as phosphate-based hydroxyarchaeols and diglycosidic archaeol and GDGTs is observed; their δ 13C values are consistent with their origin from both methanotrophic and methanogenic archaea. This study reveals previously hidden, highly complex patterns in the carbon-flow of versatile microbial communities involved in the degradation of heavy oil including hydrocarbon gases

  4. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used...... to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L−1), while acetoclastic methanogenic pathway...

  5. MIR125B1 represses the degradation of the PML-RARA oncoprotein by an autophagy-lysosomal pathway in acute promyelocytic leukemia.

    Science.gov (United States)

    Zeng, Cheng-Wu; Chen, Zhen-Hua; Zhang, Xing-Ju; Han, Bo-Wei; Lin, Kang-Yu; Li, Xiao-Juan; Wei, Pan-Pan; Zhang, Hua; Li, Yangqiu; Chen, Yue-Qin

    2014-10-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)-associated PML-RARA fusion gene. We have previously found that MIR125B1 is highly expressed in patients with APL and may be associated with disease pathogenesis; however, the mechanism by which MIR125B1 exerts its oncogenic potential has not been fully elucidated. Here, we demonstrated that MIR125B1 abundance correlates with the PML-RARA status. MIR125B1 overexpression enhanced PML-RARA expression and inhibited the ATRA-induced degradation of the PML-RARA oncoprotein. RNA-seq analysis revealed a direct link between the PML-RARA degradation pathway and MIR125B1-arrested differentiation. We further demonstrated that the MIR125B1-mediated blockade of PML-RARA proteolysis was regulated via an autophagy-lysosomal pathway, contributing to the inhibition of APL differentiation. Furthermore, we identified DRAM2 (DNA-damage regulated autophagy modulator 2), a critical regulator of autophagy, as a novel target that was at least partly responsible for the function of MIR125B1 involved in autophagy. Importantly, the knockdown phenotypes for DRAM2 are similar to the effects of overexpressing MIR125B1 as impairment of PML-RARA degradation, inhibition of autophagy, and myeloid cell differentiation arrest. These effects of MIR125B1 and its target DRAM2 were further confirmed in an APL mouse model. Thus, MIR125B1 dysregulation may interfere with the effectiveness of ATRA-mediated differentiation through an autophagy-dependent pathway, representing a novel potential APL therapeutic target.

  6. Pore-scale insights to the rate of organic carbon degradation and biofilm formation under variable hydro-biogeochemical conditions in soils and sediments

    Science.gov (United States)

    Liu, C.; Yan, Z.; Liu, Y.; Li, M.; Bailey, V. L.

    2015-12-01

    Biogeochemical processes that control microbial growth, organic carbon degradation, and CO2 production and migration are fundamentally occur at the pore scale. In this presentation, we will describe our recent results of a pore-scale simulation research to investigate: 1) how moisture content and distribution affects oxygen delivery, organic carbon availability, and microbial activities that regulate the rate of organic carbon degradation and CO2 production in aerobic systems; and 2) how pore-scale reactive transport processes affect local microbial growth, biofilm formation, and overall rate of microbial reactions in anoxic systems. The results revealed that there is an optimal moisture content for aerobic bacterial respiration and CO2 production. When moisture is below the optimal value, organic carbon availability limits its degradation due to diffusion and osmotic stress to bacterial reactivity; and when moisture is above the optimal value, oxygen delivery limits microbial respiration. The optimal moisture condition is, however, a function of soil texture and physical heterogeneity, bioavailable soil organic carbon, and microbial community function. In anoxic and saturated system, simulation results show that biofilm preferentially forms in concave areas around sand particles and macro aggregates where cross-directional fluxes of organic carbon and electron acceptors (e.g., nitrate) favor microbial growth and attachment. The results provide important insights to the establishment of constitutive relationships between the macroscopic rates of soil organic carbon degradation and moisture content, and to the development of biogeochemical reactive transport models that incorporate biofilm structures and physio-chemical heterogeneity in soils and sediments.

  7. Effect of Iron and Carbon Monoxide on Fibrinogenase-like Degradation of Plasmatic Coagulation by Venoms of Six Agkistrodon Species.

    Science.gov (United States)

    Nielsen, Vance G; Redford, Daniel T; Boyle, Patrick K

    2016-05-01

    Annually, thousands suffer poisonous snakebite, often from defibrinogenating species. It has been demonstrated that iron and carbon monoxide change the ultrastructure of plasma thrombi and improve coagulation kinetics. Thus, this investigation sought to determine whether pre-treatment of plasma with iron and carbon monoxide could attenuate venom-mediated catalysis of fibrinogen obtained from Agkistrodon species with fibrinogenase activity. Human plasma was pre-treated with ferric chloride (0-10 μM) and carbon monoxide-releasing molecule-2 (CORM-2, 0-100 μM) prior to exposure to 0.5-11 μg/ml of six different Agkistrodon species' venom. The amount of venom used for experimentation needed to decrease coagulation function of one or more kinetic parameters by at least 50% of normal values for (e.g. half the normal speed of clot formation). Coagulation kinetics were determined with thrombelastography. All six snake venoms degraded plasmatic coagulation kinetics to a significant extent, especially prolonging the onset to clot formation and diminishing the speed of clot growth. Pre-treatment of plasma with iron and carbon monoxide attenuated these venom-mediated coagulation kinetic changes in a species-specific manner, with some venom effects markedly abrogated while others were only mildly decreased. Further in vitro investigation of other pit viper venoms that possess fibrinogenolytic activity is indicated to identify species amenable to or resistant to iron and carbon monoxide-mediated attenuation of venom-mediated catalysis of fibrinogen. Lastly, future pre-clinical investigation with animal models (e.g. rabbit ear-bleed model) is planned to determine whether iron and carbon monoxide can be used therapeutically after envenomation. PMID:26467642

  8. The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle.

    Science.gov (United States)

    Abrams, Jesse F; Hohn, Sönke; Rixen, Tim; Baum, Antje; Merico, Agostino

    2016-01-01

    Tropical peatlands are among the most space-efficient stores of carbon on Earth containing approximately 89 Gt C. Of this, 57 Gt (65%) are stored in Indonesian peatlands. Large-scale exploitation of land, including deforestation and drainage for the establishment of oil palm plantations, is changing the carbon balance of Indonesian peatlands, turning them from a natural sink to a source via outgassing of CO2 to the atmosphere and leakage of dissolved organic carbon (DOC) into the coastal ocean. The impacts of this perturbation to the coastal environment and at the global scale are largely unknown. Here, we evaluate the downstream effects of released Indonesian peat carbon on coastal ecosystems and on the global carbon cycle. We use a biogeochemical box model in combination with novel and literature observations to investigate the impact of different carbon emission scenarios on the combined ocean-atmosphere system. The release of all carbon stored in the Indonesian peat pool, considered as a worst-case scenario, will increase atmospheric pCO2 by 8 ppm to 15 ppm within the next 200 years. The expected impact on the Java Sea ecosystems is most significant on the short term (over a few hundred years) and is characterized by an increase of 3.3% in phytoplankton, 32% in seagrass biomass, and 5% decrease in coral biomass. On the long term, however, the coastal ecosystems will recover to reach near pre-excursion conditions. Our results suggest that the ultimate fate of the peat carbon is in the deep ocean with 69% of it landing in the deep DIC pool after 1000 years, but the effects on the global ocean carbonate chemistry will be marginal. PMID:26416553

  9. The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle.

    Science.gov (United States)

    Abrams, Jesse F; Hohn, Sönke; Rixen, Tim; Baum, Antje; Merico, Agostino

    2016-01-01

    Tropical peatlands are among the most space-efficient stores of carbon on Earth containing approximately 89 Gt C. Of this, 57 Gt (65%) are stored in Indonesian peatlands. Large-scale exploitation of land, including deforestation and drainage for the establishment of oil palm plantations, is changing the carbon balance of Indonesian peatlands, turning them from a natural sink to a source via outgassing of CO2 to the atmosphere and leakage of dissolved organic carbon (DOC) into the coastal ocean. The impacts of this perturbation to the coastal environment and at the global scale are largely unknown. Here, we evaluate the downstream effects of released Indonesian peat carbon on coastal ecosystems and on the global carbon cycle. We use a biogeochemical box model in combination with novel and literature observations to investigate the impact of different carbon emission scenarios on the combined ocean-atmosphere system. The release of all carbon stored in the Indonesian peat pool, considered as a worst-case scenario, will increase atmospheric pCO2 by 8 ppm to 15 ppm within the next 200 years. The expected impact on the Java Sea ecosystems is most significant on the short term (over a few hundred years) and is characterized by an increase of 3.3% in phytoplankton, 32% in seagrass biomass, and 5% decrease in coral biomass. On the long term, however, the coastal ecosystems will recover to reach near pre-excursion conditions. Our results suggest that the ultimate fate of the peat carbon is in the deep ocean with 69% of it landing in the deep DIC pool after 1000 years, but the effects on the global ocean carbonate chemistry will be marginal.

  10. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source.

    Science.gov (United States)

    Vital-Jacome, Miguel; Buitrón, Germán; Moreno-Andrade, Ivan; Garcia-Rea, Victor; Thalasso, Frederic

    2016-08-01

    In this study, a microrespirometric method was used, i.e., pulse respirometry in microreactors, to characterize mass transfer and biodegradation kinetics in aerobic granules. The experimental model was an aerobic granular sludge in a sequencing batch reactor (SBR) degrading synthetic wastewater containing 4-chlorophenol as the sole carbon source. After 15 days of acclimation, the SBR process degraded 4-chlorophenol at a removal rate of up to 0.9kg CODm(-3)d(-1), and the degradation kinetics were well described by the Haldane model. The microrespirometric method consisted of injecting pulses of 4-chlorophenol into the 24 wells of a microreactor system containing the SBR samples. From the respirograms obtained, the following five kinetic parameters were successfully determined during reactor operation: (i) Maximum specific oxygen uptake rate, (ii) substrate affinity constant, (iii) substrate inhibition constant, (iv) maximum specific growth rate, and (v) cell growth yield. Microrespirometry tests using granules and disaggregated granules allowed for the determination of apparent and intrinsic parameters, which in turn enabled the determination of the effectiveness factor of the granular sludge. It was concluded that this new high-throughput method has the potential to elucidate the complex biological and physicochemical processes of aerobic granular biosystems. PMID:27054670

  11. Degradation of a model azo dye in submerged anaerobic membrane bioreactor (SAMBR) operated with powdered activated carbon (PAC).

    Science.gov (United States)

    Baêta, B E L; Luna, H J; Sanson, A L; Silva, S Q; Aquino, S F

    2013-10-15

    This work investigated the anaerobic degradation of the model azo dye Remazol Yellow Gold RNL in an upflow anaerobic sludge blanket reactor (UASB) and two submerged anaerobic membrane (SAMBR) bioreactors, one of which (SAMBR-1) was operated with powdered activated carbon (PAC) in its interior. The reactors were operated at 35 °C with a hydraulic retention time of 24 h in three operational phases, aimed to assess the effect of external sources of carbon (glucose) or redox mediator (yeast extract) on the removal or color and organic matter. The results showed that removal efficiencies of COD (73-94%) and color (90-94%) were higher for SAMBR-1 when compared to SAMBR-2 (operated without PAC) and UASB reactors. In addition, the presence of PAC in SAMBR-1 increased reactor stability, thereby leading to a lower accumulation of volatile fatty acids (VFA). The microfiltration membrane was responsible for an additional removal of ~50% of soluble residual COD in the form of VFA, thus improving permeate quality. On its turn, PAC exhibited the ability to adsorb byproducts (aromatic amines) of azo dye degradation as well as to act as source of immobilized redox mediator (quinone groups on its surface), thereby enhancing color removal. PMID:23810998

  12. Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: mechanism implication

    Institute of Scientific and Technical Information of China (English)

    HE Zhong; YANG Shaogui; JU Yongming; SUN Cheng

    2009-01-01

    The photocatalytic degradation of rhodamine B (RhB) was carried out using TiO2 supported on activated carbon (TiO2-AC) under microwave irradiation. Composite catalyst TiO2-AC was prepared and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). In the process of microwave-enhanced photocatalysis (MPC), RhB (30 mg/L) was almost completely decoloured in 10 min, and the mineralization efficiency was 96.0% in 20 min. The reaction rate constant of RhB in MPC using TiO2-AC by pseudo first-order reaction kinetics was 4.16 times of that using Degussa P25. Additionally, according to Gas Chromatography/Mass Spectrometry (GC/MS) and Liquid Chromatography/Mass Spectrometry (LC/MS) identification, the major intermediates of RhB in MPC included two kinds of N-de-ethylation intermediates (N,N-diethyl-N'-ethyl-rhodamine (DER)), oxalic acid, malonic acid, succinic acid, and phthalic acid, maleic acid, 3-nitrobenzoic acid, et al. The degradation of RhB in MPC was mainly attributed to the destruction of the conjugated structure, and then the intermediates transformed to acid molecules which were mineralized to water and carbon dioxide.

  13. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14

    OpenAIRE

    Koopman, Frank; Wierckx, Nick; de Winde, Johannes H; Ruijssenaars, Harald J.

    2010-01-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates pose significant problems for the production of second-generation biofuels and biochemicals. Among these inhibitors, 5-(hydroxymethyl)furfural (HMF) and furfural are specifically notorious. In this study, we describe the complete molecular identification and characterization of the pathway by which Cupriavidus basilensis HMF14 metabolizes HMF and furfural. The identification of this pathway enabled the construction of an HMF an...

  14. Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo.

    Directory of Open Access Journals (Sweden)

    Zhenxin Sun

    Full Text Available Pseudomonas aeruginosa can grow to very high-cell-density (HCD during infection of the cystic fibrosis (CF lung. Phosphatidylcholine (PC, the major component of lung surfactant, has been hypothesized to support HCD growth of P. aeruginosa in vivo. The phosphorylcholine headgroup, a glycerol molecule, and two long-chain fatty acids (FAs are released by enzymatic cleavage of PC by bacterial phospholipase C and lipases. Three different bacterial pathways, the choline, glycerol, and fatty acid degradation pathways, are then involved in the degradation of these PC components. Here, we identified five potential FA degradation (Fad related fadBA-operons (fadBA1-5, each encoding 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA thiolase. Through mutagenesis and growth analyses, we showed that three (fadBA145 of the five fadBA-operons are dominant in medium-chain and long-chain Fad. The triple fadBA145 mutant also showed reduced ability to degrade PC in vitro. We have previously shown that by partially blocking Fad, via mutagenesis of fadBA5 and fadDs, we could significantly reduce the ability of P. aeruginosa to replicate on FA and PC in vitro, as well as in the mouse lung. However, no studies have assessed the ability of mutants, defective in choline and/or glycerol degradation in conjunction with Fad, to grow on PC or in vivo. Hence, we constructed additional mutants (ΔfadBA145ΔglpD, ΔfadBA145ΔbetAB, and ΔfadBA145ΔbetABΔglpD significantly defective in the ability to degrade FA, choline, and glycerol and, therefore, PC. The analysis of these mutants in the BALB/c mouse lung infection model showed significant inability to utilize PC in vitro, resulted in decreased replication fitness and competitiveness in vivo compared to the complement strain, although there was little to no variation in typical virulence factor production (e.g., hemolysin, lipase, and protease levels. This further supports the hypothesis that lung surfactant PC serves as an

  15. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.; Feil, Helene; Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla

    2008-11-17

    Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsible for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial

  16. Effects of rodent-induced land degradation on ecosytem carbon fluxes in alpine meadow in the Qinghai–Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    F. Peng

    2014-10-01

    Full Text Available Land degradation induced by rodent activities is extensively occurred in alpine meadow ecosystem in the Qinghai–Tibet Plateau that would affect the ecosystem carbon (C balance. We conducted a field experiment with six levels of land degradation (D1–D6, degradation aggravates from D1 to D6 to investigate the effects of land degradation on ecosystem C fluxes. Soil respiration (Rs, net ecosystem exchange (NEE, ecosystem respiration (ER and gross ecosystem production (GEP were measured from June to September 2012. Soil respiration, ER, GEP and above-ground biomass (AGB was significantly higher in slightly degraded (D3 and D6 than in severely degraded land (D1, D2, D4 and D5. Positive averages of NEE in the growing season indicate that alpine meadow ecosystem is a weak C sink during the growing season. Net ecosystem exchange had no significant difference among different degraded levels, but the average NEE in slightly degraded group was 33.6% higher than in severely degraded group. Soil respiration, ER and NEE were positively correlated with AGB whereas soil organic C, labile soil C, total nitrogen (N and inorganic nitrogen were associated with root biomass (RB. Our results highlight the decline of vegetation C storage of alpine meadow ecosystem with increasing number of rodent holes and suggest the control of AGB on ecosystem C fluxes, and the control of RB on soil C and N with development of land degradation.

  17. North and south: Regional footprints on the transition pathway towards a low carbon, global economy

    International Nuclear Information System (INIS)

    Environmental or 'ecological' footprints are indicators of resource consumption and waste absorption transformed on the basis of biologically productive land area required per capita with prevailing technology. They represent a partial measure of the extent to which the planet, its regions, or nations are moving along a sustainable development pathway. Such footprints vary between countries at different stages of economic development and varying geographic characteristics. A correlation equation for national environmental footprints is used, alongside international projections of population growth and gross regional income, to estimate the relative contributions of the peoples of the industrialised North and populous South that would be needed in order to secure climate-stabilising carbon reductions out to about 2100. The four so-called 'marker scenarios' produced by the Intergovernmental Panel on Climate Change are used to estimate the degree of energy efficiency improvement and carbon mitigation that is feasible. The present footprint projections suggest that a reduction in the consumption of biophysical assets across both the developing and industrialised world is indeed possible. However, the developing world's footprint is shown to overshoot that of the industrialised countries by around 2010-2015. It then levels out and starts to fall, on the most optimistic scenario, by about 2050. In order to achieve global sustainability in the 21st Century a serious commitment to environmental protection is required in both the industrialised North and the 'majority South'. That implies balancing population growth, economic well-being, and environmental impacts in the interests of all the people and wildlife on 'Spaceship Earth'.

  18. 一株喹啉降解菌的降解特性及代谢途径研究%BIODEGRADATION CHARACTERISTICS AND METABOLIC PATHWAY OF A STRAIN FOR QUINOLINE DEGRADATION

    Institute of Scientific and Technical Information of China (English)

    庹保华; 刘学东; 王广鹏; 颜家保

    2012-01-01

    A bacterial strain (Q2) , which could utilize quinoline as the sole sources of carbon, nitrogen and energy, was isolated from the soil contaminated by petroleum at the wastewater treating plant of a petrochemical refinery. Biodegradation experiments showed that this strain could degrade 500 mg/L of quinoline in growth medium completely within 32 h. The optimum degradation temperature, initial pH of growth medium and rotary speed of shaker for Q2 utilizing quinoline was 30℃, pH 8—10 and 100—200 r/min, respectively. The initial concentration of quinoline had great impact on the degradation by Q2, and this degradation process agreed with zero order kinetics equation when the initial concentration of quinoline in the range of 195—796 mg/L. During the biodegradation, the color of the medium changed from yellow to pink, and brown finally. FT-IR analysis exhibited that the degradation of quinoline was probably followed 8-hydroxycoumarin metabolic pathway, and that the nitrogen atom of hetero-cyclic compound was released as ammonium into the growth medium.%从某石化厂污水处理站厂区内受石油污染的土壤中分离出1株能以喹啉为唯一碳源、氮源和能源生长代谢的菌株Q2.降解试验结果表明,Q2能将喹啉质量浓度为500 mg/L的培养液中的喹啉在32 h内完全去除,其降解喹啉的适宜温度为30℃、培养基初始pH值为8~10、摇床转速为100~200 r/min;喹啉浓度对Q2的降解有较大影响,喹咻质量浓度为195~796 mg/L时,Q2降解喹啉的过程符合零级动力学方程.生物降解过程中,培养液从黄色变为粉红色,最后呈棕色.红外光谱分析显示,Q2降解途径很可能为8-羟基香豆素途径,且杂环上氮原子以氨氮的形式释放.

  19. Global zero-carbon energy pathways using viable mixes of nuclear and renewables

    International Nuclear Information System (INIS)

    Highlights: • A proper mix of nuclear power and renewables achieves sustainable energy future. • A high nuclear share provides cost and land effectiveness compared to nuclear-free. • Only-renewable mix will increase negative economic and environmental impacts. • A deployment of advanced reactor technologies is essential to overcome limitations. - Abstract: What are the most viable global pathways for a major expansion of zero-carbon emissions electricity sources given the diversity of regional technical, socio-political and economic constraints? We modelled a range of zero-emissions energy scenarios across nations that were designed to meet projected final energy demand in 2060, and optimised to derive the best globally aggregated results in terms of minimising costs and land use (a surrogate for environmental impacts). We found that a delayed energy transition to a zero-emissions pathway will decrease investment costs (−$3,431 billion), but increase cumulative CO2 emissions (additional 696 Gt). A renewable-only scenario would convert >7.4% of the global land area to energy production, whereas a maximum nuclear scenario would affect <0.4% of land area, including mining, spent-fuel storage, and buffer zones. Moreover, a nuclear-free pathway would involve up to a 50% greater cumulative capital investment compared to a high nuclear penetration scenario ($73.7 trillion). However, for some nations with a high current share of renewables and a low projected future energy demand (e.g., Norway), pursuit of a higher nuclear share is suboptimal. In terms of the time frame for replacement of fossil fuels, achieving a global nuclear share of about 50% by 2060 would be a technically and economically plausible target if progressing at a pace of the average historical growth of nuclear power penetration in France from 1970 to 1986 (0.28 MWh person−1 year-1). For effective climate-change mitigation, a high penetration of nuclear in association with a nationally

  20. Oxidation state, bioavailability & biochemical pathway define the fate of carbon in soil

    Science.gov (United States)

    Kuzyakov, Yakov; Apostel, Carolin; Gunina, Anna; Herrmann, Anke M.; Dippold, Michaela

    2015-04-01

    Numerous experiments under laboratory and field conditions analyzed microbial utilization and mean residence time (MRT) of carbon (C) from plant and microbial residues as well as root exudates in soil. Most of these studies tested the effects of various environmental factors, such as temperature, soil moisture, texture etc. on these parameters. However, only a few studies compared the properties of the substances themselves and there is no conceptual framework based on biochemical pathways. We hypothesize that the fate of C from organic substances in soil strongly depends on the first step of their microbial utilization, specifically, on biochemical pathway and initial C oxidation state, as well as its bioavailability in soils, defined by its hydrophobicity and molecular weight. Here we introduce and evaluate a new conceptual framework based on the following parameters: 1) C oxidation state, 2) molecular weight and hydrophobicity, 3) initial biochemical pathway of a substance class in microbial cells. To assess these parameters, two databases were prepared based on the literature and own studies. The first database included only the studies with 14C or 13C position specific labeled sugars, amino acids, carboxylic acids, phenols and lipids in soil. This database allowed us to analyze microbial utilization and mineralization of organics to CO2 depending on their C oxidation state (OS) and on functional groups. Additionally, we calculated data on the bond electronegativity of all compounds investigated in these studies. The second data base included the results of 14C and 13C studies with uniformly labeled substances of various classes. This database considered the free enthalpie (Delta H) per C unit from a variety of substrates differing in their aromaticity, hydrophobicity/electronegativity and location of the substance on the van Krevelen diagram. In addition, we calculated the hydrophobicity from the electronegativity of the individual bonds and recorded their

  1. Degradation of 2,4-dihydroxibenzoic acid by vacuum UV process in aqueous solution: Kinetic, identification of intermediates and reaction pathway

    Energy Technology Data Exchange (ETDEWEB)

    Azrague, Kamal [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Department for Water and Environment, SINTEF, Klaebuveien 153, Trondheim 7465 (Norway); Pradines, Vincent; Bonnefille, Eric [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Laboratoire LCC, CNRS, 205 route de Narbonne, F31077 Toulouse Cedex 4 (France); Claparols, Catherine [Laboratoire LCC, CNRS, 205 route de Narbonne, F31077 Toulouse Cedex 4 (France); Universite de Toulouse, UPS, Service Commun de Spectrometrie de Masse, 118 route de Narbonne, F31062 Toulouse Cedex 9 (France); Maurette, Marie-Therese [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Benoit-Marquie, Florence, E-mail: florence@chimie.ups-tlse.fr [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Degradation of 2,4-dihydroxybenzoic acid (DHBA) by vacuum UV photolysis of water. Black-Right-Pointing-Pointer V-UV Xe-excimer lamps produced essentially hydroxyl radicals (HO Degree-Sign ). Black-Right-Pointing-Pointer Identification of all intermediates formed allowed us to propose a reaction pathway. Black-Right-Pointing-Pointer This reaction pathway showed that DHBA reacts differently with HO Degree-Sign and h+. Black-Right-Pointing-Pointer DHBA would be used as a probe to determine which of these entities were involved. - Abstract: 2,4-Dihydroxybenzoic acid (2,4-DHBA) is found frequently as a pollutant in natural waters and represents a threat to water quality because it is a precursor to the formation of quinones which are highly toxic. The degradation of 2,4-DHBA using the vacuum UV photolysis of water has been investigated. Irradiation was carried out in an annular photoreactor equipped with a Xe-excimer lamp situated in the centre and emitting at 172 nm. The degradation kinetic followed a pseudo first order and the reaction has been found to be very heterogeneous, especially at low concentration. Impacts of oxygen or temperature have also been investigated but no effect has been shown. LC-MS and HPLC-UV combined with other analytical techniques allowed the identification of the formation of trihydroxybenzoiec acids and trihydroxybenzenes which underwent a ring opening, conducting to the formation of aliphatic products named {alpha}, {beta}, {delta} and {gamma}. These products were in turn degraded successively into maleiec acid, malic and succinic acid, malonic acid, glyoxalic acid and oxalic acid before reaching the complete mineralization in about 180 min. The proposed reaction pathway has shown to be very different from the one observed for the TiO{sub 2} photocatalysis which involves only holes (h{sup +}) without any formation of aromatic intermediates. The different behaviours of 2,4-DHBA towards the h

  2. Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach

    Science.gov (United States)

    Hazarika, Deepshikha; Karak, Niranjan

    2016-07-01

    In the present study, a novel, simple and green method was developed to synthesize highly luminescent nitrogen containing carbon dot (CD) using carbon resources like bio-based citric acid and glycerol in the presence of cost free cow urine. The as-synthesized CD showed exciting wavelength dependent down- and up-conversion flourescence properties. To utilize the advantage of up-conversion flourescence, a nanohybrid (CD@TiO2) was synthesized from the above carbon resources and titanium butoxide through a facile one pot single step hydrothermal protocol. Nanomaterials like bare TiO2 and nanohybrid of TiO2 in presence of CD (CD/TiO2) were also synthesized for comparison purpose. The optical properties and structural characteristics of the prepared CD, bare TiO2, CD@TiO2 and CD/TiO2 were examined by Fourier transform infrared (FTIR), UV-vis and fluorescence spectroscopic, scanning electron microscopic (SEM), transmission electron microscopic (TEM) and X-ray diffraction (XRD) studies. The elemental compositions of bare CD and CD@TiO2 nanohybrid were obtained from EDX analyses. The poor crystalline nature and narrow distribution of spherical CD and anatase form of TiO2 were confirmed from XRD and TEM studies. Amongst the studied nanomaterials, CD@TiO2 exhibited the most promising photocatalytic degradation of organic pollutants like benzene and phenol as well as an anthrogenic pesticide under sunlight.

  3. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: Intermediates and pathway.

    Science.gov (United States)

    Zhu, Zhexin; Chen, Yi; Gu, Yan; Wu, Fei; Lu, Wangyang; Xu, Tiefeng; Chen, Wenxing

    2016-04-15

    Iron (II) phthalocyanine (FePc) molecules were isolated in polyacrylonitrile (PAN) nanofibers by electrospinning to prevent the formation of dimers and oligomers. Carbamazepine (CBZ) and Rhodamine B (RhB) degradation was investigated during a Fenton-like process with FePc/PAN nanofibers. Classical quenching tests with isopropanol and electron paramagnetic resonance tests with 5,5-dimethyl-pyrroline-oxide as spin-trapping agent were performed to determine the formation of active species during hydrogen peroxide (H2O2) decomposition by FePc/PAN nanofibers. After eight recycles for CBZ degradation over the FePc/PAN nanofibers/H2O2 system, the removal ratios of CBZ remained at 99%. Seven by-products of RhB and twelve intermediates of CBZ were identified using ultra-performance liquid chromatography and high-resolution mass spectrometry. Pathways of CBZ and RhB degradation were proposed based on the identified intermediates. As the reaction proceeded, all CBZ and RhB aromatic nucleus intermediates decreased and were transformed to small acids, but also to potentially toxic epoxide-containing intermediates and acridine, because of the powerful oxidation ability of •OH in the catalytic system. PMID:26949842

  4. Existence of Heme Oxygenase-carbon Monoxide-cyclic Guanosine Monophosphate Pathway in Human Trabecular Meshwork Cells In Vitro

    Institute of Scientific and Technical Information of China (English)

    李涛; 张虹; 梁峰

    2004-01-01

    To confirm the existence of heme oxygenase (HO)-carbon monoxide (CO)- cyclic guanosine monophosphate (cGMP) pathway in the cultured human trabecular meshwork cells (HTMCs) in vitro, and to evaluate the inductive role of hemin on this pathway, HTMCs of the third to fourth generation were cultured in vitro. Reverse transcripase-polymerase chain reaction (RT-PCR)was employed for detection of HO-1 and HO-2 mRNA. Immunohistochemical staining was used to detect HO-1 and HO-2 proteins. Hemin was added into the culture solution. The HO-1 mRNA lev els were quantified by RT-PCR. The relative amount of carbon monoxide released into the media was measured with the quantifying carbon monoxide hemoglobin (HbCO) by spectrophotometry.Radioimmunoassay was used to determine changes of cGMP in HTMCs. The results showed that cultured cells had the specific characteristics of HTMCs. Both HO-1 and HO-2 genes were expressed in HTMCs, as well as HO-1 and HO-2 proteins in HTMCs. Hemin induced HO-1 mRNA,HbCO and cGMP in a dose-dependent manner. In conclusion, HO-CO-cGMP pathway exists in the cultured HTMCs and can be induced by hemin. Pharmacological stimulation of HO-CO-cGMP pathway may constitute a novel therapeutic approach to rescuing glaucoma.

  5. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59.

    Science.gov (United States)

    Choi, Eun Jin; Jin, Hyun Mi; Lee, Seung Hyeon; Math, Renukaradhya K; Madsen, Eugene L; Jeon, Che Ok

    2013-01-01

    Pseudoxanthomonas spadix BD-a59, isolated from gasoline-contaminated soil, has the ability to degrade all six BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene) compounds. The genomic features of strain BD-a59 were analyzed bioinformatically and compared with those of another fully sequenced Pseudoxanthomonas strain, P. suwonensis 11-1, which was isolated from cotton waste compost. The genome of strain BD-a59 differed from that of strain 11-1 in many characteristics, including the number of rRNA operons, dioxygenases, monooxygenases, genomic islands (GIs), and heavy metal resistance genes. A high abundance of phage integrases and GIs and the patterns in several other genetic measures (e.g., GC content, GC skew, Karlin signature, and clustered regularly interspaced short palindromic repeat [CRISPR] gene homology) indicated that strain BD-a59's genomic architecture may have been altered through horizontal gene transfers (HGT), phage attack, and genetic reshuffling during its evolutionary history. The genes for benzene/toluene, ethylbenzene, and xylene degradations were encoded on GI-9, -13, and -21, respectively, which suggests that they may have been acquired by HGT. We used bioinformatics to predict the biodegradation pathways of the six BTEX compounds, and these pathways were proved experimentally through the analysis of the intermediates of each BTEX compound using a gas chromatograph and mass spectrometry (GC-MS). The elevated abundances of dioxygenases, monooxygenases, and rRNA operons in strain BD-a59 (relative to strain 11-1), as well as other genomic characteristics, likely confer traits that enhance ecological fitness by enabling strain BD-a59 to degrade hydrocarbons in the soil environment. PMID:23160122

  6. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444 issue 3)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhen [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China); Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Shao, Genze, E-mail: gzshao@bjmu.edu.cn [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China)

    2014-02-14

    Highlights: • The 2000–2634 aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  7. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444, isse 4)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhen [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China); Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Shao, Genze, E-mail: gzshao@bjmu.edu.cn [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China)

    2014-02-21

    Highlights: • The 2000–2634aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1 binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  8. Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration.

    Science.gov (United States)

    Chomiak, A; Traber, J; Morgenroth, E; Derlon, N

    2015-11-15

    We investigated the influence of biofouling of ultrafiltration membranes on the removal of organic model foulants and ultimately on the quality of permeate. Gravity Driven Membrane ultrafiltration (GDM) membrane systems were operated with modified river water during five weeks without control of the biofilm formation. Three GDM systems were studied: two systems with biofilms exposed to (A) variable or (B) constant load of organic foulants, and (C) one system operated without biofilm and exposed to constant foulant loading. Biodegradable dextran or non-biodegradable polystyrene sulfonate model foulants were tested. Substrate biodegradability was confirmed by Size Exclusion Chromatography (SEC) and by degradation batch tests (D). The GDM systems (A) and (B) were fed with pre-filtered river water supplemented with dextran (Dex) of 1, 150 or 2000 kDa, or polystyrene sulfonate (PSS) of 1 or 80 kDa at concentrations of 2-3.5 mgC L(-1). In exp. (C) the feed water consisted of deionized water with 25 mgC L(-1) of either PSS 1, 80 kDa or Dex 2000 kDa. The biofilm formation on UF membrane surfaces controlled the foulant permeation and thus the permeate quality. Biofilms exposed to continuous foulant loading (exp. B) degraded low molecular weight (LMW) biodegradable foulants (1 kDa Dex), which improved the permeate quality. For high molecular weight (HMW) substrates (150, 2000 kDa Dex), the improvement of the permeate quality was observed after 7 days of biofilm formation, and resulted from the foulant hydrolysis followed by degradation. For non-biodegradable foulants, an improvement of 20% of the retention was observed for the polystyrene (1, 80 kDa PSS) due to the presence of biofilms on membrane surfaces. For variable foulant loading (exp. A) the biofilms hydrolysed the large biodegradable foulants but did not degraded them fully, which resulted a deterioration of the permeate quality (except for the LMW dextran (1 kDa) that was fully degraded). Overall, the "biofilm

  9. Mitigation of Climatic Change by Soil Carbon Sequestration: Issues of Science, Monitoring, and Degraded Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R Cesar C.; Rosenberg, Norman J.; Lal, Rattan

    2001-11-01

    Farmers, gardeners, and, of course, argonomists know that adding organic matter to soils is a good thing to do. Organic matter increases soil water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation, and improves tilth. Depending on its type-humus, manure, stubble, litter-organic matter contains between 40 and 60% carbon.

  10. Mitigation of Climatic Change by Soil Carbon Sequestration: Issues of Science, Monitoring, and Degraded Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R Cesar C.; Rosenberg, Norman J.; Lal, Rattan

    2001-12-31

    Farmers, gardeners, and, of course, argonomists know that adding organic matter to soils is a good thing to do. Organic matter increases soil water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation, and improves tilth. Depending on its type-humus, manure, stubble, litter-organic matter contains between 40 and 60% carbon.

  11. Trimethylene Carbonate and epsilon-Caprolactone Based (co)Polymer Networks : Mechanical Properties and Enzymatic Degradation

    NARCIS (Netherlands)

    Bat, Erhan; Plantinga, Josee A.; Harmsen, Martin C.; van Luyn, Marja J. A.; Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2008-01-01

    High molecular weight trimethylene carbonate (TMC) and epsilon-caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiatio

  12. Trimethylene Carbonate and -Caprolactone Based (co)Polymer Networks: Mechanical Properties and Enzymatic Degradation

    NARCIS (Netherlands)

    Bat, Erhan; Plantinga, Josée A.; Harmsen, Martin C.; Luyn, van Marja J.A.; Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2008-01-01

    High molecular weight trimethylene carbonate (TMC) and -caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiation dose

  13. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    International Nuclear Information System (INIS)

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2 major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells

  14. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mayumi; Imadome, Kaori; Shoji, Yoshimi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Isozaki, Tetsurou; Endo, Satoshi; Yamada, Shigeru [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2015-09-01

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2 major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells.

  15. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    International Nuclear Information System (INIS)

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 μM)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 μM clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 μM) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway

  16. Pathways of Organic-Carbon Oxidation in 3 Continental-Margin Sediments Rid A-8010-2010

    DEFF Research Database (Denmark)

    CANFIELD, DE; JØRGENSEN, BB; FOSSING, H.;

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and SIGMACO2 liberation in sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...... organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most...

  17. Synthesized TiO2/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity

    Science.gov (United States)

    Zhou, Kefu; Hu, Xin-Yan; Chen, Bor-Yann; Hsueh, Chung-Chuan; Zhang, Qian; Wang, Jiajie; Lin, Yu-Jung; Chang, Chang-Tang

    2016-10-01

    In this study, a one-step solid dispersion method was used to synthesize titanium dioxide (TiO2)/Zeolite Socony Mobil-5 (ZSM-5) composites with substantially reduced time and energy consumption. A degradation efficiency of more than 95% was achieved within 10 min using 50% PTZ (synthesized TiO2/ZSM-5 composites with TiO2 contents of 50 wt% loaded on ZSM-5) at pH 7 and 25 °C. The possible degradation pathway of azo-dye Reactive Black 5 (RB5) was investigated using gas chromatography-mass spectrometry and ion chromatography (IC). The bonds between the N atoms and naphthalene groups are likely attacked first and cleaved by hydroxyl radicals, ultimately resulting in the decolorization and mineralization of the azo dye. A comparative assessment of the characteristics of abiotic and biotic dye decolorization was completed. In addition, the toxicity effects of the degradation intermediates of azo-dye RB5 on cellular respiratory activity were analyzed. The bio-toxicity results showed that the decay rate constants of CO2 production from the azo-dye RB5 samples at different degradation times increased initially and subsequently decreased, indicating that intermediates of higher toxicity could adhere to the catalyst surface and gradually destroyed by further photocatalytic oxidation. Additionally, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the hydroxyl radicals are the main oxidation species in the photocatalytic process.

  18. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  19. Soil Carbon Dynamics Along the Pathway From Diverse Microbial Carbon to Humus in a Temperate and Tropical Forest

    Science.gov (United States)

    Throckmorton, H. M.; Bird, J. A.; Firestone, M. K.; Horwath, W. R.

    2008-12-01

    This research investigates the importance of microbial biochemistry to humification pathways in two climatically different forest ecosystems; Blodgett forest (BF), a temperate forest in the Sierra Nevada and Luquillo forest (LF), a tropical forest in Puerto Rico. Non-living 13C enriched temperate and tropical microorganisms from four biochemically contrasting microbial groups (fungi, actinomycetes, bacteria gram (+), and bacteria gram (-)) were separately added to soil at both sites in a reciprocal transplant experiment. Decomposition rates were substantially greater at LF than BF for all microbial inputs. Although there were initial differences in microbial C turnover and recovery within the soil microbial biomass and dissolved organic carbon pools for unique microbial C inputs at both sites, over time treatment differences converge within each site and the quality of input microbial C becomes less important to C remaining and maintained within these soil C pools. Physical soil fractionation revealed important trends which illustrate the role of the soil mineral matrix to protect and stabilize C in soil. Results indicate different C turnover rates associated with the light, aggregate- occluded, and mineral-associated soil fractions at both sites. At BF input C recovered within the light and mineral-associated fractions decreased substantially over time (1 to 13 months), while C occluded within aggregates only slightly decreased. Similarly, LF soils exhibit only a slight decrease in aggregate-occluded C over time (0.5 to 3.5 months), while C recovered within the light fraction decreased substantially; however, unlike BF, LF soils exhibited only a slight decrease in C recovered within the mineral fraction. The distribution of total C among these physical soil pools differs substantially for either site, suggesting differences in the relative importance of the mineral matrix to protect and stabilize C. Preliminary compound-specific isotope analyses employing

  20. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    Science.gov (United States)

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  1. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions.

    Science.gov (United States)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from -3.4±0.3 to -4.3±0.3‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from -7.0±0.4 to -13.6±1.2‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO4(-)). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). PMID:26784392

  2. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    Science.gov (United States)

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking. PMID:27262203

  3. Foot-and-mouth disease virus structural protein VP3 degrades Janus kinase 1 to inhibit IFN-γ signal transduction pathways.

    Science.gov (United States)

    Li, Dan; Wei, Jin; Yang, Fan; Liu, Hua-Nan; Zhu, Zi-Xiang; Cao, Wei-Jun; Li, Shu; Liu, Xiang-Tao; Zheng, Hai-Xue; Shu, Hong-Bing

    2016-01-01

    Foot-and-mouth disease is a highly contagious viral disease of cloven-hoofed animals that is caused by foot-and-mouth disease virus (FMDV). To replicate efficiently in vivo, FMDV has evolved methods to circumvent host antiviral defense mechanisms, including those induced by interferons (IFNs). Previous research has focused on the effect of FMDV L(pro) and 3C(pro) on type I IFNs. In this study, FMDV VP3 was found to inhibit type II IFN signaling pathways. The overexpression of FMDV VP3 inhibited the IFN-γ-triggered phosphorylation of STAT1 at Tyr701 and the subsequent expression of downstream genes. Mechanistically, FMDV VP3 interacted with JAK1/2 and inhibited the tyrosine phosphorylation, dimerization and nuclear accumulation of STAT1. FMDV VP3 also disrupted the assembly of the JAK1 complex and degraded JAK1 but not JAK2 via a lysosomal pathway. Taken together, the results reveal a novel mechanism used by which FMDV VP3 counteracts the type II IFN signaling pathways. PMID:26901336

  4. Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads and single-walled carbon nanotubes.

    Science.gov (United States)

    Al-Hamadani, Yasir A J; Chu, Kyoung Hoon; Flora, Joseph R V; Kim, Do-Hyung; Jang, Min; Sohn, Jinsik; Joo, Wanho; Yoon, Yeomin

    2016-09-01

    Sonocatalytic degradation experiments were carried out to determine the effects of glass beads (GBs) and single-walled carbon nanotubes (SWNTs) on ibuprofen (IBP) and sulfamethoxazole (SMX) removal using low and high ultrasonic frequencies (28 and 1000kHz). In the absence of catalysts, the sonochemical degradation at pH 7, optimum power of 0.18WmL(-1), and a temperature of 15°C was higher (79% and 72%) at 1000kHz than at 28kHz (45% and 33%) for IBP and SMX, respectively. At the low frequency (28kHz) H2O2 production increased significantly, from 10μM (no GBs) to 86μM in the presence of GBs (0.1mm, 10gL(-1)); however, no enhancement was achieved at 1000kHz. In contrast, the H2O2 production increased from 10μM (no SWNTs) to 31μM at 28kHz and from 82μM (no SWNTs) to 111μM at 1000kHz in the presence of SWNTs (45mgL(-1)). Thus, maximum removals of IBP and SMX were obtained in the presence of a combination of GBs and SWNTs at the low frequency (94% and 88%) for 60min contact time; however, >99% and 97% removals were achieved for 40 and 60min contact times at the high frequency for IBP and SMX, respectively. The results indicate that both IBP and SMX degradation followed pseudo-first-order kinetics. Additionally, the enhanced removal of IBP and SMX in the presence of catalysts was because GBs and SWNTs increased the number of free OH radicals due to ultrasonic irradiation and the adsorption capacity increase with SWNT dispersion. PMID:27150790

  5. In-situ evaluation of the degradable carbon influence for industrial waste water treatment

    Science.gov (United States)

    Fayomi, O. S. I.; Olukanni, D. O.; Fayomi, G. U.; Joseph, O. O.; Popoola, A. P. I.

    2016-07-01

    A photochemical investigation and synergetic blend for wastewater purification was carried out. Blends of different peels: Potato-, Apple and Pineapples-peals (PAP-peals) were impregnated with aqueous solutions of ZnCl2 following the variant of the incipient wetness method for activation of activated carbon (AC). Different concentrations were used to produce impregnation ratios. Activation was carried out in a tube furnace by heating to 700°C with 1 hour soaking time. Scanning Electron Microscopic with attached energy dispersive spectrometer (SEM/EDS), Atomic Adsorption Spectrometry (AAS) and Fourier Transform Infrared spectrometer (FTIS) equipments were used for the characterization of the AC produced. The result shows that PAP-peals derived activated carbons had micro porous characteristics. The study revealed that these new combined adsorbents materials are inexpensive, easily available and they have applications for the removal of Cu, Pb and Cr contained in industrial effluents.

  6. Photocatalytic Degradation of Humic Acid by Fe-TiO2 Supported on Spherical Activated Carbon with Enhanced Activity

    Directory of Open Access Journals (Sweden)

    Mi-Hwa Baek

    2013-01-01

    Full Text Available Fe-TiO2 supported on spherical activated carbon (Fe-TiO2/SAC with different Fe contents was prepared by heat treatment process after ion exchange method. The prepared Fe-TiO2/SAC was characterized by SEM, EDS, and BET. Batch experiments for photocatalytic degradation of humic acid by Fe-TiO2/SAC were carried out in the fluidized bed photoreactor. It was found that 0 wt% Fe-TiO2/SAC had high photocatalytic activity in the wavelength range of 100~280 nm. However, Fe-TiO2/SAC with Fe contents of 0.4, 0.6, and 0.8 wt% exhibited higher photocatalytic activity than 0 wt% Fe-TiO2/SAC in the wavelength range of 315~400 nm compared to that of 100~280 nm. The optimum Fe content was 0.6 wt% for maximum photocatalytic degradation of humic acid. Moreover, Fe-TiO2/SAC does not require an additional process step for separation of photocatalyst from treated water after photocatalysis.

  7. Application of Silver and Silver Oxide Nanoparticles Impregnated on Activated Carbon to the Degradation of Bromate.

    Science.gov (United States)

    Choi, J S; Lee, H; Park, Y K; Kim, S J; Kim, B J; An, K H; Kim, B H; Jung, S C

    2016-05-01

    Silver and silver oxide nanoparticles were impregnated on the surface of powdered activated carbon (PAC) using a single-step liquid phase plasma (LPP) method. Spherical silver and silver oxide nanoparticles of 20 to 100 nm size were dipersed evenly on the surface of PAC. The impregnated PAC exhibited a higher activity for the decomposition of bromate than bare PAC. The XPS, Raman and EDX analyses showed that the Ag/PAC composites synthesized by the LPP process. PMID:27483780

  8. Adsorption and Photocatalytic Decomposition of the -Blocker Metoprolol in Aqueous Titanium Dioxide Suspensions: Kinetics, Intermediates, and Degradation Pathways

    OpenAIRE

    Violette Romero; Pilar Marco; Jaime Giménez; Santiago Esplugas

    2013-01-01

    This study reports the photocatalytic degradation of the β-blocker metoprolol (MET) using TiO2 suspended as catalyst. A series of photoexperiments were carried out by a UV lamp, emitting in the 250–400 nm range, providing information about the absorption of radiation in the photoreactor wall. The influence of the radiation wavelength on the MET photooxidation rate was investigated using a filter cutting out wavelengths shorter than 280 nm. Effects of photolysis and adsorption at different ini...

  9. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.

    Science.gov (United States)

    Li, Ya-Han; Ou-Yang, Fan-Yu; Yang, Cheng-Han; Li, Si-Yu

    2015-01-01

    In this study, Rubisco-based engineered Escherichia coli, containing two heterologous enzymes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoribulokinase (PrkA), has been shown to be capable of the in situ recycling of carbon dioxide (CO2) during glycolysis. Two alternative approaches have been proposed to further enhance the carbon flow from glycolysis to a Rubisco-based pathway through the non-oxidative pentose phosphate pathway (NOPPP). The first is achieved by elevating the expression of transketolase I (TktA) and the second by blocking the native oxidation-decarboxylation reaction of E. coli by deleting the zwf gene from the chromosome (designated as JB/pTA and MZB, respectively). Decreases in the CO2 yield and the CO2 evolution per unit mole of ethanol production by at least 81% and 40% are observed. It is demonstrated in this study that the production of one mole of ethanol using E. coli strain MZB, the upper limit of CO2 emission is 0.052mol.

  10. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    Science.gov (United States)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  11. Isolation,identification,degradation characteristics and pathway of a pyrethroid-degrading bacterial strain%一株拟除虫菊酯农药降解菌的分离鉴定及其降解特性与途径

    Institute of Scientific and Technical Information of China (English)

    陈少华; 罗建军; 胡美英; 赖开平; 耿鹏; 肖盈

    2011-01-01

    A bacterial strain named P-01 was newly isolated by enrichment culture from the activated sludge in the wastewater of a pyrethroid-manufacturer in Zhongshan.Based on the morphology,physio-biochemical characteristics,and 16S rDNA sequence analysis,strain P-01 was temporarily identified as Achromobacter sp.P-01.Response surface methodology(RSM) was used to optimize degradation conditions.The optimal conditions for biodegradation were obtained as follows:31.4℃,pH 7.6 and inoculum biomass 0.4 g · L-1.Under the optimal degradation conditions,strain P-01 could effectively degrade deltamethrin,fenvalerate,beta-cypermethrin,beta-cyfluthrin and cyhalothrin with degradation rates of 98.9%,92.2%,91.0%,85.1% and 77.3%,respectively,within 7 days of incubation.Strain P-01 not only could utilize deltamethrin as the sole carbon source and energy for growth in mineral salt medium(MSM),but also could tolerate and efficiently degrade high concentrations of deltamethrin(100~500 mg · L-1).Furthermore,the degradation reaction followed first-order kinetics and half lives(T1/2) were 1.3,1.8,2.0,2.5 and 3.0 d,respectively.Studies on the degradation pathway showed that deltamethrin was degraded by hydrolysis of the carboxylester linkage to yield alpha-hydroxy-3-phenoxy-benzeneacetonitrile and 3-phenoxy benzaldehyde,and then the intermediates were further degraded by oxygenolysis to form 2-hydroxy-4-methoxy benzophenone and 1,2-benzenedicarboxylic acid,mono ester,finally resulting in complete detoxification.%采用富集培养法,从拟除虫菊酯农药厂废水排放口的活性污泥中分离到1株菊酯农药高效降解菌P-01.经形态、生理生化特征及16S rDNA序列分析,初步鉴定其为无色杆菌属(Achromobacter sp.).响应曲面法优化菌株P-01的降解条件,其降解最优条件为31.4℃、初始pH7.6和接种量0.4g·L-1,在此条件下,该菌株培养7d对50mg·L-1溴氰菊酯、氰戊菊酯、高效氯氰菊酯、高效氟

  12. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  13. Thermal Degradation Behavior of Siloxane Elastomer Impregnated Carbon Nanotube Areogel Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, J P; Worsley, M A

    2010-12-13

    A novel class of nanoporous graphitic carbon foams has been synthesized. Unprecedented properties - electrically conductive, thermally stable (> 1000 C), and mechanically robust. Improved transport properties (DWNT-CA, SWNT-CA) - greater than 100% enhancement in thermal conductivity, 100-400% improvement in electrical conductivity. Rich mechanical deformation behavior (SWNT-CA) - stiff ({approx}100% improvement of elastic modulus), energy dissipation, fracture toughness, and fatigue behavior. Implications for energy-related technologies - hydrogen storage, fusion and fission energy, catalysis, electrochemical energy storage, and composites with foam scaffolds.

  14. Nitrogen Additions Increase the Diversity of Carbon Compounds Degraded by Fungi in Boreal Forests

    Science.gov (United States)

    Gartner, T. B.; Turner, K. M.; Treseder, K. K.

    2004-12-01

    Boreal forest soils in North America harbor a large reservoir of organic C, and this region is increasingly exposed to long-range atmospheric N transport from Eurasia. By examining the responses of decomposers to N deposition in these forests, we hope to improve predictions of the fate of boreal carbon pools under global change. We tested the hypothesis that the functional diversity of decomposer fungi would increase under N fertilization in boreal forests where fungal growth was otherwise N-limited, owing to a reduction in competitive exclusion of fungal groups. We collected soil and leaf litter from three Alaskan sites that represent different successional stages at 5, 17, or 80 years following severe forest fire. Each site had been exposed for two years to nitrogen and phosphorus fertilization in a factorial design, with four plots per treatment. Nutrient limitation of fungal growth varied depending on successional stage. The standing hyphal length of decomposer fungi in soil (i.e. Ascomycota and Basidiomycota) responded to neither N nor P in the 5-year old site, increased under N fertilization in the 17-year old site, and increased where N and P was added simultaneously in the 80-year old site (site x N x P interaction: P = 0.001). We used BIOLOG microplates for filamentous fungi to obtain an index of the diversity of carbon use by decomposer fungi; each of 95 wells of these plates contains a different carbon-based compound, as well as a dye that changes color upon metabolism of the compound. Saline leaf litter extracts were mixed with fungal growth medium and then added to the microplates. The number of wells displaying metabolic activity was counted following incubation for five days. We found that N fertilization raised the average number of positive wells per plate from 14 to 27 (P = 0.012), with no significant differences in responses among sites. Phosphorus additions did not alter functional diversity of fungi in any site. Since increases in functional

  15. Measurement of black carbon at Syowa station, Antarctica: seasonal variation, transport processes and pathways

    Directory of Open Access Journals (Sweden)

    K. Hara

    2008-05-01

    Full Text Available Measurement of black carbon (BC was carried out at Syowa station Antarctica (69° S, 39° E from February 2004 until January 2007. The BC concentration at Syowa ranged from below detection to 176 ng m−3 during the measurements. Higher BC concentrations were observed mostly under strong wind (blizzard conditions due to the approach of a cyclone and blocking event. The BC-rich air masses traveled from the lower troposphere of the Atlantic and Indian Oceans to Syowa (Antarctic coast. During the summer (November–February, the BC concentration showed a diurnal variation together with surface wind speed and increased in the katabatic wind from the Antarctic continent. Considering the low BC source strength in the Antarctic continent, the higher BC concentration in the continental air (katabatic wind might be caused by long range transport of BC via the free troposphere from mid- and low- latitudes. The seasonal variation of BC at Syowa had a maximum in August, while at the other coastal stations (Halley, Neumayer, and Ferraz and the continental station (Amundsen-Scott, the maximum occurred in October. This difference may result from different transport pathways and scavenging of BC by precipitation during the transport from the source regions. During the austral summer, long-range transport of BC via the free troposphere is likely to make an important contribution to the ambient BC concentration. The BC transport flux indicated that BC injection into the Antarctic region strongly depended on the frequency of storm (blizzard conditions. The seasonal variation of BC transport flux increased by 290 mg m−2 month−1 in winter–spring when blizzards frequently occurred, whereas the flux decreased to lower than 50 mg m−2 month−1 in the summer with infrequent blizzards.

  16. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use

    Energy Technology Data Exchange (ETDEWEB)

    Kleiner, Manuel [Max Planck Institute for Marine Microbiology; Wentrop, C. [Max Planck Institute for Marine Microbiology; Lott, C. [Max Planck Institute for Marine Microbiology; Teeling, Hanno [Max Planck Institute for Marine Microbiology; Wetzel, Silke [Max Planck Institute for Marine Microbiology; Young, Jacque C [ORNL; Chang, Y. [Oak Ridge National Laboratory (ORNL); Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Zarzycki, Jan [University of Freiburg, Germany; Fuchs, Georg [University of Freiburg, Germany; Markert, Stephanie [Institute of Marine Biotechnology, Germany; Hempel, Kristina [Institute for Microbiology, Germany

    2012-01-01

    Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep-sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO2. Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose novel pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate, (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses, (iii) the potential use of hydrogen as an energy source, (iv) the strong expression of high affinity uptake transporters, and (v) novel energy efficient steps in CO2 fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.

  17. Soil organic carbon and nitrogen content of density fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine Kobresia meadow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This research was conducted on the non-disturbed native alpine Kobresia meadow(YF) and the severely degraded meadow(SDL) of Dari County of Qinghai Province.By a density fractionation approach,each soil sample was divided into two fractions:light fraction(LF) and heavy fraction(HF).The obtained fractions were analyzed for organic carbon(OC) and nitrogen(N) concentrations.The results showed:(1) the OC concentration in HF and LF was 3.84% and 28.63% respectively while the nitrogen concentration in HF and LF was 0.362% and 1.192% respectively in 0-10 cm depth.C:N ratio was 10.6 in HF and 23.8 in LF respectively.(2) As far as the ratio of OC in given fraction to that in gross sample was concerned,dominance of OC in HF was obvious in the whole soil profile.OC in HF increased from 78.95% to 90.33%,while OC in LF decreased from 21.05% to 9.68% with depths.(3) Soil total OC amounted to 47.47 in YF while 17.63 g.kg-1 in SDL,in which the OC content in HF decreased from 37.31 to 16.01 g.kg-1 while OC content in LF decreased from 10.01 to 1.62 g.kg-1.In other words,results of OC and N content show meadow degradation led to the loss of 57% OC in HF and 84% OC in LF from originally native ecosystem on alpine meadow.In addition,meadow degradation led to the loss of 43% N in HF and 79% N in LF from originally native ecosystem on alpine meadow.(4) The main reason for loss of C and N in LF during meadow degradation was not attributed to the decrease of OC and N concentration in LF and LF,but to the decrease in LF dry weight.Loss of N was far lower than loss of C in HF.This may suggest that there is difference in protection mode of C and N in HF.

  18. Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model

    International Nuclear Information System (INIS)

    This paper examines different carbon pathways for achieving deep CO2 reduction targets for the UK using a macro-econometric hybrid model E3MG, which stands for Energy-Economy-Environment Model at the Global level. The E3MG, with the UK as one of its regions, combines a top-down approach for modeling the global economy and for estimating the aggregate and disaggregate energy demand and a bottom-up approach (Energy Technology subModel, ETM) for simulating the power sector, which then provides feedback to the energy demand equations and the whole economy. The ETM submodel uses a probabilistic approach and historical data for estimating the penetration levels of the different technologies, considering their economic, technical and environmental characteristics. Three pathway scenarios (CFH, CLC and CAM) simulate the CO2 reduction by 40%, 60% and 80% by 2050 compared to 1990 levels respectively and are compared with a reference scenario (REF), with no reduction target. The targets are modeled as the UK contribution to an international mitigation effort, such as achieving the G8 reduction targets, which is a more realistic political framework for the UK to move towards deep reductions rather than moving alone. This paper aims to provide modeling evidence that deep reduction targets can be met through different carbon pathways while also assessing the macroeconomic effects of the pathways on GDP and investment.

  19. Structural Modifications And Mechanical Degradation Of Ion Irradiated Glassy Polymer Carbon

    Science.gov (United States)

    Abunaemeh, Malek; Seif, Mohamed; Elsamadicy, Abdalla; Muntele, Claudiu; Ila, Daryush

    2011-06-01

    The TRISO fuel has been used in some of the Generation IV nuclear reactor designs. It consists of a fuel kernel of UOx coated with several layers of materials with different functions. Pyrolytic carbon (PyC) is one of the materials in the layers. In this study we investigate the possibility of using Glassy Polymeric Carbon (GPC) as an alternative to PyC. GPC is used for artificial heart valves, heat-exchangers, and other high-tech products developed for the space and medical industries. This lightweight material can maintain dimensional and chemical stability in adverse environment and very high temperatures (up to 3000 °C). In this work, we are comparing the changes in physical and microstructure properties of GPC after exposure to irradiation fluence of 5 MeV Ag equivalent to a 1 displacement per atom (dpa) at samples prepared at 1000, 1500 and 2000 °C. The GPC material is manufactured and tested at the Center for Irradiation Materials (CIM) at Alabama A&M University. Transmission electron microscopy (TEM) and Raman spectroscopy were used for analysis.

  20. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon.

    Science.gov (United States)

    Lee, Yu-Chi; Lo, Shang-Lien; Kuo, Jeff; Huang, Chin-Pao

    2013-10-15

    Treatment of persistent perfluorooctanoic acid (PFOA) in water using persulfate (PS) oxidation typically requires an elevated temperature or UV irradiation, which is energy-consuming. Under relatively low temperatures of 25-45°C, activated carbon (AC) activated PS oxidation of PFOA was evaluated for its potential of practical applications. With presence of AC in PS oxidation, PFOA removal efficiency at 25°C reached 682% with a high defluorination efficiency of 549% after 12h and few intermediates of short-chain perfluorinated carboxylic acids (PFCAs) were found. The removal and defluorination rates with the combined AC/PS system were approximately 12 and 19 times higher than those of the PS-only system, respectively. Activated carbon not only removes PFOA through adsorption, but also activates PS to form sulfate radicals that accelerate the decomposition and mineralization of PFOA. The activation energy for PS oxidation of PFOA was reduced from 668 to 261kJ/mol by the catalytic effect of AC, which implies a lower reaction temperature and a shorter reaction time would suffice. A 2-cycle schematic reaction mechanism was used to describe PS oxidation of PFOA with the generation of various intermediates and end-products.

  1. The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation

    DEFF Research Database (Denmark)

    Charni-Ben Tabassi, N; Desmarais, S; Jensen, Anne-Christine Bay;

    2008-01-01

    human recombinant cathepsins (Cats) and matrix-metalloproteases (MMPs). Next, we analyzed the spontaneous release of Helix-II and CTX-II from cartilage sections of patients with knee OA who were immediately deep frozen after joint replacement to preserve endogenous enzyme activity until assay. Cartilage...... that they may be generated through different collagenolytic pathways. In this study we analyzed the release of Helix-II and CTX-II from human cartilage collagen by the proteinases reported to play a role in cartilage degradation. METHODS: In vitro, human articular cartilage extract was incubated with activated...... sections were then incubated for up to 84h in the presence or absence of E-64 and GM6001, inhibitors of cysteine proteases and MMPs, respectively. RESULTS: In vitro, Cats K, L and S generated large amount of Helix-II, but not CTX-II. Cat B generated CTX-II fragment, but destroyed Helix-II immunoreactivity...

  2. Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine

    Directory of Open Access Journals (Sweden)

    Raman Gurusamy

    2013-01-01

    Full Text Available Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites.

  3. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes

    Science.gov (United States)

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  4. Hyphenation of infrared spectroscopy to liquid chromatography for qualitative and quantitative polymer analysis: Degradation of poly(bisphenol A)carbonate

    NARCIS (Netherlands)

    Coulier, L.; Kaal, E.; Hankemeier, T.

    2006-01-01

    Hyphenation of infrared spectroscopy (IR) to liquid chromatography (LC) has been applied to study chemical changes in poly(bisphenol A)carbonate (PC) as a result of degradation. Especially coupling of LC to FTIR through solvent elimination is a sensitive approach to identify changes in functionality

  5. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    International Nuclear Information System (INIS)

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment

  6. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiyuan; Li, Yanli [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Xiang, Luojing [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Huang, Qianqian; Qiu, Juanjuan [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Valange, Sabine, E-mail: sabine.valange@univ-poitiers.fr [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France)

    2015-04-28

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al{sub 2}O{sub 3} pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment.

  7. Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism.

    Directory of Open Access Journals (Sweden)

    Bin Rui

    Full Text Available NADPH regeneration capacity is attracting growing research attention due to its important role in resisting oxidative stress. Besides, NADPH availability has been regarded as a limiting factor in production of industrially valuable compounds. The central carbon metabolism carries the carbon skeleton flux supporting the operation of NADPH-regenerating enzyme and offers flexibility in coping with NADPH demand for varied intracellular environment. To acquire an insightful understanding of its NADPH regeneration capacity, the elementary mode method was employed to compute all elementary flux modes (EFMs of a network representative of central carbon metabolism. Based on the metabolic flux distributions of these modes, a cluster analysis of EFMs with high NADPH regeneration rate was conducted using the self-organizing map clustering algorithm. The clustering results were used to study the relationship between the flux of total NADPH regeneration and the flux in each NADPH producing enzyme. The results identified several reaction combinations supporting high NADPH regeneration, which are proven to be feasible in cells via thermodynamic analysis and coincident with a great deal of previous experimental report. Meanwhile, the reaction combinations showed some common characteristics: there were one or two decarboxylation oxidation reactions in the combinations that produced NADPH and the combination constitution included certain gluconeogenesis pathways. These findings suggested cyclization pathways as a powerful way for NADPH regeneration capacity of bacterial central carbon metabolism.

  8. Graphene/single-walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway

    Science.gov (United States)

    Yan, Xinxin; Yang, Wen; Shao, Zengwu; Yang, Shuhua; Liu, Xianzhe

    2016-01-01

    Carbon nanomaterials are becoming increasingly significant in biomedical fields since they exhibit exceptional physicochemical and biocompatible properties. Today, the stem cells offer potentially new therapeutic approaches in tissue engineering and regenerative medicine. However, the induction of differentiation into specific lineages remains challenging, which provoked us to explore the biomedical applications of carbon nanomaterials in stem cells. In this study, we investigated the interactions between graphene/single-walled carbon nanotube (G/SWCNT) hybrids and rat mesenchymal stem cells (rMSCs) and focused on the proliferation and differentiation of rMSCs treated with G/SWCNT hybrids. Cell viability and morphology were evaluated using cell counting kit-8 assay and immunofluorescence staining, respectively. Osteogenic differentiation evaluated by alkaline phosphatase activity of MSCs proved to be higher after treatment with G/SWCNT hybrids, and the mineralized matrix nodule formation was also enhanced. In addition, the expression levels of osteogenic-associated genes were upregulated, while the adipocyte-specific markers were downregulated. Consistent with these results, we illustrated that the effect of G/SWCNT hybrids on the process of osteogenic differentiation of rMSCs can be modulated by activating the p38 signaling pathway and inhibiting the extracellular signal-regulated kinase 1/2 pathway. Nevertheless, our study suggests that carbon nanomaterials offer a promising platform for regenerative medicine in the near future.

  9. Degradation pathway, toxicity and kinetics of 2,4,6-trichlorophenol with different co-substrate by aerobic granules in SBR.

    Science.gov (United States)

    Khan, Mohammad Zain; Mondal, Pijush Kanti; Sabir, Suhail; Tare, Vinod

    2011-07-01

    The present study deals with cultivation of 2,4,6-trichlorophenol (TCP) degrading aerobic granules in two SBR systems based on glucose and acetate as co-substrate. Biodegradation of TCP containing wastewater starting from 10 to 360 mg L(-1) with more than 90% efficiency was achieved. Sludge volume index decreases as the operation proceeds to stabilize at 35 and 30 mL g(-1) while MLVSS increases from 4 to 6.5 and 6.2 g L(-1) for R1 (with glucose as co-substrate) and R2 (with sodium acetate as co-substrate), respectively. FTIR, GC and GC/MS spectral studies shows that the biodegradation occurred via chlorocatechol pathway and the cleavage may be at ortho-position. Haldane model for inhibitory substrate was applied to the system and it was observed that glucose fed granules have a high specific degradation rate and efficiency than acetate fed granules. Genotoxicity studies shows that effluent coming from SBRs was non-toxic. PMID:21565491

  10. Electroacupuncture inhibits apoptosis in annulus fibrosis cells through suppression of the mitochondria-dependent pathway in a rat model of cervical intervertebral disc degradation

    Directory of Open Access Journals (Sweden)

    Jun Liao

    2012-01-01

    Full Text Available The purpose of this study was to investigate whether treatment with electroacupuncture (EA inhibited mitochondria-dependent apoptosis in annulus fibrosis (AF cells in a rat model of cervical intervertebral disc degradation induced by unbalanced dynamic and static forces. Forty Sprague-Dawley rats were used in this study, of which 30 underwent surgery to induce cervical intervertebral disc degradation, 10 rats received EA at acupoints Dazhui (DU 14 and Shousanli (LI 10. TUNEL staining was measured to assess apoptosis in AF cells, immunohistochemistry was used to examine Bcl-2 and Bax expression, colorimetric assays were used to determine caspase 9 and caspase 3 activities and RT-PCR and western blotting were used to assess the mRNA and protein expression of Crk and ERK2. Treatment with EA reduced the number of AF-positive cells in TUNEL staining, increased Bcl-2-positive cells and decreased Bax-positive cells in immunohistochemical staining, significantly inhibited the activation of caspases-9 and -3, and enhanced the mRNA and protein expression of Crk and ERK2. Our data show that EA inhibits AF cell apoptosis via the mitochondria-dependent pathway and up-regulates Crk and ERK2 expression. These results suggest that treatment with may be a good alternative therapy for preventing cervical spondylosis.

  11. Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material.

    Science.gov (United States)

    Andriantsiferana, C; Mohamed, E F; Delmas, H

    2014-01-01

    A sequential adsorption/photocatalytic regeneration process to remove tartrazine, an azo-dye in aqueous solution, has been investigated. The aim ofthis work was to compare the effectiveness of an adsorbent/photocatalyst composite-TiO2 deposited onto activated carbon (AC) - and a simple mixture of powders of TiO2 and AC in same proportion. The composite was an innovative material as the photocatalyst, TiO2, was deposited on the porous surface ofa microporous-AC using metal-organic chemical vapour deposition in fluidized bed. The sequential process was composed of two-batch step cycles: every cycle alternated a step of adsorption and a step of photocatalytic oxidation under ultra-violet (365 nm), at 25 degreeC and atmospheric pressure. Both steps, adsorption and photocatalytic oxidation, have been investigated during four cycles. For both materials, the cumulated amounts adsorbed during four cycles corresponded to nearly twice the maximum adsorption capacities qmax proving the photocatalytic oxidation to regenerate the adsorbent. Concerning photocatalytic oxidation, the degree of mineralization was higher with the TiO2/AC composite: for each cycle, the value of the total organic carbon removal was 25% higher than that obtained with the mixture powder. These better photocatalytic performances involved better regeneration than higher adsorbed amounts for cycles 2, 3 and 4. Better performances with this promising material - TiO2 deposited onto AC - compared with TiO2 powder could be explained by the vicinity of photocatalytic and AC adsorption sites.

  12. Degradation State and Sequestration Potential of Carbon in Coastal Wetlands of Texas: Mangrove Vs. Saltmarsh Ecosystems

    Science.gov (United States)

    Sterne, A. M. E.; Kaiser, K.; Louchouarn, P.; Norwood, M. J.

    2015-12-01

    The estimated magnitude of the organic carbon (OC) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire OC stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of OC under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze the major classes of biochemicals including total hydrolysable neutral carbohydrates, enantiomeric amino acids, phenols, and cutins/suberins at two study sites located on the Texas coastline to investigate chemical composition and its controls on organic carbon preservation in mangrove (Avicennia germinans) and saltmarsh grass (Spartina alterniflora) dominated wetlands. Results show neutral carbohydrates and lignin contribute 30-70% and 10-40% of total OC, respectively, in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Contrasts in the compositions and relative abundances of all previously mentioned compound classes are further discussed to examine the role of litter biochemistry in OC preservation. For example, the selective preservation of cellulose over hemicellulose in sediments indicates macromolecular structure plays a key role in preservation between plant types. It is concluded that the chemical composition of litter material controls the composition and magnitude of OC stored in sediments. Ultimately, as these ecosystems transition from one dominant plant type to another, as is currently observed along the Texas coastline, there is the potential for OC sequestration efficiency to shift due to the changing composition of OC input to sediments.

  13. A Numerical Study of the Effect of Periodic Nutrient Supply on Pathways of Carbon in a Coastal Upwelling Regime

    Science.gov (United States)

    Carr, Mary-Elena

    1998-01-01

    A size-based ecosystem model was modified to include periodic upwelling events and used to evaluate the effect of episodic nutrient supply on the standing stock, carbon uptake, and carbon flow into mesozooplankton grazing and sinking flux in a coastal upwelling regime. Two ecosystem configurations were compared: a single food chain made up of net phytoplankton and mesozooplankton (one autotroph and one heterotroph, A1H1), and three interconnected food chains plus bacteria (three autotrophs and four heterotrophs, A3H4). The carbon pathways in the A1H1 simulations were under stronger physical control than those of the A3H4 runs, where the small size classes are not affected by frequent upwelling events. In the more complex food web simulations, the microbial pathway determines the total carbon uptake and grazing rates, and regenerated nitrogen accounts for more than half of the total primary production for periods of 20 days or longer between events. By contrast, new production, export of carbon through sinking and mesozooplankton grazing are more important in the A1H1 simulations. In the A3H4 simulations, the turnover time scale of the autotroph biomass increases as the period between upwelling events increases, because of the larger contribution of slow-growing net phytoplankton. The upwelling period was characterized for three upwelling sites from the alongshore wind speed measured by the NASA Scatterometer (NSCAT) and the corresponding model output compared with literature data. This validation exercise for three upwelling sites and a downstream embayment suggests that standing stock, carbon uptake and size fractionation were best supported by the A3H4 simulations, while the simulated sinking fluxes are not distinguishable in the two configurations.

  14. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway

    Science.gov (United States)

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-09-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials.

  15. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway

    Science.gov (United States)

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-01-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials. PMID:27580744

  16. Species-specific diversity of novel bacterial lineages and differential abundance of predicted pathways for toxic compound degradation in scorpion gut microbiota.

    Science.gov (United States)

    Bolaños, Luis M; Rosenblueth, Mónica; Castillo-Ramírez, Santiago; Figuier-Huttin, Gilles; Martínez-Romero, Esperanza

    2016-05-01

    Scorpions are considered 'living fossils' that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus. Our results indicate that scorpion gut microbiota is species-specific and that food deprivation reduces bacterial diversity. 16S rRNA gene phylogenetic analysis revealed novel bacterial lineages showing a low level of sequence identity to any known bacteria. Furthermore, these novel bacterial lineages were each restricted to a different scorpion species. Additionally, our results of the predicted metagenomic profiles revealed a core set of pathways that were highly abundant in both species, and mostly related to amino acid, carbohydrate, vitamin and cofactor metabolism. Notably, the food-deprived V. smithi shotgun metagenome matched almost completely the metabolic features of the prediction. Finally, comparisons among predicted metagenomic profiles showed that toxic compound degradation pathways were more abundant in recently captured C. limpidus scorpions. This study gives a first insight into the scorpion gut microbiota and provides a reference for future studies on the gut microbiota from other arachnid species. PMID:26058415

  17. Sonolytic degradation of 2-chlorobiphenyl

    Institute of Scientific and Technical Information of China (English)

    张光明; 华天星; 常爱敏

    2004-01-01

    The sonolytic degradation of 2-chlorobiphenyl was investigated. Mass spectroscopy was used to detect the products of sonolytic degradation of 2-chlorobiphenyl. The results show that the products of sonolytic degradation, such as biphenyl, ethyl benzene, diethylbiphenyl, dibutylbiphenyl, phenol, propylphenol and di-tert-butyl phenol are produced by thermolysis and hydroxyl free radical reactions, in which biphenyl counts for almost 40%(mole fraction) of the mother compound and others are at trace level. Rapid accumulation of chloride ion shows quick dechlorination, and 78% organic chlorine is converted into chloride ion. Free radical scavengers, bicarbonate and carbonate, decrease the reaction rate of sonolytic degradation of 2-chlorobiphenyl significantly, and the pseudo 1st order rate constant of sonolytic degradation of 2-chlorobiphenyl decreases linearly with the natural logarithm of the concentration of the added free radical scavenger, showing that the pyrolysis and hydroxyl free radical reaction are the two major pathways for the sonolytic degradation of 2-chlorobiphenyl, in which the hydroxyl radical concentration is estimated to be 1 × 10 10mol/L.

  18. In vivo study on the histocompatibility and degradation behavior of biodegradable poly(trimethylene carbonate-co-D,L-lactide)

    Institute of Scientific and Technical Information of China (English)

    Qingkui Guo; Zhiqian Lu; Yi Zhang; Suming Li; Jian Yang

    2011-01-01

    The aim of this study was to explore the in vivo behavior and histocompatibility of poly(trimethylene carbonateco-D,L-lactide) (PDLLA/TMC) and its feasibility of manufacturing cardiovascular stents.Copolymers with 50/50 molar ratio were synthesized by ring-opening polymerization with TMC and D, L-LA, or TMC and L-LA.Poly (L-lactide) (PLLA) was synthesized as a control.The films of the three polymers were implanted into 144 Wistar rats.At different time points of implantation, polymer films were explanted for the evaluation of degradation characteristics and histocompatibility using size exclusion chromatography, nuclear magnetic resonance, environmental scanning electron microscope, and optical microscope.Results showed that there were differences in the percentage of mass loss, molecular weight, shape and appearance changes, and inflammation cell counts between different polymers.With the time extended, the film's superficial structure transformed variously, which was rather obvious in the polymer of PDLLA/TMC.In addition, there were relatively lower inflammation cell counts in the PDLLA/TMC and poly(trimethylene carbonate-co-L-lactide) (PLLA/TMC) groups at different time points in comparison with those in the PLLA group.The differences were of statistical significance (P < 0.05)in the group of PDLLA/TMC vs.PLLA, and the group of PLLA/TMC vs.PLLA, but not within the PDLLA/TMC and PLLA/TMC groups (P > 0.05).These results suggested that the polymer of PDLLA/TMC (50/50) with favorable degradation performance and histocompatibility is fully biodegradable and suitable for manufacturing implanted cardiovascular stents.

  19. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Directory of Open Access Journals (Sweden)

    Eleftheria eAntoniou

    2015-04-01

    Full Text Available Biosurfactants (BS are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on biosurfactant production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography (TLC and Fourier transform infrared spectroscopy (FT-IR. Results indicate that biosurfactant production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil implies that the BS producing microbes generate no more than the required amount of biosurfactants that enables biodegradation of the crude oil. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of crude oil has emerged as a promising substrate for BS production (by marine BS producers with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  20. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  1. Biological phosphate removal using a degradable carbon source produced by hydrothermal treatment of excess sludge

    Directory of Open Access Journals (Sweden)

    L. H. Haraguchi

    2006-03-01

    Full Text Available The possibility of reusing excess sludge treated by hydrothermal reaction for the purpose of improving the efficiency of the enhanced biological phosphate removal (EBPR process was investigated. Excess sludge from a fish-processing industry located in Japan was treated in high-temperature and high-pressure water, at a reaction temperature ranging from 200 to 400ºC, a pressure of 1.8 to 30MPa and a constant reaction time of 7 min. For the conditions tested, the results showed that when the reaction temperature was increased the content of readily biodegradable substrate in the total COD Cr increased. In addition, the amount of some volatile fatty acids (VFAs produced by the hydrothermal reaction increased as reaction temperature increased. From the phosphate release tests under anaerobic conditions, it was possible to demonstrate that not only the VFAs, but also the readily and slowly biodegradable substrates are used as potential carbon source by the phosphate-accumulating organisms (PAOs.

  2. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway.

    Science.gov (United States)

    Seaayfan, Elie; Defontaine, Nadia; Demaretz, Sylvie; Zaarour, Nancy; Laghmani, Kamel

    2016-02-26

    Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome.

  3. Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide.

    Science.gov (United States)

    Feng, Yong; Liao, Changzhong; Shih, Kaimin

    2016-07-01

    To evaluate the heterogeneous degradation of sulfanilamide by external energy-free Fenton-like reactions, magnetic CuFe2O4 spinel nanoparticles (NPs) were synthesized and used as catalysts for activation of hydrogen peroxide (H2O2). The physicochemical properties of the CuFe2O4 NPs were characterized with several techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and magnetometry. In the catalytic experiments, CuFe2O4 NPs/H2O2 oxidation showed the best degradation performance in the circumneutral conditions that resulted from the presence of Cu(II) on the surface of the CuFe2O4 NPs. The surface area-normalized pseudo-first-order rate constants were calculated as 2.60 × 10(-2) L m(-1) min(-1), 2.58 × 10(-3) L m(-1) min(-1), 1.92 × 10(-3) L m(-1) min(-1), and 7.30 × 10(-4) L m(-1) min(-1) for CuO, CuFe2O4 NPs, Fe3O4, and α-Fe2O3 catalysts, respectively. Thus, solid state Cu(II) was more reactive and efficient than Fe(III) in the circumneutral activation of H2O2; this finding was further supported by the results regarding the stoichiometric efficiency of H2O2. The effects of experimental parameters such as the oxidant dosage and catalyst loading were investigated. The mechanism for H2O2 activation on the spinel surface was explored and could be explained by the solid redox cycles of Fe(II)/Fe(III) and Cu(II)/Cu(I). Based on the products detected, a degradation pathway via the CS bond cleavage is proposed for the degradation of sulfanilamide. The findings of this study suggest that copper can be used as a doping metal to improve the reactivity and expand the effective pH range of iron oxides. PMID:27085318

  4. Chlorophyll catabolism in senescing plant tissues: In vivo breakdown intermediates suggest different degradative pathways for Citrus fruit and parsley leaves.

    Science.gov (United States)

    Amir-Shapira, D; Goldschmidt, E E; Altman, A

    1987-04-01

    High-pressure liquid chromatography was used to separate chlorophyll derivatives in acetone extracts from senescing Citrus fruit peel, autumnal Melia azedarach L. leaves, and dark-held detached parsley (Petroselinum sativum L.) leaves. Chlorophyllide a and another polar, dephytylated derivative accumulated in large amounts in senescing Citrus peel, particularly in fruit treated with ethylene. Ethylene also induced a 4-fold increase in the specific activity of Citrus chlorophyllase (chlorophyll chlorophyllidohydrolase, EC 3.1.1.14). Detailed kinetics based on a hexane/acetone solvent partition system showed that the in vivo increase in dephytylated derivatives coincided with the decrease in total chlorophyll. Polar, dephytylated derivatives accumulated also in senescing Melia leaves. Senescing parsley leaves revealed a very different picture. The gradual disappearance of chlorophyll a was accompanied by an increase in pheophytin a and by the transient appearance of several phytylated derivatives. Only pheophytin a and an adjacent peak were left when all the chlorophyll a had disappeared. The pathways for breakdown of chlorophyll in the Citrus and parsley senescence systems are discussed. PMID:16593821

  5. Analysis of oxygen sources and reaction pathways of carbon support corrosion at the cathode in PEMFC using oxygen-18 DEMS

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei [Department of Chemical and Biological Engineering, University of Alabama, Box 870203, Tuscaloosa AL 35487-0203 (United States); Lane, Alan M., E-mail: alane@eng.ua.ed [Department of Chemical and Biological Engineering, University of Alabama, Box 870203, Tuscaloosa AL 35487-0203 (United States)

    2010-09-01

    Oxygen gas, water used to humidify the gases, and surface oxides originated from the carbon black and catalyst preparation are the three possible oxygen sources contributing to carbon support corrosion (CSC) at the cathode in proton exchange membrane fuel cells (PEMFC). To discriminate among them, oxygen was isotopically labeled by replacing regular water with oxygen-18 ({sup 18}O) enriched water (H{sub 2}{sup 18}O, 98%) in differential electrochemical mass spectrometry (DEMS). The DEMS spectra of the cathode exhaust gases O{sub 2}, O{sup 18}O, {sup 18}O{sub 2}, CO{sub 2}, CO{sup 18}O and C{sup 18}O{sub 2} (m/z equal to 32, 34, 36, 44, 46 and 48 correspondingly), sampled by a mass spectrometer during cyclic voltammetry (potential cycled for 100-1400 mV at the rate of 10 mV s{sup -1}) and chronoamperometry, were analyzed to identify the sources of oxygen, identify mechanistic pathways, and classify the surface oxides on carbon for CSC. It was found that water is the main direct oxygen source for CSC. Water reacts with carbon to produce at least three types of carbon surface oxides, which are then further oxidized with water to produce CO{sub 2} in different potential ranges.

  6. Impacts of rewetting on hydrological functioning and dissolved organic carbon flux in a degraded peatland (La Guette, France)

    Science.gov (United States)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Lemoing, Franck; Zocatelli, Renata; Jozja, Nevila; Défarge, Christian; Laggoun-Défarge, Fatima

    2016-04-01

    In Sphagnum-dominated peatlands, dissolved organic carbon (DOC) fluxes are mainly controlled by peat water saturation state corresponding to the equilibrium between recharge/drainage fluxes and to the peat storage capacity. Rewetting is a wide spread method that has been used for restoring the global hydrological behavior of degraded peatland ecosystems. Therefore, there is a need to assess the impact of rewetting on peatland hydrology but also on the modification of dynamics and DOC fluxes that significantly impact on carbon sink function of these ecosystems. To investigate this question, meteorology, hydrological data, DOC concentrations and dissolved organic matter (DOM) quality (aromaticity and fluorescence) were monthly monitored at the watershed scales and in two piezometer transects since 2010 in a hydrologically disturbed peatland, La Guette, which experienced a rewetting action on February 2014. One piezometer transect (called downstream plots) was supposedly influenced by the hydrological restoration while the other (called upstream plots) was considered as a control. Collected data allowed studying the impact of the restoration on hydrology and dynamics and DOC fluxes in the peatland. Preliminary results indicate that water table level became more stable after the rewetting in the area affected by the restoration. This seems to have an impact on DOC quantity and quality since concentrations became higher in the same area with also a higher aromaticity degree and a larger proportion of low-weight molecules compared to upstream area. This could indicate that in the downstream area, more anaerobic conditions inhibit microorganism activity responsible for the mineralization of peat organic matter.

  7. Stable carbon isotope fractionation of trans-1,2-dichloroethylene during co-metabolic degradation by methanotrophic bacteria

    Science.gov (United States)

    Brungard, K.L.; Munakata-Marr, J.; Johnson, C.A.; Mandernack, K.W.

    2003-01-01

    Changes in the carbon isotope ratio (??13C) of trans-1,2-dichloroethylene (t-DCE) were measured during its co-metabolic degradation by Methylomonas methanica, a type I methanotroph, and Methylosinus trichosporium OB3b, a type II methanotroph. In closed-vessel incubation experiments with each bacterium, the residual t-DCE became progressively enriched in 13C, indicating isotopic fractionation. From these experiments, the biological fractionation during t-DCE co-metabolism, expressed as ??, was measured to be -3.5??? for the type I culture and -6.7??? for the type II culture. This fractionation effect and subsequent enrichment in the ??13C of the residual t-DCE can thus be applied to determine the extent of biodegradation of DCE by these organisms. Based on these results, isotopic fractionation clearly warrants further study, as measured changes in the ??13C values of chlorinated solvents could ultimately be used to monitor the extent of biodegradation in laboratory or field settings where co-metabolism by methanotrophs occurs. ?? 2002 Elsevier Science B.V. All rights reserved.

  8. Effect of Carbon Sources on the Biomass Build-Up and Degradation of Rubber Processing Industry Effluent

    Directory of Open Access Journals (Sweden)

    K. Girish

    2014-12-01

    Full Text Available Rubber processing industry effluent represents a serious environmental pollution problem especially for underground and surface water. Wastewater collected from rubber processing industry was characterized for their pollution characteristics. Analysis showed that the biological oxygen demand (BOD, chemical oxygen demand (COD, total dissolved solids (TDS, total suspended solids (TSS, total solids (TS, ammonia and phosphate were high when compared to effluent discharge standard for industrial wastewater. Four bacterial species were isolated from the wastes and were identified as Arthrobacter sp., Bacillus sp., Lactobacillus sp., and Pseudomonas sp. A bacterial consortium was constituted by mixing proportionately these four bacteria and used in effluent aerobic biotreatment. Complex carbon sources such as bagasse, corn-cob, rice straw, wheat bran, molasses, corn steep liquor, were screened for their effect on growth of the consortium constituted. Highest biomass production was in molasses followed by rice straw hydrolysate, wheat bran hydrolysate and bagasse hydrolysate. However, the inoculum grown on rice straw and wheat bran hydrolysate caused maximum degradation in terms of reduction in various parameters such as BOD, COD, TDS, TSS, NH4+ and PO43, about 70 to 80% reduction was observed. From the results of the present study it could be inferred that the constituted consortium could effectively be used for the treatment of effluents from rubber processing industry and rice straw and wheat bran hydrolysate could be used for mass production of effective consortium.

  9. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. PMID:24980029

  10. Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities

    Science.gov (United States)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2016-10-01

    In this work, the durability of Ni-YSZ based solid oxide cells was investigated during co-electrolysis of steam and carbon dioxide (45% H2O + 45% CO2 + 10% H2) at current density of -1.5 or -2.0 A cm-2. The cell consists of ∼300 μm Ni-YSZ support, ∼10 μm Ni-YSZ electrode, ∼10 μm YSZ electrolyte and ∼15 μm LSM-YSZ oxygen electrode. The gas conversion was 45% at -1.5 A cm-2 and 60% at -2.0 A cm-2, and the operating durations were up to 700 h. The detailed electrochemical analysis revealed significant increase of the ohmic resistance, oxide ion transport resistance in the Ni-YSZ composite electrodes and the electrochemical reaction resistance at the Ni-YSZ triple-phase boundaries. The performance degradation is mainly ascribed to the microstructural change in the Ni-YSZ electrode close to the YSZ electrolyte, including the percolation loss of Ni, the contact loss between Ni and YSZ electrolyte and the decomposition of YSZ close to Ni-YSZ|YSZ interface. The electrochemical performance and the microstructure of the oxygen electrode were found to be relatively stable.

  11. Electrochemical Degradation Characteristics of Refractory Organic Pollutants in Coking Wastewater on Multiwall Carbon Nanotube-Modified Electrode

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-01-01

    Full Text Available The multiwall carbon nanotube-mollified electrode (MWCNT-ME was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical behavior of phenol and aniline at the MWCNT-ME were analyzed. Using ultraviolet-visible adsorption spectroscopy (UV-vis, Gas chromatography mass spectrometry (GC/MS, and chemical oxygen demand (COD test, the electrochemical oxidation properties of refractory organic pollutants of coking wastewater using the MWCNT-ME and the IrSnSb/Ti electrode were analyzed. Compared with the powder adsorption media, the MWCNT-ME was proved to have weaker adsorption activity, which means electrochemical degradation is the decisive factor of the removal of organic pollutants. The MWCNT-ME shows high electrochemical reactivity with oxidation peaks of 0.18 A and 0.12 A for phenol and aniline, respectively. Under the same working conditions, the MWCNT-ME COD removal rate 51% is higher than IrSnSb/Ti electrode’s rate 35%. The MWCNT-ME has application potential of electrochemical oxidation of refractory organic pollutants of coking wastewater.

  12. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making.

    Science.gov (United States)

    Zhu, Xianqing; Li, Xian; Xiao, Li; Zhang, Xiaoyong; Tong, Shan; Wu, Chao; Ashida, Ryuichi; Liu, Wenqiang; Miura, Kouichi; Yao, Hong

    2016-05-01

    In this work, two extracts (Soluble and Deposit) were produced by degradative solvent extraction of biomass wastes from 250 to 350°C. The feasibilities of using Soluble and Deposit as additives for coke-making were investigated for the first time. The Soluble and Deposit, having significantly higher carbon content, lower oxygen content and extremely lower ash content than raw biomasses. All Solubles and most of Deposits can melt completely at the temperature ranged from 80 to 120°C and 140 to 180°C, respectively. The additions of Soluble or Deposit into the coke-making coal significantly improved their thermoplastic properties with as high as 9°C increase of the plastic range. Furthermore, the addition of Deposit or Soluble also markedly enhanced the coke quality through increasing coke strength after reaction (CSR) and reducing coke reactivity index (CRI). Therefore, the Soluble and Deposit were proved to be good additives for coke-making. PMID:26871958

  13. Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: Characterization, degradation activity and stability

    International Nuclear Information System (INIS)

    Polytetrafluoroethylene (PTFE) was firstly used to modify the surface characteristics of Fe-C particles and acted as catalyst to degrade 2,4-dichlorophenol (2,4-DCP) by heterogeneous electro-Fenton (EF) in near neutral pH condition. Fe-C particles before and after PTFE modification, and after 15 times consecutive degradations were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) spectrometry. The modified Fe-C exhibited a good activity for degradation of 120 mg/L 2,4-DCP in near neutral pH condition, achieving over 95% removal efficiency within 120 min under the conditions of Fe-C 6 g/L, current intensity 100 mA and initial pH 6.7. In this heterogeneous EF system, a significant synergetic effect between anodic oxidation and single Fe-C micro-electrolysis was obtained, which attributed to the effective EF oxidation at favorable acidic pH condition that triggered by anodic oxidation. 15 times consecutive runs demonstrated the 2,4-DCP degradation efficiency was stable while the iron leaching ratio was relatively low. Account for the catalytic activity, life span and inexpensive cost, the PTFE modified Fe-C was potential for industrial application as a good electro-Fenton catalyst to abate biorefractory pollutants in neutral pH condition

  14. Abiotic Degradation Rates for Carbon Tetrachloride: and Chloroform: Progress in FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Wietsma, Thomas W.; Truex, Michael J.

    2008-10-31

    This is a letter report summarizing work performed in FY2008 to determine the rates of carbon tetrachloride hydrolysis at temperatures close to actual groundwater temperatures. The report describes the project, the methodology, and the results obtained since the project's inception in FY2006. Measurements of hydrolysis rates in homogeneous solution have been completed for temperaturs of 70 C through 40 C, with additional data available at 30 C and 20 C. These results show no difference between the rates in deionized H2O and in filter-sterilized Hanford-Site groundwater. Moreover, the rates measured are 2-3 times slower than predicted from the open literature. Measurements of rates involving sterile suspensions of Hanford-Site sediment in Hanford-Site groundwater, however, show faster hydrolysis at temperatures below 40 C. Extrapolation of the current data available suggests a six-fold increase in rate would be expected at groundwater temperature of 16 C due to the presence of the sediment. This result translates into a 78-year half-life, rather than the 470-680 year half-life that would be predicted from rate determinations in homogeneous solution. The hydrolysis rate data at 20 C, in contrast to those at higher temperatures, are preliminary and have low statistical power. While significant (p < 0.05) differences between the heterogeneous and homogeneous systems are seen at 30 C, the results at 20 C are not statistically significant at this level due to limited data and the very slow nature of the reaction. More time is needed to collect data at these low temperatures to improve the statistical power of our observation. Given the critical need for hydrolysis rate data at temperatures relevant to groundwater systems, we have three recommendations for future work. First, we recommend a continuation of the sampling and analysis of the remaining long-term sealed-ampule experiments described in this report. These are primarily 20 C and 30 C experiments. The data at

  15. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    Science.gov (United States)

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA. PMID:23688550

  16. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources

    OpenAIRE

    Jun Ni; Fei Tao; Huaiqing Du; Ping Xu

    2015-01-01

    Plant secondary metabolites have been attracting people’s attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most ...

  17. Activation of locus coeruleus heme oxygenase-carbon monoxide pathway promoted an anxiolytic-like effect in rats.

    Science.gov (United States)

    Carvalho-Costa, P G; Branco, L G S; Leite-Panissi, C R A

    2016-01-01

    The heme oxygenase-carbon monoxide pathway has been shown to play an important role in many physiological processes and is capable of altering nociception modulation in the nervous system by stimulating soluble guanylate cyclase (sGC). In the central nervous system, the locus coeruleus (LC) is known to be a region that expresses the heme oxygenase enzyme (HO), which catalyzes the metabolism of heme to carbon monoxide (CO). Additionally, several lines of evidence have suggested that the LC can be involved in the modulation of emotional states such as fear and anxiety. The purpose of this investigation was to evaluate the activation of the heme oxygenase-carbon monoxide pathway in the LC in the modulation of anxiety by using the elevated plus maze test (EPM) and light-dark box test (LDB) in rats. Experiments were performed on adult male Wistar rats weighing 250-300 g (n=182). The results showed that the intra-LC microinjection of heme-lysinate (600 nmol), a substrate for the enzyme HO, increased the number of entries into the open arms and the percentage of time spent in open arms in the elevated plus maze test, indicating a decrease in anxiety. Additionally, in the LDB test, intra-LC administration of heme-lysinate promoted an increase on time spent in the light compartment of the box. The intracerebroventricular microinjection of guanylate cyclase, an sGC inhibitor followed by the intra-LC microinjection of the heme-lysinate blocked the anxiolytic-like reaction on the EPM test and LDB test. It can therefore be concluded that CO in the LC produced by the HO pathway and acting via cGMP plays an anxiolytic-like role in the LC of rats.

  18. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties.

    Science.gov (United States)

    Wang, A-nan; Teng, Ying; Hu, Xue-feng; Wu, Long-hua; Huang, Yu-juan; Luo, Yong-ming; Christie, Peter

    2016-01-15

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO2) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L9(3)(4), only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO2 dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg(-1) were found to be a 1:10 soil: water ratio, 40 mW cm(-2) light intensity, 5% TiO2 in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO2 in soil slurry. This study suggests that TiO2 photocatalytic oxidation is a promising treatment for removing DPAA from soil. PMID:26410709

  19. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  20. Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: lessons from hydrothermal vent associated tubeworms from the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Vera eThiel

    2012-12-01

    Full Text Available Vestimentiferan tubeworms (siboglinid polychaetes of the genus Lamellibrachia are common members of cold-seep faunal communities and have also been found at sedimented hydrothermal vent sites in the Pacific. As they lack a digestive system, they are nourished by chemoautotrophic bacterial endosymbionts growing in a specialized tissue called the trophosome. Here we present the results of investigations of tubeworms and endosymbionts from a shallow hydrothermal vent field in the Western Mediterranean Sea. The tubeworms, which are the first reported vent-associated tubeworms outside the Pacific, are identified as Lamellibrachia anaximandri using mitochondrial ribosomal and cytochrome oxidase I gene sequences. They harbor a single gammaproteobacterial endosymbiont. Carbon isotopic data, as well as the analysis of genes involved in carbon and sulfur metabolism indicate a sulfide-oxidizing chemoautotrophic endosymbiont. The detection of a hydrogenase gene fragment suggests the potential for hydrogen oxidation as alternative energy source. Surprisingly, the endosymbiont harbors genes for two different carbon fixation pathways, the Calvin-Benson-Bassham (CBB cycle as well as the reductive tricarboxylic acid (rTCA cycle, as has been reported for the endosymbiont of the giant vent tubeworm Riftia pachyptila. In addition to RubisCO genes we detected ATP citrate lyase (ACL, the key enzyme of the rTCA cycle type II gene sequences using newly designed primer sets. Comparative investigations with additional tubeworm species (Lamellibrachia luymesi, Lamellibrachia sp. 1, Lamellibrachia sp. 2, Escarpia laminata, Seepiophila jonesi from multiple cold seep sites in the Gulf of Mexico revealed the presence of acl genes in these species as well. Thus, our study suggests that the presence of two different carbon fixation pathways, the CBB cycle and the rTCA cycle, is not restricted to the Riftia endosymbiont, but rather might be common in vestimentiferan tubeworm

  1. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  2. Degradation products of different water content sevoflurane in carbon dioxide absorbents by gas chromatogpy-mass spectromerty analysis

    Institute of Scientific and Technical Information of China (English)

    LI Yue; LI Yi-cong; ZHANG Yi-nan; LIU Shu-jie; ZHOU Yan-mei; WANG Chang-song; GONG Yu-lei; LI En-you

    2011-01-01

    Background Sevoflurane is currently used as a volatile inhalation anesthetic with many clinical advantages. A representative degradation product,compound A,was quantitatively measured to investigate whether there are different reactions between two kinds of water content sevoflurane formulations with different carbon dioxide (CO2) absorbents.Methods A closed-circle breathe bag with the Dr(a)ger Fabius GS anesthesia apparatus was used as an artificial rubber lung. The experiments were grouped according to different sevoflurane formulations:group A:higher-water sevoflurane (Ultane);group B:lower-water sevoflurane (Sevoness). During the experiment,CO2 (200 ml/min) was continually perfused to keep the end-tidal pressure of CO2 (PETCO2)at 35-45 mmHg. The artificial ventilation was set to 6 L/min,and the breathing rate at 12 breaths/min. The circuit was operated with constant fresh gas flow rate (1 L/min) and the sevoflurane concentration was kept at 1.0 minimum alveolar concentration (MAC) for 240 minutes. At 0,10,20,30,60,90,120,180 and 240 minutes,gas was collected from the Y-piece. Gas chromatography/mass spectrometry (GC/MS)was used to quantify the major degradation product,compound A,with different water content sevoflurane. PETCO2 and sevoflurane concentration,and the temperature of the canister were continuously monitored during the experiment.Results There were no significant differences in PETCO2 and sevoflurane concentrations between the two groups.Dr(a)gersorb 800 plus produced the highest concentrations of compound A compared with other sodalimes,and Sevoness in Dr(a)gersorb 800 plus generated more compound A than Ultane (P <0.05). There were significant differences in the peak and average compound A concentrations between Ultane and Sevoness with Dr(a)gersorb 800 plus (P <0.05),while the compound A concentration produced by Sodasorb grase and sofonolime in the two groups showed no significant difference (P >0.05). In the same group,the peak and

  3. Adsorption and photocatalytic degradation of pharmaceuticals and pesticides by carbon doped-TiO2 coated on zeolites under solar light irradiation.

    Science.gov (United States)

    An, Ye; de Ridder, David Johannes; Zhao, Chun; Schoutteten, Klaas; Bussche, Julie Vanden; Zheng, Huaili; Chen, Gang; Vanhaecke, Lynn

    2016-01-01

    To evaluate the performance of zeolite-supported carbon-doped TiO(2) composite catalysts toward target pollutants under solar light irradiation, the adsorption and photocatalytic degradation of 18 pharmaceuticals and pesticides with distinguishing features (molecular size and volume, and photolysis) were investigated using mordenite zeolites with SiO(2)/Al(2)O(3) ratios of 18 and 240. Different quantities of carbon-doped TiO(2) were coated on the zeolites, and then the finished composite catalysts were tested in demineralized, surface, and hospital wastewater samples, respectively. The composite photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, and surface area and porosity analyses. Results showed that a dispersed layer of carbon-doped TiO(2) is formed on the zeolite surface; this layer blocks the micropores of zeolites and reduces their surface area. However, these reductions did not significantly affect adsorption onto the zeolites. Our results demonstrated that zeolite-supported carbon-doped TiO(2) systems can effectively degrade 18 pharmaceuticals and pesticides in demineralized water under natural and simulated solar light irradiation. In surface and hospital wastewaters, zeolite-supported carbon-doped TiO(2) systems present excellent anti-interference capability against radical scavengers and competitive organics for pollutants removal, and higher pollutants adsorption on zeolites evidently enhances the removal rate of target pollutants in surface and hospital wastewater samples with a complicated matrix. PMID:27332831

  4. Carbon dioxide metabolism by Actinomyces viscosus: pathways for succinate and aspartate production.

    OpenAIRE

    Brown, A T; Breeding, L C

    1980-01-01

    14C-labeled bicarbonate was incorporated into trichloroacetic acid-insoluble material by cell suspensions of A. viscosus strain M100 and also into the four-carbon fermentation product, succinate, but not into the three-carbon fermentation product, lactate. The initial step in the conversion of 14C-labeled bicarbonate into both trichloroacetic acid-insoluble material and succinate was catalyzed by the enzyme phosphoenolypyruvate carboxylase, which served to convert the glycolytic intermediate,...

  5. The solar photovoltaics wedge: pathways for growth and potential carbon mitigation in the US

    International Nuclear Information System (INIS)

    The challenge of stabilizing global carbon emissions over the next 50 years has been framed in the context of finding seven 1.0 Gton C/year carbon reduction wedges. Solar photovoltaics (PV) could provide at least one carbon wedge, but will require significant growth in PV manufacturing capacity. The actual amount of installed PV capacity required to reach wedge-level carbon reductions will vary greatly depending on the mix of avoided fuels and the additional emissions from manufacturing PV capacity. In this work, we find that the US could reduce its carbon emissions by 0.25 Gton C/year, equal to the fraction of a global carbon wedge proportional to its current domestic electricity use, by installing 792-811 GW of PV capacity. We evaluate a series of PV growth scenarios and find that wedge-level reductions could be met by increasing PV manufacturing capacity and annual installations by 0.95 GW/year/year each year from 2009 to 2050 or by increasing up to 4 GW/year/year for a period of 4-17 years for early and late growth scenarios. This challenge of increasing PV manufacturing capacity and market demand is significant but not out of line with the recent rapid growth in both the global and US PV industry. We find that the rapid growth in PV manufacturing capacity leads to a short term increase in carbon emissions from the US electric sector. However, this increase is small, contributing less than an additional 0.3% to electric sector emissions for less than 4.5 years, alleviating recent concern regarding carbon emissions from rapid PV growth scenarios.

  6. UV/H2O2degradation of the antidepressants venlafaxine and O-desmethylvenlafaxine: Elucidation of their transformation pathway and environmental fate.

    Science.gov (United States)

    García-Galán, Ma Jesús; Anfruns, Alba; Gonzalez-Olmos, Rafael; Rodríguez-Mozaz, Sara; Comas, Joaquim

    2016-07-01

    The aim of the present work is to investigate the removal and transformation of the antidepressants venlafaxine (VFX) and its main metabolite O-desmethylvenlafaxine (DVFX) upon advanced oxidation with UV/H2O2 under lab conditions. High-resolution mass spectrometry (HRMS) analyses were carried out by means of ultra-high pressure liquid chromatography (UHPLC)-linear ion trap high resolution Orbitrap instrument (LTQ-Orbitrap-MS) in order to elucidate the different transformation products (TPs) generated. The depletion of both VFX and DVFX was very significant, with the 99.9% of both compounds eliminated after 5 and 30 min of reaction, respectively. Eleven TPs for VFX and six for DVFX were detected and their molecular structures elucidated by means of MS(2) and MS(3) scans, and the corresponding degradation pathways were proposed. The combined ecotoxicity at different treatment times was evaluated by means of bioluminescence inhibition assays with the marine bacteria Vibrio fischeri. Results showed an increase in the ecotoxicity during the UV/H2O2 experiment, especially at those reaction times where the total abundance of TPs was higher. PMID:26954478

  7. The Drosophila insulin-degrading enzyme restricts growth by modulating the PI3K pathway in a cell-autonomous manner.

    Science.gov (United States)

    Galagovsky, Diego; Katz, Maximiliano J; Acevedo, Julieta M; Sorianello, Eleonora; Glavic, Alvaro; Wappner, Pablo

    2014-03-01

    Mammalian insulin-degrading enzyme (IDE) cleaves insulin, among other peptidic substrates, but its function in insulin signaling is elusive. We use the Drosophila system to define the function of IDE in the regulation of growth and metabolism. We find that either loss or gain of function of Drosophila IDE (dIDE) can restrict growth in a cell-autonomous manner by affecting both cell size and cell number. dIDE can modulate Drosophila insulin-like peptide 2 levels, thereby restricting activation of the phosphatidylinositol-3-phosphate kinase pathway and promoting activation of Drosophila forkhead box, subgroup O transcription factor. Larvae reared in high sucrose exhibit delayed developmental timing due to insulin resistance. We find that dIDE loss of function exacerbates this phenotype and that mutants display increased levels of circulating sugar, along with augmented expression of a lipid biosynthesis marker. We propose that dIDE is a modulator of insulin signaling and that its loss of function favors insulin resistance, a hallmark of diabetes mellitus type II.

  8. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling.

    Science.gov (United States)

    Ahuactzin-Pérez, Miriam; Tlecuitl-Beristain, Saúl; García-Dávila, Jorge; González-Pérez, Manuel; Gutiérrez-Ruíz, María Concepción; Sánchez, Carmen

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (Xmax), biodegradation constant of DEHP (k), half-life (t1/2) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000mg/L). The greatest μ and the largest Xmax occurred in media supplemented with 1000mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000mg/L) within 60h of growth. The k and t1/2 were 0.024h(-1) and 28h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC-MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP.

  9. Hydrogen "leakage" during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments

    DEFF Research Database (Denmark)

    Finke, Niko; Hoehler, Tori Michael; Jørgensen, Bo Barker

    2007-01-01

      The effect of variations in H2 concentrations on methanogenesis from the non-competitive substrates methanol and methylamine (used by methanogens but not by sulfate reducers) was investigated in methanogenic marine sediments. Imposed variations in sulfate concentration and temperature were used...... concentration, independent of the treatment, with lower H2 concentrations resulting in a shift towards CO2. We conclude that this correlation is driven by production of H2 by methylotrophic methanogens, followed by loss to the environment with a magnitude dependent on the extracellular H2 concentrations...... maintained by hydrogenotrophic methanogens (in the case of the temperature experiment) or sulfate reducers (in the case of the sulfate experiment). Under sulfate-free conditions, the loss of reducing power as H2 flux out of the cell represents a loss of energy for the methylotrophic methanogens while...

  10. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A

    Directory of Open Access Journals (Sweden)

    Gunsalus Robert P

    2010-02-01

    Full Text Available