WorldWideScience

Sample records for carbon cycle feedback

  1. Cenozoic carbon cycle imbalances and a variable weathering feedback

    Science.gov (United States)

    Caves, Jeremy K.; Jost, Adam B.; Lau, Kimberly V.; Maher, Kate

    2016-09-01

    The long-term stability of Earth's climate and the recovery of the ocean-atmosphere system after carbon cycle perturbations are often attributed to a stabilizing negative feedback between silicate weathering and climate. However, evidence for the operation of this feedback over million-year timescales and in response to tectonic and long-term climatic change remains scarce. For example, the past 50 million years of the Cenozoic Era are characterized by long-term cooling and declining atmospheric CO2 (pCO2). During this interval, constant or decreasing carbon fluxes from the solid Earth to the atmosphere suggest that stable or decreasing weathering fluxes are needed to balance the carbon cycle. In contrast, marine isotopic proxies of weathering (i.e., 87Sr/86Sr, δ7 Li , and 187Os/188Os) are interpreted to reflect increasing weathering fluxes. Here, we evaluate the existence of a negative feedback by reconstructing the imbalance in the carbon cycle during the Cenozoic using the surface inventories of carbon and alkalinity. Only a sustained 0.25-0.5% increase in silicate weathering is necessary to explain the long-term decline in pCO2 over the Cenozoic. We propose that the long-term decrease in pCO2 is due to an increase in the strength of the silicate weathering feedback (i.e., the constant of proportionality between the silicate weathering flux and climate), rather than an increase in the weathering flux. This increase in the feedback strength, which mirrors the marine isotope proxies, occurs as transient, 1 million year timescales remains invariant to match the long-term inputs of carbon. Over the Cenozoic, this results in stable long-term weathering fluxes even as pCO2 decreases. We attribute increasing feedback strength to a change in the type and reactivity of rock in the weathering zone, which collectively has increased the reactivity of the surface of the Earth. Increasing feedback strength through the Cenozoic reconciles mass balance in the carbon cycle with

  2. Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks

    Science.gov (United States)

    Mystakidis, Stefanos; Seneviratne, Sonia I.; Gruber, Nicolas; Davin, Edouard L.

    2017-01-01

    The feedbacks between climate, atmospheric CO2 concentration and the terrestrial carbon cycle are a major source of uncertainty in future climate projections with Earth systems models. Here, we use observation-based estimates of the interannual variations in evapotranspiration (ET), net biome productivity (NBP), as well as the present-day sensitivity of NBP to climate variations, to constrain globally the terrestrial carbon cycle feedbacks as simulated by models that participated in the fifth phase of the coupled model intercomparison project (CMIP5). The constraints result in a ca. 40% lower response of NBP to climate change and a ca. 30% reduction in the strength of the CO2 fertilization effect relative to the unconstrained multi-model mean. While the unconstrained CMIP5 models suggest an increase in the cumulative terrestrial carbon storage (477 PgC) in response to an idealized scenario of 1%/year atmospheric CO2 increase, the constraints imply a ca. 19% smaller change. Overall, the applied emerging constraint approach offers a possibility to reduce uncertainties in the projections of the terrestrial carbon cycle, which is a key determinant of the future trajectory of atmospheric CO2 concentration and resulting climate change.

  3. Explaining the eventual transient saturation of climate-carbon cycle feedback

    Directory of Open Access Journals (Sweden)

    Eliseev Alexey V

    2008-04-01

    Full Text Available Abstract Background Coupled climate-carbon cycle simulations generally show that climate feedbacks amplify the buildup of CO2 under respective anthropogenic emission. The effect of climate-carbon cycle feedback is characterised by the feedback gain: the relative increase in CO2 increment as compared to uncoupled simulations. According to the results of the recent Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP, the gain is expected to increase during the 21st century. This conclusion is not supported by the climate model developed at the A.M. Obukhov Institute of Atmospheric Physics at the Russian Academy of Sciences (IAP RAS CM. The latter model shows an eventual transient saturation of the feedback gain. This saturation is manifested in a change of climate-carbon cycle feedback gain which grows initially, attains a maximum, and then decreases, eventually tending to unity. Results Numerical experiments with the IAP RAS CM as well as an analysis of the conceptual framework demonstrate that this eventual transient saturation results from the fact that transient climate sensitivity decreases with time. Conclusion One may conclude that the eventual transient saturation of the climate-carbon cycle feedback is a fundamental property of the coupled climate-carbon system that manifests itself on a relevant time scale.

  4. Soil biotic interactions and climate change: consequences for carbon cycle feedbacks

    Science.gov (United States)

    Bardgett, Richard

    2015-04-01

    There is currently much interest in understanding the biological mechanisms that regulate carbon exchanges between land and atmosphere, and how these exchanges respond to climate change. Climate change impacts on biogeochemical cycles via a variety of mechanisms; but there is now mounting evidence that biotic interactions between plants and diverse soil communities play a major role in determining carbon cycle responses to climate change across a range of spatial and temporal scales. Over seasonal and annual timescales, climate change impacts the growth and physiology of plants and their roots, with knock on effects for the activity of soil biota and carbon transformations; in the longer term, over tens to hundreds of years, climate change can cause shifts in community composition, and species range expansions and contractions, with cascading impacts on belowground communities and carbon cycling in soil. These responses have local and, potentially, global scale implications for carbon cycle feedbacks. In this talk, I will draw on recent research to illustrate this hierarchy of plant-soil feedback responses to climate change, the mechanisms involved, and consequences for the carbon cycle at local and global scales. I will also discuss how such knowledge on plant-soil interactions might be harnessed to inform management strategies for soil carbon sequestration and mitigation of climate change, and identify some major research challenges for the future.

  5. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

  6. Global warming and marine carbon cycle feedbacks on future atmospheric CO2

    Science.gov (United States)

    Joos; Plattner; Stocker; Marchal; Schmittner

    1999-04-16

    A low-order physical-biogeochemical climate model was used to project atmospheric carbon dioxide and global warming for scenarios developed by the Intergovernmental Panel on Climate Change. The North Atlantic thermohaline circulation weakens in all global warming simulations and collapses at high levels of carbon dioxide. Projected changes in the marine carbon cycle have a modest impact on atmospheric carbon dioxide. Compared with the control, atmospheric carbon dioxide increased by 4 percent at year 2100 and 20 percent at year 2500. The reduction in ocean carbon uptake can be mainly explained by sea surface warming. The projected changes of the marine biological cycle compensate the reduction in downward mixing of anthropogenic carbon, except when the North Atlantic thermohaline circulation collapses.

  7. Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)

    Science.gov (United States)

    Sakaguchi, K.; Zeng, X.; Leung, LR; Shao, P.

    2016-12-01

    Land carbon sensitivity to atmospheric CO2 concentration (βL) and climate warming (γL) is a crucial part of carbon-climate feedbacks that affect the magnitude of future warming. Although these sensitivities can be estimated by earth system models, their dependence on model representation of land carbon dynamics and the inherent model assumptions has rarely been investigated. Using the widely used Community Land Model version 4 as an example, we examine how βL and γL vary with prescribed versus dynamic vegetation covers. Both sensitivities are found to be larger with dynamic compared to prescribed vegetation on decadal timescale in the late twentieth century, with a more robust difference in γL. The latter is a result of dynamic vegetation model deficiencies in representing the competitions between deciduous versus evergreen trees and tree versus grass over the tropics and subtropics. The biased vegetation cover changes the regional characteristics of carbon-nitrogen cycles such that plant productivity responds less strongly to the enhancement of nitrogen mineralization with warming, so more carbon is lost to the atmosphere with rising temperature. The result calls for systematic evaluations of land carbon sensitivities with varying assumptions for land cover representations to help prioritize development effort and constrain uncertainties in carbon-climate feedbacks.

  8. Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks

    Science.gov (United States)

    MacDougall, Andrew H.; Knutti, Reto

    2016-06-01

    The global carbon cycle is sensitive to changes in global temperature and atmospheric CO2 concentration, with increased temperature tending to reduce the efficiency of carbon sinks and increased CO2 enhancing the efficiency of carbon sinks. The emission of non-CO2 greenhouse gases warms the Earth but does not induce the CO2 fertilization effect or increase the partial-pressure gradient between the atmosphere and the surface ocean. Here we present idealized climate model experiments that explore the indirect interaction between non-CO2 forcing and the carbon cycle. The experiments suggest that this interaction enhances the warming effect of the non-CO2 forcing by up to 25% after 150 years and that much of the warming caused by these agents lingers for over 100 years after the dissipation of the non-CO2 forcing. Overall, our results suggest that the longer emissions of non-CO2 forcing agents persists the greater effect these agents will have on global climate.

  9. The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets.

    Science.gov (United States)

    Edson, Adam R; Kasting, James F; Pollard, David; Lee, Sukyoung; Bannon, Peter R

    2012-06-01

    Atmospheric gaseous constituents play an important role in determining the surface temperatures and habitability of a planet. Using a global climate model and a parameterization of the carbonate-silicate cycle, we explored the effect of the location of the substellar point on the atmospheric CO(2) concentration and temperatures of a tidally locked terrestrial planet, using the present Earth continental distribution as an example. We found that the substellar point's location relative to the continents is an important factor in determining weathering and the equilibrium atmospheric CO(2) level. Placing the substellar point over the Atlantic Ocean results in an atmospheric CO(2) concentration of 7 ppmv and a global mean surface air temperature of 247 K, making ∼30% of the planet's surface habitable, whereas placing it over the Pacific Ocean results in a CO(2) concentration of 60,311 ppmv and a global temperature of 282 K, making ∼55% of the surface habitable.

  10. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-11-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  11. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    J. T. Mathis

    2009-07-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −65 to −175 Tg C year−1, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean is an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater that is counteracted by seasonal phytoplankton primary production (PP. Biological processes drive divergent trajectories for Ω in surface and subsurface waters of Arctic shelves with subsurface water experiencing undersaturation with respect to aragonite and calcite. Thus, in response to increased sea-ice loss, warming and enhanced phytoplankton PP, the benthic ecosystem of the Arctic shelves are expected to be negatively impacted by the biological amplification of ocean acidification. This in turn reduces the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems.

  12. FeedbackBetweenHumanActivitiesAndTerrestrialCarbonCyclesInSystemsOfShadeCoffeePro ductionInMexico

    Science.gov (United States)

    Pena Del Valle, A. E.; Perez-Samayoa, I. A.

    2007-12-01

    Coffee production in Mexico is carried out within a strong natural context. Coffee is grown under a canopy of several native and introduced tree species. This fact ensures a greater diversity of natural resources and environmental services available for local inhabitants to sustain their livelihoods. However, the lack of opportunities for coffee farmers is increasing the demand over the remaining forest areas by exacerbating non- sustainable timber extraction practices and promoting conversion of forests to pasture lands. This situation hampers the landscapes equilibrium and threatens the wellbeing of rural livelihoods. To understand the interactions between human activities and ecological functions associated with shaded coffee systems, this research has explored the extent to which socio-economic and cultural factors have influenced the use and management of natural resources sustaining coffee livelihoods. At the same time, it examines how customary patterns of resource use have induced changes in the terrestrial carbon cycle at the local level. The empirical study was carried out in a coffee-growing region in Mexico. It involved substantial fieldwork, use of satellite imagery, and participatory research methods in order to gauge a variety of biophysical and socio- economic factors, including forest cover, land use, and carbon balances, as well as, farming practices and off- farming strategies. In addition, a livelihood perspective was applied to approach the linkages between the management of natural resources, the environmental goods and services, and the socio-economic conditions in the coffee-growing region. The empirical evidence from the research marks out shade coffee systems as important supporters for broader natural systems as suppliers of environmental services. However, it also suggests that non-climatic factors might have significant impacts on the local environment and therefore on the terrestrial carbon cycle. According to the research estimations

  13. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem

    Science.gov (United States)

    Govind, Ajit; Chen, Jing Ming; Ju, Weimin

    2009-06-01

    Ecosystem models that simulate biogeochemical processes usually ignore hydrological controls that govern them. It is quite possible that topographically driven water fluxes significantly influence the spatial distribution of C sources and sinks because of their large contribution to the local water balance. To investigate this, we simulated biogeochemical processes along with the associated feedback mechanisms in a boreal ecosystem using a spatially explicit hydroecological model, boreal ecosystem productivity simulator (BEPS)-TerrainLab V2.0, that has a tight coupling of ecophysiological, hydrological, and biogeochemical processes. First, the simulated dynamics of snowpack, soil temperature, net ecosystem productivity (NEP), and total ecosystem respiration (TER) were validated with high-frequency measurements for 2 years. The model was able to explain 80% of the variability in NEP and 84% of the variability in TER. Further, we investigated the influence of topographically driven subsurface base flow on soil C and N cycling and on the spatiotemporal patterns of C sources and sinks using three hydrological modeling scenarios that differed in hydrological conceptualizations. In general, the scenarios that had nonexplicit hydrological representation overestimated NEP, as opposed to the scenario that had an explicit (realistic) representation. The key processes controlling the NEP differences were attributed to the combined effects of variations in photosynthesis (due to changes in stomatal conductance and nitrogen (N) availability), heterotrophic respiration, and autotrophic respiration, all of which occur simultaneously affecting NEP. Feedback relationships were also found to exacerbate the differences. We identified six types of NEP differences (biases), of which the most commonly found was due to an underestimation of the existing C sources, highlighting the vulnerability of regional-scale ecosystem models that ignore hydrological processes.

  14. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem in Eastern Canada.

    Science.gov (United States)

    Govind, A.; Chen, J. M.; Margolis, H.

    2007-12-01

    Current estimates of terrestrial carbon overlook the effects of topographically-driven lateral flow of soil water. We hypothesize that this component, which occur at a landscape or watershed scale have significant influences on the spatial distribution of carbon, due to its large contribution to the local water balance. To this end, we further developed a spatially explicit ecohydrological model, BEPS-TerrainLab V2.0. We simulated the coupled hydrological and carbon cycle processes in a black spruce-moss ecosystem in central Quebec, Canada. The carbon stocks were initialized using a long term carbon cycling model, InTEC, under a climate change and disturbance scenario, the accuracy of which was determined with inventory plot measurements. Further, we simulated and validated several ecosystem indicators such as ET, GPP, NEP, water table, snow depth and soil temperature, using the measurements for two years, 2004 and 2005. After gaining confidence in the model's ability to simulate ecohydrological processes, we tested the influence of lateral water flow on the carbon cycle. We made three hydrological modeling scenarios 1) Explicit, were realistic lateral water routing was considered 2) Implicit where calculations were based on a bucket modeling approach 3) NoFlow, where the lateral water flow was turned off in the model. The results showed that pronounced anomalies exist among the scenarios for the simulated GPP, ET and NEP. In general, Implicit calculation overestimated GPP and underestimated NEP, as opposed to Explicit simulation. NoFlow underestimated GPP and overestimated NEP. The key processes controlling GPP were manifested through stomatal conductance which reduces under conditions of rapid soil saturation ( NoFlow ) or increases in the Implicit case, and, nitrogen availability which affects Vcmax, the maximum carboxylation rate. However, for NEP, the anomalies were attributed to differences in soil carbon pool decomposition, which determine the heterotrophic

  15. Up Against The Wall: The Effects of Climate Warming on Soil Microbial Diversity and The Potential for Feedbacks to The Carbon Cycle

    Directory of Open Access Journals (Sweden)

    Kristen M. DeAngelis

    2013-06-01

    Full Text Available Earth’s climate is warming, and there is evidence that increased temperature alters soil C cycling, which may result in a self-reinforcing (positive, microbial mediated feedback to the climate system. Though soil microbes are major drivers of soil C cycling, we lack an understanding of how temperature affects SOM decomposition. Numerous studies have explored, to differing degrees, the extent to which climate change may affect biodiversity. While there is ample evidence that community diversity begets ecosystem stability and resilience, we know of keystone species that perform functions whose effects far outweigh their relative abundance. In this paper, we first review the meaning of microbial diversity and how it relates to ecosystem function, then conduct a literature review of field-based climate warming studies that have made some measure of microbial diversity. Finally, we explore how measures of diversity may yield a larger, more complete picture of climate warming effects on microbial communities, and how this may translate to altered carbon cycling and greenhouse gas emissions. While warming effects seem to be ecosystem-specific, the lack of observable consistency between measures is due in some part to the diversity in measures of microbial diversity.

  16. Finite Feedback Cycling in Structural Equation Models

    Science.gov (United States)

    Hayduk, Leslie A.

    2009-01-01

    In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…

  17. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  18. Animating the Carbon Cycle

    OpenAIRE

    2014-01-01

    Understanding the biogeochemical processes reg- ulating carbon cycling is central to mitigating atmospheric CO2 emissions. The role of living organisms has been accounted for, but the focus has traditionally been on contributions of plants and microbes. We develop the case that fully ‘‘animating’’ the carbon cycle requires broader consideration of the functional role of animals in mediating biogeochemical processes and quanti- fication of their effects on carbon storage and exchange among ter...

  19. Managing uncertainty in soil carbon feedbacks to climate change

    Science.gov (United States)

    Bradford, Mark A.; Wieder, William R.; Bonan, Gordon B.; Fierer, Noah; Raymond, Peter A.; Crowther, Thomas W.

    2016-08-01

    Planetary warming may be exacerbated if it accelerates loss of soil carbon to the atmosphere. This carbon-cycle-climate feedback is included in climate projections. Yet, despite ancillary data supporting a positive feedback, there is limited evidence for soil carbon loss under warming. The low confidence engendered in feedback projections is reduced further by the common representation in models of an outdated knowledge of soil carbon turnover. 'Model-knowledge integration' -- representing in models an advanced understanding of soil carbon stabilization -- is the first step to build confidence. This will inform experiments that further increase confidence by resolving competing mechanisms that most influence projected soil-carbon stocks. Improving feedback projections is an imperative for establishing greenhouse gas emission targets that limit climate change.

  20. Terrestrial Carbon Cycle Variability

    Science.gov (United States)

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1), and

  1. The unstable CO2 feedback cycle on ocean planets

    CERN Document Server

    Kitzmann, D; Godolt, M; Grenfell, J L; Heng, K; Patzer, A B C; Rauer, H; Stracke, B; von Paris, P

    2015-01-01

    Ocean planets are volatile rich planets, not present in our Solar System, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilising carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong...

  2. Climate change and the permafrost carbon feedback

    Science.gov (United States)

    Schuur, E.A.G.; McGuire, Anthony; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, Susan M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.

    2015-01-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  3. Mirador - Carbon Cycle and Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. This Focus Area deals with the cycling of carbon in reservoirs and ecosystems as it changes naturally, is changed by humans,...

  4. Teacher Language Awareness in Supervisory Feedback Cycles

    Science.gov (United States)

    Lindahl, Kristen; Baecher, Laura

    2016-01-01

    This study investigates pre- and post-observation feedback provided to TESOL teacher candidates who are preparing to work in content-based instruction/content and language integrated learning contexts, extending the conceptualization of teacher language awareness (TLA) to candidate supervision. It examines the extent to which TLA is manifested by…

  5. Drought and ecosystem carbon cycling

    NARCIS (Netherlands)

    Molen, van der M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Philips, O.L.; Hurk, van den B.J.J.M.; Jeu, M.; Kruijt, B.; Teuling, A.J.; Werf, van der G.R.; Wang, G.

    2011-01-01

    Drought as an intermittent disturbance of the water cycle interacts with the carbon cycle differently than the ‘gradual’ climate change. During drought plants respond physiologically and structurally to prevent excessive water loss according to species-specific water use strategies. This has consequ

  6. Closing carbon cycles

    NARCIS (Netherlands)

    Patel, Martin

    2001-01-01

    Fossil fuels are used as raw materials for the manufacture of synthetic organic materials, e.g. plastics, fibres, synthetic rubber, paints, solvents, fertilisers, surfactants, lubricants and bitumen. Since fossil carbon is embodied in these products they may be particularly relevant to climate ch

  7. The long-term carbon cycle, fossil fuels and atmospheric composition.

    Science.gov (United States)

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  8. Carbon cycle makeover

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Kump, Lee R.

    2013-01-01

    remaining in sediments after respiration leave a residual of oxygen in the atmosphere. The source of oxygen to the atmosphere represented by organic matter burial is balanced by oxygen sinks associated with rock weathering and chemical reaction with volcanic gases. This is the long-term carbon and oxygen......In 1845, the French chemist and mining engineer Jacques-Joseph Ebelman figured out why Earth's atmosphere contains oxygen (1). Oxygen is produced by plants during photosynthesis, but almost all of this oxygen is used again in respiration. Ebelman reasoned that small amounts of organic matter...

  9. The biological carbon pump in the ocean: Reviewing model representations and its feedbacks on climate perturbations.

    Science.gov (United States)

    Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie

    2016-04-01

    The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate

  10. Managing uncertainty in soil carbon feedbacks to climate change

    NARCIS (Netherlands)

    Bradford, M.A.; Wieder, W.R.; Bonan, G.B.; Fierer, N.; Raymond, P.A.; Crowther, Thomas W.

    2016-01-01

    Planetary warming may be exacerbated if it accelerates loss of soil carbon to the atmosphere. This carbon-cycle–climate feedback is included in climate projections. Yet, despite ancillary data supporting a positive feedback, there is limited evidence for soil carbon loss under warming. The low confi

  11. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    temperature. The simulation results obtained in this study show differences in the soil biogeochemistry induced by the different crops analyzed. Considering the spatial scale at which this crops are cultivated this results suggest there could be important implications in the carbon and nitrogen cycle and indirect feedbacks on climate change. This study also helps us understand the future soil mineral cycle, and ensure a sustainable transition to bioenergy crops.

  12. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.

    Science.gov (United States)

    Lin, Junjie; Zhu, Biao; Cheng, Weixin

    2015-12-01

    The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond.

  13. Limit-cycle oscillators subject to a delayed feedback

    NARCIS (Netherlands)

    Erneux, T.; Grasman, J.

    2008-01-01

    The coexistence of two stable limit cycles exhibiting different periods is examined for a nonlinear oscillator subject to a delayed feedback. For the case of a weakly nonlinear oscillator, we discuss the validity of a previously determined phase equation. For the case of a strongly nonlinear oscilla

  14. Carbon cycle uncertainty in the Alaskan Arctic

    Directory of Open Access Journals (Sweden)

    J. B. Fisher

    2014-02-01

    Full Text Available Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for Alaska, we provide a baseline of terrestrial carbon cycle structural and parametric uncertainty, defined as the multi-model standard deviation (σ against the mean (x for each quantity. Mean annual uncertainty (σ/x was largest for net ecosystem exchange (NEE (−0.01± 0.19 kg C m−2 yr−1, then net primary production (NPP (0.14 ± 0.33 kg C m−2 yr−1, autotrophic respiration (Ra (0.09 ± 0.20 kg C m−2 yr−1, gross primary production (GPP (0.22 ± 0.50 kg C m−2 yr−1, ecosystem respiration (Re (0.23 ± 0.38 kg C m−2 yr−1, CH4 flux (2.52 ± 4.02 g CH4 m−2 yr−1, heterotrophic respiration (Rh (0.14 ± 0.20 kg C m−2 yr−1, and soil carbon (14.0± 9.2 kg C m−2. The spatial patterns in regional carbon stocks and fluxes varied widely with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Additionally, a feedback (i.e., sensitivity analysis was conducted of 20th century NEE to CO2 fertilization (β and climate (γ, which showed that uncertainty in γ was 2x larger than that of β, with neither indicating that the Alaskan Arctic is shifting towards a certain net carbon sink or source. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic.

  15. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.

    Science.gov (United States)

    Ramsey, Kathryn Moynihan; Yoshino, Jun; Brace, Cynthia S; Abrassart, Dana; Kobayashi, Yumiko; Marcheva, Biliana; Hong, Hee-Kyung; Chong, Jason L; Buhr, Ethan D; Lee, Choogon; Takahashi, Joseph S; Imai, Shin-Ichiro; Bass, Joseph

    2009-05-01

    The circadian clock is encoded by a transcription-translation feedback loop that synchronizes behavior and metabolism with the light-dark cycle. Here we report that both the rate-limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), and levels of NAD+ display circadian oscillations that are regulated by the core clock machinery in mice. Inhibition of NAMPT promotes oscillation of the clock gene Per2 by releasing CLOCK:BMAL1 from suppression by SIRT1. In turn, the circadian transcription factor CLOCK binds to and up-regulates Nampt, thus completing a feedback loop involving NAMPT/NAD+ and SIRT1/CLOCK:BMAL1.

  16. Climate extremes and the carbon cycle (Invited)

    Science.gov (United States)

    Reichstein, M.; Bahn, M.; Ciais, P.; Mahecha, M. D.; Seneviratne, S. I.; Zscheischler, J.

    2013-12-01

    long recovery time to re-gain the stock level previous to the extreme event impact. Given shorter regrowth times, grasslands are expected to recover more quickly from extremes than forests. Yet, degradation feedbacks come into play, where drought triggers loss of vegetation and heavy rain or wind causes subsequent erosion. Thus, an increase in the frequency of extreme events in some regions may contribute to e.g. desertification of semi-arid to arid grassland, in particular when (over-) grazing is an additional pressure. Croplands are also exposed to extremes with impacts on carbon cycling that are harder to disentangle as negative effects can be mitigated through evasive and adaptive farm management actions provided that sufficient resources are available. In most climatic zones, productivity and carbon sequestration potential of terrestrial ecosystems are strongly influenced by droughts that are a main source of inter-annual variation in terrestrial carbon sequestration. The expected regional impact of future climate extremes depends on changes in the occurrence probability of extremes, the compounded effects and timing of different extremes, the vulnerability of each land-cover type, the current mean climate in relation to the functioning of the ecosystem under consideration, and the ability to apply adaptive management.

  17. Material Flows and Carbon Cycles

    Science.gov (United States)

    Worrell, E.

    2003-12-01

    The industrial sector emits almost 43 percent of the global anthropogenic carbon dioxide emissions to produce materials and products. Furthermore, energy is used to move materials and products and process the waste. Hence, a large amount of energy is consumed and CO2 is emitted to sustain our materials system. Until recently, studies investigating mitigation options focused on changes in the energy system. For industrial processes most studies evaluate how the current materials system can be maintained producing fewer greenhouse gas emissions. Three elements of a strategy to improve the long-term materials productivity are the reduction of dissipative uses of non-biodegradable materials, secondly, the re-design of products to use less material or design for re-use or recycling, and thirdly, develop more efficient technologies for material conversion and recycling. This will reduce or eliminate the need to extract virgin materials from the environment, and reduce CO2 emissions from the energy-intensive production processes. To assess measures to reduce materials consumption, fossil fuels consumption and CO2 emissions, detailed understanding of the material system is needed. The lifecycle of materials has to be investigated including all branches of industry with all the inputs and outputs. We start with a discussion of materials and the carbon cycle focusing on the contribution of materials to anthropogenic carbon flows. We discuss CO2 emissions from energy use in materials extraction and production, fossil (e.g. plastics) and biomass carbon (e.g. lumber, paper) used as feedstock of materials, and mineral sources (e.g. cement). We discuss opportunities to reduce CO2 emissions by improving the efficiency with which society uses materials through product design, material substitution, product reuse and material recycling.

  18. Carbon Stock and Carbon Cycle of Wetland Ecosystem

    Institute of Scientific and Technical Information of China (English)

    Zhangquan; ZENG; Canming; ZHANG; Jiao; LI; Nan; YANG; Xihao; LI; Yandong; NIU; Zijian; WU

    2014-01-01

    Wetland ecosystem is an essential ecosystem in the world. Its organic carbon stock and carbon cycle are important basis of global carbon cycle researches and also major contents of global climate change researches. Researches have shown that wetland protection and restoration can promote carbon accumulation and reduce emission of greenhouse gases. This paper discussed influence of carbon stock and carbon balance of wetland ecosystem and emission of greenhouse gases,as well as the relationship between wetland and global climate changes. Finally,it made prospect on researches about carbon cycle of Dongting Lake.

  19. Observing terrestrial ecosystems and the carbon cycle from space

    Energy Technology Data Exchange (ETDEWEB)

    Schimel, David [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91101 USA; Pavlick, Ryan [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91101 USA; Fisher, Joshua B. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91101 USA; Asner, Gregory P. [Department of Global Ecology, Carnegie Institution for Science, 260 Panama St. Stanford CA 94305 USA; Saatchi, Sassan [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91101 USA; Townsend, Philip [University of Wisconsin-Madison, Madison WI 53706 USA; Miller, Charles [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91101 USA; Frankenberg, Christian [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91101 USA; Hibbard, Kathy [Pacific Northwest National Laboratory, PO Box 999 MSIN: K9-34 Richland WA 99352 USA; Cox, Peter [College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road Streatham Campus Harrison Building Exeter EX4 4QF UK

    2015-02-06

    Modeled terrestrial ecosystem and carbon cycle feedbacks contribute substantial uncertainty to projections of future climate. The limitations of current observing networks contribute to this uncertainty. Here we present a current climatology of global model predictions and observations for photosynthesis, biomass, plant diversity and plant functional diversity. Carbon cycle tipping points occur in terrestrial regions where fluxes or stocks are largest, and where biological variability is highest, the tropics and Arctic/Boreal zones. Global observations are predominately in the mid-latitudes and are sparse in high and low latitude ecosystems. Observing and forecasting ecosystem change requires sustained observations of sufficient density in time and space in critical regions. Using data and theory available now, we can develop a strategy to detect and forecast terrestrial carbon cycle-climate interactions, by combining in situ and remote techniques.

  20. Authigenic Carbonate and the History of the Global Carbon Cycle

    Science.gov (United States)

    Schrag, Daniel P.; Higgins, John. A.; Macdonald, Francis A.; Johnston, David T.

    2013-02-01

    We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O2 or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic.

  1. Role of volcanic forcing on future global carbon cycle

    Directory of Open Access Journals (Sweden)

    J. F. Tjiputra

    2011-06-01

    Full Text Available Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even

  2. Role of volcanic forcing on future global carbon cycle

    Science.gov (United States)

    Tjiputra, J. F.; Otterå, O. H.

    2011-06-01

    Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink) on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where

  3. Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates

    DEFF Research Database (Denmark)

    Thum, T.; Raisanen, P.; Sevanto, S.

    2011-01-01

    model formulation produced soil carbon stock estimates that were much closer to measured values. It also captured better the seasonal cycle of the direct CO2 exchange measurements at the three grassland sites considered (RMS error reduced by 12%), while for the five forest sites also analyzed......The response of soil organic carbon to climate change might lead to significant feedbacks affecting global warming. This response can be studied by coupled climate-carbon cycle models but so far the description of soil organic carbon cycle in these models has been quite simple. In this work we used...... the coupled climate-carbon cycle model ECHAM5/JSBACH (European Center/Hamburg Model 5/Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) with two different soil carbon modules, namely (1) the original soil carbon model of JSBACH called CBALANCE and (2) a new soil carbon model Yasso07, to study...

  4. Carbon cycle in advanced coal chemical engineering.

    Science.gov (United States)

    Yi, Qun; Li, Wenying; Feng, Jie; Xie, Kechang

    2015-08-07

    This review summarizes how the carbon cycle occurs and how to reduce CO2 emissions in highly efficient carbon utilization from the most abundant carbon source, coal. Nowadays, more and more attention has been paid to CO2 emissions and its myriad of sources. Much research has been undertaken on fossil energy and renewable energy and current existing problems, challenges and opportunities in controlling and reducing CO2 emission with technologies of CO2 capture, utilization, and storage. The coal chemical industry is a crucial area in the (CO2 value chain) Carbon Cycle. The realization of clean and effective conversion of coal resources, improving the utilization and efficiency of resources, whilst reducing CO2 emissions is a key area for further development and investigation by the coal chemical industry. Under a weak carbon mitigation policy, the value and price of products from coal conversion are suggested in the carbon cycle.

  5. Human energy use and the carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.L. [National Round Table on the Environment and the Economy (Canada)

    2001-07-01

    This paper discusses the close connection between human energy use and the Carbon Cycle. The movement of Carbon from the atmosphere to organic (living) matter and then back to atmosphere is called the Carbon Cycle and can be considered the basic infrastructure for life itself. In the process, some of the organic matter becomes trapped in the earth and in the oceans; some of what is trapped becomes, over millions of years, Carbon-based fuels known as 'fossil fuels'. This paper concludes that climate change is primarily an energy problem, not a pollution problem, and discusses various options and technologies to lower energy consumption.

  6. Clustering in Cell Cycle Dynamics with General Response/Signaling Feedback

    CERN Document Server

    Young, Todd; Buckalew, Richard; Moses, Gregory; Boczko, Erik; 10.1016/j.jtbi.2011.10.002.

    2011-01-01

    Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call Responsive/Signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behaviour of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as "uniform" solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude fr...

  7. Interglacials, Milankovitch Cycles, and Carbon Dioxide

    CERN Document Server

    Marsh, Gerald E

    2010-01-01

    The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  8. Hyperdominance in Amazonian forest carbon cycling

    NARCIS (Netherlands)

    Fauset, S.; Arets, E.J.M.M.; Steege, ter H.; Pena Claros, M.; Poorter, L.; Levis, C.; Toledo, M.

    2015-01-01

    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant’ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem

  9. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  10. Permafrost soils and carbon cycling

    OpenAIRE

    Ping, C. L.; J. D. Jastrow; Jorgenson, M. T.; G. J. Michaelson; Y. L. Shur

    2015-01-01

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This...

  11. Cycling of black carbon in the ocean

    OpenAIRE

    2016-01-01

    Black carbon (BC) is a byproduct of combustion from wildfires and fossil fuels and is a slow-cycling component of the carbon cycle. Whether BC accumulates and ages on millennial timescales in the world oceans has remained unknown. Here, we quantified dissolved BC (DBC) in marine dissolved organic carbon (DOC) isolated by solid phase extraction (SPE) at several sites in the world ocean. We find that DBC in the Atlantic, Pacific and Arctic oceans ranges from 1.4 to 2.6 μM in the surface and is ...

  12. Chemical Oceanography and the Marine Carbon Cycle

    Science.gov (United States)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  13. Atmospheric carbon dioxide and the global carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Trabalka, J R [ed.

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  14. Quantifying the effect of nighttime interactions between roots and canopy physiology and their control of water and carbon cycling on feedbacks between soil moisture and terrestrial climatology under variable environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Domec, Jean-Christophe [North Carolina State Univ., Raleigh, NC (United States); Palmroth, Sari [Duke Univ., Durham, NC (United States); Oren, Ram [Duke Univ., Durham, NC (United States); Swenson, Jennifer [Duke Univ., Durham, NC (United States); King, John S. [North Carolina State Univ., Raleigh, NC (United States); Noormets, Asko [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-01

    The primary objective of this project is to characterize and quantify how the temporal variability of hydraulic redistribution (HR) and its physiological regulation in unmanaged and complex forests is affecting current water and carbon exchange and predict how future climate scenarios will affect these relationships and potentially feed back to the climate. Specifically, a detailed study of ecosystem water uptake and carbon exchange in relation to root functioning was proposed in order to quantify the mechanisms controlling temporal variability of soil moisture dynamic and HR in three active AmeriFlux sites, and to use published data of two other inactive AmeriFlux sites. Furthermore, data collected by our research group at the Duke Free Air CO2 enrichment (FACE) site was also being utilized to further improve our ability to forecast future environmental impacts of elevated CO2 concentration on soil moisture dynamic and its effect on carbon sequestration and terrestrial climatology. The overarching objective being to forecast, using a soil:plant:atmosphere model coupled with a biosphere:atmosphere model, the impact of root functioning on land surface climatology. By comparing unmanaged sites to plantations, we also proposed to determine the effect of land use change on terrestrial carbon sequestration and climatology through its effect on soil moisture dynamic and HR. Our simulations of HR by roots indicated that in some systems HR is an important mechanism that buffers soil water deficit, affects energy and carbon cycling; thus having significant implications for seasonal climate. HR maintained roots alive and below 70% loss of conductivity and our simulations also showed that the increased vapor pressure deficit at night under future conditions was sufficient to drive significant nighttime transpiration at all sites, which reduced HR. This predicted reduction in HR under future climate conditions played an important regulatory role in land atmosphere interactions

  15. Biogeophysical feedbacks enhance Arctic terrestrial carbon sink in regional Earth system dynamics

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2014-05-01

    Full Text Available Continued warming of the Arctic will likely accelerate terrestrial carbon (C cycling by increasing both uptake and release of C. There are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based an either stand-alone process-based models or coupled climate–C cycle general circulation models, in either case disregarding biogeophysical feedbacks of land surface changes to the atmosphere. To understand how biogeophysical feedbacks will impact on both climate and C budget over Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an GCMs CMIP5 climate projection under the RCP 8.5 scenario. We perform two simulations with or without interactive vegetation dynamics respectively to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until 2060s–2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are considerable, around 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. Albedo feedback dominates over winter and spring season, amplifying the near-surface warming by up to 1.35 K in spring, while evapotranspiration feedback dominates over summer exerting the evaporative cooling by up to 0.81 K. Such feedbacks stimulate vegetation growth with an earlier onset of growing-season, leading to compositional changes in woody plants and vegetation

  16. Estimating the near-surface permafrost-carbon feedback on global warming

    Directory of Open Access Journals (Sweden)

    T. Schneider von Deimling

    2012-02-01

    Full Text Available Thawing of permafrost and the associated release of carbon constitutes a positive feedback in the climate system, elevating the effect of anthropogenic GHG emissions on global-mean temperatures. Multiple factors have hindered the quantification of this feedback, which was not included in climate carbon-cycle models which participated in recent model intercomparisons (such as the Coupled Carbon Cycle Climate Model Intercomparison Project – C4MIP . There are considerable uncertainties in the rate and extent of permafrost thaw, the hydrological and vegetation response to permafrost thaw, the decomposition timescales of freshly thawed organic material, the proportion of soil carbon that might be emitted as carbon dioxide via aerobic decomposition or as methane via anaerobic decomposition, and in the magnitude of the high latitude amplification of global warming that will drive permafrost degradation. Additionally, there are extensive and poorly characterized regional heterogeneities in soil properties, carbon content, and hydrology. Here, we couple a new permafrost module to a reduced complexity carbon-cycle climate model, which allows us to perform a large ensemble of simulations. The ensemble is designed to span the uncertainties listed above and thereby the results provide an estimate of the potential strength of the feedback from newly thawed permafrost carbon. For the high CO2 concentration scenario (RCP8.5, 33–114 GtC (giga tons of Carbon are released by 2100 (68 % uncertainty range. This leads to an additional warming of 0.04–0.23 °C. Though projected 21st century permafrost carbon emissions are relatively modest, ongoing permafrost thaw and slow but steady soil carbon decomposition means that, by 2300, about half of the potentially vulnerable permafrost carbon stock in the upper 3 m of soil layer (600–1000 GtC could be released as CO2, with an extra 1–4 % being released as methane. Our results also

  17. A Scientific Synthesis and Assessment of the Arctic Carbon Cycle

    Science.gov (United States)

    Hayes, Daniel J.; Guo, Laodong; McGuire, A. David

    2007-06-01

    The Arctic Monitoring and Assessment Programme (AMAP), along with the Climate and Cryosphere (CliC) Project and the International Arctic Science Committee (IASC), sponsored the Arctic Carbon Cycle Assessment Workshop, at the Red Lion Hotel in Seattle, Wash., between 27 February and 1 March 2007. The workshop was held in a general effort toward the scientific synthesis and assessment of the Arctic system carbon cycle, as well as to generate feedback on the working draft of an assessment document. The initial assessment was prepared by the Arctic carbon cycle assessment writing team, which is led by A. David McGuire (University of Alaska Fairbanks) and includes Leif Anderson (Goteborg University, Sweden), Torben Christensen (Lund University, Sweden), Scott Dallimore (Natural Resources Canada), Laodong Guo (University of Southern Mississippi), Martin Heimann (Max Planck Institute, Germany), Robie MacDonald (Department of Fisheries and Oceans, Canada), and Nigel Roulet (McGill University, Canada). The workshop brought together leading researchers in the fields of terrestrial, marine, and atmospheric science to report on and discuss the current state of knowledge on contemporary carbon stocks and fluxes in the Artie and their potential responses to a changing climate. The workshop was attended by 35 scientists representing institutions from 10 countries in addition to two representatives of the sponsor agencies (John Calder for AMAP and Diane Verseghy for CliC).

  18. Evolution of Sustainable Carbon Cycling Processes in China

    Institute of Scientific and Technical Information of China (English)

    Zhuang Yahui; Zhang Hongxun; Wang Xiaoke; Fang Jinyun

    2004-01-01

    This report summarizes the surveys on carbon inventories and initiatives on sustainable carbon cycling taken by RCEES. The first part of this report deals with the concept of sustainable carbon cycling, the historical evolution of carbon cycling processes in China, carbon pool enhancement, value addition, carbon sequestration and carbon balance.The second part covers the modeling of carbon dynamics, emission inventories of various carboncontaining greenhouse gases and their potential abatement measures.

  19. Modelling the carbon and nitrogen cycles

    Directory of Open Access Journals (Sweden)

    Costas A Varotsos

    2014-04-01

    Full Text Available The issues of air pollution are inextricably linked to the mechanisms underlying the physicochemical functioning of the biosphere which together with the atmosphere, the cryosphere, the lithosphere, and the hydrosphere constitute the climate system. We herewith present a review of the achievements and unresolved problems concerning the modeling of the biochemical cycles of basic chemicals of the climate system, such as carbon and nitrogen. Although the achievements in this area can roughly describe the carbon and nitrogen cycles, serious problems still remain associated with the accuracy and precision of the processes and assessments employed in the relevant modeling.

  20. Implications of carbon dust emission for terrestrail carbon cycling and carbon accounting

    Science.gov (United States)

    Wind erosion preferentially removes the finest carbon- and nutrient-rich soil fractions, and consequently its role may be significant within terrestrial carbon (C) cycles. However, the impacts of wind erosion on soil organic carbon (SOC) redistribution are not considered in most carbon cycle models,...

  1. Africa and the global carbon cycle

    Directory of Open Access Journals (Sweden)

    Denning A Scott

    2007-03-01

    Full Text Available Abstract The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO2. Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century.

  2. Global Carbon Cycle of the Precambrian Earth

    DEFF Research Database (Denmark)

    Wiewióra, Justyna

    to investigate carbon fluxes between Precambrian Earth’s mantle and crust and to trace the evolution of life in the Eoarchaean oceans. The world’s desire for diamonds gives us a unique opportunity to obtain insight into the nature of metasomatic fluids affecting the subcratonic lithospheric mantle (SCLM) beneath...... derived from surface water. Partitioning of carbon between 13C-rich oxidized and 13C-poor reduced species indicates that life in the early ocean had to be well evolved before 3.8 Ga. Therefore, the Isua ultramafic rocks may be considered as an indirect biomarker for ancient life.......The carbon isotopic composition of distinct Archaean geological records provides information about the global carbon cycle and emergence of life on early Earth. We utilized carbon isotopic records of Greenlandic carbonatites, diamonds, graphites, marbles, metacarbonates and ultramafic rocks...

  3. The carbon cycle in oceans; Le cycle du carbone dans les oceans

    Energy Technology Data Exchange (ETDEWEB)

    Dandonneau, Y. [Paris-6 Univ., CNRS, ORSTOM, 75 (France). Laboratoire d`Oceanographie Dynamique et de Climatologie

    1998-10-01

    Because of his activity, the human being increases the carbon dioxide emission and the greenhouse effect resulting. To forecast the consequences resulting from this increase, the scientists have to assess the ocean capacity to stock the carbon. This paper deals with the carbon dioxide emissions and with the possible methods to evaluate the carbon content on the various step of the cycle. (A.L.B.)

  4. Warm Spring Reduced Impact of Summer Drought on Carbon Cycling

    Science.gov (United States)

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; Baldocchi, Dennis

    2015-04-01

    Drought severely impacts biosphere-atmosphere carbon and water fluxes of terrestrial ecosystems by reducing productivity, carbon uptake and water transport to the atmosphere. The 2012 US drought was among the most intense and widespread drought events in the U.S. since the 'Dust Bowl' period in the 1930s, and had devastating effects on agricultural production. In addition, 2012 was among the warmest years on record. Using eddy covariance measurements of carbon, water and energy exchange from AmeriFlux sites along with remote sensing products, we show that this summer drought substantially reduced ecosystem productivity, net carbon uptake and water transport to the atmosphere. However, the warm spring with higher ecosystem productivity reduced the impact of the summer drought on annual carbon uptake. Shifts in vegetation activity during spring also triggered feedbacks that contributed to the summer heatwave. Although the drought was exceptional, 2012 was an example of what is expected in terms of future climate change - i.e. warmer temperatures all year and an increased frequency and duration of drought in summer. Understanding the response of ecosystem carbon and water cycling to drought will help to mitigate these changes, and our study provides important new insights for that.

  5. Zooplankton and the Ocean Carbon Cycle

    Science.gov (United States)

    Steinberg, Deborah K.; Landry, Michael R.

    2017-01-01

    Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.

  6. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    DEFF Research Database (Denmark)

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate...... extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective...... which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence...

  7. Cycling of black carbon in the ocean

    Science.gov (United States)

    Coppola, Alysha I.; Druffel, Ellen R. M.

    2016-05-01

    Black carbon (BC) is a by-product of combustion from wildfires and fossil fuels and is a slow-cycling component of the carbon cycle. Whether BC accumulates and ages on millennial time scales in the world oceans has remained unknown. Here we quantified dissolved BC (DBC) in marine dissolved organic carbon isolated by solid phase extraction at several sites in the world ocean. We find that DBC in the Atlantic, Pacific, and Arctic oceans ranges from 1.4 to 2.6 μM in the surface and is 1.2 ± 0.1 μM in the deep Atlantic. The average 14C age of surface DBC is 4800 ± 620 14C years and much older in a deep water sample (23,000 ± 3000 14C years). The range of DBC structures and 14C ages indicates that DBC is not homogeneous in the ocean. We show that there are at least two distinct pools of marine DBC, a younger pool that cycles on centennial time scales and an ancient pool that cycles on >105 year time scales.

  8. The decadal state of the terrestrial carbon cycle

    NARCIS (Netherlands)

    Velde, van der I.R.; Bloom, J.; Exbrayat, J.; Feng, L.; Williams, M.

    2015-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  9. The decadal state of the terrestrial carbon cycle

    NARCIS (Netherlands)

    Velde, van der I.R.; Bloom, J.; Exbrayat, J.; Feng, L.; Williams, M.

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  10. Forest defoliator pests alter carbon and nitrogen cycles

    Science.gov (United States)

    Grüning, Maren; Simon, Judy; Reinhardt, Annett-Barbara; Lamersdorf, Norbert; Thies, Carsten

    2016-01-01

    Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests (Quercus petraea L.) that were heavily infested by the leaf herbivores winter moth (Operophtera brumata L.) and mottled umber (Erannis defoliaria L.). In infested forests, total net canopy-to-soil fluxes of C and N deriving from insect faeces, leaf litter and throughfall were 30- and 18-fold higher compared with uninfested oak forests, with 4333 kg C ha−1 and 319 kg N ha−1, respectively, during a pest outbreak over 3 years. In infested forests, C and N levels in soil solutions were enhanced and C/N ratios in humus layers were reduced indicating an extended canopy-to-soil element pathway compared with the non-infested forests. In a microcosm incubation experiment, soil treatments with insect faeces showed 16-fold higher fluxes of carbon dioxide and 10-fold higher fluxes of dissolved organic carbon compared with soil treatments without added insect faeces (control). Thus, the deposition of high rates of nitrogen and rapidly decomposable carbon compounds in the course of forest pest epidemics appears to stimulate soil microbial activity (i.e. heterotrophic respiration), and therefore, may represent an important mechanism by which climate change can initiate a carbon cycle feedback. PMID:27853551

  11. Hyperdominance in Amazonian forest carbon cycling

    Science.gov (United States)

    Fauset, Sophie; Johnson, Michelle O.; Gloor, Manuel; Baker, Timothy R.; Monteagudo M., Abel; Brienen, Roel J.W.; Feldpausch, Ted R.; Lopez-Gonzalez, Gabriela; Malhi, Yadvinder; ter Steege, Hans; Pitman, Nigel C.A.; Baraloto, Christopher; Engel, Julien; Pétronelli, Pascal; Andrade, Ana; Camargo, José Luís C.; Laurance, Susan G.W.; Laurance, William F.; Chave, Jerôme; Allie, Elodie; Vargas, Percy Núñez; Terborgh, John W.; Ruokolainen, Kalle; Silveira, Marcos; Aymard C., Gerardo A.; Arroyo, Luzmila; Bonal, Damien; Ramirez-Angulo, Hirma; Araujo-Murakami, Alejandro; Neill, David; Hérault, Bruno; Dourdain, Aurélie; Torres-Lezama, Armando; Marimon, Beatriz S.; Salomão, Rafael P.; Comiskey, James A.; Réjou-Méchain, Maxime; Toledo, Marisol; Licona, Juan Carlos; Alarcón, Alfredo; Prieto, Adriana; Rudas, Agustín; van der Meer, Peter J.; Killeen, Timothy J.; Marimon Junior, Ben-Hur; Poorter, Lourens; Boot, Rene G.A.; Stergios, Basil; Torre, Emilio Vilanova; Costa, Flávia R.C.; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Groot, Nikée; Arets, Eric; Moscoso, Victor Chama; Castro, Wendeson; Coronado, Euridice N. Honorio; Peña-Claros, Marielos; Stahl, Clement; Barroso, Jorcely; Talbot, Joey; Vieira, Ima Célia Guimarães; van der Heijden, Geertje; Thomas, Raquel; Vos, Vincent A.; Almeida, Everton C.; Davila, Esteban Álvarez; Aragão, Luiz E.O.C.; Erwin, Terry L.; Morandi, Paulo S.; de Oliveira, Edmar Almeida; Valadão, Marco B.X.; Zagt, Roderick J.; van der Hout, Peter; Loayza, Patricia Alvarez; Pipoly, John J.; Wang, Ophelia; Alexiades, Miguel; Cerón, Carlos E.; Huamantupa-Chuquimaco, Isau; Di Fiore, Anthony; Peacock, Julie; Camacho, Nadir C. Pallqui; Umetsu, Ricardo K.; de Camargo, Plínio Barbosa; Burnham, Robyn J.; Herrera, Rafael; Quesada, Carlos A.; Stropp, Juliana; Vieira, Simone A.; Steininger, Marc; Rodríguez, Carlos Reynel; Restrepo, Zorayda; Muelbert, Adriane Esquivel; Lewis, Simon L.; Pickavance, Georgia C.; Phillips, Oliver L.

    2015-01-01

    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region. PMID:25919449

  12. Uncertainty in the carbon cycle and its contributions to overall uncertainty in future climate projections.

    Science.gov (United States)

    Sokolov, Andrei

    2010-05-01

    The contribution of carbon cycle uncertainty to the uncertainty in future climate projections is studied by means of numerical simulations with the MIT Integrated Global System Model (IGSM). Three ensembles of 21st century climate simulations were carried out using input probability distributions for climate sensitivity, rate of heat uptake by the ocean and strength of aerosol forcing consistent with the changes in climate over 20th century. Uncertainties in the rate of oceanic carbon uptake and strength of CO2 fertilization were also included. Each ensemble consists of 400 simulations. In first ensemble all sub-components of the IGSM were fully coupled. To evaluate uncertainty in the feedback between climate and carbon cycle, an additional ensemble of radiatively uncoupled simulations was carried out. Because the terrestrial ecosystem model used in the IGSM takes into account nitrogen limitation on carbon uptake by vegetation, feedbacks associated with terrestrial and oceanic carbon cycle have different signs. As a result, total feedback between climate and carbon cycle is rather weak and can be either positive or negative. This explains why the probability distribution for surface warming obtained from simulations with the IGSM is more symmetric than ones presented in the IPCC AR4. Reference greenhouse gases and aerosol emissions for business as usual scenario were used in first two ensembles. In all simulations of the third ensemble the IGSM was forced by the GHGs concentrations from the simulation with the median values of all climate parameter, thus eliminating uncertainty in the carbon cycle. Contribution of carbon cycle uncertainty to the uncertainties in projected climate changes turned out to be surprisingly small, at least for business as usual emission scenario.

  13. Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Nicholas D.; Bianchi, Thomas S.; Medeiros, Patricia M.; Seidel, Michael; Richey, Jeffrey E.; Keil, Richard G.; Sawakuchi, Henrique O.

    2017-01-31

    The purpose of this review is to highlight progress in unraveling carbon cycling dynamics across the continuum of landscapes, inland waters, coastal oceans, and the atmosphere. Earth systems are intimately interconnected, yet most biogeochemical studies focus on specific components in isolation. The movement of water drives the carbon cycle, and, as such, inland waters provide a critical intersection between terrestrial and marine biospheres. Inland, estuarine, and coastal waters are well studied in regions near centers of human population in the Northern hemisphere. However, many of the world’s large river systems and their marine receiving waters remain poorly characterized, particularly in the tropics, which contribute to a disproportionately large fraction of the transformation of terrestrial organic matter to carbon dioxide, and the Arctic, where positive feedback mechanisms are likely to amplify global climate change. There are large gaps in current coverage of environmental observations along the aquatic continuum. For example, tidally-influenced reaches of major rivers and near-shore coastal regions around river plumes are often left out of carbon budgets due to a combination of methodological constraints and poor data coverage. We suggest that closing these gaps could potentially alter global estimates of CO2 outgassing from surface waters to the atmosphere by several-fold. Finally, in order to identify and constrain/embrace uncertainties in global carbon budget estimations it is important that we further adopt statistical and modeling approaches that have become well-established in the fields of oceanography and paleoclimatology, for example.

  14. Articulating the space exploration policy-technology feedback cycle

    Science.gov (United States)

    Broniatowski, David André; Weigel, Annalisa L.

    2008-09-01

    Political and technical concerns are tightly intertwined in the design of modern space systems. The political environment often responds harshly to the associated high costs of these endeavors. Political sustainability is therefore at least as important as the technical performance parameters of new space systems under development. This paper outlines a methodology by which a system architect may trace the recursive impacts of political choice on technical choice, and vice versa. Using the implementation of the Vision for Space Exploration as a case study, a Policy-Technology Feedback loop is outlined. This paper then demonstrates how political sustainability may be incorporated into the design process such that a politically savvy system architect may appropriately trade present costs against future costs.

  15. The application of cycling and cycling combined with feedback in the rehabilitation of stroke patients: a review.

    Science.gov (United States)

    Barbosa, David; Santos, Cristina P; Martins, Maria

    2015-02-01

    Stroke is a leading cause of long-term disabilities, such as hemiparesis, inability to walk without assistance, and dependence of others in the activities of daily living. Motor function rehabilitation after stroke demands for methods oriented to the recovery of the walking capacity. Because of the similarities with walking, cycling leg exercise may present a solution to this problem. The aim of this article is to review the state of the art applications of cycling leg exercise as a (1) motor function rehabilitation method and an (2) aerobic training method for stroke patients as well as the commonly used (3) assessment tools. The cycling characteristics and applications, the applied test protocols as well as the tools used to assess the state and the recovery of patients and types of cycling devices are presented. In addition, the potential benefits of the use of other therapies, like feedback, together with cycling are explored. The application of cycling leg exercise alone and combined with feedback in stroke rehabilitation approaches has shown promising results. Positive effects on motor abilities were found in subacute and chronic patients. However, larger and normalized studies and assessments are needed because there is a high heterogeneity in the patients' characteristics, protocols and metrics. This wil allow the comparison between different studies related with cycling.

  16. Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release

    Directory of Open Access Journals (Sweden)

    N. Zeng

    2006-07-01

    Full Text Available A new mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can produce quasi-100 ky glacial-interglacial cycles. A key process is the burial and preservation of organic carbon by icesheets. The switch from glacial maximum to deglaciation is triggered by the ejection of glacial burial carbon when icesheets grow to sufficiently large size and subglacial transport becomes significant. Glacial inception is initiated by CO2 drawdown due to a ''rebound'' from a high but transient interglacial CO2 value as the land-originated CO2 invades into deep ocean via thermohaline circulation and CaCO3 compensation. Also important for glacial inception is the CO2 uptake by vegetation regrowth in the previously ice-covered boreal regions. When tested using a fully coupled Earth system model with comprehensive carbon cycle components and semi-empirical physical climate components, it produced self-sustaining glacial-interglacial cycles of duration about 93 ky, CO2 change of 90 ppmv, temperature change of 6°C under certain parameter regimes. Since the 100 ky cycles can not be easily explained by the weak Milankovitch astronomical forcing alone, this carbon-climate mechanism provides a strong feedback that could interact with external forcings to produce the major observed Quaternary climatic variations.

  17. Biogeochemical Cycles of Carbon and Sulfur

    Science.gov (United States)

    DesMarais, David J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The elements carbon (C) and sulfur (S) interact with each other across a network of elemental reservoirs that are interconnected by an array of physical, chemical and biological processes. These networks are termed the biogeochemical C and S cycles. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. The element S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. This presentation describes the modern biogeochemical C and S cycles. Measurements are described whereby stable isotopes can help to infer the nature and quantitative significance of biological and geological processes involved in the C and S cycles. This lecture also summarizes the geological and climatologic aspects of the ancient C and S cycles, as well as the planetary and extraterrestrial processes that influenced their evolution over millions to billions of years.

  18. Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release

    Directory of Open Access Journals (Sweden)

    N. Zeng

    2007-01-01

    Full Text Available A mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can lead to quasi-100 ky glacial-interglacial cycles. A central process is the burial and preservation of organic carbon by icesheets which contributes to the observed glacial-interglacial CO2 change (the glacial burial hypothesis, Zeng, 2003. Allowing carbon cycle to interact with physical climate, here I further hypothesize that deglaciation can be triggered by the ejection of glacial burial carbon when a major icesheet grows to sufficiently large size after a prolonged glaciation so that subglacial transport becomes significant. Glacial inception may be initiated by CO2 drawdown due to a relaxation from a high but transient interglacial CO2 value as the land-originated CO2 invades into deep ocean via thermohaline circulation and CaCO3 compensation. Also important for glacial inception may be the CO2 uptake by vegetation and soil regrowth in the previously ice-covered regions. When tested in a fully coupled Earth system model with comprehensive carbon cycle components and semi-empirical physical climate components, it produced under certain parameter regimes self-sustaining glacial-interglacial cycles with durations of 93 ky, CO2 changes of 90 ppmv, temperature changes of 6°C. Since the 100 ky cycles can not be easily explained by the Milankovitch astronomical forcing alone, this carbon-climate-icesheet mechanism provides a strong feedback that could interact with external forcings to produce the major observed Quaternary climatic variations. It is speculated that some glacial terminations may be triggered by this internal feedback while others by orbital forcing. Some observable consequences are highlighted that may support or falsify the theory.

  19. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin

    Science.gov (United States)

    Schefuß, Enno; Eglinton, Timothy I.; Spencer-Jones, Charlotte L.; Rullkötter, Jürgen; de Pol-Holz, Ricardo; Talbot, Helen M.; Grootes, Pieter M.; Schneider, Ralph R.

    2016-09-01

    The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. Although elevated ages in fluvially transported organic matter are usually explained by erosion of soils and sedimentary deposits, it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and rapid carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River, in conjunction with molecular markers for methane-producing land cover reflecting wetland extent. We find that the Congo River has been discharging aged organic matter for several thousand years, with apparently increasing ages from the mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from atmospheric nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology, mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter, we infer that this process may cause a profound direct climate feedback that is at present underestimated in carbon cycle assessments.

  20. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    DEFF Research Database (Denmark)

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael;

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate...... pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote...... extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective...

  1. An isopycnic ocean carbon cycle model

    Directory of Open Access Journals (Sweden)

    K. M. Assmann

    2010-02-01

    Full Text Available The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

  2. Carbon cycle dynamics during recent interglacials

    Directory of Open Access Journals (Sweden)

    T. Kleinen

    2015-05-01

    Full Text Available Trends in the atmospheric concentration of CO2 during three recent interglacials, the Holocene, the Eemian and Marine Isotope Stage (MIS 11, are investigated using an Earth system Model of Intermediate Complexity, which we extended with modules to dynamically determine two slow carbon cycle processes – peat accumulation and shallow-water CaCO3 sedimentation (coral reef formation. For all three interglacials, model simulations considering peat accumulation and shallow water CaCO3 sedimentation substantially improve the agreement between model results and ice core CO2 reconstructions in comparison to a carbon cycle setup neglecting these processes. This enables us to model the trends in atmospheric CO2, with modelled trends similar to the ice core data, forcing the model only with orbital and sea level changes. During the Holocene, anthropogenic CO2 emissions are required to match the observed rise in atmospheric CO2 after 3 ka BP, but are not relevant before this time. Therefore our model experiments show for the first time how the CO2 evolution during the Holocene and two recent interglacials can be explained consistently using an identical model setup.

  3. The Effects of Insect Outbreak Disturbances on the North American Carbon Cycle: A Review

    Science.gov (United States)

    Hicke, J. A.; Hall, R. J.; Raffa, K.; Desai, A. R.; Kashian, D.

    2009-12-01

    Disturbances are important ecosystem processes that greatly affect carbon cycling. In forests, disturbances contribute to modifications to carbon stocks and fluxes by increasing the amount of decomposing dead organic matter and decreasing the amount of carbon taken up by the ecosystem through photosynthesis. The net effect immediately following a disturbance is that forest ecosystems are carbon sources to the atmosphere. Within several decades, the carbon source becomes a carbon sink as the dead wood decays and the forest regrows. In North America, insect outbreaks are major forest disturbances, killing millions of trees in bark beetle and defoliator outbreaks that range over millions of ha. This presentation will review the role that insect infestations have in the North American carbon budget. We summarize estimates of the extent, frequency, and severity of outbreaks and the uncertainty associated with how these estimates are derived. We describe drivers of insect epidemics, which include climate, stand-structure, and predator-prey interactions. Finally, we describe studies that have documented impacts to the carbon cycle by insect infestations and discuss ongoing efforts. Although the role of insect disturbances is not well documented, these forest disturbances appear to be major factors that need inclusion for robust estimates of contemporary carbon budgets and for prediction of future carbon cycling given feedbacks with climate change.

  4. Iron, phytoplankton growth, and the carbon cycle.

    Science.gov (United States)

    Street, Joseph H; Paytan, Adina

    2005-01-01

    Iron is an essential nutrient for all living organisms. Iron is required for the synthesis of chlorophyll and of several photosynthetic electron transport proteins and for the reduction of CO2, SO4(2-), and NO3(-) during the photosynthetic production of organic compounds. Iron concentrations in vast areas of the ocean are very low (iron in oxic seawater. Low iron concentrations have been shown to limit primary production rates, biomass accumulation, and ecosystem structure in a variety of open-ocean environments, including the equatorial Pacific, the subarctic Pacific and the Southern Ocean and even in some coastal areas. Oceanic primary production, the transfer of carbon dioxide into organic carbon by photosynthetic plankton (phytoplankton), is one process by which atmospheric CO2 can be transferred to the deep ocean and sequestered for long periods of time. Accordingly, iron limitation of primary producers likely plays a major role in the global carbon cycle. It has been suggested that variations in oceanic primary productivity, spurred by changes in the deposition of iron in atmospheric dust, control atmospheric CO2 concentrations, and hence global climate, over glacial-interglacial timescales. A contemporary application of this "iron hypothesis" promotes the large-scale iron fertilization of ocean regions as a means of enhancing the ability of the ocean to store anthropogenic CO2 and mitigate 21st century climate change. Recent in situ iron enrichment experiments in the HNLC regions, however, cast doubt on the efficacy and advisability of iron fertilization schemes. The experiments have confirmed the role of iron in regulating primary productivity, but resulted in only small carbon export fluxes to the depths necessary for long-term sequestration. Above all, these experiments and other studies of iron biogeochemistry over the last two decades have begun to illustrate the great complexity of the ocean system. Attempts to engineer this system are likely to

  5. Influence of soil moisture-carbon cycle interactions on the terrestrial carbon cycle over Europe

    Science.gov (United States)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    Water availability is a crucial limiting factor for terrestrial ecosystems, but relatively few studies have quantitatively assessed the influence of soil moisture variability on the terrestrial carbon cycle. Here, we investigate the role of soil moisture variability and state in the contemporary terrestrial carbon cycle over Europe. For this we use a Regional Earth System Model (RESM) based on the COSMO-CLM Regional Climate Model, coupled to the Community Land Model version 4.0 (CLM4.0) and its carbon-nitrogen module. The simulation setup consists of a control simulation over the period 1979-2010 in which soil moisture is interactive and three sensitivity simulations in which soil moisture is prescribed to a mean, a very dry or a very wet seasonal cycle without inter-annual variability. The cumulative net biome productivity varies markedly between the different experiments ranging from a strong sink of up to 6PgC in the wet experiment to a source of up to 1.2PgC in the dry experiment. Changes in the land carbon uptake are driven by a combination of two factors: the direct impact of soil moisture on plant's carbon uptake (essentially in southern Europe) and an indirect effect through changes in temperature affecting ecosystem respiration (mainly in central and northern Europe). We find that removing temporal variations in soil moisture dampens interannual variations in terrestrial carbon fluxes (Gross Primary Productivity, respiration, Net Biome Productivity) by more than 50% over most of Europe. Moreover, the analysis reveals that on annual scale about two-thirds of central Europe and about 70% of southern Europe display statistically significant effect of drying and/or wetting on the terrestrial carbon budget and its components. Our findings confirm the crucial role of soil moisture in determining the magnitude and the inter-annual variability in land CO2 uptake which is a key contributor to the year-to-year variations in atmospheric CO2 concentration.

  6. The large influence of climate model bias on terrestrial carbon cycle simulations

    Science.gov (United States)

    Ahlström, Anders; Schurgers, Guy; Smith, Benjamin

    2017-01-01

    Global vegetation models and terrestrial carbon cycle models are widely used for projecting the carbon balance of terrestrial ecosystems. Ensembles of such models show a large spread in carbon balance predictions, ranging from a large uptake to a release of carbon by the terrestrial biosphere, constituting a large uncertainty in the associated feedback to atmospheric CO2 concentrations under global climate change. Errors and biases that may contribute to such uncertainty include ecosystem model structure, parameters and forcing by climate output from general circulation models (GCMs) or the atmospheric components of Earth system models (ESMs), e.g. as prepared for use in IPCC climate change assessments. The relative importance of these contributing factors to the overall uncertainty in carbon cycle projections is not well characterised. Here we investigate the role of climate model-derived biases by forcing a single global ecosystem-carbon cycle model, with original climate outputs from 15 ESMs and GCMs from the CMIP5 ensemble. We show that variation among the resulting ensemble of present and future carbon cycle simulations propagates from biases in annual means of temperature, precipitation and incoming shortwave radiation. Future changes in carbon pools, and thus land carbon sink trends, are also affected by climate biases, although to a smaller extent than the absolute size of carbon pools. Our results suggest that climate biases could be responsible for a considerable fraction of the large uncertainties in ESM simulations of land carbon fluxes and pools, amounting to about 40% of the range reported for ESMs. We conclude that climate bias-induced uncertainties must be decreased to make accurate coupled atmosphere-carbon cycle projections.

  7. Towards a quantitative understanding of the late Neoproterozoic carbon cycle

    DEFF Research Database (Denmark)

    Bjerrum, Christian Jannik; Canfield, Donald Eugene

    2011-01-01

    The cycles of carbon and oxygen at the Earth surface are intimately linked, where the burial of organic carbon into sediments represents a source of oxygen to the surface environment. This coupling is typically quantified through the isotope records of organic and inorganic carbon. Yet, the late ...... of the carbonate and organic carbon isotope record can be explained by the release of methane hydrates from an anoxic dissolved organic carbon-rich ocean into an atmosphere containing oxygen levels considerably less than today....

  8. Pervasive Drought Legacy Effects in Forest Ecosystems and their Carbon Cycle Implications

    Science.gov (United States)

    Anderegg, W.; Schwalm, C.; Biondi, F.; Camarero, J. J.; Koch, G. W.; Litvak, M. E.; Ogle, K.; Shaw, J.; Shevliakova, E.; Williams, P.; Wolf, A.; Ziaco, E.; Pacala, S. W.

    2015-12-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with basic plant physiological understanding. We examine the recovery of tree stem growth after severe drought at 1,338 forest sites globally comprising 49,339 site-years and compare it to simulated recovery in climate-vegetation models. We find pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1-4 years after severe drought, and that legacy effects are most prevalent in dry ecosystems, Pinaceae, and species with low hydraulic safety margins. In contrast, no or limited legacy effects are simulated in current climate-vegetation models after drought. Our results highlight hysteresis in ecosystem carbon cycling and delayed recovery from climate extremes.

  9. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    Science.gov (United States)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  10. The impact of the Permafrost Carbon Feedback on Global Carbon Policy

    Science.gov (United States)

    Schaefer, K. M.; Zhang, T.; Bruhwiler, L.; Barrett, A. P.; Li, Z.

    2012-12-01

    Global treaties to reduce fossil fuel emissions should include an allocation for permafrost carbon emissions or we will overshoot our target CO2 concentration and end up with a warmer climate than planned. Arctic permafrost currently contains 1466 Gt of carbon frozen since the last ice age, roughly double the amount of carbon in the atmosphere. We estimate 190±64 Gt of this carbon will thaw out, decay, and end up in the atmosphere by 2200, potentially increasing atmospheric CO2 concentrations by 87±29 ppm. International negotiations of a treaty to limit fossil fuel emissions are focused on an overall global warming target of 2 °C above per-industrial temperaters, placing an overall limit on total global carbon emissions. The contribution of the permafrost carbon feedback to overall global warming is proportional to total carbon emissions from permafrost. If the treaty does not include an allocation for permafrost carbon emissions, we will overshoot our target climate of 2 C above pre-industrial temperatures. We discuss the scientific basis for our conclusions and the implications for negotiations of a global climate treaty.

  11. Towards a quantitative understanding of the late Neoproterozoic carbon cycle

    DEFF Research Database (Denmark)

    Bjerrum, Christian J.; Canfield, Donald Eugene

    2011-01-01

    The cycles of carbon and oxygen at the Earth surface are intimately linked, where the burial of organic carbon into sediments represents a source of oxygen to the surface environment. This coupling is typically quantified through the isotope records of organic and inorganic carbon. Yet, the late...... Neoproterozoic Eon, the time when animals first evolved, experienced wild isotope fluctuations which do not conform to our normal understanding of the carbon cycle and carbon-oxygen coupling. We interpret these fluctuations with a new carbon cycle model and demonstrate that all of the main features...... of the carbonate and organic carbon isotope record can be explained by the release of methane hydrates from an anoxic dissolved organic carbon-rich ocean into an atmosphere containing oxygen levels considerably less than today....

  12. Fluxes of CO2, CH4, CO, BVOCs, NOx, and O3 in an Old Growth Amazonian Forest: Ecosystem Processes, Carbon Cycle, Atmospheric Chemistry, and Feedbacks on Climate

    Energy Technology Data Exchange (ETDEWEB)

    Wofsy, Steven C. [Harvard Univ., Cambridge, MA (United States)

    2016-12-20

    part of the cycling processes occurring in the top layers. Methane fluxes showed no statistical difference between 2015 wet and dry seasons, and the forest at this site appear to be a methane sink throughout the year. The vertical profiles suggest that if a methane source exists in this forest, it might be in the canopy. Next steps include modeling and analysis using the Master Chemical Mechanism (Jenkin et al., 1997; Saunders et al., 2003 (A/B); http://mcm.leeds.ac.uk/MCM/) and the Ecosystem Demography-2 (ED-2) model. A final manuscript with the results from this work is in preparation and expected to be submitted for publication within the next several months. Publications to date are listed below.

  13. The Effects of Climate Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Katherine V.; Bond-Lamberty, Benjamin; Edmonds, James A.; Hejazi, Mohamad I.; Waldhoff, Stephanie T.; Wise, Marshall A.; Zhou, Yuyu

    2015-07-01

    Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect of climate change on the carbon cycle, the uncertainty in climate outcomes inherent in any given policy target, and the economic implications. We examine three policy scenarios—a no policy “Reference” (REF) scenario, and two policies that limit total radiative forcing—with four climate sensitivities using a coupled integrated assessment model. Like previous work, we find that, within a given scenario, there is a wide range of temperature change and sea level rise depending on the realized climate sensitivity. We expand on this previous work to show that temperature-related feedbacks on the carbon cycle result in more mitigation required as climate sensitivity increases. Thus, achieving a particular radiative forcing target becomes increasingly expensive as climate sensitivity increases.

  14. Soil aggregate stabilization and carbon sequestration: Feedbacks through organomineral associations

    Energy Technology Data Exchange (ETDEWEB)

    Jastrow, J.D.; Miller, R.M.

    1996-12-31

    Primary production (specifically, the rate and quality of C transfer below ground) and soil microbial activity (specifically, the rates of C transformation and decay) are recognized as the overall biological processes governing soil organic C (SOC) dynamics. These two processes and, hence, SOC cycling and storage are controlled by complex underlying biotic and abiotic interactions and feedbacks, most of which can be tied in one way or another to the influences of the five state factors related to soil formation, and many of which are sensitive to management practices. Overall, C input rates and quality are largely dependent on climate (especially temperature and precipitation), vegetation type and landscape, soil type, and management practices. Decomposition processes and turnover rates, however, are greatly influenced by climate, the type and quality of organic matter (e.g., N content and the ratios of C:N and lignin:N), chemical or physicochemical associations of organic matter (OM) with soil mineral components, and the location of OM within the soil.

  15. Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean

    Science.gov (United States)

    Hügler, Michael; Sievert, Stefan M.

    2011-01-01

    Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.

  16. Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

    2005-05-27

    The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given

  17. On the role of asymmetric feedbacks for the deglacial dynamics of the marine N-cycle

    Science.gov (United States)

    Gruber, N.; Eugster, O.; Deutsch, C. A.; Jaccard, S.; Payne, M. R.

    2012-12-01

    Marine N-cycle feedbacks play a crucial role in stabilizing the marine N inventory over millennial timescales and longer. Here we show that asymmetric feedbacks between N-fixation and denitrification in the water column and in the sediments may have caused a transient imbalance of the marine N-budget over the last deglacial, leading to a substantial drop of the marine N inventory of between 15 and 50% between the last glacial period and the late Holocene. These results are based on a geochemical box model study where we determined the deglacial changes in marine N-fixation and denitrification required to match the observed sedimentary δ15 N changes. This is achieved by optimizing a set of 7 parameters that describe the strengths of 3 ocean-internal N feedbacks and the response of the oceanic N-cycle to 4 external forcings. Scenarios that best match the δ15N constraints indicate a strong transient decrease in N-fixation in the early deglacial in response to the decrease in iron input by dust. During this period, denitrification in the water column and in the sediments continue largely unabated at their glacial rates due to a very weak diagnosed feedback to the decreasing N-inventory. In contrast, N-fixation reacted very sensitively to the abrupt increase in water column denitrification around 15 kyr BP caused by an expansion of anoxia at that time. This strong feedback of N-fixation to changes in denitrification lets N-fixation quickly rebound to the level required to balance the global losses by denitrification during the Holocene. This limits the extent to which denitrification can drive temporary imbalances. This asymmetry in the strengths of the marine N-feedbacks can be rationalized by recognizing that an excess inventory of N over that of PO4 may not lead to the necessary increase in export production required to increase anoxia, as rather quickly, PO4 will become the proximate limiting nutrient. In contrast, a deficiency in N over PO4 will create nearly

  18. Carbon cycle: Global warming then and now

    Science.gov (United States)

    Stassen, Peter

    2016-04-01

    A rapid warming event 55.8 million years ago was caused by extensive carbon emissions. The rate of change of carbon and oxygen isotopes in marine shelf sediments suggests that carbon emission rates were much slower than anthropogenic emissions.

  19. The Carbon Cycle: Implications for Climate Change and Congress

    Science.gov (United States)

    2008-03-13

    from human activities.4 Methane, black carbon, and organic carbon pollution are also part of the carbon cycle and have roles in human-induced climate...recovery and concludes that tropical regions dominated by rainforests or other forest types are a net source of carbon to the atmosphere. 27 However, a...Some model simulations suggest that the Southern Ocean around Antarctica accounts for nearly half of the net air -sea flux of anthropogenic carbon.43

  20. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks

    OpenAIRE

    Zepp, R. G.; D. J. Erickson; Paul, N.D.; Sulzberger, B.

    2011-01-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects,...

  1. Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration

    Science.gov (United States)

    Song, Zhaoliang; Wang, Hailong; Strong, P. James; Li, Zimin; Jiang, Peikun

    2012-12-01

    The coupled terrestrial biogeochemical cycles of silicon (Si) and carbon (C) that are driven by plant action play a crucial role in the regulation of atmospheric CO2. Generally, the processes involved in the coupled cycles of Si and C include plant-enhanced silicate weathering, phytolith formation and solubilization, secondary aluminosilicate accumulation, phytolith occlusion of C as well as physico-chemical protection of organic C in soils. There is increasing evidence of biological pumping of Si in terrestrial ecosystems, suggesting that complex feedbacks exist amongst the processes within the coupled Si and C cycles. Recent advances in the coupled Si and C cycles offer promising new possibilities for enhancing atmospheric CO2 sequestration. Organic mulching, rock powder amendment, cultivating Si-accumulating plants and partial plant harvesting are potential measures that may allow for long-term manipulation and biogeochemical sequestration of atmospheric CO2 in soil-plant systems.

  2. Iron cycling at corroding carbon steel surfaces.

    Science.gov (United States)

    Lee, Jason S; McBeth, Joyce M; Ray, Richard I; Little, Brenda J; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media.

  3. Feedback.

    Science.gov (United States)

    Richardson, Barbara K

    2004-12-01

    The emergency department provides a rich environment for diverse patient encounters, rapid clinical decision making, and opportunities to hone procedural skills. Well-prepared faculty can utilize this environment to teach residents and medical students and gain institutional recognition for their incomparable role and teamwork. Giving effective feedback is an essential skill for all teaching faculty. Feedback is ongoing appraisal of performance based on direct observation aimed at changing or sustaining a behavior. Tips from the literature and the author's experience are reviewed to provide formats for feedback, review of objectives, and elements of professionalism and how to deal with poorly performing students. Although the following examples pertain to medical student education, these techniques are applicable to the education of all adult learners, including residents and colleagues. Specific examples of redirection and reflection are offered, and pitfalls are reviewed. Suggestions for streamlining verbal and written feedback and obtaining feedback from others in a fast-paced environment are given. Ideas for further individual and group faculty development are presented.

  4. Subalpine Forest Carbon Cycling Short- and Long-Term Influence ofClimate and Species

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, L.; Harte, J.

    2005-08-23

    Ecosystem carbon cycle feedbacks to climate change comprise one of the largest remaining sources of uncertainty in global model predictions of future climate. Both direct climate effects on carbon cycling and indirect effects via climate-induced shifts in species composition may alter ecosystem carbon balance over the long term. In the short term, climate effects on carbon cycling may be mediated by ecosystem species composition. We used an elevational climate and tree species composition gradient in Rocky Mountain subalpine forest to quantify the sensitivity of all major ecosystem carbon stocks and fluxes to these factors. The climate sensitivities of carbon fluxes were species-specific in the cases of relative above ground productivity and litter decomposition, whereas the climate sensitivity of dead wood decay did not differ between species, and total annual soil CO2 flux showed no strong climate trend. Lodge pole pine relative productivity increased with warmer temperatures and earlier snowmelt, while Engelmann spruce relative productivity was insensitive to climate variables. Engelmann spruce needle decomposition decreased linearly with increasing temperature(decreasing litter moisture), while lodgepole pine and subalpine fir needle decay showed a hump-shaped temperature response. We also found that total ecosystem carbon declined by 50 percent with a 2.88C increase in mean annual temperature and a concurrent 63 percent decrease ingrowing season soil moisture, primarily due to large declines in mineral soil and dead wood carbon. We detected no independent effect of species composition on ecosystem C stocks. Overall, our carbon flux results suggest that, in the short term, any change in subalpine forest net carbon balance will depend on the specific climate scenario and spatial distribution of tree species. Over the long term, our carbon stock results suggest that with regional warming and drying, Rocky Mountain subalpine forest will be a net source of carbon

  5. Carbon cycle: Ocean dissolved organics matter

    Science.gov (United States)

    Amon, Rainer M. W.

    2016-12-01

    Large quantities of organic carbon are stored in the ocean, but its biogeochemical behaviour is elusive. Size-age-composition relations now quantify the production of tiny organic molecules as a major pathway for carbon sequestration.

  6. Carbon cycle: New pathways in the sand

    Science.gov (United States)

    Rao, Alexandra

    2017-01-01

    Organic carbon decomposition in anoxic marine sediments was thought to be dominated by bacteria, but experimental data and microbial culture studies now show that microalgae buried in coastal sands may also play an important role in carbon turnover.

  7. Cool core cycles: Cold gas and AGN jet feedback in cluster cores

    CERN Document Server

    Prasad, Deovrat; Babul, Arif

    2015-01-01

    Using high-resolution 3-D and 2-D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGN) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity $\\approx \\epsilon \\dot{M}_{\\rm acc} c^2$; where $\\dot{M}_{\\rm acc}$ is the mass accretion rate at 1 kpc) as small as $5 \\times 10^{-5}$ is sufficient to reduce the cooling/accretion rate by $\\sim 10$ compared to a pure cooling flow. This value is smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted on to the supermassive black hole (SMBH). We find hysteresis cycles in all our simulations with cold mode feedback: {\\em condensation} of cold gas when the ratio...

  8. Marmoset: A programming project assignment framework to improve the feedback cycle for students, faculty and researchers

    Science.gov (United States)

    Spacco, Jaime W.

    We developed Marmoset, a system that improves the feedback cycle on programming assignments for students, faculty and researchers alike. Using automation, Marmoset substantially lowers the burden on faculty for grading programming assignments, allowing faculty to give students more rapid feedback on their assignments. To further improve the feedback cycle, Marmoset provides students with limited access to the results of the instructor's private test cases before the submission deadline using a novel token-based incentive system. This both encourages students to start their work early and to think critically about their work. Because students submit early, instructors can monitor all students' progress on test cases and identify where in projects students are having problems in order to update the project requirements in a timely fashion and make the best use of time in lectures, discussion sections, and office hours. To study in more detail the development process of students, Marmoset can be configured to transparently capture snapshots to a central repository every-time students save their files. These detailed development histories offer a unique, detailed perspective of each student's progress on a programming assignment, from the first line of code written and saved all the way through the final edit before the final submission. This type of data has proved extremely valuable for many uses, such as mining new bug patterns and evaluating existing bug-finding tools.

  9. The duty cycle of radio-mode feedback in complete samples of clusters

    CERN Document Server

    Bîrzan, L; Nulsen, P E J; McNamara, B R; Röttgering, H J A; Wise, M W; Mittal, R

    2012-01-01

    The Chandra X-ray Observatory has revealed X-ray bubbles in the intracluster medium (ICM) of many nearby cooling flow clusters. The bubbles trace feedback that is thought to couple the central active galactic nucleus (AGN) to the ICM, helping to stabilize cooling flows and govern the evolution of massive galaxies. However, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how cooling is balanced by bubble heating for complete samples of clusters (the Brightest 55 clusters of galaxies, hereafter B55, and the HIghest X-ray FLUx Galaxy Cluster Sample, HIFLUGCS). We find that the radio luminosity of the central galaxy only exceeds 2.5 x 10^30 erg s^-1 Hz^-1 in cooling flow clusters. This result implies a connection between the central radio source and the ICM, as expected if AGN feedback is operating. Additionally, we find a duty cycle for radio mode feedback, the fraction of time that a system possesses bubbles inflated by its central radio source, of > 69 per cent...

  10. High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle

    Science.gov (United States)

    Them, T. R.; Gill, B. C.; Caruthers, A. H.; Gröcke, D. R.; Tulsky, E. T.; Martindale, R. C.; Poulton, T. P.; Smith, P. L.

    2017-02-01

    The Mesozoic Era experienced several instances of abrupt environmental change that are associated with instabilities in the climate, reorganizations of the global carbon cycle, and elevated extinction rates. Often during these perturbations, oxygen-deficient conditions developed in the oceans resulting in the widespread deposition of organic-rich sediments - these events are referred to as Oceanic Anoxic Events or OAEs. Such events have been linked to massive injections of greenhouse gases into the ocean-atmosphere system by transient episodes of voluminous volcanism and the destabilization of methane clathrates within marine environments. Nevertheless, uncertainty surrounds the specific environmental drivers and feedbacks that occurred during the OAEs that caused perturbations in the carbon cycle; this is particularly true of the Early Jurassic Toarcian OAE (∼183.1 Ma). Here, we present biostratigraphically constrained carbon isotope data from western North America (Alberta and British Columbia, Canada) to better assess the global extent of the carbon cycle perturbations. We identify the large negative carbon isotope excursion associated with the OAE along with high-frequency oscillations and steps within the onset of this excursion. We propose that these high-frequency carbon isotope excursions reflect changes to the global carbon cycle and also that they are related to the production and release of greenhouse gases from terrestrial environments on astronomical timescales. Furthermore, increased terrestrial methanogenesis should be considered an important climatic feedback during Ocean Anoxic Events and other similar events in Earth history after the proliferation of land plants.

  11. The role of urbanization in the global carbon cycle

    Directory of Open Access Journals (Sweden)

    Galina eChurkina

    2016-01-01

    Full Text Available Urban areas account for more than 70% of CO2 emissions from burning fossil fuels. Urban expansion in tropics is responsible for 5% of the annual emissions from land use change. Here I show that the effect of urbanization on the global carbon cycle extends beyond these emissions. I quantify the contribution of urbanization to the major carbon fluxes and pools globally and identify gaps crucial for predicting the evolution of the carbon cycle in the future. Urban residents currently control ~22 (12-40 % of the land carbon uptake (112 PgC/yr and ~24 (15-39 % of the carbon emissions (117 PgC/yr from land globally. Urbanization resulted in the creation of new carbon pools on land such as buildings (~6.7 PgC and landfills (~30 PgC. Together these pools store 1.6 (±0.3 % of the total vegetation and soil carbon pools globally. The creation and maintenance of these new pools has been associated with high emissions of CO2, which are currently better understood than the processes associated with the dynamics of these pools and accompanying uptake of carbon. Predictions of the future trajectories of the global carbon cycle will require a much better understanding of how urban development affects the carbon cycle over the long term.

  12. Cycling in the Absence of Task-related Feedback: Effects on Pacing and Performance

    Directory of Open Access Journals (Sweden)

    Benjamin Smits

    2016-08-01

    Full Text Available Introduction. To achieve personal goals in exercise task completion, exercisers have to regulate, distribute and manage their effort. In endurance sports, it has become very commonplace for athletes to consult task-related feedback on external devices to do so. The aim of the present study was to explore the importance of the presence of this information by examining the influence of the absence of commonly available task-related feedback on effort distribution and performance in experienced endurance athletes.Methods. A 20-km cycling time trial was performed. 20 Participants from a homogenous cyclist population were appointed to a group that did not receive any feedback (NoF, or a group that could consult task-related feedback (i.e., speed, heart rate, power output, cadence, elapsed time and elapsed distance continuously during their trial (FF.Results. The distribution of power output (PO differed between groups. Most evident is the spurt at the end of the trial of FF, which was not incorporated by NoF. Nevertheless, no between-group differences were found in performance time (FF: 28.86 +/- 3.68 min vs. NoF: 30.95 +/- 2.77 min and mean PO controlled by body mass (FF: 3.61 +/- .60 W/kg vs. NoF: 3.43 +/- .38 W/kg. Also, no differences in rating of perceived exertion scores were found.Conclusion. The current study provides a first indication that prior knowledge of task demands together with reliance on bodily and environmental information can be sufficient for experienced athletes to come to comparable time trial performances. This questions the necessity of the presence of in-race instantaneous task-related feedback via external devices for maximising performance. Moreover, it seems that different pacing strategies emerge depending on sources of information available to experienced athletes.

  13. Effect of Environmental and Feedback Interventions on Pacing Profiles in Cycling: A Meta-Analysis

    Science.gov (United States)

    Davies, Michael J.; Clark, Bradley; Welvaert, Marijke; Skorski, Sabrina; Garvican-Lewis, Laura A.; Saunders, Philo; Thompson, Kevin G.

    2016-01-01

    In search of their optimal performance athletes will alter their pacing strategy according to intrinsic and extrinsic physiological, psychological and environmental factors. However, the effect of some of these variables on pacing and exercise performance remains somewhat unclear. Therefore, the aim of this meta-analysis was to provide an overview as to how manipulation of different extrinsic factors affects pacing strategy and exercise performance. Only self-paced exercise studies that provided control and intervention group(s), reported trial variance for power output, disclosed the type of feedback received or withheld, and where time-trial power output data could be segmented into start, middle and end sections; were included in the meta-analysis. Studies with similar themes were grouped together to determine the mean difference (MD) with 95% confidence intervals (CIs) between control and intervention trials for: hypoxia, hyperoxia, heat-stress, pre-cooling, and various forms of feedback. A total of 26 studies with cycling as the exercise modality were included in the meta-analysis. Of these, four studies manipulated oxygen availability, eleven manipulated heat-stress, four implemented pre-cooling interventions and seven studies manipulated various forms of feedback. Mean power output (MPO) was significantly reduced in the middle and end sections (p 0.05). Negative feedback improved overall trial MPO and MPO in the middle section of trials (p 0.05). The available data suggests exercise regulation in hypoxia and heat-stress is delayed in the start section of trials, before significant reductions in MPO occur in the middle and end of the trial. Additionally, negative feedback involving performance deception may afford an upward shift in MPO in the middle section of the trial improving overall performance. Finally, performance improvements can be retained when participants are informed of the deception. PMID:27994554

  14. The climate dependence of the terrestrial carbon cycle, including parameter and structural uncertainties

    Directory of Open Access Journals (Sweden)

    M. J. Smith

    2013-01-01

    Full Text Available The feedback between climate and the terrestrial carbon cycle will be a key determinant of the dynamics of the Earth System (the thin layer that contains and supports life over the coming decades and centuries. However, Earth System Model projections of the terrestrial carbon-balance vary widely over these timescales. This is largely due to differences in their terrestrial carbon cycle models. A major goal in biogeosciences is therefore to improve understanding of the terrestrial carbon cycle to enable better constrained projections. Utilising empirical data to constrain and assess component processes in terrestrial carbon cycle models will be essential to achieving this goal. We used a new model construction method to data-constrain all parameters of all component processes within a global terrestrial carbon model, employing as data constraints a collection of 12 empirical data sets characterising global patterns of carbon stocks and flows. Our goals were to assess the climate dependencies inferred for all component processes, assess whether these were consistent with current knowledge and understanding, assess the importance of different data sets and the model structure for inferring those dependencies, assess the predictive accuracy of the model and ultimately to identify a methodology by which alternative component models could be compared within the same framework in the future. Although formulated as differential equations describing carbon fluxes through plant and soil pools, the model was fitted assuming the carbon pools were in states of dynamic equilibrium (input rates equal output rates. Thus, the parameterised model is of the equilibrium terrestrial carbon cycle. All but 2 of the 12 component processes to the model were inferred to have strong climate dependencies, although it was not possible to data-constrain all parameters, indicating some potentially redundant details. Similar climate dependencies were obtained for most

  15. The role of ozone feedback in modulating the atmospheric response to the solar cycle forcing

    Science.gov (United States)

    Bednarz, Ewa; Maycock, Amanda; Braesicke, Peter; Telford, Paul; Abraham, Luke; Pyle, John

    2016-04-01

    The irradiance changes between the 11-year solar cycle maximum and minimum lead to increased stratospheric temperatures via enhanced UV absorption by ozone. This direct radiative response is strengthened by increased photochemical ozone production. While in reality these two processes are closely coupled, not all global climate models include interactive chemistry and may not therefore represent the solar-ozone feedback in an internally consistent manner. This study investigates the role of the representation of ozone for the modeled solar cycle response. We use a version of the UM-UKCA chemistry-climate model. We perform a 64-year perpetual solar minimum integration with non-interactive treatment of ozone, i.e. where ozone is externally prescribed for the radiative calculations. This is complemented with two analogous non-interactive solar maximum integrations that include an increase in solar irradiance, but which differ in their representation of the solar ozone response. We show that the representation of the solar-ozone feedback has a first-order impact on the simulated yearly mean short wave heating rates and temperature responses to the 11-year solar cycle forcing. However, despite the substantial differences in the tropical temperature changes, the Northern Hemisphere high latitude circulation responses are broadly similar in both experiments, and show strengthening of the polar vortex during winter and a weakening in March. Therefore, the representation of the prescribed solar-ozone response appears unlikely to explain the substantial spread in the solar cycle dynamical responses in different models. Lastly, we compare these results with an analogous solar maximum/minimum pair in which ozone is calculated by the photochemical scheme in a self-consistent manner. We show that the use of interactive vs non-interactive treatment of ozone does not strongly affect the yearly mean tropical temperature response. However, the results suggest potential differences

  16. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    Science.gov (United States)

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  17. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum

    Science.gov (United States)

    Kochhann, Karlos G. D.; Holbourn, Ann; Kuhnt, Wolfgang; Channell, James E. T.; Lyle, Mitch; Shackford, Julia K.; Wilkens, Roy H.; Andersen, Nils

    2016-09-01

    The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (δ18O) and carbon (δ13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic Ice Sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity, and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337, and U1338 on a consistent, astronomically tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on δ13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our intersite comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with >75% carbonate loss occurring at paleodepths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (δ18O minima) and δ13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to δ13C maxima and δ18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.

  18. The Role of Carbon Cycle Observations and Knowledge in Carbon Management

    Energy Technology Data Exchange (ETDEWEB)

    Dilling, Lisa; Doney, Scott; Edmonds, James A.; Gurney, Kevin R.; Harriss, Robert; Schimel, David; Stephens, Britton; Stokes, Gerald M.

    2003-08-14

    Agriculture and industrial development have led to inadvertent changes in the natural carbon cycle. As a consequence, concentrations of carbon dioxide and other greenhouse gases have increased in the atmosphere, leading to potential changes in climate. The current challenge facing society is to develop options for future management of the carbon cycle. A variety of approaches has been suggested: direct reduction of emissions, deliberate manipulation of the natural carbon cycle to enhance sequestration, and capture and isolation of carbon from fossil fuel use. Policy development to date has laid out some of the general principles to which carbon management should adhere. These can be summarized as: how much carbon is stored, by what means, and for how long. To successfully manage carbon for climate purposes requires increased understanding of carbon cycle dynamics and improvement to the scientific capabilities available for measurement as well as policy needs. Specific needs for scientific information to underpin carbon cycle management decisions are not yet broadly known. A stronger dialogue between decision makers and scientists must be developed to foster improved application of scientific knowledge to decisions. This paper reviews the current state of knowledge of the carbon cycle and measurement capabilities, with an emphasis on the continental-scale, and its relevance to carbon sequestration goals.

  19. Glassy carbon supercapacitor: 100,000 cycles demonstrated

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A 5 V glassy carbon capacitor stack was built consisting of four bipolar and two end-plate electrodes. More than 100,000 charging/discharging cycles were applied to test the stability of the double-layer capacitor. Low and high frequency resistances were measured as a function of the number of cycles. (author) 2 figs., 1 ref.

  20. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Gerald E. Marsh

    2014-01-01

    Full Text Available The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  1. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    OpenAIRE

    Marsh, Gerald E.

    2014-01-01

    The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  2. Self-organizing biochemical cycle in dynamic feedback with soil structure

    Science.gov (United States)

    Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy

    2016-04-01

    In the present study we perform bifurcation analysis of a physically-based mathematical model of self-organized structures in soil (Vasilyeva et al., 2015). The state variables in this model included microbial biomass, two organic matter types, oxygen, carbon dioxide, water content and capillary pore size. According to our previous experimental studies, organic matter affinity to water is an important property affecting soil structure. Therefore, organic matter wettability was taken as principle distinction between organic matter types in this model. It considers general known biological feedbacks with soil physical properties formulated as a system of parabolic type non-linear partial differential equations with elements of discrete modeling for water and pore formation. The model shows complex behavior, involving emergence of temporal and spatial irregular auto-oscillations from initially homogeneous distributions. The energy of external impact on a system was defined by a constant oxygen level on the boundary. Non-linear as opposed to linear oxygen diffusion gives possibility of modeling anaerobic micro-zones formation (organic matter conservation mechanism). For the current study we also introduced population competition of three different types of microorganisms according to their mobility/feeding (diffusive, moving and fungal growth). The strongly non-linear system was solved and parameterized by time-optimized algorithm combining explicit and implicit (matrix form of Thomas algorithm) methods considering the time for execution of the evaluated time-step according to accuracy control. The integral flux of the CO2 state variable was used as a macroscopic parameter to describe system as a whole and validation was carried out on temperature series of moisture dependence for soil heterotrophic respiration data. Thus, soil heterotrophic respiration can be naturally modeled as an integral result of complex dynamics on microscale, arising from biological processes

  3. Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling.

    Science.gov (United States)

    Hoover, David L; Rogers, Brendan M

    2016-05-01

    Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle 'press-droughts', and shorter term but extreme 'pulse-droughts'. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.

  4. Not all droughts are created equal: The impacts of interannual drought pattern and magnitude on grassland carbon cycling

    Science.gov (United States)

    Hoover, David L; Rogers, Brendan M.

    2016-01-01

    Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle ‘press-droughts’, and shorter term but extreme ‘pulse-droughts’. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.

  5. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Elisa, E-mail: elisa.fleischer@uni-muenster.de [Institute of Landscape Ecology, Climatology Research Group, University of Münster, Münster (Germany); Khashimov, Ilhom, E-mail: nixonlp@mail.ru [Institute of Earth Science, Physical Geography and Geoecology Department, Tyumen State University, Tyumen (Russian Federation); Hölzel, Norbert, E-mail: nhoelzel@uni-muenster.de [Institute of Landscape Ecology, Biodiversity and Ecosystem Research Group, University of Münster, Münster (Germany); Klemm, Otto, E-mail: otto.klemm@uni-muenster.de [Institute of Landscape Ecology, Climatology Research Group, University of Münster, Münster (Germany)

    2016-03-01

    The growing demand for agricultural products has been leading to an expansion and intensification of agriculture around the world. More and more unused land is currently reclaimed in the regions of the former Soviet Union. Driven by climate change, the Western Siberian grain belt might, in a long-term, even expand into the drained peatland areas to the North. It is crucial to study the consequences of this land-use change with respect to the carbon cycling as this is still a major knowledge gap. We present for the first time data on the atmosphere-ecosystem exchange of carbon dioxide and methane of an arable field and a neighboring unused grassland on peat soil in Western Siberia. Eddy covariance measurements were performed over one vegetation period. No directed methane fluxes were found due to an effective drainage of the study sites. The carbon dioxide fluxes appeared to be of high relevance for the global carbon and greenhouse gas cycles. They showed very site-specific patterns resulting from the development of vegetation: the persistent plants of the grassland were able to start photosynthesizing soon after snow melt, while the absence of vegetation on the managed field lead to a phase of emissions until the oat plants started to grow in June. The uptake peak of the oat field is much later than that of the grassland, but larger due to a rapid plant growth. Budgeting the whole measurement period, the grassland served as a carbon sink, whereas the oat field was identified to be a carbon source. The conversion from non-used grasslands on peat soil to cultivated fields in Western Siberia is therefore considered to have a positive feedback on climate change. - Highlights: • Grasslands on drained peat soil can act as carbon sinks. • Arable fields on drained peat act as carbon sources due to long phases of bare soil. • CH{sub 4} emissions from drained peatlands seem to play a smaller role than CO{sub 2} fluxes. • Conversion from grassland to arable field has

  6. The Feedback Control Cycle of Mineral Supply, Increase of Raw Material Efficiency, and Sustainable Development

    Directory of Open Access Journals (Sweden)

    Friedrich-W. Wellmer

    2015-11-01

    Full Text Available Sustainable development with regard to non-renewable resources can best be defined in terms of the inter-generational challenge of the Brundtland commission and the intra-generational challenge worked out in Agenda 21 of the 1992 Rio de Janeiro conference of United Nations Conference on Environment and Development (UNCED. In meeting these challenges, the trilemma of security of supply under conditions of economic viability and environmental sustainability also needs to be addressed in order to achieve sustainable development. To fulfil the natural resources needs of future generations we have three resources at our disposal: (1 the geosphere or primary resources; (2 the technosphere or secondary resources and (3 human ingenuity and creativity driving innovation. Man does not need natural resources as such, only the intrinsic property of a material that enables the fulfilment of a function is required. Any material that can perform the same function more efficiently or cheaply can replace any other material. In our constant drive to secure the supply of efficient raw materials, the feedback control cycle plays an indispensable role by virtue of it reacting to price signals on both the supply and demand sides. The feedback cycle of course goes hand in hand with a continuous learning process. On the supply side, the learning effects are in technology development around primary resources and the increased use of secondary resources; on the demand side with thriftier use of raw materials.

  7. On the Impact of Local Feedbacks in the Central Pacific on the ENSO Cycle.

    Science.gov (United States)

    Burgers, Gerrit; van Oldenborgh, Geert Jan

    2003-07-01

    While sea surface temperature (SST) anomalies in the eastern equatorial Pacific are dominated by the thermocline feedback, in the central equatorial Pacific local wind effects, such as zonal advection, are important as well. El Niño-Southern Oscillation (ENSO) simulations with a linear model improve markedly if these effects are included as a local wind stress feedback on SST. An atmosphere model that reacts both to eastern and central Pacific SST anomalies is needed for producing a realistic ENSO cycle.First, simulations are studied of a linear 1.5-layer reduced-gravity ocean model and a linear SST anomaly equation, forced by observed monthly wind stress. If only the thermocline feedback is present in the SST equation, SST can be simulated well in the eastern Pacific, but, contrary to observations, central Pacific SST is out of phase with the eastern Pacific. If a wind stress feedback is added in the SST equation, as a term proportional to the zonal wind stress, correlations between observed and simulated SST are above 0.8 in both the central and eastern Pacific, and the correlation between the Niño-3 (5°S-5°N, 90°-150°W) and Niño-4 (5°S-5°N, 150°W-160°E) indexes is close to the observed value of 0.75.Next, a statistical atmosphere is added to the ocean module that is based on a regression of observed wind stress to the observed Niño-3 and Niño-4 indexes. The coupled system is driven by noise that is inferred from the residues of the fit and has a red component. The observed Niño-3-Niño-4 index correlation can be reproduced only with a wind stress feedback in the central Pacific. Also, the level of SST variability rises and the ENSO period increases to more realistic values.The interplay between the local wind stress and the thermocline feedbacks, therefore, is an important factor in the structure of ENSO in the coupled linear model. In the eastern Pacific, the thermocline feedback dominates SST anomalies; in the central Pacific, the local wind

  8. The Cycle Performance of a Hybrid Carbon Battery.

    Science.gov (United States)

    Ahn, Sang-Yong; Kim, Sang-Chai; Jung, Ho-Young

    2016-02-01

    The behavior of a hybrid carbon battery is studied by using the Hg/Hg2SO4 reference electrode. The performance is confirmed in the discharge mode and a short-term cycle test. The capacities of the cell were 76.1, 60.3, 40.5, and 31.7 mAh at discharge currents of 150, 300, 600, and 900 mA, respectively. In the short-term cycle test, the capacity of the cell, 52.3 mAh at the first cycle, continuously increased to 66.7 mAh upon the fifth cycle (cut-off voltage 0.5 V in the deep cycle mode), indicating high feasibility of the hybrid carbon battery as a large-capacity energy storage system.

  9. Simulated Carbon Cycling in a Model Microbial Mat.

    Science.gov (United States)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  10. The climate dependence of the terrestrial carbon cycle; including parameter and structural uncertainties

    Directory of Open Access Journals (Sweden)

    M. J. Smith

    2012-10-01

    Full Text Available The feedback between climate and the terrestrial carbon cycle will be a key determinant of the dynamics of the Earth System over the coming decades and centuries. However Earth System Model projections of the terrestrial carbon-balance vary widely over these timescales. This is largely due to differences in their carbon cycle models. A major goal in biogeosciences is therefore to improve understanding of the terrestrial carbon cycle to enable better constrained projections. Essential to achieving this goal will be assessing the empirical support for alternative models of component processes, identifying key uncertainties and inconsistencies, and ultimately identifying the models that are most consistent with empirical evidence. To begin meeting these requirements we data-constrained all parameters of all component processes within a global terrestrial carbon model. Our goals were to assess the climate dependencies obtained for different component processes when all parameters have been inferred from empirical data, assess whether these were consistent with current knowledge and understanding, assess the importance of different data sets and the model structure for inferring those dependencies, assess the predictive accuracy of the model, and to identify a methodology by which alternative component models could be compared within the same framework in future. Although formulated as differential equations describing carbon fluxes through plant and soil pools, the model was fitted assuming the carbon pools were in states of dynamic equilibrium (input rates equal output rates. Thus, the parameterised model is of the equilibrium terrestrial carbon cycle. All but 2 of the 12 component processes to the model were inferred to have strong climate dependencies although it was not possible to data-constrain all parameters indicating some potentially redundant details. Similar climate dependencies were obtained for most processes whether inferred

  11. Urbanization and the carbon cycle: Contributions from social science

    Science.gov (United States)

    Marcotullio, Peter J.; Hughes, Sara; Sarzynski, Andrea; Pincetl, Stephanie; Sanchez Peña, Landy; Romero-Lankao, Patricia; Runfola, Daniel; Seto, Karen C.

    2014-10-01

    This paper outlines the contributions of social science to the study of interactions between urbanization patterns and processes and the carbon cycle, and identifies gaps in knowledge and priority areas for future social scientific research contributions. While previously studied as a unidimensional process, we conceptualize urbanization as a multidimensional, social and biophysical process driven by continuous changes across space and time in various subsystems including biophysical, built environment, and socio-institutional (e.g., economic, political, demographic, behavioral, and sociological). We review research trends and findings focused on the socio-institutional subsystem of the urbanization process, and particularly the dynamics, relationships, and predictions relevant to energy use and greenhouse gas emissions. Our findings suggest that a multidimensional perspective of urbanization facilitates a wider spectrum of research relevant to carbon cycle dynamics, even within the socio-institutional subsystem. However, there is little consensus around the details and mechanisms underlying the relationship between urban socio-institutional subsystems and the carbon cycle. We argue that progress in understanding the relationship between urbanization and the carbon cycle may be achieved if social scientists work collaboratively with each other as well as with scientists from other disciplines. From this review, we identify research priorities where collaborative social scientific efforts are necessary in conjunction with other disciplinary approaches to generate a more complete understanding of urbanization as a process and its relationship to the carbon cycle.

  12. Can nitrogen cycle feedbacks lead to runaway denitrification and deoxygenation of the ocean?

    Science.gov (United States)

    Weber, T. S.; Deutsch, C. A.

    2014-12-01

    Over millennial timescales, the oceanic reservoir of fixed nitrogen (N) is regulated by a balance between N loss in sediments and low oxygen (O2) waters, and N2-fixation by diazotrophic phytoplankton. The two processes are coupled by selection for diazotrophs under N-limited conditions that arise from denitrification, although the spatial scale of this coupling is debated. A strong local coupling has been argued against because the export of newly fixed N would boost nearby denitrification rates, stimulating further N2-fixation in overlying water, resulting in runaway N loss and deoxygenation of the ocean. Using a global ocean circulation model with a prognostic ecosystem and biogeochemical cycles, we show that no such runaway feedback arises. Even when the majority of N2-fixation occurs directly above suboxic zones, N sources and sinks quickly reach a stable equilibrium without widespread N depletion. Taking a systems dynamics approach, we derive a "feedback factor" (f) for the interaction of N inputs and losses, which depends on the stoichiometry of diazotroph biomass, ventilation of the tropical thermocline, and upwelling rate of denitrified waters. Under modern conditions of ocean circulation and O2 solubility, f is much lower than 1 - the value that separates stable and runaway amplification of a system response - and the oceanic N reservoir is remarkably insensitive to spatial proximity of N sources and sinks, as might accompany the alleviation of diazotroph Fe-limitation. Based on these parameters, we identify climatic conditions that might push the system into a runaway feedback regime, allowing for periods of catastrophic N loss and deoxygenation during Earth's history.

  13. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sienicki, James [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States); Nellis, Gregory [Univ. of Wisconsin, Madison, WI (United States); Klein, Sanford [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  14. Decay of cacti and carbon cycling

    Science.gov (United States)

    Garvie, Laurence A. J.

    2006-03-01

    Cacti contain large quantities of Ca-oxalate biominerals, with C derived from atmospheric CO2. Their death releases these biominerals into the environment, which subsequently transform to calcite via a monohydrocalcite intermediate. Here, the fate of Ca-oxalates released by plants in arid environments is investigated. This novel and widespread form of biomineralization has unexpected consequences on C cycling and calcite accumulation in areas with large numbers of cacti. The magnitude of this mineralization is revealed by studying the large columnar cactus Carnegiea gigantea (Engelm.) Britton and Rose in southwestern Arizona (locally called the saguaro). A large C. gigantea contains on the order of 1×105 g of the Ca-oxalate weddellite—CaC2O4·2H2O. In areas with high C. gigantea density, there is an estimated 40 g Catm m-2 sequestered in Ca-oxalates. Following the death of the plant, the weddellite transforms to calcite on the order to 10-20 years. In areas with high saguaro density, there is an estimated release of up to 2.4 g calcite m-2 year-1 onto the desert soil. Similar transformation mechanisms occur with the Ca-oxalates that are abundant in the majority of cacti. Thus, the total atmospheric C returned to the soil of areas with a high number density of cacti is large, suggesting that there may be a significant long-term accumulation of atmospheric C in these soils derived from Ca-oxalate biominerals. These findings demonstrate that plant decay in arid environments may have locally significant impacts on the Ca and inorganic C cycles.

  15. Redesigning Urban Carbon Cycles: from Waste Stream to Commodity

    Science.gov (United States)

    Brabander, D. J.; Fitzstevens, M. G.

    2013-12-01

    While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in

  16. The decadal state of the terrestrial carbon cycle : Global retrievals of terrestrial carbon allocation, pools, and residence times

    NARCIS (Netherlands)

    Bloom, A Anthony; Exbrayat, Jean-François; van der Velde, Ivar R; Feng, Liang; Williams, Mathew

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  17. A phase plane graph based model of the ovulatory cycle lacking the "positive feedback" phenomenon

    Directory of Open Access Journals (Sweden)

    Kurbel Sven

    2012-08-01

    Full Text Available Abstract When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning “&" symbol, while LH and progesterone (Pg values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883–887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. in several estrogen target tissue progesterone receptor (PgR expression depends on previous estrogen binding to functional estrogen receptors (ER, while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge. A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic

  18. A tree-ring perspective on the terrestrial carbon cycle.

    Science.gov (United States)

    Babst, Flurin; Alexander, M Ross; Szejner, Paul; Bouriaud, Olivier; Klesse, Stefan; Roden, John; Ciais, Philippe; Poulter, Benjamin; Frank, David; Moore, David J P; Trouet, Valerie

    2014-10-01

    Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective.

  19. Anthropogenic chemical carbon cycle for a sustainable future.

    Science.gov (United States)

    Olah, George A; Prakash, G K Surya; Goeppert, Alain

    2011-08-24

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time, millions of years, can new fossil fuels be formed naturally. The burning of our diminishing fossil fuel reserves is accompanied by large anthropogenic CO(2) release, which is outpacing nature's CO(2) recycling capability, causing significant environmental harm. To supplement the natural carbon cycle, we have proposed and developed a feasible anthropogenic chemical recycling of carbon dioxide. Carbon dioxide is captured by absorption technologies from any natural or industrial source, from human activities, or even from the air itself. It can then be converted by feasible chemical transformations into fuels such as methanol, dimethyl ether, and varied products including synthetic hydrocarbons and even proteins for animal feed, thus supplementing our food chain. This concept of broad scope and framework is the basis of what we call the Methanol Economy. The needed renewable starting materials, water and CO(2), are available anywhere on Earth. The required energy for the synthetic carbon cycle can come from any alternative energy source such as solar, wind, geothermal, and even hopefully safe nuclear energy. The anthropogenic carbon dioxide cycle offers a way of assuring a sustainable future for humankind when fossil fuels become scarce. While biosources can play a limited role in supplementing future energy needs, they increasingly interfere with the essentials of the food chain. We have previously reviewed aspects of the chemical recycling of carbon dioxide to methanol and dimethyl ether. In the present Perspective, we extend the discussion of the innovative and feasible anthropogenic carbon cycle, which can be the basis of progressively liberating humankind from its dependence on diminishing fossil fuel reserves while also controlling harmful CO(2) emissions to the atmosphere. We also

  20. The Carbon Cycle: Teaching Youth about Natural Resource Sustainability

    Science.gov (United States)

    Warren, William A.

    2015-01-01

    The carbon cycle was used as a conceptual construct for organizing the curriculum for a youth summer camp on natural resource use and sustainability. Several studies have indicated the importance of non-traditional youth education settings for science education and understanding responsible natural resource use. The Sixth Grade Forestry Tour, a…

  1. Carbon cycle changes during the Triassic-Jurassic transition

    NARCIS (Netherlands)

    Ruhl, M.

    2010-01-01

    The end-Triassic is regarded as one of the five major mass extinction events of the Phanerozoic. This time interval is marked by up to 50% of marine biodiversity loss and major changes in terrestrial ecosystems. Mass extinction events are often marked by changes in the global carbon cycle. The reali

  2. Microbial control over carbon cycling in soil

    Directory of Open Access Journals (Sweden)

    Joshua eSchimel

    2012-09-01

    Full Text Available A major thrust of terrestrial microbial ecology is focused on understanding when and how the composition of the microbial community affects the functioning of biogeochemical processes at the ecosystem scale (meters-to-kilometers and days-to-years. While research has demonstrated these linkages for physiologically and phylogenetically narrow processes such as trace gas emissions and nitrification, there is less conclusive evidence that microbial community composition influences the broad processes of decomposition and organic matter turnover in soil. In this paper, we consider how soil microbial community structure influences C-cycling. We consider the phylogenetic level at which microbes form meaningful guilds, based on overall life history strategies, and suggest that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy. We then consider under what conditions it is possible for differences among microbes to affect process dynamics, and argue that while microbial community structure may be important in the rate of OM breakdown in the rhizosphere and in detritus, it is likely not important in the mineral soil. In mineral soil, physical access to occluded or sorbed substrates is the rate-limiting process. Microbial community influences on OM turnover in mineral soils are based on how organisms allocate the C they take up—not only do the fates of the molecules differ, but they can affect the soil system differently as well. For example, extracellular enzymes and extracellular polysaccharides can be key controls on soil structure and function. How microbes allocate C may also be particularly important for understanding the long-term fate of C in soil—is it sequestered or not?

  3. Feedback regulation between atypical E2Fs and APC/CCdh1 coordinates cell cycle progression.

    Science.gov (United States)

    Boekhout, Michiel; Yuan, Ruixue; Wondergem, Annelotte P; Segeren, Hendrika A; van Liere, Elsbeth A; Awol, Nesibu; Jansen, Imke; Wolthuis, Rob M F; de Bruin, Alain; Westendorp, Bart

    2016-03-01

    E2F transcription factors control the oscillating expression pattern of multiple target genes during the cell cycle. Activator E2Fs, E2F1-3, induce an upswing of E2F targets, which is essential for the G1-to-S phase transition, whereas atypical E2Fs, E2F7 and E2F8, mediate a downswing of the same targets during late S, G2, and M phases. Expression of atypical E2Fs is induced by E2F1-3, but it is unknown how atypical E2Fs are inactivated in a timely manner. Here, we demonstrate that E2F7 and E2F8 are substrates of the anaphase-promoting complex/cyclosome (APC/C). Removal of CDH1, or mutating the CDH1-interacting KEN boxes, stabilized E2F7/8 from anaphase onwards and during G1. Expressing KEN mutant E2F7 during G1 impairs S phase entry and eventually results in cell death. Furthermore, we show that E2F8, but not E2F7, interacts also with APC/C(C) (dc20). Importantly, atypical E2Fs can activate APC/C(C) (dh1) by repressing its inhibitors cyclin A, cyclin E, and Emi1. In conclusion, we discovered a feedback loop between atypical E2Fs and APC/C(C) (dh1), which ensures balanced expression of cell cycle genes and normal cell cycle progression.

  4. Citric acid cycle biomimic on a carbon electrode.

    Science.gov (United States)

    Sokic-Lazic, Daria; Minteer, Shelley D

    2008-12-01

    The citric acid cycle is one of the main metabolic pathways living cells utilize to completely oxidize biofuels to carbon dioxide and water. The overall goal of this research is to mimic the citric acid cycle at the carbon surface of an electrode in order to achieve complete oxidation of ethanol at a bioanode to increase biofuel cell energy density. In order to mimic this process, dehydrogenase enzymes (known to be the electron or energy producing enzymes of the citric acid cycle) are immobilized in cascades at an electrode surface along with non-energy producing enzymes necessary for the cycle to progress. Six enzymatic schemes were investigated each containing an additional dehydrogenase enzyme involved in the complete oxidation of ethanol. An increase in current density is observed along with an increase in power density with each additional dehydrogenase immobilized on an electrode, reflecting increased electron production at the bioanode with deeper oxidation of the ethanol biofuel. By mimicking the complete citric acid cycle on a carbon electrode, power density was increased 8.71-fold compared to a single enzyme (alcohol dehydrogenase)-based ethanol/air biofuel cell.

  5. Evolving Human Alteration of the Carbon Cycle: the Watershed Continuum

    Science.gov (United States)

    Kaushal, S.; Delaney Newcomb, K.; Newcomer Johnson, T.; Pennino, M. J.; Smith, R. M.; Beaulieu, J. J.; Belt, K.; Grese, M.; Blomquist, J.; Duan, S.; Findlay, S.; Likens, G.; Mayer, P. M.; Murthy, S.; Utz, R.; Yepsen, M.

    2014-12-01

    Watersheds experiencing land development are constantly evolving, and their biogeochemical signatures are expected to evolve across both space and time in drainage waters. We investigate how land development influences spatial and temporal evolution of the carbon cycle from small streams to major rivers in the Eastern U.S. Along the watershed continuum, we show that there is spatial evolution in: (1) the amount, chemical form, and bioavailability of carbon; (2) carbon retention/release at the reach scale; and (3) ecosystem metabolism of carbon from headwaters to coastal waters. Over shorter time scales, the interaction between land use and climate variability alters magnitude and frequency of carbon "pulses" in watersheds. Amounts and forms of carbon pulses in agricultural and urban watersheds respond similarly to climate variability due to headwater alteration and loss of ecosystem services to buffer runoff and temperature changes. Over longer time scales, land use change has altered organic carbon concentrations in tidal waters of Chesapeake Bay, and there have been increased bicarbonate alkalinity concentrations in rivers throughout the Eastern U.S. due to human activities. In summary, our analyses indicates that the form and reactivity of carbon have evolved over space and time along the watershed continuum with major implications for downstream ecosystem metabolism, biological oxygen demand, carbon dioxide production, and river alkalinization.

  6. Simulation of terrestrial carbon cycle balance model in Tibet

    Institute of Scientific and Technical Information of China (English)

    WANGJianlin:; HUDan; SUNZibao

    2003-01-01

    Based on climate material, the simplified terrestrial carbon cycle balance (TCCB) model was established, which is semi-mechanism and semi-statistics. Through TCCB model, our estimate indicates that the southeastern part of the Tibetan Plateau has much higher carbon content, and we have calculated the litter carbon pool, NPP, carbon fluxes and described their spatial characteristics in this region. Based on the TCCB model simulation, NPP in Tibet is 1.73 × 108tC/a, soil organic input rate is 0.66 × l08 tC/a, litter mineralization rate is 1.07× l08tC/a, vegetation litterfall rate is 1.73× l08 tC/a, the litter carbon pool is 7.26 × l08 tC, and soil decomposition rate is 309.54 × l08tC/a. The carbon budget was also analyzed based on the estimates of carbon pool and fluxes. The spatial distributions of carbon pools and carbon fluxes in different compartments of terrestrial ecosystem were depicted with map respectively in Tibet. The distribution of NPP, vegetation litterfall rate, litter, litter mineralization rate, soil organic input rate and the soil decomposition rate were abstracted with temperature, precipitation, fractional vegetation and land feature.

  7. Urbanization and the Carbon Cycle: Synthesis of Ongoing Research

    Science.gov (United States)

    Gurney, K. R.; Duren, R. M.; Hutyra, L.; Ehleringer, J. R.; Patarasuk, R.; Song, Y.; Huang, J.; Davis, K.; Kort, E. A.; Shepson, P. B.; Turnbull, J. C.; Lauvaux, T.; Rao, P.; Eldering, A.; Miller, C. E.; Wofsy, S.; McKain, K.; Mendoza, D. L.; Lin, J. C.; Sweeney, C.; Miles, N. L.; Richardson, S.; Cambaliza, M. O. L.

    2015-12-01

    Given the explosive growth in urbanization and its dominant role in current and future global greenhouse gas emissions, urban areas have received increasing research attention from the carbon cycle science community. The emerging focus is driven by the increasingly dense atmospheric observing capabilities - ground and space-based - in addition to the rising profile of cities within international climate change policymaking. Dominated by anthropogenic emissions, urban carbon cycle research requires a cross-disciplinary perspective with contributions from disciplines such as engineering, economics, social theory, and atmospheric science. We review the recent results from a sample of the active urban carbon research efforts including the INFLUX experiment (Indianapolis), the Megacity carbon project (Los Angeles), Salt Lake City, and Boston. Each of these efforts represent unique approaches in pursuit of different scientific and policy questions and assist in setting priorities for future research. From top-down atmospheric measurement systems to bottom-up estimation, these research efforts offer a view of the challenges and opportunities in urban carbon cycle research.

  8. Long-term warming amplifies shifts in the carbon cycle of experimental ponds

    Science.gov (United States)

    Yvon-Durocher, Gabriel; Hulatt, Chris J.; Woodward, Guy; Trimmer, Mark

    2017-02-01

    Lakes and ponds cover only about 4% of the Earth’s non-glaciated surface, yet they represent disproportionately large sources of methane and carbon dioxide. Indeed, very small ponds (for example, greenhouse gas emissions from aquatic ecosystems will respond to global warming is therefore vital for forecasting biosphere-carbon cycle feedbacks. Here, we present findings on the long-term effects of warming on the fluxes of GHGs and rates of ecosystem metabolism in experimental ponds. We show that shifts in CH4 and CO2 fluxes, and rates of gross primary production and ecosystem respiration, observed in the first year became amplified over seven years of warming. The capacity to absorb CO2 was nearly halved after seven years of warmer conditions. The phenology of greenhouse gas fluxes was also altered, with CO2 drawdown and CH4 emissions peaking one month earlier in the warmed treatments. These findings show that warming can fundamentally alter the carbon balance of small ponds over a number of years, reducing their capacity to sequester CO2 and increasing emissions of CH4; such positive feedbacks could ultimately accelerate climate change.

  9. Anthropogenic perturbation of the global carbon cycle as a result of agricultural carbon erosion and burial

    Science.gov (United States)

    Wang, Zhengang; Govers, Gerard; Kaplan, Jed; Hoffmann, Thomas; Doetterl, Sebastian; Six, Johan; Van Oost, Kristof

    2016-04-01

    Changes in terrestrial carbon storage exert a strong control over atmospheric CO2 concentrations but the underlying mechanisms are not fully constrained. Anthropogenic land cover change is considered to represent an important carbon loss mechanism, but current assessments do not consider the associated acceleration of carbon erosion and burial in sediments. We evaluated the role of anthropogenic soil erosion and the resulting carbon fluxes between land and atmosphere from the onset of agriculture to the present day. We show, here, that agricultural erosion induced a significant cumulative net uptake of 198±57 Pg carbon on terrestrial ecosystems. This erosion-induced soil carbon sink is estimated to have offset 74±21% of carbon emissions. Since 1850, erosion fluxes have increased 3-fold. As a result, the erosion and lateral transfer of organic carbon in relation to human activities is an important driver of the global carbon cycle at millennial timescales.

  10. Terrestrial Carbon Cycle Variability [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dennis Baldocchi

    2016-09-01

    Full Text Available A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions. The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y-1 with respect to a large and uncertain background (123 +/- 4 Pg-C y-1

  11. The State of the Carbon Cycle: Ten Years On

    Science.gov (United States)

    King, A. W.; Dilling, L.; Fairman, D. M.; Houghton, R. A.; Marland, G.; Rose, A.; Wilbanks, T. J.; Zimmerman, G.

    2015-12-01

    It has been nearly ten years since the First State of the Carbon Cycle Report (SOCCR-1) was published in 2007. Much has changed in the intervening years, but much has remained the same. In anticipation of a Second State of the Carbon Cycle Report (SOCCR-2), we, the members of the SOCCR-1 Coordinating Team, felt that a perspective from the first SOCCR and reflection on changes in the state of carbon cycle science and policy in the intervening years would be appropriate. The purpose of SOCCR-1 was to provide "…a synthesis and integration of the current knowledge of the North American carbon budget and its context within the global carbon cycle [i]n a format useful to decision makers." Being "useful to decision makers" was a guiding theme with three stakeholder workshops an integral part of the process. Drafting and revision of SOCCR-1 took place between 2005 and early 2007; the report's carbon budget was for circa 2003. In 2003, North America's fossil-fuel CO2 emissions were approximately 27% of global emissions. Nearly 85% of North American emissions were from the US, still at that time the world's largest emitter of fossil-fuel CO2. China's annual CO2 emissions exceeded those of the US for the first time while SOCCR-1 was being written. Today global CO2 emissions are dominated by emissions from China (28% in 2013), with US emissions only 14% of global emissions. Emissions from the US and North America have actually declined by approximately 10% since 2003 while emissions from China have doubled. Based on inventories of terrestrial carbon stocks, SOCCR-1 estimated that circa 2003 North American vegetation removed and stored a net 500 Mt C y-1 (±50%) from the atmosphere. A more recent synthesis incorporating additional estimates from atmospheric inversions and terrestrial biosphere modeling estimated the North American land sink for the decade of 2000-2009 at 350-470 Mt C y-1, with a slightly greater uncertainty due to the wider range of estimates from the

  12. Bony fish and their contribution to marine inorganic carbon cycling

    Science.gov (United States)

    Salter, Michael; Perry, Chris; Wilson, Rod; Harborne, Alistair

    2016-04-01

    Conventional understanding of the marine inorganic carbon cycle holds that CaCO3 (mostly as low Mg-calcite and aragonite) precipitates in the upper reaches of the ocean and sinks to a point where it either dissolves or is deposited as sediment. Thus, it plays a key role controlling the distribution of DIC in the oceans and in regulating their capacity to absorb atmospheric CO2. However, several aspects of this cycle remain poorly understood and have long perplexed oceanographers, such as the positive alkalinity anomaly observed in the upper water column of many of the world's oceans, above the aragonite and calcite saturation horizons. This anomaly would be explained by extensive dissolution of a carbonate phase more soluble than low Mg-calcite or aragonite, but major sources for such phases remain elusive. Here we highlight marine bony fish as a potentially important primary source of this 'missing' high-solubility CaCO3. Precipitation of CaCO3 takes place within the intestines of all marine bony fish as part of their normal physiological functioning, and global production models suggest it could account for up to 45 % of total new marine CaCO3 production. Moreover, high Mg-calcite containing >25 % mol% MgCO3 - a more soluble phase than aragonite - is a major component of these precipitates. Thus, fish CaCO3 may at least partially explain the alkalinity anomaly in the upper water column. However, the issue is complicated by the fact that carbonate mineralogy actually varies among fish species, with high Mg-calcite (HMC), low Mg-calcite (LMC), aragonite, and amorphous calcium carbonate (ACC) all being common products. Using data from 22 Caribbean fish species, we have generated a novel production model that resolves phase proportions. We evaluate the preservation/dissolution potential of these phases and consider potential implications for marine inorganic carbon cycling. In addition, we consider the dramatic changes in fish biomass structure that have resulted

  13. Carbon dioxide, ground air and carbon cycling in Gibraltar karst

    Science.gov (United States)

    Mattey, D. P.; Atkinson, T. C.; Barker, J. A.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M.

    2016-07-01

    We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This 'Gibraltar model' links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which

  14. Assessment of climate-carbon feedbacks from terrestrial biosphere and identification of an emerging constraint using remote-sensing data of soil moisture.

    Science.gov (United States)

    Magand, Claire; Cadule, Patricia; Dufresne, Jean-Louis

    2016-04-01

    on the land carbon cycle, and thus to calculate the land carbon-climate feedback. This feedback is analysed in terms of sensitivity of the biospheric carbon sink to soil moisture change. The comparison of sensitivities between models shows large contrasts regionally. These contrasts can be explained by many differences in the models. For instance, according to all models, allocation of carbon is globally higher in soils than in vegetation but these allocations strongly vary in terms of proportions and spatial distribution between the ESMs. Differences of sensitivities also reflect different parameterisations of biogeochemical processes (photosynthesis and respirations). As investigating all differences of the different models is a huge task that requires time and scientific developments, the relationship between the model soil moisture simulation performances and the sensitivity of the biogeochemical processes to this same variable can help, by reducing the dispersion between models, to assess more accurately the land carbon-climate feedback.

  15. Targeting patterns: A path forward for uncertainty quantification in carbon cycle science? (Invited)

    Science.gov (United States)

    Michalak, A. M.; Fang, Y.; Miller, S. M.; Ray, J.; Shiga, Y. P.; Yadav, V.; Zscheischler, J.

    2013-12-01

    The central challenge in carbon cycle science is to understand where, why, and how the terrestrial biosphere and oceans are taking up approximately half of the carbon being emitted through human activity. Such understanding would make it possible to decrease the uncertainty associated with predictions of carbon-climate feedbacks, and therefore reduce one of the key uncertainties in atmospheric carbon abundance and climate predictions. A second emerging challenge is that of quantifying the anthropogenic emissions themselves, and their changes over time, in support of efforts aimed at limiting emissions. Much work has focused on quantifying carbon exchange (a.k.a. fluxes) on scales ranging from local to continental using observed variability in atmospheric concentrations of carbon gases as a constraint. Uncertainties, however, have not decreased substantially over time. The difficulty associated with constraining the carbon budget can be attributed in part to the fact that (1) net fluxes are a small residual of large gross variability in emissions and uptake, especially for carbon dioxide (2) the intermediate (i.e. local to continental) scales of interest to carbon cycle studies are not well constrained by existing observing systems, and (3) the budgets inferred through inverse modeling studies are very sensitive to the atmospheric boundary conditions of the examined regions. While these modeling challenges can be addressed over time through improvements in observational and modeling approaches, the question that emerges is: What can be done to address some of the core questions given the state of current resources? One potential approach is, rather than focus on spatially and temporally aggregated quantities (i.e. magnitude of net fluxes over given regions during given time periods), to focus instead on the ability to identify the spatiotemporal patterns of net fluxes, and linking these to the underlying driving processes. In other words, one might shift the primary

  16. Modelling the soil carbon cycle of pine ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, K. [Hiroshima, Univ., Dept. of Environ. Studies, Fac. of Integrated Arts and Sciences, Higashi Hiroshima (Japan)

    1994-12-31

    Soil carbon cycling rates and carbon budgets were calculated for stands of four pine species. Pinus sylvestris (at Jaedraaas, Sweden), P. densiflora (Hiroshima, Japan), P. elliottii (Florida, USA) and P. radiata (Canberra, Australia), using a simulation model driven by daily observations of mean air temperature and precipitation. Inputs to soil carbon through litterfall differ considerably among the four pine forests, but the accumulation of the A{sub 0} layer and humus in mineral soil is less variable. Decomposition of the A{sub 0} layer and humus is fastest for P. densiflora and slowest for P. sylvestris stands with P. radiata and P. elliottii intermediate. The decomposition rate is lower for the P. elliottii stand than for P. densiflora in spite of its higher temperatures and slightly higher precipitation. Seasonal changes in simulated soil carbon are observed only for the A{sub 0} layer at the P. densiflora site. Simulated soil respiration rates vary seasonally in three stands (P. sylvestris, P. densiflora and P. radiata). In simulations for pine trees planted on bare soil, all soil organic matter fractions except the humus in mineral soil recover to half their asymptotic values within 30 to 40 years of planting for P. sylvestris and P. densiflora, compared with 10 to 20 years for P. radiata and P. elliottii. The simulated recovery of soil carbon following clear-cutting is fastest for the P. elliottii stand and slowest for P. sylvestris. Management of P. elliottii and P. radiata stands on 40-years rotations is sustainable because carbon removed through harvest is restored in the interval between successive clear-cuts. However p. densiflora and P. sylvestris stands may be unable to maintain soil carbon under such a short rotation. High growth rates of P. elliottii and p. radiata stands in spite of relatively poor soil conditions and slow carbon cycling may be related to the physiological responses of species to environmental conditions. (Abstract Truncated)

  17. EFFECTS OF THE ADMINISTRATION OF FEEDBACK ON PERFORMANCE OF THE BMX CYCLING GATE START

    Directory of Open Access Journals (Sweden)

    Mikel Zabala

    2009-09-01

    Full Text Available The aim of the present study was to determine the effect of the administration of external feedback (FB on the time used to execute the gate start skill in BMX cycling discipline. The sample used was n = 6 riders from the Spanish national team (19.3 ± 2.1 years. An intragroup experimental design with repeated measures was used to compare the evolution of the skill developed by the participants before and after treatment, as well as the degree of retention of the possible learning. The results showed that there were no significant differences between the 2 first pre-test sessions (PRE, nor between any of the other treatment, post-test or re-test sessions (TREAT, POS and RET, respectively. Nevertheless, significant differences were observed between either of the PRE sessions and any of the TREAT, POS or RET sessions (p < 0.028, showing a significant reduction of the time needed to perform this skill after TREAT (1.264 ± 0.045 ms in PRE, 1.047 ± 0.019 ms in POS, and 1.041 ± 0.021 ms in RET. In conclusion, the use of audiovisual FB and cognitive training of the skill can result in a significant improvement in the execution of the gate start in BMX reducing the time to develop the task

  18. Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery.

    Science.gov (United States)

    Layton, H E; Pitman, E B; Moore, L C

    2000-02-01

    A mathematical model was used to evaluate the potential effects of limit-cycle oscillations (LCO) on tubuloglomerular feedback (TGF) regulation of fluid and sodium delivery to the distal tubule. In accordance with linear systems theory, simulations of steady-state responses to infinitesimal perturbations in single-nephron glomerular filtration rate (SNGFR) show that TGF regulatory ability (assessed as TGF compensation) increases with TGF gain magnitude gamma when gamma is less than the critical value gamma(c), the value at which LCO emerge in tubular fluid flow and NaCl concentration at the macula densa. When gamma > gamma(c) and LCO are present, TGF compensation is reduced for both infinitesimal and finite perturbations in SNGFR, relative to the compensation that could be achieved in the absence of LCO. Maximal TGF compensation occurs when gamma approximately gamma(c). Even in the absence of perturbations, LCO increase time-averaged sodium delivery to the distal tubule, while fluid delivery is little changed. These effects of LCO are consequences of nonlinear elements in the TGF system. Because increased distal sodium delivery may increase the rate of sodium excretion, these simulations suggest that LCO enhance sodium excretion.

  19. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics.

    Science.gov (United States)

    Koven, Charles D; Lawrence, David M; Riley, William J

    2015-03-24

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  20. Biological productivity and carbon cycling in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Primary production, bacterial production, particulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2@d) in the Chukchi shelf and was 3.8 mmolC/(m2@d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U disequilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to biogeochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2@d). Measurements of sediment excess 210Pb profile in the Chukchi shelf allowed us to estimate the amount of organic carbon buried in the bottom sediment, which ranged from 25 to 35 mmolC/(m2@d) and represented about 59%-82% of the mean primary production in the euphotic zone. Overall, our results indicated that the Arctic Ocean has active carbon cycling and is not a biological desert as previously believed. Therefore, the Arctic Ocean may play an important role in the global carbon cycle and climate change.

  1. Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial-interglacial cycles

    Science.gov (United States)

    Montañez, Isabel P.; McElwain, Jennifer C.; Poulsen, Christopher J.; White, Joseph D.; Dimichele, William A.; Wilson, Jonathan P.; Griggs, Galen; Hren, Michael T.

    2016-11-01

    Earth's last icehouse, 300 million years ago, is considered the longest-lived and most acute of the past half-billion years, characterized by expansive continental ice sheets and possibly tropical low-elevation glaciation. This atypical climate has long been attributed to anomalous radiative forcing promoted by a 3% lower incident solar luminosity and sustained low atmospheric pCO2 (paradigm by revealing major discrepancy between hypothesized ice distribution, pCO2, and geologic records of glacioeustasy. Here we present a high-resolution record of atmospheric pCO2 for 16 million years of the late Palaeozoic, developed using soil carbonate-based and fossil leaf-based proxies, that resolves the climate conundrum. Palaeo-fluctuations on the 105-yr scale occur within the CO2 range predicted for anthropogenic change and co-vary with substantial change in sea level and ice volume. We further document coincidence between pCO2 changes and repeated restructuring of Euramerican tropical forests that, in conjunction with modelled vegetation shifts, indicate a more dynamic carbon sequestration history than previously considered and a major role for terrestrial vegetation-CO2 feedbacks in driving eccentricity-scale climate cycles of the late Palaeozoic icehouse.

  2. Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean

    Science.gov (United States)

    Boyle, R. A.; Clark, J. R.; Poulton, S. W.; Shields-Zhou, G.; Canfield, D. E.; Lenton, T. M.

    2013-02-01

    Geochemical evidence invokes anoxic deep oceans until the terminal Neoproterozoic ~0.55 Ma, despite oxygenation of Earth’s atmosphere nearly 2 Gyr earlier. Marine sediments from the intervening period suggest predominantly ferruginous (anoxic Fe(II)-rich) waters, interspersed with euxinia (anoxic H2S-rich conditions) along productive continental margins. Today, sustained biotic H2S production requires NO3- depletion because denitrifiers outcompete sulphate reducers. Thus, euxinia is rare, only occurring concurrently with (steady state) organic carbon availability when N2-fixers dominate the production in the photic zone. Here we use a simple box model of a generic Proterozoic coastal upwelling zone to show how these feedbacks caused the mid-Proterozoic ocean to exhibit a spatial/temporal separation between two states: photic zone NO3- with denitrification in lower anoxic waters, and N2-fixation-driven production overlying euxinia. Interchange between these states likely explains the varying H2S concentration implied by existing data, which persisted until the Neoproterozoic oxygenation event gave rise to modern marine biogeochemistry.

  3. Climate Change Feedbacks from Interactions Between New and Old Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, Jeffrey S. [Purdue Univ., West Lafayette, IN (United States); Phillips, Richard P. [Indiana Univ., Bloomington, IN (United States)

    2016-05-24

    Priming effects, or responses of SOM decomposition rates to inputs of new, labile carbon (C), have the potential to dramatically alter projections of ecosystem C storage. Priming effects occur in most ecosystems, are significant in magnitude, and are highly sensitive to global changes. Nevertheless, our mechanistic understanding of priming effects remains poor, and this has prevented the inclusion of these dynamics into current Earth system models (ESMs). We conducted two manipulative experiments in the field to quantify how priming effects influence SOM dynamics. Specifically, we asked: To what extent do inputs of “new” root-derived carbon (C) influence “older” C in SOM, and are the magnitude and direction of these effects sensitive to climate? We addressed these questions within the Boston-Area Climate Experiment - an old-field ecosystem that has been subjected to three precipitation treatments (ambient, -50%, and +50% of each precipitation event during the growing season) and four warming treatments (from ambient to +4°C) since 2008. In the first experiment, we installed root and fungal ingrowth cores into the plots. Each core was filled with SOM that had an isotopic signature (of its C compounds) that differed from the vegetation in the plots such that inputs of “new” C from roots/fungi could be quantified using the change in isotopic signatures of C in the cores. Further, we used cores with different mesh sizes to isolate root vs. mycorrhizal fungal inputs. We found that belowground C fluxes were dominated by root inputs (as opposed to mycorrhizal inputs), and that root-derived inputs were greatest in the plots subjected to experimental warming. Given that that the warming-induced increase in belowground C flux did not result in a net increase in soil C, we conclude that the warming treatment likely enhanced priming effects in these soils. In the second experiment, we experimentally dripped dissolved organic C compounds into soils in the BACE

  4. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere.

    Science.gov (United States)

    Parmentier, Frans-Jan W; Christensen, Torben R; Rysgaard, Søren; Bendtsen, Jørgen; Glud, Ronnie N; Else, Brent; van Huissteden, Jacobus; Sachs, Torsten; Vonk, Jorien E; Sejr, Mikael K

    2017-02-01

    The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air-sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean-land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.

  5. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  6. Modelling of cycling of lithium battery with microporous carbon electrode

    Directory of Open Access Journals (Sweden)

    D. Portnyagin

    2008-12-01

    Full Text Available Charge/discharge cycles of lithium cell with microporous carbon electrode under potentiodynamic control have been modelled. Predictions of the models with variable and constant diffusion coefficient neglecting the electric field inside the particle (CPM, DFM are compared to the predictions of the models with variable and constant diffusion coefficient in which electrostatic interaction inside the particles of carbon electrode (CPME, DFME is taken into account. There is observed a considerable difference between both. Electrostatic interactions of lithium ions with each other and the charge distributed inside the particle promote intercalation during the discharge of the cell and deintercalation during the charge. The dependance of the effect of hysteresis during the cycling of the cell on the rate of change of the applied voltage is studied. The larger is the speed of change of the applied voltage the more effective is hysteresis. We have also obtained concentration profiles at different stages of charge/discharge process.

  7. Comparative carbon cycle dynamics of the present and last interglacial

    Science.gov (United States)

    Brovkin, Victor; Brücher, Tim; Kleinen, Thomas; Zaehle, Sönke; Joos, Fortunat; Roth, Raphael; Spahni, Renato; Schmitt, Jochen; Fischer, Hubertus; Leuenberger, Markus; Stone, Emma J.; Ridgwell, Andy; Chappellaz, Jérôme; Kehrwald, Natalie; Barbante, Carlo; Blunier, Thomas; Dahl Jensen, Dorthe

    2016-04-01

    Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and δ13CO2 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics - shallow water CaCO3 accumulation, peat and permafrost carbon dynamics - are not well represented in the current ESMs. Global

  8. Climate change impact on the carbon cycle in Russian peatlands

    Science.gov (United States)

    Zavalishin, N. N.

    2009-04-01

    Dynamic compartment model with annual time resolution of carbon cycle functioning with elements of nitrogen and water cycles for three basic types of peatlands (oligotrophic, mesotrophic, eutrophic) is designed and verified based on data for several peatland ecosystems from Russian European part and Western Siberia as well as on estimates of relative areas occupied by these types in each of wetland provinces marked by Kats (1970). Flows between three main reservoirs and input-output fluxes can have donor-, recipient-, Volterra-controlled forms or be saturation functions of storages in participating reservoirs. Possible steady states of combined cycles allow to distinguish forest, forest-swamp and swamp for each of three types of peatland ecosystems as stable equilibria. Stability and bifurcation analysis of the dynamic model, as well as numerical modeling of transient non-equilibrium dynamic regimes, is carried out in the space of three parameters corresponding to intensities of atmospheric carbon assimilation by vegetation, output runoff from soils and litter, decay of dead organic matter by animals and microorganisms. These parameters depend on climatic magnitudes - annual temperature and total precipitation, soil moisture, availability of nitrogen in the litterfall. Atmospheric CO2 concentration increase can lead to appearance of oscillations in system compartments or to transition into other steady states depending on two other parameter values. Numerical simulations and analytical findings allow establish stability boundaries of each peatland type as an equilibrium of the model, and to calculate critical values of external parameters for which stable functioning of matter cycles is provided. Change in climatic or human perturbation parameters initiates a shift in the model parameter space corresponding to the temporal evolution of carbon cycle capable to change the ecosystem state significantly. Estimations of relative areas occupied by peatland types in some

  9. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    Science.gov (United States)

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts.

  10. Feedback control strategy of longitudinal temperature and finished carbonization time for coke oven and its application

    Institute of Scientific and Technical Information of China (English)

    Fang Huo; Zhi Wen; Dong Chen; Yueling Shen; Yongqin Zhang; Xiaoming Zhi

    2004-01-01

    Based on the detailed analysis of the third coke oven in BaoSteel, a feedback control strategy of longitudinal temperature and finished carbonization time of coke ovens was proposed and it was applied to the third coke oven in BaoSteel. As a result, the ratio of the instance that the absolute deviation of the longitudinal temperature is within ±7°C and the finished carbonization time within ± 10 rain is more than 80%, having acquired the patent saving effect of an energy consumption lowered by 2.92%. At the same time, it can provide an example for the same coke ovens inside and outside the nation.

  11. Mission Design for Continental-Scale Carbon Cycle Applications

    Science.gov (United States)

    Gervin, J. C.; Esper, J.; McClain, C. R.; Hall, F. G.; Middleton, E. M.; Gregg, W. W.; Mannino, A.; Knox, R. G.; Dabney, P. W.; Huemmrich, K. F.; Wood, H. J.; Roberto, M.

    2003-12-01

    Carbon cycle scientific requirements in both land and ocean studies point toward the need for multiple spectrally detailed observations per day. For terrestrial research, accurate estimates of carbon, water and energy (CWE) exchange between the terrestrial biosphere and atmosphere are needed to identify the geographical locations of carbon sources/sinks and to improve regional climate models and global climate change assessments. It is an enormous challenge to estimate CWE exchange from the infrequent temporal coverage provided by most polar-orbiting satellites, and without benefit of spectral indices that capture vegetation responses to stress conditions that down-regulate photosynthesis. Physiological status can be better assessed with spectral indices based on narrow (role in climate change scenarios. In the plan for developing new observations, we need to: 1)continue to improve estimates of ocean productivity; and 2 expand the emphasis of coastal ocean processes and specific regions of critical importance. Remote sensing of the coastal ocean represents a unique challenge due to the small-scale spatial variability and elevated concentrations of dissolved organic carbon, detritus and chlorophyll, which are difficult to distinguish, because they absorb light intensely in the blue spectrum. Observations in the ultraviolet are essential to improve our capability to distinguish these ocean constituents. A hyperspectral instrument design capable of observing in the ultraviolet, in addition to the visible and near infrared spectrum, is essential to investigate the variability, dynamics and biogeochemical cycles of the world's coastal and open ocean regions. For both terrestrial and ocean carbon cycle science objectives, a hyperspectral geostationary sensor should enable the development of new remote sensing measurements for important but as yet unobservable variables, and with the overall goal of linking both terrestrial and ocean carbon cycle processes to climate

  12. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  13. Thermodynamic Cycles using Carbon Dioxide as Working Fluid : CO2 transcritical power cycle study

    OpenAIRE

    Yang, Chen

    2011-01-01

    The interest in utilizing the energy in low‐grade heat sources and waste heat is increasing. There is an abundance of such heat sources, but their utilization today is insufficient, mainly due to the limitations of the conventional power cycles in such applications, such as low efficiency, bulky size or moisture at the expansion outlet (e.g. problems for turbine blades). Carbon dioxide (CO2) has been widely investigated for use as a working fluid in refrigeration cycles, because it has no ozo...

  14. Historical constraints on the origins of the carbon cycle concept

    Science.gov (United States)

    Galvez, Matthieu Emmanuel; Gaillardet, Jérôme

    2012-11-01

    Understanding the geological carbon cycle remains a major scientific challenge, although studies dedicated to this issue, in particular those of J.J. Ebelmen in the mid 19th century, have existed for over 200 years. The exact scientific and social pathways leading to the construction of the contemporaneous carbon cycle requires further investigation, which in turn may provide valuable insights into the modern state of scientific knowledge. The present study contributes to this question by demonstrating that, following the discovery of the compound nature of carbonic acid by A.L. Lavoisier at the end of the 18th century, studies initially investigated the mechanisms of respiration and photosynthesis until they were recognized as exerting an antagonistic effect on the composition of air. In the early 19th century, the consequence of these studies at the global scale had been foreseen, and applied to investigate the stability of the atmospheric composition over time. These early steps were only concerned with the fate of carbonic acid through life processes. However, between 1820 and 1840, the works of A.L. Brongniard and J.B. Boussingault established that geologic processes, such as the burial of carbonaceous material (CM) in sedimentary rocks and the release of CO2 by volcanoes, affect the composition of the atmosphere. By 1845, J.J. Ebelmen had brilliantly contributed to the emerging question of atmospheric composition by proposing that the alteration of silicates on continents and the precipitation of carbonates in the ocean should be considered as a sink of atmospheric CO2. He also used chemical formula of the time to quantify this process, which led him to mention a carbon rotation for the first time. The rotation of this element through geologic processes became, in itself, a matter worthy of investigation as was the composition of the atmosphere. We argue that J.J. Ebelmen's brilliant synthesis was made possible by the parallel development of the atomistic

  15. Microbial Carbon Cycling in Permafrost-Affected Soils

    Energy Technology Data Exchange (ETDEWEB)

    Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Liebner, Susanne [University of Tromso, Norway; Wilhelm, Ronald [McGill University, Montreal, Quebec; Wagner, Dirk [Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  16. Working cycles of devices based on bistable carbon nanotubes

    Science.gov (United States)

    Shklyaev, Oleg; Mockensturm, Eric; Crespi, Vincent; Carbon Nanotubes Collaboration

    2013-03-01

    Shape-changing nanotubes are an example of variable-shape sp2 carbon-based systems where the competition between strain and surface energies can be moderated by an externally controllable stimuli such as applied voltage, temperature, or pressure of gas encapsulated inside the tube. Using any of these stimuli one can transition a bistable carbon nanotube between the collapsed and inflated states and thus perform mechanical work. During the working cycle of such a device, energy from an electric or heat source is transferred to mechanical energy. Combinations of these stimuli allow the system to convert energy between different sources using the bistable shape-changing tube as a mediator. For example, coupling a bistable carbon nanotube to the heat and charge reservoirs can enable energy transfer between heat and electric forms. The developed theory can be extended to other nano-systems which change configurations in response to external stimuli.

  17. Resistance Responses of Carbon Fiber Cement to Cycled Compressive Stresses

    Institute of Scientific and Technical Information of China (English)

    SHUI Zhonghe; LI Chao; LIAO Weidong

    2005-01-01

    The stress-resistance relationship of carbon fiber cement was studicd. Attention has been paid to explore the improvement of the stress-resistance sensitivity under cycled stress restriction. The prismy carbon fiber cement sensors were pre-fabricated. The factors such as contents of carbon fibers, silica fume, dispersant and the w/ c were taken into account. The electrical resistance variations with the dynamic and static loads were simulated using a strain-controlled test machine. The test results show that there is an optimal fiber content, with which the compression-sensitivity achieves a high level. The addition of silica fume can improve the sensitivity. Urder the optimal test conditions, the measured resistances can greatly correspond with the changes of the load.

  18. Warming alters coupled carbon and nutrient cycles in experimental streams.

    Science.gov (United States)

    Williamson, Tanner J; Cross, Wyatt F; Benstead, Jonathan P; Gíslason, Gísli M; Hood, James M; Huryn, Alexander D; Johnson, Philip W; Welter, Jill R

    2016-06-01

    Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital matter) act as biogeochemical hotspots by controlling important fluxes of energy and material. Understanding how biofilms respond to warming is thus critical for predicting responses of coupled elemental cycles in freshwater systems. We developed biofilm communities in experimental streamside channels along a gradient of mean water temperatures (7.5-23.6 °C), while closely maintaining natural diel and seasonal temperature variation with a common water and propagule source. Both structural (i.e. biomass, stoichiometry, assemblage structure) and functional (i.e. metabolism, N2 -fixation, nutrient uptake) attributes of biofilms were measured on multiple dates to link changes in carbon flow explicitly to the dynamics of nitrogen and phosphorus. Temperature had strong positive effects on biofilm biomass (2.8- to 24-fold variation) and net ecosystem productivity (44- to 317-fold variation), despite extremely low concentrations of limiting dissolved nitrogen. Temperature had surprisingly minimal effects on biofilm stoichiometry: carbon:nitrogen (C:N) ratios were temperature-invariant, while carbon:phosphorus (C:P) ratios declined slightly with increasing temperature. Biofilm communities were dominated by cyanobacteria at all temperatures (>91% of total biovolume) and N2 -fixation rates increased up to 120-fold between the coldest and warmest treatments. Although ammonium-N uptake increased with temperature (2.8- to 6.8-fold variation), the much higher N2 -fixation rates supplied the majority of N to the ecosystem at higher temperatures. Our results demonstrate that temperature can alter how carbon is cycled and coupled to nitrogen and phosphorus. The

  19. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity

    Science.gov (United States)

    Frankenberg, Christian; Fisher, Joshua B.; Worden, John; Badgley, Grayson; Saatchi, Sassan S.; Lee, Jung-Eun; Toon, Geoffrey C.; Butz, André; Jung, Martin; Kuze, Akihiko; Yokota, Tatsuya

    2011-09-01

    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when and how carbon dioxide is exchanged between the land and atmosphere. Terrestrial gross primary production (GPP) constitutes the largest flux component in the global carbon budget, however significant uncertainties remain in GPP estimates and its seasonality. Empirically, we show that global spaceborne observations of solar induced chlorophyll fluorescence - occurring during photosynthesis - exhibit a strong linear correlation with GPP. We found that the fluorescence emission even without any additional climatic or model information has the same or better predictive skill in estimating GPP as those derived from traditional remotely-sensed vegetation indices using ancillary data and model assumptions. In boreal summer the generally strong linear correlation between fluorescence and GPP models weakens, attributable to discrepancies in savannas/croplands (18-48% higher fluorescence-based GPP derived by simple linear scaling), and high-latitude needleleaf forests (28-32% lower fluorescence). Our results demonstrate that retrievals of chlorophyll fluorescence provide direct global observational constraints for GPP and open an entirely new viewpoint on the global carbon cycle. We anticipate that global fluorescence data in combination with consolidated plant physiological fluorescence models will be a step-change in carbon cycle research and enable an unprecedented robustness in the understanding of the current and future carbon cycle.

  20. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands

    Directory of Open Access Journals (Sweden)

    W. Babel

    2014-06-01

    Full Text Available The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments coupling changes of surface properties and processes with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan plateau. We coupled measurements of micro-lysimeter, chamber, 13C labeling, and eddy-covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyze how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while the total sum of evapotranspiration remains unaffected. The results show an earlier onset of convection and cloud generation, likely triggered by enhanced evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a~significant influence on larger scales.

  1. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands

    Directory of Open Access Journals (Sweden)

    W. Babel

    2014-12-01

    Full Text Available The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.

  2. Effects of the administration of feedback on performance of the bmx cycling gate start.

    Science.gov (United States)

    Zabala, Mikel; Sánchez-Muñoz, Cristóbal; Mateo, Manuel

    2009-01-01

    The aim of the present study was to determine the effect of the administration of external feedback (FB) on the time used to execute the gate start skill in BMX cycling discipline. The sample used was n = 6 riders from the Spanish national team (19.3 ± 2.1 years). An intragroup experimental design with repeated measures was used to compare the evolution of the skill developed by the participants before and after treatment, as well as the degree of retention of the possible learning. The results showed that there were no significant differences between the 2 first pre-test sessions (PRE), nor between any of the other treatment, post-test or re-test sessions (TREAT, POS and RET, respectively). Nevertheless, significant differences were observed between either of the PRE sessions and any of the TREAT, POS or RET sessions (p ≤ 0.028), showing a significant reduction of the time needed to perform this skill after TREAT (1.264 ± 0.045 ms in PRE, 1.047 ± 0.019 ms in POS, and 1.041 ± 0.021 ms in RET). In conclusion, the use of audiovisual FB and cognitive training of the skill can result in a significant improvement in the execution of the gate start in BMX reducing the time to develop the task. Key pointsThis work provides a practical application of many studies developed around teaching-learning technique in sport. In those studies this kind of applications were suggested as necessary.All the recent theories are applied in the real sport context, and using elite athletes.A successful program is proposed to be used by coaches and athletes just following a few simple guidelines, and this can be a really useful tool to follow.

  3. Revisiting the terrestrial carbon cycle: New insights from isothermal microcalorimetry

    Science.gov (United States)

    Herrmann, Anke M.; Boye, Kristin; Bölscher, Tobias; Nunan, Naoise; Coucheney, Elsa; Schaefer, Michael; Fendorf, Scott

    2014-05-01

    Energy is continuously transformed in environmental systems through the metabolic activities of living organisms. In terrestrial ecosystems, there is a general consensus that the diversity of microbial metabolic processes is poorly related to overall ecosystem function because of the inherent functional redundancy that exists within many microbial communities. Here, we propose a conceptual ecological model of microbial energetics in various terrestrial ecosystems (e.g. Scandinavian arable systems or temporarily flooded systems in South East Asia). Using isothermal microcalorimetry, we show that direct measures of energetics provide a functional link between energy flow and the composition of belowground microbial communities at a high taxonomic level. In contrast, this link is not apparent when carbon dioxide (CO2) was used as an aggregate measure of microbial metabolism. Our results support the notion that systems with higher relative abundances of fungi have more efficient microbial metabolism. Furthermore, we suggest that the microbial energetics approach combined with spectroscopic and aqueous chemical measurements is a viable approach to determine the effect of energy release from organic matter on metal(loid) mobility in soils and sediments under anaerobic conditions. We advocate that the microbial energetics approach provides complementary information to soil respiration for investigating the involvement of microbial communities in belowground carbon dynamics. Our results indicate that microbial metabolic processes are an essential constituent in governing the terrestrial carbon balance and that microbial diversity should not be neglected in ecosystem modeling. Quantification of microbial energetics incorporates thermodynamic principles and our conceptual model provides empirical data that can feed into carbon-climate based ecosystem feedback modeling. Together they disentangle the intrinsically complex yet essential carbon dynamics of soils to address

  4. Isothermal microcalorimetry provides new insight into terrestrial carbon cycling.

    Science.gov (United States)

    Herrmann, Anke M; Coucheney, Elsa; Nunan, Naoise

    2014-04-15

    Energy is continuously transformed in environmental systems through the metabolic activities of living organisms, but little is known about the relationship between the two. In this study, we tested the hypothesis that microbial energetics are controlled by microbial community composition in terrestrial ecosystems. We determined the functional diversity profiles of the soil biota (i.e., multiple substrate-induced respiration and microbial energetics) in soils from an arable ecosystem with contrasting long-term management regimes (54 years). These two functional profiling methods were then related to the soils' microbial community composition. Using isothermal microcalorimetry, we show that direct measures of energetics provide a functional link between energy flows and the composition of below-ground microbial communities at a high taxonomic level (Mantel R = 0.4602, P = 0.006). In contrast, this link was not apparent when carbon dioxide (CO2) was used as an aggregate measure of microbial metabolism (Mantel R = 0.2291, P = 0.11). Our work advocates that the microbial energetics approach provides complementary information to soil respiration for investigating the involvement of microbial communities in below-ground carbon dynamics. Empirical data of our proposed microbial energetics approach can feed into carbon-climate based ecosystem feedback modeling with the suggested conceptual ecological model as a base.

  5. Burial-nutrient feedbacks amplify the sensitivity of carbon dioxide to changes in organic matter remineralisation

    Directory of Open Access Journals (Sweden)

    R. Roth

    2014-04-01

    Full Text Available Changes in the marine remineralization of particulate organic carbon (POC and calcium carbonate potentially provide a positive feedback under climate change. The responses to changes in remineralization length scales are systematically mapped with the Bern3D ocean–sediment model for CO2 and tracer fields for which observations and palaeoproxies exist. Spatio-temporal evolutions are captured by empirical orthogonal functions. Results show that the "sediment burial-nutrient feedback" amplifies the initial response in atmospheric CO2 by a factor of four to seven. A temporary imbalance between the weathering flux and the burial of organic matter and calcium carbonate lead to sustained changes the ocean's phosphate and alkalinity inventory and in turn in surface nutrient availability, marine productivity, and atmospheric CO2. It takes decades to centuries to reorganize tracers and fluxes within the ocean, many millennia to approach equilibrium for burial fluxes, while δ13C signatures are still changing 200 000 years after the perturbation. CO2 sensitivity is with 1.7 ppm m−1 about fifty times larger for a unit change in the remineralisation depth of POC than of calcium carbonate. The results highlight the role of organic matter burial for atmospheric CO2 and the substantial impacts of seemingly small changes in POC remineralisation.

  6. Exomoon Climate Models with the Carbonate-Silicate Cycle and Viscoelastic Tidal Heating

    CERN Document Server

    Forgan, Duncan

    2016-01-01

    The habitable zone for exomoons with Earth-like properties is a non-trivial manifold, compared to that of Earth-like exoplanets. The presence of tidal heating, eclipses and planetary illumination in the exomoon energy budget combine to produce both circumstellar and circumplanetary habitable regions. Analytical calculations suggest that the circumplanetary habitable region is defined only by an inner edge (with its outer limits determined by orbital stability). Subsequent calculations using 1D latitudinal climate models indicated that the combined effect of eclipses and ice-albedo feedback can produce an outer edge to the circumplanetary habitable zone. But is this outer edge real, or an artefact of the climate model's relative simplicity? We present an upgraded 1D climate model of Earth-like exomoon climates, containing the carbonate-silicate cycle and viscoelastic tidal heating. We conduct parameter surveys of both the circumstellar and circumplanetary habitable zones, and we find that the outer circumplane...

  7. A carbon cycle science update since IPCC AR-4.

    Science.gov (United States)

    Dolman, A J; van der Werf, G R; van der Molen, M K; Ganssen, G; Erisman, J-W; Strengers, B

    2010-01-01

    We review important advances in our understanding of the global carbon cycle since the publication of the IPCC AR4. We conclude that: the anthropogenic emissions of CO2 due to fossil fuel burning have increased up through 2008 at a rate near to the high end of the IPCC emission scenarios; there are contradictory analyses whether an increase in atmospheric fraction, that might indicate a declining sink strength of ocean and/or land, exists; methane emissions are increasing, possibly through enhanced natural emission from northern wetland, methane emissions from dry plants are negligible; old-growth forest take up more carbon than expected from ecological equilibrium reasoning; tropical forest also take up more carbon than previously thought, however, for the global budget to balance, this would imply a smaller uptake in the northern forest; the exchange fluxes between the atmosphere and ocean are increasingly better understood and bottom up and observation-based top down estimates are getting closer to each other; the North Atlantic and Southern ocean take up less CO2, but it is unclear whether this is part of the 'natural' decadal scale variability; large-scale fires and droughts, for instance in Amazonia, but also at Northern latitudes, have lead to significant decreases in carbon uptake on annual timescales; the extra uptake of CO2 stimulated by increased N-deposition is, from a greenhouse gas forcing perspective, counterbalanced by the related additional N2O emissions; the amount of carbon stored in permafrost areas appears much (two times) larger than previously thought; preservation of existing marine ecosystems could require a CO2 stabilization as low as 450 ppm; Dynamic Vegetation Models show a wide divergence for future carbon trajectories, uncertainty in the process description, lack of understanding of the CO2 fertilization effect and nitrogen-carbon interaction are major uncertainties.

  8. Transparent exopolymer particles: Effects on carbon cycling in the ocean

    Science.gov (United States)

    Mari, Xavier; Passow, Uta; Migon, Christophe; Burd, Adrian B.; Legendre, Louis

    2017-02-01

    Transparent Exopolymer Particles (TEP) have received considerable attention since they were first described in the ocean more than 20 years ago. This is because of their carbon-rich composition, their high concentrations in ocean's surface waters, and especially because of their ability to promote aggregation due to their high stickiness (i.e. biological glue). As large aggregates contribute significantly to vertical carbon flux, TEP are commonly seen as a key factor that drives the downward flux of particulate organic carbon (POC). However, the density of TEP is lower than that of seawater, which causes them to remain in surface waters and even move upwards if not ballasted by other particles, which often leads to their accumulation in the sea surface microlayer. Hence we question here the generally accepted view that TEP always increase the downward flux of POC via gravitational settling. In the present reassessment of the role of TEP, we examine how the presence of a pool of non-sinking carbon-rich particulate organic matter in surface waters influences the cycling of organic carbon in the upper ocean at daily to decadal time scales. In particular, we focus on the role of TEP in the retention of organic carbon in surface waters versus downward export, and discuss the potential consequences of climate change on this process and on the efficiency of the biological carbon pump. We show that TEP sink only when ballasted with enough high-density particles to compensate their low density, and hence that their role in vertical POC export is not solely linked to their ability to promote aggregation, but also to their contribution to the buoyancy of POC. It follows that the TEP fraction of POC determines the degree of retention and remineralization of POC in surface waters versus its downward export. A high TEP concentration may temporally decouple primary production and downward export. We identify two main parameters that affect the contribution of TEP to POC cycling

  9. Microbial diversity and carbon cycling in San Francisco Bay wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled the diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.

  10. The Deep Carbon Cycle and CO2 Sequestration

    Science.gov (United States)

    Filipovitch, N. B.; Mao, W. L.; Chou, I.; Mu, K.

    2009-12-01

    Increased understanding of the Earth’s carbon cycle may provide insight for future carbon storage. Long term geologic sequestration of CO2 occurs in the earth via exothermic reactions between CO2 and silicate minerals to form carbonate minerals. It has been shown that while there is a large enough supply of ultra mafic igneous rock to sequester the CO2 [1], the kinetics of this natural process are too slow to effectively manage our CO2 output. Most studies have focused on studying reaction kinetics at relatively low temperatures and pressures [2,3], and have found that the reaction kinetics are either too slow or (in the case of serpentine) necessitate an uneconomical heat pretreatment [3,4]. Our experiments expand the pressures and temperatures (up to 500 bars and exceeding 200 °C) at which the CO2 + silicate reaction is studied using fused silica capillary cells and Raman and XRD analysis. By increasing our understanding of the kinetics of this process and providing a valuable input for reactive flow and transport models, these results may guide approaches for practical CO2 sequestration in carbonate minerals as a way to manage atmospheric CO2 levels. High pressure and temperature results on carbonates have implications for understanding the deep carbon cycle. Most of the previous high pressure studies on carbonates have concentrated on magnesite (MgCO3), calcite (CaCO3), or dolomite ((Ca,Mg)CO3) [5,6]. While the Mg and Ca carbonates are the most abundant, iron-rich siderite (FeCO3) may be a significant player at greater depths within the earth. We performed XRD and Raman spectroscopy experiments on siderite to lower mantle pressures (up to 40 GPa) and observed a possible phase change around 13 GPa. References 1. Lackner, Klaus S., Wendt, Christopher H., Butt, Darryl P., Joyce, Edward L., Sharp, David H., 1995, Carbon dioxide disposal in carbonate minerals, Energy, Vol.20, No. 11, pp. 1153-1170 2. Bearat, Hamdallah, McKelvy, Michael J., Chizmeshya, Andrew V

  11. What Have We Learned About Arctic Carbon Since The First State of the Carbon Cycle Report?

    Science.gov (United States)

    Schuur, E.

    2015-12-01

    Large pools of organic carbon were reported in The First State of the Carbon Cycle Report, but measurements from high latitude ecosystems, in particular for deeper soils >1m depth, remained scarce. A newly enlarged soil carbon database with an order of magnitude more numerous deep sampling sites has verified the widespread pattern of large quantities of carbon accumulated deep in permafrost (perennially frozen) soils. The known pool of permafrost carbon across the northern circumpolar permafrost zone is now estimated to be 1330-1580 Pg C, with the potential for an additional ~400 Pg C in deep permafrost sediments. In addition, an uncertainty estimate of plus/minus 15% has now been calculated for the soil carbon pool in the surface 0-3m. Laboratory incubations of these permafrost soils reveal that a significant fraction can be mineralized by microbes upon thaw and converted to carbon dioxide and methane on time scales of years to decades, with decade-long average losses from aerobic incubations ranging from 6-34% of initial carbon. Carbon emissions from the same soils incubated in an anaerobic environment are, on average, 78-85% lower than aerobic soils. But, the more potent greenhouse gas methane released under anaerobic conditions in part increases the climate impact of these emissions. While mean quantities of methane are only 3% to 7% that of carbon dioxide emitted from anaerobic incubations (by weight of C), these mean methane values represent 25% to 45% of the overall potential impact on climate when accounting for the higher global warming potential of methane. Taken together though, in spite of the more potent greenhouse gas methane, a unit of newly thawed permafrost carbon could have a greater impact on climate over a century if it thaws and decomposes within a drier, aerobic soil as compared to an equivalent amount of carbon within a waterlogged soil or sediment. Model projections tend to estimate losses of carbon in line with empirical measurements, but

  12. Exploring Viral Mediated Carbon Cycling in Thawing Permafrost Microbial Communities

    Science.gov (United States)

    Trubl, G. G.; Solonenko, N.; Moreno, M.; Sullivan, M. B.; Rich, V. I.

    2014-12-01

    Viruses are the most abundant biological entities on Earth and their impact on carbon cycling in permafrost habitats is poorly understood. Arctic C cycling is particularly important to interpret due to the rapid climate change occurring and the large amount of C stockpiled there (~1/3 of global soil C is stored in permafrost). Viruses of microbes (i.e. phages) play central roles in C cycling in the oceans, through cellular lysis (phage drive the largest ocean C flux about 150 Gt yr-1, dwarfing all others by >5-fold), production of associated DOC, as well as transport and expression during infection (1029 transduction events day-1). C cycling in thawing permafrost systems is critical in understanding the climate trajectory and phages may be as important for C cycling here as they are in the ocean. The thawed C may become a food source for microbes, producing CO2 and potentially CH4, both potent greenhouse gases. To address the potential role of phage in C cycling in these dynamic systems, we are examining phage from an arctic permafrost thaw gradient in northern Sweden. We have developed a protocol for successfully extracting phage from peat soils and are quantifying phage in 15 peat and 2 lake sediment cores, with the goal of sequencing viromes. Preliminary data suggest that phage are present at 109 g-1 across the permafrost thaw gradient (compared to the typical marine count ~105 ml-1), implying a potentially robust phage-host interaction web in these changing environments. We are examining phage from 11 depth intervals (covering the active and permafrost layer) in the cores to assess phage-host community dynamics. Phage morphology and abundance for each layer and environment are being determined using qTEM and EFM. Understanding the phage that infect bacteria and archaea in these rapidly changing habitats will provide insight into the controls on current and future CH4 and CO2 emissions in permafrost habitats.

  13. Why are East Asian ecosystems important for carbon cycle research?

    Institute of Scientific and Technical Information of China (English)

    FANG JingYun; TANG YanHong; SON Yohan

    2010-01-01

    @@ The global carbon cycle is one of the most important biogeochemical cycles.Through photosynthesis, green plants absorb CO2 from the atmosphere to produce organic matters, such as sugars, and covert solar energy into chemical energy.The organic matters are then used by all other life forms including humans.When ecosystems and atmosphere are in dynamic equilibrium, the flow of CO2 from the atmosphere into the biosphere because of photosynthesis should be equivalent to the flow of CO2 released back into the atmosphere by respiration.However, during the past century atmospheric CO2 concentration has increased substantially because of the burning of fossil fuels.It is highly likely that the atmospheric increase has resulted in global warming and sea level rise, as suggested by the Intergovernmental Panel on Climate Change (IPCC) [1].

  14. Methanogenic burst in the end-Permian carbon cycle.

    Science.gov (United States)

    Rothman, Daniel H; Fournier, Gregory P; French, Katherine L; Alm, Eric J; Boyle, Edward A; Cao, Changqun; Summons, Roger E

    2014-04-15

    The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation.

  15. Marine geochemistry ocean circulation, carbon cycle and climate change

    CERN Document Server

    Roy-Barman, Matthieu

    2016-01-01

    Marine geochemistry uses chemical elements and their isotopes to study how the ocean works. It brings quantitative answers to questions such as: What is the deep ocean mixing rate? How much atmospheric CO2 is pumped by the ocean? How fast are pollutants removed from the ocean? How do ecosystems react to the anthropogenic pressure? The book provides a simple introduction to the concepts (environmental chemistry, isotopes), the methods (field approach, remote sensing, modeling) and the applications (ocean circulation, carbon cycle, climate change) of marine geochemistry with a particular emphasis on isotopic tracers. Marine geochemistry is not an isolated discipline: numerous openings on physical oceanography, marine biology, climatology, geology, pollutions and ecology are proposed and provide a global vision of the ocean. It includes new topics based on ongoing research programs such as GEOTRACES, Global Carbon Project, Tara Ocean. It provides a complete outline for a course in marine geochemistry. To favor a...

  16. The SML pump of carbon cycles in oceans

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Zhengbin; GONG; Haidong; LIU; Liansheng

    2006-01-01

    Different from the solution/physical pump, biological pump and continental shelf pump of carbon cycle in oceans, a new pump named "surface microlayer (SML) pump" is developed based on data obtained from marine investigations and lab study. The SML pump has: (1) left-right dissymmetry of "pH-depth" curve; (2) the non-linearity of "concentration-depth" curve; and (3) difference of affecting confine of the SML pump. The issue of "source" or "sink" of atmospheric CO2 in the Yellow Sea and South China Sea is discussed.

  17. Augmenting performance feedback does not affect 4 km cycling time-trials in the heat.

    Science.gov (United States)

    Waldron, Mark; Villerius, Vincent; Murphy, Aron

    2015-01-01

    We compared the effects of (1) accurate and (2) surreptitiously augmented performance feedback on power output and physiological responses to a 4000 m time-trial in the heat. Nine cyclists completed a baseline (BaseL) 4000 m time-trial in ambient temperatures of 30°C, followed by two further 4000 m time-trials at the same temperature, randomly assigning the participants to an accurate (ACC; accurate feedback of baseline) or deceived (DEC; 2% increase above baseline) feedback group. The total power output (PO) and aerobic (Paer) and anaerobic (Pan) contributions were determined at 0.4 km stages during the time-trials, alongside measurements of rectal (Trec) and skin (Tskin) temperatures. There were no differences (P > 0.05) in any of the variables between BaseL, ACC and DEC, despite increases (P 0.05) between feedback condition and time-trial stage. Providing surreptitiously augmented performance feedback to well-trained cyclists did not alter their performance or physiological responses to a 4000 m time-trial in a hot environment. The assumed influence of augmented performance feedback was nullified in the heat, perhaps reflecting a central down-regulation of exercise intensity in response to an increased body temperature.

  18. Superior flexibility of a wrinkled carbon shell under electrochemical cycling

    KAUST Repository

    Li, Qianqian

    2014-01-01

    Nanocarbon composites have been extensively employed in engineering alloy-type anodes in order to improve the poor cyclability caused by the enormous volume changes during lithium (Li+) insertion/extraction. The chemical vapor deposited wrinkled carbon shell (WCS) shows high electrical conductivity, excellent thermal stability and remarkable mechanical robustness, which help in retaining the structural integrity around the tin (Sn) anode core despite ∼250% variation in volume during repetitive lithiation and delithiation. In situ transmission electron microscopy reveals no embrittlement in the lithiated WCS, which fully recovers its original shape after severe mechanical deformation with no obvious structural change. Further analysis indicates that the capacity to accommodate large strains is closely related to the construction of the carbon shell, that is, the stacking of wrinkled few-layer graphenes. Both the pre-existing wrinkles and the few-layer thickness render the carbon shell superior flexibility and good elasticity under bending or expansion of the interior volume. Moreover, the WCS possesses fast lithium ion diffusion channels, which have lower activation barriers (∼0.1 eV) than that on a smooth graphene (∼0.3 eV). The results provide an insight into the improvement in cycle performance that can be achieved through carbon coating of anodes of lithium ion batteries. © 2014 The Royal Society of Chemistry.

  19. Peatlands and the carbon cycle: from local processes to global implications – a synthesis

    Directory of Open Access Journals (Sweden)

    H. Rydin

    2008-04-01

    Full Text Available Although peatlands cover only 3% of the Earth's land surface, boreal and subarctic peatlands store about 15–30% of the world's soil carbon as peat. Despite their potential for large positive feedbacks to the climate system through sequestration and emission of greenhouse gases, peatlands are not explicitly included in global climate models and therefore in predictions of future climate change. In April 2007 a symposium was held in Wageningen, the Netherlands, to advance our understanding of peatland C cycling through integration across disciplines and research approaches and to develop a more synthetic picture of the present and future role of peatlands in the global C cycle and their interactions with the climate system. This paper aims to synthesize the main findings of the symposium, focusing on (i small-scale processes, (ii C fluxes at the landscape scale, and (iii peatlands and climate. The paper concludes with a summary of the main drivers of the C balance of peatlands, and proposes directions for new research to reduce key uncertainties in our knowledge of C cycling in peatlands in order to facilitate the explicit inclusion of these ecosystems in a new generation of earth system models.

  20. Coupling of carbon and silicon geochemical cycles in rivers and lakes

    Science.gov (United States)

    Wang, Baoli; Liu, Cong-Qiang; Maberly, Stephen C.; Wang, Fushun; Hartmann, Jens

    2016-10-01

    Carbon (C) and silicon (Si) biogeochemical cycles are important factors in the regulation of atmospheric CO2 concentrations and hence climate change. Theoretically, these elements are linked by chemical weathering and organism stoichiometry, but this coupling has not been investigated in freshwaters. Here we compiled data from global rivers and lakes in the United States of America and the United Kingdom, in order to characterize the stoichiometry between the biogeochemical cycles of C and Si. In rivers this coupling is confirmed by a significant relationship between HCO3-/Na+ and DSi/Na+, and DSi:HCO3- ratio can reflect the mineral source of chemical weathering. In lakes, however, these characteristic ratios of chemical weathering are altered by algal activity. The lacustrine Si:C atomic ratio is negative feedback regulation by phytoplankton, which may result in this ratio in algal assemblages similar to that in water column. And this regulation suggests lacustrine photosynthetic C fixation in this equilibrium state is quantitative and depends on the DSi concentration. These findings provide new insights into the role of freshwaters in global C and Si biogeochemical cycles.

  1. Deep Carbon Cycling in the Deep Hydrosphere: Abiotic Organic Synthesis and Biogeochemical Cycling

    Science.gov (United States)

    Sherwood Lollar, B.; Sutcliffe, C. N.; Ballentine, C. J.; Warr, O.; Li, L.; Ono, S.; Wang, D. T.

    2014-12-01

    Research into the deep carbon cycle has expanded our understanding of the depth and extent of abiotic organic synthesis in the deep Earth beyond the hydrothermal vents of the deep ocean floor, and of the role of reduced gases in supporting deep subsurface microbial communities. Most recently, this research has expanded our understanding not only of the deep biosphere but the deep hydrosphere - identifying for the first time the extreme antiquity (millions to billions of years residence time) of deep saline fracture waters in the world's oldest rocks. Energy-rich saline fracture waters in the Precambrian crust that makes up more than 70% of the Earth's continental lithosphereprovide important constraints on our understanding of the extent of the crust that is habitable, on the time scales of hydrogeologic isolation (and conversely mixing) of fluids relevant to the deep carbon cycle, and on the geochemistry of substrates that sustain both abiotic organic synthesis and biogeochemical cycles driven by microbial communities. Ultimately the chemistry and hydrogeology of the deep hydrosphere will help define the limits for life in the subsurface and the boundary between the biotic-abiotic fringe. Using a variety of novel techniques including noble gas analysis, clumped isotopologues of methane, and compound specific isotope analysis of CHNOS, this research is addressing questions about the distribution of deep saline fluids in Precambrian rocks worldwide, the degree of interconnectedness of these potential biomes, the habitability of these fluids, and the biogeographic diversity of this new realm of the deep hydrosphere.

  2. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    Science.gov (United States)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research

  3. Land use, climate and biogeochemical cycles. Feedbacks and options for emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Hutjes, R.W.A.; Dolman, A.J.; Nabuurs, G.J.; Schelhaas, M.J.; Ter Maat, H.W.; Kabat, P.; Moors, E.; Huygen, J. [Alterra, Wageningen (Netherlands); Haarsma, R.; Ronda, R.; Schaeffer, M.; Opsteegh, J.D. [RoyalNetherlands Meteorological Institute KNMI, De Bilt (Netherlands); Leemans, R.; Strengers, B.; De Vries, B.; Bouwman, L.; Busch, G.; Eickhout, E.; Kreileman, E. [National Institute for Public Health and Environment RIVM, Bilthoven (Netherlands); Verhagen, A.; Vleeshouwers, L.; Corre, W.J.; Jongschaap, R.E.E. [Plant Research International PRI, Wageningen (Netherlands); Kruseman, G.; Van Ierland, E.; Holtslag, A.A.M. [Wageningen University, Wageningen (Netherlands); Willemsen, F.; Dorland, C.; Van Tol, R.S.J. [Institute for Environmental Studies IVM, Amsterdam University, Amsterdam (Netherlands)

    2001-12-01

    The approach of this study has been to try to understand the coupling between the main driving forces of land use change and the emission of greenhouse gasses in the context of coupled land surface climate models. Studies related to investigating the main driving forces of land use change in Europe and assessing the budgets of the main greenhouse gasses in Europe were combined with sensitivity studies of land use change and climate at regional and global scale. We tried to link these to an integrated assessment model and selected economic analysis. In a two-year project, this appeared difficult. However, some important steps have been set to generate a framework that addressed these questions. The most salient conclusions for each of the sub studies are: The Common Agricultural Policy of the EU is the single most important element in shaping land use in Europe; The new estimate of the stocks and fluxes of carbon in Europe is lower that usually quoted by individual countries submission to UNFCCC; Reduction of methane emissions by agriculture is in the short term a good option in West Europe to reduce GHG emissions; Coupled climate land surface model runs at regional scale suggest that effects of planting large areas with forest may have effects on precipitation, but also increase warming; Coupled climate land surface model runs at global scale suggest that effects of planting large areas with forest may have opposite effects on precipitation in tropical and extra tropical areas, and increase warming in northern areas; Measures to increase biofuel production would lead to modest increases in Western Europe, but to huge increases in areas where the current land uses are low-value uses; Regional assessments have to be embedded in global scenarios to illustrate the effects of increasing globalisation of trade flows; Changes in regional land cover appear to have marginal effects on the global carbon cycle. At regional scale they may be important. The overall study

  4. The Campanian - Maastrichtian (Late Cretaceous) climate transition linked to a global carbon cycle perturbation

    Science.gov (United States)

    Voigt, S.; Friedrich, O.; Gale, A. S.

    2009-04-01

    Pacific shows the prominent negative CIE in the early Maastrichtian, which perfectly resembles the carbon isotope data of planktonic and benthic foraminifers (Barrera and Savin, 1999). Numerous stratigraphic details, represented only by single points in the foraminiferal record, are clearly resolved in the bulk-carbonate carbon isotope signal. Of special importance are several positive excursions, which are superimposed on the CIE. These detailed carbon isotope features can be correlated to the shelf-sea carbon isotope curves of Europe (Lägerdorf-Kronsmoor) in a surprisingly good precision supported by calcareous nannoplankton stratigraphy (Lees & Bown 2005). The possibility to correlate small-scale carbon isotope variations proves their robustness as significant signals. The carbon isotope variations seem to reflect minor changes in the global carbon cycle, possibly triggered by orbital forcing. The negative CIEs in the Campanian-Maastrichtian lasted about 0.8-1 million years and are associated with major regressions on epicontinental shelves. Intensified ventilation of the 12C enriched deep-water reservoir, lowering of the CCD and increased rates of terrestrial and marine organic matter oxidation during the sea-level fall could have caused an increase of 12C in the inorganic carbon reservoir. The associated change in the slope of seawater strontium isotopes possibly suggests an increased continental weathering flux as result of long-term (first order) sea-level fall and widespread continental shelf exposure. Activation of silicate weathering could have triggered enhanced atmospheric CO2 reduction, which again became a positive feedback for ongoing climate cooling at the end of the Cretaceous greenhouse climate.

  5. Carbon cycle and climate commitments from early human interference

    Science.gov (United States)

    Zickfeld, K.; Solomon, S.

    2015-12-01

    According to the early anthropogenic hypothesis proposed by Ruddiman (2003), human influence on Earth's climate began several thousand years before the beginning of the industrial era. Agriculture and deforestation starting around 8000 years before present (BP) and slowly increasing over the Holocene, would have led to an increase in atmospheric methane (CH4) and carbon dioxide (CO2) concentration, preventing a natural cooling of Earth's climate. Here, the emphasis is not on testing Ruddiman's hypothesis, but rather on exploring the carbon cycle and climate commitment from potential early CH4 and CO2 emissions. In contrast to modern greenhouse gas emissions, early emissions occurred over millennia, allowing the climate system to come to near-equilibrium with the applied forcing. We perform two transient Holocene simulations with an Earth system model of intermediate complexity - the University of Victoria Earth System Climate Model (UVic ESCM). The first simulation is a standard transient Holocene simulation, forced with reconstructed changes in CO2 and CH4 concentrations and orbital and volcanic forcing. The second simulation is forced with CO2 and CH4 concentrations corrected for the net anthropogenic contribution postulated by Ruddiman (2007), with other forcings evolving as in the standard simulation. The difference in diagnosed emissions between the two simulations allows us to determine the anthropogenic emissions. After year 1850, anthropogenic CO2 and CH4 emissions are set to zero and the simulations continued for several hundred years. In this paper, we analyze the carbon cycle and climate response to the applied forcings, and quantify the resulting (post 1850) commitment from early anthropogenic interference.

  6. Toward a Mexican eddy covariance network for carbon cycle science

    Science.gov (United States)

    Vargas, Rodrigo; Yépez, Enrico A.

    2011-09-01

    First Annual MexFlux Principal Investigators Meeting; Hermosillo, Sonora, Mexico, 4-8 May 2011; The carbon cycle science community has organized a global network, called FLUXNET, to measure the exchange of energy, water, and carbon dioxide (CO2) between the ecosystems and the atmosphere using the eddy covariance technique. This network has provided unprecedented information for carbon cycle science and global climate change but is mostly represented by study sites in the United States and Europe. Thus, there is an important gap in measurements and understanding of ecosystem dynamics in other regions of the world that are seeing a rapid change in land use. Researchers met under the sponsorship of Red Temática de Ecosistemas and Consejo Nacional de Ciencia y Tecnologia (CONACYT) to discuss strategies to establish a Mexican eddy covariance network (MexFlux) by identifying researchers, study sites, and scientific goals. During the meeting, attendees noted that 10 study sites have been established in Mexico with more than 30 combined years of information. Study sites span from new sites installed during 2011 to others with 9 to 6 years of measurements. Sites with the longest span measurements are located in Baja California Sur (established by Walter Oechel in 2002) and Sonora (established by Christopher Watts in 2005); both are semiarid ecosystems. MexFlux sites represent a variety of ecosystem types, including Mediterranean and sarcocaulescent shrublands in Baja California; oak woodland, subtropical shrubland, tropical dry forest, and a grassland in Sonora; tropical dry forests in Jalisco and Yucatan; a managed grassland in San Luis Potosi; and a managed pine forest in Hidalgo. Sites are maintained with an individual researcher's funds from Mexican government agencies (e.g., CONACYT) and international collaborations, but no coordinated funding exists for a long-term program.

  7. Biochar and biological carbon cycling in temperate soils

    Science.gov (United States)

    McCormack, S. A.; Vanbergen, A. J.; Bardgett, R. D.; Hopkins, D. W.; Ostle, N.

    2012-04-01

    Production of biochar, the recalcitrant residue formed by pyrolysis of plant matter, is suggested as a means of increasing storage of stable carbon (C) in the soil (1). Biochar has also been shown to act as a soil conditioner, increasing the productivity of certain crops by reducing nutrient leaching and improving soil water-holding capacity. However, the response of soil carbon pools to biochar addition is not yet well understood. Studies have shown that biochar has highly variable effects on microbial C cycling and thus on soil C storage (2,3,4). This discrepancy may be partially explained by the response of soil invertebrates, which occupy higher trophic levels and regulate microbial activity. This research aims to understand the role of soil invertebrates (i.e. Collembola and nematode worms) in biochar-mediated changes to soil C dynamics across a range of plant-soil communities. An open-air, pot-based mesocosm experiment was established in May, 2011 at the Centre for Ecology and Hydrology, Edinburgh. Three treatments were included in a fully-factorial design: biochar (presence [2 % w/w] or absence), soil type (arable sandy, arable sandy loam, grassland sandy loam), and vegetation type (Hordeum vulgare, Lolium perenne, unvegetated). Monitored parameters include: invertebrate and microbial species composition, soil C fluxes (CO2 and trace gas evolution, leachate C content, primary productivity and soil C content), and soil conditions (pH, moisture content and water-holding capacity). Preliminary results indicate that biochar-induced changes to soil invertebrate communities and processes are affected by pre-existing soil characteristics, and that soil texture in particular may be an important determinant of soil response to biochar addition. 1. Lehmann, 2007. A handful of carbon. Nature 447, 143-144. 2. Liang et al., 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206-213. 3. Van Zwieten et al., 2010. Influence of

  8. Dissolved Organic Carbon Cycling in Forested Watersheds: A Carbon Isotope Approach

    Science.gov (United States)

    Schiff, S. L.; Aravena, R.; Trumbore, S. E.; Dillon, P. J.

    1990-12-01

    Dissolved organic carbon (DOC) is important in the acid-base chemistry of acid-sensitive freshwater systems; in the complexation, mobility, persistence, and toxicity of metals and other pollutants; and in lake carbon metabolism. Carbon isotopes (13C and 14C) are used to study the origin, transport, and fate of DOC in a softwater catchment in central Ontario. Precipitation, soil percolates, groundwaters, stream, beaver pond, and lake waters, and lake sediment pore water were characterized chemically and isotopically. In addition to total DOC, isotopic measurements were made on the humic and fulvic DOC fractions. The lake is a net sink for DOC. Δ14C results indicate that the turnover time of most of the DOC in streams, lakes, and wetlands is fast, less than 40 years, and on the same time scale as changes in acidic deposition. DOC in groundwaters is composed of older carbon than surface waters, indicating extensive cycling of DOC in the upper soil zone or aquifer.

  9. A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle

    Science.gov (United States)

    Peylin, Philippe; Bacour, Cédric; MacBean, Natasha; Leonard, Sébastien; Rayner, Peter; Kuppel, Sylvain; Koffi, Ernest; Kane, Abdou; Maignan, Fabienne; Chevallier, Frédéric; Ciais, Philippe; Prunet, Pascal

    2016-09-01

    Large uncertainties in land surface models (LSMs) simulations still arise from inaccurate forcing, poor description of land surface heterogeneity (soil and vegetation properties), incorrect model parameter values and incomplete representation of biogeochemical processes. The recent increase in the number and type of carbon cycle-related observations, including both in situ and remote sensing measurements, has opened a new road to optimize model parameters via robust statistical model-data integration techniques, in order to reduce the uncertainties of simulated carbon fluxes and stocks. In this study we present a carbon cycle data assimilation system that assimilates three major data streams, namely the Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) observations of vegetation activity, net ecosystem exchange (NEE) and latent heat (LE) flux measurements at more than 70 sites (FLUXNET), as well as atmospheric CO2 concentrations at 53 surface stations, in order to optimize the main parameters (around 180 parameters in total) of the Organizing Carbon and Hydrology in Dynamics Ecosystems (ORCHIDEE) LSM (version 1.9.5 used for the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations). The system relies on a stepwise approach that assimilates each data stream in turn, propagating the information gained on the parameters from one step to the next. Overall, the ORCHIDEE model is able to achieve a consistent fit to all three data streams, which suggests that current LSMs have reached the level of development to assimilate these observations. The assimilation of MODIS-NDVI (step 1) reduced the growing season length in ORCHIDEE for temperate and boreal ecosystems, thus decreasing the global mean annual gross primary production (GPP). Using FLUXNET data (step 2) led to large improvements in the seasonal cycle of the NEE and LE fluxes for all ecosystems (i.e., increased amplitude for temperate ecosystems). The

  10. Cycling in the Absence of Task-Related Feedback : Effects on Pacing and Performance

    NARCIS (Netherlands)

    Smits, Benjamin L. M.; Polman, Remco C. J.; Otten, Bert; Pepping, Gert-Jan; Hettinga, Florentina J.

    2016-01-01

    Introduction: To achieve personal goals in exercise task completion, exercisers have to regulate, distribute, and manage their effort. In endurance sports, it has become very commonplace for athletes to consult task -related feedback on external devices to do so. The aim of the present study was to

  11. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    Science.gov (United States)

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  12. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    Science.gov (United States)

    Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, Pirkko; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth's surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y-1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y-1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described. ?? 2007 Springer Science+Business Media, LLC.

  13. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Science.gov (United States)

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  14. Measuring of carbon dioxide in water/steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Daucik, Karol

    2004-12-01

    Prevention of corrosion of the water/steam cycle caused by anionic contamination is based on control of acid conductivity. The contribution of carbon dioxide to the corrosion is very limited and yet it contributes considerably to the acid conductivity as one of the most common contaminants. Monitoring of the dangerous anionic contamination has therefore been on the agenda for many years. Commercial monitors for this purpose are based on separation of carbon dioxide from stronger acids due to its high volatility. A systematic error in these monitors comes from high volatility of other anionic contaminants, e.g. formic and acetic acid. The aim of this investigation was to show that the separation could be made on a weak base anion exchanger working on the basis of differences in the strength of acids. This simple method was expected to give reliable results with low investment and low operating costs. The results showed that the separation is indeed effective. However, reliable data are received only if the anion exchange resin is in equilibrium with the actual concentration of carbon dioxide in the sample. It may take several hours to reach this equilibrium by natural flow of the sample through the anion exchange column. Changes in the concentration of carbon dioxide in the sample will therefore temporarily give false results until a new equilibrium is achieved. The simple monitoring method can be used only in places, where verification of carbon dioxide contamination is required by long-term operation with elevated and stable acid conductivity in the steam. For future design it is suggested to install a forced achievement of the new equilibrium by conditioning of the resin by means of short-lived additions of carbon dioxide or sodium hydroxide to the sample. In these periods the output from the monitor will be suspended. Output close to the equilibrium is expected to be reached within 10 minutes. This new suggested procedure will complicate the monitoring to such a

  15. Simulation and Assessment of Whole Life-Cycle Carbon Emission Flows from Different Residential Structures

    Directory of Open Access Journals (Sweden)

    Rikun Wen

    2016-08-01

    Full Text Available To explore the differences in carbon emissions over the whole life-cycle of different building structures, the published calculated carbon emissions from residential buildings in China and abroad were normalized. Embodied carbon emission flows, operations stage carbon emission flows, demolition and reclamation stage carbon emission flows and total life-cycle carbon emission flows from concrete, steel, and wood structures were obtained. This study is based on the theory of the social cost of carbon, with an adequately demonstrated social cost of carbon and social discount rate. Taking into consideration both static and dynamic situations and using a social discount rate of 3.5%, the total life-cycle carbon emission flows, absolute carbon emission and building carbon costs were calculated and assessed. The results indicated that concrete structures had the highest embodied carbon emission flows and negative carbon emission flows in the waste and reclamation stage. Wood structures that started the life-cycle with stored carbon had the lowest carbon emission flows in the operations stage and relatively high negative carbon emission flows in the reclamation stage. Wood structures present the smallest carbon footprints for residential buildings.

  16. The terrestrial carbon cycle on the regional and global scale : modeling, uncertainties and policy relevance

    NARCIS (Netherlands)

    Minnen, van J.G.

    2008-01-01

    Contains the chapters: The importance of three centuries of climate and land-use change for the global and regional terrestrial carbon cycle; and The terrestrial C cycle and its role in the climate change policy

  17. The emergence of seismic cycles from stress feedback between intra-plate faulting and far-field tectonic loading

    Science.gov (United States)

    So, Byung-Dal; Capitanio, Fabio A.

    2016-08-01

    Using numerical modeling we show the emergence of cyclic slip behavior of faults from stress feedback through an idealized fault, its surrounding plates and far-field tectonic stress. The tectonic stress is exerted on the fault through a force applied along an idealized plate margin, acting on the fault, resulting from the interactions of viscous embedding and external plates. We find that, in such coupled system, the interaction of plates results into feedback with periodic deformation, slip along the fault and episodic plate margin motions. The viscosity of the embedding and loading plates primarily control the stress-loading time and hence the slip recurrence interval. For an Earth-like range of lithospheric viscosities, we derive a power-law with negative exponent, -0.99 to -0.5, scaling the recurrence period with loading-rate, providing an explanation for the observables from paleoseismology and geodesy. The feedback between single fault and far-field stress that arises from interactions of deforming plates provides a context to understand the earthquake cycle within continents, while reconciling the short-term seismic deformation to the long-term plate tectonics frame.

  18. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) - Part 1: Model description and pre-industrial simulation

    Science.gov (United States)

    Law, R. M.; Ziehn, T.; Matear, R. J.; Lenton, A.; Chamberlain, M. A.; Stevens, L. E.; Wang, Y. P.; Srbinovsky, J.; Bi, D.; Yan, H.; Vohralik, P. F.

    2015-09-01

    Earth System Models (ESMs) that incorporate carbon-climate feedbacks represent the present state of the art in climate modelling. Here, we describe the Australian Community Climate and Earth System Simulator (ACCESS)-ESM1 that combines existing ocean and land carbon models into the physical climate model to simulate exchanges of carbon between the land, atmosphere and ocean. The land carbon model can optionally include both nitrogen and phosphorous limitation on the land carbon uptake. The ocean carbon model simulates the evolution of nitrate, oxygen, dissolved inorganic carbon, alkalinity and iron with one class of phytoplankton and zooplankton. From two multi-centennial simulations of the pre-industrial period with different land carbon model configurations, we evaluate the equilibration of the carbon cycle and present the spatial and temporal variability in key carbon exchanges. For the land carbon cycle, leaf area index is simulated reasonably, and seasonal carbon exchange is well represented. Interannual variations of land carbon exchange are relatively large, driven by variability in precipitation and temperature. We find that the response of the ocean carbon cycle shows reasonable agreement with observations and very good agreement with existing Coupled Model Intercomparison Project (CMIP5) models. While our model over estimates surface nitrate values, the primary productivity agrees well with observations. Our analysis highlights some deficiencies inherent in the carbon models and where the carbon simulation is negatively impacted by known biases in the underlying physical model. We conclude the study with a brief discussion of key developments required to further improve the realism of our model simulation.

  19. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1 – Part 1: Model description and pre-industrial simulation

    Directory of Open Access Journals (Sweden)

    R. M. Law

    2015-09-01

    Full Text Available Earth System Models (ESMs that incorporate carbon-climate feedbacks represent the present state of the art in climate modelling. Here, we describe the Australian Community Climate and Earth System Simulator (ACCESS-ESM1 that combines existing ocean and land carbon models into the physical climate model to simulate exchanges of carbon between the land, atmosphere and ocean. The land carbon model can optionally include both nitrogen and phosphorous limitation on the land carbon uptake. The ocean carbon model simulates the evolution of nitrate, oxygen, dissolved inorganic carbon, alkalinity and iron with one class of phytoplankton and zooplankton. From two multi-centennial simulations of the pre-industrial period with different land carbon model configurations, we evaluate the equilibration of the carbon cycle and present the spatial and temporal variability in key carbon exchanges. For the land carbon cycle, leaf area index is simulated reasonably, and seasonal carbon exchange is well represented. Interannual variations of land carbon exchange are relatively large, driven by variability in precipitation and temperature. We find that the response of the ocean carbon cycle shows reasonable agreement with observations and very good agreement with existing Coupled Model Intercomparison Project (CMIP5 models. While our model over estimates surface nitrate values, the primary productivity agrees well with observations. Our analysis highlights some deficiencies inherent in the carbon models and where the carbon simulation is negatively impacted by known biases in the underlying physical model. We conclude the study with a brief discussion of key developments required to further improve the realism of our model simulation.

  20. Glucagon and Amino Acids Are Linked in a Mutual Feedback Cycle

    DEFF Research Database (Denmark)

    Holst, Jens J; Wewer Albrechtsen, Nicolai J; Pedersen, Jens

    2017-01-01

    acid administration. In patients with receptor mutations (and in knockout mice), pancreatic swelling is due to α-cell hyperplasia with gross hypersecretion of glucagon, which according to recent groundbreaking research may result from elevated amino acid levels. Additionally, solid evidence indicates...... that ureagenesis, and thereby amino acid levels, is critically controlled by glucagon. Together, this constitutes a complete endocrine system; feedback regulation involving amino acids regulates α-cell function and secretion, while glucagon, in turn, regulates amino acid turnover....

  1. Science and Observation Recommendations for Future NASA Carbon Cycle Research

    Science.gov (United States)

    McClain, Charles R.; Collatz, G. J.; Kawa, S. R.; Gregg, W. W.; Gervin, J. C.; Abshire, J. B.; Andrews, A. E.; Behrenfeld, M. J.; Demaio, L. D.; Knox, R. G.

    2002-01-01

    Between October 2000 and June 2001, an Agency-wide planning, effort was organized by elements of NASA Goddard Space Flight Center (GSFC) to define future research and technology development activities. This planning effort was conducted at the request of the Associate Administrator of the Office of Earth Science (Code Y), Dr. Ghassem Asrar, at NASA Headquarters (HQ). The primary points of contact were Dr. Mary Cleave, Deputy Associate Administrator for Advanced Planning at NASA HQ (Headquarters) and Dr. Charles McClain of the Office of Global Carbon Studies (Code 970.2) at GSFC. During this period, GSFC hosted three workshops to define the science requirements and objectives, the observational and modeling requirements to meet the science objectives, the technology development requirements, and a cost plan for both the science program and new flight projects that will be needed for new observations beyond the present or currently planned. The plan definition process was very intensive as HQ required the final presentation package by mid-June 2001. This deadline was met and the recommendations were ultimately refined and folded into a broader program plan, which also included climate modeling, aerosol observations, and science computing technology development, for contributing to the President's Climate Change Research Initiative. This technical memorandum outlines the process and recommendations made for cross-cutting carbon cycle research as presented in June. A separate NASA document outlines the budget profiles or cost analyses conducted as part of the planning effort.

  2. Decoupling of the Carbon Cycle during Ocean Anoxic Event-2

    Science.gov (United States)

    Eldrett, J.; Bergman, S. C.; Minisini, D.

    2013-12-01

    The Cenomanian to Turonian Boundary transition (95-93 Ma) represents one of the most profound global perturbations in the carbon cycle of the last 140 million years. This interval is characterized by widespread deposition of organic-rich fine-grained sediment marked by a globally recognised positive carbon isotope excursion (CIE) reflecting the widespread removal of 12C-enriched organic matter in marine sediments under global anoxic conditions. However, the exact timing and trigger of this inferred global phenomenon, termed Oceanic Anoxic Event-2 is still debated, with recent studies showing diachroneity between the deposition of the organic-rich sediment and the CIE, and conflicting interpretations on detailed redox analyses in several of these inferred anoxic settings. Here we present the first evidence for widespread and persistent oxygenation during OAE-2 based primarily on the distribution of redox-sensitive trace metals preserved in sediments from the Eagle Ford Formation, Western Interior Seaway of North America. We generated a δ13C curve which indicates an earlier initiation of the CIE in Texas compared to the Global Stratotype and Point Section at Pueblo, Colorado. Our data also indicate anoxic-euxinic conditions in the mid-late Cenomanian, but improved bottom-water oxygenation prior to and during the CIE, corroborated by increased bioturbation, abundance of benthic foraminifera and reduced total organic carbon values. Trace metal enrichments support large volumes of mafic volcanism possibly from the High Arctic Large Igneous Province (LIP), which occur during peak bottom-water oxygenation and a plateau in δ13Corg values and does not immediately precede the Cenomanian-Turonian CIE, as previously stated. This suggests that the emplacement of a LIP was not the primary trigger of the OAE-2 event. It is also unlikely that bottom-water oxygenation was promoted by the introduction of volcanogenic Fe inhibiting sulfate reduction, as the depletion in redox

  3. Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events

    OpenAIRE

    Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman; Santos, Silvia D.M.

    2016-01-01

    Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quan- titative measurements of cell-cycle dynamics in sin- gle cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no corre- lation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imag...

  4. Carbon cycling in the deep eastern North Pacific benthic food web: Investigating the effect of organic carbon input

    NARCIS (Netherlands)

    Dunlop, K.M.; Van Oevelen, D.; Ruhl, H.A.; Huffard, C.L.; Kuhnz, L.A.; Smith, K.L.

    2016-01-01

    The deep ocean benthic environment plays a role in long-term carbon sequestration. Understanding carbon cycling in the deep ocean floor is critical to evaluate the impact of changing climate on the oceanic systems. Linear inverse modeling was used to quantify carbon transfer between compartments in

  5. Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life.

    Science.gov (United States)

    Hou, Hongshuai; Banks, Craig E; Jing, Mingjun; Zhang, Yan; Ji, Xiaobo

    2015-12-16

    A new methodology for the synthesis of carbon quantum dots (CQDs) for large production is proposed. The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.

  6. C4MIP - The Coupled Climate-Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6

    Science.gov (United States)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke

    2016-08-01

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to

  7. Climate control of terrestrial carbon exchange across biomes and continents

    NARCIS (Netherlands)

    Yi, C.; Jacobs, C.M.J.; Moors, E.J.; Elbers, J.A.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between

  8. Climate control of terrestrial carbon exchange across biomes and continents

    DEFF Research Database (Denmark)

    Yi, Chuixiang; Ricciuto, Daniel; Li, Runze

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships betwe...

  9. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    Science.gov (United States)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  10. The decrease of carbonation efficiency of CaO along calcination-carbonation cycles: Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bouquet, E.; Leyssens, G.; Schonnenbeck, C.; Gilot, P. [Laboratoire de Gestion des Risques et Environnement, Mulhouse (France)

    2009-05-15

    Successive calcination-carbonation cycles, using CaO as sorbent, have been performed either in a classical fixed bed reactor or using a thermogravimetric analyser. Significant differences in carbonation efficiencies were obtained, possibly due to different conditions prevailing for CaO sintering during the calcination stage. The effect of the presence of CO{sub 2} on sintering was confirmed. A simple model of the decay of the carbonation capacity along cycles based on the specific surface area of non-sintered micrograins of CaO is able to predict the decrease of the extent of conversion obtained after 40 carbonations along calcination-carbonation cycles. The asymptotic extent of conversion is obtained when all the micrograins present within a grain are sintered. A detailed model of the carbonation shows that the voids present between the micrograins are filled up by carbonate when a critical thickness of the carbonate layer around each micrograin reaches 43 nm. Then, carbonation becomes controlled by diffusion at the scale of the whole grain, with the CO{sub 2} diffusion coefficient decreasing (at 650 {sup o}C) from 2 x 10{sup -12} to 6.5 x 10{sup -14} m{sup 2}/s as carbonation proceeds from 50% conversion to 76% (first cycle). This scale change for diffusion is responsible for the drastic decrease of the carbonation rate after the voids between micrograins are filled up.

  11. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Wilson, D.J.; Galy, A; Piotrowski, A; Banakar, V.K.

    circulation changes through glacial cycles. In this study, we use neodymium (Nd) and carbon isotopes from a deep Indian Ocean sediment core to reconstruct water mass mixing and carbon cycling in Circumpolar Deep Water over the past 250 thousand years, a period...

  12. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  13. Current systematic carbon cycle observations and needs for implementing a policy-relevant carbon observing system

    Directory of Open Access Journals (Sweden)

    P. Ciais

    2013-07-01

    Full Text Available A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial

  14. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  15. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  16. A numerical simulation of the hole-tone feedback cycle based on an axisymmetric discrete vortex method and Curle's equation

    Science.gov (United States)

    Langthjem, M. A.; Nakano, M.

    2005-11-01

    An axisymmetric numerical simulation approach to the hole-tone self-sustained oscillation problem is developed, based on the discrete vortex method for the incompressible flow field, and a representation of flow noise sources on an acoustically compact impingement plate by Curle's equation. The shear layer of the jet is represented by 'free' discrete vortex rings, and the jet nozzle and the end plate by bound vortex rings. A vortex ring is released from the nozzle at each time step in the simulation. The newly released vortex rings are disturbed by acoustic feedback. It is found that the basic feedback cycle works hydrodynamically. The effect of the acoustic feedback is to suppress the broadband noise and reinforce the characteristic frequency and its higher harmonics. An experimental investigation is also described. A hot wire probe was used to measure velocity fluctuations in the shear layer, and a microphone to measure acoustic pressure fluctuations. Comparisons between simulated and experimental results show quantitative agreement with respect to both frequency and amplitude of the shear layer velocity fluctuations. As to acoustic pressure fluctuations, there is quantitative agreement w.r.t. frequencies, and reasonable qualitative agreement w.r.t. peaks of the characteristic frequency and its higher harmonics. Both simulated and measured frequencies f follow the criterion L/uc+L/c0=n/f where L is the gap length between nozzle exit and end plate, uc is the shear layer convection velocity, c0 is the speed of sound, and n is a mode number (n={1}/{2},1,{3}/{2},…). The experimental results however display a complicated pattern of mode jumps, which the numerical method cannot capture.

  17. Optimising the FAMOUS climate model: inclusion of global carbon cycling

    Directory of Open Access Journals (Sweden)

    J. H. T. Williams

    2012-10-01

    Full Text Available FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.

  18. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  19. Ecosystem services in coupled social-ecological systems: Closing the cycle of service provision and societal feedback.

    Science.gov (United States)

    Nassl, Michael; Löffler, Jörg

    2015-12-01

    Both the 'cascade model' of ecosystem service provision and the Driver-Pressure-State-Impact-Response framework individually contribute to the understanding of human-nature interactions in social-ecological systems (SES). Yet, as several points of criticism show, they are limited analytical tools when it comes to reproducing complex cause-effect relationships in such systems. However, in this paper, we point out that by merging the two models, they can mutually enhance their comprehensiveness and overcome their individual conceptual deficits. Therefore we closed a cycle of ecosystem service provision and societal feedback by rethinking and reassembling the core elements of both models. That way, we established a causal sequence apt to describe the causes of change to SES, their effects and their consequences. Finally, to illustrate its functioning we exemplified and discussed our approach based on a case study conducted in the Alpujarra de la Sierra in southern Spain.

  20. Carbon and nitrogen cycling in intertidal sediments near Doel, Scheldt Estuary

    NARCIS (Netherlands)

    Middelburg, J.J.; Klaver, G.; Nieuwenhuize, J.; Vlug, T.

    1995-01-01

    Carbon and nitrogen cycling in intertidal mud flat sediments in the Scheldt Estuary was studied using measurements of carbon dioxide, methane and nitrous oxide emission rates and pore-water profiles of ΣCO2, ammonium and nitrate. A comparison between chamber measured carbon dioxide fluxes and those

  1. Linking the lithogenic, atmospheric, and biogenic cycles of silicate, carbonate, and organic carbon in the ocean

    Science.gov (United States)

    Smith, S. V.; Gattuso, J.-P.

    2009-07-01

    Geochemical theory describes long term cycling of atmospheric CO2 between the atmosphere and rocks at the Earth surface in terms of rock weathering and precipitation of sedimentary minerals. Chemical weathering of silicate rocks takes up atmospheric CO2, releases cations and HCO3- to water, and precipitates SiO2, while CaCO3 precipitation consumes Ca2+ and HCO3- and releases one mole of CO2 to the atmosphere for each mole of CaCO3 precipitated. At steady state, according to this theory, the CO2 uptake and release should equal one another. In contradiction to this theory, carbonate precipitation in the present surface ocean releases only about 0.6 mol of CO2 per mole of carbonate precipitated. This is a result of the buffer effect described by Ψ, the molar ratio of net CO2 gas evasion to net CaCO3 precipitation from seawater in pCO2 equilibrium with the atmosphere. This asymmetry in CO2 flux between weathering and precipitation would quickly exhaust atmospheric CO2, posing a conundrum in the classical weathering and precipitation cycle. While often treated as a constant, Ψ actually varies as a function of salinity, pCO2, and temperature. Introduction of organic C reactions into the weathering-precipitation couplet largely reconciles the relationship. ψ in the North Pacific Ocean central gyre rises from 0.6 to 0.9, as a consequence of organic matter oxidation in the water column. ψ records the combined effect of CaCO3 and organic reactions and storage of dissolved inorganic carbon in the ocean, as well as CO2 gas exchange between the ocean and atmosphere. Further, in the absence of CaCO3 reactions, Ψ would rise to 1.0. Similarly, increasing atmospheric pCO2 over time, which leads to ocean acidification, alters the relationship between organic and inorganic C reactions and carbon storage in the ocean. Thus, the carbon reactions and ψ can cause large variations in oceanic carbon storage with little exchange with the atmosphere.

  2. Linking the lithogenic, atmospheric, and biogenic cycles of silicate, carbonate, and organic carbon in the ocean

    Directory of Open Access Journals (Sweden)

    S. V. Smith

    2009-07-01

    Full Text Available Geochemical theory describes long term cycling of atmospheric CO2 between the atmosphere and rocks at the Earth surface in terms of rock weathering and precipitation of sedimentary minerals. Chemical weathering of silicate rocks takes up atmospheric CO2, releases cations and HCO3 to water, and precipitates SiO2, while CaCO3 precipitation consumes Ca2+ and HCO3 and releases one mole of CO2 to the atmosphere for each mole of CaCO3 precipitated. At steady state, according to this theory, the CO2 uptake and release should equal one another. In contradiction to this theory, carbonate precipitation in the present surface ocean releases only about 0.6 mol of CO2 per mole of carbonate precipitated. This is a result of the buffer effect described by Ψ, the molar ratio of net CO2 gas evasion to net CaCO3 precipitation from seawater in pCO2 equilibrium with the atmosphere. This asymmetry in CO2 flux between weathering and precipitation would quickly exhaust atmospheric CO2, posing a conundrum in the classical weathering and precipitation cycle.

    While often treated as a constant, Ψ actually varies as a function of salinity, pCO2, and temperature. Introduction of organic C reactions into the weathering-precipitation couplet largely reconciles the relationship. ψ in the North Pacific Ocean central gyre rises from 0.6 to 0.9, as a consequence of organic matter oxidation in the water column. ψ records the combined effect of CaCO3 and organic reactions and storage of dissolved inorganic carbon in the ocean, as well as CO2 gas exchange between the ocean and atmosphere. Further, in the absence of CaCO3 reactions, Ψ would rise to 1.0. Similarly, increasing atmospheric pCO2

  3. Enhanced oxidative weathering in glaciated mountain catchments: A stabilising feedback on atmospheric carbon dioxide?

    Science.gov (United States)

    Horan, K.; Hilton, R. G.; Burton, K. W.; Selby, D. S.; Ottley, C. J.

    2015-12-01

    Mountain belts act as sources of carbon dioxide (CO2) to the atmosphere if physical erosion and exhumation expose rock-derived organic carbon ('petrogenic' organic carbon, OCpetro) to chemical weathering. Estimates suggest 15x1021g of carbon is stored in rocks globally as OCpetro, ~25,000 times the amount of carbon in the pre-industrial atmosphere. Alongside volcanic and metamorphic degassing, OCpetro weathering is thought to be the main source of CO2 to the atmosphere over geological timescales. Erosion in mountain river catchments has been shown to enhance oxidative weathering and CO2 release. However, we still lack studies which quantify this process. In addition, it is not clear how glaciation may impact OCpetro oxidation. In analogy with silicate weathering, large amounts of fine sediment in glacial catchments may enhance oxidative weathering. Here we quantify oxidative weathering in nine catchments draining OCpetro bearing rocks in the western Southern Alps, New Zealand. Using rhenium (Re) as a tracer of oxidative weathering, we develop techniques to precisely measure Re concentration at sub-ppt levels in river waters. Using [Re]water/[Re]rock as a weathering tracer, we estimate that the weathering efficiency in glacial catchments is >4 times that of non-glacial catchments. Combining this with the OCpetro content of rocks and dissolved Re flux, we estimate the CO2 release by OCpetro oxidation. The analysis suggests that non-glacial catchments in the western Southern Alps release similar amounts of CO2 as catchments in Taiwan where erosion rates are comparable. In this mountain belt, the CO2 release does not negate CO2 drawdown by silicate weathering and by riverine transfer of organic matter. Based on our results, we propose that mountain glaciation may greatly enhance OCpetro oxidation rates. Depending on the global fluxes involved, this provides a feedback to damp low atmospheric CO2 levels and global cooling. During glacial periods (low CO2, low global

  4. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy

    Science.gov (United States)

    Garcia, David; Tessone, Claudio J.; Mavrodiev, Pavlin; Perony, Nicolas

    2014-01-01

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. PMID:25100315

  5. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy

    CERN Document Server

    Garcia, David; Mavrodiev, Pavlin; Perony, Nicolas

    2014-01-01

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesise that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large data sets: price on on-line exchanges, volume of word-of-mouth communication in on-line social media, volume of information search, and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observ...

  6. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy.

    Science.gov (United States)

    Garcia, David; Tessone, Claudio J; Mavrodiev, Pavlin; Perony, Nicolas

    2014-10-06

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage.

  7. Black carbon, a 'hidden' player in the global C cycle

    Science.gov (United States)

    Santín, C.; Doerr, S. H.

    2012-04-01

    During the 2011 alone more than 600 scientific papers about black carbon (BC) were published, half of them dealing with soils (ISI Web of Knowledge, accessed 15/01/2012). If the search is extended to the other terms by which BC is commonly named (i.e. biochar, charcoal, pyrogenic C or soot), the number of 2011 publications increases to >2400, 20% of them also related to soils. These figures confirm BC as a well-known feature in the scientific literature and, thus, in our research community. In fact, there is a wide variety of research topics where BC is currently studied: from its potential as long-term C reservoir in soils (man-made biochar), to its effects on the Earth's radiation balance (soot-BC), including its value as indicator in paleoenvironmental studies (charcoal) or, even surprisingly, its use in suicide attempts. BC is thus relevant to many aspects of our environment, making it a very far-reaching, but also very complex topic. When focusing 'only' on the role of BC in the global C cycle, numerous questions arise. For example: (i) how much BC is produced by different sources (i.e. vegetation fires, fossil fuel and biofuel combustion); (ii) what are the main BC forms and their respective proportions generated (i.e. proportion of atmospheric BC [BC-soot] and the solid residues [char-BC]); (iii) where does this BC go (i.e. main mobilization pathways and sinks); (iv) how long does BC stay in the different systems (i.e. residence times in soils, sediments, water and atmosphere); (v) which are the BC stocks and its main transformations within and between the different systems (i.e. BC preservation, alteration and mineralization); (vi) what is the interaction of BC with other elements and how does this influence BC half-life (i.e. physical protection, interaction with pollutants, priming effects in other organic materials)? These questions, and some suggestions about how to tackle these, will be discussed in this contribution. It will focus in particular on the

  8. Belowground carbon cycle of Napier and Guinea grasses

    Science.gov (United States)

    Sumiyoshi, Y.; Crow, S. E.; Litton, C. M.; Deenik, J. L.

    2011-12-01

    Soil carbon (C) sequestration may partially offset rising atmospheric CO2 concentration. Napier grass (Pennisetum purpureum) and Guinea grass (Panicum maximum), in particular, are perennial C4 grasses with high capacity to produce large amounts of both aboveground and belowground biomass. Thus, they have a potential to sequester soil C while simultaneously provide aboveground biomass for energy production. In this study, both grasses were ratooned (no-till) to leave belowground biomass intact and facilitate C accumulation through improvement of soil aggregation. The primary objective of the study was to determine if and how these grasses sequester soil C. For 8 selected grass varieties, we: (1) determined the quantity and quality of belowground C input, (2) quantified changes in soil organic C (SOC) during two harvesting cycles (May 2010 to July 2011), and (3) fractionated soil C pools to determine where changes in SOC occurred. Soil-surface CO2 efflux and root biomass were used as measures of the quantity of belowground C input. Root lignin/N ratios and decay constants from litterbag studies were used as measures of the belowground C input quality. We hypothesized that grass varieties with higher quantity and lower quality of belowground C input would sequester more soil C. Root biomass collected on May 2010 ranged from 13 to 302 g m-2 at 15 cm depth, where Local (Napier) and OG05 (Guinea) varieties were significantly greater than the K06 variety (Guinea). However, cumulative soil-surface CO2 efflux showed no significant differences between the three varieties. Root Lignin/N ranged from 16 to 55 and Guinea varieties were significantly higher on average than Napier varieties. Root decay constants were variable among varieties, with OG05 and K06 showing higher resistance to decay compared to Local. Soil C sequestration potentials and factors affecting the process are imperative to determine suitable variety for bioenergy production.

  9. Evaluating the Carbon Cycle of a Coupled Atmosphere-Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Delire, C; Foley, J A; Thompson, S

    2002-08-21

    We investigate how well a coupled biosphere-atmosphere model, CCM3-IBIS, can simulate the functioning of the terrestrial biosphere and the carbon cycling through it. The simulated climate is compared to observations, while the vegetation cover and the carbon cycle are compared to an offline version of the biosphere model IBIS forced with observed climatic variables. The simulated climate presents some local biases that strongly affect the vegetation (e.g., a misrepresentation of the African monsoon). Compared to the offline model, the coupled model simulates well the globally averaged carbon fluxes and vegetation pools. The zonal mean carbon fluxes and the zonal mean seasonal cycle are also well represented except between 0{sup o} and 20{sup o}N due to the misrepresentation of the African monsoon. These results suggest that, despite regional biases in climate and ecosystem simulations, this coupled atmosphere-biosphere model can be used to explore geographic and temporal variations in the global carbon cycle.

  10. Arousal state feedback as a potential physiological generator of the ultradian REM/NREM sleep cycle.

    Science.gov (United States)

    Phillips, A J K; Robinson, P A; Klerman, E B

    2013-02-21

    Human sleep episodes are characterized by an approximately 90-min ultradian oscillation between rapid eye movement (REM) and non-REM (NREM) sleep stages. The source of this oscillation is not known. Pacemaker mechanisms for this rhythm have been proposed, such as a reciprocal interaction network, but these fail to account for documented homeostatic regulation of both sleep stages. Here, two candidate mechanisms are investigated using a simple model that has stable states corresponding to Wake, REM sleep, and NREM sleep. Unlike other models of the ultradian rhythm, this model of sleep dynamics does not include an ultradian pacemaker, nor does it invoke a hypothetical homeostatic process that exists purely to drive ultradian rhythms. Instead, only two inputs are included: the homeostatic drive for Sleep and the circadian drive for Wake. These two inputs have been the basis for the most influential Sleep/Wake models, but have not previously been identified as possible ultradian rhythm generators. Using the model, realistic ultradian rhythms are generated by arousal state feedback to either the homeostatic or circadian drive. For the proposed 'homeostatic mechanism', homeostatic pressure increases in Wake and REM sleep, and decreases in NREM sleep. For the proposed 'circadian mechanism', the circadian drive is up-regulated in Wake and REM sleep, and is down-regulated in NREM sleep. The two mechanisms are complementary in the features they capture. The homeostatic mechanism reproduces experimentally observed rebounds in NREM sleep duration and intensity following total sleep deprivation, and rebounds in both NREM sleep intensity and REM sleep duration following selective REM sleep deprivation. The circadian mechanism does not reproduce sleep state rebounds, but more accurately reproduces the temporal patterns observed in a normal night of sleep. These findings have important implications in terms of sleep physiology and they provide a parsimonious explanation for the

  11. Linking Sediment Microbial Communities to Carbon Cycling in High-Latitude Lakes

    Science.gov (United States)

    Emerson, J. B.; Varner, R. K.; Johnson, J. E.; Owusu-Dommey, A.; Binder, M.; Woodcroft, B. J.; Wik, M.; Freitas, N. L.; Boyd, J. A.; Crill, P. M.; Saleska, S. R.; Tyson, G. W.; Rich, V. I.

    2015-12-01

    It is well recognized that thawing permafrost peatlands are likely to provide a positive feedback to climate change via CH4 and CO2 emissions. High-latitude lakes in these landscapes have also been identified as sources of CH4 and CO2 loss to the atmosphere. To investigate microbial contributions to carbon loss from high-latitude lakes, we characterized sediment geochemistry and microbiota via cores collected from deep and shallow regions of two lakes (Inre Harrsjön and Mellersta Harrsjön) in Arctic Sweden in July, 2012. These lakes are within the Stordalen Mire long-term ecological area, a focal site for investigating the impacts of climate change-related permafrost thaw, and the lakes in this area are responsible for ~55% of the CH4 loss from this hydrologically interconnected system. Across 40 samples from 4 to 40 cm deep within four sediment cores, Illumina 16S rRNA gene sequencing revealed that the sedimentary microbiota was dominated by candidate phyla OP9 and OP8 (Atribacteria and Aminicenantes, respectively, including putative fermenters and anaerobic respirers), predicted methanotrophic Gammaproteobacteria, and predicted methanogenic archaea from the Thermoplasmata Group E2 clade. We observed some overlap in community structure with nearby peatlands, which tend to be dominated by methanogens and Acidobacteria. Sediment microbial communities differed significantly between lakes, by overlying lake depth (shallow vs. deep), and by depth within a core, with each trend corresponding to parallel differences in biogeochemical measurements. Overall, our results support the potential for significant microbial controls on carbon cycling in high-latitude lakes associated with thawing permafrost, and ongoing metagenomic analyses of focal samples will yield further insight into the functional potential of these microbial communities and their dominant members.

  12. Interdisciplinary Coordinated Experiment of the Southern Ocean Carbon Cycle (ICESOCC) - A Field Campaign Scoping Project

    Science.gov (United States)

    Mitchell, B. G.

    2015-12-01

    Accurate estimates in time and space of organic carbon export to the ocean interior via plankton net community production (NCP) for the global oceans (the biological pump) are essential for understanding the feedback between NCP, atmospheric CO2 and climate. Since integrated, multi-sensor satellite and in situ observations of many ocean variables are required to estimate NCP from space, this is a complex, interdisciplinary challenge. Satellite ocean color sensors are a fundamental component in estimating spatial and temporal variations in NCP. Therefore, NASA's PACE mission (NASA-PACE 2012), a mission included in NASA's Climate Architecture Plan (NASA-CAP, 2010), specifies a need for field programs to improve satellite algorithms and models to reduce uncertainties in estimates of NCP. Diverse data from sediment and glacial cores, and climate models, indicate that the Southern Ocean plays a large role in the glacial-interglacial variations in the biological pump, with considerable implications for variations in atmospheric CO2. The "Interdisciplinary Coordinated Experiment of the Southern Ocean Carbon Cycle (ICESOCC)" project is a NASA-funded field campaign scoping (planning) effort. Over 18 months and many public meetings and workshops, the ICESOCC team of 13 interdisciplinary scientists has integrated the input from scientific experts in ocean, atmosphere, ice physics, biogeochemistry, advanced observational tools (ship, autonomous, atmospheric gases and dust, cryosphere dynamics, winds), and models, to create a draft recommendation to NASA for field observations required to constrain uncertainty of NCP for the Southern Ocean. The ICESOCC team requests and encourages careful review and comments of the draft to ensure the most robust final recommendations are submitted in early 2016 for NASA consideration.

  13. Major role of marine vegetation on the oceanic carbon cycle

    NARCIS (Netherlands)

    Duarte, C.M.; Middelburg, J.J.; Caraco, N.

    2005-01-01

    The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove for

  14. Phytoplankton responses and associated carbon cycling during shipboard carbonate chemistry manipulation experiments conducted around Northwest European shelf seas

    OpenAIRE

    Richier, S.; Achterberg, E. P.; C. Dumousseaud; A. J. Poulton; Suggett, D.J.; T. Tyrrell; M. V. Zubkov; Moore, C.M.

    2014-01-01

    The ongoing oceanic uptake of anthropogenic carbon dioxide (CO2) is significantly altering the carbonate chemistry of seawater, a phenomenon referred to as ocean acidification. Experimental manipulations have been increasingly used to gauge how continued ocean acidification will potentially impact marine ecosystems and their associated biogeochemical cycles in the future; however, results amongst studies, particularly when performed on natural communities, are highly variabl...

  15. Carbon cycling and phytoplankton responses within highly-replicated shipboard carbonate chemistry manipulation experiments conducted around Northwest European Shelf Seas

    OpenAIRE

    Richier, S.; Achterberg, E. P.; C. Dumousseaud; A. J. Poulton; Suggett, D.J.; T. Tyrrell; M. V. Zubkov; Moore, C.M.

    2014-01-01

    The ongoing oceanic uptake of anthropogenic carbon dioxide (CO2) is significantly altering the carbonate chemistry of seawater, a phenomenon referred to as ocean acidification. Experimental manipulations have been increasingly used to gauge how continued ocean acidification will potentially impact marine ecosystems and their associated biogeochemical cycles in the future; however, results amongst studies, particularly when performed on natural communities, a...

  16. Black carbon from the Mississippi River: quantities, sources, and potential implications for the global carbon cycle.

    Science.gov (United States)

    Mitra, Siddhartha; Bianchi, Thomas S; McKee, Brent A; Sutula, Martha

    2002-06-01

    Black carbon (BC) may be a major component of riverine carbon exported to the ocean, but its flux from large rivers is unknown. Furthermore, the global distribution of BC between natural and anthropogenic sources remains uncertain. We have determined BC concentrations in suspended sediments of the Mississippi River, the 7th largest river in the world in terms of sediment and water discharge, during high flow and low flow in 1999. The 1999 annual flux of BC from the Mississippi River was 5 x 10(-4) petagrams (1 Pg = 10(15) g = 1 gigaton). We also applied a principal components analysis to particulate-phase high molecular weight polycyclic aromatic hydrocarbon isomer ratios in Mississippi River suspended sediments. In doing so, we determined that approximately 27% of the BC discharged from the Mississippi River in 1999 originated from fossil fuel combustion (coal and smelter-derived combustion), implicating fluvial BC as an important source of anthropogenic BC contamination into the ocean. Using our value for BC flux and the annual estimate for BC burial in ocean sediments, we calculate that, in 1999, the Mississippi River discharged approximately 5% of the BC buried annually in the ocean. These results have important implications, not only for the global carbon cycle but also for the fluvial discharge of particulate organic contaminants into the world's oceans.

  17. THE LIMIT CYCLES AND HOPF BIFURCATION OF A CLASS OF SIMPLIFIED HOLLING TYPE-IV PREDATOR-PREY SYSTEM WITH LINEAR STATE FEEDBACK

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, a class of simplified Type-IV predator-prey system with linear state feedback is investigated. We prove the boundedness of the positive solutions to this system, and analyze the quality of the equilibria and the existence of limit cycles of the system surrounding the positive equilibra. By Hopf bifurcation theory, the result of having two limit cycles to the system is obtained.

  18. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    Science.gov (United States)

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  19. Climate change impacts on the vegetation carbon cycle of the Iberian Peninsula—Intercomparison of CMIP5 results

    Science.gov (United States)

    Aparício, Sara; Carvalhais, Nuno; Seixas, Júlia

    2015-04-01

    The vulnerability of a water-limited region like the Iberian Peninsula (IP) to climate changes drives a great concern and interest in understanding its impacts on the carbon cycle, namely, in terms of biomass production. This study assesses the effects of climate change and rising CO2 on forest growth, carbon sequestration, and water-use efficiency on the IP by late 21st century using 12 models from the CMIP5 project (Coupled Model Intercomparison Project Phase 5). We find a strong agreement among the models under representative concentration pathway 4.5 (RCP4.5) scenario, mostly regarding projected forest growth and increased primary production (13, 9% of gross primary production (GPP) increase projected by the models ensemble). Under RCP8.5 scenario, the results are less conclusive, as seven models project both GPP and net primary production to increase (up to 83% and 69%, respectively), while the remaining four models project the IP as a potential carbon source by late century. Divergences in carbon mass in wood predictions could be attributed to model structures, such as the N cycle, land model component, land cover data and parameterization, and distinct clusters of Earth System Models (ESMs). ESMs divergences in carbon feedbacks are likely being highly impacted by parameterization divergences and susceptibility to climate change and CO2 fertilization effect. Despite projected rainfall reductions, we observe a strong agreement between models regarding the increase of water-use efficiency (by 21% and 34%) under RCP4.5 and RCP8.5, respectively. Results suggest that rising CO2 has the potential to partially alleviate the adverse effects of drought.

  20. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  1. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  2. Is Titan's shape explained by its meteorology and carbon cycle?

    Science.gov (United States)

    Choukroun, M.; Sotin, C.

    2012-04-01

    Titan, Saturn's largest satellite, is unique in the Solar System: it is the only satellite bearing a dense atmosphere and it is the only place besides Earth with stable liquid bodies at its surface. In addition complex organics are produced in its atmosphere by the photolysis of methane, the second most abundant atmospheric molecule that irreversibly produces ethane and other more complex carbon bearing molecules. The Cassini/Huygens mission has revealed that the difference between its equatorial and polar radii is several hundred meters larger than that expected from its spin rate, and that it is in hydrostatic equilibrium. Global circulation models predict a large meridional circulation with upwelling at the summer hemisphere and downwelling at the winter pole where ethane can condense and fall at the surface. Lakes and Mare have been observed at the poles only (Stofan et al., Nature, 2007). Ethane has been spectroscopically identified in one of the lakes (Brown et al., Nature, 2008). The present study investigates the subsidence associated with ethane rain at the poles. As suggested by laboratory experiments, ethane flows very easily in a porous crust made of either pure water ice or methane clathrates. Loading of the lithosphere by liquid hydrocarbons induces a tendency of the polar terrains to subside relative to the lower latitudes terrains. In addition, laboratory experiments suggest that ethane substitutes to methane in a methane clathrate crust. The present study estimates the kinetics of this transformation. It suggests that such a transformation would occur on timescales much smaller than geological timescales. To explain a value of 270 m of the subsidence as determined by the radar instrument onboard the Cassini spacecraft (Zebker et al., Science, 2009), our study predicts that the percolation of ethane liquid in the polar crust should have operated during the last 300 - 1,200 Myr. This number is in agreement with the isotopic age of the atmospheric

  3. The Carbon Cycle as the Main Determinant of Glacial-Interglacial Periods

    CERN Document Server

    de la Cuesta, Diego Jiménez; Núñez, Darío; Rumbos, Beatriz; Vergara-Cervantes, Carlos

    2013-01-01

    An intriguing problem in climate science is the existence of Earth's glacial cycle. We show that it is possible to generate these periodic changes in climate by means of the Earth's carbon cycle as the main source factor. The carbon exchange between the Ocean, the Continent and the Atmosphere is modeled by means of a Lotka-Volterra three species system and the resulting atmospheric carbon cycle is used as the unique radiative forcing mechanism. It is shown that the carbon dioxide and temperature paths that are thus obtained have the same qualitative structure as the 100 kyr glacial-interglacial cycles depicted by the Vostok ice core data, reproducing the asymmetries of rapid heating--slow cooling, and short interglacial--long glacial ages.

  4. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Konarek, E.; Coulas, B.; Sarvinis, J. [Hatch Ltd., Mississauga, Ontario (Canada)

    2016-06-15

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  5. SONNE: Solar-Based Man-Made Carbon Cycle and the Carbon Dioxide Economy

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburg Technical Univ., Berlin (Germany)], e-mail: moe@btu-lc.fta-berlin.de

    2012-06-15

    Humans became a global force in the chemical evolution with respect to climate change by interrupting naturally evolved biogeochemical cycles. However, humans also have all the facilities to turn the 'chemical revolution' into a sustainable chemical evolution. I define a sustainable society as one able to balance the environment, other life forms, and human interactions over an indefinite time period. There is much discussion on 'sustainable chemistry' (often called green chemistry), but, in my understanding, the basic principle, is to transfer matter for energetic and material use only within global cycles, without changing reservoir concentrations above a critical level. With respect to atmospheric pollution, the last unsolved issues (remaining pollutants) are 'greenhouse' gases, namely CO{sub 2}, which contributes to about 70 % of anthropogenically caused global warming (other important gases such as CH{sub 4} and N{sub 2}O contribute to roughly 25 % of warming; these gases are associated mainly with agricultural activities). The dilemma is given simply by time scales: limits of the 2 deg threshold by 2050 and drastic reduction in global CO{sub 2} emission; that is, the cumulative CO{sub 2} emissions determine atmospheric (and oceanic) CO{sub 2} levels. Because of the large CO{sub 2} residence time in natural reservoirs, in the order of 1000 years in the atmosphere and about 200 000 years for dissolved inorganic carbon-DIC in surface seawater, humans now determine the still unknown relationships of possible climate recovery, irreversible climate change, and future abatement strategies. (Solomon et al. 2009). The percentage not accumulated in the atmosphere must have been taken up by the ocean and terrestrial biosphere as well. Mining and the combustion of fossils fuels now results in the geological reservoir redistribution of carbon close to (or even surpassing) the 'tipping point'. It is assumed that in the near future

  6. Obliquity-Controlled Water Vapor/Trace Gas Feedback in the Martian Greenhouse Cycle

    Science.gov (United States)

    Mischna, M. A.; Baker, V. R.; Milliken, R.; Richardson, M. I.; Lee, C.

    2013-12-01

    We have explored possible mechanisms for the generation of warm, wet climates on early Mars as a result of greenhouse warming by both water vapor and periodic volcanic trace gas emissions, using the Mars Weather Research and Forecasting (MarsWRF) general circulation model. The presence of both water vapor (a strong greenhouse gas) and other trace greenhouse gases (such as SO2) in a predominantly CO2 atmosphere may act, under certain conditions, to elevate surface temperatures above the freezing point of liquid water, at least episodically. The levels of warming obtained in our simulations do not reach the values seen in Johnson et al., (2008, JGR, 113, E08005), nor are they widespread for extended periods. Rather, warming above 273 K is found in more localized environments and for geologically brief periods of time. Such periodic episodes are controlled by two factors. First is the obliquity of the planet, which plays a significant role is ';activating' extant surface water ice reservoirs, allowing levels of atmospheric water vapor to rise when obliquity is high, and fall precipitously when the obliquity is low. During these low-obliquity periods, the atmosphere is all but incapable of supporting warm surface temperatures except for brief episodes localized wholly in the tropics; thus, there is a natural regulator in the obliquity cycle for maintaining periodic warming. Second is the presence of a secondary trace gas 'trigger', like volcanically released SO2, in the atmosphere. In the absence of such a trace gas, water vapor alone appears incapable of raising temperatures above the melting point; however, by temporarily raising the baseline global temperatures (in the absence of warming by water vapor) by 10-15 K, as with SO2, the trigger gas keeps atmospheric temperatures sufficiently warm, especially during nighttime, to maintain levels of water vapor in the atmosphere that provide the needed warming. Furthermore, we find that global warming can be achieved more

  7. Carbon Cycling in the Arctic Archipelago: The Export of Pacific Carbon to the North Atlantic

    Science.gov (United States)

    Shadwick, E. H.; Papakyriakou, T.; Prowe, A. E. F.; Leong, D.; Moore, S.; Thomas, H.

    2009-04-01

    The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as low salinity water, with high concentrations of dissolved inorganic carbon (DIC), flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated. Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.

  8. Carbon cycling in the Arctic Archipelago: the export of Pacific carbon to the North Atlantic

    Directory of Open Access Journals (Sweden)

    E. H. Shadwick

    2009-01-01

    Full Text Available The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and is thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as intermediate salinity water, with high concentrations of dissolved inorganic carbon (DIC, flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated.

    Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.

  9. Net land-atmosphere flows of biogenic carbon related to bioenergy: towards an understanding of systemic feedbacks.

    Science.gov (United States)

    Haberl, Helmut

    2013-07-01

    The notion that biomass combustion is carbon neutral vis-a-vis the atmosphere because carbon released during biomass combustion is absorbed during plant regrowth is inherent in the greenhouse gas accounting rules in many regulations and conventions. But this 'carbon neutrality' assumption of bioenergy is an oversimplification that can result in major flaws in emission accounting; it may even result in policies that increase, instead of reduce, overall greenhouse gas emissions. This commentary discusses the systemic feedbacks and ecosystem succession/land-use history issues ignored by the carbon neutrality assumption. Based on recent literature, three cases are elaborated which show that the C balance of bioenergy may range from highly beneficial to strongly detrimental, depending on the plants grown, the land used (including its land-use history) as well as the fossil energy replaced. The article concludes by proposing the concept of GHG cost curves of bioenergy as a means for optimizing the climate benefits of bioenergy policies.

  10. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  11. Chemical sensing and imaging in microfluidic pore network structures relevant to natural carbon cycling and industrial carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Zhang, Changyong; Wilkins, Michael J.; Warner, Marvin G.; Anheier, Norman C.; Suter, Jonathan D.; Kelly, Ryan T.; Oostrom, Martinus

    2013-06-11

    Energy and climate change represent significant factors in global security. Atmospheric carbon dioxide levels, while global in scope, are influenced by pore-scale phenomena in the subsurface. We are developing tools to visualize and investigate processes in pore network microfluidic structures with transparent covers as representations of normally-opaque porous media. In situ fluorescent oxygen sensing methods and fluorescent cellulosic materials are being used to investigate processes related to terrestrial carbon cycling involving cellulytic respiring microorganisms. These structures also enable visualization of water displacement from pore spaces by hydrophobic fluids, including carbon dioxide, in studies related to carbon sequestration.

  12. Major role of marine vegetation on the oceanic carbon cycle

    Directory of Open Access Journals (Sweden)

    C. M. Duarte

    2005-01-01

    Full Text Available The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove forests to the global level and a top-down approach derived from considerations of global sediment balance and a compilation of the organic carbon content of vegeatated sediments. Up-scaling of individual burial estimates values yielded a total carbon burial in vegetated habitats of 111 Tmol C y-1. The total burial in unvegetated sediments was estimated to be 126 Tg C y-1, resulting in a bottom-up estimate of total burial in the ocean of about 244 Tg C y-1, two-fold higher than estimates of oceanic carbon burial that presently enter global carbon budgets. The organic carbon concentrations in vegetated marine sediments exceeds by 2 to 10-fold those in shelf/deltaic sediments. Top-down recalculation of ocean sediment budgets to account for these, previously neglected, organic-rich sediments, yields a top-down carbon burial estimate of 216 Tg C y-1, with vegetated coastal habitats contributing about 50%. Even though vegetated carbon burial contributes about half of the total carbon burial in the ocean, burial represents a small fraction of the net production of these ecosystems, estimated at about 3388 Tg C y-1, suggesting that bulk of the benthic net ecosystem production must support excess respiration in other compartments, such as unvegetated sediments and the coastal pelagic compartment. The total excess organic carbon available to be exported to the ocean is estimated at between 1126 to 3534 Tg C y-1, the bulk of which must be respired in the open ocean. Widespread loss of vegetated coastal habitats must have reduced carbon burial in the ocean by about 30 Tg C y-1, identifying the destruction of these ecosystems as an important loss of CO

  13. Accretion onto Black Holes from Large Scales Regulated by Radiative Feedback. II. Growth Rate and Duty Cycle

    CERN Document Server

    Park, KwangHo

    2011-01-01

    In this paper, the second of a series on radiation-regulated accretion onto black holes(BHs) from galactic scales, we focus on the effects that radiation pressure and angular momentum of the gas have on the periodic and short-lived luminosity bursts found when thermal pressure of the ionized sphere around the BH regulates the accretion rate. Our simulations focus on intermediate-mass BH, but we derive general scaling relationships that are solutions of the classic Bondi problem when radiation feedback is considered. We find that for ambient gas densities(n) exceeding a critical value n (5x10^6 cm^{-3})/M_2, where M_2 is the mass of the BH in units of 100 solar masses, the period of the oscillations decreases rapidly and the duty cycle increases from 6% to 50%. However, the maximum and mean accretion rates become Eddington limited only if n>n_Edd n_cr/T_4 where T_4 is the ambient gas temperature in units of 10^4 K. In the sub-Eddington regime, the mean accretion rate onto BH is about 1% T_4^{2.5} of the Bondi ...

  14. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle.

    Science.gov (United States)

    Merlini, Marco; Crichton, Wilson A; Hanfland, Michael; Gemmi, Mauro; Müller, Harald; Kupenko, Ilya; Dubrovinsky, Leonid

    2012-08-21

    Carbon-bearing solids, fluids, and melts in the Earth's deep interior may play an important role in the long-term carbon cycle. Here we apply synchrotron X-ray single crystal micro-diffraction techniques to identify and characterize the high-pressure polymorphs of dolomite. Dolomite-II, observed above 17 GPa, is triclinic, and its structure is topologically related to CaCO(3)-II. It transforms above 35 GPa to dolomite-III, also triclinic, which features carbon in [3 + 1] coordination at the highest pressures investigated (60 GPa). The structure is therefore representative of an intermediate between the low-pressure carbonates and the predicted ultra-high pressure carbonates, with carbon in tetrahedral coordination. Dolomite-III does not decompose up to the melting point (2,600 K at 43 GPa) and its thermodynamic stability demonstrates that this complex phase can transport carbon to depths of at least up to 1,700 km. Dolomite-III, therefore, is a likely occurring phase in areas containing recycled crustal slabs, which are more oxidized and Ca-enriched than the primitive lower mantle. Indeed, these phases may play an important role as carbon carriers in the whole mantle carbon cycling. As such, they are expected to participate in the fundamental petrological processes which, through carbon-bearing fluids and carbonate melts, will return carbon back to the Earth's surface.

  15. The Impact of Agricultural Soil Erosion on the Global Carbon Cycle

    Science.gov (United States)

    Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 Pg/year to a sink of the same magnitude. By using Caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced...

  16. Carbon cycling in benthic diatom mats: Novel applications of LC/IRMS

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.

    2016-01-01

    Life on our planet is based on carbon and this life-sustaining element is essential in order to live, grow and reproduce. The cycling of carbon from the atmosphere, land and ocean into organisms, and back again needs to be in balance. If not, serious consequences, such as global climate disruption,

  17. Ewing Symposium in Honor of Taro Takahashi: The controversial aspects of the contemporary [carbon] cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, Wallace Smith

    2001-12-31

    This Ewing Symposium in honor of Taro Takahashi's work on the carbon cycle was held at Lamont-Doherty Earth Observatory, Palisades, New York, on October 26-27, 2000. A program and set of abstracts are appended to this report. A summary of the meeting (included in this report) will be published in Global Biogeochemical Cycles. The theme of the symposium was the magnitude and cause of excess carbon storage on the north temperate continents. Disagreement exists on the relative roles of forest regrowth and fertilization by excess fixed nitrogen and carbon dioxide, as well as the distribution of this storage. Phenomena playing important roles include pre-anthropogenic gradients in carbon dioxide, the so-called rectification effect, uptake and release of carbon dioxide by the ocean, soil nitrogen dynamics, atmospheric carbon-13 gradients, and the role of fire.

  18. Interannual variability of carbon cycle implied by a 2-D atmospheric transport model

    Institute of Scientific and Technical Information of China (English)

    LI Can; XU Li; SHAO Min; ZHANG Ren-jian

    2004-01-01

    A 2-dimensional atmospheric transport model is deployed in a simplified CO2 inverse study. Calculated carbon flux distribution for the interval from 1981 to 1997 confirms the existence of a terrestrial carbon sink in mid-high latitude area of North Hemisphere. Strong interannual variability exists in carbon flux patterns, implying a possible link with ENSO and other natural episodes such as Pinatubo volcano eruption in 1991. Mechanism of this possible link was investigated with statistic method. Correlation analysis indicated that in North Hemisphere, climatic factors such as temperature and precipitation, to some extend, could influence the carbon cycle process of land and ocean, thus cause considerable change in carbon flux distribution. In addition, correlation study also demonstrated the possible important role of Asian terrestrial ecosystems in carbon cycle.

  19. Reconciling Top Down and Bottom Up Approaches to Understand Land Carbon Cycle Variability

    Science.gov (United States)

    Collatz, G. J.; Gurney, K. R.; Denning, A. S.; Randerson, J. T.; van der Werf, G. R.

    2004-12-01

    Cycle Variability Two fundamentally different approaches for estimating global carbon sources and sinks have been used over the past 15 years. The so-called "Top-down" approach involves analysis of atmospheric composition and often includes inversions of atmospheric transport. Bottom-up approaches, on the other hand, involve using carbon cycle process models driven by various observational data. Reconciling the results of these two approaches can provide powerful constraints on each but is challenging because of the large uncertainties in atmospheric measurements and transport and in our understanding of the processes controlling biogeochemical cycling of carbon. Recently, the Atmospheric Carbon Inversion Intercomparison (TransCom 3) completed mean seasonal cycle and interannual variability inversions using 12 transport models. Their results include predictions of biogeochemically driven net carbon fluxes with associated uncertainties for the globe divided into 22 regions, half of which are land regions. The cyclo-stationary inversions predicted the mean seasonal cycle as well as the mean sink/source of each region. The interannual inversions predicted the interannual variability in the sources and sinks for each region between 1980 and 2000. This study describes an analysis of the processes controlling biogeochemically driven net carbon fluxes over the seasonal cycle for each of the Transcom land regions. The processes considered are those included in the CASA biogeochemical model. The seasonally variable model inputs include NDVI, temperature, precipitation and solar radiation and burned area. The contributions of NPP, heterotrophic respiration and fire season to the seasonal cycle are evaluated for each of the 11 TransCom 3 land regions. We prescribed plausible scenarios in the biogeochemical model to evaluate the mechanisms responsible for the size and seasonality of the mean annual carbon sinks reported by TransCom 3. Initial results will also be presented for

  20. Carbon cycle: A hump in ocean-air exchange

    Science.gov (United States)

    Reddy, Christopher M.

    2016-06-01

    Semivolatile organic compounds from fossil fuels or incomplete combustion are ubiquitous. A suite of circumglobal measurements of their oceanic and atmospheric concentrations reveals large carbon fluxes through the deposition of these compounds.

  1. Life cycle study. Carbon dioxide emissions lower in electric heating than in oil heating

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, A.; Jaervinen, P.; Nikula, A.

    1996-11-01

    A primary objective of energy conservation is to cut carbon dioxide emissions. A comparative study on the various heating forms, based on the life cycle approach, showed that the carbon dioxide emissions resulting form heating are appreciably lower now that electric heating has become more common. The level of carbon dioxide emissions in Finland would have been millions of tonnes higher had oil heating been chosen instead of electric heating. (orig.)

  2. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of vegetation fluorescence with gross primary productivity

    Science.gov (United States)

    Frankenberg, C.; Fisher, J. B.; Lee, J.; Guanter, L.; Van der Tol, C.; Toon, G. C.; kuze, A.; Yokota, T.; Badgley, G. M.; Butz, A.; Jung, M.; Saatchi, S. S.; Worden, J.

    2011-12-01

    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when and how carbon dioxide is exchanged between the land and atmosphere. Terrestrial gross primary production (GPP) constitutes the largest flux component in the global carbon budget, however significant uncertainties remain in GPP estimates and its seasonality. Solar-induced chlorophyll fluorescence is a powerful proxy for assessing biomass photosynthetic activity since photosynthesis and fluorescence are directly coupled processes. This gives rise to re-emission of light between approximately 670 and 780 nm. Passive methods to quantify the fluorescence signal are mainly based on the filling-in of highly saturated O2 absorption structures. This method, however, was mostly applied in field-based measurements and is not directly applicable to space-borne retrievals. We show that variability of aerosols in the atmosphere load and surface pressure cannot be unequivocally disentangled from fluorescence since all these factor impact the absorption depths of O2 lines. This gives rise to biases in the retrieved scattering properties in typical multi-spectral XCO2 retrievals when using the O2 A band but not when focussing solely of solar Fraunhofer lines. We will a) present our retrieval method based on an iterative, non-linear least-squares fitting of Fraunhofer lines, b) discuss the potential impact on XCO2 retrievals and c) show recent fluorescence results from more than one year of GOSAT data. Empirically, we show that global spaceborne observations of solar induced chlorophyll fluorescence exhibit a strong linear correlation with GPP. We found that the fluorescence emission even without any additional meteorological, vegetation type or model information has the same or better predictive skill in estimating GPP as those derived from traditional remotely-sensed vegetation indices using ancillary data and model assumptions. Our results

  3. New Adsorption Cycles for Carbon Dioxide Capture and Concentration

    Energy Technology Data Exchange (ETDEWEB)

    James Ritter; Armin Ebner; Steven Reynolds Hai Du; Amal Mehrotra

    2008-07-31

    The objective of this three-year project was to study new pressure swing adsorption (PSA) cycles for CO{sub 2} capture and concentration at high temperature. The heavy reflux (HR) PSA concept and the use of a hydrotalcite like (HTlc) adsorbent that captures CO{sub 2} reversibly at high temperatures simply by changing the pressure were two key features of these new PSA cycles. Through the completion or initiation of nine tasks, a bench-scale experimental and theoretical program has been carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799). This final report covers the entire project from August 1, 2005 to July 31, 2008. This program included the study of PSA cycles for CO{sub 2} capture by both rigorous numerical simulation and equilibrium theory analysis. The insight gained from these studies was invaluable toward the applicability of PSA for CO{sub 2} capture, whether done at ambient or high temperature. The rigorous numerical simulation studies showed that it is indeed possible to capture and concentrate CO{sub 2} by PSA. Over a wide range of conditions it was possible to achieve greater than 90% CO{sub 2} purity and/or greater than 90% CO{sub 2} recovery, depending on the particular heavy reflux (HR) PSA cycle under consideration. Three HR PSA cycles were identified as viable candidates for further study experimentally. The equilibrium theory analysis, which represents the upper thermodynamic limit of the performance of PSA process, further validated the use of certain HR PSA cycles for CO{sub 2} capture and concentration. A new graphical approach for complex PSA cycle scheduling was also developed during the course of this program. This new methodology involves a priori specifying the cycle steps, their sequence, and the number of beds, and then following a systematic procedure that requires filling in a 2-D grid based on a few simple rules, some heuristics and some experience. It has been

  4. Carbon and Water Cycles in a New Zealand Peat Bog

    Science.gov (United States)

    Campbell, D.; Smith, J.

    2001-12-01

    Peat soils represent globally significant stores of carbon and an understanding of carbon exchange processes between peat wetland ecosystems and the atmosphere is important for understanding the effects of, and impacts upon, global climate change. Eddy covariance measurements of CO2, water vapour and energy fluxes were made during 1999 and 2000 at a remnant oligotrophic raised peat bog in North Island, New Zealand. The bog's hydrology has been modified by drainage of surrounding agricultural land, so that the water table is relatively deep compared to that of unmodified bogs in the region. Vegetation is dominated by two indigenous species of rush-like vascular plants belonging to the Southern hemisphere family Restionaceae. Maximum daytime CO2 fluxes were commonly -9 {μ }mol m-2 s-1 and averaged -1.3 {μ }mol m-2 s-1 over the 24-hour period in summertime. The ecosystem was a sink of atmospheric carbon for most of the year, with wintertime characterised by 12--15 weeks of carbon neutrality or slight carbon loss. Average carbon uptake by the ecosystem was 196 gC m-2 yr-1 for the two-year period. Modelling suggests that the key factor determining inter-annual variability of the carbon budget is seasonal soil temperature, whereas ecosystem respiration is relatively insensitive to the position of the lowered water table. The bog vegetation acts as a major control over water vapour loss and energy partitioning favors sensible heat production with mean summertime Bowen ratios of approximately 2.0. Water use efficiency was highest in the morning, indicating that the vegetation maximizes CO2 assimilation while the saturation vapour pressure deficit and transpiration rates are low. The dense canopy structure also restricts penetration of solar radiation to the peat surface, which minimizes evaporation and soil respiration.

  5. Carbon cycle history through the Middle Jurassic of Hungary

    Science.gov (United States)

    Price, Gregory; Fozy, Istvan; Galacz, Andras

    2016-04-01

    A carbonate carbon isotope curve from the Aalenian-Bathonian interval is presented from the Obanya valley, of the Mecsek Mountains, Hungary. This interval is less well constrained and studied that other Jurassic time slices. The Obanya valley lies in the eastern part of the Mecsek Mountains, between Obanya and Kisujbanya and provides excellent exposures of a near continuous Aalenian to Lower Cretaceous sequence. It is not strongly affected by tectonics, as compared to other sections of eastern Mecsek of the same age. In parts, a rich fossil assemblage has been collected; the Bathonian ammonites are especially valuable as this locality. The pelagic Middle Jurassic is represented by thin-bedded limestones (the Obanya Limestone) and is overlain by Upper Jurassic siliceous limestones and radiolarites (the Fonyaszo Limestone). The new data indicates a series of positive anomalies within the late Aalenian and early-middle Bajocian. These data are comparable with carbonate carbon isotope recorded from other Tethyan margin sediments. Our integrated biostratigraphy and carbon isotope stratigraphy enables us to improve stratigraphic correlation and age determination of the examined strata.

  6. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles.

    Science.gov (United States)

    Bukata, Andrew R; Kyser, T Kurtis

    2007-02-15

    Increasing anthropogenic pollution from urban centers and fossil fuel combustion can impact the carbon and nitrogen cycles in forests. To assess the impact of twentieth century anthropogenic pollution on forested system carbon and nitrogen cycles, variations in the carbon and nitrogen isotopic compositions of tree-rings were measured. Individual annual growth rings in trees from six sites across Ontario and one in New Brunswick, Canada were used to develop site chronologies of tree-ring delta 15N and delta 13C values. Tree-ring 615N values were approximately 0.5% per hundred higher and correlated with contemporaneous foliar samples from the same tree, but not with delta 15N values of soil samples. Temporal trends in carbon and nitrogen isotopic compositions of these tree-rings are consistent with increasing anthropogenic influence on both the carbon and nitrogen cycles since 1945. Tree-ring delta 13C values and delta 15N values are correlated at both remote and urban-proximal sites, with delta 15N values decreasing since 1945 and converging on 1% per hundred at urban-proximal sites and decreasing but not converging on a single delta 15N value in remote sites. These results indicate that temporal trends in tree-ring nitrogen and carbon isotopic compositions record the regional extent of pollution.

  7. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  8. A new one-dimensional simple energy balance and carbon cycle coupled model for global warming simulation

    Science.gov (United States)

    Murakami, Kazutaka; Sasai, Takahiro; Yamaguchi, Yasushi

    2010-08-01

    Global warming and accompanying climate change may be caused by an increase in atmospheric greenhouse gasses generated by anthropogenic activities. In order to supply such a mechanism of global warming with a quantitative underpinning, we need to understand the multifaceted roles of the Earth's energy balance and material cycles. In this study, we propose a new one-dimensional simple Earth system model. The model consists of carbon and energy balance submodels with a north-south zonal structure. The two submodels are coupled by interactive feedback processes such as CO2 fertilization of net primary production (NPP) and temperature dependencies of NPP, soil respiration, and ocean surface chemistry. The most important characteristics of the model are not only that the model requires a relatively short calculation time for carbon and energy simulation compared with a General Circulation Model (GCM) and an Earth system Model of Intermediate Complexity (EMIC), but also that the model can simulate average latitudinal variations. In order to analyze the response of the Earth system due to increasing greenhouse gasses, several simulations were conducted in one dimension from the years 1750 to 2000. Evaluating terrestrial and oceanic carbon uptake output of the model in the meridional direction through comparison with observations and satellite data, we analyzed the time variation patterns of air temperature in low- and middle-latitude belts. The model successfully reproduced the temporal variation in each latitude belt and the latitudinal distribution pattern of carbon uptake. Therefore, this model could more accurately demonstrate a difference in the latitudinal response of air temperature than existing models. As a result of the model evaluations, we concluded that this new one-dimensional simple Earth system model is a good tool for conducting global warming simulations. From future projections using various emission scenarios, we showed that the spatial distribution of

  9. Durability of Lining Concrete of Subsea Tunnel under Combined Action of Freeze-thaw Cycle and Carbonation

    Institute of Scientific and Technical Information of China (English)

    TIAN Li; CHEN Jingru; ZHAO Tiejun

    2012-01-01

    Through the fast freeze-thaw cycle test,accelerated carbonation test,and natural carbonation test,the durability performance of lining concrete under combined action of freeze-thaw cycle and carbonation were studied.The experimental results indicate that freeze-thaw cycle apparently accelerates the process of concrete carbonation and carbonation deteriorates the freeze resistance of concrete.Under the combined action of freeze-thaw cycle and carbonation,the durability of lining concrete decreases.The carbonation depth of lining concrete at tunnel openings under freeze-thaw cycles and tunnel condition was predicted.For the high performance concrete with proposed mix ratio,the lining concrete tends to be unsafe because predicted carbonation depth exceeds the thickness of reinforced concrete protective coating.Adopting other measurements simultaneously to improve the durability of lining concrete at the tunnel openings is essential.

  10. An approach to include soil carbon changes in life cycle assessments

    DEFF Research Database (Denmark)

    Petersen, Bjorn Molt; Knudsen, Marie Trydeman; Hermansen, John Erik

    2013-01-01

    Globally, soil carbon sequestration is expected to hold a major potential to mitigate agricultural greenhouse gas emissions. However, the majority of life cycle assessments (LCA) of agricultural products have not included possible changes in soil carbon sequestration. In the present study, a method...... production in China. The suggested approach considers the time of the soil CO2 emissions for the LCA by including the Bern Carbon Cycle Model. Time perspectives of 20,100 and 200 years are used and a soil depth of 0-100 cm is considered. The application of the suggested method showed that the results were...... to estimate carbon sequestration to be included in LCA is suggested and applied to two examples where the inclusion of carbon sequestration is especially relevant: 1) Bioenergy: removal of straw from a Danish soil for energy purposes and 2) Organic versus conventional farming: comparative study of soybean...

  11. Carbon cycle and climate effects of forcing from fire-emitted aerosols

    Science.gov (United States)

    Landry, Jean-Sébastien; Partanen, Antti-Ilari; Damon Matthews, H.

    2017-02-01

    Aerosols emitted by landscape fires affect many climatic processes. Here, we combined an aerosol–climate model and a coupled climate–carbon model to study the carbon cycle and climate effects caused by fire-emitted aerosols (FEA) forcing at the top of the atmosphere and at the surface. This forcing (‘best guess’ present-day values of ‑0.10 and ‑1.3 W m‑2 at the top of the atmosphere and surface, respectively) had a predominant cooling influence that altered regional land carbon stocks on decadal timescales by modifying vegetation productivity and soil–litter decomposition. Changes in regional land and ocean carbon stocks became much stronger for FEA forcing acting on multi-century timescales; this occurred because carbon stocks responded to the forcing itself on such timescales and also due to gradual effects on the climate (e.g. through increased sea ice cover) that further affected the carbon cycle. Carbon increases and decreases in different regions partly offset each other, so that absolute changes in global land, atmosphere, and ocean stocks were all Asia, respectively. This suggests the potential for remote carbon cycle effects from regions emitting large amounts of fire aerosols.

  12. Modeling carbon cycle dynamics and response to drought in semi-arid ecosystems

    Science.gov (United States)

    Hilton, T. W.; Fox, A. M.; Krofcheck, D. J.; Litvak, M. E.

    2012-12-01

    The southwestern United States is presently experiencing a multi-year drought. Though the carbon uptake per unit area of the semi-arid biomes in this region is smaller than that of more temperate biomes, these biomes cover roughly 40 percent of the world's land surface, and thus make a significant contribution to the global terrestrial biological carbon cycle. Here we test the ability of two land surface model structures to diagnose the carbon cycle dynamics of semi-arid landscapes during the ongoing extreme drought. We use the New Mexico Elevation Gradient (NMEG) as a testbed for these modeling experiments. The NMEG comprises eight eddy covariance towers observing ecosystems ranging from desert grassland ( 1600 m elevation) to alpine mixed coniferous forest ( 3000 m elevation). During the drought the ecosystems observed by these towers saw their annual net carbon uptake decline between 33 and 100 percent (50 to 150 gC m^{-2} year^{-1}), with two of the eight sites becoming net sources of carbon to the atmosphere and one transitioning from a net carbon sink to carbon-neutral. We parametrize a simple light-use efficiency (LUE)-based model (Vegetation Photosynthesis and Respiration Model, VPRM) and a complex model which simulates many land surface processes (Community Land Model, CLM). We explore the capacity of both models to diagnose the terrestrial carbon cycle in semi-arid biomes where water availability is highly episodic.

  13. Peroxyacetic acid in urban and rural atmosphere: concentration, feedback on PAN-NOx cycle and implication on radical chemistry

    Directory of Open Access Journals (Sweden)

    J. L. Li

    2010-01-01

    Full Text Available Peroxyacetic acid (PAA is one of the most important atmospheric organic peroxides, which have received increasing attention for their potential contribution to the oxidation capacity of the troposphere and the formation of secondary aerosols. We report here, for the first time, a series of data for atmospheric PAA concentrations at urban and rural sites, from five field campaigns carried out in China in summer 2006, 2007 and 2008. For these five measurements, daytime mean (08:00–20:00 LT PAA concentrations on sunlit days were 21.4–148.0 pptv with a maximum level of ~1 ppbv. The various meteorological and chemical parameters influencing PAA concentrations were examined using Principal Factor Analysis. This statistical analysis shows that the local photochemical production was the major source of PAA, and its concentration increased with increasing temperature, solar radiation and ozone but decreased with increasing NOx (NO and NO2, CO, SO2, and relative humidity. Based on the dataset, several issues are highlighted in this study: (i Because PAA is a product from the photochemical oxidation of some specific volatile organic compounds (VOCs that lead to acetyl peroxy radicals, the importance of various VOCs with respect to the PAA formation is therefore ranked using the incremental reactivity method. (ii The contribution of PAN thermal degradation to PAA formation under conditions of different NOx concentrations is estimated based on the chemical kinetics analysis. The result shows that PAN seems to play an important role in the formation of PAA when the NO/NO2 concentration ratio was less than 0.2 and PAA would correspondingly have feedback on the PAN-NOx cycle. (iii PAA and other peroxides, such as methyl hydroperoxide (MHP and H2O2, usually exhibited a similar asymmetric shape typically shifted to the afternoon. However, under some conditions, H2O2 diurnal cycle was out of phase with MHP and PAA. The combination of linear regression and

  14. Solid phase extraction method for the study of black carbon cycling in dissolved organic carbon using radiocarbon

    OpenAIRE

    2015-01-01

    © 2015 Elsevier B.V.. Radiocarbon analysis is a powerful tool for understanding the cycling of individual components within carbon pools, such as black carbon (BC) in dissolved organic carbon (DOC). Radiocarbon (δ14C) measurements of BC in DOC provide insight into one source of aged, recalcitrant DOC. We report a modified solid phase extraction (SPE) method to concentrate 43±6% of DOC (SPE-DOC) from seawater. We used the Benzene Polycarboxylic Acid (BPCA) method to isolate BC from SPE-DOC (SP...

  15. China’s Forests and Their Impact on Global Carbon Cycle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Forests have multiple benefits and functions, including mitigation of climate change. The impacts of forests on the global carbon cycle include forests as carbon sinks, wood-based products as carbon sinks, bio-energy, and production and use of non-timber products. In the past decades, forest cover of China has increased from 8.6% to 18.21% by large-scale afforestation and conversion of cropland into forests. Forest biomass carbon (C) stock increased from 4.3 Pg C (1 Pg C = 1 015 g C) in the early 1980s to 5...

  16. Climate Cycling on Early Mars Caused by the Carbonate-Silicate Cycle

    CERN Document Server

    Batalha, Natasha E; Haqq-Misra, Jacob; Kasting, James F

    2016-01-01

    For decades, scientists have tried to explain the evidence for fluvial activity on early Mars, but a consensus has yet to emerge regarding the mechanism for producing it. One hypothesis suggests early Mars was warmed by a thick greenhouse atmosphere. Another suggests that early Mars was generally cold but was warmed occasionally by impacts or by episodes of enhanced volcanism. These latter hypotheses struggle to produce the amounts of rainfall needed to form the martian valleys, but are consistent with inferred low rates of weathering compared to Earth. Here, we provide a geophysical mechanism that could have induced cycles of glaciation and deglaciation on early Mars. Our model produces dramatic climate cycles with extended periods of glaciation punctuated by warm periods lasting up to 10 Myr, much longer than those generated in other episodic warming models. The cycles occur because stellar insolation was low, and because CO2 outgassing is not able to keep pace with CO2 consumption by silicate weathering fo...

  17. Pacific carbon cycling constrained by organic matter size, age and composition relationships

    Science.gov (United States)

    Walker, Brett D.; Beaupré, Steven R.; Guilderson, Thomas P.; McCarthy, Matthew D.; Druffel, Ellen R. M.

    2016-12-01

    Marine organic matter is one of Earth’s largest actively cycling reservoirs of organic carbon and nitrogen. The processes controlling organic matter production and removal are important for carbon and nitrogen biogeochemical cycles, which regulate climate. However, the many possible cycling mechanisms have hindered our ability to quantify marine organic matter transformation, degradation and turnover rates. Here we analyse existing and new measurements of the carbon:nitrogen ratio and radiocarbon age of organic matter spanning sizes from large particulate organic matter to small dissolved organic molecules. We find that organic matter size is negatively correlated with radiocarbon age and carbon:nitrogen ratios in coastal, surface and deep waters of the Pacific Ocean. Our measurements suggest that organic matter is increasingly chemically degraded as it decreases in size, and that small particles and molecules persist in the ocean longer than their larger counterparts. Based on these correlations, we estimate the production rates of small, biologically recalcitrant dissolved organic matter molecules at 0.11-0.14 Gt of carbon and about 0.005 Gt of nitrogen per year in the deep ocean. Our results suggest that the preferential remineralization of large over small particles and molecules is a key process governing organic matter cycling and deep ocean carbon storage.

  18. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  19. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    Science.gov (United States)

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes.

  20. The cycling of carbon into and out of dust

    CERN Document Server

    Jones, Anthony P; Koehler, Melanie; Fanciullo, Lapo; Bocchio, Marco; Micelotta, Elisabetta; Verstraete, Laurent; Guillet, Vincent

    2014-01-01

    Observational evidence seems to indicate that the depletion of interstellar carbon into dust shows rather wide variations and that carbon undergoes rather rapid recycling in the interstellar medium (ISM). Small hydrocarbon grains are processed in photo-dissociation regions by UV photons, by ion and electron collisions in interstellar shock waves and by cosmic rays. A significant fraction of hydrocarbon dust must therefore be re-formed by accretion in the dense, molecular ISM. A new dust model (Jones et al., Astron. Astrophys., 2013, 558, A62) shows that variations in the dust observables in the diffuse interstellar medium (nH = 1000 cm^3), can be explained by systematic and environmentally-driven changes in the small hydrocarbon grain population. Here we explore the consequences of gas-phase carbon accretion onto the surfaces of grains in the transition regions between the diffuse ISM and molecular clouds (e.g., Jones, Astron. Astrophys., 2013, 555, A39). We find that significant carbonaceous dust re-processi...

  1. Estimating soil carbon change and biofuel life-cycle greenhouse gas emissions with economic, ecosystem and life-cycle models

    Science.gov (United States)

    Qin, Z.; Dunn, J.; Kwon, H. Y.; Mueller, S.; Wander, M.

    2015-12-01

    Land-use change (LUC) resulting from biofuel feedstock production can alter soil organic carbon (SOC) stocks of lands producing those crops and the crops they displace, possibly resulting in greenhouse gas (GHG) emissions. LUC GHG emissions included in biofuel life cycle analysis (LCA) have at times been estimated to be so great that biofuels did not offer a greenhouse gas reduction compared to conventional fossil fuels. To improve the accuracy of emissions estimates, SOC changes must be considered at a finer spatial resolution and take into account climate, soil, land use and management factors. This study reports on the incorporation of global LUC as predicted by a computable general equilibrium model (i.e., GTAP) and spatially-explicit modeled SOC estimates (using surrogate CENTURY) for various biofuel feedstock scenarios into a widely-used LCA model (i.e., GREET). Resulting estimates suggest: SOC changes associated with domestic corn production might contribute 2-6% or offset as much as 5% of total corn ethanol life-cycle GHG emissions. On the other hand, domestic LUC GHG emissions for switchgrass ethanol have the potential offset up to 60% of GHG emissions in the fuel's life cycle. Further, large SOC sequestration is predicted for Miscanthus feedstock production, enabling Miscanthus-based ethanol systems to offset all life-cycle GHG emissions and create a net carbon sink. LUC GHG emissions for ethanol derived from corn stover are small compared to other sources. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm soil) were estimated to be 59-66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -7 - -0.6 for Miscanthus ethanol.

  2. Increasing the Confidence of African Carbon Cycle Assessments

    Science.gov (United States)

    Ardö, Jonas

    2016-04-01

    Scarcity of in situ measurements of greenhouse gas (GHG) fluxes hamper calibration and validation of assessments of carbon budgets in Africa. It limits essential studies of ecosystem function and ecosystem processes. The wide range reported net primary production (NPP) and gross primary production (GPP) for continental African is partly a function of the uncertainty originating from this data scarcity. GPP estimates, based on vegetation models and remote sensing based models, range from ~17 to ~40 Pg C yr-1 and NPP estimates roughly range from ~7 to ~20 Pg C yr-1 for continental Africa. According to the MOD17 product does Africa contribute about 23 % of the global GPP and about 25 % of the global NPP. These percentages have recently increased slightly. Differences in modeled carbon use efficiency (i.e. the NPP/GPP ratio) further enhance the uncertainty caused by low spatial resolution driver data sets when deriving NPP from GPP. Current substantial uncertainty in vegetation productivity estimates for Africa (both magnitudes and carbon use efficiency) may be reduced by increased abundance and availability of in situ collected field data including meteorology, radiation, spectral properties, GHG fluxes as well as long term ecological field experiments. Current measurements of GHGs fluxes in Africa are sparse and lacking impressive coordination. The European Fluxes Database Cluster includes ~24 African sites with carbon flux data, most of them with a small amount of data in short time series. Large and diverse biomes such as the evergreen broad leafed forest are under-represented whereas savannas are slightly better represented. USA for example, with 171 flux site listed in FLUXNET has a flux site density of 17 sites per million km2, whereas Africa has density of 0.8 sites per million km2. Increased and coordinated collection of data on fluxes of GHGs, ecosystem properties and processes, both through advanced micro meteorological measurements and through cost

  3. Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes.

    Science.gov (United States)

    Ivlev, Alexander A

    2015-11-01

    A model of the natural global redox cycle of biospheric carbon is introduced. According to this model, carbon transfer between biosphere and geospheres is accompanied by a conversion of the oxidative forms, presented by CO2, bicarbonate and carbonate ions, into the reduced forms, produced in photosynthesis. The mechanism of carbon transfer is associated with two phases of movement of lithospheric plates. In the short-term orogenic phase, CO2 from the subduction (plates' collisions) zones fills the "atmosphere-hydrosphere" system, resulting in climate warming. In the long-term quiet (geosynclynal) phase, weathering and photosynthesis become dominant depleting the oxidative forms of carbon. The above asymmetric periodicity exerts an impact on climate, biodiversity, distribution of organic matter in sedimentary deposits, etc. Along with photosynthesis expansion, the redox carbon cycle undergoes its development until it reaches the ecological compensation point, at which CO2 is depleted to the level critical to support the growth and reproduction of plants. This occurred in the Permo-Carboniferous time and in the Neogene. Shorter-term perturbations of the global carbon cycle in the form of glacial-interglacial oscillations appear near the ecological compensation point.

  4. Effects of Lime and Concrete Waste on Vadose Zone Carbon Cycling

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, Søren; Postma, D.;

    2014-01-01

    In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination of exper......In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination.......) grown on podzolic soil material, we have investigated inorganic carbon cycling through the gaseous and liquid phases and how it is affected by different soil amendments. The mesocosm amendments comprised the addition of 0, 9.6, or 21.2 kg m−2 of crushed concrete waste (CCW) or 1 kg lime m−2. The CCW...

  5. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle.

    Science.gov (United States)

    Poulter, Benjamin; Frank, David; Ciais, Philippe; Myneni, Ranga B; Andela, Niels; Bi, Jian; Broquet, Gregoire; Canadell, Josep G; Chevallier, Frederic; Liu, Yi Y; Running, Steven W; Sitch, Stephen; van der Werf, Guido R

    2014-05-29

    The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref. 2). Here we show that our three terrestrial carbon sink estimates are in good agreement and support the finding of a 2011 record land carbon sink. Surprisingly, we find that the global carbon sink anomaly was driven by growth of semi-arid vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to Australian ecosystems, where prevalent La Niña conditions caused up to six consecutive seasons of increased precipitation. In addition, since 1981, a six per cent expansion of vegetation cover over Australia was associated with a fourfold increase in the sensitivity of continental net carbon uptake to precipitation. Our findings suggest that the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability and that tropical rainforests may become less relevant drivers in the future. More research is needed to identify to what extent the carbon stocks accumulated during wet years are vulnerable to rapid decomposition or loss through fire in subsequent years.

  6. Configuration Consideration for Expander in Transcritical Carbon Dioxide Two-Stage Compression Cycle

    Institute of Scientific and Technical Information of China (English)

    MA Yitai; YANG Junlan; GUAN Haiqing; LI Minxia

    2005-01-01

    To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve the system efficiency. The expander and the compressor are connected to the same shaft and integrated into one unit, with the latter being driven by the former, thus the transfer loss and leakage loss can be decreased greatly. In these systems, the expander can be either connected with the first stage compressor (shortened as DCDL cycle) or the second stage compressor (shortened as DCDH cycle), but the two configuration ways can get different performances. By setting up theoretical model for two kinds of expander configuration ways in the transcritical carbon dioxide two-stage compression cycle, the first and the second laws of thermodynamics are used to analyze the coefficient of performance, exergy efficiency, inter-stage pressure, discharge temperature and exergy losses of each component for the two cycles. From the model results, the performance of DCDH cycle is better than that of DCDL cycle. The analysis results are indispensable to providing a theoretical basis for practical design and operating.

  7. Linking carbon and water cycles using stable isotopes across scales: progress and challenges

    Directory of Open Access Journals (Sweden)

    C. Werner

    2011-03-01

    Full Text Available Stable isotope analysis is a powerful tool for tracing biogeochemical processes in the carbon and water cycles. One particularly powerful approach is to employ multiple isotopes where the simultaneous assessment of the D/H,18O/16O and/or 13C/12C in different compounds provide a unique means to investigate the coupling of water and carbon fluxes at various temporal and spatial scales. Here, we present a research update on recent advances in our process-based understanding of the utilization of carbon, oxygen and hydrogen isotopes to lend insight into carbon and water cycling. We highlight recent technological developments and approaches, their strengths and methodological precautions with examples covering scales from minutes to centuries and from the leaf to the globe.

  8. Effects of climate variability and functional changes on carbon cycling in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Wu, Jian

    Temperate forests are globally important carbon (C) stocks and sinks. A decadal (1997-2009) trend of increasing C uptake has been observed in an intensively studied temperate deciduous forest, Sorø (Zealand, Denmark). This gave the impetus to investigate the factors controlling the C cycling...... calculated ECB components based on mass balance equations, a synthesis of the carbon cycling was performed. The results showed that this temperature deciduous forest was moderately productive with both high rates of gross primary production and ecosystem respiration. Approximately 62% of the gross...... of studies in order to provide a complete assessment of the carbon storage and allocation within the ecosystem and clarify the mechanisms responsible for the observed variability and trend in the ecosystem C fluxes. Combining all independently estimated ecosystem carbon budget (ECB) datasets and other...

  9. "Days of future passed" - climate change and carbon cycle history (Jean Baptiste Lamarck Medal Lecture)

    Science.gov (United States)

    Weissert, Helmut

    2013-04-01

    With the beginning of the fossil fuel age in the 19th century mankind has become an important geological agent on a global scale. For the first time in human history action of man has an impact on global biogeochemical cycles. Increasing CO2 concentrations will result in a perturbation of global carbon cycling coupled with climate change. Investigations of past changes in carbon cycling and in climate will improve our predictions of future climate. Increasing atmospheric CO2 concentrations will drive climate into a mode of operation, which may resemble climate conditions in the deep geological past. Pliocene climate will give insight into 400ppm world with higher global sea level than today. Doubling of pre-industrial atmospheric CO2 levels will shift the climate system into a state resembling greenhouse climate in the Early Cenozoic or even in the Cretaceous. Carbon isotope geochemistry serves as tool for tracing the pathway of the carbon cycle through geological time. Globally registered negative C-isotope anomalies in the C-isotope record are interpreted as signatures of rapid addition (103 to a few 104 years) of CO2 to the ocean-atmosphere system. Positive C-isotope excursions following negative spikes record the slow post-perturbation recovery of the biosphere at time scales of 105 to 106 years. Duration of C-cycle perturbations in earth history cannot be directly compared with rapid perturbation characterizing the Anthropocene. However, the investigation of greenhouse pulses in the geological past provides insight into different climate states, it allows to identify tipping points in past climate systems and it offers the opportunity to learn about response reactions of the biosphere to rapid changes in global carbon cycling. Sudden injection of massive amounts of carbon dioxide into the atmosphere is recorded in C-isotope record of the Early Cretaceous. The Aptian carbon cycle perturbation triggered changes in temperature and in global hydrological cycling

  10. Connecting the Water and Carbon Cycles for the Generation of Food Security and Ecosystem Services

    OpenAIRE

    Burke, Shivaan M.; Poncé-Hernandez, Raul

    2014-01-01

    Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of m...

  11. Land use change effects on forest carbon cycling throughout the southern United States.

    Science.gov (United States)

    Woodbury, Peter B; Heath, Linda S; Smith, James E

    2006-01-01

    We modeled the effects of afforestation and deforestation on carbon cycling in forest floor and soil from 1900 to 2050 throughout 13 states in the southern United States. The model uses historical data on gross (two-way) transitions between forest, pasture, plowed agriculture, and urban lands along with equations describing changes in carbon over many decades for each type of land use change. Use of gross rather than net land use transition data is important because afforestation causes a gradual gain in carbon stocks for many decades, while deforestation causes a much more rapid loss in carbon stocks. In the South-Central region (Texas to Kentucky) land use changes caused a net emission of carbon before the 1980s, followed by a net sequestration of carbon subsequently. In the Southeast region (Florida to Virginia), there was net emission of carbon until the 1940s, again followed by net sequestration of carbon. These results could improve greenhouse gas inventories produced to meet reporting requirements under the United Nations Framework Convention on Climate Change. Specifically, from 1990 to 2004 for the entire 13-state study area, afforestation caused sequestration of 88 Tg C, and deforestation caused emission of 49 Tg C. However, the net effect of land use change on carbon stocks in soil and forest floor from 1990 to 2004 was about sixfold smaller than the net change in carbon stocks in trees on all forestland. Thus land use change effects and forest carbon cycling during this period are dominated by changes in tree carbon stocks.

  12. Perturbation of Aptian and Valanginian Carbon Cycle and Marine Biocalcification Crises

    Science.gov (United States)

    Weissert, H.; Burla, S.

    2005-12-01

    The mid-Cretaceous is known as a time of major perturbations of the global carbon cycle, which coincided with widespread biocalcification crises. Detailed Ccarbonate and Corganic carbon isotope records through the early Aptian show a prominent negative spike followed by a positive carbon isotope anomaly with amplitude of up to 3permil. Based on cyclostratigraphy, the negative C-isotope anomaly lasted up to a few hundred thousand years while the positive excursion had duration of up to millions of years. The negative spike coincides with low oxygen isotope values documented from the Pacific and Tethys Oceans. Tethyan carbon isotope data indicate that fractionation between marine organic matter and carbonate was largest during the time of most negative carbon isotope values. These data provide evidence that atmospheric carbon dioxide levels were highest during the time of the negative spike. The negative carbon isotope spike coincides with a major biocalcification crisis which is recorded in pelagic, neritic and coastal environments. New carbon and strontium isotope data from Aptian coastal successions in Portugal confirm that the most severe Aptian biocalcification crisis started before but culminated during negative carbon isotope anomaly. The widespread Aptian biocalcifcation crisis seems to have been triggered by elevated atmospheric CO2 values related to volcanic activity. Sudden methane release contributed to an amplification of greenhouse climate and it led to further weakening of marine calcification. Comparable calcification crises are recognized in the Valanginian. There, a negative carbon isotope anomaly recoding a methane pulse is not observed. Volcanic degassing alone seems to have triggered this calcification crisis. The positive carbon isotope excursions in the early Aptian and in the Valanginian following the biocalcification crises record the response of oceans and biota to greenhouse climate. Increased organic carbon burial and an accelerated

  13. Nitrogen restrictions buffer modeled interactions of water with the carbon cycle

    Science.gov (United States)

    Huang, Yuanyuan; Gerber, Stefan

    2016-01-01

    Terrestrial carbon and water cycles are coupled at multiple spatiotemporal scales and are crucial to carbon sequestration. Water related climate extremes, such as drought and intense precipitation, can substantially affect the carbon cycle. Meanwhile, nitrogen is a limiting resource to plant and has therefore the potential to alter the coupling of water and carbon cycles on land. Here we assess the effect of nitrogen limitation on the response of the terrestrial carbon cycle to moisture anomalies using Geophysical Fluid Dynamics Laboratory's land surface model LM3V-N. We analyzed the response of three central carbon fluxes: net primary productivity (NPP), heterotrophic respiration (Rh), and net ecosystem productivity (NEP, the difference between NPP and Rh) and how these fluxes were altered under anomalies of the standardized precipitation and evapotranspiration index (SPEI). We found that globally, the correlations between each of the carbon flux and SPEI depended on the timescale and a strong legacy effect of SPEI anomalies on Rh. Consideration of nitrogen constraints reduced anomalies in carbon fluxes in response to extreme dry/wet events. This nitrogen-induced buffer constrained the growth of plants under wet extremes and allowed for enhanced growth during droughts. Extra gain of soil moisture from the downregulation of canopy transpiration by nitrogen limitation and shifts in the relative importance of water and nitrogen limitation during dry/wet extreme events are possible mechanisms contributing to the buffering of modeled NPP and NEP. Responses of Rh to moisture anomalies were much weaker compared to NPP, and N buffering effects were less evident.

  14. Peroxyacetic acid in urban and rural atmosphere: concentration, feedback on PAN-NOx cycle and implication on radical chemistry

    Directory of Open Access Journals (Sweden)

    J. L. Li

    2009-10-01

    Full Text Available Peroxyacetic Acid (PAA is one of important atmospheric organic peroxides, which have received increasing attention for their potential contribution to the oxidation capacity of the troposphere and the formation of secondary aerosols. We report here that, for the first time, a series of data for atmospheric PAA concentrations at urban and rural sites, from five field campaigns carried out in China in summer 2006, 2007 and 2008. For these five measurements, daytime mean PAA concentrations on sunlit days were 0.02–0.14 ppbv with a maximum level of ~1 ppbv. The various meteorological and chemical parameters influencing PAA concentrations were examined using the Principal Factor Analysis. This statistical analysis shows that the local photochemical production was the major source of PAA, and its concentration increased with increasing temperature, solar radiation and ozone but decreased with increasing NOx (NO and NO2, CO, SO2, and relative humidity. Based on the dataset, several issues are highlighted in this study: (i because PAA is a product from the photochemical oxidation of some specific volatile organic compounds (VOCs that lead to acetyl peroxy radicals, the importance of various VOCs with respect to the PAA formation is therefore ranked using the incremental reactivity method. (ii The contribution of PAN thermal degradation to PAA formation under conditions of different NOx concentrations is estimated based on the chemical kinetics analysis. The result shows that PAN seems to play an important role in the formation of PAA when the NO/NO2 concentration ratio was less than 0.2 and PAA would correspondingly have feedback on the PAN-NOx cycle. (iii PAA and other peroxides, such as methyl hydroperoxide (MHP and H2O2, usually exhibited a similar asymmetric shape typically shifted to the afternoon. However, at a high SO2 level, H2O2 showed a profile different from those of MHP and PAA. The combination of linear regression and chemical kinetics

  15. A Study on Variations of Mechanical Properties of Carbon-epoxy Composites with Thermal Fatigue Cycles or Thermal Shock Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S.; Park, S.M. [Myongji University, Suwon (Korea)

    2000-05-01

    Applications of composites materials have been in progress noticeably in manufacturing areas of automotive, aircraft and in other industries, resulting in ensuing research activities. Carbon-epoxy, one of major composite materials, is investigated for its thermal characteristics. Upon treatments of the composite material with repeated heatings and coolings variation of its elastic constants are monitored to reveal the thermal nature of the composite material. In this study, generally, changes in elastic constants are observed to occur mostly during the first 10{approx}20 thermal cycles. Values of G{sub 13} remain almost unchanged except a minor decrease. However in the observed small changes thermal shocks produce less effect than thermal fatigues. On the other hand, values of E{sub 1} show gradual increases with the number of applied thermal cycles and temperatures. Meanwhile, values of E{sub 2} and G{sub 23} decrease to a certain extent in the early stage during the applications of thermal cycling but are not appreciably affected by frequencies of thermal cycles. Also, thermal shocks are observed to induce different effects depending on treatment temperatures. (author). 13 refs., 17 figs.

  16. Linking calcification by exotic snails to stream inorganic carbon cycling.

    Science.gov (United States)

    Hotchkiss, Erin R; Hall, Robert O

    2010-05-01

    Biotic calcification is rarely considered in freshwater C budgets, despite calculations suggesting that calcifying animals can alter inorganic C cycling. Most studies that have quantified biocalcification in aquatic ecosystems have not directly linked CO(2) fluxes from biocalcification with whole-ecosystem rates of inorganic C cycling. The freshwater snail, Melanoides tuberculata, has achieved a high abundance and 37.4 g biomass m(-2) after invading Kelly Warm Springs in Grand Teton National Park. This high biomass suggests that introduced populations of Melanoides may alter ecosystem processes. We measured Melanoides growth rates and biomass to calculate the production of biomass, shell mass, and CO(2). We compared Melanoides biomass and inorganic C production with ecosystem C pools and fluxes, as well as with published rates of CO(2) production by other calcifying organisms. Melanoides calcification in Kelly Warm Springs produced 12.1 mmol CO(2) m(-2) day(-1) during summer months. We measured high rates of gross primary productivity and respiration in Kelly Warm Springs (-378 and 533 mmol CO(2) m(-2) day(-1), respectively); CO(2) produced from biocalcification increased net CO(2) production in Kelly Warm Springs from 155 to 167 mmol CO(2) m(-2) day(-1). This rate of CO(2) production via biocalcification is within the published range of calcification by animals. But these CO(2) fluxes are small when compared to ecosystem C fluxes from stream metabolism. The influence of animals is relative to ecosystem processes, and should always be compared with ecosystem fluxes to quantify the importance of a specific animal in its environment.

  17. Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-04-01

    Full Text Available The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006: inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.

  18. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting

    DEFF Research Database (Denmark)

    Brandao, Miguel; Levasseur, Annie; Kirschbaum, Miko U. F.

    2013-01-01

    footprinting (CF) are increasingly popular tools for the environmental assessment of products, that take into account their entire life cycle. There have been significant efforts to develop robust methods to account for the benefits, if any, of sequestration and temporary storage and release of biogenic carbon....... However, there is still no overall consensus on the most appropriate ways of considering and quantifying it. Method: This paper reviews and discusses six available methods for accounting for the potential climate impacts of carbon sequestration and temporary storage or release of biogenic carbon in LCA...... and CF. Several viewpoints and approaches are presented in a structured manner to help decision-makers in their selection of an option from competing approaches for dealing with timing issues, including delayed emissions of fossil carbon. Results: Key issues identified are that the benefits of temporary...

  19. Revisiting the subduction zone carbon cycle: What goes down, mostly comes up

    Science.gov (United States)

    Kelemen, Peter; Manning, Craig

    2016-04-01

    As we reported (PNAS 2015), carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find it is likely that relatively little carbon is recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5-10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. This is consistent with inferences from noble gas data and crustal carbon inventories (review in Hayes & Waldbauer PTRSL 2006). Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory. Increasing NaCl and decreasing pH and fO2 in aqueous fluids all increase carbon solubility at HP to UHP conditions, strengthening the prediction of wt% solubility (Manning & Kelemen, Fall AGU 2015), while hydrous carbonatite formed on high T subduction geotherms (Poli, Nat Geosci 2015) has still higher concentrations. Fractures heal rapidly at UHP conditions, so fluid transport is mainly via porous flow, with increasing downstream solubility and porosity due to heating in the subducting plate and base of the mantle wedge. Depending on flow and reaction rates vs diffusivity (Damkohler number), this could yield diffuse or channelized flow. High, increasing solubilities and reaction rates, with slow diffusion, can produce diffuse, pervasive porous flow (e.g., Hoefner & Fogler, AIChEJ 1988; Spiegelman et al, JGR 2001) and efficient recycling of carbon.

  20. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon.

    Science.gov (United States)

    Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A

    2015-12-01

    Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.

  1. Large perturbations of the carbon cycle during recovery from the end-permian extinction.

    Science.gov (United States)

    Payne, Jonathan L; Lehrmann, Daniel J; Wei, Jiayong; Orchard, Michael J; Schrag, Daniel P; Knoll, Andrew H

    2004-07-23

    High-resolution carbon isotope measurements of multiple stratigraphic sections in south China demonstrate that the pronounced carbon isotopic excursion at the Permian-Triassic boundary was not an isolated event but the first in a series of large fluctuations that continued throughout the Early Triassic before ending abruptly early in the Middle Triassic. The unusual behavior of the carbon cycle coincides with the delayed recovery from end-Permian extinction recorded by fossils, suggesting a direct relationship between Earth system function and biological rediversification in the aftermath of Earth's most devastating mass extinction.

  2. The CharXive Challenge. Regulation of global carbon cycles by vegetation fires

    CERN Document Server

    Ball, R

    2010-01-01

    It is an open, but not unanswerable, question as to how much atmospheric CO2 is sequestered globally by vegetation fires. In this work I conceptualise the question in terms of the general CharXive Challenge, discuss a mechanism by which thermoconversion of biomass may regulate the global distribution of carbon between reservoirs, show how suppression of vegetation fires by human activities may increase the fraction of carbon in the atmospheric pool, and pose three specific CharXive Challenges of crucial strategic significance to our management of global carbon cycles.

  3. Thermodynamic analysis of gas – steam combined cycle with carbon dioxide (CO2 emissions saving

    Directory of Open Access Journals (Sweden)

    Alka Gupta, Om Prakash, S.K. Shukla

    2011-03-01

    Full Text Available In this paper, cogeneration or combined heat and power (CHP cycle has been analyzed in order to improve the efficiency of the gas – steam combined cycle and utilization of waste heat. The efficiency of the combined cycle is improved by decreasing the compressor inlet temperature (CIT and increasing the turbine inlet temperature (TIT. It is observed that the cycle offers the advantage of making efficient use of the energy available in the fuel and in turn, eliminate some portion of pollution associated with the power generation. The study also reveals that if this cycle is being employed for cogeneration, there is a significant saving (11.60% in the amount of Carbon dioxide (CO2 emitted by the coal-fired thermal power plants.

  4. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting.

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P; Clow, David W; Striegl, Robert G

    2016-01-01

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71-149) teragrams of carbon per year (TgC⋅y(-1)) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9-65) TgC⋅y(-1) in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36-110) TgC⋅y(-1) or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass-flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity.

  5. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P.; Clow, David W.; Striegl, Robert G.

    2016-01-01

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71–149) teragrams of carbon per year (TgC⋅y−1) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9–65) TgC⋅y−1 in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36–110) TgC⋅y−1 or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass–flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity. PMID:26699473

  6. Remote sensing of wetland parameters related to carbon cycling

    Science.gov (United States)

    Bartlett, David S.; Johnson, Robert W.

    1985-01-01

    Measurement of the rates of important biogeochemical fluxes on regional or global scales is vital to understanding the geochemical and climatic consequences of natural biospheric processes and of human intervention in those processes. Remote data gathering and interpretation techniques were used to examine important cycling processes taking place in wetlands over large geographic expanses. Large area estimation of vegetative biomass and productivity depends upon accurate, consistent measurements of canopy spectral reflectance and upon wide applicability of algorithms relating reflectance to biometric parameters. Results of the use of airborne multispectral scanner data to map above-ground biomass in a Delaware salt marsh are shown. The mapping uses an effective algorithm linking biomass to measured spectral reflectance and a means to correct the scanner data for large variations in the angle of observation of the canopy. The consistency of radiometric biomass algorithms for marsh grass when they are applied over large latitudinal and tidal range gradients were also examined. Results of a 1 year study of methane emissions from tidal wetlands along a salinity gradient show marked effects of temperature, season, and pore-water chemistry in mediating flux to the atmosphere.

  7. U.S. Eastern Continental Shelf Carbon Cycling (USECoS): Modeling, Data Assimilation, and Analysis

    Science.gov (United States)

    Mannino, Antonio

    2008-01-01

    Although the oceans play a major role in the uptake of fossil fuel CO2 from the atmosphere, there is much debate about the contribution from continental shelves, since many key shelf fluxes are not yet well quantified: the exchange of carbon across the land-ocean and shelf-slope interfaces, air-sea exchange of CO2, burial, and biological processes including productivity. Our goal is to quantify these carbon fluxes along the eastern U.S. coast using models quantitatively verified by comparison to observations, and to establish a framework for predicting how these fluxes may be modified as a result of climate and land use change. Our research questions build on those addressed with previous NASA funding for the USECoS (U.S. Eastern Continental Shelf Carbon Cycling) project. We have developed a coupled biogeochemical ocean circulation model configured for this study region and have extensively evaluated this model with both in situ and remotely-sensed data. Results indicate that to further reduce uncertainties in the shelf component of the global carbon cycle, future efforts must be directed towards 1) increasing the resolution of the physical model via nesting and 2) making refinements to the biogeochemical model and quantitatively evaluating these via the assimilation of biogeochemical data (in situ and remotely-sensed). These model improvements are essential for better understanding and reducing estimates of uncertainties in current and future carbon transformations and cycling in continental shelf systems. Our approach and science questions are particularly germane to the carbon cycle science goals of the NASA Earth Science Research Program as well as the U.S. Climate Change Research Program and the North American Carbon Program. Our interdisciplinary research team consists of scientists who have expertise in the physics and biogeochemistry of the U.S. eastern continental shelf, remote-sensing data analysis and data assimilative numerical models.

  8. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  9. Impact of climate change on carbon cycle in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kankaala, P.; Ojala, A.; Tulonen, T.; Haapamaeki, J.; Arvola, L. [Helsinki Univ., Lammi (Finland). Lammi Biological Station

    1996-12-31

    The impacts of the expected climate change on Finnish lake ecosystems were studied with the biota of the mesohumic Lake Paeaejaervi, southern Finland. Experimental conditions, from small-scale experiments on single species level to a large-scale ecosystem manipulation, were established to simulate directly the future climate and/or loading of nutrients and dissolved organic matter (DOM) from the drainage area. The experimental studies were accomplished by modelling the carbon flow in the pelagic food web as well as the growth of littoral macrophytes. The main hypothese tested were as follows: As a consequence of the climate change (rising temperature and increasing precipitation) the loading of nutrients and dissolved organic matter (DOM) from the drainage area to the lake will increase. In the pelagic zone this will be first reflected i higher productivity of primary producers and bacteria, but will later affect the entire food chain. Increase in atmospheric CO{sub 2} concentration and ambient temperature as well as longer growing season will enhance the overall productivity of littoral macrophytes. The higher productivity of the littoral zone will be reflected in the pelagic zone an thus may change the whole ecosystem of the lake

  10. Potential multiple steady-states in the long-term carbon cycle

    CERN Document Server

    Tennenbaum, Stephen; Schwartzman, David

    2013-01-01

    Modelers of the long term carbon cycle in Earth history have previously assumed there is only one stable climatic steady state. Here we investigate the possibility of multiple steady states. We find them in Abiotic World, lacking any biotic influence, resulting from possible variations in planetary albedo in different temperature, atmospheric carbon dioxide level regimes, with the same weathering forcing balancing a volcanic source to the atmosphere, ocean pool. In Plant World modeling relevant to the Phanerozoic, we include the additional effects of biotic enhancement of weathering on land, organic carbon burial, oxidation of reduced organic carbon in terrestrial sediments and the variation of biotic productivity with temperature, finding a second stable steady state appearing between twenty and fifty degrees C. The very warm early Triassic climate may be the prime candidate for an upper temperature steady state. Given our results, the anthropogenic driven rise of atmospheric carbon dioxide could potentially...

  11. Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Klaus Steenberg; van der Linden, Leon

    2013-01-01

    , tree growth, litter production and leaching of dissolved inorganic and organic carbon were independently estimated and used to calculate other unmeasured ecosystem carbon budget (ECB) components, based on mass balance equations. This provided a complete assessment of the carbon storage and allocation...... was respired by the living plants, while 21% was contributed to the soil as litter production, the latter balancing the total heterotrophic respiration. The remaining 17% were either stored in the plants (mainly as aboveground biomass) or removed from the system as wood yield. The soil organic carbon stock......A synthesis of five years (2006–2010) of data on carbon cycling in a temperate deciduous forest, Sorø (Zealand, Denmark) was performed by combining all available data from eddy covariance, chamber, suction cups, and biometric measurements. The net ecosystem exchange of CO2 (NEE), soil respiration...

  12. Role of organic soils in the world carbon cycle: problem analysis and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V. (ed.)

    1980-02-01

    In May 1979, The Institute of Ecology held a workshop to determine the role of organic soils in the global carbon cycle and to ascertain their past, present and future significance in world carbon flux. Wetlands ecologists and soil scientists who participated in the workshop examined such topics as Soils as Sources of Atmospheric CO/sub 2/, Organic Soils, Primary Production and Growth of Wetlands Ecosystems, and Management of Peatlands. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and Gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/.

  13. Seasonal carbon cycling in a Greenlandic fjord: an integrated pelagic and benthic study

    DEFF Research Database (Denmark)

    Sørensen, Heidi Louise; Meire, Lorenz; Juul-Pedersen, Thomas;

    2015-01-01

    Climate change is expected to have a pronounced effect on biogeochemical cycling in Arctic fjords, but current insight on the biogeochemical functioning of these systems is limited. Here, we present seasonal data on primary production, export of particulate organic carbon (POC), and the coupling...

  14. The Environmental Impact of Industrial Bamboo Products: Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an elec

  15. Life Cycle Assessment as a Tool to Enhance the Environmental Performanceof Carbon Nanotube Products: A Review

    Science.gov (United States)

    The importance of evaluating the environmental performance of emerging carbon nanotube (CNT) products from a life cycle perspective is emphasized in this work. Design, development and deployment of CNT products offer many potential benefits to society, but not without negative im...

  16. Seasonal carbon cycling in a Greenlandic fjord: an integrated pelagic and benthic study

    NARCIS (Netherlands)

    Sørensen, H.L.; Meire, L.; Juul-Pedersen, T.; de Stigter, H.C.; Meysman, F.J.R.; Rysgaard, S.; Thamdrup, B.; Glud, R.N.

    2015-01-01

    Climate change is expected to have a pronounced effect on biogeochemical cycling in Arctic fjords, but current insight on the biogeochemical functioning of these systems is limited. Here, we present seasonal data on primary production, export of particulate organic carbon (POC), and the coupling to

  17. Comparing American and Chinese Students' Learning Progression on Carbon Cycling in Socio-Ecological Systems

    Science.gov (United States)

    Chen, J.; Anderson, C. W.

    2015-01-01

    Previous studies identified a learning progression on the concept of carbon cycling that was typically followed by American students when they progress from elementary to high school. This study examines the validity of this previously identified learning progression for a different group of learners--Chinese students. The results indicate that…

  18. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature

  19. Linking ecosystem scale vegetation change to shifts in carbon and water cycling: the consequences of widespread piñon mortality in the Southwest

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, Marcy Ellen [University of New Mexico

    2012-10-01

    The southwestern United States experienced an extended drought from 1999-2002 which led to widespread coniferous tree mortality. Piñon-juniper (PJ) woodlands, which occupy 24 million ha throughout the Southwest, were extremely vulnerable to this drought. An abrupt die-off of 40 to 95% of piñon pine (Pinus edulis) and 2-25% of juniper (Juniperus monosperma) across 1.5 million ha triggered rapid and extensive changes in the structure of PJ woodlands with potentially large, yet unknown, consequences for ecosystem services and feedbacks between the carbon cycle and climate system. Given the spatial extent of PJ woodlands (3rd largest biome in the US) and climatic predictions of increased frequency and intensity of drought in the region, it is crucial to understand the consequences of these disturbances on regional carbon and energy dynamics, biogeochemical processes and atmospheric CO2. The overall objective of our research was to quantify what impact widespread mortality of piñon trees has for carbon and water cycling in PJ woodlands. Our specific objectives for this proposal were: 1) Quantify the carbon, water and energy exchange trajectory after mortality in PJ woodlands; 2) Determine the mechanisms controlling the response and recovery of ecosystem production and respiration processes following large-scale piñon mortality; 3) Use the relationships we measure between ecosystem structure and function PJ woodlands recover from mortality to scale the results of our study up to the regional scale.

  20. Process contributions of Australian ecosystems to interannual variations in the carbon cycle

    Science.gov (United States)

    Haverd, Vanessa; Smith, Benjamin; Trudinger, Cathy

    2016-05-01

    New evidence is emerging that semi-arid ecosystems dominate interannual variability (IAV) of the global carbon cycle, largely via fluctuating water availability associated with El Niño/Southern Oscillation. Recent evidence from global terrestrial biosphere modelling and satellite-based inversion of atmospheric CO2 point to a large role of Australian ecosystems in global carbon cycle variability, including a large contribution from Australia to the record land sink of 2011. However the specific mechanisms governing this variability, and their bioclimatic distribution within Australia, have not been identified. Here we provide a regional assessment, based on best available observational data, of IAV in the Australian terrestrial carbon cycle and the role of Australia in the record land sink anomaly of 2011. We find that IAV in Australian net carbon uptake is dominated by semi-arid ecosystems in the east of the continent, whereas the 2011 anomaly was more uniformly spread across most of the continent. Further, and in contrast to global modelling results suggesting that IAV in Australian net carbon uptake is amplified by lags between production and decomposition, we find that, at continental scale, annual variations in production are dampened by annual variations in decomposition, with both fluxes responding positively to precipitation anomalies.

  1. Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Landry

    2015-01-01

    Full Text Available Canadian forests are often perceived as pristine and among the last remaining wilderness, but the majority of them are officially managed and undergo direct land use, mostly for wood harvest. This land use has modified their functions and properties, often inadvertently (e.g., age structure but sometimes purposefully (e.g., fire suppression. Based on a review of the literature pertaining to carbon cycling, climate regulation, and disturbances from logging, fire, and insect outbreaks, we propose five scientific principles relevant for Canadian managed forests. Among these, a principle we wish to highlight is the need to properly account for the management-related fossil fuel emissions, because they will affect the global carbon cycle and climate for millennia unless massive atmospheric carbon dioxide removal becomes a reality. We also use these five principles to address questions of current interest to research scientists, forest managers, and policy makers. Our review focusses on total ecosystem carbon storage and various mechanisms through which forests affect climate, in particular albedo and aerosols forcings—including how disturbances influence all these elements—but also touches on other ecosystem goods and services. Our review underscores the importance of conducting >100-year time horizon studies of carbon cycling, climate regulation, and disturbances in Canadian managed forests.

  2. Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt.

    Science.gov (United States)

    Lever, Mark A; Rouxel, Olivier; Alt, Jeffrey C; Shimizu, Nobumichi; Ono, Shuhei; Coggon, Rosalind M; Shanks, Wayne C; Lapham, Laura; Elvert, Marcus; Prieto-Mollar, Xavier; Hinrichs, Kai-Uwe; Inagaki, Fumio; Teske, Andreas

    2013-03-15

    Sediment-covered basalt on the flanks of mid-ocean ridges constitutes most of Earth's oceanic crust, but the composition and metabolic function of its microbial ecosystem are largely unknown. By drilling into 3.5-million-year-old subseafloor basalt, we demonstrated the presence of methane- and sulfur-cycling microbes on the eastern flank of the Juan de Fuca Ridge. Depth horizons with functional genes indicative of methane-cycling and sulfate-reducing microorganisms are enriched in solid-phase sulfur and total organic carbon, host δ(13)C- and δ(34)S-isotopic values with a biological imprint, and show clear signs of microbial activity when incubated in the laboratory. Downcore changes in carbon and sulfur cycling show discrete geochemical intervals with chemoautotrophic δ(13)C signatures locally attenuated by heterotrophic metabolism.

  3. PALADYN, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity

    Science.gov (United States)

    Willeit, Matteo; Ganopolski, Andrey

    2016-04-01

    PALADYN is presented, a new comprehensive and computationally efficient land surface-vegetation-carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. The model explicitly treats permafrost, both in physical processes and as important carbon pool. The model distinguishes 9 surface types of which 5 are different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows to treat continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. It includes a single snow layer. The soil model distinguishes between three different macro surface types which have their own soil column: vegetation and bare soil, ice sheet and ocean shelf. The soil is vertically discretized into 5 layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. The model includes a dynamic vegetation module with 5 plant functional types competing for the gridcell share with their respective net primary productivity. Each macro surface type has its own carbon pools represented by a litter, a fast

  4. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

  5. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere

    DEFF Research Database (Denmark)

    Parmentier, Frans-Jan W; Christensen, Torben R; Rysgaard, Søren

    2017-01-01

    The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often...... considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air-sea exchange of CO2....... This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined...

  6. Earth's Early Biosphere and the Biogeochemical Carbon Cycle

    Science.gov (United States)

    DesMarais, David

    2004-01-01

    Our biosphere has altered the global environment principally by influencing the chemistry of those elements most important for life, e g., C, N, S, O, P and transition metals (e.g., Fe and Mn). The coupling of oxygenic photosynthesis with the burial in sediments of photosynthetic organic matter, and with the escape of H2 to space, has increased the state of oxidation of the Oceans and atmosphere. It has also created highly reduced conditions within sedimentary rocks that have also extensively affected the geochemistry of several elements. The decline of volcanism during Earth's history reduced the flow of reduced chemical species that reacted with photosynthetically produced O2. The long-term net accumulation of photosynthetic O2 via biogeochemical processes has profoundly influenced our atmosphere and biosphere, as evidenced by the O2 levels required for algae, multicellular life and certain modem aerobic bacteria to exist. When our biosphere developed photosynthesis, it tapped into an energy resource that was much larger than the energy available from oxidation-reduction reactions associated with weathering and hydrothermal activity. Today, hydrothermal sources deliver globally (0.13-1.1)x10(exp l2) mol yr(sup -1) of reduced S, Fe(2+), Mn(2+), H2 and CH4; this is estimated to sustain at most about (0.2-2)xl0(exp 12)mol C yr(sup -1) of organic carbon production by chemautotrophic microorganisms. In contrast, global photosynthetic productivity is estimated to be 9000x10(exp 12) mol C yr(sup -1). Thus, even though global thermal fluxes were greater in the distant geologic past than today, the onset of oxygenic photosynthesis probably increased global organic productivity by some two or more orders of magnitude. This enormous productivity materialized principally because oxygenic photosynthesizers unleashed a virtually unlimited supply of reduced H that forever freed life from its sole dependence upon abiotic sources of reducing power such as hydrothermal emanations

  7. Closing the carbon cycle through rational use of carbon-based fuels.

    Science.gov (United States)

    MacElroy, J M Don

    2016-01-01

    In this paper, a brief overview is presented of natural gas as a fuel resource with subsequent carbon capture and re-use as a means to facilitate reduction and eventual elimination of man-made carbon emissions. A particular focus is shale gas and, to a lesser extent, methane hydrates, with the former believed to provide the most reasonable alternative as a transitional fuel toward a low-carbon future. An emphasis is placed on the gradual elimination of fossil resource usage as a fuel over the coming 35 to 85 years and its eventual replacement with renewable resources and nuclear power. Furthermore, it is proposed that synthesis of chemical feedstocks from recycled carbon dioxide and hydrogen-rich materials should be undertaken for specific applications in the transport sector which require access to high energy density fuels. To achieve the latter, carbon dioxide capture is imperative and possible synthetic routes for chemical feedstock production are briefly reviewed.

  8. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling

    Directory of Open Access Journals (Sweden)

    D. S. Goll

    2012-09-01

    Full Text Available Terrestrial carbon (C cycle models applied for climate projections simulate a strong increase in net primary productivity (NPP due to elevated atmospheric CO2 concentration during the 21st century. These models usually neglect the limited availability of nitrogen (N and phosphorus (P, nutrients that commonly limit plant growth and soil carbon turnover. To investigate how the projected C sequestration is altered when stoichiometric constraints on C cycling are considered, we incorporated a P cycle into the land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg, which already includes representations of coupled C and N cycles.

    The model reveals a distinct geographic pattern of P and N limitation. Under the SRES (Special Report on Emissions Scenarios A1B scenario, the accumulated land C uptake between 1860 and 2100 is 13% (particularly at high latitudes and 16% (particularly at low latitudes lower in simulations with N and P cycling, respectively, than in simulations without nutrient cycles. The combined effect of both nutrients reduces land C uptake by 25% compared to simulations without N or P cycling. Nutrient limitation in general may be biased by the model simplicity, but the ranking of limitations is robust against the parameterization and the inflexibility of stoichiometry. After 2100, increased temperature and high CO2 concentration cause a shift from N to P limitation at high latitudes, while nutrient limitation in the tropics declines. The increase in P limitation at high-latitudes is induced by a strong increase in NPP and the low P sorption capacity of soils, while a decline in tropical NPP due to high autotrophic respiration rates alleviates N and P limitations. The quantification of P limitation remains challenging. The poorly constrained processes of soil P sorption and biochemical mineralization are identified as the main uncertainties in the strength of P limitation

  9. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    Science.gov (United States)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon (δ13CDIC) dissolved organic carbon (δ13CDOC) and particulate carbon (δ13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  10. Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle

    Directory of Open Access Journals (Sweden)

    Schellnhuber Hans-Joachim

    2006-08-01

    Full Text Available Abstract Background The main task is to estimate the qualitative and quantitative contribution of urban territories and precisely of the process of urbanization to the Global Carbon Cycle (GCC. Note that, on the contrary to many investigations that have considered direct anthropogenic emission of CO2(urbanized territories produce ca. 96–98% of it, we are interested in more subtle, and up until the present time, weaker processes associated with the conversion of the surrounding natural ecosystems and landscapes into urban lands. Such conversion inevitably takes place when cities are sprawling and additional "natural" lands are becoming "urbanized". Results In order to fulfil this task, we first develop a fundamental model of urban space, since the type of land cover within a city makes a difference for a local carbon cycle. Hence, a city is sub-divided by built-up, „green" (parks, etc. and informal settlements (favelas fractions. Another aspect is a sub-division of the additional two regions, which makes the total number reaching eight regions, while the UN divides the world by six. Next, the basic model of the local carbon cycle for urbanized territories is built. We consider two processes: carbon emissions as a result of conversion of natural lands caused by urbanization; and the transformation of carbon flows by "urbanized" ecosystems; when carbon, accumulated by urban vegetation, is exported to the neighbouring territories. The total carbon flow in the model depends, in general, on two groups of parameters. The first includes the NPP, and the sum of living biomass and dead organic matter of ecosystems involved in the process of urbanization, and namely them we calculate here, using a new more realistic approach and taking into account the difference in regional cities' evolution. Conclusion There is also another group of parameters, dealing with the areas of urban territories, and their annual increments. A method of dynamic forecasting

  11. Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation

    Directory of Open Access Journals (Sweden)

    A. Bozbiyik

    2011-03-01

    Full Text Available CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes qualitatively in agreement with results documented in the literature, but there is a clear distinction between northern and southern perturbations. Changes in the physical variables, in turn, affect the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 concentration by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large reorganizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results. The proxy records, in general, show good agreement with the model's response to a North Atlantic freshwater perturbation.

  12. Early Cretaceous CO2 Pulses: Trigger of Carbon Cycle Perturbations and of Biocalcification Crises

    Science.gov (United States)

    Weissert, H.; Wissler, L.; Hennig, S.

    2003-04-01

    carbonate. This could reflect a warming trend which started before but culminated during the ``methane spike". Based on the comparison of the two carbon isotope events we conclude, that both C-cycle perturbations and biocalcification crises were triggered by volcanic CO_2 pulses. The coastal calcification crises were amplified by rising sea level and by elevated nutrient levels in coastal waters.

  13. Biocatalytic carbon capture via reversible reaction cycle catalyzed by isocitrate dehydrogenase.

    Science.gov (United States)

    Xia, Shunxiang; Frigo-Vaz, Benjamin; Zhao, Xueyan; Kim, Jungbae; Wang, Ping

    2014-09-12

    The practice of carbon capture and storage (CCS) requires efficient capture and separation of carbon dioxide from its gaseous mixtures such as flue gas, followed by releasing it as a pure gas which can be subsequently compressed and injected into underground storage sites. This has been mostly achieved via reversible thermochemical reactions which are generally energy-intensive. The current work examines a biocatalytic approach for carbon capture using an NADP(H)-dependent isocitrate dehydrogenase (ICDH) which catalyzes reversibly carboxylation and decarboxylation reactions. Different from chemical carbon capture processes that rely on thermal energy to realize purification of carbon dioxide, the biocatalytic strategy utilizes pH to leverage the reaction equilibrium, thereby realizing energy-efficient carbon capture under ambient conditions. Results showed that over 25 mol of carbon dioxide could be captured and purified from its gas mixture for each gram of ICDH applied for each carboxylation/decarboxylation reaction cycle by varying pH between 6 and 9. This work demonstrates the promising potentials of pH-sensitive biocatalysis as a green-chemistry route for carbon capture.

  14. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    Science.gov (United States)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  15. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  16. Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO_2 Reduction

    OpenAIRE

    Xu, Bingjun; Bhawe, Yashodhan; Davis, Mark E.

    2013-01-01

    A manganese oxide-based, thermochemical cycle for water splitting below 1000 °C has recently been reported. The cycle involves the shuttling of Na+ into and out of manganese oxides via the consumption and formation of sodium carbonate, respectively. Here, we explore the combinations of three spinel metal oxides and three alkali carbonates in thermochemical cycles for water splitting and CO_2 reduction. Hydrogen evolution and CO_2 reduction reactions of metal oxides with a given alkali carbona...

  17. Role of organic soils in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V. (ed.)

    1979-01-01

    The following goals were addressed in the workshop: review and analysis of available data on carbon in organic soils from the past century to the present; assessment of the probable flux of carbon to and from organic soils in the near future; identification of major data inadequacies which preclude reliable analysis of the principal processes influencing carbon flux in organic soils; and proposal of research initiatives which could improve understanding of organic deposits in relation to the carbon cycle within a time frame of two to four years. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/. Current annual release of carbon from organic soils is estimated to fall within the range of 0.03 to 0.37 x 10/sup 9/ t, a release equivalent to 1.3% to 16% of the annual increase of carbon in the atmosphere. Present annual releases of carbon from the Everglades Agricultural Area in Florida and the Sacramento-San Joaquin Valley in California are estimated at 0.017 x 10/sup 9/ tons. Annual sequestering of carbon by undrained organic soils has been estimated at about 0.045 x 10/sup 9/ tons. Several strategies for peatland management are available, including creation, preservation, functional designation, and use of wetlands for agriculture and energy supply.

  18. Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring

    Directory of Open Access Journals (Sweden)

    K. B. Rodgers

    2013-09-01

    Full Text Available Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model. The objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000–2006, with differences of order 0.9 Pg C yr−1 over the region south of 45° S. Wind stirring impacts not only the mean carbon uptake, but also the phasing of the seasonal cycle of carbon and other species associated with ocean biogeochemistry. Enhanced wind stirring delays the seasonal onset of stratification, and this has large impacts on both entrainment and the biological pump. It is also found that there is a strong sensitivity of nutrient concentrations exported in Subantarctic Mode Water (SAMW to wind stirring. This finds expression not only locally over the Southern Ocean, but also over larger scales through the impact on advected nutrients. In summary, the large sensitivity identified with the ad hoc wind stirring parameterization offers support for the importance of wind stirring for global ocean biogeochemistry, through its impact over the Southern Ocean.

  19. Design of a Multisensory Probe for Measuring Carbon Cycle Processes in Aqueous Subterranean Environments

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Timothy J [ORNL; Kisner, Roger [ORNL; Woodworth, Ken [ORNL; Lenarduzzi, Roberto [ORNL; Frank, Steven Shane [ORNL; McKnight, Timothy E [ORNL

    2015-01-01

    The global carbon cycle describes the exchange of carbon between the atmosphere, terrestrial vegetation, oceans, and soil. Mechanisms involving carbon in sub-terrestrial ecosystems and their impact on climate are not well understood. This lack of understanding limits current climate models and prevents accurate soil-carbon storage predications for future climate conditions. To address the lack of instrumentation for conducting high fidelity measurements of appropriate parameters in the field, a multi-sensory probe using a mix of optical, fiber optic, and electronic technologies to measure CO2, temperature, dissolved oxygen, redox potential, and water level in subsurface environments has been developed. Details of the design, fabrication and laboratory performance verification are presented. Use cases and the anticipated impacts of such measurements on climate models are discussed.

  20. Seasonal carbon cycling in a Greenlandic fjord: an integrated pelagic and benthic study

    DEFF Research Database (Denmark)

    Sørensen, Heidi Louise; Meire, Lorenz; Juul-Pedersen, Thomas

    2015-01-01

    Climate change is expected to have a pronounced effect on biogeochemical cycling in Arctic fjords, but current insight on the biogeochemical functioning of these systems is limited. Here, we present seasonal data on primary production, export of particulate organic carbon (POC), and the coupling...... carbon amounted to 3.2 and 5.3 mol C m−2 yr−1, respectively. Sulfate reduction was the most prominent mineralization pathway, accounting for 69% of the benthic mineralization, while denitrification accounted for 2%. Overall, the carbon mineralization and burial in Kobbefjord were significantly higher...... in ice coverage in higher Arctic Greenlandic fjords will, as a first approximation, entail proportional increases in productivity, mineralization, and burial of organic carbon in the fjords, which will thus become similar to present-day southerly systems....

  1. Carbonate concretions as a significant component of ancient marine carbon cycles: Insights from paired organic and inorganic carbon isotope analyses of a Cretaceous shale

    Science.gov (United States)

    Loyd, S. J.

    2014-12-01

    Carbonate concretions often occur within fine-grained, organic-rich sedimentary rocks. This association reflects the common production of diagenetic minerals through biologic cycling of organic matter. Chemical analysis of carbonate concretions provides the rare opportunity to explore ancient shallow diagenetic environments, which are inherently transient due to progressive burial but are an integral component of the marine carbon cycle. The late Cretaceous Holz Shale (~80 Ma) contains abundant calcite concretions that exhibit textural and geochemical characteristics indicative of relatively shallow formation (i.e., near the sediment-water interface). Sampled concretions contain between 5.4 and 9.8 wt.% total inorganic carbon (TIC), or ~45 and 82 wt.% CaCO3, compared to host shale values which average ~1.5 wt.% TIC. Organic carbon isotope compositions (δ13Corg) are relatively constant in host and concretion samples ranging from ­-26.3 to -24.0‰ (VPDB). Carbonate carbon isotope compositions (δ13Ccarb) range from -22.5 to -3.4‰, indicating a significant but not entirely organic source of carbon. Concretions of the lower Holz Shale exhibit considerably elevated δ13Ccarb values averaging -4.8‰, whereas upper Holz Shale concretions express an average δ13Ccarb value of -17.0‰. If the remaining carbonate for lower Holz Shale concretions is sourced from marine fluids and/or dissolved marine carbonate minerals (e.g., shells), a simple mass balance indicates that ~28% of concretion carbon was sourced from organic matter and ~72% from late Cretaceous marine inorganic carbon (with δ13C ~ +2.5‰). Upper Holz Shale calculations indicate a ~73% contribution from organic matter and a ~27% contribution from inorganic carbon. When normalized for carbonate, organic contents within the concretions are ~2-13 wt.% enriched compared to host contents. This potentially reflects the protective nature of cementation that acts to limit permeability and chemical destruction of

  2. Climate and carbon cycle dynamics in a CESM simulation from 850–2100 CE

    Directory of Open Access Journals (Sweden)

    F. Lehner

    2015-02-01

    Full Text Available Under the protocols of the Paleoclimate and Coupled Modelling Intercomparison Projects a number of simulations were produced that provide a range of potential climate evolutions from the last millennium to the end of the current century. Here, we present the first simulation with the Community Earth System Model (CESM, which includes an interactive carbon cycle, that continuously covers the last millennium, the historical period, and the twenty-first century. Besides state-of-the-art forcing reconstructions, we apply a modified reconstruction of total solar irradiance to shed light on the issue of forcing uncertainty in the context of the last millennium. Nevertheless, we find that structural uncertainties between different models can still dominate over forcing uncertainty for quantities such as hemispheric temperatures or the land and ocean carbon cycle response. Comparing with other model simulations we find forced decadal-scale variability to occur mainly after volcanic eruptions, while during other periods internal variability masks potentially forced signals and calls for larger ensembles in paleoclimate modeling studies. At the same time, we fail to attribute millennial temperature trends to orbital forcing, as has been suggested recently. The climate-carbon cycle sensitivity in CESM during the last millennium is estimated to be about 1.3 ppm °C−1. However, the dependence of this sensitivity on the exact time period and scale illustrates the prevailing challenge of deriving robust constrains on this quantity from paleoclimate proxies. In particular, the response of the land carbon cycle to volcanic forcing shows fundamental differences between different models. In CESM the tropical land dictates the response to volcanoes with a distinct behavior for large and moderate eruptions. Under anthropogenic emissions, global land and ocean carbon uptake rates emerge from the envelope of interannual natural variability as simulated for the last

  3. Climate and carbon cycle dynamics in a CESM simulation from 850 to 2100 CE

    Science.gov (United States)

    Lehner, F.; Joos, F.; Raible, C. C.; Mignot, J.; Born, A.; Keller, K. M.; Stocker, T. F.

    2015-07-01

    Under the protocols of phase 3 of the Paleoclimate Modelling Intercomparison Project, a number of simulations were produced that provide a range of potential climate evolutions from the last millennium to the end of the current century. Here, we present the first simulation with the Community Earth System Model (CESM), which includes an interactive carbon cycle, that covers the last millennium. The simulation is continued to the end of the twenty-first century. Besides state-of-the-art forcing reconstructions, we apply a modified reconstruction of total solar irradiance to shed light on the issue of forcing uncertainty in the context of the last millennium. Nevertheless, we find that structural uncertainties between different models can still dominate over forcing uncertainty for quantities such as hemispheric temperatures or the land and ocean carbon cycle response. Compared to other model simulations, we find forced decadal-scale variability to occur mainly after volcanic eruptions, while during other periods internal variability masks potentially forced signals and calls for larger ensembles in paleoclimate modeling studies. At the same time, we were not able to attribute millennial temperature trends to orbital forcing, as has been suggested recently. The climate-carbon-cycle sensitivity in CESM during the last millennium is estimated to be between 1.0 and 2.1 ppm °C-1. However, the dependence of this sensitivity on the exact time period and scale illustrates the prevailing challenge of deriving robust constraints on this quantity from paleoclimate proxies. In particular, the response of the land carbon cycle to volcanic forcing shows fundamental differences between different models. In CESM the tropical land dictates the response to volcanoes, with a distinct behavior for large and moderate eruptions. Under anthropogenic emissions, global land and ocean carbon uptake rates emerge from the envelope of interannual natural variability by about year 1947 and 1877

  4. Soils and Global Change in the Carbon Cycle over Geological Time

    Science.gov (United States)

    Retallack, G. J.

    2003-12-01

    Soils play an important role in the carbon cycle as the nutrition of photosynthesized biomass. Nitrogen fixed by microbes from air is a limiting nutrient for ecosystems within the first flush of ecological succession of new ground, and sulfur can limit some components of wetland ecosystems. But over the long term, the limiting soil nutrient is phosphorus extracted by weathering from minerals such as apatite (Vitousek et al., 1997a; Chadwick et al., 1999). Life has an especially voracious appetite for common alkali (Na+ and K+) and alkaline earth (Ca2+ and Mg2+) cations, supplied by hydrolytic weathering, which is in turn amplified by biological acidification (Schwartzmann and Volk, 1991; see Chapter 5.06). These mineral nutrients fuel photosynthetic fixation and chemical reduction of atmospheric CO2 into plants and plantlike microbes, which are at the base of the food chain. Plants and photosynthetic microbes are consumed and oxidized by animals, fungi, and other respiring microbes, which release CO2, methane, and water vapor to the air. These greenhouse gases absorb solar radiation more effectively than atmospheric oxygen and nitrogen, and are important regulators of planetary temperature and albedo (Kasting, 1992). Variations in solar insolation ( Kasting, 1992), mountainous topography ( Raymo and Ruddiman, 1992), and ocean currents ( Ramstein et al., 1997) also play a role in climate, but this review focuses on the carbon cycle. The carbon cycle is discussed in detail in Volume 8 of this Treatise.The greenhouse model for global paleoclimate has proven remarkably robust (Retallack, 2002), despite new challenges ( Veizer et al., 2000). The balance of producers and consumers is one of a number of controls on atmospheric greenhouse gas balance, because CO2 is added to the air from fumaroles, volcanic eruptions, and other forms of mantle degassing (Holland, 1984). Carbon dioxide is also consumed by burial as carbonate and organic matter within limestones and other

  5. The Future of Evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

    KAUST Repository

    Fisher, Joshua B.

    2017-03-11

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them. This article is protected by copyright. All rights reserved.

  6. Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient

    Science.gov (United States)

    Wu, Zhuoting; Koch, George W.; Dijkstra, Paul; Bowker, Matthew A.; Hungate, Bruce A.

    2011-01-01

    Global temperature increases and precipitation changes are both expected to alter ecosystem carbon (C) cycling. We tested responses of ecosystem C cycling to simulated climate change using field manipulations of temperature and precipitation across a range of grass-dominated ecosystems along an elevation gradient in northern Arizona. In 2002, we transplanted intact plant–soil mesocosms to simulate warming and used passive interceptors and collectors to manipulate precipitation. We measured daytime ecosystem respiration (ER) and net ecosystem C exchange throughout the growing season in 2008 and 2009. Warming generally stimulated ER and photosynthesis, but had variable effects on daytime net C exchange. Increased precipitation stimulated ecosystem C cycling only in the driest ecosystem at the lowest elevation, whereas decreased precipitation showed no effects on ecosystem C cycling across all ecosystems. No significant interaction between temperature and precipitation treatments was observed. Structural equation modeling revealed that in the wetter-than-average year of 2008, changes in ecosystem C cycling were more strongly affected by warming-induced reduction in soil moisture than by altered precipitation. In contrast, during the drier year of 2009, warming induced increase in soil temperature rather than changes in soil moisture determined ecosystem C cycling. Our findings suggest that warming exerted the strongest influence on ecosystem C cycling in both years, by modulating soil moisture in the wet year and soil temperature in the dry year.

  7. Feedbacks between Exchange-Rate Movements and Domestic Inflation: Vicious and Not So Virtuous Cycles, Old and New.

    Science.gov (United States)

    Spaventa, Luigi

    1983-01-01

    Theories and models dealing with the vicious cycle between exchange rates and domestic inflation and the way in which this relationship has influenced the economic policies of European nations are reviewed. Attempts of European nations to avoid the cycle of depreciation and inflation are covered. New theories may be necessary. (IS)

  8. Quantitative stability analyses of multiwall carbon nanotube nanofluids following water/ice phase change cycling

    Science.gov (United States)

    Ivall, Jason; Langlois-Rahme, Gabriel; Coulombe, Sylvain; Servio, Phillip

    2017-02-01

    Multiwall carbon nanotube nanofluids are regularly investigated for phase change enhancement between liquid and solid states owing to their improved heat transfer properties. The potential applications are numerous, the most notable being latent heat thermal energy storage, but the success of all nanofluid-assisted technologies hinges greatly on the ability of nanoparticles to remain stably dispersed after repeated phase change cycles. In this report, the stability of aqueous nanofluids made from oxygen-functionalized multiwall carbon nanotubes (f-MWCNTs) was profiled over the course of 20 freeze/thaw cycles. Sonication was used after each cycle to re-disperse clusters formed from the crystallization process. This study offers a quantitative evaluation of f-MWCNT-nanofluid stability as a result of phase change through optical characterization of concentration and particle size. It also provides insight into the integrity of the surface functionalities through zeta potential and XPS analyses. Concentration and particle size measurements showed moderate and consistent recoverability of f-MWCNT dispersion following ultrasonication. XPS measurements of solid-state MWCNTs exposed to freeze/thaw cycling in water, and zeta potential analyses of the nanofluids indicate that the surface oxygen content is preserved throughout phase change and over repeated cycles. These results suggest a resilience of oxygen-functionalized MWCNTs to the freezing and thawing of water, which is ideal for their utilization as phase change enhancers.

  9. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales

    NARCIS (Netherlands)

    Maher, D.T.; Santos, I.S.; Leuven, J.R.F.W.; Oakes, J.M.; Erler, D.V.; Carvalho, M.C.; Eyre, B.D.

    2013-01-01

    Development of cavity ring-down spectroscopy (CRDS) has enabled real-time monitoring of carbon stable isotope ratios of carbon dioxide and methane in air. Here we demonstrate that CRDS can be adapted to assess aquatic carbon cycling processes from microbial to ecosystem scales. We first measured in

  10. Bacterioplankton carbon cycling along the Subtropical Frontal Zone off New Zealand

    Science.gov (United States)

    Baltar, Federico; Stuck, Esther; Morales, Sergio; Currie, Kim

    2015-06-01

    Marine heterotrophic bacterioplankton (Bacteria and Archaea) play a central role in ocean carbon cycling. As such, identifying the factors controlling these microbial populations is crucial to fully understanding carbon fluxes. We studied bacterioplankton activities along a transect crossing three water masses (i.e., Subtropical waters [STW], Sub-Antarctic waters [SAW] and neritic waters [NW]) with contrasting nutrient regimes across the Subtropical Frontal Zone. In contrast to bacterioplankton production and community respiration, bacterioplankton respiration increased in the offshore SAW, causing a seaward increase in the contribution of bacteria to community respiration (from 7% to 100%). Cell-specific bacterioplankton respiration also increased in SAW, but cell-specific production did not, suggesting that prokaryotic cells in SAW were investing more energy towards respiration than growth. This was reflected in a 5-fold decline in bacterioplankton growth efficiency (BGE) towards SAW. One way to explain this decrease in BGE could be due to the observed reduction in phytoplankton biomass (and presumably organic matter concentration) towards SAW. However, this would not explain why bacterioplankton respiration was highest in SAW, where phytoplankton biomass was lowest. Another factor affecting BGE could be the iron limitation characteristic of high-nutrient low-chlorophyll (HNLC) regions like SAW. Our field-study based evidences would agree with previous laboratory experiments in which iron stress provoked a decrease in BGE of marine bacterial isolates. Our results suggest that there is a strong gradient in bacterioplankton carbon cycling rates along the Subtropical Frontal Zone, mainly due to the HNLC conditions of SAW. We suggest that Fe-induced reduction of BGE in HNLC regions like SAW could be relevant in marine carbon cycling, inducing bacterioplankton to act as a link or a sink of organic carbon by impacting on the quantity of organic carbon they incorporate

  11. Effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Trumbore, Susan E.; Davidson, Eric A.

    1994-01-01

    The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales.

  12. Inorganic carbon cycling and biogeochemical processes in an Arctic inland sea (Hudson Bay)

    Science.gov (United States)

    Burt, William J.; Thomas, Helmuth; Miller, Lisa A.; Granskog, Mats A.; Papakyriakou, Tim N.; Pengelly, Leah

    2016-08-01

    The distributions of carbonate system parameters in Hudson Bay, which not only receives nearly one-third of Canada's river discharge but is also subject to annual cycles of sea-ice formation and melt, indicate that the timing and magnitude of freshwater inputs play an important role in carbon biogeochemistry and acidification in this unique Arctic ecosystem. This study uses basin-wide measurements of dissolved inorganic carbon (DIC) and total alkalinity (TA), as well as stable isotope tracers (δ18O and δ13CDIC), to provide a detailed assessment of carbon cycling processes within the bay. Surface distributions of carbonate parameters reveal the particular importance of freshwater inputs in the southern portion of the bay. Based on TA, we surmise that the deep waters in the Hudson Bay are largely of Pacific origin. Riverine TA end-members vary significantly both regionally and with small changes in near-surface depths, highlighting the importance of careful surface water sampling in highly stratified waters. In an along-shore transect, large increases in subsurface DIC are accompanied by equivalent decreases in δ13CDIC with no discernable change in TA, indicating a respiratory DIC production on the order of 100 µmol kg-1 DIC during deep water circulation around the bay.

  13. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    OpenAIRE

    2012-01-01

    We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 200 million years. The geochemistry of the sediment column is altered by the addition of vertical high-permeability channels intended to mimic the effects of heterogeneity in the real sediment column...

  14. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China

    DEFF Research Database (Denmark)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere Abdisa

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling...... and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle....

  15. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling

    Science.gov (United States)

    Scambelluri, Marco; Bebout, Gray E.; Belmonte, Donato; Gilio, Mattia; Campomenosi, Nicola; Collins, Nathan; Crispini, Laura

    2016-05-01

    Much of the long-term carbon cycle in solid earth occurs in subduction zones, where processes of devolatilization, partial melting of carbonated rocks, and dissolution of carbonate minerals lead to the return of CO2 to the atmosphere via volcanic degassing. Release of COH fluids from hydrous and carbonate minerals influences C recycling and magmatism at subduction zones. Contradictory interpretations exist regarding the retention/storage of C in subducting plates and in the forearc to subarc mantle. Several lines of evidence indicate mobility of C, of uncertain magnitude, in forearcs. A poorly constrained fraction of the 40-115 Mt/yr of C initially subducted is released into fluids (by decarbonation and/or carbonate dissolution) and 18-43 Mt/yr is returned at arc volcanoes. Current estimates suggest the amount of C released into subduction fluids is greater than that degassed at arc volcanoes: the imbalance could reflect C subduction into the deeper mantle, beyond subarc regions, or storage of C in forearc/subarc reservoirs. We examine the fate of C in plate-interface ultramafic rocks, and by analogy serpentinized mantle wedge, via study of fluid-rock evolution of marble and variably carbonated serpentinite in the Ligurian Alps. Based on petrography, major and trace element concentrations, and carbonate C and O isotope compositions, we demonstrate that serpentinite dehydration at 2-2.5 GPa, 550 °C released aqueous fluids triggering breakdown of dolomite in nearby marbles, thus releasing C into fluids. Carbonate + olivine veins document flow of COH fluids and that the interaction of these COH fluids with serpentinite led to the formation of high-P carbonated ultramafic-rock domains (high-P ophicarbonates). We estimate that this could result in the retention of ∼0.5-2.0 Mt C/yr in such rocks along subduction interfaces. As another means of C storage, 1 to 3 km-thick layers of serpentinized forearc mantle wedge containing 50 modal % dolomite could sequester 1.62 to

  16. The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the 15N Haber-Bosch effect

    Science.gov (United States)

    Yang, Simon; Gruber, Nicolas

    2016-10-01

    Over the last 100 years, anthropogenic emissions have led to a strong increase of atmospheric nitrogen deposition over the ocean, yet the resulting impacts and feedbacks are neither well understood nor quantified. To this end, we run a suite of simulations with the ocean component of the Community Earth System Model v1.2 forced with five scenarios of nitrogen deposition over the period from 1850 through 2100, while keeping all other forcings unchanged. Even though global oceanic net primary production increases little in response to this fertilization, the higher export and the resulting expansion of the oxygen minimum zones cause an increase in pelagic and benthic denitrification and burial by about 5%. In addition, the enhanced availability of fixed nitrogen in the surface ocean reduces global ocean N2 fixation by more than 10%. Despite the compensating effects through these negative feedbacks that eliminate by the year 2000 about 60% of the deposited nitrogen, the anthropogenic nitrogen input forced the upper ocean N budget into an imbalance of between 9 and 22 Tg N yr-1 depending on the deposition scenario. The excess nitrogen accumulates to highly detectable levels and causes in most areas a distinct negative trend in the δ15N of the oceanic fixed nitrogen pools—a trend we refer to as the 15N Haber-Bosch effect. Changes in surface nitrate utilization and the nitrogen feedbacks induce further changes in the δ15N of NO3-, making it a good but complex recorder of the overall impact of the changes in atmospheric deposition.

  17. To spatially explicitly quantify the indirect effect of disturbances on carbon cycle of Canada's forests

    Science.gov (United States)

    Chen, W.; Cihlar, J.; Wang, S.; Zhang, Q.; Ung, C.; Price, D.; Fernandes, R.; Fraser, R.

    2001-12-01

    Disturbances (i.e., fire, insects-induced mortality, and harvesting) affect the carbon cycle of forested ecosystems directly in the year of occurrence and indirectly in many years after. For example, forest fire directly releases a fraction of carbon in biomass and forest floor to the atmosphere. The carbon cycle is also affected indirectly by disturbances which set the disturbed stand to age zero. So far, most studies estimate the indirect effect of disturbances on carbon balance at regional to national scales by aggregated forests in a region or a country into a few units, and largely ignoring the effect of spatial heterogeneity of disturbances and environmental factors. Because the effects of disturbances and environmental factors are usually non-linear, ignoring their spatial heterogeneity may introduce large error in the carbon budget estimates. In order to reduce this potential large error, spatially explicit quantification of the indirect effect of disturbances are urgently needed. Spatially explicit estimates of carbon cycle at 1-km resolution also allow direct testing against field measurements, as well as provide essential information for sustainable development of natural resources. To spatially explicitly quantify the indirect effect of disturbances on carbon cycle, we need first to quantify how stand age affects NPP. Our early results indicated the effect of stand age on NPP is species and site quality dependent. Therefore, age-NPP relationships are needed for all major forest species to carry out the spatially explicitly quantification of indirect effect of disturbances. We will derive these age-NPP relationships using existing yield tables, biomass allometric equations, and recent data on fine root and foliage production. To apply these age-NPP relationships, we need geo-spatial information on species, age, and site quality. Several initiatives have been underway to develop these spatial data layers. Because the NPP derived using these age

  18. Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China

    Institute of Scientific and Technical Information of China (English)

    Yang Peng; Yongbo Peng; Xianguo Lang; Haoran Ma; Kangjun Huang; Fangbing Li; Bing Shen

    2016-01-01

    ABSTRACT:Global occurrences of Steptoean Positive Carbon Isotope Excursion (SPICE) during Late Cambrian recorded a significant perturbation in marine carbon cycle, and might have had profound impacts on the biological evolution. In previous studies, SPICE has been reported from the Jiangnan slope belt in South China. To evaluate the bathymetric extent of SPICE, we investigate the limestone samples from the upper Qingxi Formation in the Shaijiang Section in the Jiangnan Basin. Our results show the positive excursions for both carbonate carbon (δ13C) and organic carbon (δ13Corg) isotopes, as well as the concurrent positive shifts in sulfur isotopes of carbonate associated sulfate (CAS, δ34SCAS) and pyrite (δ34Spyrite), unequivocally indicating the presence of SPICE in the Jiangnan Basin. A 4‰increase inδ13Ccarb of the Qingxi limestone implies the increase of the relative flux of organic carbon burial by a factor of two. Concurrent positive excursions inδ34SCAS andδ34Spyrite have been attributed to the enhanced pyrite burial in oceans with extremely low concentration and spatially heterogeneous isotopic composition of seawater sulfate. Here, we propose that the seawater sulfur isotopic heterogeneity can be generated by volatile organic sulfur compound (VOSC, such as methanethiol and dimethyl sulfide) formation in sulfidic continental margins that were widespread during SPICE. Emission of 32S-enriched VOSC in atmosphere, followed by lateral transportation and aerobic oxidation in atmosphere, and precipitation in open oceans result in a net flux of 32S from continental margins to open oceans, elevatingδ34S of seawater sulfate in continental margins. A simple box model indicates that about 35%to 75%of seawater sulfate in continental margins needs to be transported to open oceans via VOSC formation.

  19. How to be patient. The ability to wait for a reward depends on menstrual cycle phase and feedback-related activity.

    Directory of Open Access Journals (Sweden)

    Luise eReimers

    2014-12-01

    Full Text Available Dopamine (DA plays a major role in reinforcement learning with increases promoting reward sensitivity (Go learning while decreases facilitate the avoidance of negative outcomes (NoGo learning. This is also reflected in adaptations of response time: higher levels of DA enhance speeding up to get a reward, whereas lower levels favor slowing down. The steroid hormones estradiol and progesterone have been shown to modulate dopaminergic tone. Here, we tested fourteen women twice during their menstrual cycle, during the follicular (FP and the luteal phase (LP, applying functional magnetic resonance imaging while they performed a feedback learning task. Subsequent behavioral testing assessed response time preferences with a clock task, in which subjects had to explore the optimal response time (RT to maximize reward. In the FP subjects displayed a greater learning-related change of their RT than during the LP, when they were required to slow down. Final RTs in the slow condition were also predicted by feedback-related brain activation, but only in the FP. Increased activation of the inferior frontal junction and rostral cingulate zone was thereby predictive of slower and thus better adapted final RTs. Conversely, final RT was faster and less optimal for reward maximization if activation in the ventromedial prefrontal cortex was enhanced. These findings show that hormonal shifts across the menstrual cycle affect adaptation of response speed during reward acquisition with higher RT adjustment in the FP in the condition that requires slowing down. Since high estradiol levels during the FP increase synaptic DA levels, this conforms well to our hypothesis that estradiol supports Go learning at the expense of NoGo learning. Brain-behavior correlations further indicated that the compensatory capacity to counteract the follicular Go bias may be linked to the ability to more effectively monitor action outcomes and suppress bottom-up reward desiring during

  20. The Arctic CH4 sink and its implications for the permafrost carbon feedbacks to the global climate system

    Science.gov (United States)

    Juncher Jørgensen, Christian; Christiansen, Jesper; Mariager, Tue; Hugelius, Gustaf

    2016-04-01

    Using atmospheric methane (CH4), certain soil microbes are able to sustain their metabolism, and in turn remove this powerful greenhouse gas from the atmosphere. While the process of CH4 oxidation is a common feature in most natural and unmanaged ecosystems in temperate and boreal ecosystems, the interactions between soil physical properties and abiotic process drivers, net landscape exchange and spatial patterns across Arctic drylands remains highly uncertain. Recent works show consistent CH4 comsumption in upland dry tundra soils in Arctic and High Arctic environments (Christiansen et al., 2014, Biogeochemistry 122; Jørgensen et al., 2015, Nature Geoscience 8; Lau et al., 2015, The ISME Journal 9). In these dominantly dry or barren soil ecosystems, CH4 consumption has been observed to significantly exceed the amounts of CH4 emitted from adjacent wetlands. These observations point to a potentially important but largely overlooked component of the global soil-climate system interaction and a counterperspective to the conceptual understanding of the Arctic being a only a source of CH4. However, due to our limited knowledge of spatiotemporal occurrence of CH4 consumption across a wider range of the Arctic landscape we are left with substantial uncertainites and an overall unconstrained range estimate of this terrestrial CH4 sink and its potential effects on permafrost carbon feedback to the atmospheric CH4 concentration. To address this important knowledge gap and identify the most relevant spatial scaling parameters, we studied in situ CH4 net exchange across a large landscape transect on West Greenland. The transect representated soils formed from the dominant geological parent materials of dry upland tundra soils found in the ice-free land areas of Western Greenland, i.e. 1) granitic/gneissic parent material, 2) basaltic parent material and 3) sedimentary deposits. Results show that the dynamic variations in soil physical properties and soil hydrology exerts an

  1. Distribution and preservation of black carbon in the East China Sea sediments: Perspectives on carbon cycling at continental margins

    Science.gov (United States)

    Huang, Liang; Zhang, Jing; Wu, Ying; Wang, Jinlong

    2016-02-01

    We determined the concentrations and radiocarbon (14C) compositions of black carbon (BC) in the sediments of the East China Sea (ECS). The BC concentrations, which were in the range of 0.30-1.52 mg/g, accounted for 12-65% of the total organic carbon (TOC). The distribution of BC in ECS sediments was controlled by factors such as grain size, distance from the coast, and deposition rate. Radiocarbon measurements of BC yielded ages of 6350-10,440 years before present (BP), suggesting that the percentage of BC derived from biomass combustion was in the range of 29-48%. The BC burial flux in sediments of the ECS was estimated to be ∼1.39×106 t/yr, which was similar to burial fluxes reported for shelf sediments in other areas. However, the magnitude of the total BC sink was far greater than that of any other shelf regions studied to date, indicating the global importance of BC accumulation in the ECS, and the magnitude of BC input from large rivers (e.g., the Changjiang). The riverine delivery of BC to the ECS (73%) was far greater than that of atmospheric flux (27%). Further study of the BC cycle and the interactions of BC with other organic compounds in marginal seas was required to better understand the role of BC in the global carbon cycle.

  2. A Brief Review of the Application of 14C in Terrestrial Carbon Cycle Studies

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T; Mcfarlane, K

    2009-10-22

    An over-arching goal of the DOE TCP program is to understand the mechanistic controls over the fate, transport, and residence time of carbon in the terrestrial biosphere. Many of the modern process and modeling studies focus on seasonal to interannual variability. However, much of the carbon on the landscape and in soils is in separate reservoirs with turnover times that are multi-decadal to millennial. It is the controls on these longer term pools or reservoirs that is a critical unknown in the face of rising GHGs and climate change and uncertainties of the terrestrial biosphere as a future global sink or source of atmospheric CO{sub 2} [eg., Friedlingstein et al., 2006; Govindasamy et al., 2005; Thompson et al., 2004]. Radiocarbon measurements, in combination with other data, can provide insight into, and constraints on, terrestrial carbon cycling. Radiocarbon (t{sub 1/2} 5730yrs) is produced naturally in the stratosphere when secondary neutrons generated by cosmic rays collide with {sup 14}N atoms [Libby 1946; Arnold and Libby, 1949]. Upon formation, {sup 14}C is rapidly oxidized to CO and then to CO{sub 2}, and is incorporated into the carbon cycle. Due to anthropogenic activities, the amount of {sup 14}C in the atmosphere doubled in the mid/late 1950s and early 1960s from its preindustrial value of {sup 14}C/{sup 12}C ratio of 1.18 x 10{sup -12} [eg., Nydal and Lovseth, 1983]. Following the atmospheric weapons test ban in 1963, the {sup 14}C/{sup 12}C ratio, has decreased due to the net isotopic exchange between the ocean and terrestrial biosphere [eg., Levin and Hessheimer, 2000] and a dilution effect due to the burning of {sup 14}C-free fossil fuel carbon, the 'Suess Effect' [Suess, 1955]. In the carbon cycle literature, radiocarbon measurements are generally reported as {Delta}{sup 14}C, which includes a correction for mass dependent fractionation [Stuiver and Polach, 1977]. In the context of carbon cycle studies radiocarbon measurements can be

  3. Second Law of Thermodynamics Analysis of Transcritical Carbon Dioxide Refrigeration Cycle

    Institute of Scientific and Technical Information of China (English)

    杨俊兰; 马一太; 管海清; 李敏霞

    2004-01-01

    In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy analysis model is applied. The effects of heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures on the exergy loss, exergy efficiency and the coefficient of performance (COP) of the expansion turbine cycle are analyzed. It is found that the great percentages of exergy losses take place in the gas cooler and compressor. Moreover, heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures have strong influence on the exergy efficiency, COP and the exergy loss of each component. The analysis shows that there exists an optimal heat rejection pressure corresponding to the maximum exergy efficiency and COP, respectively. The results are of significance in providing theoretical basis for optimal design and the control of the transcritical carbon dioxide system with an expansion turbine.

  4. Development of Specific Rules for the Application of Life Cycle Assessment to Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Michela Gallo

    2013-03-01

    Full Text Available Carbon Capture and Storage (CCS is a very innovative and promising solution for greenhouse gases (GHG reduction, i.e., capturing carbon dioxide (CO2 at its source and storing it indefinitely to avoid its release to the atmosphere. This paper investigates a set of key issues in the development of specific rules for the application of Life Cycle Assessment (LCA to CCS. The following LCA-based information are addressed in this work: definition of service type, definition of functional unit, definition of system boundaries, choice of allocation rules, choice of selected Life Cycle Inventory (LCI results or other selected parameters for description of environmental performance. From a communication perspective, the specific rules defined in this study have been developed coherently with the requirements of a type III environment label scheme, the International EPD® System, according to the ISO 14025 standard.

  5. How is climate warming altering the carbon cycle of a tundra ecosystem in the Siberian Arctic?

    Science.gov (United States)

    Belelli Marchesini, Luca; (Ko) van Huissteden, Jacobus; van der Molen, Michiel; Parmentier, Frans-Jan W.; Maximov, Trofim; Budishchev, Artem; Gallagher, Angela; (Han) Dolman, Albertus J.

    2015-04-01

    period tended to start earlier in the course of the year, potentially leading to a greater carbon sink. The large meteorological variability during the arctic summer controlled indeed the duration of the carbon uptake period and the flux rates with no clear evidence of changes in the response patterns of CO2 fluxes to climatic drivers (global radiation and air temperature) emerged from the analysis. The carbon loss associated with seasonal CH4 emissions and lateral DOC fluxes resulted equal for both terms and 6.2 gC m-2 in total. Hence the tundra ecosystem was found to act so far as a steady carbon sink exerting a negative feedback to climate warming.

  6. Connecting the cycles: impact of farming practices, Carbon and nutrient erosion on GHG emissions

    Science.gov (United States)

    Kuhn, Nikolaus J.

    2013-04-01

    This study focuses on identifying links between GHG emissions, soil management and soil erosion that are not considered in the commonly applied emission calculations associated with farming and soil erosion. The role of agriculture in generating GHG emissions through the use of fertilizers and fossil fuels is well documented. The negative impacts of soil erosion on agricultural land and its productivity have also been studied extensively. The lateral movement of soil through terrestrial ecosystems has also been recognized as a significant flux of C within the global C cycle. Soil erosion removes approximately 0.5 Gt of C per year from agricultural land. Much of this C is deposited in the landscape, effectively burying the organic matter from the atmosphere and taking it, at least for an unspecified time, out of the C exchange between soil and atmosphere. Such calculations raise the notion that soil erosion generates an unintentional benefit for climate, owing to the long-term burial of soil organic Carbon. But limiting the assessment of the impact of soil erosion on climate change to organic carbon burial ignores, apart from economic and social damages, the coupling between biogeochemical cycles. For example, the eroded nitrogen has to be replaced, at least in part by artificial fertilizers, to maintain soil fertility. At this point the sediment, Carbon and nitrogen cycles meet, because the production of fertilizer generates greenhouse gases. The production of one ton of fertilizer generates on the order of 850 kg of carbon dioxide. Applying this number to the 0.5 GT C erosion estimate, the amount of nitrogen lost owing to erosion each year yields carbon dioxide emissions of 0.02-0.04 Pg per year. These emissions correspond to 15-30% of the organic carbon buried owing to soil erosion. In this presentation, the full complexity of biogeochemical cycling on agricultural land is explored and connections between cycles which require consideration for a full GHG emission

  7. The Keck Carbon Cycle AMS Laboratory, U.C.I.: Initial operation and a background surprise

    OpenAIRE

    Southon, John R.; Santos, Guaciara M.; Druffel-Rodriguez, K C; Druffel, Ellen R. M.; Trumbore, Susan E.; Xu, Xiaomei; Griffin, Sheila; Ali, S.; Mazon, M.

    2003-01-01

    A new 14C accelerator mass spectrometry (AMS) laboratory for carbon cycle studies has been established at the University of California, Irvine. The 0.5 MV AMS system was installed in mid-2002 and has operated routinely since October of that year. This paper briefly describes the spectrometer and summarizes lessons learned during the first year of operation. In the process of setting up the system, we identified and largely suppressed a previously unreported radiocarbon AMS b...

  8. Impact of a Permo-Carboniferous high O2 event on the terrestrial carbon cycle

    OpenAIRE

    Beerling, D. J.; Berner, R. A.

    2000-01-01

    Independent models predicting the Phanerozoic (past 600 million years) history of atmospheric O2 partial pressure (pO2) indicate a marked rise to approximately 35% in the Permo-Carboniferous, around 300 million years before present, with the strong potential for altering the biogeochemical cycling of carbon by terrestrial ecosystems. This potential, however, would have been modified by the prevailing atmospheric pCO2 value. Herein, we use a process-based terres...

  9. Effects of lime and concrete waste on Vadose Zone carbon cycling

    OpenAIRE

    Thaysen, Eike Marie; Jessen, Søren; Postma, D; Jakobsen, R.; Jacques, D; Ambus, Per; E. Laloy; Jakobsen, Iver

    2014-01-01

    In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination of experimental and modeling tools to determine ongoing biogeochemical processes. Our results demonstrate that lime and CCW amendments to acid soil contribute to the climate forcing by largely increasing the ...

  10. Influence of advective bio-irrigation on carbon and nitrogen cycling in sandy sediments

    OpenAIRE

    Na, T.; Gribsholt, B.; Galaktionov, O. S.; T. Lee; Meysman, F. J. R.

    2008-01-01

    In sandy sediments, the burrow ventilation activity of benthic macrofauna can generate substantial advective flows within the sediment surrounding their burrows. Here we investigated the effects of such advective bio-irrigation on carbon and nitrogen cycling in sandy sediments. To this end, we combined a range of complementary experimental and modelling approaches in a microcosm study of the lugworm Arenicola marina (Polychaeta: Annelida). Bio-irrigation rates were determined using uranine as...

  11. Carbon and Nitrogen Cycling in Urban Landscapes: Global, Regional Dynamics and Case Studies.

    Science.gov (United States)

    Svirejeva-Hopkins, A.; Nardoto, G. B.; Schellnhuber, H.

    2008-12-01

    The urban population has been growing rapidly in the last decades and is predicted to continue its exponential trend, especially in the developing countries, which would create additional pressure on the environment by overpopulated unsustainable cities and will continue to substantially change the main Biogeochemical cycles. Such disturbances in the main driving cycle of the Biosphere (global carbon cycle) and the nitrogen cycle, induced by sprawling urban human activities, lead to global, regional and local environmental problems, i.e. global warming, photochemical smog, stratospheric ozone depletion, soil acidification, nitrate pollution of surface and ground water, coastal ecosystem disturbances. Since urban areas are expected to continue their rapid expansion in the 21st century, accompanied by growing energy production, increased food demand, expanding transportation and industrialization it becomes more and more important to be able to describe and forecast the dynamics of biogeochemical functioning of these landscapes (which have altered characteristics compared to the natural ecosystems). Moreover, from the environmental policy perspective, a high density of people makes cities focal points of vulnerability to global environmental change. The model based on the forecasting the dynamics of urban area growth, allows us to forecast the dynamics of Carbon and Nitrogen on the urban territories at different scales. However, nitrogen cycle is very complex and is closely interlinked with the other major biogeochemical cycles, such as oxygen and water. The system of water supply and liquid waste carried by water out of the system 'city' is investigated. In order to better understand the mechanisms of cycling, we consider the case studies, when we investigated the detailed fluxes of Carbon and Nitrogen in Sao Paolo (Brazil) and Paris (France). When we know the yearly amounts of carbon and nitrogen, produced by a city, we should be capable of coming up with what

  12. Role of temperate zone forests in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V.; Hett, J. (eds.)

    1979-01-01

    The proceedings of a workshop on carbon uptake and losses from temperate zone forests are presented. The goals of the workshop were to analyze existing data on growth and utilization of the temperate zone forest carbon pool and to identify further research needs in relation to the role of temperate forests in the global carbon cycle. Total standing stock and growth recovery transients were examined for most of the temperate region over a period from pre-settlement times to the present, with emphasis on the last three decades. Because of data availability, certain regions and topics were covered more in detail than others. Forest inventory data from most of the commercial timberlands of the north temperate zone suggest these forests have functioned over the past several decades as an annual sink for about 10/sup 9/ metric tons of carbon. Thus, net growth of these forests has withdrawn carbon from the atmosphere at a rate equivalent, approximately, to 50% of the annual rise in atmospheric carbon. Various data inadequacies make this estimate probably no more precise than plus or minus half of the value. Analysis of growth and vegetation changes in New England and the southeastern United States shows that forest biomass has partly recovered since extensive clearing took place in the 18th and 19th centuries. This regrowth represents a net withdrawal of carbon (carbon sink) from the atmosphere in recent decades, although the difference in pool size between present and original forests means that, in the longer term, the two regions have functioned as carbon sources.

  13. The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle.

    Science.gov (United States)

    Abrams, Jesse F; Hohn, Sönke; Rixen, Tim; Baum, Antje; Merico, Agostino

    2016-01-01

    Tropical peatlands are among the most space-efficient stores of carbon on Earth containing approximately 89 Gt C. Of this, 57 Gt (65%) are stored in Indonesian peatlands. Large-scale exploitation of land, including deforestation and drainage for the establishment of oil palm plantations, is changing the carbon balance of Indonesian peatlands, turning them from a natural sink to a source via outgassing of CO2 to the atmosphere and leakage of dissolved organic carbon (DOC) into the coastal ocean. The impacts of this perturbation to the coastal environment and at the global scale are largely unknown. Here, we evaluate the downstream effects of released Indonesian peat carbon on coastal ecosystems and on the global carbon cycle. We use a biogeochemical box model in combination with novel and literature observations to investigate the impact of different carbon emission scenarios on the combined ocean-atmosphere system. The release of all carbon stored in the Indonesian peat pool, considered as a worst-case scenario, will increase atmospheric pCO2 by 8 ppm to 15 ppm within the next 200 years. The expected impact on the Java Sea ecosystems is most significant on the short term (over a few hundred years) and is characterized by an increase of 3.3% in phytoplankton, 32% in seagrass biomass, and 5% decrease in coral biomass. On the long term, however, the coastal ecosystems will recover to reach near pre-excursion conditions. Our results suggest that the ultimate fate of the peat carbon is in the deep ocean with 69% of it landing in the deep DIC pool after 1000 years, but the effects on the global ocean carbonate chemistry will be marginal.

  14. Quantification of the regional carbon cycle of the biosphere: policy, science and land-use decisions.

    Science.gov (United States)

    Cihlar, J

    2007-11-01

    This paper addresses some issues related to the carbon cycle and its utilization by society. Traditional uses for agriculture, forestry, as a source of fuel and other products, and for pastoral farming, among others, have recently been supplemented by identifying its potential for mitigating the increasing concentration of greenhouse gases in the atmosphere. Through the Kyoto Protocol, carbon has become a commodity and the CO(2)-absorbing capability of the vegetation and soils an economically valuable asset. The multi-facetted roles of the C cycle and its sensitivity to human activities present a demand for techniques that permit accurate, timely and affordable characterization of the various components of this cycle, especially on land where most human activities take place. Such techniques must satisfy a range of demands in terms of purpose, clients for the information, and biosphere properties. However, if successful, they offer the potential to support monitoring, reporting, policy setting, and management of terrestrial biospheric resources. The context for these requirements and possibilities is illustrated with reference to the China Carbon Sequestration Project and its findings.

  15. Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian and Marine Isotope Stage (MIS) 11

    Science.gov (United States)

    Kleinen, Thomas; Brovkin, Victor; Munhoven, Guy

    2016-11-01

    Trends in the atmospheric concentration of CO2 during three recent interglacials - the Holocene, the Eemian and Marine Isotope Stage (MIS) 11 - are investigated using an earth system model of intermediate complexity, which we extended with process-based modules to consider two slow carbon cycle processes - peat accumulation and shallow-water CaCO3 sedimentation (coral reef formation). For all three interglacials, model simulations considering peat accumulation and shallow-water CaCO3 sedimentation substantially improve the agreement between model results and ice core CO2 reconstructions in comparison to a carbon cycle set-up neglecting these processes. This enables us to model the trends in atmospheric CO2, with modelled trends similar to the ice core data, forcing the model only with orbital and sea level changes. During the Holocene, anthropogenic CO2 emissions are required to match the observed rise in atmospheric CO2 after 3 ka BP but are not relevant before this time. Our model experiments show a considerable improvement in the modelled CO2 trends by the inclusion of the slow carbon cycle processes, allowing us to explain the CO2 evolution during the Holocene and two recent interglacials consistently using an identical model set-up.

  16. Enhanced understanding of the terrestrial carbon cycle through multiple constraints in model-data-integration approaches

    Science.gov (United States)

    Carvalhais, N.; Forkel, M.; Oijen, M. V.; Keenan, T. F.; MacBean, N.; Rolinski, S.; Peylin, P. P.; Schuermann, G. J.; Zaehle, S.; Reichstein, M.

    2015-12-01

    The representation of exchanges of carbon, water and energy between the land surface and the atmosphere still reveals significant model limitations in explaining temporal and spatial variability. Despite agreement between models for contemporaneous periods, prognostic simulations reveal a strong between-model divergence regarding the role of the land surface in the global carbon cycle. The integration of multiple data-streams in inverse modelling approaches for parameterization and model evaluation, ultimately leads to model improvement. Here we explore multiple-constraint approaches ranging from in situ to regional and global spatial scales. Constraints include stocks and fluxes of water and carbon. We show that integrating multiple datasets contributes to a better representation of ecosystem dynamics in different models, from forest and dynamic vegetation models to land surface schemes. At site scale, model-data comparisons reveal substantial differences in the modelled temporal dynamics of carbon stocks and turnover times and their relationships with climate, especially at annual scales. Inter-annual variability remains a problem for all models, even after parameter optimization. At regional and global scales, the integration of multiple data-streams to constrain albedo, phenology and primary productivity patterns yields a significant improvement in regional simulations of vegetation dynamics, from seasons to longer-term trends. The role of environmental controls and vegetation dynamics in explaining recent trends in the amplitude of the seasonal cycle of atmospheric CO2 is evaluated using an improved dynamic vegetation model. We conclude by identifying major challenges in model-data-integration: to explore the information content in longer time series; avoid confounding effects of missing processes on parameter estimation; set up cost functions for multivariate-data integration; quantification of uncertainties arising from data bias, model structure, and

  17. Timing is everything: ecological vs. evolutionary pacing of Triassic-Jurassic carbon cycle disruptions

    Science.gov (United States)

    Whiteside, J. H.; Olsen, P. E.; Eglinton, T. I.

    2007-12-01

    Eruption of Earth's largest flood basalt, the Central Atlantic Magmatic Province (CAMP) has been proposed as the trigger for a major carbon cycle disruption at the Triassic-Jurassic mass extinction interval at ~201 Ma. Inferred from negative excursions in the carbon isotopic composition (δ13C) of carbonate and organic matter, this perturbation has been linked to massive dissociation of isotopically light, methane-rich gas hydrates caused by volcanogenic CO2-induced global warming. However, both the sequence and duration of the CAMP eruptions relative to the carbon cycle perturbation remain circumstantial and indirect, because the data have been from stratigraphic sections far from the flood basalts and without accumulation rate constraints. Here we use a record of atmospheric (δ13C) from specific molecules (nC25 - nC32 n-alkanes) diagnostic of terrestrial plant leaf waxes from astronomically-paced cyclical lacustrine strata in which CAMP flood basalts are interbedded to directly examine the relationship between the (δ13C) excursions and their durations. We show that the flood basalts postdate the abrupt start of a ~400 ky negative excursion coincident with the initiation of the mass extinction event, but predate a protracted 1.5 m.y. negative excursion. Based on a modified BLAG carbon cycle model, the timing and long durations of our (δ13C) excursions are incompatible with CAMP-triggered gas hydrate release. Instead, we suggest that the (δ13C) pattern is more consistent with a catastrophically-triggered functional reorganization of the biosphere, part of which involved the ascent of dinosaurs to ecological dominance, playing out over evolutionary time.

  18. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  19. Testing Elementary Cycles Formulation of Quantum Mechanics in Carbon Nanotubes and Superconductivity

    CERN Document Server

    Dolce, Donatello

    2016-01-01

    Elementary Cycles are intrinsic periodic phenomena, classical in the essence, whose classical relativistic dynamics reproduce the complete coherence (perfect recurrences) typically associated to the pure quantum behaviours of elementary particles. They can be regarded as effective representations of 't Hooft Cellular Automata. By means of Elementary Cycles physics we obtain a consistent, intuitive, novel derivation of the peculiar quantum dynamics of electrons in Carbon Nanotubes, as well as of Superconductivity fundamental phenomenology. In particular we derive, from classical arguments, the essential electronic properties of graphene systems, such as energy bands and density of states. Similarly, in the second part of the paper, we derive the Superconductivity fundamental phenomenology in terms of simple geometrical considerations, directly from the Elementary Cycles dynamics rather than from empirical aspects and effective quantities connected to the microscopical characteristics of materials as in the sta...

  20. Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth's carbon cycle

    Science.gov (United States)

    Owens, Jeremy D.; Reinhard, Christopher T.; Rohrssen, Megan; Love, Gordon D.; Lyons, Timothy W.

    2016-09-01

    Understanding the global redox state of the oceans and its cause-and-effect relationship with periods of widespread organic-carbon deposition is vital to interpretations of Earth's climatic and biotic feedbacks during periods of expanded oceanic oxygen deficiency. Here, we present a compilation of new and published data from an organic-rich locality within the proto-North Atlantic Ocean during the Cenomanian-Turonian boundary event that shows a dramatic drawdown of redox-sensitive trace elements. Iron geochemistry independently suggests euxinic deposition (i.e., anoxic and sulfidic bottom waters) for the entire section, thus confirming its potential as an archive of global marine metal inventories. In particular, depleted molybdenum (Mo) and vanadium (V) concentrations effectively record the global expansion of euxinic and oxygen-deficient but non-sulfidic waters, respectively. The V drawdown precedes the OAE, fingerprinting an expansion of oxygen deficiency prior to an expansion of euxinia. Molybdenum drawdown, in contrast, is delayed with respect to V and coincides with the onset of OAE2. Parallel lipid biomarker analyses provide evidence for significant and progressive reorganization of marine microbial ecology during the OAE in this region of the proto-North Atlantic, with the smallest relative eukaryotic contributions to total primary production occurring during metal-depleted intervals. This relationship may be related to decreasing supplies of enzymatically important trace elements. Similarly, box modeling suggests that oceanic drawdown of Mo may have approached levels capable of affecting marine nitrogen fixation. Predictions of possible nitrogen stress on eukaryotic production, locally and globally, are consistent with the low observed levels of Mo and a rise in 2-methylhopane index values during the peak of the OAE. At the same time, the environmental challenge presented by low dissolved oxygen and euxinia coincides with increased turnover rates of

  1. Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life.

    Science.gov (United States)

    Boota, M; Paranthaman, M Parans; Naskar, Amit K; Li, Yunchao; Akato, Kokouvi; Gogotsi, Y

    2015-11-01

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m(2)  g(-1)) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g(-1) at 1 mV s(-1) with excellent capacitance retention of up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π-π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life-a key challenge for redox active polymers.

  2. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability.

    Science.gov (United States)

    Guan, Cao; Liu, Jilei; Wang, Yadong; Mao, Lu; Fan, Zhanxi; Shen, Zexiang; Zhang, Hua; Wang, John

    2015-05-26

    Supercapacitor with ultrahigh energy density (e.g., comparable with those of rechargeable batteries) and long cycling ability (>50000 cycles) is attractive for the next-generation energy storage devices. The energy density of carbonaceous material electrodes can be effectively improved by combining with certain metal oxides/hydroxides, but many at the expenses of power density and long-time cycling stability. To achieve an optimized overall electrochemical performance, rationally designed electrode structures with proper control in metal oxide/carbon are highly desirable. Here we have successfully realized an ultrahigh-energy and long-life supercapacitor anode by developing a hierarchical graphite foam-carbon nanotube framework and coating the surface with a thin layer of iron oxide (GF-CNT@Fe2O3). The full cell of anode based on this structure gives rise to a high energy of ∼74.7 Wh/kg at a power of ∼1400 W/kg, and ∼95.4% of the capacitance can be retained after 50000 cycles of charge-discharge. These performance features are superior among those reported for metal oxide based supercapacitors, making it a promising candidate for the next generation of high-performance electrochemical energy storage.

  3. Interaction among climate change, fire disturbance and ecosystem carbon cycle%气候变化、火干扰与生态系统碳循环

    Institute of Scientific and Technical Information of China (English)

    胡海清; 魏书精; 孙龙; 王明玉

    2013-01-01

    parameter of studying carbon exchange between forest ecosystem and atmosphere , and an essential factor of estimating the absorption and discharge of forest ecosystem. Biomass burning is the burning of living and dead vegetation. Biomass burning is a significant global source of gaseous and particulate matter emissions to the atmosphere. Biomass burning has long been recognized as a significant source of a number of important trace gas species and particulate matter to the atmosphere. Forest fires are a major contributor of atmospheric gaseous and particulate pollutants. In forest fires are emitted significant amounts of gaseous and particulate matter pollutants into the atmosphere. Forest fires can play a significant role in atmospheric chemistry and contribute to climate change. Forest fire emissions can be important for local air pollution levels. The potential climate change mitigation benefits of carbon sequestration by forested ecosystems have garnered both national and international attention. Biomass burning due to anthropogenic activities has significant impact on the atmospheric chemistry, climate and on the global biogeochemical cycles. In many regions of the world, fires are an important and highly variable source of air pollutant emissions, and they thus constitute a significant if not dominant factor controlling the interan-nual variability of the atmospheric composition. This paper reviews the recent advance in our understanding of interaction among climate change, fire disturbance and ecosystem carbon cycle and underlying mechanisms. It also discusses the state-of-the-art in quantifying fire disturbance and ecosystem carbon cycle in modeling and its applications to carbon cycle assessment. The paper has described systematically mutual interaction among climate change, fire disturbance and ecosystem carbon cycle from the two aspects of the system. The focus of the paper is climate warming on the impact of fire disturbance and two-way feedback. The paper has

  4. Carbon cycling and phytoplankton responses within highly-replicated shipboard carbonate chemistry manipulation experiments conducted around Northwest European Shelf Seas

    Science.gov (United States)

    Richier, S.; Achterberg, E. P.; Dumousseaud, C.; Poulton, A. J.; Suggett, D. J.; Tyrrell, T.; Zubkov, M. V.; Moore, C. M.

    2014-03-01

    The ongoing oceanic uptake of anthropogenic carbon dioxide (CO2) is significantly altering the carbonate chemistry of seawater, a phenomenon referred to as ocean acidification. Experimental manipulations have been increasingly used to gauge how continued ocean acidification will potentially impact marine ecosystems and their associated biogeochemical cycles in the future; however, results amongst studies, particularly when performed on natural communities, are highly variable, which in part likely reflects inconsistencies in experimental approach. To investigate the potential for identification of more generic responses and greater experimentally reproducibility, we devised and implemented a series of highly replicated (n = 8), short term (2-4 days) multi-level (≥ 4 conditions) carbonate chemistry/nutrient manipulation experiments on a range of natural microbial communities sampled in Northwest European shelf seas. Carbonate chemistry manipulations and resulting biological responses were found to be highly reproducible within individual experiments and to a lesser extent between geographically different experiments. Statistically robust reproducible physiological responses of phytoplankton to increasing pCO2, characterized by a suppression of net growth for small sized cells (ocean.

  5. Phytoplankton responses and associated carbon cycling during shipboard carbonate chemistry manipulation experiments conducted around Northwest European shelf seas

    Science.gov (United States)

    Richier, S.; Achterberg, E. P.; Dumousseaud, C.; Poulton, A. J.; Suggett, D. J.; Tyrrell, T.; Zubkov, M. V.; Moore, C. M.

    2014-09-01

    The ongoing oceanic uptake of anthropogenic carbon dioxide (CO2) is significantly altering the carbonate chemistry of seawater, a phenomenon referred to as ocean acidification. Experimental manipulations have been increasingly used to gauge how continued ocean acidification will potentially impact marine ecosystems and their associated biogeochemical cycles in the future; however, results amongst studies, particularly when performed on natural communities, are highly variable, which may reflect community/environment-specific responses or inconsistencies in experimental approach. To investigate the potential for identification of more generic responses and greater experimentally reproducibility, we devised and implemented a series (n = 8) of short-term (2-4 days) multi-level (≥4 conditions) carbonate chemistry/nutrient manipulation experiments on a range of natural microbial communities sampled in Northwest European shelf seas. Carbonate chemistry manipulations and resulting biological responses were found to be highly reproducible within individual experiments and to a lesser extent between geographically separated experiments. Statistically robust reproducible physiological responses of phytoplankton to increasing pCO2, characterised by a suppression of net growth for small-sized cells (ocean.

  6. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  7. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Christopher [NASA Ames Research Center, Moffett Field, CA (United States); Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa [California State University Monterey Bay, Seaside, CA (United States); Castilla-Rubio, Juan Carlos, E-mail: chris.potter@nasa.gov [Planetary Skin Institute, Silicon Valley, CA (United States)

    2011-07-15

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO{sub 2} uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO{sub 2} to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  8. Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought

    Science.gov (United States)

    Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.

  9. The role of metal-organic frameworks in a carbon-neutral energy cycle

    Science.gov (United States)

    Schoedel, Alexander; Ji, Zhe; Yaghi, Omar M.

    2016-04-01

    Reducing society's reliance on fossil fuels presents one of the most pressing energy and environmental challenges facing our planet. Hydrogen, methane and carbon dioxide, which are some of the smallest and simplest molecules known, may lie at the centre of solving this problem through realization of a carbon-neutral energy cycle. Potentially, this could be achieved through the deployment of hydrogen as the fuel of the long term, methane as a transitional fuel, and carbon dioxide capture and sequestration as the urgent response to ongoing climate change. Here we detail strategies and technologies developed to overcome the difficulties encountered in the capture, storage, delivery and conversion of these gas molecules. In particular, we focus on metal-organic frameworks in which metal oxide ‘hubs’ are linked with organic ‘struts’ to make materials of ultrahigh porosity, which provide a basis for addressing this challenge through materials design on the molecular level.

  10. Mid-Cretaceous carbon cycle perturbations and Oceanic Anoxic Events recorded in southern Tibet

    Science.gov (United States)

    Zhang, Xiaolin; Chen, Kefan; Hu, Dongping; Sha, Jingeng

    2016-12-01

    The organic carbon isotope (δ13Corg) curve for ~1.7-km-thick mid-Cretaceous strata of the Chaqiela section in Gamba area, southern Tibet is presented in this study. C-isotopic chemostratigraphic correlation combined with biostratigraphic constraints show that the Chaqiela section spans early Aptian through early Campanian period, and that almost all of the carbon cycle perturbations and Oceanic Anoxic Events during the mid-Cretaceous period are well recorded in the continental margin area of the southeastern Tethys Ocean. Significantly, two levels of methane-derived authigenic carbonates were identified at the onset of OAE1b near the Aptian-Albian boundary. We suggest that an increase in methane release from gas hydrates, potentially driven by sea-level fall and bottom water temperature increase, may have contributed to the large negative δ13Corg excursions and global warming during OAE1b.

  11. Management Tools and Potential of Dry Miombo Woodland in Carbon Cycling

    DEFF Research Database (Denmark)

    Mwakalukwa, Ezekiel Edward

    , this thesis aims to develop management tools and generate information that will enhance our understanding of the actual and potential contribution of dry Miombo woodlands in carbon cycling. This is done through a detailed assessment of floristic composition, structure, species associations and through......Abstract Tools to support sustainable management of dry Miombo woodlands and precise assessment of carbon storage and sequestration potential are in most cases lacking in Tanzania. Accordingly, using Gangalamtumba Village Land Forest Reserve as a case study area located in Iringa region...... in above- and below-ground soil carbon pools. Assuming that other species’ production are equal to B. spiciformis, which is the most dominant species in the study area, the estimated C sequestration potential of the dry Miombo woodlands was found to vary from 0.42 ± 0.03 Mg C ha-1year-1 to 1.39 ± 0.08 Mg C...

  12. Reconstructing Sulfur Cycling at Cretaceous Methane Seeps: Novel Perspectives from Carbonate-Associated Sulfate

    Science.gov (United States)

    Hancock, L. G.; Lyons, T. W.; Gill, B. C.; Formolo, M.; Shapiro, R. S.; Tripati, A.; Loyd, S. J.; Bates, S. M.

    2013-12-01

    The mechanisms of methane cycling have been studied extensively, but its full role in the chemical and organismal evolution of the ocean through time, including its closely coupled relationship to the sulfur cycle, is still largely unresolved. Modern and ancient seeps are ideal natural labs for studying coupled methane-sulfur cycles and their geochemical fingerprints as a function of the flux of methane through these systems and its availability in the ocean and marine sediments more generally. Many seep studies examine sulfur in pyrite, but pyrite formation in these settings is typically limited by the availability of reactive iron, thus only capturing the earliest diagenetic processes. In such cases, a better way to track sulfur and its role in modulating methane production and consumption is by following the pathways of dissolved sulfate, using carbonate-associated sulfate or CAS. While commonly used to track evolving seawater composition, CAS can also constrain conditions of diagenetic carbonate precipitation. This study focuses on a Cretaceous system of methane seeps, the Tepee Buttes in Colorado--which is marked by complex carbonate paragenesis--and traces sulfur, carbon, and oxygen isotopes to unravel ancient methane cycling, its relationship to sulfur metabolic pathways, and the preservational history of proxies such as CAS during burial. Burial history of this system is further unraveled through use of carbon and oxygen isotopes of various carbonate fabrics, including clumped isotope analysis. Additional geochemical measurements from the surrounding shales, such as data for redox sensitive metals, provide a context for the host setting in the Western Interior Seaway. Preliminary data suggest that paired isotopic and concentration measurements of CAS could be used to closely track spatiotemporal variation in rates of microbial sulfate reduction as coupled to anaerobic methane oxidation. These rates in both ancient and modern settings vary spatially and

  13. Non-Redfield carbon and nitrogen cycling in the Arctic: Effects of ecosystem structure and dynamics

    Science.gov (United States)

    Daly, Kendra L.; Wallace, Douglas W. R.; Smith, Walker O.; Skoog, Annelie; Lara, RubéN.; Gosselin, Michel; Falck, Eva; Yager, Patricia L.

    1999-02-01

    The C:N ratio is a critical parameter used in both global ocean carbon models and field studies to understand carbon and nutrient cycling as well as to estimate exported carbon from the euphotic zone. The so-called Redfield ratio (C:N = 6.6 by atoms) [Redfield et al., 1963] is widely used for such calculations. Here we present data from the NE Greenland continental shelf that show that most of the C:N ratios for particulate (autotrophic and heterotrophic) and dissolved pools and rates of transformation among them exceed Redfield proportions from June to August, owing to species composition, size, and biological interactions. The ecosystem components that likely comprised sinking particles and had relatively high C:N ratios (geometric means) included (1) the particulate organic matter (C:N = 8.9) dominated by nutrient-deficient diatoms, resulting from low initial nitrate concentrations (approximately 4 μM) in Arctic surface waters; (2) the dominant zooplankton, herbivorous copepods (C:N = 9.6), having lipid storage typical of Arctic copepods; and (3) copepod fecal pellets (C:N = 33.2). Relatively high dissolved organic carbon concentrations (median 105 μM) were approximately 25 to 45 μM higher than reported for other systems and may be broadly characteristic of Arctic waters. A carbon-rich dissolved organic carbon pool also was generated during summer. Since the magnitude of carbon and nitrogen uncoupling in the surface mixed layer appeared to be greater than in other regions and occurred throughout the productive season, the C:N ratio of particulate organic matter may be a better conversion factor than the Redfield ratio to estimate carbon export for broad application in northern high-latitude systems.

  14. Land use changes and their relations with carbon cycles over the past 300 a in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Land use and land cover in China have changed greatly during the past 300 a, indicated by the rapid abrupt decrease of forest land area and the rapid increase of cropland area, which can affect terrestrial carbon cycle greatly. The first-hand materials are used to analyze main characteristics for land use and land cover changes in China during the study period. The following conclusions can be drawn from this study. The cropland area in China kept increasing from 60.78×106 hm2 in 1661 to 96.09×106 hm2 in 1998. Correspondingly, the forest land area decreased from 248.13×106 hm2 in 1700 to 109.01×106 hm2 in 1949. Affected by such changes, the terrestrial ecosystem carbon storage decreased in the mean time. Car-bon lost from land use and land cover changes mainly consist of the loss from vegetation biomass and soil. In the past 300 a, about 3.70 PgC was lost from vegetation biomass, and emissions from soil ranged from 0.80 to 5.84 PgC. The moderate evaluation of soil losses was 2.48 PgC. The total loss from vegetation and soil was between 4.50 and 9.54 PgC. The moderate and optimum evaluation was 6.18 PgC. Such carbon losses distribution varied spatially from region to region. Carbon lost more significantly in Northeast China and Southwest China than in other regions, because losses of forest land in these two regions were far greater than in the other regions during the past 300 a. And losses of carbon in the other regions were also definite, such as Inner Mongolia, the western part of South China, the Xinjiang Uygur Autonomous Region, and the Qinghai-Tibet Plateau. But the carbon lost very little from the traditional agricultural regions in China, such as North China and East China. Studies on the relationship between land use and land cover change and carbon cycle in China show that the land use activities, especially those related to agriculture and forest management, began to affect terrestrial carbon storage positively in recent years.

  15. Developing a data life cycle for carbon and greenhouse gas measurements: challenges, experiences and visions

    Science.gov (United States)

    Kutsch, W. L.

    2015-12-01

    Environmental research infrastructures and big data integration networks require common data policies, standardized workflows and sophisticated e-infrastructure to optimise the data life cycle. This presentation summarizes the experiences in developing the data life cycle for the Integrated Carbon Observation System (ICOS), a European Research Infrastructure. It will also outline challenges that still exist and visions for future development. As many other environmental research infrastructures ICOS RI built on a large number of distributed observational or experimental sites. Data from these sites are transferred to Thematic Centres and quality checked, processed and integrated there. Dissemination will be managed by the ICOS Carbon Portal. This complex data life cycle has been defined in detail by developing protocols and assigning responsibilities. Since data will be shared under an open access policy there is a strong need for common data citation tracking systems that allow data providers to identify downstream usage of their data so as to prove their importance and show the impact to stakeholders and the public. More challenges arise from interoperating with other infrastructures or providing data for global integration projects as done e.g. in the framework of GEOSS or in global integration approaches such as fluxnet or SOCAt. Here, common metadata systems are the key solutions for data detection and harvesting. The metadata characterises data, services, users and ICT resources (including sensors and detectors). Risks may arise when data of high and low quality are mixed during this process or unexperienced data scientists without detailed knowledge on the data aquisition derive scientific theories through statistical analyses. The vision of fully open data availability is expressed in a recent GEO flagship initiative that will address important issues needed to build a connected and interoperable global network for carbon cycle and greenhouse gas

  16. Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change

    Directory of Open Access Journals (Sweden)

    Michael ePester

    2012-02-01

    Full Text Available Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bisulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point towards the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change.

  17. CarboNA: International Studies of the North American Carbon Cycle

    Science.gov (United States)

    Denning, S.; Cavallaro, N.; Ste-Marie, C.; Muhlia-Melo, A.

    2009-05-01

    A Science Steering Committee has been formed consisting of carbon cycle scientists from Canada, Mexico, and the United States and government agency contacts from each country, to draft a Science Plan for CarboNA. Science questions that we will address include: 1. What's the current carbon budget of NA and adjacent oceans, including spatial structure and seasonal-to- interannual variations? 2. What mechanisms are involved? What processes control the time mean vs the interannual variability? 3. When will sinks saturate? Will they become sources? Are there surprises in store? What roles will be played by melting permafrost, boreal warming, and subtropical desertification, and tropical development? 4. What are the likely responses of terrestrial ecosystems and coastal oceans to climate change and enhanced CO2? 5. What roles will economic development, energy technology, and trade play in mitigating increases in fossil fuel emissions? In addition to the national research programs already underway in the three countries, we anticipate special collaborative projects of international scope. For example: 1. Studies of the response of terrestrial ecosystems to climate change along an ecological gradient from the Arctic to the Tropics; 2. Truly continental budgets for atmospheric greenhouse gases using data from land-based, airborne, marine, and spaceborne platforms; 3. An aggressively interdisciplinary intensive experiment to understand and quantify carbon cycle processes and budgets in the Gulf of Mexico Basin; 4. Investigation of the turrent state and likely future changes in carbon cycling in coastal ocean environments, including river inputs of POC, DOC, DIC, and nutrients; impacts on fisheries and coastal economies; exchange between coastal oceans and deep ocean basins; and air-sea gas exchange; 5. Government-level agreements on data sharing and harmonization, including but not limited to forest inventories, agricultural data, fossil fuel emissions data, land-use data

  18. Evaluation of Site and Continental Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations

    Science.gov (United States)

    Raczka, B. M.; Davis, K. J.; Regional-Interim Synthesis Participants, N.; Site Level Interim Synthesis, N.; Regional/Continental Interim Synthesis Team

    2010-12-01

    Terrestrial carbon models are widely used to diagnose past ecosystem-atmosphere carbon flux responses to climate variability, and are a critical component of coupled climate-carbon model used to predict global climate change. The North American Carbon Program (NACP) Interim Regional and Site Interim Synthesis activities collected a broad sampling of terrestrial carbon model results run at both regional and site level. The Regional Interim Synthesis Activity aims to determine our current knowledge of the carbon balance of North America by comparing the flux estimates provided by the various terrestrial carbon cycle models. Moving beyond model-model comparison is challenging, however, because no continental-scale reference values exist to validate modeled fluxes. This paper presents an effort to evaluate the continental-scale flux estimates of these models using North American flux tower observations brought together by the Site Interim Synthesis Activity. Flux towers present a standard for evaluation of the modeled fluxes, though this evaluation is challenging because of the mismatch in spatial scales between the spatial resolution of continental-scale model runs and the size of a flux tower footprint. We compare model performance with flux tower observations at monthly and annual integrals using the statistical criteria of normalized standard deviation, correlation coefficient, centered root mean square deviation and chi-squared. Models are evaluated individually and according to common model characteristics including spatial resolution, photosynthesis, soil carbon decomposition and phenology. In general all regional models are positively biased for GPP, Re and NEE at both annual and monthly time scales. Further analysis links this result to a positive bias in many solar radiation reanalyses. Positively biased carbon fluxes are also observed for enzyme-kinetic models and models using no nitrogen limitation for soil carbon decomposition. While the former result is

  19. Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

    2008-12-01

    One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

  20. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-08-01

    Full Text Available We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 200 million years. The geochemistry of the sediment column is altered by the addition of vertical high-permeability channels intended to mimic the effects of heterogeneity in the real sediment column due to faults, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water dissolved inorganic carbon (DIC concentrations are consistent with chemical weathering (CaCO3 formation from igneous rocks at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from particulate organic carbon (POC of 50%, which is somewhat lower than redox balance with the H / C of organic matter in the model. The hydrate inventory in the model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, quite sensitive to reasonable changes in POC, and extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum. Other phenomena which we simulated had only a small impact on the hydrate inventory, including thermogenic methane production and production/decomposition of dissolved organic carbon.

  1. Sulfur Encapsulated in Graphitic Carbon Nanocages for High-Rate and Long-Cycle Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Juan; Yang, Chun-Peng; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-11-01

    Hybrid sp(2) carbon with a graphene backbone and graphitic carbon nanocages (G-GCNs) is demonstrated as an ideal host for sulfur in Li-S batteries, because it serves as highly efficient electrochemical nanoreactors as well as polysulfides reservoirs. The as-obtained S/(G-GCNs) with high S content exhibits superior high-rate capability (765 mA h g(-1) at 5 C) and long-cycle life over 1000 cycles.

  2. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  3. Carbon Dioxide Effects Research and Assessment Program. The role of tropical forests on the world carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.; Lugo, A. E.; Liegel, B. [eds.

    1980-08-01

    Tropical forests constitute about half of the world's forest and are characterized by rapid rates of organic matter turnover and high storages of organic matter. Tropical forests are considered to be one of the most significant terrestrial elements in the equation that balances the carbon cycle of the world. As discussed in the paper by Tosi, tropical and subtropical latitudes are more complex in terms of climate and vegetation composition than temperate and boreal latitudes. The implications of the complexity of the tropics and the disregard of this complexity by many scientists is made evident in the paper by Brown and Lugo which shows that biomass estimates for tropical ecosystems have been overestimated by at least 100%. The paper by Brown shows that that rates of succession in the tropics are extremely rapid in terms of the ability of moist and wet forests to accumulate organic matter. Yet, in arid tropical Life Zones succession is slow. This leads to the idea that the question of whether tropical forests are sinks or sources of carbon must be analyzed in relation to Life Zones and to intensities of human activity in these Zones. The paper by Lugo presents conceptual models to illustrate this point and the paper by Tosi shows how land uses in the tropics also correspond to Life Zone characteristics. The ultimate significance of land use to the question of the carbon balance in a large region is addressed in the paper by Detwiler and Hall.

  4. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  5. Nanotoxicity and Life Cycle Assessment: First attempt towards the determination of characterization factors for carbon nanotubes

    Science.gov (United States)

    Rodriguez-Garcia, Gonzalo; Zimmermann, Benedikt; Weil, Marcel

    2014-08-01

    Carbon materials, whether at macro, micro or at nanoscale, play an important role in the battery industry, as they can be used as electrodes, electrode enhancers, bipolar separators, or current collectors. When conducting a Life Cycle Assessment (LCA) of novel batteries manufacturing processes, we also need to consider the fate of potentially emitted carbon based nanomaterials. However, the knowledge generated in the last decade regarding the behavior of such materials in the environment and its toxicological effects has yet to be included in the Life Cycle Impact Assessment (LCIA) methodologies. Conventional databases of chemical products (e.g. ECHA, ECOTOX) offer little information regarding engineered nanomaterials (ENM). It is thus necessary to go one step further and compile physicochemical and toxicological data directly from scientific literature. Such studies do not only differ in their results, but also in their methodologies, and several calls have been made towards a more consistent approach that would allow us model the fate of ENM in the environment as well as their potentially harmful effects. Trying to overcome these limitations we have developed a tool based on Microsoft Excel® combining several methods for the estimation of physicochemical properties of carbon nanotubes (CNT). The information generated with this tool is combined with degradation rates and toxicological data consistent with the methods followed by the USEtox methodology. Thus, it is possible to calculate the characterization factors of CNTs and integrate them as a first proxy in future LCA of products including these ENM.

  6. Photoperiodic Regulation of the Seasonal Pattern of Photosynthetic Capacity and the Implications for Carbon Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Bauerle, William L. [Colorado State University, Fort Collins; Oren, Ram [Duke University; Way, Danielle A. [Duke University; Qian, Song S. [Duke University; Stoy, Paul C. [Montana State University; Thornton, Peter E [ORNL; Bowden, Joseph D. [Colorado State University, Fort Collins; Hoffman, Forrest M [ORNL; Reynolds, Robert F. [Clemson University

    2012-01-01

    Although temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO{sub 2} cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% ({approx}4 PgC y{sup -1}), resulting in a >3% ({approx}2 PgC y{sup -1}) decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence.

  7. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling.

    Science.gov (United States)

    Bauerle, William L; Oren, Ram; Way, Danielle A; Qian, Song S; Stoy, Paul C; Thornton, Peter E; Bowden, Joseph D; Hoffman, Forrest M; Reynolds, Robert F

    2012-05-29

    Although temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO(2) cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% (∼4 PgC y(-1)), resulting in a >3% (∼2 PgC y(-1)) decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence.

  8. Microbial food web mapping: linking carbon cycling and community structure in soils through pyrosequencing enabled stable isotope probing

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Daniel H. [Cornell Univ., Ithaca, NY (United States)

    2015-03-15

    Soil represents a massive reservoir of active carbon and climate models vary dramatically in predicting how this carbon will respond to climate change over the coming century. A major cause of uncertainty is that we still have a very limited understand the microorganisms that dominate the soil carbon cycle. The vast majority of soil microbes cannot be cultivated in the laboratory and the diversity of organisms and enzymes that participate in the carbon cycle is staggeringly complex. We have developed a new toolbox for exploring the carbon cycle and the metabolic and ecological characteristics of uncultivated microorganisms. The high-resolution nucleic acid stable isotope probing approach that we have developed makes it possible to characterize microbial carbon cycling dynamics in soil. The approach allows us to track multiple 13C-labeled substrates into thousands of microbial taxa over time. Using this approach we have discovered several major lineages of uncultivated microorganisms that participate in cellulose metabolism and are found widely in soils (including Verrucomicrobia and Chloroflexi, which have not previously been implicated as major players in the soil carbon cycle). Furthermore, isotopic labelling of nucleic acids enables community genomics and permits genome fragment binning for a majority of these cellulolytic microorganisms allowing us to explore the metabolic underpinnings of cellulose degradation. This approach has allowed us to describe unexpected dynamics of carbon metabolism with different microbial taxa exhibiting characteristic patterns of carbon substrate incorporation, indicative of distinct ecological strategies. The data we describe allows us to characterize the activity of novel microorganisms as they occur in the environment and these data provide a basis for understanding how the physiological traits of discrete microorganisms sum to govern the complex responses of the soil carbon cycle.

  9. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    Science.gov (United States)

    Ciais, P.; Dolman, A. J.; Bombelli, A.; Duren, R.; Peregon, A.; Rayner, P. J.; Miller, C.; Gobron, N.; Kinderman, G.; Marland, G.; Gruber, N.; Chevallier, F.; Andres, R. J.; Balsamo, G.; Bopp, L.; Bréon, F.-M.; Broquet, G.; Dargaville, R.; Battin, T. J.; Borges, A.; Bovensmann, H.; Buchwitz, M.; Butler, J.; Canadell, J. G.; Cook, R. B.; DeFries, R.; Engelen, R.; Gurney, K. R.; Heinze, C.; Heimann, M.; Held, A.; Henry, M.; Law, B.; Luyssaert, S.; Miller, J.; Moriyama, T.; Moulin, C.; Myneni, R. B.; Nussli, C.; Obersteiner, M.; Ojima, D.; Pan, Y.; Paris, J.-D.; Piao, S. L.; Poulter, B.; Plummer, S.; Quegan, S.; Raymond, P.; Reichstein, M.; Rivier, L.; Sabine, C.; Schimel, D.; Tarasova, O.; Valentini, R.; Wang, R.; van der Werf, G.; Wickland, D.; Williams, M.; Zehner, C.

    2014-07-01

    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher

  10. Ecodesign — Carbon Footprint — Life Cycle Assessment — Life Cycle Sustainability Analysis. A Flexible Framework for a Continuum of Tools

    Science.gov (United States)

    Heijungs, Reinout

    2010-01-01

    Life cycle assessment (LCA) is a tool for answering questions related to environmental impacts of products. It is a comprehensive tool, addressing the entire life cycle, and addressing the full spectrum of environmental impacts. There are two opposite movements occurring: LCA is getting smaller, and it is getting broader. This presentation presents the general framework for a broader life cycle sustainability analysis (LCSA), and shows how the practical work related to doing an LCA, a carbon footprint, or an analysis for ecodesign, can be seen as special cases.

  11. Drought and Carbon Cycling of Grassland Ecosystems under Global Change: A Review

    Directory of Open Access Journals (Sweden)

    Tianjie Lei

    2016-10-01

    Full Text Available In recent years, the increased intensity and duration of droughts have dramatically altered the structure and function of grassland ecosystems, which have been forced to adapt to this change in climate. Combinations of global change drivers such as elevated atmospheric CO2 concentration, warming, nitrogen (N deposition, grazing, and land-use change have influenced the impact that droughts have on grassland C cycling. This influence, to some extent, can modify the relationship between droughts and grassland carbon (C cycling in the multi-factor world. Unfortunately, prior reviews have been primarily anecdotal from the 1930s to the 2010s. We investigated the current state of the study on the interactive impacts of multiple factors under drought scenarios in grassland C cycling and provided scientific advice for dealing with droughts and managing grassland C cycling in a multi-factor world. Currently, adequate information is not available on the interaction between droughts and global change drivers, which would advance our understanding of grassland C cycling responses. It was determined that future experiments and models should specifically test how droughts regulate grassland C cycling under global changes. Previous multi-factor experiments of current and future global change conditions have studied various drought scenarios poorly, including changes in precipitation frequency and amplitude, timing, and interactions with other global change drivers. Multi-factor experiments have contributed to quantifying these potential changes and have provided important information on how water affects ecosystem processes under global change. There is an urgent need to establish a systematic framework that can assess ecosystem dynamic responses to droughts under current and future global change and human activity, with a focus on the combined effects of droughts, global change drivers, and the corresponding hierarchical responses of an ecosystem.

  12. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4

    Directory of Open Access Journals (Sweden)

    R. E. Zeebe

    2012-01-01

    Full Text Available The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR's configuration of ocean geometry is flexible and allows for easy switching between modern and paleo-versions. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  13. Carbon Cycling in Restored Wisconsin Grasslands: Examining Linkages Between Plant Diversity, Microbial Communities and Ecosystem Processes

    Science.gov (United States)

    Cahill, K. N.; Kucharik, C. J.; Balser, T. C.; Foley, J. A.

    2002-12-01

    It is important to characterize the variability of carbon (C) fluxes and stocks and the relationship between biotic and abiotic factors and C sequestration, a proposed strategy to help mitigate climate change. An observation site to study C cycling was established on land enrolled in the USDA Conservation Reserve Program in southwestern Wisconsin in spring 2002 on silt-loam soil. The site was converted from intensive row-crop agriculture in 1987 to three adjacent land cover types: an assortment of native C4 grasses, two C3 grasses and a nitrogen-fixer, and a disk planted, no-tillage food plot rotation of maize and soybeans. Key goals of the study were to characterize the effect of plant species composition and microbial community characteristics on carbon cycling in an attempt to link above- and below-ground processes. Measurements of soil surface CO2 efflux were made on a near-weekly basis during the growing season using a LICOR-6400, concurrently with soil surface moisture adjacent to the CO2 collars. Thermocouples were installed to record hourly average air temperature and soil temperature at 5 depths, from 2 to 70 cm, and water content sensors made hourly average measurements at 15 and 30 cm. Leaf area index measurements were made weekly, aboveground vegetation biomass was collected monthly, and belowground root biomass was collected bimonthly. Monthly microbial measurements included an assessment of community physiological profiles using BiOLOG, and assays of community composition (lipid analysis) and activity. Preliminary results suggest that land cover types significantly altered carbon cycling and microbial community structure and function, leading to different rates of C sequestration.

  14. A meta-analysis of soil biodiversity impacts on the carbon cycle

    Science.gov (United States)

    de Graaff, M.-A.; Adkins, J.; Kardol, P.; Throop, H. L.

    2015-03-01

    Loss of biodiversity impacts ecosystem functions, such as carbon (C) cycling. Soils are the largest terrestrial C reservoir, containing more C globally than the biotic and atmospheric pools together. As such, soil C cycling, and the processes controlling it, has the potential to affect atmospheric CO2 concentrations and subsequent climate change. Despite the growing evidence of links between plant diversity and soil C cycling, there is a dearth of information on whether similar relationships exist between soil biodiversity and C cycling. This knowledge gap occurs even though there has been increased recognition that soil communities display high levels of both taxonomic and functional diversity and are key drivers of fluxes of C between the atmosphere and terrestrial ecosystems. Here, we used meta-analysis and regression analysis to quantitatively assess how soil biodiversity affects soil C cycling pools and processes (i.e., soil C respiration, litter decomposition, and plant biomass). We compared the response of process variables to changes in diversity both within and across groups of soil organisms that differed in body size, a grouping that typically correlates with ecological function. When studies that manipulated both within- and across-body size group diversity were included in the meta-analysis, loss of diversity significantly reduced soil C respiration (-27.5%) and plant tissue decomposition (-18%) but did not affect above- or belowground plant biomass. The loss of within-group diversity significantly reduced soil C respiration, while loss of across-group diversity did not. Decomposition was negatively affected both by loss of within-group and across-group diversity. Furthermore, loss of microbial diversity strongly reduced soil C respiration (-41%). In contrast, plant tissue decomposition was negatively affected by loss of soil faunal diversity but was unaffected by loss of microbial diversity. Taken together, our findings show that loss of soil

  15. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    Science.gov (United States)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for

  16. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    Science.gov (United States)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  17. Evolution, Abundance and Biocalcification of Calcareous Nannoplankton During the Aptian (Early Cretaceous): Causes and Consequences for C Isotopic Anomalies, Climate Changes and the Carbon Cycle.

    Science.gov (United States)

    Erba, E.

    2005-12-01

    The mid Cretaceous is marked by extreme greenhouse conditions, coeval with emplacement of large igneous provinces, C isotopic anomalies, major changes in structure and composition of the oceans, and accelerated rates in the evolutionary history of calcareous plankton. The Aptian is a crucial interval to decipher links between biotic evolution and environmental pressure: it is appealing for understanding nannofloral biocalcification and feedbacks in the carbonate system and in the global carbon cycle. Ontong Java, Manihiki and Kerguelen Plateaus formed in the Aptian affecting the ocean-atmosphere system with excess CO2, changes in Ca2+ and Mg2+ concentrations, and varying nutrient cycling. Two large C isotopic anomalies are associated with episodes of prolonged high primary productivity, changes in alkality, global warming and cooling, anoxia, speciations and extinctions in planktonic communities. Nannofossil diversity, abundance and biocalcification are quantified in continuous, complete, pelagic sections to derive biosphere-geosphere interactions at short and long time scales. The early Aptian C isotopic anomaly interrupts a speciation episode in calcareous nannoplankton paralleled by a drastic reduction in nannofossil paleofluxes culminating in the nannoconid crisis preceding the Oceanic Anoxic Event 1a and the negative C isotopic spike linked to clathrate melting presumably triggered by the thermal maximum at the onset of the mid Cretaceous greenhouse climate. No extinctions are recorded. In the early late Aptian resumption of nannoconid production and appearance of several taxa are coeval with a return to normal C isotopic values. The occurrence of calpionellids and diversified planktonic foraminifers indicate successful biocalcification and restoration of the thermocline. In the late Aptian a drop in nannofossil abundance and accelerated extinction rates are associated with another C isotopic excursion under cool conditions possibly due to a prolonged volcanic

  18. Peritidal carbonate cycles induced by carbonate productivity variations:A conceptual model for an isolated Early Triassic greenhouse platform in South China

    Institute of Scientific and Technical Information of China (English)

    Wan Yang; Dan JLehrmann

    2014-01-01

    Eustasy has commonly been invoked to explain peritidal carbonate cyclicity, but is dififcult to explain cycles formed in a greenhouse climate when eustasy is minimal. We propose that peritidal cycles on an Early Triassic isolated carbonate platform in Guizhou, South China, were formed by hierarchical carbonate productivity variations. Most of the 149 shallowing-upward cycles are typically terminated by lfooding over intertidal facies and con-tain rare supratidal facies and no prolonged subaerial exposure. Low-diversity benthos in the platform interior during the post-end-Permian biotic recovery were sensitive to environmental perturbations, which caused variations in benthic sediment productivity in the subtidal carbon-ate factory. The perturbations may be driven by changes in salinity and degree of eutrophica-tion, or repeated platform mini-drowning by anoxic and/or CO2-charged deep water upwelled onto the banktop. They were modulated by Milankovitch orbitally-driven climatic and oceano-graphic factors as suggested by the hierarchical stacking pattern and spectral signals of these cycles. A one-dimensional conceptual model shows that hierarchical productivity variations alone may generate hierarchical peritidal carbonate cycles under conditions of constant sub-sidence and no sea-level lfuctuation.

  19. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  20. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming

    Science.gov (United States)

    Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; T. E. Mills, Robert; Mitchell, Edward A. D.; Payne, Richard J.; Robroek, Bjorn J. M.

    2015-01-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation. PMID:26603894

  1. Mycorrhizal Controls on Nitrogen Uptake Drive Carbon Cycling at the Global Scale

    Science.gov (United States)

    Shi, M.; Fisher, J. B.; Brzostek, E. R.; Phillips, R.

    2015-12-01

    Nearly all plants form symbiotic relationships with one of two types of mycorrhizal fungi—arbuscular mycorrhizae (AM) and ectomycorrhizal (ECM) fungi, which are essential to global biogeochemical cycling of nutrient elements. In soils with higher rates of nitrogen and phosphorus mineralization from organic matter, AM-associated plants can be better adapted than ECM-associated plants. Importantly, the photosynthate costs of nutrient uptake for AM-associated plants are usually lower than that for ECM-associated plants. Thus, the global carbon cycle is closely coupled with mycorrhizal controls on N uptake. To investigate the potential climate dependence of terrestrial environments from AM- and ECM-associated plants, this study uses the Community Atmosphere Model (CAM) with a plant productivity-optimized N acquisition model—the Fixation and Uptake of Nitrogen (FUN) model—integrated into its land model—the Community Land Model (CLM). This latest version of CLM coupled with FUN allows for the assessment of mycorrhizal controls on global biogeochemical cycling. Here, we show how the historical evolution of AM- and ECM-associations altered regional and global biogeochemical cycling and climate, and future projections over the next century.

  2. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming.

    Science.gov (United States)

    Jassey, Vincent E J; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; Mills, Robert T E; Mitchell, Edward A D; Payne, Richard J; Robroek, Bjorn J M

    2015-11-25

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.

  3. High-cycle Fatigue Life Extension of Glass Fiber/Polymer Composites with Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Christopher S Grimmer; C K H Dharan

    2009-01-01

    The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon nanotubes tend to inhibit the formation of large cracks by nucleating nano-scale damage zones. In addition, the contribution to energy absorption from the fracture of nanotubes bridging across nano-scale cracks and from nanotube pull-out from the matrix are mechanisms that can improve the fatigue life. An energy-based model was proposed to estimate the additional strain energy absorbed in fatigue. The distributed nanotubes in the matrix appear to both distribute damage as well as inhibit damage propagation resulting in an overall improvement in the fatigue strength of glass fiber composites.

  4. Effects of Lime and Concrete Waste on Vadose Zone Carbon Cycling

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, Søren; Postma, D.

    2014-01-01

    In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination...... of experimental and modeling tools to determine ongoing biogeochemical processes. Our results demonstrate that lime and CCW amendments to acid soil contribute to the climate forcing by largely increasing the soil CO2 efflux to the atmosphere. In a series of mesocosm experiments, with barley (Hordeum vulgare L...... and lime treatments increased the dissolved inorganic carbon (DIC) percolation flux by about 150 and 100%, respectively,compared to the controls. However, concurrent increases in the CO2 efflux to the atmosphere (ER) were more than one order of magnitude higher than increases in the DIC percolation flux...

  5. Effects on the ocean carbon cycle from solar radiation management types of geoengineering

    Science.gov (United States)

    Lauvset, Siv; Tjiputra, Jerry

    2016-04-01

    Climate engineering is often brought up in the climate mitigation and adaptation discussions. Such action can be viewed as an additional method for reducing the impacts of global warming. However, much more research is required in order to assess both the feasibility and the safety of such methods. We present results from the Norwegian Earth System model (NorESM) for a future RCP8.5 scenario where solar radiation management in the form of stratospheric sulfur injection has been performed in order to limit the global warming. Since the CO2 emissions continue in this future, the impact climate engineering has on the global and regional ocean carbon sink is a key part of this research. We show that while global surface acidification is not significantly enhanced under climate engineering, there are significant changes in the ocean carbon cycle driven by changes in circulation and stratification, and changes in biological production.

  6. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  7. Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses

    Science.gov (United States)

    Landry, Jean-Sébastien; Damon Matthews, H.

    2016-04-01

    Non-deforestation fire - i.e., fire that is typically followed by the recovery of natural vegetation - is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-deforestation fire vs. fossil fuel combustion on the global carbon cycle and climate, because (1) fossil fuel combustion implies a net transfer of carbon from geological reservoirs to the atmospheric, oceanic, and terrestrial pools, whereas fire occurring in terrestrial ecosystems does not; (2) the average lifetime of the atmospheric CO2 increase is longer when originating from fossil fuel combustion compared to fire, due to the strong vegetation regrowth following fire disturbances in terrestrial ecosystems; and (3) other impacts, for example on land surface albedo, also differ between fire and fossil fuel combustion. The main purpose of this study is to illustrate the consequences from these fundamental differences between fossil fuel combustion and non-deforestation fires using 1000-year simulations of a coupled climate-carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate-carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions - implicitly implying that they have similar effects per unit of CO2 emitted - should therefore be avoided, particularly when these comparisons

  8. Effects of Nitrogen and Phosphorus Additions on Carbon Cycling of Tropical Mountain Rainforests in Hainan, China

    Science.gov (United States)

    Lai, J.

    2015-12-01

    Nitrogen (N) and Phosphorus (P) deposition is projected to increase significantly in tropical regions in the coming decades, which has changed and will change the structure and function of ecosystems, and affects on ecosystem Carbon (C) cycle. As an important part in global C cycle, how the C cycle of tropical rainforests will be influenced by the N and P deposition should be focused on. This study simulated N and P deposition in a primary and secondary forest of tropical mountain rainforest in Jianfengling, Hainan, China, during five-year field experiment to evaluate the effects of N and P deposition on C cycling processes and relate characteristics. Six levels of N and P treatments were treated: Control, Low-N, Medium-N, High-N, P and N+P. The relative growth rates (RGR) of tree layer in treatment plots were different from that in control plots after years of N and P addition. Simulated N and P deposition also increased ANPP in primary forest. N and P addition changed the growth of trees by altering soil nutrient and microbial activities. N and P addition increased soil organic carbon (SOC) and total N (TN) content, and significantly increased soil total P (TP) content, not changing soil pH. During the whole process of N and P addition, as net nitrification rate and net N mineralization rate were promoted by N and P addition, and effective N content (nitrate) of soil increased in the plot treated with N treatments compared to the control treatment. The microbial P content was increased by N and P addition, and microbial N was not changed. The increasing N deposition may enhance soil nutrient and stimulate growth of trees, which will lead to an increase of the C sequestration.

  9. The Fate of Molecular Markers in Soils and Their Implications for Soil Carbon Cycling

    Science.gov (United States)

    Wiesenberg, G. L.

    2014-12-01

    During the past decades molecular markers were discovered to be of diagnostic character for tracing the origin and fate of organic matter in soils. Molecular proxies themselves and their combination with compound-specific isotope analyses became powerful tools to distinguish between various biogenic and anthropogenic sources of organic matter and to trace carbon turnover at a molecular level. In the meantime various field and laboratory experiments provided deeper insight into soil organic matter dynamics at a molecular scale. We learnt from these experiments that carbon turnover at a molecular scale occurs in a similar time frame like for bulk soil organic matter and that selective preservation is not an issue for most coumpounds in active soils, but e.g. in fossil soils. Nevertheless, e.g. plant wax-derived alkanes and root-derived suberin markers point to a slower turnover of specific compounds. Recently, molecular markers enabled deciphering root-derived processes that occur in the rhizosphere of living and dead roots within the soil or even in the deep subsoil (up to several meters below the soil surface). Thus, the proposed carbon sequestration by roots in subsoils is not necessarily relevant in the long-term on a decadal or centennial scale. Although molecular markers were not determined to be valuable tools to sequester carbon in the soil, they strongly help elucidating processes relevant for cycling of bulk organic matter from the soil surface towards the deep subsoil.

  10. Carbon Dioxide and Water Cycling in a Semiarid Savanna in Southern Arizona, USA

    Science.gov (United States)

    Scott, R. L.; Hultine, K.; Barron-Gafford, G.; Huxman, T.

    2007-12-01

    The consequences of recent woody plant encroachment on the carbon and water cycling of semiarid ecosystems are not well understood. In this presentation, we present measurements made from 2004 - 2006 using sap flow and eddy covariance techniques to examine the carbon dioxide and water fluxes that occurred over a semiarid savanna on the Santa Rita Experimental Range in southern Arizona, USA. Over the last one hundred years this site has been transformed from a desert grassland to a savanna with greater than 35% tree cover by the encroachment of the native woody plant, mesquite ( Prosopis velutina). We have found that mesquite, even when they were dormant above ground, readily redistributed water upwards and downwards in the soil profile via their roots. This redistribution had important ecohydrological consequences like extending the season over which photosynthesis occurred. During the study period the site experienced below normal precipitation especially during the winter and spring period, and the site each year appeared to be a net carbon source. The two decades that preceded our study had above average precipitation, and this possibly resulted in a great deal of carbon accumulation that is now being released due to the current drought that has truncated the growing season.

  11. Fossil clam shells reveal unintended carbon cycling consequences of Colorado River management

    Science.gov (United States)

    Smith, Jansen A.; Auerbach, Daniel A.; Flessa, Karl W.; Flecker, Alexander S.; Dietl, Gregory P.

    2016-09-01

    Water management that alters riverine ecosystem processes has strongly influenced deltas and the people who depend on them, but a full accounting of the trade-offs is still emerging. Using palaeoecological data, we document a surprising biogeochemical consequence of water management in the Colorado River basin. Complete allocation and consumptive use of the river's flow has altered the downstream estuarine ecosystem, including the abundance and composition of the mollusc community, an important component in estuarine carbon cycling. In particular, population declines in the endemic Colorado delta clam, Mulinia coloradoensis, from 50-125 individuals m-2 in the pre-dam era to three individuals m-2 today, have likely resulted in a reduction, on the order of 5900-15 000 t C yr-1 (4.1-10.6 mol C m-2 yr-1), in the net carbon emissions associated with molluscs. Although this reduction is large within the estuarine system, it is small in comparison with annual global carbon emissions. Nonetheless, this finding highlights the need for further research into the effects of dams, diversions and reservoirs on the biogeochemistry of deltas and estuaries worldwide, underscoring a present need for integrated water and carbon planning.

  12. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-03-01

    Full Text Available We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 140 million years. The model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, but is more sensitive to reasonable changes in POC than it is to reasonable changes in temperature. This behavior could lead to higher inventories of hydrate during hothouse climate conditions, rather than lower as generally assumed, due to the enrichment of the sediments in organic carbon. The hydrate inventory in the model is extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum in the model. The geochemistry of the sediment column is altered by the addition of vertical high-permeability chimneys intended to mimic the effects of heterogeneity in the real sediment column due to faults and chimneys, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water DIC concentrations are consistent with chemical weathering at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from POC of 50%, which is somewhat lower than redox balance with the H/C of organic matter in the model. Other phenomena which we simulated had only small impact on the hydrate inventory, including thermogenic methane, dissolved organic carbon, and sediment transport characteristics.

  13. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A thermochemical cycle is a process by which water is decomposed into hydrogen and oxygen through a series of chemical reactions. The chemicals that are used in these reactions are regenerated and recycled during the process. Sol-gel chemistry is becoming more common for the synthesis of electrode materials. The sol-gel reaction can be conducted in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together through the ceramic