WorldWideScience

Sample records for carbon counties utah

  1. Hydrologic Data Sites for Iron County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Iron County, Utah. The scope and purpose of...

  2. Sedimentary features of the Blackhawk formation (Cretaceous) at Sunnyside, Carbon County, Utah

    Science.gov (United States)

    Maberry, John O.

    1968-01-01

    The Blackhawk Formation at Sunnyside, Utah, was deposited along the western margin of the Western Interior Cretaceous sea during southeastward withdrawal of the sea. Sand was the dominant type of land-derived sediment deposited in the Sunnyside district during the regressive phases. Sand bodies prograded seaward in response to changing sediment supply from a source west of Sunnyside. Where conditions were favorable for the accumulation of vegetable material, peat deposits formed and were later changed to bituminous Coal by diagenesis. Studies of the coal bed show that the coals were formed from accumulation of small, low-growing plants and plant debris that was transported into the area of accumulation. Remains of large plants in the coals are rare. Trace fossils, which are tracks, trails and burrows formed by organisms and preserved in the rock, are extremely abundant in the Blackhawk rocks. These biogenic sedimentary structures are common in Cretaceous deposits throughout the western United States. Trace fossil distribution in the rocks is controlled by the depositional environment preferred by their creators. A study of the trace fossils of a. locality allows a more precise determination of the conditions during deposition of the sediments. Water depth, bottom conditions, salinity, current velocity and amount of suspended nutrients in the water are some of the environmental factors that may be reconstructed by studying trace fossils. The Blackhawk Formation at Sunnyside comprises the members, the Kenilworth Member and the Sunnyside Member. Field studies show that the formation may be further subdivided in the Sunnyside district., according to the precepts of units of mappable thickness and similar lithologic characteristics. The Blackhawk pinches out eastward and north. ward into the Mancos Shale, and names for submembers become meaningless. Names are of value in the region of interest, however, because of the prominence of the named units. Coal mining is the

  3. Chemical and physical characteristics of water and sediment in Scofield Reservoir, Carbon County, Utah

    Science.gov (United States)

    Waddell, Kidd M.; Darby, D.W.; Theobald, S.M.

    1985-01-01

    Evaluations based on the nutrient content of the inflow, outflow, water in storage, and the dissolved-oxygen depletion during the summer indicate that the trophic state of Scofield Reservoir is borderline between mesotrophic and eutrophic and may become highly eutrophic unless corrective measures are taken to limit nutrient inflow.Sediment deposition in Scofield Reservoir during 1943-79 is estimated to be 3,000 acre-feet, and has decreased the original storage capacity of the reservoir by 4 percent. The sediment contains some coal, and age dating of those sediments (based on the radioisotope lead-210) indicates that most of the coal was deposited prior to about 1950.Scofield Reservoir is dimictic, with turnovers occurring in the spring and autumn. Water in the reservoir circulates completely to the bottom during turnovers. The concentration of dissolved oxygen decreases with depth except during parts of the turnover periods. Below an altitude of about 7,590 feet, where 20 percent of the water is stored, the concentration of dissolved oxygen was less than 2 milligrams per liter during most of the year. During the summer stratification period, the depletion of dissolved oxygen in the deeper layers is coincident with supersaturated conditions in the shallow layers; this is attributed to plant photosynthesis and bacterial respiration in the reservoir.During October 1,1979-August 31,1980, thedischargeweighted average concentrations of dissolved solids was 195 milligrams per liter in the combined inflow from Fish, Pondtown, and Mud Creeks, and was 175 milligrams per liter in the outflow (and to the Price River). The smaller concentration in the outflow was due primarily to precipitation of calcium carbonate in the reservoir about 80 percent of the decrease can be accounted for through loss as calcium carbonate.The estimated discharge-weighted average concentration of total nitrogen (dissolved plus suspended) in the combined inflow of Fish, Pondtown, and Mud Creeks was 1

  4. Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

  5. Coal mine bumps as related to geologic features in the northern part of the Sunnyside District, Carbon County, Utah

    Science.gov (United States)

    Osterwald, Frank W.; Dunrud, C. Richard; Collins, Donley S.

    1993-01-01

    Coal mine bumps, which are violent, spontaneous, and often catastrophic disruptions of coal and rock, were common in the Sunnyside coal mining district, Utah, before the introduction of protective-engineering methods, modern room-and-pillar retreat mining with continuous mining machines, and particularly modern longwall mining. The coal at Sunnyside, when stressed during mining, fails continuously with many popping, snapping, and banging noises. Although most of the bumps are beneficial because they make mining easier, many of the large ones are dangerous and in the past caused injuries and fatalities, particularly with room- and-pillar mining methods used in the early mining operations. Geologic mapping of underground mine openings revealed many types of deformational features, some pre-mine and some post-mine in age. Stresses resulting from mining are concentrated near the mine openings; if openings are driven at large angles to small pre-mine deformational features, particularly shatter zones in coal, abnormal stress buildups may occur and violent bumps may result. Other geologic features, such as ripple marks, oriented sand grains, intertongued rock contacts, trace fossils, and load casts, also influence the occurrence of bumps by impeding slip of coal and rocks along bedding planes. The stress field in the coal also varies markedly because of the rough ridge and canyon topography. These features may allow excessively large stress components to accumulate. At many places, the stresses that contribute to deformation and failures of mine openings are oriented horizontally. The stratigraphy of the rocks immediately above and below the mined coal bed strongly influences the deformation of the mine openings in response to stress accumulations. Triaxial compressive testing of coal from the Sunnyside No.1 and No.3 Mines indicates that the strength of the coal increases several times as the confining (lateral) stress is increased. Strengths of cores cut from single

  6. Geology of the central Mineral Mountains, Beaver County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Sibbett, B.S.; Nielson, D.L.

    1980-03-01

    The Mineral Mountains are located in Beaver and Millard Counties, southwestern Utah. The range is a horst located in the transition zone between the Basin and Range and Colorado Plateau geologic provinces. A multiple-phase Tertiary pluton forms most of the range, with Paleozoic rocks exposed on the north and south and Precambrian metamorphic rocks on the west in the Roosevelt Hot Springs KGRA (Known Geothermal Resource Area). Precambrian banded gneiss and Cambrian carbonate rocks have been intruded by foliated granodioritic to monzonitic rocks of uncertain age. The Tertiary pluton consists of six major phases of quartz monzonitic to leucocratic granitic rocks, two diorite stocks, and several more mafic units that form dikes. During uplift of the mountain block, overlying rocks and the upper part of the pluton were partially removed by denudation faulting to the west. The interplay of these low-angle faults and younger northerly trending Basin and Range faults is responsible for the structural control of the Roosevelt Hot Springs geothermal system. The structural complexity of the Roosevelt Hot Springs KGRA is unique within the range, although the same tectonic style continues throughout the range. During the Quaternary, rhyolite volcanism was active in the central part of the range and basaltic volcanism occurred in the northern portion of the map area. The heat source for the geothermal system is probably related to the Quaternary rhyolite volcanic activity.

  7. Potential areas of ground-water discharge in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent potential areas of ground-water discharge for selected hydrographic areas in eastern Nevada and western Utah. The data are based on phreatophyte...

  8. The Newcastle geothermal system, Iron County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, R.E.; Shubat, M.A.; Bishop, C.E. (Utah Geological and Mineral Survey, Salt Lake City, UT (USA)); Chapman, D.S.; Forster, C.B.; Schlinger, C.M. (Utah Univ., Salt Lake City, UT (USA). Dept. of Geology and Geophysics)

    1990-03-01

    Geological, geophysical and geochemical studies contributed to conceptual hydrologic model of the blind'' (no surface expression), moderate-temperature (greater than 130{degree}C) Newcastle geothermal system, located in the Basin and Range-Colorado Plateau transition zone of southwestern Utah. Temperature gradient measurements define a thermal anomaly centered near the surface trace of the range-bounding Antelope Range fault with and elongate dissipative plume extending north into the adjacent Escalante Valley. Spontaneous potential and resistivity surveys sharply define the geometry of the dominant upflow zone (not yet explored), indicating that most of the thermal fluid issues form a short segment along the Antelope Range fault and discharges into a gently-dipping aquifer. Production wells show that this aquifer lies at a depth between 85 and 95 meter. Electrical surveys also show that some leakage of thermal fluid occurs over a 1.5 km (minimum) interval along the trace of the Antelope Range fault. Major element, oxygen and hydrogen isotopic analyses of water samples indicate that the thermal fluid is a mixture of meteoric water derived from recharge areas in the Pine Valley Mountains and cold, shallow groundwater. A northwest-southeast trending system of faults, encompassing a zone of increased fracture permeability, collects meteoric water from the recharge area, allows circulation to a depth of 3 to 5 kilometers, and intersects the northeast-striking Antelope Range fault. We postulate that mineral precipitates form a seal along the Antelope Range fault, preventing the discharge of thermal fluids into basin-fill sediments at depth, and allowing heated fluid to approach the surface. Eventually, continued mineral deposition could result in the development of hot springs at the ground surface.

  9. Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005

    Science.gov (United States)

    Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.

    2009-01-01

    The ground-water resources of northern Utah Valley, Utah, were assessed during 2003-05 to describe and quantify components of the hydrologic system, determine a hydrologic budget for the basin-fill aquifer, and evaluate changes to the system relative to previous studies. Northern Utah Valley is a horst and graben structure with ground water occurring in both the mountain-block uplands surrounding the valley and in the unconsolidated basin-fill sediments. The principal aquifer in northern Utah Valley occurs in the unconsolidated basin-fill deposits where a deeper unconfined aquifer occurs near the mountain front and laterally grades into multiple confined aquifers near the center of the valley. Sources of water to the basin-fill aquifers occur predominantly as either infiltration of streamflow at or near the interface of the mountain front and valley or as subsurface inflow from the adjacent mountain blocks. Sources of water to the basin-fill aquifers were estimated to average 153,000 (+/- 31,500) acre-feet annually during 1975-2004 with subsurface inflow and infiltration of streamflow being the predominant sources. Discharge from the basin-fill aquifers occurs in the valley lowlands as flow to waterways, drains, ditches, springs, as diffuse seepage, and as discharge from flowing and pumping wells. Ground-water discharge from the basin-fill aquifers during 1975-2004 was estimated to average 166,700 (+/- 25,900) acre-feet/year where discharge to wells for consumptive use and discharge to waterways, drains, ditches, and springs were the principal sources. Measured water levels in wells in northern Utah Valley declined an average of 22 feet from 1981 to 2004. Water-level declines are consistent with a severe regional drought beginning in 1999 and continuing through 2004. Water samples were collected from 36 wells and springs throughout the study area along expected flowpaths. Water samples collected from 34 wells were analyzed for dissolved major ions, nutrients, and

  10. Evapotranspiration units in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Accurate estimates of ground-water discharge are crucial in the development of a water budget for the Basin and Range Carbonate-rock Aquifer System (BARCAS) study...

  11. Summary of seismic activity and its relation to geology and mining in the Sunnyside mining district, Carbon and Emery Counties, Utah, during 1967-1970

    Science.gov (United States)

    Dunrud, C. Richard; Osterwald, Frank W.; Hernandez, Jerome

    1973-01-01

    In the Sunnyside mining district, Utah, coal is mined under thick and variable overburden which is locally weakened by faults and other structural discontinuities. Stress changes and local stress concentrations produced by mining under these conditions often cause sudden and violent ruptures in the coal and surrounding rock mass. The strain energy released by this type of failure, which can produce shock waves and may discharge coal and rock with explosive force, is often a serious threat to life and property. These releases of strain energy are called bumps or bounces by miners if they occur in the coal, and rock bursts if they occur in the surrounding rock mass. Many of these releases are so violent that they generate seismic waves that can be felt, or at least detected by seismic instruments, miles from the site of the rupture, whereas others are smaller and can be detected only by those sensitive seismic instruments within a few thousand feet of the site of the rupture. In 1969 and 1970, about 27,000 and about 15,000 earth tremors, respectively, were recorded by the five-station seismic monitoring network that is located at the surface and encompasses most of the mine workings in the district. Of these totals, 512 and 524 earth tremors, respectively, were of sufficient magnitude (greater than 1. 5 on the Richter scale) so that the hypocenters could be accurately located. In 1968 about 20,000 tremors were recorded, with 281 large enough to plot, but in 1967 over 50,000 were recorded, of which 540 were plotted. In this report we discuss the way in which seismic activity, geology, and mining are related or seem to be related for the period 1967 through 1970, with emphasis on the period 1969-70. We also suggest certain mining procedures which, based on studies during the period, might increase the safety and efficiency of mining operations in the Sunnyside district. A complete tabulation of the larger magnitude earth tremors which occurred during 1969-70 and

  12. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah

    Science.gov (United States)

    Hood, James W.; Price, Don; Waddell, K.M.

    1969-01-01

    This report is the third in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data for Rush Valley, to provide an evaluation of the potential water-resources development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

  13. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah

    Science.gov (United States)

    Hood, James W.; Waddell, K.M.

    1968-01-01

    This report is the second in a series by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Skull Valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understandingof the valley's water supply.

  14. Water resources of Parowan Valley, Iron County, Utah

    Science.gov (United States)

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  15. Utah

    Science.gov (United States)

    2002-01-01

    With its myriad of canyons, unusual rock formations and ancient lakebeds, Utah is a geologist's playground. This true-color image of Utah was acquired on June 20, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The dark aquamarine feature in the northern part of the state is the Great Salt Lake. Fourteen thousand years ago, the Great Salt Lake was part of Lake Bonneville, which covered much of northern and western Utah. The extent of the lakebed can be seen in light tan covering much of northern and western Utah and extending into Idaho. (Click for more details on the history of Lake Bonneville.) Other remnants of Lake Bonneville include the Great Salt Lake Desert (the white expanse to the left of the Great Salt Lake) and Lake Utah (the lake to the south of Salt Lake City). The white color of the Great Salt Lake Desert is due to the mineral deposits left by Lake Bonneville as it drained out into the Snake River and then proceeded to dry up. The dark bands running through the center and northeastern part of the state are the western edge of the Rockies. The dark color is likely due to the coniferous vegetation that grows along the range. The tallest mountains in the Utah Rockies are the Uinta Mountains, which can be seen in the northeastern corner of the state bordering Colorado and Wyoming. The white fishbone pattern in the center of the Uinta Mountains is snow that hadn't yet melted. To the southeast, one can see the reddish-orange rocks of the northernmost section of the Colorado Plateau. Utah's well-known desert attractions, including Arches National Park, Canyonlands National Park, and Glen Canyon, are located in this region. The long, narrow lake is Lake Powell, created after the construction of Glen Canyon Dam in the 1950s. Image courtesy NASA MODIS Science Team

  16. Three-dimensional numerical model of ground-water flow in northern Utah Valley, Utah County, Utah

    Science.gov (United States)

    Gardner, Philip M.

    2009-01-01

    A three-dimensional, finite-difference, numerical model was developed to simulate ground-water flow in northern Utah Valley, Utah. The model includes expanded areal boundaries as compared to a previous ground-water flow model of the valley and incorporates more than 20 years of additional hydrologic data. The model boundary was generally expanded to include the bedrock in the surrounding mountain block as far as the surface-water divide. New wells have been drilled in basin-fill deposits near the consolidated-rock boundary. Simulating the hydrologic conditions within the bedrock allows for improved simulation of the effect of withdrawal from these wells. The inclusion of bedrock also allowed for the use of a recharge model that provided an alternative method for spatially distributing areal recharge over the mountains.The model was calibrated to steady- and transient-state conditions. The steady-state simulation was developed and calibrated by using hydrologic data that represented average conditions for 1947. The transient-state simulation was developed and calibrated by using hydrologic data collected from 1947 to 2004. Areally, the model grid is 79 rows by 70 columns, with variable cell size. Cells throughout most of the model domain represent 0.3 mile on each side. The largest cells are rectangular with dimensions of about 0.3 by 0.6 mile. The largest cells represent the mountain block on the eastern edge of the model domain where the least hydrologic data are available. Vertically, the aquifer system is divided into 4 layers which incorporate 11 hydrogeologic units. The model simulates recharge to the ground-water flow system as (1) infiltration of precipitation over the mountain block, (2) infiltration of precipitation over the valley floor, (3) infiltration of unconsumed irrigation water from fields, lawns, and gardens, (4) seepage from streams and canals, and (5) subsurface inflow from Cedar Valley. Discharge of ground water is simulated by the model to (1

  17. Seepage study of six canals in Salt Lake County, Utah, 1982-1983

    Science.gov (United States)

    Herbert, L.R.; Cruff, R.W.; Waddell, K.M.

    1985-01-01

    A study of selected reaches of the Utah and Salt Lake, Utah Lake Distributing, Provo Reservoir, Draper Irrigation, East Jordan, and Jordan and Salt Lake City Canals in Salt Lake County, Utah, was made to determine gains or losses of flow in those reaches. Three to five sets of seepage measurements were made on each canal during 1982 or 1983. Adjustments for fluctuations in flow were made from information obtained from water-stage recorders operated at selected locations during the time of each seepage run.The study showed an overall net loss of about 9.5 cubic feet per second in the Utah and Salt Lake Canal, 11.0 cubic feet per second in the Utah Lake Distributing canal, 20.5 cubic feet per second in the Provo Reservoir canal, 1.5 cubic feet per second in the Draper Irrigation Canal, and 4.0 cubic feet per second in the East Jordan canal. It also showed a net gain of about 6.0 cubic feet per second in the Jordan and Salt Lake City Canal. The gains and losses are attributed primarily to the relation of the canals to the depth of the water table near the canals.

  18. 40 CFR 81.345 - Utah.

    Science.gov (United States)

    2010-07-01

    ... County Salt Lake County (part) Remainder of Salt Lake County San Juan County Sanpete County Sevier County... Morgan County Piute County Rich County San Juan County Sanpete County Sevier County Summit County Tooele... Sanpete County Sevier County Summit County Tooele County Uintah County Utah County Wasatch County...

  19. Preliminary Report on the White Canyon Area, San Juan County, Utah

    Science.gov (United States)

    Benson, William Edward Barnes; Trites, A.F.; Beroni, E.P.; Feeger, J.A.

    1952-01-01

    The White Canyon area in San Juan County, Utah, contains known deposits of copper-uranium ore and is currently being mapped and studied by the Geological Survey. To date, approximately 75 square miles, or about 20 percent of the area, has been mapped on a scale 1 inch=1 mile. The White Canyon area is underlain by more than 2,000 feet of sedimentary rocks, Carboniferous to Jurassic(?) in age. The area is on the flank of the Elk Ridge anticline, and the strata have a regional dip of 1 deg to 2 deg SW. The Shinarump conglomerate of Late Triassic age is the principal ore-bearing formation. The Shinarump consists of lenticular beds of sandstone, conglomeratic sandstone, clay, and siltstone, and ranges in thickness from a feather edge to as much as 75 feet. Locally the sandstones contain silicified and carbonized wood and fragments of charcoal. These vegetal remains are especially common in channel-fill deposits. Jointing is prominent in the western part of the area, and apparently affects all formations. Adjacent to the joints some of the redbeds in the sequence are bleached. Deposits of copper-uranium minerals have been found in the Moenkopi, Shinarump, and Chinle formations, but the only production of ore has been from the Shinarump conglomerate. The largest concentration of these minerals is in the lower third of the Shinarump, and the deposits seem to be controlled in part by ancient channel fills and in part by fractures. Locally precipitation of the copper and uranium minerals apparently has been aided by charcoal and clays. Visible uranium minerals include both hard and soft pitchblende and secondary hydrosulfates, phosphates, and silicates. In addition, unidentified uranium compounds are present in carbonized wood and charcoal, and in veinlets of hydrocarbons. Base-metal sulfides have been identified in all prospects that extend beyond the oxidized zone. Secondary copper minerals in the oxidized zone include the hydrous sulfates and carbonates, and possibly

  20. Carbon monoxide poisoning in Utah: 1996-2013.

    Science.gov (United States)

    Weaver, Lindell K; Deru, Kayla; Churchill, Susan; Legler, Joshua; Snow, Greg; Grey, Todd

    2016-01-01

    The true incidence of carbon monoxide (CO) poisoning is not clearly known, but a description of possible trends could aid in prevention. Investigators searched Utah state databases for emergency department (ED) visits and admissions for CO poisoning and medical examiner records for CO-related fatalities. From 1996-2013, 7,590 individuals were diagnosed with CO poisoning: 6,469 were treated/ released from EDs; 596 were admitted; 525 died. Of 7,065 non-fatal poisonings, 5,950 (84%) were accidental and 498 (7%) were suicide attempts. Few patients (9.7%) were treated with hyperbaric oxygen. For accidental poisonings, internal combustion engines accounted for 43%, smoke inhalation, 34%, and heating sources, 22%. Internal combustion engines were implicated in 97% of suicide attempts. Non-fatal poisonings declined following a 2008 legislative change requiring CO alarms in residences, but we do not know if legislation caused the decline. One hundred forty-one (27%) fatal poisonings were accidental, 361 (70%) suicides and two (0.4%) homicides. Victims with cardiovascular autopsy findings/past cardiovascular history had lower carboxyhemoglobin levels (mean 51.2%, n=53) compared to those without (70.8%, n=472). Mean postmortem carboxyhemoglobin was highest in ages 20-29 years (72.5%). The incidence of CO poisoning in Utah is declining, but CO poisoning is still common. Alarm legislation may aid prevention efforts. An educational campaign addressing the many causes and circumstances of CO poisoning is required for prevention.

  1. Preliminary investigation of the elemental variation and diagenesis of a tabular uranium deposit, La Sal Mine, San Juan County, Utah

    Science.gov (United States)

    Brooks, Robert A.; Campbell, John A.

    1976-01-01

    Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.

  2. Seepage study of the Sevier River and the Central Utah, McIntyre, and Leamington Canals, Juab and Millard Counties, Utah

    Science.gov (United States)

    Herbert, L.R.; Cruff, R.W.; Holmes, W.F.

    1982-01-01

    A study of the gains or losses of the Sevier River and the Central Utah, McIntyre, and Leamington Canals in the Leamington area, in Juab and Millard Counties, Utah, was made to determine changes in those reaches. Three to seven sets of seepage measurements made during 1980 were used in the analysis. Adjustments for fluctuations in flow were made from information obtained from water-stage recorders operated at selected locations during the time of each seepage run.The study showed an overall net gain of about 9 cubic feet per second (0.25 cubic meter per second) in the Sevier River and about 1.3 cubic feet per second (0.04 cubic meter per second) in the Leamington Canal. It also showed a net loss of about 1 cubic feet per second (0.20 cubic meter per second) in the Central Utah Canal and about 0.8 cubic foot per second (0.02 cubic meter per second) in the McIntyre Canal. The gains in the Sevier River and Leamington Canal probably come chiefly as return seepage of water lost from the Central Utah and McIntyre Canals.

  3. Celestine-bearing geodes from Wayne and Emery counties, southeastern Utah: Genesis and mineralogy

    Science.gov (United States)

    Kile, Daniel E.; Dayvault, Richard D.; Hood, William C.; Hatch, H. Steven

    2015-01-01

    Geodes containing celestine with associated quartz, calcite, chlorite, and other minerals occur in the Jurassic Curtis Formation of Emery and Wayne counties off the east and south flanks of the San Rafael Swell in southeastern Utah. The two areas discussed in this article produce geodes to 25 cm wide containing bladed to tabular celestine crystals that are as much as 4.5 cm in length. An evaporative littoral system resulting in the formation of anhydrite nodules is proposed as the initial environment for this deposit. Subsequent silicification of the nodules and, in some cases, the formation of hollow spaces within the silicified nodules, provided a geode structure for the eventual crystallization of celestine and associated minerals.

  4. Base of moderately saline ground water in San Juan County, Utah

    Science.gov (United States)

    Howells, Lewis

    1990-01-01

    The base of moderately saline ground water (water that contains from 3,000 to 10,000 milligrams per liter of dissolved solids) was delineated for San Juan County, Utah, based on water-quality data and on formation-water resistivities determined from geophysical well logs using the resistivity-porosity, spontaneous-potential, and resistivity-ratio methods. These data and the contour map developed from them show that a thick layer of very saline to briny ground water (water that contains more than 10,000 milligrams per liter of dissolved solids) underlies the eastern two-thirds of San Juan County. The upper surface of this layer is affected by the geologic structure of the area, but it may be modified locally by recharge mounds of less saline water and by vertical leakage of water through transmissive faults and fractures. The highest altitude of the base of moderately saline water is west of the Abajo Mountains where it is more than 6,500 feet above sea level. The lowest altitude is in the western part of the county and is below sea level: depressions in the base of moderately saline water in recharge areas in the La Sal and Abajo Mountains also may be that low. The base of moderately saline water commonly is in the Permian Cutler Formation or the Pennsylvanian Honaker Trail Formation of the Hermosa Group, but locally may be as high stratigraphically as the Triassic (?) and Jurassic Navajo Sandstone north of the Abajo Mountains and in the Jurassic Morrison Formation south of the mountains.

  5. THIN SECTION DESCRIPTIONS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey Jr; David E. Eby

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  6. Seepage study of the South Bend, Richfield, and Vermillion Canals, Sevier County, Utah

    Science.gov (United States)

    Herbert, L.R.; Smith, G.J.

    1989-01-01

    A seepage investigation was made in 1987 on selected reaches of the South Bend, Richfield, and Vermillion Canals in Sevier County, Utah, to determine gains or losses in discharge.  Fluctuations in discharge were adjusted using information from stage recorders operated at selected locations during each set of discharge measurements. The investigation showed a net gain of 0.2 cubic foot per second in the South Bend canal: the upper reach gained 1.5 cubic feet per second, the two middle reaches together lost 2.5 cubic feet per second, and the lower reach gained 1.2 cubic feet per second.  The Richfield Canal showed a net loss of 2.4 cubic feet per second: the two upper reaches together lost 4.4 cubic feet per second and the two lower reaches together gained 2.0 cubic feet per second.  The Vermillion canal showed a net loss of 0.2 cubic foot per second: the upper reach gained 2.3 cubic feet per second and the lower reach lost 2.5 cubic feet per second.

  7. Detecting agricultural to urban land use change from multi-temporal MSS digital data. [Salt Lake County, Utah

    Science.gov (United States)

    Ridd, M. K.; Merola, J. A.; Jaynes, R. A.

    1983-01-01

    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.

  8. Specific Water Quality Sites for Carbon County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  9. Hydrologic reconnaissance of Deep Creek valley, Tooele and Juab Counties, Utah and Elko and White Pine Counties, Nevada

    Science.gov (United States)

    Hood, James W.; Waddell, K.M.

    1969-01-01

    This report, the fourth in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, describes water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Deep Creek valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

  10. Geomorphology and failure history of the earthquake-induced Farmington Siding landslide complex, Davis County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M.; Harty, K.M. (Utah Geological Survey, Salt Lake City, UT (United States))

    1993-04-01

    The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocene Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.

  11. Hydrology and snowmelt simulation of Snyderville Basin, Park City, and adjacent areas, Summit County, Utah

    Science.gov (United States)

    Brooks, Lynette E.; Mason, James L.; Susong, David D.

    1998-01-01

    Increasing residential and commercial development is placing increased demands on the ground- and surface-water resources of Snyderville Basin, Park City, and adjacent areas in the southwestern corner of Summit County, Utah. Data collected during 1993-95 were used to assess the quantity and quality of the water resources in the study area.Ground water within the study area is present in consolidated rocks and unconsolidated valley fill. The complex geology makes it difficult to determine the degree of hydraulic connection between different blocks of consolidated rocks. Increased ground-water withdrawal during 1983- 95 generally has not affected ground-water levels. Ground-water withdrawal in some areas, however, caused seasonal fluctuations and a decline in ground-water levels from 1994 to 1995, despite greater-than-normal recharge in the spring of 1995.Ground water generally has a dissolved-solids concentration that ranges from 200 to 600 mg/L. Higher sulfate concentrations in water from wells and springs near Park City and in McLeod Creek and East Canyon Creek than in other parts of the study area are the result of mixing with water that discharges from the Spiro Tunnel. The presence of chloride in water from wells and springs near Park City and in streams and wells near Interstate Highway 80 is probably caused by the dissolution of applied road salt. Chlorofluorocarbon analyses indicate that even though water levels rise within a few weeks of snowmelt, the water took 15 to 40 years to move from areas of recharge to areas of discharge.Water budgets for the entire study area and for six subbasins were developed to better understand the hydrologic system. Ground-water recharge from precipitation made up about 80 percent of the ground-water recharge in the study area. Ground-water discharge to streams made up about 40 percent of the surface water in the study area and ground-water discharge to springs and mine tunnels made up about 25 percent. Increasing use of

  12. CarbonSAFE Illinois - Macon County

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Steve [University of Illinois; Illinois State Geological Survey

    2017-08-03

    CarbonSAFE Illinois is a a Feasibility study to develop an established geologic storage complex in Macon County, Illinois, for commercial-scale storage of industrially sourced CO2. Feasibility activities are focused on the Mt. Simon Storage Complex; a step-out well will be drilled near existing storage sites (i.e., the Midwest Geological Sequestration Consortium’s Illinois Basin – Decatur Project and the Illinois Industrial Carbon Capture and Storage Project) to further establish commercial viability of this complex and to evaluate EOR potential in a co-located oil-field trend. The Archer Daniels Midland facility (ethanol plant), City Water, Light, and Power in Springfield, Illinois (coal-fired power station), and other regional industries are potential sources of anthropogenic CO2 for storage at this complex. Site feasibility will be evaluated through drilling results, static and dynamic modeling, and quantitative risk assessment. Both studies will entail stakeholder engagement, consideration of infrastructure requirements, existing policy, and business models. Project data will help calibrate the National Risk Assessment Partnership (NRAP) Toolkit to better understand the risks of commercial-scale carbon storage.

  13. FLOODPLAIN, UTAH COUNTY, UTAH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  14. Water-quality investigations of the Jordan River, Salt Lake County, Utah, 1980-82

    Science.gov (United States)

    Stephens, D.W.

    1984-01-01

    Water-quality studies were conducted on the Jordan River, Utah, to investigate specific problems: dissolved oxygen, toxic substances, sanitary quality, and turbidity and suspended sediment. The dissolved oxygen decreased from 8 milligrams per liter at the Jordan Narrows to less than 5 milligrams per liter at 500 North Street. Chemical oxygen demand increased about 23 percent and biochemical oxygen demand increased 90 percent. Nearly 78 percent of the water samples analyzed for total mercury exceeded the State intended-use standard of 0.05 microgram per liter. Concentrations of ammonia, cadmium, copper, lead, and zinc exceeded the standards periodically. The pesticides DDD, DDE, DDT, dieldrin, methoxychlor, and 2,4-D were occasionally detected in bottom materials. Most were present in quantities of less than 15 micrograms per kilogram. Concentrations of three indicator bacteria (total coliform, fecal coliform, and fecal streptococcus) increased in a downstream direction. Concentrations of total coliform bacteria often exceeded 5,000 colonies per 100 milliliters and concentrations of fecal coliform bacteria often exceeded 2,000 colonies per 100 milliliters. The primary sources of turbidity in the Jordan River are Utah Lake and discharges from the wastewater-treatment plants. Large values of turbidity were measured at the Jordan Narrows with a summer mean value of 88 nephelometer turbidity units (NTU) and a winter mean value of 43 NTU. (USGS)

  15. 76 FR 16808 - Notice of Invitation to Participate In Coal Exploration License, Utah

    Science.gov (United States)

    2011-03-25

    ... exploration of coal deposits owned by the United States of America in Sevier County, Utah. DATES: The notice... following-described lands in Sevier County, Utah: Salt Lake Meridian, Utah T. 22 S., R. 4 E., Sec. 14, all...

  16. Epidemiology of cognitive aging and Alzheimer's disease: contributions of the cache county utah study of memory, health and aging.

    Science.gov (United States)

    Hayden, Kathleen M; Welsh-Bohmer, Kathleen A

    2012-01-01

    Epidemiological studies of Alzheimer's disease (AD) provide insights into changing public health trends and their contribution to disease incidence. The current chapter considers how the population-based approach has contributed to our understanding of lifetime exposures that contribute to later disease risk and may act to modify onset of symptoms. We focus on the findings from a recent survey of an exceptionally long-lived population, the Cache County Utah Study of Memory, Health, and Aging. This study is confined to a single geographic population has allowed estimation of the genetic and environmental influences on AD expression across the expected human lifespan of 95+ years. Given the emphasis of this text on the behavioral neurosciences of aging, we highlight within the current chapter the particular contributions of this population-based study to the neuropsychology of aging and AD. We also discuss hypotheses generated from this survey with respect to factors that may either accelerate or delay symptom onset in AD and the conditions that appear to be associated with successful cognitive aging.

  17. Hydrology and simulation of ground-water flow in Juab Valley, Juab County, Utah.

    Science.gov (United States)

    Thiros, Susan A.; Stolp, Bernard J.; Hadley, Heidi K.; Steiger, Judy I.

    1996-01-01

    Plans to import water to Juab Valley, Utah, primarily for irrigation, are part of the Central Utah Project. A better understanding of the hydrology of the valley is needed to help manage the water resources and to develop conjunctive-use plans.The saturated unconsolidated basin-fill deposits form the ground-water system in Juab Valley. Recharge is by seepage from streams, unconsumed irrigation water, and distribution systems; infiltration of precipitation; and subsurface inflow from consolidated rocks that surround the valley. Discharge is by wells, springs, seeps, evapotranspiration, and subsurface outflow to consolidated rocks. Ground-water pumpage is used to supplement surface water for irrigation in most of the valley and has altered the direction of groundwater flow from that of pre-ground-water development time in areas near and in Nephi and Levan.Greater-than-average precipitation during 1980-87 corresponds with a rise in water levels measured in most wells in the valley and the highest water level measured in some wells. Less-than average precipitation during 1988-91 corresponds with a decline in water levels measured during 1988-93 in most wells. Geochemical analyses indicate that the sources of dissolved ions in water sampled from the southern part of the valley are the Arapien Shale, evaporite deposits that occur in the unconsolidated basin-fill deposits, and possibly residual sea water that has undergone evaporation in unconsolidated basin-fill deposits in selected areas. Water discharging from a spring at Burriston Ponds is a mixture of about 70 percent ground water from a hypothesized flow path that extends downgradient from where Salt Creek enters Juab Valley and 30 percent from a hypothesized flow path from the base of the southern Wasatch Range.The ground-water system of Juab Valley was simulated by using the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model. The numerical model was calibrated to simulate

  18. Subsurface geology of a potential waste emplacement site, Salt Valley Anticline, Grand County, Utah

    Science.gov (United States)

    Hite, R.J.

    1977-01-01

    The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km 2, is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt anticlines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has an estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as 'marker beds.' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement.

  19. Numerical Simulation of Pollutants' Transport and Fate in AN Unsteady Flow in Lower Bear River, Box Elder County, Utah

    Science.gov (United States)

    Salha, A. A.; Stevens, D. K.

    2013-12-01

    This study presents numerical application and statistical development of Stream Water Quality Modeling (SWQM) as a tool to investigate, manage, and research the transport and fate of water pollutants in Lower Bear River, Box elder County, Utah. The concerned segment under study is the Bear River starting from Cutler Dam to its confluence with the Malad River (Subbasin HUC 16010204). Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by five permitted point source discharges and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses) from Bear River and then back to it. Utah Department of Environmental Quality (DEQ) has designated the entire reach of the Bear River between Cutler Reservoir and Great Salt Lake as impaired. Stream water quality modeling (SWQM) requires specification of an appropriate model structure and process formulation according to nature of study area and purpose of investigation. The current model is i) one dimensional (1D), ii) numerical, iii) unsteady, iv) mechanistic, v) dynamic, and vi) spatial (distributed). The basic principle during the study is using mass balance equations and numerical methods (Fickian advection-dispersion approach) for solving the related partial differential equations. Model error decreases and sensitivity increases as a model becomes more complex, as such: i) uncertainty (in parameters, data input and model structure), and ii) model complexity, will be under investigation. Watershed data (water quality parameters together with stream flow, seasonal variations, surrounding landscape, stream temperature, and points/nonpoint sources) were obtained majorly using the HydroDesktop which is a free and open source GIS enabled desktop application to find, download, visualize, and analyze time series of water and climate data registered with the CUAHSI Hydrologic Information System

  20. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    Science.gov (United States)

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  1. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    Science.gov (United States)

    Gard, Leonard Meade

    1976-01-01

    This report describes the geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Part of sec. 5, T. 23 S., R. 20 E. has been selected as a site for subsurface investigation as a potential repository for radioactive waste. This site has easy access to transportation, is on public land, is isolated from human habitation, is not visible from Arches National Park, and the salt body lies within about 800 feet (244 m) of the surface. Further exploration should include investigation of possible ground water in the caprock and physical exploration of the salt body to identify a thick bed of salt for use as a storage zone that can be isolated from the shaly interbeds that possibly contain quantities of hydrocarbons. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after

  2. Geologic characteristics and movement of the Meadow Creek landslide, part of the Coal Hill landslide complex, western Kane County, Utah

    Science.gov (United States)

    Ashland, Francis X.; McDonald, Greg N.; Carney, Stephanie M.; Tabet, David E.; Johnson, Cari L.

    2010-01-01

    The Meadow Creek landslide, part of the Coal Hill landslide complex in western Kane County, Utah, is about 1.7 miles (2.7 km) wide and 1.3 miles (2.1 km) long and contains six smaller historical slides. The upper part of the Meadow Creek landslide is gently sloping and consists of displaced and back-rotated blocks of Cretaceous Dakota and Cedar Mountain Formations that form northeast- to locally east-trending ridges that are separated by sediment-filled half-grabens. The lower part of the landslide is gently to moderately sloping, locally incised, and consists of heterogeneous debris that overrides the Jurassic Carmel Formation near Meadow Creek. Monitoring using a survey-grade Global Positioning System (GPS) instrument detected movement of the southern part of the Meadow Creek landslide between October 2005 and October 2008, including movement of two of the historical slides-landslides 1 and 2. The most movement during the measurement period occurred within the limits of persistently moving landslide 1 and ranged from about 24 to 64 inches (61-163 cm). Movement of the abutting southern part of the Meadow Creek landslide ranged from approximately 6 to 10 inches (15-25 cm). State Route 9 crosses over approximately a mile (1.6 km) of the southern part of the Meadow Creek landslide, including landslide 1. The highway and its predecessor (State Route 15) have been periodically displaced and damaged by persistent movement of landslide 1. Most of the landslide characteristics, particularly its size, probable depth, and the inferred weak strength and low permeability of clay-rich gouge derived from the Dakota and Cedar Mountain Formations, are adverse to and pose significant challenges to landslide stabilization. Secondary hazards include piping-induced sinkholes along scarps and ground cracks, and debris flows and rock falls from the main-scarp escarpment.

  3. PROSPECTIVE STUDY OF READY-TO-EAT BREAKFAST CEREAL CONSUMPTION AND COGNITIVE DECLINE AMONG ELDERLY MEN AND WOMEN IN CACHE COUNTY, UTAH, STUDY ON MEMORY, HEALTH, AND AGING

    Science.gov (United States)

    WENGREEN, H.; NELSON, C.; MUNGER, R.G.; CORCORAN, C.

    2013-01-01

    Objective To examine associations between frequency of ready-to-eat-cereal (RTEC) consumption and cognitive function among elderly men and women of the Cache County Study on Memory and Aging in Utah. Design A population-based prospective cohort study established in Cache County, Utah in 1995. Setting and Participants 3831 men and women > 65 years of age who were living in Cache County, Utah in 1995. Measurement Diet was assessed using a 142-item food frequency questionnaire at baseline. Cognitive function was assessed using an adapted version of the Modified Mini-Mental State examination (3MS) at baseline and three subsequent interviews over 11 years. RTEC consumption was defined as daily, weekly, or infrequent use. Results In multivariable models, more frequent RTEC consumption was not associated with a cognitive benefit. Those consuming RTEC weekly but less than daily scored higher on their baseline 3MS than did those consuming RTEC more or less frequently (91.7, 90.6, 90.6, respectively; p-value <0.001). This association was maintained across 11 years of observation such that those consuming RTEC weekly but less than daily declined on average 3.96 points compared to an average 5.13 and 4.57 point decline for those consuming cereal more or less frequently (p-value = 0.0009). Conclusion Those consuming RTEC at least daily had poorer cognitive performance at baseline and over 11 years of follow-up compared to those who consumed cereal more or less frequently. RTEC is a nutrient dense food, but should not replace the consumption of other healthy foods in the diets’ of elderly people. Associations between RTEC consumption, dietary patterns, and cognitive function deserve further study. PMID:21369668

  4. 75 FR 18877 - Notice of Invitation to Participate; Exploration for Coal in Utah License Application UTU-87041

    Science.gov (United States)

    2010-04-13

    ... located in Emery and Sevier Counties, Utah. DATES: Any party electing to participate in this exploration... in Emery and Sevier Counties, Utah: T. 23 S., R. 5 E., SLM, Utah Sec. 1, all; Sec. 11, all; Sec. 12...

  5. Unusual Holocene and late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA

    Science.gov (United States)

    Dean, W.; Rosenbaum, J.; Skipp, G.; Colman, S.; Forester, R.; Liu, A.; Simmons, K.; Bischoff, J.

    2006-01-01

    Bear Lake (Utah-Idaho, USA) has been producing large quantities of carbonate minerals of varying mineralogy for the past 17,000 years. The history of sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, percent organic carbon, percent CaCO3, X-ray diffraction mineralogy, HCl-leach inorganic geochemistry, and magnetic properties on samples from three piston cores. Historically, the Bear River, the main source of water for Great Salt Lake, did not enter Bear Lake until it was artificially diverted into the lake at the beginning of the 20th century. However, during the last glacial interval, the Bear River did enter Bear Lake depositing red, calcareous, silty clay. About 18,000 years ago, the Bear River became disconnected from Bear Lake. A combination of warmer water, increased evaporation, and increased organic productivity triggered the precipitation of calcium carbonate, first as calcite. As the salinity of the lake increased due to evaporation, aragonite began to precipitate about 11,000 years ago. Aragonite is the dominant mineral that accumulated in bottom sediments of the lake during the Holocene, comprising an average of about 70 wt.% of the sediments. Aragonite formation in a large, cold, oligotrophic, high latitude lake is highly unusual. Lacustrine aragonite usually is found in small, saline lakes in which the salinity varies considerably over time. However, Bear Lake contains endemic ostracodes and fish, which indicate that the chemistry of the lake has remained fairly constant for a long time. Stable isotope data from Holocene aragonite show that the salinity of Bear Lake increased throughout the Holocene, but never reached highly evolved values of ??18O in spite of an evaporation-dominated water balance. Bear Lake hydrology combined with evaporation created an unusual situation that produced large amounts of aragonite, but no evaporite minerals.

  6. Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    2017-11-01

    This fact sheet "Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency" explains how the City of Moab used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  7. Petrology and Mineralogy of Tertiary Volcanic Rocks in the Vicinity of the Rozel Hills and Black Mountain, Box Elder County, Utah

    OpenAIRE

    Greenman, Elizabeth R.

    1982-01-01

    Two basalt flows and an andesite fissure eruption occur in the Rozel Hills - Black Mountain area in Box Elder County, Utah. Both basalt flows are aphanitic, and contain olivine, plagioclase, augite, and opaque oxides. They may be distinguished both chemically and on the basis of their textures. Unit 2 basalt is finer grained, and appears to be associated with a fault in the Black Mountain area. Chemically, it is similar to high-iron lavas in the Craters of the Moon, Idaho area. It has higher ...

  8. Highly-resolved Modeling of Emissions and Concentrations of Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, and Fine Particulate Matter in Salt Lake City, Utah

    Science.gov (United States)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Ehleringer, J. R.

    2014-12-01

    Accurate, high-resolution data on air pollutant emissions and concentrations are needed to understand human exposures and for both policy and pollutant management purposes. An important step in this process is also quantification of uncertainties. We present a spatially explicit and highly resolved emissions inventory for Salt Lake County, Utah, and trace gas concentration estimates for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and fine particles (PM2.5) within Salt Lake City. We assess the validity of this approach by comparing measured concentrations against simulated values derived from combining the emissions inventory with an atmospheric model. The emissions inventory for the criteria pollutants was constructed using the 2011 National Emissions Inventory (NEI). The spatial and temporal allocation methods from the Emission Modeling Clearinghouse data set are used to downscale the NEI data from annual to hourly scales and from county-level to 500 m x 500 m resolution. Onroad mobile source emissions were estimated by combining a bottom-up emissions calculation approach for large roadway links with a top-down spatial allocation approach for other roadways. Vehicle activity data for road links were derived from automatic traffic responder data. The emissions inventory for CO2 was obtained from the Hestia emissions data product at an hourly, building, facility, and road link resolution. The AERMOD and CALPUFF dispersion models were used to transport emissions and estimate air pollutant concentrations at an hourly temporal and 500 m x 500 m spatial resolution. Modeled results were compared against measurements from a mobile lab equipped with trace gas measurement equipment traveling on pre-determined routes in the Salt Lake City area. The comparison between both approaches to concentration estimation highlights spatial locations and hours of high variability/uncertainty. Results presented here will inform understanding of variability and

  9. Geographic scale matters in detecting the relationship between neighbourhood food environments and obesity risk: an analysis of driver license records in Salt Lake County, Utah.

    Science.gov (United States)

    Fan, Jessie X; Hanson, Heidi A; Zick, Cathleen D; Brown, Barbara B; Kowaleski-Jones, Lori; Smith, Ken R

    2014-08-19

    Empirical studies of the association between neighbourhood food environments and individual obesity risk have found mixed results. One possible cause of these mixed findings is the variation in neighbourhood geographic scale used. The purpose of this paper was to examine how various neighbourhood geographic scales affected the estimated relationship between food environments and obesity risk. Cross-sectional secondary data analysis. Salt Lake County, Utah, USA. 403,305 Salt Lake County adults 25-64 in the Utah driver license database between 1995 and 2008. Utah driver license data were geo-linked to 2000 US Census data and Dun & Bradstreet business data. Food outlets were classified into the categories of large grocery stores, convenience stores, limited-service restaurants and full-service restaurants, and measured at four neighbourhood geographic scales: Census block group, Census tract, ZIP code and a 1 km buffer around the resident's house. These measures were regressed on individual obesity status using multilevel random intercept regressions. Obesity. Food environment was important for obesity but the scale of the relevant neighbourhood differs for different type of outlets: large grocery stores were not significant at all four geographic scales, limited-service restaurants at the medium-to-large scale (Census tract or larger) and convenience stores and full-service restaurants at the smallest scale (Census tract or smaller). The choice of neighbourhood geographic scale can affect the estimated significance of the association between neighbourhood food environments and individual obesity risk. However, variations in geographic scale alone do not explain the mixed findings in the literature. If researchers are constrained to use one geographic scale with multiple categories of food outlets, using Census tract or 1 km buffer as the neighbourhood geographic unit is likely to allow researchers to detect most significant relationships. Published by the BMJ

  10. Pre- and post-reservoir ground-water conditions and assessment of artificial recharge at Sand Hollow, Washington County, Utah, 1995-2005

    Science.gov (United States)

    Heilweil, Victor M.; Susong, David D.; Gardner, Philip M.; Watt, Dennis E.

    2005-01-01

    Sand Hollow, Utah, is the site of a surface-water reservoir completed in March 2002, which is being operated by the Washington County Water Conservancy District primarily as an aquifer storage and recovery project. The reservoir is an off-channel facility receiving water from the Virgin River, diverted near the town of Virgin, Utah. It is being operated conjunctively, providing both surface-water storage and artificial recharge to the underlying Navajo aquifer. The U.S. Geological Survey and the Bureau of Reclamation conducted a study to document baseline ground-water conditions at Sand Hollow prior to the operation of the reservoir and to evaluate changes in ground-water conditions caused by the reservoir.Pre-reservoir age dating using tritium/helium, chlorofluorocarbons, and carbon-14 shows that shallow ground water in the Navajo Sandstone in some areas of Sand Hollow entered the aquifer from 2 to 25 years before sample collection. Ground water in low-recharge areas and deeper within the aquifer may have entered the aquifer more than 8,000 years ago. Ground-water levels in the immediate vicinity of Sand Hollow Reservoir have risen by as much as 80 feet since initial filling began in March 2002. In 2005, ground water was moving laterally away from the reservoir in all directions, whereas the pre-reservoir direction of ground-water flow was predominantly toward the north.Tracers, or attributes, of artificial recharge include higher specific conductance, higher dissolved-solids concentrations, higher chloride-to-bromide ratios, more-depleted stable isotopes (2H and 18O), and higher total-dissolved gas pressures. These tracers have been detected at observation and production wells close to the reservoir. About 15,000 tons of naturally occurring salts that previously accumulated in the vadose zone beneath the reservoir are being flushed into the aquifer. Except for the shallowest parts of the aquifer, this is generally not affecting water quality, largely because of

  11. Hydrogeologic and geochemical characterization of groundwater resources in Rush Valley, Tooele County, Utah

    Science.gov (United States)

    Gardner, Philip M.; Kirby, Stefan

    2011-01-01

    The water resources of Rush Valley were assessed during 2008–2010 with an emphasis on refining the understanding of the groundwater-flow system and updating the groundwater budget. Surface-water resources within Rush Valley are limited and are generally used for agriculture. Groundwater is the principal water source for most other uses including supplementing irrigation. Most groundwater withdrawal in Rush Valley is from the unconsolidated basin-fill aquifer where conditions are generally unconfined near the mountain front and confined at lower altitudes near the valley center. Productive aquifers also occur in fractured bedrock along the valley margins and beneath the basin-fill deposits in some areas.Drillers’ logs and geophysical gravity data were compiled and used to delineate seven hydrogeologic units important to basin-wide groundwater movement. The principal basin-fill aquifer includes the unconsolidated Quaternary-age alluvial and lacustrine deposits of (1) the upper basin-fill aquifer unit (UBFAU) and the consolidated and semiconsolidated Tertiary-age lacustrine and alluvial deposits of (2) the lower basin-fill aquifer unit (LBFAU). Bedrock hydrogeologic units include (3) the Tertiary-age volcanic unit (VU), (4) the Pennsylvanian- to Permian-age upper carbonate aquifer unit (UCAU), (5) the upper Mississippian- to lower Pennsylvanian-age upper siliciclastic confining unit (USCU), (6) the Middle Cambrian- to Mississippian-age lower carbonate aquifer unit (LCAU), and (7) the Precambrian- to Lower Cambrian-age noncarbonate confining unit (NCCU). Most productive bedrock wells in the Rush Valley groundwater basin are in the UCAU.Average annual recharge to the Rush Valley groundwater basin is estimated to be about 39,000 acre-feet. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall within the mountains with smaller amounts occurring as infiltration of streamflow and unconsumed irrigation water at or near the mountain front. Groundwater

  12. Carbon in weathered ordinary chondrites from Roosevelt County

    Science.gov (United States)

    Ash, R. D.; Pillinger, C. T.

    1993-03-01

    A suite of Roosevelt County ordinary chondrites of known terrestrial age have been analyzed for carbon content and isotopic composition. Initial results indicate that significant carbon contamination is evident only in samples with a terrestrial age greater than 40 ka. These samples are of weathering grade D and E and contain three times more carbon than the less weathered samples. The soil in which they were preserved has a carbon content of ca. 1.5 percent. Over 200 meteorites have been recovered from a series of soil depleted areas of New Mexico and West Texas. Most have been recovered from blowouts near Clovis in Roosevelt County (RC) on the high plains of New Mexico. The mineralogical and petrologic Al effects of weathering upon these samples have been studied previously and show that the degree of weathering is largely depend ant upon the terrestrial residence time. The study was undertaken to determine the effects of prolonged exposure to the soil and climate of Roosevelt County upon ordinary chondrites in the hope that this will enable a better understanding of the problems associated with the collection of meteoritic falls. A suite of ten grade 4 to 6 H, L, and LL ordinary chondrites were analyzed for carbon content and isotopic composition.

  13. HYDRAULICS, UTAH COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  14. Geohydrology and numerical simulation of groundwater flow in the central Virgin River Basin of Iron and Washington Counties, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system.The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important.The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Differences in well yield indicate that there is considerable

  15. Ground-water conditions in the east shore area, Box Elder, Davis, and Weber Counties, Utah 1960-69

    Science.gov (United States)

    Bolke, E.L.; Waddell, K.M.

    1972-01-01

    This report is one of a series that is prepared by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes water resources in selected areas in Utah. The period of study on which this report was based was from July 1968 to March 1970, but the period of record covered by the report is from 1960 to 1969. The purposes of this study were to determine changes in ground-water development in the East Shore area and to determine the effects of those changes on the ground-water system since the area was last studied (Smith and Gates, 1963). The study was also made to obtain additional information to guide further development of ground water in the area, in order to meet growing needs for municipal, industrial, and agriculture water supplies.

  16. Hydrologic evaluation and water-supply considerations for five Paiute Indian land parcels, Millard, Sevier, and Iron counties, southwestern Utah

    Science.gov (United States)

    Price, Don; Stephens, D.W.; Conroy, L.S.

    1989-01-01

    The hydrologic resources in and adjacent to five parcels of land held in trust for the Paiute Indian Tribe of Utah were evaluated. The land, located in southwestern Utah, is generally arid and has had only limited use for grazing. The parcels are located near the towns of Cove Fort, Joseph, Koosharem, and Kanarraville. On the basis of available geohydrologic and hydrologic data, water of suitable quality is locally available in the areas of all parcels for domestic, stock, recreation, and limited irrigation use. Developing this water for use on the parcels would potentially involve obtaining water rights, drilling wells, and constructing diversion structures. Surface water apparently is the most favorable source of supply available for the Joseph parcel, and groundwater apparently is the most favorable source of supply available for the other parcels. (USGS)

  17. Hydrology and geochemistry of carbonate springs in Mantua Valley, northern Utah

    Science.gov (United States)

    Rice, Karen C.; Spangler, Lawrence E.; Spangler, Lawrence E.; Allen, Constance J.

    1999-01-01

    Water chemistry, tritium data, precipitation-discharge relations, geology, topography, and dye tracing were used to determine recharge areas, ground-water residence times, factors influencing ground-water flow, and aquifer characteristic for five springs that discharge from Paleozoic limestones and dolostones along the margin of Manuta Valley, northern Utah.Temperature of Mantua Valley spring water ranged between 6.0 and 15.0 degrees Celsius. Spring-water temperature indicates that depth of circulation of ground water could be as shallow as 80 feet (25 meters) to as much as 1,150 feet (350 meters). Dissolved-solids concentration in the water from springs ranged from 176 to 268 milligrams per liter. Average total hardness of spring water ranged from 157 to 211 milligrams per liter. Water from all of the springs is a calcium-magnesium-bicarbonate type that generally is undersaturated with respect to calcite and dolomite. The molar calcium/magnesium ratio in spring water ranged from 1.21 to 1.88, and indicates that ground water flows through impure dolostone or a mixed limestone and dolostone terrace.Discharge from carbonate springs in Mantua Valley ranges from about to 10 to 4,300 gallons per minute (0.6 to 271 liters per second). Seasonal variations in chemical parameters and discharge indicate that the aquifers supplying water to most of these springs are predominantly diffuse-flow systems that have been locally enhanced by bedrock dissolution. Estimated recharge area for th springs ranges from 2.7 to 7 square miles (7 to 18 square kilometers).On the basis of tritium age dating, the mean residence time of ground water discharges from Olsens-West Hallins and Maple Springs was determined to be from 3 to 9, and from 4 to 15 years, respectively. Dye tracing from point sources 2.65 miles (4.26 kilometers) southeast of Maple Spring, however, indicates a substantially faster component of flow during snowmelt runoff, with a travel time of about 5 days, or an average ground

  18. Preliminary isostatic gravity map of the Grouse Creek and east part of the Jackpot 30 by 60 quadrangles, Box Elder County, Utah, and Cassia County, Idaho

    Science.gov (United States)

    Langenheim, Victoria; Willis, H.; Athens, N.D.; Chuchel, Bruce A.; Roza, J.; Hiscock, H.I.; Hardwick, C.L.; Kraushaar, S.M.; Knepprath, N.E.; Rosario, Jose J.

    2013-01-01

    A new isostatic residual gravity map of the northwest corner of Utah is based on compilation of preexisting data and new data collected by the Utah and United States Geological Surveys. Pronounced gravity lows occur over Junction, Grouse Creek, and upper Raft River Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Raft River Mountains. Higher values in the eastern part of the map may be produced in part by deeper crustal density variations or crustal thinning. Steep linear gravity gradients coincide with mapped Neogene normal faults near Goose Creek and may define basin-bounding faults concealed beneath Junction and Upper Raft River Valleys.

  19. Quality and sources of ground water used for public supply in Salt Lake Valley, Salt Lake County, Utah, 2001

    Science.gov (United States)

    Thiros, Susan A.; Manning, Andrew H.

    2004-01-01

    Ground water supplies about one-third of the water used by the public in Salt Lake Valley, Utah. The occurrence and distribution of natural and anthropogenic compounds in ground water used for public supply in the valley were evaluated. Water samples were collected from 31 public-supply wells in 2001 and analyzed for major ions, trace elements, radon, nutrients, dissolved organic carbon, methylene blue active substances, pesticides, and volatile organic compounds. The samples also were analyzed for the stable isotopes of water (oxygen-18 and deuterium), tritium, chlorofluorocarbons, and dissolved gases to determine recharge sources and ground-water age.Dissolved-solids concentration ranged from 157 to 1,280 milligrams per liter (mg/L) in water from the 31 public-supply wells. Comparison of dissolved-solids concentration of water sampled from the principal aquifer during 1988-92 and 1998-2002 shows a reduction in the area where water with less than 500 mg/L occurs. Nitrate concentration in water sampled from 12 of the 31 public-supply wells was higher than an estimated background level of 2 mg/L, indicating a possible human influence. At least one pesticide or pesticide degradation product was detected at a concentration much lower than drinking-water standards in water from 13 of the 31 wells sampled. Chloroform was the most frequently detected volatile organic compound (17 of 31 samples). Its widespread occurrence in deeper ground water is likely a result of the recharge of chlorinated public-supply water used to irrigate lawns and gardens in residential areas of Salt Lake Valley.Environmental tracers were used to determine the sources of recharge to the principal aquifer used for public supply in the valley. Oxygen-18 values and recharge temperatures computed from dissolved noble gases in the ground water were used to differentiate between mountain and valley recharge. Maximum recharge temperatures in the eastern part of the valley generally are below the range

  20. Hydrocarbon and Carbon Dioxide Fluxes from Natural Gas Well Pad Soils and Surrounding Soils in Eastern Utah.

    Science.gov (United States)

    Lyman, Seth N; Watkins, Cody; Jones, Colleen P; Mansfield, Marc L; McKinley, Michael; Kenney, Donna; Evans, Jordan

    2017-10-17

    We measured fluxes of methane, nonmethane hydrocarbons, and carbon dioxide from natural gas well pad soils and from nearby undisturbed soils in eastern Utah. Methane fluxes varied from less than zero to more than 38 g m -2 h -1 . Fluxes from well pad soils were almost always greater than from undisturbed soils. Fluxes were greater from locations with higher concentrations of total combustible gas in soil and were inversely correlated with distance from well heads. Several lines of evidence show that the majority of emission fluxes (about 70%) were primarily due to subsurface sources of raw gas that migrated to the atmosphere, with the remainder likely caused primarily by re-emission of spilled liquid hydrocarbons. Total hydrocarbon fluxes during summer were only 39 (16, 97)% as high as during winter, likely because soil bacteria consumed the majority of hydrocarbons during summer months. We estimate that natural gas well pad soils account for 4.6 × 10 -4 (1.6 × 10 -4 , 1.6 × 10 -3 )% of total emissions of hydrocarbons from the oil and gas industry in Utah's Uinta Basin. Our undisturbed soil flux measurements were not adequate to quantify rates of natural hydrocarbon seepage in the Uinta Basin.

  1. Spatiotemporal comparison of highly-resolved emissions and concentrations of carbon dioxide and criteria pollutants in Salt Lake City, Utah for health and policy applications

    Science.gov (United States)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Fasoli, B.; Bares, R.; o'Keefe, D.; Song, T.; Huang, J.; Horel, J.; Crosman, E.; Ehleringer, J. R.

    2015-12-01

    This study addresses the need for robust highly-resolved emissions and concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are dependent on proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present emissions inventories and modeled concentrations for CO2 and CAPs: carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), particulate matter (PM2.5 and PM10), and sulfur oxides (SOx) for Salt Lake County, Utah. We compare the resulting concentrations against stationary and mobile measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at an hourly, building and road link resolution as well as hourly gridded emissions with a 0.002o x 0.002o spatial resolution. Two methods for deriving criteria pollutant emission inventories were compared. One was constructed using methods similar to Hestia but downscales total emissions based on the 2011 National Emissions Inventory (NEI). The other used Emission Modeling Clearinghouse spatial and temporal surrogates to downscale the NEI data from annual and county-level resolution to hourly and 0.002o x 0.002o grid cells. The gridded emissions from both criteria pollutant methods were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The CALPUFF dispersion model was used to transport emissions and estimate air pollutant concentrations at an hourly 0.002o x 0.002o resolution. The resulting concentrations were spatially compared in the same manner

  2. Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt: Chapter E in Geologic framework for the national assessment of carbon dioxide storage resources

    Science.gov (United States)

    Buursink, Marc L.; Slucher, Ernie R.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of 14 storage assessment units (SAUs) in Ordovician to Upper Cretaceous sedimentary rocks within the Greater Green River Basin (GGRB) of Wyoming, Colorado, and Utah, and eight SAUs in Ordovician to Upper Cretaceous sedimentary rocks within the Wyoming-Idaho-Utah Thrust Belt (WIUTB). The GGRB and WIUTB are contiguous with nearly identical geologic units; however, the GGRB is larger in size, whereas the WIUTB is more structurally complex. This report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries, as well as their sealing and reservoir units, are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are typically provided to illustrate geologic factors critical to the assessment. This geologic information was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of variably attributed well data and a digital compilation that is known not to include all drilling.

  3. Floodplain Mapping, Utah County, Utah, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  4. Carbon Isotope Ratios Of Carbon Dioxide In The Urban Salt Lake Valley, Utah USA: Source And Long-Term Monitoring Observations

    Science.gov (United States)

    Ehleringer, J.; Lai, C.; Strong, C.; Pataki, D. E.; Bowling, D. R.; Schauer, A. J.; Bush, S.

    2011-12-01

    A high-precision, decadal record of carbon isotope ratios in atmospheric carbon dioxide has been produced for the urbanized Salt Lake Valley, Utah USA. These data complement a similar time series of atmospheric carbon dioxide concentrations for different locations in the same urban region. This isotopic record includes diurnal and nocturnal observations based on flask (IRMS-based) and continuous (TDL-based) measurement systems. These data reveal repeatable diurnal and seasonal variations in the anthropogenic and biogenic carbon sources that can be used to reconstruct different source inputs. As the Salt Lake Valley is an isolated urban region, the impacts of local anthropogenic inputs can be distinguished from regional patterns as measured by NOAA at the rural Wendover monitoring station 200 km to the west of the Salt Lake Valley. Complementary data, such as vehicle exhaust, emission from power plants and household furnaces, plant and soil organic matter, are also provided to quantify the carbon isotope ratios of the predominant anthropogenic and biogenic sources within the Salt Lake Valley. The combined source and long-term observational values will be made freely available and their utility is discussed for modeling efforts including urban metabolism modeling and atmospheric trace gas modeling.

  5. Endogenic carbonate sedimentation in Bear Lake, Utah and Idaho, over the last two glacial-interglacial cycles

    Science.gov (United States)

    Dean, W.E.

    2009-01-01

    Sediments deposited over the past 220,000 years in Bear Lake, Utah and Idaho, are predominantly calcareous silty clay, with calcite as the dominant carbonate mineral. The abundance of siliciclastic sediment indicates that the Bear River usually was connected to Bear Lake. However, three marl intervals containing more than 50% CaCO3 were deposited during the Holocene and the last two interglacial intervals, equivalent to marine oxygen isotope stages (MIS) 5 and 7, indicating times when the Bear River was not connected to the lake. Aragonite is the dominant mineral in two of these three high-carbonate intervals. The high-carbonate, aragonitic intervals coincide with warm interglacial continental climates and warm Pacific sea-surface temperatures. Aragonite also is the dominant mineral in a carbonate-cemented microbialite mound that formed in the southwestern part of the lake over the last several thousand years. The history of carbonate sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, organic carbon content, CaCO3 content, X-ray diffraction mineralogy, and HCl-leach chemistry on samples from sediment traps, gravity cores, piston cores, drill cores, and microbialites. Sediment-trap studies show that the carbonate mineral that precipitates in the surface waters of the lake today is high-Mg calcite. The lake began to precipitate high-Mg calcite sometime in the mid-twentieth century after the artificial diversion of Bear River into Bear Lake that began in 1911. This diversion drastically reduced the salinity and Mg2+:Ca2+ of the lake water and changed the primary carbonate precipitate from aragonite to high-Mg calcite. However, sediment-trap and core studies show that aragonite is the dominant mineral accumulating on the lake floor today, even though it is not precipitating in surface waters. The isotopic studies show that this aragonite is derived from reworking and redistribution of shallow-water sediment

  6. Hydrogeology of the Mammoth Spring groundwater basin and vicinity, Markagunt Plateau, Garfield, Iron, and Kane Counties, Utah

    Science.gov (United States)

    Spangler, Lawrence E.

    2012-01-01

    The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet, largely within Dixie National Forest. The plateau is capped primarily by Tertiary- and Quaternary-age volcanic rocks that overlie Paleocene- to Eocene-age limestone of the Claron Formation, which forms escarpments on the west and south sides of the plateau. In the southwestern part of the plateau, an extensive area of sinkholes has formed that resulted primarily from dissolution of the underlying limestone and subsequent subsidence and (or) collapse of the basalt, producing sinkholes as large as 1,000 feet across and 100 feet deep. Karst development in the Claron Formation likely has been enhanced by high infiltration rates through the basalt. Numerous large springs discharge from the volcanic rocks and underlying limestone on the Markagunt Plateau, including Mammoth Spring, one of the largest in Utah, with discharge that ranges from less than 5 to more than 300 cubic feet per second (ft3/s). In 2007, daily mean peak discharge of Mammoth Spring was bimodal, reaching 54 and 56 ft3/s, while daily mean peak discharge of the spring in 2008 and in 2009 was 199 ft3/s and 224 ft3/s, respectively. In both years, the rise from baseflow, about 6 ft3/s, to peak flow occurred over a 4- to 5-week period. Discharge from Mammoth Spring accounted for about 54 percent of the total peak streamflow in Mammoth Creek in 2007 and 2008, and about 46 percent in 2009, and accounted for most of the total streamflow during the remainder of the year. Results of major-ion analyses for water samples collected from Mammoth and other springs on the plateau during 2006 to 2009 indicated calcium-bicarbonate type water, which contained dissolved-solids concentrations that ranged from 91 to 229 milligrams per liter. Concentrations of major ions, trace elements, and nutrients did not exceed primary or secondary drinking-water standards; however, total and fecal coliform bacteria were present in water from Mammoth and

  7. Soil Organic Carbon Storage and Stability in the Aspen-Conifer Ecotone in Montane Forests in Utah, USA

    Directory of Open Access Journals (Sweden)

    Mercedes Román Dobarco

    2014-04-01

    Full Text Available To assess the potential impact of conifer encroachment on soil organic carbon (SOC dynamics and storage in montane aspen-conifer forests from the interior western US, we sampled mineral soils (0–15 cm across the aspen-conifer ecotones in southern and northern Utah and quantified total SOC stocks, stable SOC (i.e., mineral-associated SOC (MoM, labile SOC (i.e., light fraction (LF, decomposable (CO2 release during long-term aerobic incubations and soluble SOC (hot water extractable organic carbon (HWEOC. Total SOC storage (47.0 ± 16.5 Mg C ha−1 and labile SOC as LF (14.0 ± 7.10 Mg C ha−1, SOC decomposability (cumulative released CO2-C of 5.6 ± 3.8 g C g−1 soil or HWEOC (0.6 ± 0.6 mg C g−1 soil did not differ substantially with vegetation type, although a slight increase in HWEOC was observed with increasing conifer in the overstory. There were statistically significant differences (p = 0.035 in stable MoM storage, which was higher under aspen (31.2 ± 15.1 Mg C ha−1 than under conifer (22.8 ± 9.0 Mg C ha−1, with intermediate values under mixed (25.7 ± 8.8 Mg C ha−1. Texture had the greatest impact on SOC distribution among labile and stable fractions, with increasing stabilization in MoM and decreasing bio-availability of SOC with increasing silt + clay content. Only at lower silt + clay contents (40%–70% could we discern the influence of vegetation on MoM content. This highlights the importance of chemical protection mechanisms for long-term C sequestration.

  8. The Gothic shale of the Pennsylvanian Paradox Formation Greater Aneth Field (Aneth Unit) Southeastern Utah U.S.A.: Seal for Hydrocarbons and Carbon Dioxide Storage.

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dewers, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chidsey, Thomas C. [Utah Geoglogical Survey, Salt Lake City, UT (United States); Carney, Stephanie M. [Utah Geoglogical Survey, Salt Lake City, UT (United States); Bereskin, S. R. [Bereskin and Associates, Salt Lake City (United States)

    2017-05-01

    Greater Aneth oil field, Utah’s largest oil producer, was discovered in 1956 and has produced over 483 million barrels of oil. Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian (Desmoinesian) Paradox Formation. Because Greater Aneth is a mature, major oil field in the western U.S., and has a large carbonate reservoir, it was selected to demonstrate combined enhanced oil recovery and carbon dioxide storage. The Aneth Unit in the northwestern part of the field has produced over 160 million barrels of the estimated 386 million barrels of original oil in place—a 42% recovery rate. The large amount of remaining oil made the Aneth Unit ideal to enhance oil recovery by carbon dioxide flooding and demonstrate carbon dioxide storage capacity.

  9. Organo-mineral interactions promote greater soil organic carbon stability under aspen in semi-arid montane forests in Utah

    Science.gov (United States)

    Van Miegroet, H.; Roman Dobarco, M.

    2014-12-01

    Forest species influence soil organic carbon (SOC) storage through litter input, which in interaction with soil microclimate, texture and mineralogy, lead to different SOC stabilization and storage patterns. We sampled mineral soil (0-15 cm) across the ecotone between aspen (Populus tremuloides) and mixed conifers stands (Abies lasiocarpa and Pseudotsuga menziesii) in semi-arid montane forests from Utah, to investigate the influence of vegetation vs. site characteristics on SOC stabilization, storage and chemistry. SOC was divided into light fraction (LF), mineral-associated SOC in the silt and clay fraction (MoM), and a dense subfraction > 53 μm (SMoM) using wet sieving and electrostatic attraction. SOC decomposability and solubility was derived from long term laboratory incubations and hot water extractions (HWE). Fourier transform infrared spectroscopy (FTIR) was used to study differences in chemical functional groups in LF and MoM. Vegetation cover did not affect SOC storage (47.0 ± 16.5 Mg C ha-1), SOC decomposability (cumulative CO2-C release of 93.2 ± 65.4 g C g-1 C), or SOC solubility (9.8 ± 7.2 mg C g-1 C), but MoM content increased with presence of aspen [pure aspen (31.2 ± 15.1 Mg C ha-1) > mixed (25.7 ± 8.8 Mg C ha-1) > conifer (22.8 ± 9.0 Mg C ha-1)]. Organo-mineral complexes reduced biological availability of SOC, indicated by the negative correlation between silt+clay (%) and decomposable SOC per gram of C (r = -0.48, p = 0.001) or soluble SOC (r = -0.59, p molecules (e.g., polysaccharides) of plant or microbial origin. FTIR spectra clustered by sites with similar parent material rather than by vegetation cover. This suggests that initial differences in litter chemistry between aspen and conifers converged into similar MoM chemistry within sites.

  10. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  11. Lacustrine cave carbonates: Novel archives of paleohydrologic change in the Bonneville Basin (Utah, USA)

    Science.gov (United States)

    McGee, David; Quade, Jay; Edwards, R. Lawrence; Broecker, Wallace S.; Cheng, Hai; Reiners, Peter W.; Evenson, Nathan

    2012-10-01

    Records of past changes in lake levels and lake water isotopic composition in closed basins provide key insights into past variations in the hydrological cycle; however, these records are often limited by dating precision and temporal resolution. Here we present data from lacustrine cave carbonates, a previously unexplored class of carbonates that comprise a promising new archive of past hydrologic changes in the Bonneville Basin of the northeastern Great Basin (USA). These dense carbonates precipitated within caves, crevices, and other protected spaces flooded by Lake Bonneville during its highstand in the last glacial period. We report on deposits in Cathedral and Craners caves, located ˜50 km apart at similar elevations approximately 100 m above the modern Great Salt Lake and almost 200 m below Lake Bonneville's highstand shoreline. Carbonates from the two caves show similar chronologies, mineralogical transitions, isotopic compositions, and uranium concentrations. These findings suggest that lacustrine cave carbonates record changes in lake level and in the isotopic composition and chemistry of lake water. Importantly, the deposits can be precisely dated by U-Th methods, providing the first records of Lake Bonneville's water balance changes tied to precise U-Th ages. Close agreement between paired U-Th and calibrated 14C ages in the deposits suggests a minimal (influx of freshwater during Heinrich Stadial 2. A hiatus in deposition beginning at 18.2±0.3 ka may be the result of freshening related to the lake's overflow. Calcite deposition resumes at Cathedral Cave at 16.4±0.2 ka, suggesting that basin overflow had ceased by this time and that the lake's calcite saturation state had increased, and δ18O values increase markedly after 15.9 ka, consistent with drying at this time. These data imply that the lake's deglacial regression began well before the Bølling warming. Cessation of this second phase of deposition at 14.7±0.2 ka, coincident with the B

  12. Braided Carbon Fiber Rope Flow Characteristics. Degree awarded by Utah Univ.

    Science.gov (United States)

    Heman, J. R. C.; McCool, A. (Technical Monitor)

    2000-01-01

    I am submitting the following technical subject for consideration as a thesis topic for the master degree: The reusable solid rocket motor (RSRM) nozzle internal joints are being evaluated for the incorporation of a carbon fiber rope (CFR) as a thermal barrier. The CFR is approximately 0.260 in. diameter and is composed of approximately 12,000 carbon fibers, woven in ten sheaths or layers. The CFR is manufactured by a sub-tier vendor and subsequently several of its manufacturing details are proprietary to that vendor. The CFR design intent is to prevent hot motor combustion products and slag from intruding into the joint scaling area while still approaching a vented joint design to avoid the detriments of gas jet impingement. As a member of the Heat Transfer section at Thiokol Propulsion, two main goals exist as part of this NASA funded design effort: (1) development of flow model through the CFR and (2) development of a heat transfer model through the CFR. While both models are needed and most probably interrelated, the gas flow model is being targeted as the subject matter. Essentially, the topic would be "Modeling of Gas Flow through a Braided Carbon Fiber Rope". An AIAA journal or conference paper is being considered through Thiokol/NASA as well. A sub-scale CFR flow test fixture was designed to simulate the relative levels of CFR compression. The test fixture provides the means to measure gas mass flow rate upstream of the CFR and the pressure and temperature both upstream and downstream of the CFR. The test fixture was designed to eliminate the possibility of dynamic gapping at the CFR location and provide minimal flow resistance to ambient for gases exiting the rope. The data collected in the experiment will be evaluated to define a permeability/flow resistance model. Two possibilities exist for the flow characteristics through the CFR from choked flow to strictly friction driven. A test matrix for evaluating the CFR has been compiled, which addresses both

  13. A diagenetic control on the Early Triassic Smithian-Spathian carbon isotopic excursions recorded in the marine settings of the Thaynes Group (Utah, USA).

    Science.gov (United States)

    Thomazo, C; Vennin, E; Brayard, A; Bour, I; Mathieu, O; Elmeknassi, S; Olivier, N; Escarguel, G; Bylund, K G; Jenks, J; Stephen, D A; Fara, E

    2016-05-01

    In the aftermath of the end-Permian mass extinction, Early Triassic sediments record some of the largest Phanerozoic carbon isotopic excursions. Among them, a global Smithian-negative carbonate carbon isotope excursion has been identified, followed by an abrupt increase across the Smithian-Spathian boundary (SSB; ~250.8 Myr ago). This chemostratigraphic evolution is associated with palaeontological evidence that indicate a major collapse of terrestrial and marine ecosystems during the Late Smithian. It is commonly assumed that Smithian and Spathian isotopic variations are intimately linked to major perturbations in the exogenic carbon reservoir. We present paired carbon isotopes measurements from the Thaynes Group (Utah, USA) to evaluate the extent to which the Early Triassic isotopic perturbations reflect changes in the exogenic carbon cycle. The δ(13) Ccarb variations obtained here reproduce the known Smithian δ(13) Ccarb -negative excursion. However, the δ(13) C signal of the bulk organic matter is invariant across the SSB and variations in the δ(34) S signal of sedimentary sulphides are interpreted here to reflect the intensity of sediment remobilization. We argue that Middle to Late Smithian δ(13) Ccarb signal in the shallow marine environments of the Thaynes Group does not reflect secular evolution of the exogenic carbon cycle but rather physicochemical conditions at the sediment-water interface leading to authigenic carbonate formation during early diagenetic processes. © 2016 John Wiley & Sons Ltd.

  14. HYDRAULICS, WASATCH COUNTY, UTAH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  15. FLOODPLAIN, IRON COUNTY, UTAH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  16. DCS Hydrology, Sevier County, Utah

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. Estimating aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus using data from the Forest Inventory and Analysis program, Landsat, and LANDFIRE

    Science.gov (United States)

    Chen, Xuexia; Liu, Shuguang; Zhu, Zhiliang; Vogelmann, James E.; Li, Zhengpeng; Ohlen, Donald O.

    2011-01-01

    The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fire-induced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High

  18. Bedrock geology of snyderville basin: Structural geology techniques applied to understanding the hydrogeology of a rapidly developing region, Summit County, Utah

    Science.gov (United States)

    Keighley, K.E.; Yonkee, W.A.; Ashland, F.X.; Evans, J.P.

    1997-01-01

    The availability of ground water is a problem for many communities throughout the west. As these communities continue to experience growth, the initial allocation of ground water supplies proves inadequate and may force restrictions on existing, and future, development plans. Much of this new growth relies on ground water supplies extracted from fractured bedrock aquifers. An example of a community faced with this problem is western Summit County, near Park City, Utah, This area has experienced significant water shortages coupled with a 50% growth rate in the past 10-15 years. Recent housing development rests directly on complexly deformed Triassic to Jurassic sedimentary rocks in the hanging wall of the Mount Raymond-Absaroka thrust system. The primary fractured bedrock aquifers are the Nugget Sandstone, and limestones in the Thaynes and Twin Creek Formations. Ground water production and management strategies can be improved if the geometry of the structures and the flow properties of the fractured and folded bedrock can be established. We characterize the structures that may influence ground water flow at two sites: the Pinebrook and Summit Park subdivisions, which demonstrate abrupt changes (less than 1 mi/1.6 km) within the hydrogeologic systems. Geologic mapping at scales of 1:4500 (Pinebrook) and 1:9600 (Summit Park), scanline fracture mapping at the outcrop scale, geologic cross sections, water well data, and structural analysis, provides a clearer picture of the hydrogeologic setting of the aquifers in this region, and has been used to successfully site wells. In the Pinebrook area, the dominate map-scale structures of the area is the Twomile Canyon anticline, a faulted box-like to conical anticline. Widely variable bedding orientations suggest that the fold is segmented and is non-cylindrical and conical on the western limb with a fold axis that plunges to the northwest and also to the southeast, and forms a box-type fold between the middle and eastern

  19. Jensenite, Cu3 Te (super 6+) O6 .2H2O, a new mineral species from the Centennial Eureka Mine, Tintic District, Juab County, Utah

    Science.gov (United States)

    Roberts, Andrew C.; Grice, Joel D.; Groat, Lee A.; Criddle, Alan J.; Gault, Robert A.; Erd, Richard C.; Moffatt, Elizabeth A.

    1996-01-01

    Jensenite, ideally Cu 3 Te (super 6+) O 6 .2H 2 O, is monoclinic, P2 1 /n (14), with unit-cell parameters refined from powder data: a 9.204(2), b 9.170(2), c 7.584(1) Aa, beta 102.32(3) degrees , V 625.3(3) Aa 3 , a:b:c 1.0037:1:0.8270, Z = 4. The strongest six reflections of the X-ray powder-diffraction pattern [d in Aa(I)(hkl)] are: 6.428(100)(101,110), 3.217(70)(202), 2.601(40)(202), 2.530(50)(230), 2.144(35)(331) and 1.750(35)(432). The mineral is found on the dumps of the Centennial Eureka mine, Juab County, Utah, where it occurs as isolated crystals or as groups of crystals on drusy white quartz. Associated minerals are mcalpineite, xocomecatlite and unnamed Cu(Mg,Cu,Fe,Zn) 2 Te (super 6+) O 6 .6H 2 O. Individual crystals of jensenite are subhedral to euhedral, and form simple rhombs that are nearly equant. Some crystals are slightly elongate [101], with a length-to-width ratio up to 2:1. The largest crystal is approximately 0.4 mm in size; the average size is between 0.1 and 0.2 mm. Cleavage {101} fair. Forms are: {101} major; {110} medium; {100} minor; {301}, {201}, {203}, {102}, {010} very small. The mineral is transparent, emerald green, with a less intense streak of the same color and an uneven fracture. Jensenite is adamantine, brittle and nonfluorescent; H (Mohs) 3-4; D (calc.) 4.78 for the idealized formula, 4.76 g/cm 3 for the empirical formula. In a polished section, jensenite is very weakly bireflectant and nonpleochroic. In reflected plane-polarized light in air, it is a nondescript grey, and in oil, it is a much darker grey in color with a brownish tint, with ubiquitous bright green internal reflections. Anisotropy is not detectable. Measured values of reflectance, in air and in oil, are tabulated. Electron-microprobe analyses yielded CuO 50.91, ZnO 0.31, TeO 3 38.91, H 2 O (calc.) [8.00], total [98.13] wt.%. The empirical formula, derived from crystal-structure analysis and electron-microprobe analyses, is (Cu (sub 2.92) Zn (sub 0.02) ) (sub

  20. Preliminary isostatic residual gravity map of the Newfoundland Mountains 30' by 60' quadrangle and east part of the Wells 30' by 60' quadrangle, Box Elder County, Utah

    Science.gov (United States)

    Langenheim, Victoria; Athens, N.D.; Churchel, B.A.; Willis, H.; Knepprath, N.E.; Rosario, Jose J.; Roza, J.; Kraushaar, S.M.; Hardwick, C.L.

    2013-01-01

    A new isostatic residual gravity map of the Newfoundland Mountains and east of the Wells 30×60 quadrangles of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over Grouse Creek Valley and locally beneath the Great Salt Lake Desert, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Newfoundland, Silver Island, and Little Pigeon Mountains. Gravity values measured on pre-Tertiary basement to the north in the Bovine and Hogup Mountains are as much as 10mGal lower. Steep, linear gravity gradients may define basin-bounding faults concealed along the margins of the Newfoundland, Silver Island, and Little Pigeon Mountains, Lemay Island and the Pilot Range.

  1. Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona

    Science.gov (United States)

    Cole, Kenneth L.; Arundel, Samantha T.

    2005-09-01

    Carbon isotopes in rodent fecal pellets were measured on packrat (Neotoma spp.) middens from the Grand Canyon, Arizona. The pellet samples reflect the abundance of cold-intolerant C4 and Crassulacean acid metabolism (CAM) plant species relative to the predominant C3 vegetation in the packrat diet. The temporal sequence of isotopic results suggests a temperature decline followed by a sharp increase corresponding to the Bølling/ Allerød Younger Dryas early Holocene sequence. This pattern was then tested using the past distribution of Utah agave (Agave utahensis). Spatial analyses of the range of this temperature-sensitive CAM species demonstrate that its upper elevational limit is controlled by winter minimum temperature. Applying this paleotemperature proxy to the past elevational limits of Utah agave suggests that minimum winter temperatures were ˜8 °C below modern values during the Last Glacial Maximum, 4.5 6.5 °C below modern during the Bølling/Allerød, and 7.5 8.7 °C below modern during the early Younger Dryas. As the Younger Dryas terminated, temperatures warmed ˜4 °C between ca. 11.8 ka and 11.5 ka. These extreme fluctuations in winter minimum temperature have not been generally accepted for terrestrial paleoecological records from the arid southwestern United States, likely because of large statistical uncertainties of older radiocarbon results and reliance on proxies for summer temperatures, which were less affected.

  2. Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona

    Science.gov (United States)

    Cole, K.L.; Arundel, S.T.

    2005-01-01

    Carbon isotopes in rodent fecal pellets were measured on packrat (Neotoma spp.) middens from the Grand Canyon, Arizona. The pellet samples reflect the abundance of cold-intolerant C4 and Crassulacean acid metabolism (CAM) plant species relative to the predominant C3 vegetation in the packrat diet. The temporal sequence of isotopic results suggests a temperature decline followed by a sharp increase corresponding to the B??lling/Aller??d-Younger Dryas - early Holocene sequence. This pattern was then tested using the past distribution of Utah agave (Agave utahensis). Spatial analyses of the range of this temperature-sensitive CAM species demonstrate that its upper elevational limit is controlled by winter minimum temperature. Applying this paleotemperature proxy to the past elevational limits of Utah agave suggests that minimum winter temperatures were ???8??C below modern values during the Last Glacial Maximum, 4.5-6.5 ??C below modern during the B??lling/Aller??d, and 7.5-8.7 ??C below modern during the early Younger Dryas. As the Younger Dryas terminated, temperatures warmed ???4 ??C between ca. 11.8 ka and 11.5 ka. These extreme fluctuations in winter minimum temperature have not been generally accepted for terrestrial paleoecological records from the arid southwestern United States, likely because of large statistical uncertainties of older radiocarbon results and reliance on proxies for summer temperatures, which were less affected. ?? 2005 Geological Society of America.

  3. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2001-04-19

    The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

  4. Radiological dose assessment of Department of Energy Pinellas Plant waste proposed for disposal at United States Pollution Controll, Inc. in Tooele County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Socolof, M.L.; Lee, D.W.; Kocher, D.C.

    1996-04-01

    Pinellas Plant (Largo FL) is proposing to ship hazardous sludge (F006 waste) to US Pollution Control Inc. (USPCI) hazardous waste landfill in Utah for disposal. This sludge contains tritium in concentrations of about 28 pCi/g. Objective of this study is to assess possible radiological impact to workers at USPCI and the public due to handling, processing, and burial of the tritium waste. Estimated doses to workers from waste handling and to the public from disposed waste range from 4.7x10{sup -6} to 9.8x10{sup -4} mrem/y. Results reveal extremely low annual doses that are far below natural background radiation exposure and regulatory limits.

  5. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  6. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  7. Development of ground-motion prediction equations relevant to shallow-mining-induced seismicity in the Trial Mountain area, Emery County, Utah

    Science.gov (United States)

    McGarr, A.; Fletcher, Joe B.

    2005-01-01

    To provide a basis for assessing the seismic hazard to the Joes Valley Dam due to future coal mining in the nearby Cottonwood Tract, central Utah, we developed ground-motion prediction relations using data recorded by a seismic network, established and operated by the University of Utah Seismograph Stations. The network was centered on the Trail Mountain coal mine, located adjacent to the Cottonwood Tract. From late 2000 until early 2001, this network recorded numerous mining-induced events with magnitudes as large as 2.17. The ground motion from these events, recorded at hypocentral distances ranging from about 500 m to approximately 10 km, were well suited to developing new ground-motion prediction relations, especially when augmented by data from a M 4.2 earthquake in the Willow Creek mine, about 50 km north of Trail Mountain. Using a two-stage regression analysis, we determined prediction relations for peak acceleration, peak velocity, and pseudovelocity response spectra, at 5% damping, for periods of 0.1, 0.2, 0.5, 1.0, and 2.0 s. To illustrate the potential seismic hazard at the Joes Valley dam, we used these ground-motion relations to predict a peak velocity of 6.8 cm/s due to an earthquake with the probable maximum magnitude of 3.9, at a hypocentral distance of 1 km, recorded at a rock site typical for this region. This result does not take into account the site response at the dam.

  8. Geothermal Technologies Program: Utah

    Energy Technology Data Exchange (ETDEWEB)

    2005-06-01

    Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

  9. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier

  10. Hydrology and numerical simulation of groundwater movement and heat transport in Snake Valley and surrounding areas, Juab, Miller, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Masbruch, Melissa D.; Gardner, Philip M.; Brooks, Lynette E.

    2014-01-01

    Snake Valley and surrounding areas, along the Utah-Nevada state border, are part of the Great Basin carbonate and alluvial aquifer system. The groundwater system in the study area consists of water in unconsolidated deposits in basins and water in consolidated rock underlying the basins and in the adjacent mountain blocks. Most recharge occurs from precipitation on the mountain blocks and most discharge occurs from the lower altitude basin-fill deposits mainly as evapotranspiration, springflow, and well withdrawals.The Snake Valley area regional groundwater system was simulated using a three-dimensional model incorporating both groundwater flow and heat transport. The model was constructed with MODFLOW-2000, a version of the U.S. Geological Survey’s groundwater flow model, and MT3DMS, a transport model that simulates advection, dispersion, and chemical reactions of solutes or heat in groundwater systems. Observations of groundwater discharge by evapotranspiration, springflow, mountain stream base flow, and well withdrawals; groundwater-level altitudes; and groundwater temperatures were used to calibrate the model. Parameter values estimated by regression analyses were reasonable and within the range of expected values.This study represents one of the first regional modeling efforts to include calibration to groundwater temperature data. The inclusion of temperature observations reduced parameter uncertainty, in some cases quite significantly, over using just water-level altitude and discharge observations. Of the 39 parameters used to simulate horizontal hydraulic conductivity, uncertainty on 11 of these parameters was reduced to one order of magnitude or less. Other significant reductions in parameter uncertainty occurred in parameters representing the vertical anisotropy ratio, drain and river conductance, recharge rates, and well withdrawal rates.The model provides a good representation of the groundwater system. Simulated water-level altitudes range over

  11. Sandstone-body and shale-body dimensions in a braided fluvial system: Salt wash sandstone member (Morrison formation), Garfield County, Utah

    Science.gov (United States)

    Robinson, J.W.; McCabea, P.J.

    1997-01-01

    Excellent three-dimensional exposures of the Upper Jurassic Salt Wash Sandstone Member of the Morrison Formation in the Henry Mountains area of southern Utah allow measurement of the thickness and width of fluvial sandstone and shale bodies from extensive photomosaics. The Salt Wash Sandstone Member is composed of fluvial channel fill, abandoned channel fill, and overbank/flood-plain strata that were deposited on a broad alluvial plain of low-sinuosity, sandy, braided streams flowing northeast. A hierarchy of sandstone and shale bodies in the Salt Wash Sandstone Member includes, in ascending order, trough cross-bedding, fining-upward units/mudstone intraclast conglomerates, singlestory sandstone bodies/basal conglomerate, abandoned channel fill, multistory sandstone bodies, and overbank/flood-plain heterolithic strata. Trough cross-beds have an average width:thickness ratio (W:T) of 8.5:1 in the lower interval of the Salt Wash Sandstone Member and 10.4:1 in the upper interval. Fining-upward units are 0.5-3.0 m thick and 3-11 m wide. Single-story sandstone bodies in the upper interval are wider and thicker than their counterparts in the lower interval, based on average W:T, linear regression analysis, and cumulative relative frequency graphs. Multistory sandstone bodies are composed of two to eight stories, range up to 30 m thick and over 1500 m wide (W:T > 50:1), and are also larger in the upper interval. Heterolithic units between sandstone bodies include abandoned channel fill (W:T = 33:1) and overbank/flood-plain deposits (W:T = 70:1). Understanding W:T ratios from the component parts of an ancient, sandy, braided stream deposit can be applied in several ways to similar strata in other basins; for example, to (1) determine the width of a unit when only the thickness is known, (2) create correlation guidelines and maximum correlation lengths, (3) aid in interpreting the controls on fluvial architecture, and (4) place additional constraints on input variables to

  12. Ten Utah Painters

    OpenAIRE

    Whitlock, Andrew

    1984-01-01

    Today the art world is rich and diverse with regional as well as national art centers. As in the past, art is alive and well in Utah. The show Ten Utah Painters invites us to see and experiece what some of Utah's best contemporary artists are doing. Their paintings invite us to look and to enjoy but also to learn and open up our visual senses to a broader vista.

  13. Status of Utah Bats

    Science.gov (United States)

    2009-01-27

    DAVIS DUCHESNE EMERY GARFIELD GRAND IRON JUAB KANE MILLARD MORGAN PIUTE RICH SALT LAKE SAN JUAN SANPETE SEVIER SUMMIT TOOELE UINTAH UTAH WASATCH...LAKESAN JUANSANPETE SEVIER SUMMIT TOOELEUINTAH UTAH WASATCH WASHINGTON WAYNE WEBER Townsend’s Big‐eared bat  Figure 26b. Proportion of Townsend’s...KANE MILLARDMORGAN PIUTE RICH SALT LAKE SAN JUAN SANPETE SEVIER SUMMIT TOOELE UINTAH UTAH WASATCH WASHINGTON WAYNE WEBER big brown bat  Figure 26c

  14. 75 FR 62627 - Environmental Impact Statement; Davis County, UT

    Science.gov (United States)

    2010-10-12

    ... Federal Highway Administration Environmental Impact Statement; Davis County, UT AGENCY: Federal Highway... that an Environmental Impact Statement (EIS) will be prepared for proposed transportation improvements in Davis County, Utah. FOR FURTHER INFORMATION CONTACT: Edward Woolford, Environmental Program...

  15. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  16. 78 FR 59242 - Approval and Promulgation of Air Quality Implementation Plans; Utah; Maintenance Plan for the...

    Science.gov (United States)

    2013-09-26

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Utah; Maintenance... revision is the State of Utah's maintenance plan for the 1997 8-hour ozone standard for Salt Lake County.... Maintenance Plan B. Rules III. Issues Raised by Commenters and EPA's Responses IV. Statutory and Executive...

  17. Knowledge Assessment of Food Safety Managers in Utah and Its Implications on the Exam and Instruction

    Science.gov (United States)

    Nummer, Brian A.; Guy, Stanley M.; Bentley, Joanne P. H.

    2010-01-01

    Food Safety Manager's Certification is offered through a state-local Extension partnership in Utah using an online course management system. Exams and course materials were created by an Extension Specialist at Utah State Univ. Extension Agents provide exam and curriculum facilitation in each county. This form of distance education enables access…

  18. Wellness Works: A Collaborative Program for Youth and Adults in Rural Utah

    Science.gov (United States)

    Shirley, Lindsey; Roark, Mark F.; Lewis, Lisa

    2012-01-01

    Utah State University Cooperative Extension programming, provided through the historic land-grant system, is one method used to meet the needs of residents located in rural communities. Residents in a Central Utah county need Cooperative Extension programs to address the health and wellness of their rural community. According to the Utah…

  19. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  20. ASC Predictive Science Academic Alliance Program (PSAAP) II Review of the Carbon Capture Multidisciplinary Science Center (CCMSC) at the University of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Still, C. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferencz, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoekstra, R. J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hungerford, A. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kuhl, A. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montoya, D. R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wagner, J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-06-08

    The review was conducted on March 31 – April 1, 2015 at the University of Utah. Overall the review team was impressed with the work presented and found that the CCMSC had met or exceeded all of their Year 1 milestones. Specific details, comments and recommendations are included in this document.

  1. Alfalfa Weevil in Utah

    OpenAIRE

    Evans, Edward W.

    1989-01-01

    The alfalfa weevil is a major pest throughout Utah. It is a beetle with one generation per year. Eggs hatch in the spring, and the grub-like immature weevils (larvae) feed by chewing on the alfalfa foliage. In high numbers, alfalfa weevils can cause severe damage to Utah alfalfa. In any given year, however, the weevils are few enough in number in many fields to cause only minor damage.

  2. FLOODPLAIN, BOX ELDER COUNTY, UTAH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  3. HYDRAULICS, Box Elder COUNTY, UTAH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  4. HYDROLOGY, BOX ELDER COUNTY, UTAH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. DCS Hydraulics Submittal, Weber County, Utah, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  6. Age and smoking-adjusted lung cancer incidence in a Utah county with a steel mill; Incidence du cancer du poumon ajustee sur l'age et le tabagisme dans un comte de l'Utah ou est implantee une acierie

    Energy Technology Data Exchange (ETDEWEB)

    Blindauer, K.M.; Erockson, L.; Mcelwee, N.; Gren, L.H.; Lyon, J.L.

    1999-06-01

    The objectives of the study is the relation between the lung cancer and the atmospheric pollution in the Utah country taking into account the nicotinism and the age. The authors suggest an interaction between the nicotinism and the atmospheric pollution. The method of this study is criticized.

  7. 77 FR 35873 - Approval, Disapproval and Promulgation of Air Quality Implementation Plan; Utah; Maintenance Plan...

    Science.gov (United States)

    2012-06-15

    ...; Maintenance Plan for the 1-Hour Ozone Standard for Salt Lake and Davis Counties AGENCY: Environmental... revisions updated the State of Utah's maintenance plan for the 1-hour ozone standard for Salt Lake County... concerning such maintenance plan. This action is being taken under section 110 of the Clean Air Act (CAA...

  8. Innovative Promotion of Renewable Energy Development for Challenging Sustainable Low-Carbon Society: Case Study of Pingtung County, Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2014-01-01

    Full Text Available Pingtung County, located in the southernmost part of Taiwan, has been selected as one of the Smarter Cities Challenge by the International Business Machines (IBM in 2013 due to its innovative promotion for renewable energy exploitation in recent years. In this regard, the objective of this paper will be to present an in-depth analysis of the success of environmental sustainability efforts through aggressive measures and profitable plans by this tropical county. The description in the paper is, thus, summarized on the central regulations and economic measures for promoting renewable energy in Taiwan, focusing on the feed-in tariff (FIT. Then, some innovative promotion plans for renewable energy in Pinugtung County, including swine-derived biogas-to-power and “Raise Water, Grow Electricity”, were further addressed to show the preliminary results under the funding supports of the central and local governments. With a practical basis of the total swine population (around 433,000 heads, from the farm scale of over 5,000 heads in Pingtung County, a preliminary analysis showed the annual benefits: methane reduction of 2.2 Gg, electricity generation of 8.3 × 106 kilowatt-hour (kW-h, equivalent electricity charge saving of 8.3 × 105 US Dollar (USD, and equivalent carbon dioxide mitigation of 50.9 thousand tons (Gg.

  9. Utah Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2.5 kilometer Bouguer anomaly grid for the state of Utah. Number of columns is 196 and number of rows is 245. The order of the data is from the lower left to the...

  10. Groundwater model of the Great Basin carbonate and alluvial aquifer system version 3.0: Incorporating revisions in southwestern Utah and east central Nevada

    Science.gov (United States)

    Brooks, Lynette E.

    2017-12-01

    The groundwater model described in this report is a new version of previously published steady-state numerical groundwater flow models of the Great Basin carbonate and alluvial aquifer system, and was developed in conjunction with U.S. Geological Survey studies in Parowan, Pine, and Wah Wah Valleys, Utah. This version of the model is GBCAAS v. 3.0 and supersedes previous versions. The objectives of the model for Parowan Valley were to simulate revised conceptual estimates of recharge and discharge, to estimate simulated aquifer storage properties and the amount of reduction in storage as a result of historical groundwater withdrawals, and to assess reduction in groundwater withdrawals necessary to mitigate groundwater-level declines in the basin. The objectives of the model for the area near Pine and Wah Wah Valleys were to recalibrate the model using new observations of groundwater levels and evapotranspiration of groundwater; to provide new estimates of simulated recharge, hydraulic conductivity, and interbasin flow; and to simulate the effects of proposed groundwater withdrawals on the regional flow system. Meeting these objectives required the addition of 15 transient calibration stress periods and 14 projection stress periods, aquifer storage properties, historical withdrawals in Parowan Valley, and observations of water-level changes in Parowan Valley. Recharge in Parowan Valley and withdrawal from wells in Parowan Valley and two nearby wells in Cedar City Valley vary for each calibration stress period representing conditions from March 1940 to November 2013. Stresses, including recharge, are the same in each stress period as in the steady-state stress period for all areas outside of Parowan Valley. The model was calibrated to transient conditions only in Parowan Valley. Simulated storage properties outside of Parowan Valley were set the same as the Parowan Valley properties and are not considered calibrated. Model observations in GBCAAS v. 3.0 are

  11. Libraries in Utah: MedlinePlus

    Science.gov (United States)

    ... this page: https://medlineplus.gov/libraries/utah.html Libraries in Utah To use the sharing features on ... please enable JavaScript. Provo Utah Valley Hospital Medical Library ILL 1134 North 500 West Provo, UT 84604- ...

  12. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    Energy Technology Data Exchange (ETDEWEB)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to

  13. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  14. MAJOR OIL PLAYS IN UTAH AND VICINITY

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey, Jr.

    2003-01-01

    Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the first project year (July 1 through September 30, 2002). This work included producing general descriptions of Utah's major petroleum provinces, gathering field data, and analyzing best practices in the Utah Wyoming thrust belt. Major Utah oil reservoirs and/or source rocks are found in Devonian through Permian, Jurassic, Cretaceous, and Tertiary rocks. Stratigraphic traps include carbonate buildups and fluvial-deltaic pinchouts, and structural traps include basement-involved and detached faulted anticlines. Best practices used in Utah's oil fields consist of waterflood, carbon-dioxide flood, gas-injection, and horizontal drilling programs. Nitrogen injection and horizontal

  15. Urban and community forests of the Mountain region: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming

    Science.gov (United States)

    David J. Nowak; Eric J. Greenfield

    2010-01-01

    This report details how land cover and urbanization vary within the states of Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming by community (incorporated and census designated places), county subdivision, and county. Specifically this report provides critical urban and community forestry information for each state including human population...

  16. Hydrographic Areas Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada and Adjacent Areas in Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of sub delineations of the hydrographic area (HA) boundaries and polygons drawn at 1:1,000,000 scale for the Great Basin supplemented by...

  17. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada and Adjacent Areas in Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Accurate delineations of irrigated acreage are needed for the development of water-use estimates and in determining water-budget calculations for the Basin and Range...

  18. Irrigated Acreage Geodatabase Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Accurate delineations of irrigated acreage are critical in the development of water-use estimates and in determining an accurate water budget for the hydrographic...

  19. STANSBURY ROADLESS AREAS, UTAH.

    Science.gov (United States)

    Sorensen, Martin L.; Kness, Richard F.

    1984-01-01

    A mineral-resource survey of the Stansbury Roadless Areas, Utah was conducted and showed that there is little likelihood for the occurrence of metallic mineral resources in the areas. Limestone and dolomite underlie approximately 50 acres in the roadless areas and constitute a nonmetallic mineral resource of undetermined value. The oil and gas potential is not known and cannot be assessed without exploratory geophysical and drilling programs. There are no known geothermal resources. An extensive program of geophysical exploration and exploratory drilling would be necessary to determine the potential for oil and gas in the Stansbury Roadless Areas.

  20. Projected effects of climate change on the carbon stocks of European beech (Fagus sylvatica L. forests in Zala County, Hungary

    Directory of Open Access Journals (Sweden)

    Somogyi Zoltán

    2016-03-01

    Full Text Available Recent studies suggest that climate change will lead to the local extinction of many tree species from large areas during this century, affecting the functioning and ecosystem services of many forests. This study reports on projected carbon losses due to the assumed local climate change-driven extinction of European beech (Fagus sylvatica L. from Zala County, South-Western Hungary, where the species grows at the xeric limit of its distribution. The losses were calculated as a difference between carbon stocks in climate change scenarios assuming an exponentially increasing forest decline over time, and those in a baseline scenario assuming no climate change. In the climate change scenarios, three different sets of forest management adaptation measures were studied: (1 only harvesting damaged stands, (2 additionally salvaging dead trees that died due to climate change, and (3 replacing, at an increasing rate over time, beech with sessile oak (Quercus petraea Matt. Lieb. after final harvest. Projections were made using the open access carbon accounting model CASMOFOR based on modeling or assuming effects of climate change on mortality, tree growth, root-to-shoot ratio and decomposition rates. Results demonstrate that, if beech disappears from the region as projected by the end of the century, over 80% of above-ground biomass carbon, and over 60% of the carbon stocks of all pools (excluding soils of the forests will be lost by 2100. Such emission rates on large areas may have a discernible positive feedback on climate change, and can only partially be offset by the forest management adaptation measures.

  1. MAJOR OIL PLAYS IN UTAH AND VICINITY

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  2. 1:1,000,000-scale potentiometric contours and control points for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a U.S. Geological Survey (USGS) study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer...

  3. Selected Basin Characterization Model Parameters for the Great Basin Carbonate and Alluvial Aquifer System of Nevada, Utah, and Parts of Adjacent States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on ground-water resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  4. Three-dimensional hydrogeologic framework for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  5. 1:1,000,000-scale hydrographic areas and flow systems for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a U.S. Geological Survey (USGS) study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer...

  6. Estimating Volume, Biomass, and Carbon in Hedmark County, Norway Using a Profiling LiDAR

    Science.gov (United States)

    Nelson, Ross; Naesset, Erik; Gobakken, T.; Gregoire, T.; Stahl, G.

    2009-01-01

    A profiling airborne LiDAR is used to estimate the forest resources of Hedmark County, Norway, a 27390 square kilometer area in southeastern Norway on the Swedish border. One hundred five profiling flight lines totaling 9166 km were flown over the entire county; east-west. The lines, spaced 3 km apart north-south, duplicate the systematic pattern of the Norwegian Forest Inventory (NFI) ground plot arrangement, enabling the profiler to transit 1290 circular, 250 square meter fixed-area NFI ground plots while collecting the systematic LiDAR sample. Seven hundred sixty-three plots of the 1290 plots were overflown within 17.8 m of plot center. Laser measurements of canopy height and crown density are extracted along fixed-length, 17.8 m segments closest to the center of the ground plot and related to basal area, timber volume and above- and belowground dry biomass. Linear, nonstratified equations that estimate ground-measured total aboveground dry biomass report an R(sup 2) = 0.63, with an regression RMSE = 35.2 t/ha. Nonstratified model results for the other biomass components, volume, and basal area are similar, with R(sup 2) values for all models ranging from 0.58 (belowground biomass, RMSE = 8.6 t/ha) to 0.63. Consistently, the most useful single profiling LiDAR variable is quadratic mean canopy height, h (sup bar)(sub qa). Two-variable models typically include h (sup bar)(sub qa) or mean canopy height, h(sup bar)(sub a), with a canopy density or a canopy height standard deviation measure. Stratification by productivity class did not improve the nonstratified models, nor did stratification by pine/spruce/hardwood. County-wide profiling LiDAR estimates are reported, by land cover type, and compared to NFI estimates.

  7. 77 FR 21512 - Approval, Disapproval and Promulgation of Air Quality Implementation Plan; Utah; Maintenance Plan...

    Science.gov (United States)

    2012-04-10

    ...; Maintenance Plan for the 1-Hour Ozone Standard for Salt Lake and Davis Counties AGENCY: Environmental.... These revisions updated the State of Utah's maintenance plan for the 1-hour ozone standard for Salt Lake... concerning such maintenance plan. This action is being taken under section 110 of the Clean Air Act (CAA...

  8. 77 FR 5617 - Notice of Final Federal Agency Action on Proposed Highway in Utah

    Science.gov (United States)

    2012-02-03

    ... proposed transportation improvement project (Logan 200 East, minor arterial project) in Logan, Cache County... approvals for the following highway project in the State of Utah: The Logan 200 East Minor Arterial Project...; E.O. 12898, Federal Actions to address Environmental Justice in Minority Populations and Low Income...

  9. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Sevier River Watershed

    OpenAIRE

    Extension, USU

    2012-01-01

    The Upper Sevier River watershed is located in south central Utah, within the borders of Garfield, Kane, Piute, and Iron counties. This watershed encompasses the headwaters of the Sevier River which are straddled by the mountains of the Markagunt Plateau to the west and the Paunsaugunt Plateau to the east.

  10. The Lincoln Highway in Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This guidebook is on the Lincoln Highway in the state of Utah. Its purpose is to describe as closely as possible the original route of the Highway, the major changes...

  11. Utah Heavy Oil Program

    Energy Technology Data Exchange (ETDEWEB)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  12. Effects of urban development on carbon sequestration in Karaj County, Iran.

    Science.gov (United States)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Soil organic matter content is a quality indicator for soil, agriculture and environment. Organic matter is responsible for soil aggregation, nutrients supplying and water holding capacity, therefore it is important for plant growth. Input and decomposition of soil organic matter determines the amount of soil organic carbon. Carbon occurs in soils in both organic and inorganic forms. In soils which have formed on carbonatic parent materials or those which located in arid and semiarid regions large amount of primary and secondary carbonates are dominated while organic carbon is dominated form of carbon in other areas. Soil organic matter varies from fresh plant litter to amorphous humic components. Land use change is an important factor that affects terrestrial and thus atmospheric carbon. The aims of this study are exploring the effects of land use change and urban development on soil organic carbon and dynamic due time. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. 27 surface soil samples (0-20cm) were collected from different land uses for studying carbon dynamic. After preliminary routine analyses of soil samples, 10 sites were selected for further sampling with three times intervals in September, January and April 2008. Physical and chemical properties of soil such as pH, EC, Na+, K+, Ca2+, Mg2+, Cl-, HCO3-, CO3 2-, N %, texture, OC % and SP were measured according to the standard methods. The reduction of vegetation cover due to land use change was objected from comparison between ETM+ image (2008) and aerial photographs were taken in 1956. The results showed that soil organic carbon and nitrogen varies between 0.2 to 2.81 and 0.02 to 0.23 respectively. Differences between the amount of

  13. 75 FR 22892 - Environmental Impact Statement: Salt Lake County, UT

    Science.gov (United States)

    2010-04-30

    ... Federal Highway Administration Environmental Impact Statement: Salt Lake County, UT AGENCY: Federal... transportation improvement project in Salt Lake County, Utah. FOR FURTHER INFORMATION CONTACT: Edward Woolford, Environmental Program Manager, Federal Highway Administration, 2520 West 4700 South, Suite 9A, Salt Lake City...

  14. 75 FR 9476 - Environmental Impact Statement: Salt Lake County, UT

    Science.gov (United States)

    2010-03-02

    ... Federal Highway Administration Environmental Impact Statement: Salt Lake County, UT AGENCY: Federal... transportation improvement project in Salt Lake County, Utah. FOR FURTHER INFORMATION CONTACT: Bryan Dillon, Area Engineer, Federal Highway Administration, 2520 West 4700 South, Suite 9A, Salt Lake City, UT 84118...

  15. SUCCESS Utah Polarization Diversity LIDAR data set

    Data.gov (United States)

    National Aeronautics and Space Administration — The SUCCESS_UTAH_PDL data set contains ground-based measurements made by the University of Utah Polarization Diversity LIDAR at the CART site during the April-May...

  16. Great Salt Lake, Utah

    Science.gov (United States)

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  17. County Spending

    Data.gov (United States)

    Montgomery County of Maryland — This dataset includes County spending data for Montgomery County government. It does not include agency spending. Data considered sensitive or confidential and will...

  18. Nitrogen and carbon dynamics beneath on-site wastewater treatment systems in Pitt County, North Carolina.

    Science.gov (United States)

    Del Rosario, Katie L; Humphrey, Charles P; Mitra, Siddhartha; O'Driscoll, Michael A

    2014-01-01

    On-site wastewater treatment systems (OWS) are a potentially significant non-point source of nutrients to groundwater and surface waters, and are extensively used in coastal North Carolina. The goal of this study was to determine the treatment efficiency of four OWS in reducing total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) concentrations before discharge to groundwater and/or adjacent surface water. Piezometers were installed for groundwater sample collection and nutrient analysis at four separate residences that use OWS. Septic tank effluent, groundwater, and surface water samples (from an adjacent stream) were collected four times during 2012 for TDN and DOC analysis and pH, temperature, electrical conductivity, and dissolved oxygen measurements. Treatment efficiencies from the tank to the groundwater beneath the drainfields ranged from 33 to 95% for TDN and 45 to 82% for DOC, although dilution accounted for most of the concentration reductions. There was a significant positive correlation between nitrate concentration and separation distance from trench bottom to water table and a significant negative correlation between DOC concentration and separation distance. The TDN and DOC transport (>15 m) from two OWS with groundwater saturated drainfield trenches was significant.

  19. Residential Energy Efficiency Potential: Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Safety Evaluation Report Related to the Renewal of the Operating License for the TRIGA Training and Research Reactor at the University of Utah

    OpenAIRE

    United States Nuclear Regulatory Commission, Office of Nuclear Reactor Regulations

    1985-01-01

    This Safety Evaluation Report for the application filed by the University of Utah (UU) for a renewal of operating license R-126 to continue to operate a training and research reactor facility has been prepared by the Office of Nuclear Reactor Regulation of the U.S. Nuclear Regulatory Commission. The facility is owned and operated by the University of Utah and is located on its campus in Salt Lake City, Salt Lake County, Utah. The staff concludes that this training reactor facility can conti...

  1. Human Rabies - Wyoming and Utah, 2015.

    Science.gov (United States)

    Harrist, Alexia; Styczynski, Ashley; Wynn, DonRaphael; Ansari, Safdar; Hopkin, Justin; Rosado-Santos, Harry; Baker, JoDee; Nakashima, Allyn; Atkinson, Annette; Spencer, Melanie; Dean, Debbie; Teachout, Leslie; Mayer, Jeanmarie; Condori, Rene E; Orciari, Lillian; Wadhwa, Ashutosh; Ellison, James; Niezgoda, Michael; Petersen, Brett; Wallace, Ryan; Musgrave, Karl

    2016-06-03

    In September 2015, a Wyoming woman was admitted to a local hospital with a 5-day history of progressive weakness, ataxia, dysarthria, and dysphagia. Because of respiratory failure, she was transferred to a referral hospital in Utah, where she developed progressive encephalitis. On day 8 of hospitalization, the patient's family told clinicians they recalled that, 1 month before admission, the woman had found a bat on her neck upon waking, but had not sought medical care. The patient's husband subsequently had contacted county invasive species authorities about the incident, but he was not advised to seek health care for evaluation of his wife's risk for rabies. On October 2, CDC confirmed the patient was infected with a rabies virus variant that was enzootic to the silver-haired bat (Lasionycteris noctivagans). The patient died on October 3. Public understanding of rabies risk from bat contact needs to be improved; cooperation among public health and other agencies can aid in referring persons with possible bat exposure for assessment of rabies risk.

  2. Parental hesitation in immunizing children in Utah.

    Science.gov (United States)

    Luthy, Karlen E; Beckstrand, Renea L; Callister, Lynn Clark

    2010-01-01

    To determine why parents in a Utah community hesitated in immunizing their children. Cross-sectional descriptive study. Data were collected from a convenience sample of 86 parents of under-immunized children in the county health department and local pediatric and family practice offices. Participants were asked to complete an immunization hesitancy survey including questions regarding why parents hesitated to immunize their children, parental concerns regarding immunizations, and what advice they would give to a friend or family member who had concerns about childhood vaccines. Parents could also write in any other comment, concern, or suggestion they had regarding childhood immunizations. 2 major themes were identified: concerns regarding immunization safety and lack of perceived need. The most commonly reported concerns regarding immunization safety included autism, immune system overload, and other adverse reactions. Many parents did not recognize the need for childhood immunizations, especially multiple immunizations given simultaneously on a strict timeline. The manner in which immunization information is shared with hesitant parents can be particularly important. There is a need for health care providers to assess and increase parental knowledge regarding immunizations.

  3. ORTHOIMAGERY, CARBON COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  4. BASEMAP, CARBON COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — FEMA Framework Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note: the seventh framework theme,...

  5. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection

  6. A New Triassic Bonebed from the Bears Ears Region of Utah

    OpenAIRE

    Gay, Robert; Jenkins, Xavier A.; Milner, Andrew R. C.; Van Vranken, Nathan E.; Dewitt, Dylan M.; Lepore, Taormina

    2017-01-01

    Poster presented at WAVP 2017. Abstract is as follows:In the summer of 2016, field crews from the Museums of Western Colorado: Dinosaur Journey discovered a bonebed of large-bodied archosaurs in the vicinity of Fry Canyon, San Juan County, Utah. Nicknamed “Portal to NeCrocPolis” (P2N), the site preserves at least three armored archosaurs in brown mudstone with fine,

  7. Ground-water data, Sevier Desert, Utah

    Science.gov (United States)

    Mower, Reed W.; Feltis, Richard D.

    1964-01-01

    This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-64 by the U.S. Geological survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Sevier Desert, in Juab and Millard Counties, Utah. The interpretive material will be published in a companion report by R. W. Mower and R. D. Feltis.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figures. From table 1 he can note such things as depth, diameter, water level, yield, use of water, temperature of water, and depth of perforations. By comparing the depth of perforations with the drillers' logs in table 3 he can note the type of material that yields water to the wells. Table 2 and figure 2 show the historic fluctuations and trends of water levels in the vicinity. From table 4 he can note the chemical quality of the water from wells in the vicinity. Table 5 shows the amount of water discharged during 1951-63 from the pumped irrigation, public supply, and industrial wells. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the state Engineer. If the State Engineer believes unappropriated water is available, the application may be approved after minimum statutory requirements have been satisfied.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.

  8. Comprehensive study of LASL Well C/T-2 Roosevelt Hot Springs KGRA, Utah, and applications to geothermal well logging

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, W.E.; Hulen, J.B.; Nielson, D.L.

    1981-02-01

    Utah State Geothermal Well 9-1 in the Roosevelt Hot Springs KGRA, Beaver County, Utah, has been donated by Phillips Petroleum Company for calibration and testing of well-logging equipment in the hot, corrosive, geothermal environment. It is the second Calibration/Test Well (C/T-2) in the Geothermal Log Interpretation Program. A study of cuttings and well logs from Well C/T-2 was completed. This synthesis and data presentation contains most of the subsurface geologic information needed to effect the total evaluation of geophysical logs acquired in this geothermal calibration/test well, C/T-2.

  9. Specific Water Quality Sites for Cache County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  10. Specific Water Quality Sites for Summit County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  11. Specific Water Quality Sites for Iron County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  12. Specific Water Quality Sites for Tooele County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  13. Specific Water Quality Sites for Morgan County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  14. Quaternary geology of Fish Springs flat, Juab county, Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Fish Springs Flat is a sediment-filled valley between two tilted mountain blocks, the Thomas Range and the Fish Springs Range, in the Basin and Range physiographic...

  15. Specific Water Quality Sites for Weber County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  16. Specific Water Quality Sites for Uintah County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  17. Specific Water Quality Sites for Sanpete County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  18. Specific Water Quality Sites for Wasatch County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  19. DCS Hydrology, Sweet Grass County, Utah - Yellowstone River

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. Karpenkoite, Co.sub.3./sub.(V.sub.2./sub.O.sub.7./sub.)(OH).sub.2./sub..2H.sub.2./sub.O, a cobalt analogue of martyite from the Little Eva mine, Grand County, Utah, USA

    Czech Academy of Sciences Publication Activity Database

    Kasatkin, A.V.; Plášil, Jakub; Pekov, V.I.; Belakovskiy, D. I.; Nestola, F.; Čejka, J.; Vigasina, M.F.; Zorzi, F.; Thorne, B.

    2015-01-01

    Roč. 60, č. 4 (2015), s. 251-257 ISSN 1802-6222 R&D Projects: GA ČR GP13-31276P Institutional support: RVO:68378271 Keywords : karpenkoite * new mineral * cobalt divanadate * powder diffraction * Little Eva mine * Utah Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.326, year: 2015

  1. Testing a high resolution CO2 and CO emission inventory against atmospheric observations in Salt Lake City, Utah for policy applications

    Science.gov (United States)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Mallia, D. V.; Fasoli, B.; Bares, R.; Catharine, D.; O'Keeffe, D.; Song, Y.; Huang, J.; Horel, J.; Crosman, E.; Hoch, S.; Ehleringer, J. R.

    2016-12-01

    We address the need for robust highly-resolved emissions and trace gas concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are the result of proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria air pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present a contemporary (2010-2015) emissions inventory and modeled CO2 and carbon monoxide (CO) concentrations for Salt Lake County, Utah. We compare emissions transported by a dispersion model against stationary measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at hourly, building and road-link resolutions, as well as on an hourly gridded scale. The emissions were scaled using annual Energy Information Administration (EIA) fuel consumption data. We derived a CO emissions inventory using methods similar to Hestia, downscaling total county emissions from the 2011 Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The gridded CO emissions were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The Stochastic Time-Inverted Lagrangian Trasport (STILT) dispersion model was used to transport emissions and estimate pollutant concentrations at an hourly resolution. Modeled results were compared against stationary measurements in the Salt Lake County area. This comparison highlights spatial locations and hours of high variability and uncertainty. Sensitivity to biological fluxes as well as to specific economic sectors was tested by varying their contributions to

  2. Groundwater conditions in Utah, spring of 2013

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Derrick, V. Noah; Fisher, Martel J.; Holt, Christopher M.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2013-01-01

    This is the fiftieth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2012. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2013.pdf. Groundwater conditions in Utah for calendar year 2011 are reported in Burden and others (2012) and available online at http://ut.water.usgs.gov/ publications/GW2012.pdf

  3. Measured sections of the Browns Park Formation (Miocene) in Moffat County, Colorado, 1980

    Science.gov (United States)

    Luft, Stanley J.; Thoen, William L.

    1981-01-01

    Eight partial sections of the Browns Park Formation of Miocene age were measured in Moffat County, northwestern Colorado, during the 1980 field season, as part of a study of the stratigraphy and depositional environments of the formation. These newly measured sections are intended to complement other surface sections of the Browns Park Formation measured (Hansen, 1965) to the west in Uintah County, Utah, and measured (Buffler, 1967) or diagrammed (Kucera, 1968) to the east in, respectively, Routt and Rio Blanco Counties, Colorado.

  4. Utah Wolf Management Plan, Utah Division of Wildlife Resources Publication #: 05-17

    OpenAIRE

    The Utah Division of Wildlife Resources; The Utah Wolf Working Group

    2005-01-01

    This plan will guide management of wolves in Utah during an interim period from delisting until 2015, or until it is determined that wolves have established1 in Utah, or assumptions of the plan (political, social, biological, or legal) change. During this interim period, arriving wolves will be studied to determine where they are most likely to settle without conflict. The goal of this plan is to manage, study, and conserve wolves moving into Utah while avoiding conflicts with the wildlife...

  5. Selected hydrologic data for Juab Valley, Utah, 1935-94

    Science.gov (United States)

    Steiger, Judy I.

    1995-01-01

    This report contains selected hydrologic data collected in Juab Valley, Utah, from 1935 to 1994. The study area is in eastern Juab County in central Utah. The area is bounded on the east by the Wasatch Range and San Pitch Mountains and on the west by Long Ridge and West Hills. A ground-water divide exists south of Levan Ridge, a topographic divide that separates the valley into northern and southern parts. The area is in the Basin and Range Physiographic Province described by Fenneman (1931) and includes about 171 square miles of basin-fill deposits (pl. 1).Most of the data in this report were collected by the U.S. Geological Survey in cooperation with the Central Utah Water Conservancy District and the East Juab Water Conservancy District. Some of the earlier data were published previously by Bjorklund (1967) and Bjorklund and Robinson (1968). Some well-location names have been changed from those published previously because new larger-scale maps allow location to be plotted more accurately. The changes are footnoted in the tables.The purpose of this report is to provide hydrologic data for use by the general public and by officials managing the water resources of the area and to supplement interpretive reports for the area. Selected well, spring, surface-water, and rock-sample data are reported in tables 1 to 10. Selected data, including well depth and water level, are reported for 283 wells, and results of chemical analyses are reported for samples from 74 wells, 15 springs, and 7 surface-water sites. The numbering system used in Utah for hydrologic data sites is shown in figure 1. Locations of the hydrologic-data sites and the rock-sample site are shown on plate 1. Discharge-measurement sites on Salt Creek, on selected canals, and in the West Creek area are shown in figure 2.These data could not have been collected without the cooperation of local residents and officials of irrigation companies and municipalities that permitted access to their wells, springs

  6. Seismic retrofit guidelines for Utah highway bridges.

    Science.gov (United States)

    2009-05-01

    Much of Utahs population dwells in a seismically active region, and many of the bridges connecting transportation lifelines predate the rigorous seismic design standards that have been developed in the past 10-20 years. Seismic retrofitting method...

  7. Using Recent Advances in 2D Seismic Technology and Surface Geochemistry to Economically Redevelop a Shallow Shelf Carbonate Reservoir: Vernon Field, Isabella County, M, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Wood, James R.; Bornhorst, T.J.; Chittick, S.D.; Harrison, William B.; Tayjor, W. Quinlan

    2001-08-07

    In this project a consortium consisting of Cronus Exploration (Traverse City, MI), Michigan Technological University (Houghton, MI) and Western Michigan University (Kalamazoo, MI) proposed to develop and execute an economical and environmentally sensitive plan for recovery of hydrocarbons from an abandoned shallow-shelf carbonate field that is typical of many fields in the U.S. Midwest. This is a 5-year project that will use surface geochemistry as a tool to reduce risk in locating and producing hydrocarbons in Class II fields. The project will develop new techniques for measuring hydrocarbon gases in the soil horizon to locate new and bypassed oil in the shallow-shelf carbonate environments typified by the Dundee and Trenton Formations of the Michigan Basin (Fisher et. al., 1988). In Phase I of the project, the consortium proposes to re-develop the Vernon Oil field located in Vernon Twp, Isabella County, Michigan and produce both bypassed hydrocarbons from the original field and to locate and produce extensions of the original field.

  8. Groundwater conditions in Utah, spring of 2014

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Gerner, Steven J.; Carricaburu, John P.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2014-01-01

    This is the fifty-first in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2013. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2014.pdf. Groundwater conditions in Utah for calendar year 2012 are reported in Burden and others (2013) and are available online at http://ut.water.usgs. gov/publications/GW2013.pdf

  9. Groundwater conditions in Utah, spring of 2016

    Science.gov (United States)

    Burden, Carole B.

    2016-01-01

    This is the fifty-third in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2015. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2016.pdf. Groundwater conditions in Utah for calendar year 2014 are reported in Burden and others (2015) and are available online at http://ut.water.usgs.gov/publications/GW2015.pdf

  10. Groundwater conditions in Utah, Spring of 2017

    Science.gov (United States)

    Burden, Carole B.

    2017-01-01

    This is the fifty-fourth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2016. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2017.pdf. Groundwater conditions in Utah for calendar year 2015 are reported in Burden and others (2016) and are available online at http://ut.water.usgs.gov/publications/GW2016.pdf.

  11. Groundwater conditions in Utah, spring of 2012

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Holt, Christopher M.; Fisher, Martel J.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2012-01-01

    This is the forty-ninth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2011. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2012.pdf. Groundwater conditions in Utah for calendar year 2010 are reported in Burden and others (2011) and available online at http://ut.water.usgs.gov/ publications/GW2011.pdf.

  12. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shikha; Sack, Andrea; Adams, James P.; Vesper, Dorothy; J Capo, Rosemary C.; Hartsock, Angela; Edenborn, Harry M.

    2013-01-01

    Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (δ{sup 13}C{sub DIC}) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in {sup 13}C due to enhanced carbonate dissolution associated with the release of H{sub 2}SO{sub 4} from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4} isotopic signatures of the mine drainage and the presence of presumptive SO{sub 4}-reducing bacteria suggest that SO{sub 4} reduction activity also contributes C depleted in {sup 13}C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H{sub 2}SO{sub 4} dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO{sub 2} outgassing.

  13. Groundwater conditions in Utah, spring of 2011

    Science.gov (United States)

    Burden, Carole B.

    2011-01-01

    This is the forty-eighth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2010. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2011.pdf. Groundwater conditions in Utah for calendar year 2009 are reported in Burden and others (2010) and available online at http://ut.water.usgs.gov/ publications/GW2010.pdf.Analytical results associated with water samples collected from each area of groundwater development were compared to State of Utah Maximum Contaminant Levels (MCLs) and secondary drinking-water standards of routinely measureable substances present in water supplies. The MCLs and secondary drinking-water standards can be accessed online at http://www.rules.utah

  14. Seepage water of northern Utah

    Science.gov (United States)

    Fortier, Samuel

    1897-01-01

    The term “seepage water” is used by the irrigators of the West to designate the water which reaches the lowest grounds or the stream channels, swelling the latter by imperceptible degrees and keeping up the flow long after the rains have ceased and the snow has melted. The word “seepage” is applied particularly to the water which begins to appear in spots below irrigation canals and cultivated fields, usually some months or even years after irrigation has been introduced, and which tends to convert the lowlands into marshes and gives rise to springs, which in turn may be employed in watering other fields.The importance of a thorough knowledge of the behavior of seepage water is obvious when consideration is given to the close relationship which exists between the available water supply and the material prosperity of the arid region where irrigation is practiced. This is particularly true of Utah, where every readily available source of supply has long since been utilized and where the rapidly increasing agricultural population necessitates the complete utilization of all fresh waters.

  15. Dendrochronology of Utah Juniper (Juniperus osteosperma (Torr.) Little)

    Science.gov (United States)

    R. Justin Derose; Matthew F. Bekker; Roger Kjelgren; Brendan M. Buckley; James H. Speer; Eric B. Allen

    2016-01-01

    Utah juniper was a foundational species for the discipline of dendrochronology, having been used in the early 20th Century investigations of Mesa Verde, but has been largely ignored by dendrochronologists since. Here we present dendrochronological investigations of Utah juniper core and cross-sectional samples from four sites in northern Utah. We demonstrate that,...

  16. Utah Article Delivery: A New Model for Consortial Resource Sharing.

    Science.gov (United States)

    Kochan, Carol A.; Lee, Daniel R.

    1998-01-01

    Describes the UTAD (Utah Article Delivery) Pilot Project, an innovative resource-sharing service that provides journal articles to the Utah higher education community, developed by the Utah Academic Library Consortium (UALC) in partnership with EBSCO Document Services. Highlights include goals, options considered, challenges, and evaluation. The…

  17. 75 FR 12562 - Central Utah Project Completion Act

    Science.gov (United States)

    2010-03-16

    ...: Department of the Interior, Office of the Assistant Secretary-- Water and Science; Utah Reclamation... River and its interface with Utah Lake related to flow, food supply and shelter. A compounding factor is... Utah Lake; Expedite recovery of the endangered June sucker by re- establishing essential June sucker...

  18. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; A. Wylie; W. Quinlan

    2004-04-01

    interpreted as a large negative anomaly associated with the entire field. The results of the State Smock horizontal well and the Bowers 4-25 well confirmed the lack of additional recoverable hydrocarbons in the Vernon Field. (4) The surface geochemistry data showed a strong anomaly in the Myrtle Beach, Burke County, North Dakota area that would justify drilling by itself and even more so in conjunction with the structural interpretation from the geological and geophysical data; the microbial values here were the highest we have observed. The Myrtle Beach geochemical survey indicated a good to excellent prospect which was confirmed by drilling, however, a pipeline has not yet been completed that would allow the wells to be placed into production. We also present in this annual report the results of recent efforts to map carbonate facies tracts in the middle Devonian Dundee and Rogers City Limestones using gamma ray, bulk density, and photoelectric effect geophysical well log amplitudes. This work was undertaken to identify fairways for exploration in the Dundee and Rogers City where surface geochemical techniques could then be used to screen potential leads.

  19. Proposed Auxiliary Boundary Stratigraphic Section and Point (ASSP) for the base of the Ordovician System at Lawson Cove, Utah, USA

    Science.gov (United States)

    Miller, James F.; Evans, Kevin R.; Ethington, Raymond L.; Freeman, Rebecca; Loch, James D.; Repetski, John E.; Ripperdan, Robert; Taylor, John F.

    2016-01-01

    The Global boundary Stratotype Section and Point (GSSP) for the base of the Ordovician System is at the First Appearance Datum (FAD) of the conodont Iapetognathus fluctivagus at Green Point in Newfoundland, Canada. Strata there are typical graptolitic facies that were deposited near the base of the continental slope.We propose establishing an Auxiliary boundary Stratotype Section and Point (ASSP) at the FAD of I. fluctivagus at the Lawson Cove section in the Ibex area of Millard County, Utah, USA. There, strata consist of typical shelly facies limestones that were deposited on a tropical carbonate platform and contain abundant conodonts, trilobites, brachiopods, and other fossil groups. Cambrian and Ordovician strata in this area are ~5300m thick, with the Lawson Cove section spanning 243m in three overlapping segments. Six other measured and studied sections in the area show stratigraphic relationships similar to those at Lawson Cove. Faunas have been used to divide these strata into 14 conodont and 7 trilobite zonal units. The widespread olenid trilobite Jujuyaspis occurs ~90cm above the proposed boundary at Lawson Cove; this genus is generally regarded as earliest Ordovician. Rhynchonelliform and linguliform brachiopods are common to abundant and are useful for correlation. The FAD of Iapetognathus fluctivagus and occurrences of Jujuyaspis and the Lower Ordovician planktonic graptolite Anisograptus matanensis all occur within a 2.4m interval of strata at a nearby section. Non-biological correlation tools include a detailed sequence stratigraphic classification and a detailed carbon-isotope profile. Especially useful for correlation is a positive 13C excursion peak ~15cm below the proposed boundary horizon. All of these correlation tools form an integrated framework that makes the Lawson Cove section especially useful as an ASSP for global correlation of strata with faunas typical of shallow, warm-water, shelly facies.

  20. Feathers and Steel: A Folkloric Study of Cockfighting in Northern Utah

    OpenAIRE

    Walker, Jesse Lloyd

    1986-01-01

    The scope of this thesis is to make a statement on the sport of cockfighting as it is practiced in the counties of northern Utah. It is a sport that has a long and colorful history, a unique body of lore and is practiced by serious, dedicated men. Cockfighting history emanated from the Manu code of India through the Greek and Roman civilizations, spreading from there both east and west till it girdled the globe. The Roman traditions largely influenced the English Cockers who brought their ...

  1. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-05-20

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  2. 76 FR 69296 - University of Utah, University of Utah TRIGA Nuclear Reactor, Notice of Issuance of Renewed...

    Science.gov (United States)

    2011-11-08

    ... COMMISSION University of Utah, University of Utah TRIGA Nuclear Reactor, Notice of Issuance of Renewed... Test Reactor Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear Reactor Regulation... University of Utah (UU, the licensee), which authorizes continued operation of the UU TRIGA Nuclear Reactor...

  3. Automated Sensor Tuning for Seismic Event Detection at a Carbon Capture, Utilization, and Storage Site, Farnsworth Unit, Ochiltree County, Texas

    Science.gov (United States)

    Ziegler, A.; Balch, R. S.; Knox, H. A.; Van Wijk, J. W.; Draelos, T.; Peterson, M. G.

    2016-12-01

    We present results (e.g. seismic detections and STA/LTA detection parameters) from a continuous downhole seismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project. Specifically, we evaluate data from a passive vertical monitoring array consisting of 16 levels of 3-component 15Hz geophones installed in the field and continuously recording since January 2014. This detection database is directly compared to ancillary data (i.e. wellbore pressure) to determine if there is any relationship between seismic observables and CO2 injection and pressure maintenance in the field. Of particular interest is detection of relatively low-amplitude signals constituting long-period long-duration (LPLD) events that may be associated with slow shear-slip analogous to low frequency tectonic tremor. While this category of seismic event provides great insight into dynamic behavior of the pressurized subsurface, it is inherently difficult to detect. To automatically detect seismic events using effective data processing parameters, an automated sensor tuning (AST) algorithm developed by Sandia National Laboratories is being utilized. AST exploits ideas from neuro-dynamic programming (reinforcement learning) to automatically self-tune and determine optimal detection parameter settings. AST adapts in near real-time to changing conditions and automatically self-tune a signal detector to identify (detect) only signals from events of interest, leading to a reduction in the number of missed legitimate event detections and the number of false event detections. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Additional support has been provided by site operator Chaparral Energy, L.L.C. and Schlumberger Carbon Services. Sandia National

  4. 1:1,000,000-scale estimated outer extent of areas of groundwater discharge as evapotranspiration for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  5. Anaglyph, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed

  6. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada and Adjacent Areas in Nevada and Utah Field Verification Global Position System (GPS) Waypoints

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Delineated irrigated acreage in 2005 was field verified from September 26 to 29 and November 1 to 3 , 2005. Fields were visited to confirm that irrigation had...

  7. Evapotranspiration Rate Measurements of Vegetation Typical of Ground-Water Discharge Areas in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah, September 2005-August 2006

    Science.gov (United States)

    Moreo, Michael T.; Laczniak, Randell J.; Stannard, David I.

    2007-01-01

    Evapotranspiration was measured at six eddy-correlation sites for a 1-year period between September 1, 2005, and August 31, 2006. Five sites were in phreatophytic shrubland dominated by greasewood, and one site was in a grassland meadow. The measured annual evapotranspiration ranged from 10.02 to 12.77 inches at the shrubland sites and 26.94 inches at the grassland site. Evapotranspiration rates correlated to measured vegetation densities and to satellite-derived vegetation indexes. Evapotranspiration rates were greater at sites with denser vegetation. The primary water source supporting evapotranspiration was water derived from local precipitation at the shrubland sites, and ground water at the grassland site. Measured precipitation, ranging from 6.21 to 11.41 inches, was within 20 percent of the computed long-term annual mean. The amount of ground water consumed by phreatophytes depends primarily on local precipitation and vegetation density. The ground-water contribution to local evapotranspiration ranged from 6 to 38 percent of total evapotranspiration at the shrubland sites, and 70 percent of total evapotranspiration at the grassland site. Average depth to water ranged from 7.2 to 32.4 feet below land surface at the shrubland sites, and 3.9 feet at the grassland site. Water levels declined throughout the growing season and recovered during the non-growing season. Diurnal water-level fluctuations associated with evapotranspiration were evident at some sites but not at others.

  8. Bibliography of Utah radioactive occurrences. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Doelling, H.H. (comp.)

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  9. Utah Science Vol. 62 No. 1, 2003

    OpenAIRE

    2003-01-01

    2 PUTTING FAT ON THE TASTE MAP 8 GAINING WEIGHT AND LOSING YOUR MIND 18 THINKING LIKE YOUR ANIMALS 12 SEEDS -new people, grants and contracts in science 15 SYNTHESIS -science at Utah State 24 SEEK -discoveries in science 25 SEARCH -science on the web

  10. Utah Youth Suicide Study: Psychological Autopsy

    Science.gov (United States)

    Moskos, Michelle; Olson, Lenora; Halbern, Sarah; Keller, Trisha; Gray, Doug

    2005-01-01

    We conducted a psychological autopsy study to further understand youth suicide in Utah. While traditional psychological autopsy studies primarily focus on the administration of psychometric measures to identify any underlying diagnosis of mental illness for the suicide decedent, we focused our interviews to identify which contacts in the…

  11. Project Horizon: How Utah Is Reducing Recidivism.

    Science.gov (United States)

    Robinson, Daimar

    2000-01-01

    Project Horizon, Utah's statute to reduce the economic and social cost of recidivism, shifted funding for correctional education to the state education agency. Parolees who participated in Project Horizon had an 18-20 percent lower recidivism rate than nonparticipants and found post-release jobs 89 percent of the time. (JOW)

  12. Management of Sodic Soils in Utah

    OpenAIRE

    James, D. W.

    1993-01-01

    Sodic soils are soils with excess sodium. Sodic soils are encountered with increasing frequency in Utah, usually in the lower, flatter areas of our valleys. Sodic soils probably developed over many years when the water table was high and the soils were to wet for cultivation.

  13. Bibliography of Utah radioactive occurrences. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Doelling, H.H. (comp.)

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  14. 78 FR 9807 - Utah Regulatory Program

    Science.gov (United States)

    2013-02-12

    ... did not respond to our request. State Historic Preservation Officer (SHPO) and the Advisory Council on Historic Preservation (ACHP) Under 30 CFR 732.17(h)(4), we are required to request comments from the SHPO... Utah program. We find that good cause exists under 5 U.S.C. 553(d)(3) to make this final rule effective...

  15. Groundwater conditions in Utah, spring of 2015

    Science.gov (United States)

    Burden, Carole B.

    2015-01-01

    This is the fifty-second in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2014. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2015.pdf. Groundwater conditions in Utah for calendar year 2013 are reported in Burden and others (2014) and are available online at http://ut.water.usgs.gov/publications/GW2014.pdf.The water-level change maps in this report show the difference between water levels measured in the same well at two distinct times: in the spring of 1985 and the spring of 2015. Throughout the state, many groundwater levels were near their peak in or around 1985 following a multiple-year period of above average precipitation in the early 1980s. Conversely

  16. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA.

    Science.gov (United States)

    Metge, D W; Harvey, R W; Aiken, G R; Anders, R; Lincoln, G; Jasperse, J

    2010-02-01

    This study assessed the efficacy for removing Cryptosporidium parvum oocysts of poorly sorted, Fe- and Al-rich, subsurface sediments collected from 0.9 to 4.9 and 1.7-13.9 m below land surface at an operating riverbank filtration (RBF) site (Russian River, Sonoma County, CA). Both formaldehyde-killed oocysts and oocyst-sized (3 microm) microspheres were employed in sediment-packed flow-through and static columns. The degree of surface coverage of metal oxides on sediment grain surfaces correlated strongly with the degrees of oocyst and microsphere removals. In contrast, average grain size (D(50)) was not a good indicator of either microsphere or oocyst removal, suggesting that the primary mechanism of immobilization within these sediments is sorptive filtration rather than physical straining. A low specific UV absorbance (SUVA) for organic matter isolated from the Russian River, suggested that the modest concentration of the SUVA component (0.8 mg L(-1)) of the 2.2 mg L(-1) dissolved organic carbon (DOC) is relatively unreactive. Nevertheless, an amendment of 2.2 mg L(-1) of isolated river DOC to column sediments resulted in up to a 35.7% decrease in sorption of oocysts and (or) oocyst-sized microspheres. Amendments (3.2 microM) of the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) also caused substantive decreases (up to 31.9 times) in colloid filtration. Although the grain-surface metal oxides were found to have a high colloid-removal capacity, our study suggested that any major changes within the watershed that would result in long-term alterations in either the quantity and (or) the character of the river's DOC could alter the effectiveness of pathogen removal during RBF operations. Published by Elsevier Ltd.

  17. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA

    Science.gov (United States)

    Metge, D.W.; Harvey, R.W.; Aiken, G.R.; Anders, R.; Lincoln, G.; Jasperse, J.

    2010-01-01

    This study assessed the efficacy for removing Cryptosporidium parvum oocysts of poorly sorted, Fe- and Al-rich, subsurface sediments collected from 0.9 to 4.9 and 1.7–13.9 m below land surface at an operating riverbank filtration (RBF) site (Russian River, Sonoma County, CA). Both formaldehyde-killed oocysts and oocyst-sized (3 μm) microspheres were employed in sediment-packed flow-through and static columns. The degree of surface coverage of metal oxides on sediment grain surfaces correlated strongly with the degrees of oocyst and microsphere removals. In contrast, average grain size (D50) was not a good indicator of either microsphere or oocyst removal, suggesting that the primary mechanism of immobilization within these sediments is sorptive filtration rather than physical straining. A low specific UV absorbance (SUVA) for organic matter isolated from the Russian River, suggested that the modest concentration of the SUVA component (0.8 mg L−1) of the 2.2 mg L−1dissolved organic carbon (DOC) is relatively unreactive. Nevertheless, an amendment of 2.2 mg L−1 of isolated river DOC to column sediments resulted in up to a 35.7% decrease in sorption of oocysts and (or) oocyst-sized microspheres. Amendments (3.2 μM) of the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) also caused substantive decreases (up to 31.9 times) in colloid filtration. Although the grain-surface metal oxides were found to have a high colloid-removal capacity, our study suggested that any major changes within the watershed that would result in long-term alterations in either the quantity and (or) the character of the river's DOC could alter the effectiveness of pathogen removal during RBF operations.

  18. Proposed stratotype for the base of the highest Cambrian stage at the first appearance datum of Cordylodus andresi, Lawson Cove section, Utah, USA

    Science.gov (United States)

    Miller, J.F.; Ethington, Raymond L.; Evans, K.R.; Holmer, L.E.; Loch, James D.; Popov, L.E.; Repetski, J.E.; Ripperdan, R.L.; Taylor, John F.

    2006-01-01

    We propose a candidate for the Global Standard Stratotype-section and Point (GSSP) for the base of the highest stage of the Furongian Series of the Cambrian System. The section is at Lawson Cove in the Ibex area of Millard County, Utah, USA. The marker horizon is the first appearance datum (FAD) of the conodont Cordylodus andresi Viira et Sergeyeva in Kaljo et al. [Kaljo, D., Borovko, N., Heinsalu, H., Khazanovich, K., Mens, K., Popov, L., Sergeyeva, S., Sobolevskaya, R., Viira, V., 1986. The Cambrian-Ordovician boundary in the Baltic-Ladoga clint area (North Estonia and Leningrad Region, USSR). Eesti NSV Teaduste Akadeemia Toimetised. Geologia 35, 97-108]. At this section and elsewhere this horizon also is the FAD of the trilobite Eurekia apopsis (Winston et Nicholls, 1967). This conodont characterizes the base of the Cordylodus proavus Zone, which has been recognized in many parts of the world. This trilobite characterizes the base of the Eurekia apopsis Zone, which has been recognized in many parts of North America. The proposed boundary is 46.7 m above the base of the Lava Dam Member of the Notch Peak Formation at the Lawson Cove section. Brachiopods, sequence stratigraphy, and carbon-isotope geochemistry are other tools that characterize this horizon and allow it to be recognized in other areas. ?? 2006 Nanjing Institute of Geology and Palaeontology, CAS.

  19. BENEFIT COST FOR BIOMASS CO-FIRING IN ELECTRICITY GENERATION: CASE OF UTAH, U.S.

    Directory of Open Access Journals (Sweden)

    Man-Keun Kim

    2015-07-01

    Full Text Available Policy making regarding biomass co-firing is difficult. The article provides a benefit-cost analysis for decision makers to facilitate policy making process to implement efficient biomass co-firing policy. The additional cost is the sum of cost of the biomass procurement and biomass transportation. Co-benefits are sales of greenhouse gas emission credits and health benefit from reducing harmful air pollutants, especially particulate matter. The benefit-cost analysis is constructed for semi-arid U.S. region, Utah, where biomass supply is limited. Results show that biomass co-firing is not economically feasible in Utah but would be feasible when co-benefits are considered. Benefit-cost ratio is critically dependent upon biomass and carbon credit prices. The procedure to build the benefit-cost ratio can be applied for any region with other scenarios suggested in this study.

  20. Groundwater conditions in Utah, spring of 2010

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Cederberg, Jay R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Enright, Michael; Eacret, Robert J.; Guzman, Manuel; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2010-01-01

    This is the forty-seventh in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2009. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www. waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/ publications/GW2010.pdf. Groundwater conditions in Utah for calendar year 2008 are reported in Burden and others (2009) and available online at http://ut.water.usgs.gov/publications/ GW2009.pdf.Analytical results associated with water samples collected from each area of groundwater development were compared to State of Utah maximum contaminant levels (MCLs) and secondary drinking-water standards of routinely measureable substances present in water supplies. The MCLs and secondary

  1. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Utah

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Utah. Moving to the 2015 IECC from the 2012 Utah State Code base code is cost-effective for residential buildings in all climate zones in Utah.

  2. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa M.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  3. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah.

    Science.gov (United States)

    Sokoloff, Paul C; Freebury, Colin E; Hamilton, Paul B; Saarela, Jeffery M

    2016-01-01

    The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah.

  4. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah

    Science.gov (United States)

    Freebury, Colin E.; Hamilton, Paul B.; Saarela, Jeffery M.

    2016-01-01

    Abstract The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah. PMID:27350765

  5. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  6. Utah's Mobile Earth Science Outreach Vehicle

    Science.gov (United States)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  7. Reconnaissance of the hydrothermal resources of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  8. Conservation planning for the Colorado River in Utah

    Science.gov (United States)

    Christine Rasmussen,; Shafroth, Patrick B.

    2016-01-01

    Strategic planning is increasingly recognized as necessary for providing the greatest possible conservation benefits for restoration efforts. Rigorous, science-based resource assessment, combined with acknowledgement of broader basin trends, provides a solid foundation for determining effective projects. It is equally important that methods used to prioritize conservation investments are simple and practical enough that they can be implemented in a timely manner and by a variety of resource managers. With the help of local and regional natural resource professionals, we have developed a broad-scale, spatially-explicit assessment of 146 miles (~20,000 acres) of the Colorado River mainstem in Grand and San Juan Counties, Utah that will function as the basis for a systematic, practical approach to conservation planning and riparian restoration prioritization. For the assessment we have: 1) acquired, modified or created spatial datasets of Colorado River bottomland conditions; 2) synthesized those datasets into habitat suitability models and estimates of natural recovery potential, fire risk and relative cost; 3) investigated and described dominant ecosystem trends and human uses, and; 4) suggested site selection and prioritization approaches. Partner organizations (The Nature Conservancy, National Park Service, Bureau of Land Management and Utah Forestry Fire and State Lands) are using the assessment and datasets to identify and prioritize a suite of restoration actions to increase ecosystem resilience and improve habitat for bottomland species. Primary datasets include maps of bottomland cover types, bottomland extent, maps of areas inundated during high and low flow events, as well as locations of campgrounds, roads, fires, invasive vegetation treatment areas and other features. Assessment of conditions and trends in the project area entailed: 1) assemblage of existing data on geology, changes in stream flow, and predictions of future conditions; 2) identification

  9. Characterizing a Mississippian Carbonate Reservoir for CO2-EOR and Carbon Geosequestration: Applicability of Existing Rock Physics Models and Implications to Feasibility of a Time Lapse Monitoring Program in the Wellington Oil Field, Sumner County, Kansas.

    Science.gov (United States)

    Lueck, A. J.; Raef, A. E.

    2015-12-01

    This study will focus on characterizing subsurface rock formations of the Wellington Field, in Sumner County, Kansas, for both geosequestration of carbon dioxide (CO2) in the saline Arbuckle formation and enhanced oil recovery of a depleting Mississippian oil reservoir. Multi-scale data including lithofacies core samples, X-ray diffraction, digital rock physics scans, scanning electron microscope (SEM) imaging, well log data including sonic and dipole sonic, and surface 3D seismic reflection data will be integrated to establish and/or validate a new or existing rock physics model that best represents our reservoir rock types and characteristics. We will acquire compressional wave velocity and shear wave velocity data from Mississippian and Arbuckle cores by running ultrasonic tests using an Ult 100 Ultrasonic System and a 12 ton hydraulic jack located in the geophysics lab in Thompson Hall at Kansas State University. The elastic constants Young's Modulus, Bulk Modulus, Shear (Rigidity) Modulus and Poisson's Ratio will be extracted from these velocity data. Ultrasonic velocities will also be compared to sonic and dipole sonic log data from the Wellington 1-32 well. These data will be integrated to validate a lithofacies classification statistical model, which will be and partially has been applied to the largely unknown saline Arbuckle formation, with hopes for a connection, perhaps via Poisson's ratio, allowing a time-lapse seismic feasibility assessment and potentially developing a transformation of compressional wave sonic velocities to shear wave sonic for all wells, where compressional wave sonic is available. We will also be testing our rock physics model by predicting effects of changing effective (brine + CO2 +hydrocarbon) fluid composition on seismic properties and the implications on feasibility of seismic monitoring. Lessons learned from characterizing the Mississippian are essential to understanding the potential of utilizing similar workflows for the

  10. Geochemistry of spring water, southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Kimball, Briant A.

    1981-01-01

    The chemical quality of water in the southeastern Uinta Basin, Utah and Colorado, is important to the future development of the abundant oil-shale resources of the area. This report examines the observed changes in chemistry as water circulates in both shallow and deep ground-water systems. Mass-balance and mass- transfer calculations are used to define reactions that simulate the observed water chemistry in the mixed sandstone, siltstone, and carbonate lithology of the Green River Formation of Tertiary age.The mass-transfer calculations determine a reaction path particular to this system. The early dominance of calcite dissolution produces a calcium carbonate water. After calcite saturation, deeper circulation and further rock-water interaction cause the reprecipitation of calcite, the dissolution of dolomite and plagioclase, and the oxidation of pyrite; all combining to produce a calcium magnesium sodium bicarbonate sulfate water. The calculations suggest that silica concentrations are controlled by a kaolinite-Ca-montmorillonite phase boundary. Close agreement of mineral-saturation indices calculated by both an aqueous-equilibrium model and the mass-transfer model support the selection of reactions from the mass-transfer calculations.

  11. Magnetotelluric survey to locate the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada, Utah, and Idaho

    Science.gov (United States)

    Sampson, Jay A.; Rodriguez, Brian D.

    2013-01-01

    North-central Nevada contains a large amount of gold in linear belts, the origin of which is not fully understood. During July 2008, September 2009, and August 2010, the U.S. Geological Survey, as part of the Assessment Techniques for Concealed Mineral Resources project, collected twenty-three magnetotelluric soundings along two profiles in Box Elder County, Utah; Elko County, Nevada; and Cassia, Minidoka, and Blaine Counties, Idaho. The main twenty-sounding north-south magnetotelluric profile begins south of Wendover, Nev., but north of the Deep Creek Range. It continues north of Wendover and crosses into Utah, with the north profile terminus in the Snake River Plain, Idaho. A short, three-sounding east-west segment crosses the main north-south profile near the northern terminus of the profile. The magnetotelluric data collected in this study will be used to better constrain the location and strike of the concealed suture zone between the Archean crust and the Paleoproterozoic Mojave province. This report releases the magnetotelluric sounding data that was collected. No interpretation of the data is included.

  12. Environmental Assessment Proposed Demolition Plan Hill Air Force Base, Utah

    Science.gov (United States)

    2010-04-01

    Hill AFB Historic Buildings and Structures Reassessment ( Salo E., et al, 2003). The Utah SHPO concurred with the Hill AFB determinations in April...communications made by URS to Utah DEQ Air Quality. September. Salo , Edward, Marsha Prior, and John Ferguson, 2003. Hill AFB Historic Buildings and

  13. Strong motion instrumentation plan for Utah Department of Transportation.

    Science.gov (United States)

    2012-01-18

    The State of Utah, and its people have invested a considerable amount of money to construct and maintain the infrastructure and bridges in the state. This entire transportation network is at risk in the event of an earthquake. To protect Utah's bridg...

  14. Telepractice Services at Sound Beginnings at Utah State University

    Science.gov (United States)

    Blaiser, Kristina M.; Edwards, Marge; Behl, Diane; Munoz, Karen F.

    2012-01-01

    The Utah State University Sound Beginnings program originated in 2007 as a laboratory school to serve children with hearing loss from birth to age 6 years old living in Northern Utah. Sound Beginnings offers an interdisciplinary listening and spoken language educational option for families through the following services: toddler and preschool…

  15. Major Oil Plays in Utah and Vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively

  16. Utah Guidance and Toolkit for Student Learning Objectives: Instructions and Materials. Utah SLOs. Updated

    Science.gov (United States)

    Utah State Office of Education, 2014

    2014-01-01

    This document is intended to help teachers understand and create Student Learning Objectives (SLOs). This resource is a practical guide intended to provide clarity to a complex but worthwhile task. This resource may also be used by administrators for professional learning. As Utah moves toward providing a "Model for Measuring Educator…

  17. 78 FR 49400 - Approval and Promulgation of Air Quality Implementation Plans; Utah; Revisions to Utah...

    Science.gov (United States)

    2013-08-14

    ...''). The Program requires the inspection of diesel-powered vehicles by means of an emissions opacity test... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Utah; Revisions to...). Mail: Carl Daly, Director, Air Program, Environmental Protection Agency (EPA), Region 8, Mailcode 8P-AR...

  18. Underground water in the valleys of Utah Lake and Jordan River, Utah

    Science.gov (United States)

    Richardson, George Burr

    1906-01-01

    The valleys of Utah Lake and Jordan River are situated in north-central Utah, in the extreme eastern part of the Great Basin. The lofty Wasatch Range (Pl. I), the westernmost of the Rocky Mountain system, limits the valleys on the east, and relatively low basin ranges - the Oquirrh, Lake, and East Tintic mountains - determine them on the west. The valleys trend north and south, and are almost separated by the low east-west Traverse Range, the slopes of which constitute a dam for Utah Lake, which drains through Jordan River to Great Salt Lake.The area under consideration is the most populous and flourishing part of the State, Salt Lake City and Provo, the first and third cities in the State, and many other thriving settlements are there located. At Bingham Junction and Murray a number of smelters treat the ores from near-by mines, but agriculture is the main industry. Water for irrigation is supplied by mountain streams, and intensive farming is successfully pursued. The practice of irrigation was begun by the Mormon pioneers in 1847, and has been discussed in several publications; little attention, however, has been given to the underground water resources, and, so far as the writer is aware, they have not before been described. The present paper outlines conditions of occurrence of the subterranean waters and describes their development in the valleys of Utah Lake and Jordan River.

  19. 76 FR 28068 - Notice of Inventory Completion: Utah State University/College of Eastern Utah Prehistoric Museum...

    Science.gov (United States)

    2011-05-13

    ... Prehistoric Museum, Price, UT AGENCY: National Park Service, Interior. ACTION: Notice. ] Notice is here given... control of the Utah State University/College of Eastern Utah Prehistoric Museum, Price, UT. The human... NAGPRA, 25 U.S.C. 3003(d)(3). The determinations in this notice are the sole responsibility of the museum...

  20. Occupation and fertility on the frontier: Evidence from the state of Utah

    Directory of Open Access Journals (Sweden)

    Thomas N. Maloney

    2014-03-01

    Full Text Available Background: Most of what we know about fertility decline in the United States comes from aggregate (often state or county level data sources. It is difficult to identify variation in fertility change across socio-economic classes in such data, although understanding such variation would provide deeper insight into the history of the fertility transition. Objective: We use rich micro-level data to examine differences across occupational classes in fertility levels and in the timing and pace of change in fertility in the US state of Utah in the late 19th and early 20th centuries. Methods: Our evidence comes from the Utah Population Database, which contains several generations of linked family histories, including information on residents of Utah from the mid-1800s to the present. We use standard linear regression models to identify variation in fertility across birth cohorts and occupational classes as well as cohort-occupation interaction effects (to identify differences across classes in the pace of change over time Results: Families of white collar workers led changes in many fertility-related behaviors, particularly those tied to the start of family life (marriage age and first birth interval. Farm families had high fertility levels and added children into late ages, although they also experienced declining fertility. Conclusions: Examination of detailed micro-level data on fertility change identifies important differences in the patterns of change which may be tied to variation in relevant economic circumstances - for instance, the length of education and training required for particular occupations, or the need for family-based labor on the farm.

  1. Recent exploration and development of geothermal energy resources in the Escalante desert region, Southwestern Utah

    Science.gov (United States)

    Blackett, Robert E.; Ross, Howard P.

    1994-01-01

    Development of geothermal resources in southwest Utah's Sevier thermal area continued in the early 1990s with expansion of existing power-generation facilities. Completion of the Bud L. Bonnett geothermal power plant at the Cove Fort-Sulphurdale geothermal area brought total power generation capacity of the facility to 13.5 MWe (gross). At Cove Fort-Sulphurdate, recent declines in steam pressures within the shallow, vapor-dominated part of the resource prompted field developers to complete additional geothermal supply wells into the deeper, liquid-dominated portion of the resource. At Roosevelt Hot Springs near Milford, Intermountain Geothermal Company completed an additional supply well for Utah Power and Light Company's single-flash, Blundell plant. with the increased geothermal fluid supply from the new well, the Blundell plant now produces about 26 MWe (gross). The authors conducted several geothermal resource studies in undeveloped thermal areas in southwest Utah. Previous studies at Newcastle revealed a well-defined, self-potential minimum coincident with the intersection of major faults and the center of the heatflow anomaly. A detailed self-potential survey at Wood's Ranch, an area in northwest Iron County where thermal water was encountered in shallow wells, revealed a large (5,900 ?? 2,950 feet [1,800 ?? 900 m]) northeast-oriented self-potential anomaly which possibly results from the flow of shallow thermal fluid. Chemical geothermometry applied to Wood's Ranch water samples suggest reservoir temperatures between 230 and 248??F (110 and 120??C). At the Thermo Hot Springs geothermal area near Minersville, detailed self-potential surveys have also revealed an interesting 100 mV negative anomaly possibly related to the upward flow of hydrothermal fluid.

  2. Giant stromatolites and a supersurface in the Navajo Sandstone, Capitol Reef National Park, Utah

    Science.gov (United States)

    Eisenberg, Len

    2003-02-01

    At Capitol Reef National Park, Utah, 5-m-high stromatolites are present locally on interdune carbonate lenses in the Early Jurassic Navajo Sandstone. The stromatolites display both finely laminated and fenestral internal fabrics, and grew along south-facing interdune margins. These stromatolites formed during a high-water-table episode engendered by a dune-dammed paleodrainage in a stabilized Navajo erg. These stromatolites, and the thick interdune section associated with them, suggest a hiatus in erg accumulation and the presence of a super bounding surface.

  3. Geology of the Oquirrh Mountains, Utah

    OpenAIRE

    United States Geological Survey

    1999-01-01

    The Oquirrh Mountains are located in north-central Utah, immediately south of the Great Salt Lake, in the easternmost part of the Basin and Range physiographic province. The range consists of northerly-trending aligned peaks 56 kilometers long flanked on the west by Tooele and Rush Valleys and on the east by Jordan and Cedar Valleys. The range hosts several of the more prominent base- and precious-metal and desseminated-gold mining areas in the western United States. The 130-year old Bingh...

  4. Unintentional carbon monoxide poisoning hospitalization and emergency department counts and rates by county, year, and fire-relatedness among California residents,2000-2007

    Data.gov (United States)

    California Environmental Health Tracking Program — This dataset contains case counts, rates, and confidence intervals of unintentional carbon monoxide poisoning (CO) inpatient hospitalizations and emergency...

  5. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; A. Wylie; W. Quinlan

    2004-12-31

    One of the principal objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, microbial samples were collected from the Springdale prospect area in Manistee County, Michigan. The samples were taken along the trace of the proposed horizontal wells. The samples are presently being analyzed and the results will be reported in the next quarterly report. The main news this reporting period is that the Springdale prospect area in Manistee County, Michigan, continues to see drilling activity. Our industry partner, Jordan Development Company, LLC, is permitting additional horizontal wells following their success in the prospect area.

  6. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; A. Wylie; W. Quinlan

    2004-07-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, plans were finalized for additional surface geochemical sampling in the new Springdale Prospect field demonstration in Manistee County, Michigan. Plans were also developed to acquire additional surface geochemical data in the vicinity of the Bagley Prospect area in Otsego County, Michigan. The main news this reporting period is the continued success in the Springdale demonstration area. The State Springdale & O'Driscoll No.16-16 and the State Springdale & Herban 12-16 horizontal demonstration wells in Manistee County, Michigan are both flowing nearly 100 barrels of liquid hydrocarbons per day plus gas, which are good wells in Michigan. Reserves have not been established yet. A third horizontal well, the State Springdale & Wilburn 1-21 HD has been drilled and is waiting on completion. Two more horizontal wells have been permitted in the Springdale area by our industry partner.

  7. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  8. Allegheny County Council Districts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays the boundaries of the County Council Districts in Allegheny County. The dataset is based on municipal boundaries and City of Pittsburgh ward...

  9. Allegheny County Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  10. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  11. Allogenic sedimentary components of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Rosenbaum, J.G.; Dean, W.E.; Reynolds, R.L.; Reheis, M.C.

    2009-01-01

    Bear Lake is a long-lived lake filling a tectonic depression between the Bear River Range to the west and the Bear River Plateau to the east, and straddling the border between Utah and Idaho. Mineralogy, elemental geochemistry, and magnetic properties provide information about variations in provenance of allogenic lithic material in last-glacial-age, quartz-rich sediment in Bear Lake. Grain-size data from the siliciclastic fraction of late-glacial to Holocene carbonate-rich sediments provide information about variations in lake level. For the quartz-rich lower unit, which was deposited while the Bear River fl owed into and out of the lake, four source areas are recognized on the basis of modern fluvial samples with contrasting properties that reflect differences in bedrock geology and in magnetite content from dust. One of these areas is underlain by hematite-rich Uinta Mountain Group rocks in the headwaters of the Bear River. Although Uinta Mountain Group rocks make up a small fraction of the catchment, hematite-rich material from this area is an important component of the lower unit. This material is interpreted to be glacial fl our. Variations in the input of glacial flour are interpreted as having caused quasi-cyclical variations in mineralogical and elemental concentrations, and in magnetic properties within the lower unit. The carbonate-rich younger unit was deposited under conditions similar to those of the modern lake, with the Bear River largely bypassing the lake. For two cores taken in more than 30 m of water, median grain sizes in this unit range from ???6 ??m to more than 30 ??m, with the coarsest grain sizes associated with beach or shallow-water deposits. Similar grain-size variations are observed as a function of water depth in the modern lake and provide the basis for interpreting the core grain-size data in terms of lake level. Copyright ?? 2009 The Geological Society of America.

  12. Applications of research from the U.S. Geological Survey program, assessment of regional earthquake hazards and risk along the Wasatch Front, Utah

    Science.gov (United States)

    Gori, Paula L.

    1993-01-01

    engineering studies. Translated earthquake hazard maps have also been developed to identify areas that are particularly vulnerable to various causes of damage such as ground shaking, surface rupturing, and liquefaction. The implementation of earthquake hazard reduction plans are now under way in various communities in Utah. The results of a survey presented in this paper indicate that technical public officials (planners and building officials) have an understanding of the earthquake hazards and how to mitigate the risks. Although the survey shows that the general public has a slightly lower concern about the potential for economic losses, they recognize the potential problems and can support a number of earthquake mitigation measures. The study suggests that many community groups along the Wasatch Front, including volunteer groups, business groups, and elected and appointed officials, are ready for action-oriented educational programs. These programs could lead to a significant reduction in the risks associated with earthquake hazards. A DATA BASE DESIGNED FOR URBAN SEISMIC HAZARDS STUDIES: A computerized data base has been designed for use in urban seismic hazards studies conducted by the U.S. Geological Survey. The design includes file structures for 16 linked data sets, which contain geological, geophysical, and seismological data used in preparing relative ground response maps of large urban areas. The data base is organized along relational data base principles. A prototype urban hazards data base has been created for evaluation in two urban areas currently under investigation: the Wasatch Front region of Utah and the Puget Sound area of Washington. The initial implementation of the urban hazards data base was accomplished on a microcomputer using dBASE III Plus software and transferred to minicomputers and a work station. A MAPPING OF GROUND-SHAKING INTENSITIES FOR SALT LAKE COUNTY, UTAH: This paper documents the development of maps showing a

  13. Air pollution and gastrointestinal diseases in Utah

    Science.gov (United States)

    Maestas, Melissa May

    The valleys of northern Utah, where most of Utah's population resides, experience episodic air pollution events well in excess of the National Ambient Air Quality Standards. Most of the events are due to an accumulation of particulate matter during persistent cold air pools in winter from both direct emissions and secondary chemical reactions in the atmosphere. High wintertime ozone concentrations are occasionally observed in the Uintah Basin, in addition to particulate matter. At other times of the year, blowing dust, wildland fires, fireworks, and summertime ozone formation contribute to local air pollution. The objective of this dissertation is to investigate one facet of the health effects of Utah's air pollution on its residents: the acute impacts of air pollution on gastrointestinal (GI) disease. To study the health effects of these episodic pollution events, some measure of air pollution exposure must be matched to the health data. Time and place are used to link the health data for a person with the pollution data. This dissertation describes the method of kriging data from the sparse pollution monitoring network to estimate personal air pollution history based on the zip code of residence. This dissertation then describes the application of these exposure estimates to a health study on GI disease. The purpose of the GI study is to retrospectively look at two groups of patients during 2000-2014: those with autoimmune disease of the GI tract (inflammatory bowel disease, IBD) and those with allergic disease of the GI tract (eosinophilic esophagitis, EoE) to determine whether disease exacerbations occur more commonly during and following periods of poor air quality compared to periods of good air quality. The primary analysis method is case crossover design. In addition to using the kriged air pollution estimates, the analysis was repeated using simpler empirical estimation methods to assess whether the odds ratios are sensitive to the air pollution estimation

  14. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2006-05-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  15. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-12-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  16. DRAFT LANDSAT DATA MOSAIC: MONTGOMERY COUNTY, TEXAS; HARRIS COUNTY, TEXAS; FORT BEND COUNTY, TEXAS; BRAZORIA COUNTY, TEXAS; GALVESTON COUNTY, TEXAS

    Science.gov (United States)

    This is a draft Landsat Data Mosaic, which contains remote sensing information for Montgomery County, Texas Harris County, Texas Fort Bend County, Texas Brazoria County, Texas Galveston County, and Texas Imagery dates on the following dates: October 6, 1999 and September 29, 200...

  17. Assessment of the soil organic carbon sink in a project for the conversion of farmland to forestland: a case study in Zichang county, Shaanxi, China.

    Directory of Open Access Journals (Sweden)

    Lan Mu

    Full Text Available The conversion of farmland to forestland not only changes the ecological environment but also enriches the soil with organic matter and affects the global carbon cycle. This paper reviews the influence of land use changes on the soil organic carbon sink to determine whether the Chinese "Grain-for-Green" (conversion of farmland to forestland project increased the rate of SOC content during its implementation between 1999 and 2010 in the hilly and gully areas of the Loess Plateau in north-central China. The carbon sink was quantified, and the effects of the main species were assessed. The carbon sink increased from 2.26×106 kg in 1999 to 8.32×106 kg in 2010 with the sustainable growth of the converted areas. The black locust (Robinia pseudoacacia L. and alfalfa (Medicago sativa L. soil increased SOC content in the top soil (0-100 cm in the initial 7-yr period, while the sequestration occurred later (>7 yr in the 100-120 cm layer after the "Grain-for-Green" project was implemented. The carbon sink function measured for the afforested land provides evidence that the Grain-for-Green project has successfully excavated the carbon sink potential of the Shaanxi province and served as an important milestone for establishing an effective organic carbon management program.

  18. Footprints of Buildings at Cedar Breaks National Monument, Utah (footprints)

    Data.gov (United States)

    National Park Service, Department of the Interior — This is an Arc/INFO coverage consisting of 10 polygons representing the buildings' footprints at Cedar Breaks National Monument, Utah. The footprints were collected...

  19. Pliocene diatoms from the Bryce Canyon Area, Utah

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    The diatomite deposits were collected at 6,650 foot elevation near Hillsdale (vicinity of Bryce Canyon National Park), Utah, Preliminary investigation showed that the deposits were of pliocene age and probably equivalent to the Salt Lake group...

  20. Assessing approaches to manage Phragmites in Utah wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Given the extent of the Phragmites problem in Utah and elsewhere, managers are eager to understand what techniques are most effective for killing Phragmites while...

  1. Utilities at Cedar Breaks National Monument, Utah (utilpnt)

    Data.gov (United States)

    National Park Service, Department of the Interior — This feature class represents various types of utilities, including water- and power-related utilities, at Cedar Breaks National Monument, Utah. The utilities were...

  2. Culvert roughness elements for native Utah fish passage : phase I.

    Science.gov (United States)

    2011-01-01

    Laboratory flume testing of native Utah non-salmonid fish was performed to observe how : they use altered flow around obstacles to swim upstream. Three experimental setups included : a bare Plexiglas flume, vertical cylinders, and natural substrate p...

  3. Irrigation drainage: Green River basin, Utah

    Science.gov (United States)

    Stephens, Doyle W.; Waddell, Bruce; Miller, Jerry B.

    1988-01-01

    A reconnaissance of wildlife areas in the middle Green River basin of Utah during 1986-87 determined that concentrations of selenium in water and biological tissues were potentially harmful to wildlife at the Stewart Lake Waterfowl Management Area and in the Ouray National Wildlife Refuge. Concentations of selenium in irrigation drainage entering Stewart Lake ranged from 14 to 140 micrograms per liter; liver tissue from coots collected from the lake contained selenium concentrations of as much as 26 micrograms per gram and samples of tissue from carp contained as much as 31 micrograms per gram. Concentrations of selenium in a pond at the Ouray National Wildlife Refuge, which receives irrigation water and shallow ground water, were as much as 93 micrograms per liter. Liver tissue from coots collected from this pond contained selenium concentrations of as much as 43 micrograms per gram; eggs of water birds contained as much as 120 micrograms per gram.

  4. Thermal Water of Utah Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Goode, Harry D.

    1978-11-01

    Western and central Utah has 16 areas whose wells or springs yield hot water (35 C or higher), warm water (20-34.5 C), and slightly warm water (15.5-19.5 C). These areas and the highest recorded water temperature for each are: Lower Bear River Area, 105 C; Bonneville Salt Flats, 88 C; Cove Fort-Sulphurdale, 77 C; Curlew Valley, 43 C; East Shore Area, 60 C; Escalante Desert, 149 C; Escalante Valley (Roosevelt, 269 C, and Thermo, 85C); Fish Springs, 60.5 C; Grouse Creek Valley, 42 C; Heber Valley (Midway, 45 C); Jordan Valley, 58.5 C; Pavant Valley-Black Rock Desert, 67 C; Sevier Desert ( Abraham-Crater Hot Springs, 82 C); Sevier Valley (Monroe-Red Hill, 76.5 C, and Joseph Hot Spring, 64 C); Utah Valley, 46 C; and Central Virgin River Basin, 42 C. The only hot water in eastern Utah comes from the oil wells of the Ashley Valley Oil Field, which in 1977 yielded 4400 acre-feet of water at 43 C to 55 C. Many other areas yield warm water (20 to 34.5 C) and slightly warm water (15.5 to 19.5 C). With the possible exception of the Roosevelt KGRA, Crater Hot Springs in the Sevier Desert, Escalante Desert, Pavant-Black Rock, Cove Fort-Sulphurdale, and Coyote Spring in Curlew Valley, which may derive their heat from buried igneous bodies, the heat that warms the thermal water is derived from the geothermal gradient. Meteoric water circulates through fractures or permeable rocks deep within the earth, where it is warmed; it then rises by convection or artesian pressure and issues at the surface as springs or is tapped by wells. Most thermal springs thus rise along faults, but some thermal water is trapped in confined aquifers so that it spreads laterally as it mixes with and warms cooler near-surface water. This spreading of thermal waters is evident in Cache Valley, in Jordan Valley, and in southern Utah Valley; likely the spreading occurs in many other artesian basins where it has not yet been recognized. In the East Shore Area thermal water trapped in confined aquifers warms

  5. ROE Carbon Storage - Percent Change

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset depicts the percentage change in the amount of carbon stored in forests in counties across the United States, based on the difference in carbon...

  6. Major Oil Plays In Utah And Vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in

  7. Assessment and use of drug information references in Utah pharmacies.

    Science.gov (United States)

    Moorman, Krystal L; Macdonald, Elyse A; Trovato, Anthony; Tak, Casey R

    2017-01-01

    To determine which drug references Utah pharmacists use most frequently. To determine which types of drug information questions are most commonly asked, and whether Utah pharmacists have access to adequate references to respond to these questions. A 19-question survey was created using Qualtrics, LLC (Provo, Utah) software. An electronic survey link was sent to 1,431 pharmacists with a valid e-mail address listed in the Department of Professional Licensing database. Questions focused on available references in the participant's pharmacy, how current the references are, and the participant's use of the references. Surveys were analyzed for participants practicing in either community or hospital pharmacies in the state of Utah. A total of 147 responses were included in the analysis. Approximately 44% of respondents practiced in the community, and 56% practiced in a hospital setting. The most commonly used references by Utah pharmacists are Micromedex, Lexicomp, UpToDate, Clinical Pharmacology, and Drug Facts & Comparisons. Pharmacists in the community frequently receive questions related to adverse drug reactions, drug interactions, and over-the-counter medications. Pharmacists in the hospital frequently receive questions relating to dosage and administration, drug interactions, and adverse drug reactions. About 89% of community pharmacists and 96% of hospital pharmacists feel available references are adequate to answer the questions they receive. Utah pharmacists generally use large reference suites to answer drug information questions. The majority of pharmacists consider the references available to them to be adequate to answer the questions they receive.

  8. Ground-water conditions in Utah, spring of 2009

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  9. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; T.J. Bornhorst; William B. Harrison; W. Quinlan

    2002-04-01

    The fault study continues to find more faults and develop new techniques to visualize them. Data from the Dundee Formation has been used to document 11 major faults in the Michigan Basin which have now been verified using data from other horizons. These faults control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new GC laboratory is now functional and has been fully staffed as of December. The annual project review was held March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer. A request was made to extend the scope of the project to include the Willison Basin. A demonstration well has been suggested in Burke County, N. Dakota, following a review of 2D seismic and surface geochem. A 3D seismic survey is scheduled for the prospect.

  10. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR; VERNON FIELD, ISABELLA COUNTY, MI.

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; A. Wylie; W. Quinlan

    2004-01-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, a new field demonstration, Springdale Prospect in Manistee County, Michigan was begun to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a fair-to-good microbial anomaly that may indicate the presence of a fault or stratigraphic facies change across the drilling path. The main news this reporting period is the confirmed discovery of producing hydrocarbons at the State Springdale & O'Driscoll No.16-16 demonstration well in Manistee County. This well was spudded in late November, tested and put on production in December 2003. To date it is flowing nearly 100 barrels of liquid hydrocarbons per day, which is a good well in Michigan. Reserves have not been established yet. The surface geochemistry sampling at the Springdale demonstration site will be repeated this spring after the well has been on production for several months to see if the anomaly pattern changes. We expect that the anomaly will diminish as the original positive (apical) anomaly is replaced by a negative (edge) anomaly, probably due to the pressure draw-down in the reservoir. This is the behavior that we observed at the Bear lake demonstration well reported last quarter.

  11. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; W. Quinlan

    2003-01-01

    Presented in this quarterly report is the Case History and Well Summary for the Vernon Field demonstration project in Isabella County, Michigan. This new case history and well summary format organizes and presents the technical and historical details of the Vernon Field demonstration, as well as the field demonstration results and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and will be used on all subsequent field demonstrations as they near completion. Planning for the annual project meeting in Tampa, Florida has begun. This meeting will be held March 7-9, 2003 at the same site as the last three meetings. The goals of this project were to: (1) test the use of multi-lateral wells to recover bypassed hydrocarbons and (2) to access the potential of using surface geochemistry to reduce drilling risk. Two new demonstration wells, the State-Smock and the Bowers 4-25, were drilled to test the Dundee Formation at Vernon Field for bypassed oil. Neither well was commercial, although both produced hydrocarbon shows. An extensive geochemical survey in the vicinity of Vernon Field, covering much of Isabella County, has produced a base map for interpretation of anomalies in Michigan. Several potential new anomalies were discovered that could be further investigated.

  12. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; A. Wylie; W. Quinlan

    2004-10-01

    One of the principal objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, microbial samples were collected from the Trusty Steed prospect area in Grand Traverse County, Michigan. The samples were analyzed using the Microbial Oil Surveying Technique (MOST) technique and revealed only a local (1-point) anomaly. A decision to resample over that point is pending, but drilling has been postponed for the time being. The main news this reporting period is that in the Bear Lake area, northwest Michigan, Federated Oil & Gas Properties' Charlich-Fauble 2-9HD horizontal lateral, has cumulative production of more than 72,000 barrels of oil and is still producing 50 to 75 bopd from a Silurian Niagaran reef reservoir eighteen months after the well was completed. Surface geochemical surveys conducted in the demonstration area were consistent with production results although the ultimate decision to drill was based on interpretation of conventional subsurface and 2D seismic data. The surface geochemical techniques employed were Solid Phase MicroExtraction (SPME) and MOST. The geochemical results have been submitted to World Oil for publication. New geochemical surveys are planned for November in the Springdale quadrangle in Manistee County, Michigan. These surveys will concentrate on sampling over the trace of the proposed horizontal wells rather than a broad grid survey.

  13. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Chidsey

    2008-09-30

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted

  14. The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA

    Directory of Open Access Journals (Sweden)

    M. Zatko

    2016-11-01

    Full Text Available Reactive nitrogen (Nr  =  NO, NO2, HONO and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014, along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3− is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3− measurements range from −5 to 10 ‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71  ×  107 molec cm−2 s−1 over the course of the field campaign, with a maximum noontime value of 3.1  ×  109 molec cm−2 s−1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than

  15. University of Utah, Energy Commercialization Center

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James [Univ. of Utah, Salt Lake City, UT (United States)

    2014-01-17

    During the Energy Commercialization Center’s (ECC) three years in operation, the only thing constant was change. The world of commercialization and cleantech evolved significantly during the time the ECC was formed and operating, including: the availability of cleantech funding lessoned, the growth of incubators and accelerators skyrocketed, the State of Utah created an office dedicated to energy development, the University of Utah was both praised and criticized for its success in commercialization, and the Federal government temporarily shut down. During the three-year grant there were three principle investigators on the grant, as well as three directors for the University’s Commercialization Office. Change can be hard for an organization,but as we instruct the companies we support, “Fail fast and fail often, because it is the fastest path to success.” Although there were some unanticipated challenges along the way, the local ecosystem is stronger because of the ECC’s efforts. Perhaps the greatest lesson learned was the importance of aligned incentives between key stakeholders in the commercialization process and the need for resources at the company and individual entrepreneur levels. The universities have systems and incentives to commercialize technologies, but creating value and companies generally rest with the individuals and entrepreneurs. Unfortunately the ECC was unable to create a viable mechanism to transfer the commercialization process that successfully aligned incentives and achieve a more effective ecosystem within the Rocky Mountain West. However, the ECC was successful in adding value to the individual ecosystems, and connecting national resources to regional and local needs. Regarding the ECC’s effectiveness in developing a cleantech commercialization ecosystem, initial inroads and relationships were established with key stakeholders. However, incentives, perceived or real competition, differences in commercialization processes, and

  16. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; W. Quinlan

    2003-10-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, a new field demonstration, Springdale Prospect in Manistee County, Michigan was begun to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a fair-to-good microbial anomaly that may indicate the presence of a fault or stratigraphic facies change across the drilling path. The surface geochemistry sampling at the original Bear Lake demonstration site was updated several months after the prospect was confirmed and production begun. As expected, the anomaly appears to be diminishing as the positive (apical) anomaly is replaced by a negative (edge) anomaly, probably due to the pressure draw-down in the reservoir.

  17. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; T.J. Bornhorst; S.D. Chittick; William B. Harrison; W. Quinlan

    2001-10-31

    Two major accomplishments resulted from Phase I. One is the success of the surface geochemistry program, which collected over 800 samples from the site of the 1st demonstration well in Vernon Field and has pretty well provided us with the tools to delineate favorable ground from unfavorable. The second is the recent detailed mapping of the Central Michigan Basin that for the first time revealed the presence of at least two major faults that control the location of many of the reservoirs in the Michigan Basin. These faults were located from structure maps obtained by contouring the surface of the Dundee Formation using top picks from 9861 wells in 14 counties. Faults were inferred where the contour lines were most dense (''stacked'').

  18. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; T.J. Bornhorst; S.D. Chittick; William B. Harrison; W. Quinlan

    2002-01-01

    In this reporting period, we extended the fault study to include more faults and developed new techniques to visualize the faults. We now have used data from the Dundee Formation to document 11 major faults in the Michigan Basin and are in the process of reviewing data from other horizons. These faults appear to control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new laboratory is now functional and has been fully staffed as of December. The annual project review has been set for March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer.

  19. Chester County ground-water atlas, Chester County, Pennsylvania

    Science.gov (United States)

    Ludlow, Russell A.; Loper, Connie A.

    2004-01-01

    Chester County encompasses 760 square miles in southeastern Pennsylvania. Groundwater- quality studies have been conducted in the county over several decades to address specific hydrologic issues. This report compiles and describes water-quality data collected during studies conducted mostly after 1990 and summarizes the data in a county-wide perspective. In this report, water-quality constituents are described in regard to what they are, why the constituents are important, and where constituent concentrations vary relative to geology or land use. Water-quality constituents are grouped into logical units to aid presentation: water-quality constituents measured in the field (pH, alkalinity, specific conductance, and dissolved oxygen), common ions, metals, radionuclides, bacteria, nutrients, pesticides, and volatile organic compounds.Waterquality constituents measured in the field, common ions (except chloride), metals, and radionuclides are discussed relative to geology. Bacteria, nutrients, pesticides, and volatile organic compounds are discussed relative to land use. If the U.S. Environmental Protection Agency (USEPA) or Chester County Health Department has drinkingwater standards for a constituent, the standards are included. Tables and maps are included to assist Chester County residents in understanding the water-quality constituents and their distribution in the county. Ground water in Chester County generally is of good quality and is mostly acidic except in the carbonate rocks and serpentinite, where it is neutral to strongly basic. Calcium carbonate and magnesium carbonate are major constituents of these rocks. Both compounds have high solubility, and, as such, both are major contributors to elevated pH, alkalinity, specific conductance, and the common ions. Elevated pH and alkalinity in carbonate rocks and serpentinite can indicate a potential for scaling in water heaters and household plumbing. Low pH and low alkalinity in the schist, quartzite, and

  20. Hydrogeology of the Markagunt Plateau, Southwestern Utah

    Science.gov (United States)

    Spangler, Lawrence E.

    2010-01-01

    The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet and is capped primarily by Quaternary-age basalt that overlies Eocene-age freshwater limestone of the Claron Formation. Over large parts of the Markagunt Plateau, dissolution of the Claron limestone and subsequent collapse of the overlying basalt have produced a terrain characterized by sinkholes as much as 1,000 feet across and 100 feet deep. Numerous large springs discharge from the basalt and underlying limestone on the plateau, including Mammoth Spring, one of the largest springs in Utah, with a discharge that can exceed 300 cubic feet per second. Discharge from Mammoth Spring is from the Claron Formation; however, recharge to the spring largely takes place by both focused and diffuse infiltration through the basalt that caps the limestone. Results of dye tracing to Mammoth Spring indicate that recharge originates largely southwest of the spring outside of the Mammoth Creek watershed, as well as from losing reaches along Mammoth Creek. Maximum groundwater travel time to the spring from dye-tracer tests during the snowmelt runoff period was about 1 week. Specific conductance and water temperature data from the spring show an inverse relation to discharge during snowmelt runoff and rainfall events, also indicating short groundwater residence times. Results of major-ion analyses for samples collected from Mammoth and other springs on the plateau indicate calcium-bicarbonate type water containing low (less than 200 mg/L) dissolved-solids concentrations. Investigations in the Navajo Lake area along the southern margin of the plateau have shown that water losing to sinkholes bifurcates and discharges to both Cascade and Duck Creek Springs, which subsequently flow into the Virgin and Sevier River basins, respectively. Groundwater travel times to these springs, on the basis of dye tracing, were about 8.5 and 53 hours, respectively. Similarly, groundwater travel time from Duck Creek

  1. Impact of high efficiency vehicles on future fuel tax revenues in Utah.

    Science.gov (United States)

    2015-05-01

    The Utah Department of Transportation Research Division has analyzed the potential impact of : high-efficiency motor vehicles on future State of Utah motor fuel tax revenues used to construct and maintain the : highway network. High-efficiency motor ...

  2. Wolves in Utah: An analysis of potential impacts and recommendations for management

    OpenAIRE

    Switalski, T. Adam; Simmons, Trey; Duncan, Shiree L.; Chavez, Andreas S.; Schmidt, Robert H.

    2002-01-01

    The historic range of gray wolves (Canis lupus) in Utah was essentially statewide. Although their presence cannot be disputed, the historic abundance of wolves in Utah is unknown. The release of gray wolves into Yellowstone National Park and central Idaho in 1995 established growing populations, and increasing dispersal is bringing these wolves closer to Utah. It seems likely that wolves will commingle with Utah's other native mammals in the near future. The potential presence of wolves in Ut...

  3. iUTAH Summer Research: Analyzing diel variations of MeHg in the Provo River, Utah

    Science.gov (United States)

    Hamilton, G. L.; Packer, B. N.; Carling, G. T.; Checketts, H. N.; Shepherd Barkdull, N.

    2016-12-01

    iUTAH is an interdisciplinary research program aimed at strengthening science for Utah's water future and funded by the National Science Foundation. iUTAH is comprised of three research areas with an overarching goal of understanding how Utah's water system operates as an integrated physical, chemical, biological, and social system. During the Summer of 2016, I participated in the iUTAH (Innovative Urban Transitions and Aridregion Hydro-sustainability) iFellows undergraduate research program. iUTAH provided the opportunity to conduct research at Brigham Young University with graduate students studying trace metal dynamics in the Provo River, Utah, USA. This report presents the chemical system evaluation of methylmercury (MeHg) during diurnal variations from snowmelt runoff. Water samples were collected during peak discharge from Soapstone Basin, a site along the Upper Provo River watershed, every hour over a 24-hour (diel) period. Sampling began at 1200 hours on June 1 and ended at 1100 hours on June 2, 2016. The results of the Provo River MeHg analysis showed dissolved MeHg had a concentration variance of 0.027 ng/L and particulate MeHg had a concentration variance of 0.056 ng/L. The variances during the diel cycle represent more than a two-fold change in concentration. The hourly MeHg concentration levels demonstrated an inverse relationship with gage height indicative of dilution. The purpose of the study is to develop a more thorough understanding of short-term variances over time and the potential affect on long-term interpretations of MeHg fluctuations in the river. The Provo River flows through Jordanelle Reservoir where there is a mercury advisory for two fish species. MeHg is a bioaccumulative neurotoxin that humans are primarily exposed to by the consumption of contaminated fish. The strong correlation between the levels of MeHg in water and fish make the river concentrations an important factor.

  4. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary

  5. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  6. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  7. Runoff conditions in Utah for water year 2011

    Science.gov (United States)

    Cordova, Jeffrey T.; Angeroth, Cory E.

    2012-01-01

    In May 2011, the snowpack conditions in the mountains of central and northern Utah had emergency planners and water managers preparing for levels of runoff similar to the record year of 1983. The SNOwpack TELemetry (SNOTEL) records from the Natural Resources Conservation Service (NRCS) reported that the amount of water contained in the snowpack in May 2011 was greater than it was in either May of 1983 or 2005.Despite the above average snowpack,which lasted into the summer of 2011, runoff from snowmelt in 2011 did not create the widespread damage observed in 1983 and 2005. Cooler than normal temperatures resulted in slower snowmelt rates, which produced a prolonged and elevated runoff. Annual streamflow for water year 2011 was well above average, but few records of peak streamflow were set. The increase in water-surface elevation of Great Salt Lake was also above average. Ten streamgages in central and northern Utah, with records spanning greater than 20 years, have been selected to highlight the runoff conditions in Utah during water year 2011. Streamflow on the Duchesne River near Randlett, Utah, and on the Bear River near Utah-Wyoming state line is affected by several upstream diversions. These two streamgages were included in the analysis because their streamflow records have shown responses to spring snowmelt. The annual streamflow in all 10 of these streamgages was greater than 150 percent of average, and 3 streamgages set new records for total annual streamflow in water year 2011. One streamgage set a new peak streamflow record.

  8. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    Science.gov (United States)

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  9. 78 FR 2430 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Science.gov (United States)

    2013-01-11

    ... National Park Service Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT... February 11, 2013. ADDRESSES: Duncan Metcalfe, Natural History Museum of Utah, 301 Wakara Way, Salt Lake... funerary objects should contact Duncan Metcalfe, Natural History Museum of Utah, 301 Wakara Way, Salt Lake...

  10. 30 CFR 944.25 - Approval of Utah abandoned mine land reclamation plan amendments.

    Science.gov (United States)

    2010-07-01

    ... STATE UTAH § 944.25 Approval of Utah abandoned mine land reclamation plan amendments. The following is a... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Utah abandoned mine land reclamation plan amendments. 944.25 Section 944.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND...

  11. 30 CFR 944.20 - Approval of Utah abandoned mine plan.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Utah abandoned mine plan. 944.20 Section 944.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... Utah abandoned mine plan. The Utah Abandoned Mine Plan, as submitted on February 9, 1983, and as...

  12. 75 FR 8397 - Notice of Utah's Resource Advisory Council (RAC)/Recreation RAC Meeting

    Science.gov (United States)

    2010-02-24

    ... Bureau of Land Management Notice of Utah's Resource Advisory Council (RAC)/Recreation RAC Meeting AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Utah's Resource Advisory Council (RAC)/Recreation... Management's (BLM) Utah Resource Advisory Council (RAC)/Recreation RAC will meet as indicated below. DATES...

  13. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; W. Quinlan

    2003-07-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. As part of the project, a field demonstration was undertaken to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a strong anomaly in the Myrtle Beach area that would justify drilling by itself and even more so in conjunction with the structural interpretation from the 3D seismic data. The Myrtle Beach geochemical survey indicated a good to excellent prospect which was confirmed by drilling. Presented in this quarterly report is the Case History and Well Summary for the Myrtle Beach area in Burke County, North Dakota. This case history presents the important technical details regarding the geochemistry and the two vertical wells that are part of this field demonstration, and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and is being used on all subsequent field demonstrations as they near completion.

  14. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; W. Quinlan

    2003-04-01

    The principal objective of the study was to test a new analytical technique, Solid-Phase Microextraction (SPME), for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. This involved measuring the effectiveness of SPME to extract hydrocarbons under controlled conditions in the laboratory. As part of the study, a field demonstration was undertaken to assess the validity and usefulness of the laboratory results. Presented in this quarterly report is the condensed version of the Case History and Well Summary for the Bear Lake area in Manistee County, Michigan. The full version will be in the annual report. The condensed case history presents the important technical details regarding the geochemistry and horizontal lateral for Bear Lake, as well as the field demonstration results and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and will be used on all subsequent field demonstrations as they near completion.

  15. Allegheny County Smoking Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Smoking rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  16. Taos County Roads

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Vector line shapefile under the stewardship of the Taos County Planning Department depicting roads in Taos County, New Mexico. Originally under the Emergency...

  17. Allegheny County Traffic Counts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health...

  18. Allegheny County Obesity Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Obesity rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  19. Allegheny County Hypertension Hospitalization

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data provides hypertension prevalence data for each Zip Code in Allegheny County. The information was produced by Pennsylvania Health Care Cost Containment...

  20. Allegheny County Addressing Landmarks

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This table contains the Addressing Landmarks in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  1. Allegheny County Hospitals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The data on health care facilities includes the name and location of all the hospitals and primary care facilities in Allegheny County. The current listing of...

  2. Allegheny County Asbestos Permits

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Current asbestos permit data issued by the County for commercial building demolitions and renovations as required by the EPA. This file is updated daily and can be...

  3. Allegheny County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Allegheny County from 2004 to 2016. Fields include injury severity,...

  4. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  5. Allegheny County Plumbers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — All master plumbers must be registered with the Allegheny County Health Department. Only Registered Master Plumbers who possess a current plumbing license or...

  6. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  7. Allegheny County Parks Outlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the size and shape of the nine Allegheny County parks. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  8. Washington County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Washington County from 2011 to 2015. Fields include injury severity,...

  9. Allegheny County Depression Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  10. Allegheny County Anxiety Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  11. Allegheny County Tobacco Vendors

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The tobacco vendor information provides the location of all tobacco vendors in Allegheny County in 2015. Data was compiled from administrative records managed by...

  12. Allegheny County TIF Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Tax Increment Financing (TIF) outline parcels for Allegheny County, PA. TIF closing books contain all necessary documentation related to a TIF in order to close on...

  13. Allegheny County Diabetes Hospitalization

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data includes the number of people hospitalized with diabetes between 2013-2015, by age group, for Allegheny County Zip Codes.

  14. Allegheny County Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of the street centerlines for vehicular and foot traffic in Allegheny County. Street Centerlines are classified as Primary Road,...

  15. Beaver County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Beaver County from 2011 to 2015. Fields include injury severity, fatalities,...

  16. Allegheny County Property Viewer

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Webmap of Allegheny municipalities and parcel data. Zoom for a clickable parcel map with owner name, property photograph, and link to the County Real Estate website...

  17. Allegheny County Boundary

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the Allegheny County boundary. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  18. Allegheny County Property Assessments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Real Property parcel characteristics for Allegheny County, PA. Includes information pertaining to land, values, sales, abatements, and building characteristics (if...

  19. County Population Vulnerability

    Data.gov (United States)

    City and County of Durham, North Carolina — This layer summarizes the social vulnerability index for populations within each county in the United States at scales 1:3m and below. It answers the question...

  20. Allegheny County Dam Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the point locations of dams in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  1. Butler County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Butler County from 2011 to 2015. Fields include injury severity, fatalities,...

  2. Assessment and use of drug information references in Utah pharmacies

    Directory of Open Access Journals (Sweden)

    Moorman KL

    2017-03-01

    Full Text Available Objective: To determine which drug references Utah pharmacists use most frequently. To determine which types of drug information questions are most commonly asked, and whether Utah pharmacists have access to adequate references to respond to these questions. Methods: A 19-question survey was created using Qualtrics, LLC (Provo, Utah software. An electronic survey link was sent to 1,431 pharmacists with a valid e-mail address listed in the Department of Professional Licensing database. Questions focused on available references in the participant’s pharmacy, how current the references are, and the participant’s use of the references. Surveys were analyzed for participants practicing in either community or hospital pharmacies in the state of Utah. Results: A total of 147 responses were included in the analysis. Approximately 44% of respondents practiced in the community, and 56% practiced in a hospital setting. The most commonly used references by Utah pharmacists are Micromedex, Lexicomp, UpToDate, Clinical Pharmacology, and Drug Facts & Comparisons. Pharmacists in the community frequently receive questions related to adverse drug reactions, drug interactions, and over-the-counter medications. Pharmacists in the hospital frequently receive questions relating to dosage and administration, drug interactions, and adverse drug reactions. About 89% of community pharmacists and 96% of hospital pharmacists feel available references are adequate to answer the questions they receive. Conclusions: Utah pharmacists generally use large reference suites to answer drug information questions. The majority of pharmacists consider the references available to them to be adequate to answer the questions they receive.

  3. What's so local about global climate change? Testing social theories of environmental degradation to quantify the demographic, economic, and governmental factors associated with energy consumption and carbon dioxide emissions in U.S. metropolitan areas and counties

    Science.gov (United States)

    Tribbia, John Luke

    This research investigates the consequence of a crucial and not yet fully explored problem: the reluctance of the United States to sign and ratify international agreements, like Kyoto, that aim to mitigate climate change and its underlying social and ecological impacts. This unwillingness has inspired local governments, mayors, metropolitan area governance consortia, state governments, and governors to take on the climate challenge without the directive of the federal government. Local areas of the U.S. are experiencing climate-change-related impacts such as receding beach lines due to sea level rise and intense storms, fresh water shortages, and extreme weather events. As a result, researchers have begun to explore the human dimensions of climate change through an inquiry in: among many other topics, the vulnerability of local areas to the impacts of climate change and the forces shaping local areas' contribution to climate change. This study addresses the latter issue using the STIRPAT framework - a reformulated version of the I=(P)(A)(T) formulation that relates environmental impacts (I) to population growth (P), affluence (A), and technology (T). I address three questions that have thus far been poorly answered in prior research: "across the U.S., do local areas differ in the extent of their contribution to climate change?", "what are the causes of variation in energy use and carbon dioxide (CO2) emissions across local areas?" and "which social theories best explain the causes of variation in energy use and CO2 emissions across local areas?" To make strides in answering these questions and contribute to the understanding of local level drivers of energy consumption and emissions, this research analyzes the causes of variation in: energy use and CO2 emissions in the 100 largest U.S. metropolitan areas in chapter 4, the change in energy consumption between 2000 and 2005 for these metropolitan areas in chapter 5, and CO2 emissions in all U.S. counties in chapter 6

  4. 78 FR 6832 - Notice of Mailing Address Change for the Utah State Office, Salt Lake City, UT

    Science.gov (United States)

    2013-01-31

    ... Bureau of Land Management Notice of Mailing Address Change for the Utah State Office, Salt Lake City, UT... of Land Management (BLM), Utah State Office, in Salt Lake City, Utah, will be changing from P.O. Box 45155-0155 to 440 West 200 South, Suite 500, Salt Lake City, Utah 84101-1345. The proposed date will be...

  5. 75 FR 57055 - Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog

    Science.gov (United States)

    2010-09-17

    ... for Utah Prairie Dog AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of document... availability of a draft revised recovery plan for the Utah prairie dog (Cynomys parvidens). This species is.... The Utah prairie dog (Cynomys parvidens), found only in southwestern and central Utah, was listed as...

  6. Stereo Pair, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  7. An update of Utah State University's GAS activities

    Science.gov (United States)

    Megill, L. R.

    1986-01-01

    The highlights of the Utah State University's participation in the space program are listed. Proposed experiments include: a study of the velocity of a bubble in water under the influence of a temperature gradient; reflight of an experiment on surface tension driven convective flow; surface waves in zero-G; crystallization in zero-G (vapor phase and liquid phase); bio gas generation; and penicillum growth; study of undamped oscillations in a vacuum and zero-G. The effect that spinoffs have had on the Utah State University were discussed.

  8. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  9. Stratigraphy and petroleum possibilities of lower Upper Devonian (Frasnian and lower Framennian) strata, Southwestern Utah

    Science.gov (United States)

    Biller, Edward J.

    1976-01-01

    The lower Upper Devonian rocks in southwestern Utah--the Guilmette Formation and equivalents--represent a final regressive pulse of the major Late Devonian marine inundation of the Western Interior of the United States and record marine carbonate deposition on a wide continental shelf. They consist primarily of limestone, dolomite, and quartz arenite deposited in a shallow north-trending miogeosyncline, which constituted a single major basin of accumulation on this shelf. The Guilmette Formation and equivalents were deposited in shallow normal to hypersaline marine waters. The environments of deposition include: a moderate- to high-energy intertidal environment, a moderate-energy subtidal environment, a lower energy, deeper subtidal environment below effective wave base, and a high-energy environment in local shallow areas of mud mounds and bioherms. The carbonate deposition of the Guilmette Formation and equivalents was interrupted periodically by the deposition of quartz arenites. These may represent the breaking up of the miogeosynclinal-cratonic pattern of deposition. In most areas, the Guilmette and equivalents are overlain by a thin transgressive marine quartz arenite deposit--the Cove Fort Quartzite and basal Leatham equivalent. Previous paleontologic evidence indicated a general Middle to Late Devonian age for the Guilmette Formation. The present study narrows this range and suggests that the age of the Guilmette Formation and its equivalents is late Middle Devonian (Stringocephalus brachiopod zone) to early Late Devonian (Uppermost Palmatolepis gigas conodont zone). Available subsurface data suggest that the petroleum possibilities of the Guilmette Formation and equivalents in southwestern Utah are poor. Several tests have penetrated .the interval with only minor shows of oil in rocks with low porosity and permeability. Nevertheless, many outcrop samples of the same interval, appear to have excellent porosity and permeability and a strongly fetid odor,

  10. Parental Attitudes Regarding School-Based Sexuality Education in Utah

    Science.gov (United States)

    Steadman, Mindy; Crookston, Benjamin; Page, Randy; Hall, Cougar

    2014-01-01

    Sexuality education programs can be broadly categorized as either risk-avoidance or risk-reduction approaches. Health educators in Utah public schools must teach a state mandated risk-avoidance curriculum which prohibits the advocacy or encouragement of contraception. Multiple national surveys indicate that parents prefer a risk-reduction approach…

  11. Meteorological Observations Available for the State of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-12

    The National Weather Service’s Meteorological Assimilation Data Ingest System (MADIS) contains a large number of station networks of surface and upper air meteorological observations for the state of Utah. In addition to MADIS, observations from individual station networks may also be available. It has been confirmed that LLNL has access to the data sources listed below.

  12. A Schoolmarm All My Life: Personal Narratives from Frontier Utah.

    Science.gov (United States)

    Kinkead, Joyce, Ed.

    This book presents edited versions of the personal narratives of 24 Mormon women who taught school in frontier Utah. Drawn primarily from the archives of the Church of Jesus Christ of Latter-Day Saints, the accounts detail the women's lives as Mormons, as pioneers, and as teachers and have been edited to focus on the education of women,…

  13. Geothermal studies at the University of Utah Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-07-01

    The University of Utah Research Institute (WRI) is a self-supporting corporation organized in December 1972 under the Utah Non-Profit Corporation Association Act. Under its charter, the Institute is separate in its operations and receives no direct financial support from either the University of Utah or the State of Utah. The charter includes provisions for WRI to conduct both public and proprietary scientific work for governmental agencies, academic institutions, private industry, and individuals. WRI is composed of five divisions, shown in Figure 1: the Earth Science Laboratory (ESL), the Environmental Studies Laboratory (EVSL), the Center for Remote Sensing and Cartography (CRSC), the Engineering Technology Laboratory (ETL) and the Atmospheric Physics Laboratory (APL). The Earth Science Laboratory has a staff of geologists, geochemists and geophysicists who have a broad range of experience in geothermal research and field projects as well as in mineral and petroleum exploration. The Environmental Studies Laboratory offers a variety of technical services and research capabilities in the areas of air quality and visibility, acid precipitation, surface and groundwater contamination, and environmentally caused stress in vegetation. The Center for Remote Sensing and Cartography offers applied research and services with a full range of remote sensing and mapping capability, including satellite and airborne imagery processing and interpretation. The Engineering Technology Laboratory is currently studying the interaction of the human body with electromagnetic radiation. The Atmospheric Physics Laboratory is developing hygroscopic droplet growth theory and orographic seeding models for dispersal of fog.

  14. Utah System of Higher Education 2015-16 Annual Report

    Science.gov (United States)

    Utah System of Higher Education, 2016

    2016-01-01

    This annual report describes Utah System of Higher Education's progress in the 2015-2016 academic year in the following areas: (1) Strategic plan; (2) Enrollment and completion; (3) Paying for college; (4) Funding higher education; (5) College preparation; (6) Concurrent enrollment and math; (7) Outreach and access; and (8) Industry and the…

  15. Coniferous forest habitat types of central and southern Utah

    Science.gov (United States)

    Andrew P. Youngblood; Ronald L. Mauk

    1985-01-01

    A land-classification system based upon potential natural vegetation is presented for the coniferous forests of central and southern Utah. It is based on reconnaissance sampling of about 720 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. Seven climax series, 37 habitat types, and six additional phases of...

  16. Utah State Office of Education Fingertip Facts, 2013-14

    Science.gov (United States)

    Utah State Office of Education, 2014

    2014-01-01

    Fingertip Facts is a compendium of some of the most frequently requested data sets from the Utah State Office of Education. Data sets in this year's Fingertip Facts include: Core CRT Language Arts Testing, 2013; Core CRT Mathematics Testing, 2013; 2013 Public Education General Fund; 2012-13 Enrollment Demographics; Public Schools by Grade Level,…

  17. Utah State Office of Education Fingertip Facts, 2014-15

    Science.gov (United States)

    Utah State Office of Education, 2015

    2015-01-01

    Fingertip Facts is a compendium of some of the most frequently requested data sets from the Utah State Office of Education. Data sets in this year's Fingertip Facts include: SAGE Testing, 2014; 2013 Public Education General Fund; 2014-15 Public School Enrollment Demographics; Public Schools by Grade Level, 2013-14; Number of Licensed Educators;…

  18. Lead Toxicity and Iron Deficiency in Utah Migrant Children.

    Science.gov (United States)

    Ratcliffe, Stephen D.; And Others

    1989-01-01

    Determines the frequency of presumptive iron deficiency and lead toxicity in 198 Utah migrant children, aged 9-72 months. There were no confirmed cases of lead toxicity. Thirteen percent of all children tested, and 30 percent of those aged 9-23 months, were iron deficient. Hematocrit determination is an insensitive screen for iron deficiency.…

  19. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; T.J. Bornhorst; S.D. Chittick; William B. Harrison; W. Quinlan; E. Taylor

    2001-07-31

    A principal goal of the Budget Period I was to demonstrate that surface geochemistry could be used to locate bypassed hydrocarbons in old fields. This part of the program was successful. A surface geochemical survey, employing 5 different techniques, was carried out in the Spring and Summer of 2000 and a demonstration well, the State Vernon & Smock 13-23 HD1 (permit number: PN 53945) was drilled in Vernon Township, Isabella County, Michigan in the late fall of 2000. A demonstration well was selected and drilled based on geologic considerations and surface geochemistry. Over 460 soil samples were collected and analyzed over the drill site. A good anomaly was detected near the proposed well site and the demonstration well, the Smock 13-23, was drilled to a depth of 3157 feet by November 17, 2000. Two laterals were drilled, and hydrocarbons were located in a zone approximately 175 feet in length. However, it was determined that the pay zone was too small and difficult reservoir conditions (water production) prevented putting the well in production. The Smock 13-23 was shut in and abandoned January 15, 2001. A post-mortem determined that the main reason the well was not economic was because the zone was nearly completely flushed by earlier recovery operations. The post mortem also revealed the presence of an unmapped shale plug crossing the first lateral. It appears that this shale was detected by the geochemical survey, but its significance was not appreciated at the time. It is possible that sections of the well were faulty, ''porposing'' up and down so as to create water blockages. We are continuing to use the Vernon Field and the demonstration well to calibrate the geochemical data. Eventually, this study may provide a standard site that can be used to test and calibrate geochemical anomalies, something that does not presently exist. A postmortem report on the well, including the geology and geochemistry used to site the well, is presented in

  20. Geoinformatics and Data Fusion in the Southwestern Utah Mineral Belt

    Science.gov (United States)

    Kiesel, T.; Enright, R.

    2012-12-01

    Data Fusion is a technique in remote sensing that combines separate geophysical data sets from different platforms to yield the maximum information of each set. Data fusion was employed on multiple sources of data for the purposes of investigating an area of the Utah Mineral Belt known as the San Francisco Mining District. In the past many mineral deposits were expressed in or on the immediate surface and therefore relatively easy to locate. More modern methods of investigation look for evidence beyond the visible spectrum to find patterns that predict the presence of deeply buried mineral deposits. The methods used in this study employed measurements of reflectivity or emissivity features in the infrared portion of the electromagnetic spectrum for different materials, elevation data collected from the Shuttle Radar Topography Mission and indirect measurement of the magnetic or mass properties of deposits. The measurements were collected by various spaceborne remote sensing instruments like Landsat TM, ASTER and Hyperion and ground-based statewide geophysical surveys. ASTER's shortwave infrared bands, that have been calibrated to surface reflectance using the atmospheric correction tool FLAASH, can be used to identify products of hydrothermal alteration like kaolinite, alunite, limonite and pyrophyllite using image spectroscopy. The thermal infrared bands once calibrated to emissivity can be used to differentiate between felsic, mafic and carbonate rock units for the purposes of lithologic mapping. To validate results from the extracted spectral profiles existing geological reports were used for ground truth data. Measurements of electromagnetic spectra can only reveal the composition of surface features. Gravimetric and magnetic information were utilized to reveal subsurface features. Using Bouguer anomaly data provided by the USGS an interpreted geological cross section can be created that indicates the shape of local igneous intrusions and the depth of

  1. Utah ski patrol: assessing training types and resources.

    Science.gov (United States)

    Sagalyn, Emily B; McDevitt, Marion C; Ernst, Ryan

    2014-12-01

    Skiers and snowboarders incur a variety of injuries and medical emergencies each year at ski resorts. The ski patrol is primarily responsible for initial triage, assessment and stabilization of these problems. The purpose of this study was to subjectively evaluate the type of training, resources, and equipment available to local ski patrols within Utah. Ski patrol directors at ski resorts in Utah were asked to complete a voluntary computerized survey. Of the 14 ski areas in Utah, ski patrol directors representing 8 resorts responded. The majority of patrols in Utah use Outdoor Emergency Care (OEC) as their primary education and certification source. Most programs also include site-specific training in addition to basic certification. All responding resorts had basic first responder equipment, including splinting devices, basic airway management, and hemorrhage control. Six of 8 responding resorts had affiliated clinics, and all had access to aeromedical transport. All of the responding ski patrol directors believed the current training level was adequate. Utah area ski patrollers frequently see trauma-related injuries and have the resources to assess and provide initial immobilization techniques. Many resorts have affiliated clinics with advanced providers, and all have access to aeromedical support to rapidly transfer patients to trauma centers. Medical directors may be of use for training as well as developing extended scope of practice protocols for advanced airway use or medication administration. Patrols may benefit from additional resort-specific training that addresses other frequently seen injuries or illnesses. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  2. Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Budding, K.E.; Sommer, S.N.

    1986-01-01

    Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

  3. Mineral Resources of the Mill Creek Canyon Wilderness Study Area, Grand County, Utah

    OpenAIRE

    United States Geological Survey

    1990-01-01

    At the request of the U.S. Bureau of Land Management, approximately 9,780 acres of the Mill Creek Canyon Wilderness Study Area (UT-060-139A) was evaluated for identified mineral resources (known) and mineral resource potential (undiscovered). In this report, the area studied is referred to as the "wilderness study area" or "the study area." Field work was conducted in 1988 to assess the mineral resources and resource potential of the area. No mineral resources were identified in the Mill C...

  4. 2013 waterfowl nesting success on Fish Springs National Wildlife Refuge, Juab county, Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report on a 2013 waterfowl nest success on Fish Springs National Wildlife Refuge (FSNWR). Management units were surveyed using the grid survey method and monitored...

  5. Duck nesting success and small mammal abundances in Fish Springs National Wildlife Refuge, Juab County, Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report in on an investigation of duck nest success and small mammal abundance as it related to predation on Fish Springs National Wildlife Refuge (FSNWR)An...

  6. M-X Environmental Technical Report. Socioeconomic Impact Estimates for Iron County, Utah. Detailed Tables.

    Science.gov (United States)

    1980-12-22

    INTRODUCTION The detailed socioeconomic impacts reported in this volume form background information for the analysis contained in the M-X Deployment Area...0 M 4 O (1 mI- Cl00a) 0 N n )nr U0O 01 f 0. I’ V 4 4 4J CD -r .00 0 CD I -’J0 0 - N Clr!Z ’ .1 - m10C0 z 0 0 -a n100 m 0 Cl mCdM -.-.c o N I oor 0 ao

  7. Status of bullfrogs and northern leopard frogs at Fish Springs National Wildlife Refuge, Juab County, Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document describes aspects of the ecology and natural history of bullfrogs introduced to Fish Springs National Wildlife Refuge. The purpose of this study was to...

  8. M-X Environmental Technical Report. Socioeconomic Impact Estimates for Beaver County, Utah. Detailed Tables.

    Science.gov (United States)

    1980-12-22

    4D 0 iV.0 0- 000 N 4.. N-ofl’V rn m r 0 ~ N N D*i 0I 0o 0N~ o. 0 OO f~ o.r Ir) , ~ 0jN0 rjc 0u~l .0-’ " ILn..f -W r,. - -N N rr 0N-0 OMN0 ’ 000 Co z...8217 ~ k~uC ~6 o 0’ kr -0 0-oard C q0 N m . cuw I V) orn ’n i 0c’ r0 󈧅 rv COa L CV f, O- rJc ror~- 4r𔃿 ’aC r - 40- 0*mUf radu Cu i rd 0 -T C 0 w

  9. DIGITAL FLOOD INSURANCE RATE MAP, SEVIER COUNTY, UTAH (AND INCORPORATED AREAS)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  10. The Cache County Study on Memory in Aging: factors affecting risk of Alzheimer's disease and its progression after onset.

    Science.gov (United States)

    Tschanz, Joann T; Norton, Maria C; Zandi, Peter P; Lyketsos, Constantine G

    2013-12-01

    The Cache County Study on Memory in Aging is a longitudinal, population-based study of Alzheimer's disease (AD) and other dementias. Initiated in 1995 and extending to 2013, the study has followed over 5,000 elderly residents of Cache County, Utah (USA) for over twelve years. Achieving a 90% participation rate at enrolment, and spawning two ancillary projects, the study has contributed to the literature on genetic, psychosocial and environmental risk factors for AD, late-life cognitive decline, and the clinical progression of dementia after its onset. This paper describes the major study contributions to the literature on AD and dementia.

  11. Nutrients, Dissolved Organic Carbon, Color, and Disinfection Byproducts in Base Flow and Stormflow in Streams of the Croton Watershed, Westchester and Putnam Counties, New York, 2000-02

    Science.gov (United States)

    Heisig, Paul M.

    2009-01-01

    The Croton Watershed is unique among New York City's water-supply watersheds because it has the highest percentages of suburban development (52 percent) and wetland area (6 percent). As the City moves toward filtration of this water supply, there is a need to document water-quality contributions from both human and natural sources within the watershed that can inform watershed-management decisions. Streamwater samples from 24 small (0.1 to 1.5 mi2) subbasins and three wastewater-treatment plants (2000-02) were used to document the seasonal concentrations, values, and formation potentials of selected nutrients, dissolved organic carbon (DOC), color, and disinfection byproducts (DBPs) during stormflow and base-flow conditions. The subbasins were categorized by three types of drainage efficiency and a range of land uses and housing densities. Analyte concentrations in subbasin streams differed in response to the subbasin charateristics. Nutrient concentrations were lowest in undeveloped, forested subbasins that were well drained and increased with all types of development, which included residential, urban commercial/industrial, golf-course, and horse-farm land uses. These concentrations were further modified by subbasin drainage efficiency. DOC, in contrast, was highly dependent on drainage efficiency. Color intensity and DBP formation potentials were, in turn, associated with DOC and thus showed a similar response to drainage efficiency. Every constituent exhibited seasonal changes in concentration. Nutrients. Total (unfiltered) phosphorus (TP), soluble reactive phosphorus (SRP), and nitrate were associated primarily with residential development, urban, golf-course, and horse-farm land uses. Base-flow and stormflow concentrations of the TP, SRP, and nitrate generally increased with increasing housing density. TP and SRP concentrations were nearly an order of magnitude higher in stormflow than in base flow, whereas nitrate concentrations showed little difference

  12. Measures of Child Well-Being in Utah, 2001. A Pledge to Our Children. Utah KIDS COUNT.

    Science.gov (United States)

    Haven, Terry, Ed.

    This KIDS COUNT report details statewide trends in the well-being of Utah's children. The statistical portrait is based on 26 indicators of children's well-being: (1) prenatal care; (2) low birth weight infants; (3) infant mortality; (4) child injury deaths; (5) unintentional injuries; (6) untreated tooth decay; (7) immunization rates; (8) suicide…

  13. Educational Issues in Utah: Governance, Legislation, Technology, and Finance. 1994-95 Conditions of Education in Utah Yearbook.

    Science.gov (United States)

    Galvin, Patrick F., Ed.; Johnson, Bob L., Jr., Ed.

    This document is the third edition of "Conditions of Education in Utah," covering the 1994-95 academic year. The first three chapters analyze issues relative to distance education and the Internet. Chapters 1 and 2 examine the pros and cons of distance education, and chapter 3 describes the construction, maintenance, and staffing costs…

  14. Earthquake probabilities for the Wassatch front region in Utah, Idaho, and Wyoming

    Science.gov (United States)

    Wong, Ivan G.; Lund, William R.; Duross, Christopher; Thomas, Patricia; Arabasz, Walter; Crone, Anthony J.; Hylland, Michael D.; Luco, Nicolas; Olig, Susan S.; Pechmann, James; Personius, Stephen; Petersen, Mark D.; Schwartz, David P.; Smith, Robert B.; Rowman, Steve

    2016-01-01

    In a letter to The Salt Lake Daily Tribune in September 1883, U.S. Geological Survey (USGS) geologist G.K. Gilbert warned local residents about the implications of observable fault scarps along the western base of the Wasatch Range. The scarps were evidence that large surface-rupturing earthquakes had occurred in the past and more would likely occur in the future. The main actor in this drama is the 350-km-long Wasatch fault zone (WFZ), which extends from central Utah to southernmost Idaho. The modern Wasatch Front urban corridor, which follows the valleys on the WFZ’s hanging wall between Brigham City and Nephi, is home to nearly 80% of Utah’s population of 3 million. Adding to this circumstance of “lots of eggs in one basket,” more than 75% of Utah’s economy is concentrated along the Wasatch Front in Utah’s four largest counties, literally astride the five central and most active segments of the WFZ.

  15. VT Boundaries - county polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee)...

  16. Final Environmental Impact Statement to construct and operate a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    A Final Environmental Impact Statement (FEIS) related to the licensing of Envirocare of Utah, Inc.`s proposed disposal facility in Tooele county, Utah (Docket No. 40-8989) for byproduct material as defined in Section 11e.(2) of the Atomic Energy Act, as amended, has been prepared by the Office of Nuclear Material Safety and Safeguards. This statement describes and evaluates the purpose of and need for the proposed action, the alternatives considered, and the environmental consequences of the proposed action. The NRC has concluded that the proposed action evaluated under the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, is to permit the applicant to proceed with the project as described in this Statement.

  17. Chemical composition and origin of fossil resins from Utah Wasatch Plateau coal. [USA - Utah

    Energy Technology Data Exchange (ETDEWEB)

    Meuzelaar, H.L.C.; Huai, H.; Lo, R.; Dworzanski, J.P. (University of Utah, Salt Lake City, UT (USA). Center for Micro Analysis and Reaction Chemistry)

    1991-07-01

    In order to arrive at a more detailed chemical description of fossil coal associated resins we need to distinguish between micropetrographic, organic geochemical and process technological definitions, each of which may encompass varying quantities of constituents unrelated to fossil tree resins. New information on composition and origin of Utah Wasatch Plateau coal resins obtained by Curie-point pyrolysis/evaporation in combination with iso-butane chemical ionization mass spectrometry, as presented in this paper, points to the presence of four more or less distinct resins components: (1) a sesquiterpenoid polymer; (2) sesqui- and triterpenoid monomers and dimers; (3) a suite of triterpenoid alcohols, ketones and acids, and (4) a series of increasingly aromatized hydrocarbons with naphthalene and picene type skeletons. Moreover, a strong similarity is found between the composition of recent dammar resin and fossil Wasatch Plateau coal resins indicating a possible Angiosperm (fam. Dipterocarpacae) origin of these Upper Cretaceous coal resins. Some of the technological implications of these findings and the consequent need for a more precise chemical definition and nomenclature are discussed. 27 refs., 7 figs., 2 tabs.

  18. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  19. ROE Carbon Storage - Forest Biomass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset depicts the density of forest biomass in counties across the United States, in terms of metric tons of carbon per square mile of land area....

  20. Milk Intake in Early and Late Adulthood and Risk of Osteoporotic Hip Fractures in Utah

    OpenAIRE

    Slavens, Melanie Jean

    2006-01-01

    The relationship between milk intake and risk of osteoporotic fractures is uncertain. Associations between milk intake and milk avoidance in relation to osteoporotic hip fracture were examined in the Utah Study of Nutrition and Bone Health (USNBH), a statewide case-control study. Cases were ascertained at Utah hospitals treating 98 percent of hip fractures during 1997-2001 and included 1188 men and women aged 50-89 years. Age- and gender-matched controls were randomly selected from Utah drive...

  1. Allegheny County Blazed Trails Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the location of blazed trails in all Allegheny County parks. This is the same data used in the Allegheny County Parks Trails Mobile App, available for Apple...

  2. Allegheny County Supermarkets & Convenience Stores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Location information for all Supermarkets and Convenience Stores in Allegheny County was produced using the Allegheny County Fee and Permit Data for 2016.

  3. Allegheny County Zip Code Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the zip code boundaries that lie within Allegheny County. These are not clipped to the Allgeheny County boundary. If viewing this...

  4. Allegheny County Watershed Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the 52 isolated sub-Watersheds of Allegheny County that drain to single point on the main stem rivers. Created by 3 Rivers 2nd Nature based...

  5. LANDSLIDES IN SUCEAVA COUNTY

    Directory of Open Access Journals (Sweden)

    Dan Zarojanu

    2017-07-01

    Full Text Available In the county of Suceava, the landslides are a real and permanent problem. This paper presents the observations of landslides over the last 30 years in Suceava County, especially their morphology, theirs causes and the landslide stopping measures. It presents also several details regarding the lanslides from the town of Suceava, of Frasin and the village of Brodina.

  6. Allegheny County Block Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset overlays a grid on the County to assist in locating a parcel. The grid squares are 3,500 by 4,500 square feet. The data was derived from original...

  7. Climate effects on historical fires (1630-1900) in Utah

    Science.gov (United States)

    Peter M. Brown; Emily K. Heyerdahl; Stanley G. Kitchen; Marc H. Weber

    2008-01-01

    We inferred climate effects on fire occurrence from 1630 to 1900 for a new set of crossdated fire-scar chronologies from 18 forested sites in Utah and one site in eastern Nevada. Years with regionally synchronous fires (31 years with fire at ≥20% of sites) occurred during drier than average summers and years with no fires at any site (100 years) were wetter...

  8. Lower Cretaceous paleo-Vertisols and sedimentary interrelationships in stacked alluvial sequences, Utah, USA

    Science.gov (United States)

    Joeckel, R. M.; Ludvigson, G. A.; Kirkland, J. I.

    2017-11-01

    The Yellow Cat Member of the Cedar Mountain Formation in Poison Strip, Utah, USA, consists of stacked, erosionally bounded alluvial sequences dominated by massive mudstones (lithofacies Fm) with paleo-Vertisols. Sediment bodies within these sequences grade vertically and laterally into each other at pedogenic boundaries, across which color, texture, and structures (sedimentary vs. pedogenic) change. Slickensides, unfilled (sealed) cracks, carbonate-filled cracks, and deeper cracks filled with sandstone; the latter features suggest thorough desiccation during aridification. Thin sandstones (Sms) in some sequences, typically as well as laminated to massive mudstones (Flm) with which they are interbedded in some cases, are interpreted as avulsion deposits. The termini of many beds of these lithofacies curve upward, parallel to nearby pedogenic slickensides, as the features we call ;turnups.; Turnups are overlain or surrounded by paleosols, but strata sheltered underneath beds with turnups retain primary sedimentary fabrics. Turnups were produced by movement along slickensides during pedogenesis, by differential compaction alongside pre-existing gilgai microhighs, or by a combination of both. Palustrine carbonates (lithofacies C) appear only in the highest or next-highest alluvial sequences, along with a deep paleo-Vertisol that exhibits partially preserved microrelief at the base of the overlying Poison Strip Member. The attributes of the Yellow Cat Member suggest comparatively low accommodation, slow accumulation, long hiatuses in clastic sedimentation, and substantial time intervals of subaerial exposure and pedogenesis; it appears to be distinct among the members of the Cedar Mountain Formation in these respects.

  9. Geology, geochemistry, and geophysics of the Fry Canyon uranium/copper project site, southeastern Utah - Indications of contaminant migration

    Science.gov (United States)

    Otton, James K.; Zielinski, Robert A.; Horton, Robert J.

    2010-01-01

    The Fry Canyon uranium/copper project site in San Juan County, southeastern Utah, was affected by the historical (1957-68) processing of uranium and copper-uranium ores. Relict uranium tailings and related ponds, and a large copper heap-leach pile at the site represent point sources of uranium and copper to local soils, surface water, and groundwater. This study was designed to establish the nature, extent, and pathways of contaminant dispersion. The methods used in this study are applicable at other sites of uranium mining, milling, or processing. The uranium tailings and associated ponds sit on a bench that is as much as 4.25 meters above the level of the adjacent modern channel of Fry Creek. The copper heap leach pile sits on bedrock just south of this bench. Contaminated groundwater from the ponds and other nearby sites moves downvalley and enters the modern alluvium of adjacent Fry Creek, its surface water, and also a broader, deeper paleochannel that underlies the modern creek channel and adjacent benches and stream terraces. The northern extent of contaminated groundwater is uncertain from geochemical data beyond an area of monitoring wells about 300 meters north of the site. Contaminated surface water extends to the State highway bridge. Some uranium-contaminated groundwater may also enter underlying bedrock of the Permian Cedar Mesa Sandstone along fracture zones. Four dc-resistivity surveys perpendicular to the valley trend were run across the channel and its adjacent stream terraces north of the heap-leach pile and ponds. Two surveys were done in a small field of monitoring wells and two in areas untested by borings to the north of the well field. Bedrock intercepts, salt distribution, and lithologic information from the wells and surface observations in the well field aided interpretation of the geophysical profiles there and allowed interpretation of the two profiles not tested by wells. The geophysical data for the two profiles to the north of the

  10. Effects of sediment-associated extractable metals, degree of sediment grain sorting, and dissolved organic carbon upon Cryptosporidium parvum removal and transport within riverbank filtration sediments, Sonoma County, California

    Science.gov (United States)

    Metge, D.W.; Harvey, R.W.; Aiken, G.R.; Anders, R.; Lincoln, G.; Jasperse, J.; Hill, M.C.

    2011-01-01

    Oocysts of the protozoan pathogen Cryptosporidium parvum are of particular concern for riverbank filtration (RBF) operations because of their persistence, ubiquity, and resistance to chlorine disinfection. At the Russian River RBF site (Sonoma County, CA), transport of C. parvumoocysts and oocyst-sized (3 μm) carboxylate-modified microspheres through poorly sorted (sorting indices, σ1, up to 3.0) and geochemically heterogeneous sediments collected between 2 and 25 m below land surface (bls) were assessed. Removal was highly sensitive to variations in both the quantity of extractable metals (mainly Fe and Al) and degree of grain sorting. In flow-through columns, there was a log–linear relationship (r2 = 0.82 at p < 0.002) between collision efficiency (α, the probability that colloidal collisions with grain surfaces would result in attachment) and extractable metals, and a linear relationship (r2 = 0.99 at p < 0.002) between α and σ1. Collectively, variability in extractable metals and grain sorting accounted for ∼83% of the variability in α (at p < 0.0002) along the depth profiles. Amendments of 2.2 mg L–1 of Russian River dissolved organic carbon (DOC) reduced α for oocysts by 4–5 fold. The highly reactive hydrophobic organic acid (HPOA) fraction was particularly effective in re-entraining sediment-attached microspheres. However, the transport-enhancing effects of the riverine DOC did not appear to penetrate very deeply into the underlying sediments, judging from high α values (∼1.0) observed for oocysts being advected through unamended sediments collected at ∼2 m bls. This study suggests that in evaluating the efficacy of RBF operations to remove oocysts, it may be necessary to consider not only the geochemical nature and size distribution of the sediment grains, but also the degrees of sediment sorting and the concentration, reactivity, and penetration of the source water DOC.

  11. Assessment of rangeland ecosystem conditions, Salt Creek watershed and Dugout Ranch, southeastern Utah

    Science.gov (United States)

    Bowker, M.A.; Miller, M.E.; Belote, R.T.

    2012-01-01

    Increasingly, dry rangelands are being valued for multiple services beyond their traditional value as a forage production system. Additional ecosystem services include the potential to store carbon in the soil and plant biomass. In addition, dust emissions from rangelands might be considered an ecosystem detriment, the opposite of an ecosystem service. Dust emitted may have far-reaching impacts, for example, reduction of local air quality, as well as altering regional water supplies through effects on snowpack. Using an extensive rangeland monitoring dataset in the greater Canyonlands region (Utah, USA), we developed a method to estimate indices of the provisioning of three ecosystem services (forage production, dust retention, C storage) and one ecosystem property (nativeness), taking into account both ecosystem type and alternative states within that ecosystem type. We also integrated these four indices into a multifunctionality index. Comparing the currently ungrazed Canyonlands National Park watersheds to the adjacent Dugout Ranch pastures, we found clearly higher multifunctionality was attained in the Park, and that this was primarily driven by greater C-storage and better dust retention. It is unlikely to maximize all benefits and minimize all detriments at the same time. Some goods and services may have synergistic interactions; for example, managing for carbon storage will increase plant and biocrust cover likely lowering dust emission. Likewise, some may have antagonistic interactions. For instance, if carbon is consumed as biomass for livestock production, then carbon storage may be reduced. Ultimately our goal should be to quantify the monetary consequences of specific land use practices for multiple ecosystem services and determine the best land use and adaptive management practices for attaining multiple ecosystem services, minimizing economic detriments, and maximizing economic benefits from multi-commodity rangelands. Our technique is the first step

  12. The Role of Diet, Erythrocyte Membrane Fatty Acid Composition, and Alzheimer's-related Genes in Systemic Inflammation in the Cache County Memory Study

    OpenAIRE

    Jalloun, Rola Adnan

    2015-01-01

    This project examined the association between dietary patterns, erythrocyte membrane fatty acids concentration, and Alzheimer’s-related genes in systemic inflammation, as indicated by C-reactive protein (CRP) levels, in order to achieve more comprehensive knowledge of how nutrition and genetics influence systemic inflammation among the elderly residents of Cache County, Utah. First, the associations between dietary patterns defined by Dietary Approaches to Stop Hypertension (DASH) and Medi...

  13. 77 FR 24975 - Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog

    Science.gov (United States)

    2012-04-26

    ... Utah Prairie Dog AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of document availability... recovery plan for the Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened... preparation of the final revised recovery plan for the Utah prairie dog. The Service and other Federal...

  14. A tree-ring based reconstruction of Logan River streamflow, northern Utah

    Science.gov (United States)

    Eric B. Allen; Tammy M. Rittenour; R. Justin DeRose; Matthew F. Bekker; Roger Kjelgren; Brendan M. Buckley

    2013-01-01

    We created six new tree-ring chronologies in northern Utah, which were used with preexisting chronologies from Utah and western Wyoming to reconstruct mean annual flow for the Logan River, the largest tributary of the regionally important Bear River. Two reconstruction models were developed, a ''Local'' model that incorporated two Rocky Mountain...

  15. 76 FR 77223 - PacifiCorp v. Utah Associated Municipal Power Systems; Notice of Complaint

    Science.gov (United States)

    2011-12-12

    ... Energy Regulatory Commission PacifiCorp v. Utah Associated Municipal Power Systems; Notice of Complaint Take notice that on December 2, 2011, pursuant to sections 206 and 306 of the Federal Power Act (FPA... Utah Associated Municipal Power Systems (Respondent) has failed to comply with the terms and conditions...

  16. 76 FR 69217 - Approval and Promulgation of State Implementation Plans; State of Utah; Smoke Management...

    Science.gov (United States)

    2011-11-08

    ... distances, even hundreds of kilometers. Therefore, to effectively address the problem of visibility... development, provisions regarding clean air corridors, mobile sources, and wind-blown dust, among other things... Utah Farm Bureau Federation and Utah State University Extension to develop and implement an inventory...

  17. 76 FR 28074 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Science.gov (United States)

    2011-05-13

    ... National Park Service Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT... inventory of human remains in the possession and control of the Utah Museum of Natural History, Salt Lake... Natural History, 1390 E. Presidents Circle, Salt Lake City, UT 84112, telephone (801) 581-3876, before...

  18. Do You Really Want to Know? Elementary Music Personnel and Potential in Utah

    Science.gov (United States)

    Walker, Loretta Niebur

    2015-01-01

    This is the second of two articles reporting the results of a study by the author regarding the status of elementary music education in the state of Utah. This article focuses on the qualifications of Utah's elementary music teachers (music certified, elementary classroom certified, artists-in-residence, volunteers, and paraprofessionals) and the…

  19. 76 FR 9770 - Utah Board of Water Resources Notice of Successive Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-02-22

    ... Energy Regulatory Commission Utah Board of Water Resources Notice of Successive Preliminary Permit... February 1, 2011, the Utah Board of Water Resources filed an application for a successive preliminary... water intake would convey water from the Bureau of Reclamation's Lake Powell up to a high point within...

  20. Quantification of BMPs Selection and Spatial Placement Impact on Water Quality Controlling Plans in Lower Bear River Watershed, Utah

    Science.gov (United States)

    Salha, A. A.; Stevens, D. K.

    2016-12-01

    The aim of the watershed-management program in Box Elder County, Utah set by Utah Division of Water Quality (UDEQ) is to evaluate the effectiveness and spatial placement of the implemented best-management practices (BMP) for controlling nonpoint-source contamination at watershed scale. The need to evaluate the performance of BMPs would help future policy and program decisions making as desired end results. The environmental and costs benefits of BMPs in Lower Bear River watershed have seldom been measured beyond field experiments. Yet, implemented practices have rarely been evaluated at the watershed scale where the combined effects of variable soils, climatic conditions, topography and land use/covers and management conditions may significantly change anticipated results and reductions loads. Such evaluation requires distributed watershed models that are necessary for quantifying and reproducing the movement of water, sediments and nutrients. Soil and Water Assessment Tool (SWAT) model is selected as a watershed level tool to identify contaminant nonpoint sources (critical zones) and areas of high pollution risks. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices (required load is 460 kg/day of total phosphorus based on 0.075 mg/l and an average of total suspended solids of 90 mg/l). Input data such as digital elevation model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized along with observed water quality at the watershed outlet (USGS) and some discrete monitoring points within the watershed. Statistical and spatial analysis of scenarios of management practices (BMP's) are not implemented (before implementation), during implementation, and after BMP's have been studied to determine whether water quality of the two main water bodies has improved as required by the LBMR watershed's TMDL

  1. Allegheny County Dog Licenses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A list of dog license dates, dog breeds, and dog name by zip code. Currently this dataset does not include City of Pittsburgh dogs.

  2. Allegheny County Hydrology Lines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  3. Allegheny County Vacant Properties

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Mail carriers routinely collect data on address no longer receiving mail due to vacancy. This vacancy data is reported quarterly at census tract geographies in the...

  4. Durham County Demographic Profile

    Data.gov (United States)

    City and County of Durham, North Carolina — (a) Includes persons reporting only one race.(b) Hispanics may be of any race, so also are included in applicable race categories. D: Suppressed to avoid disclosure...

  5. Allegheny County Housing Tenure

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Home ownership provides a number of financial, social, and health benefits to American families. Especially in areas with housing price appreciation, home ownership...

  6. Allegheny County Sheriff Sales

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List of properties up for auction at a Sheriff Sale. Datasets labeled "Current" contain this month's postings, while those labeled "Archive" contain a running list...

  7. Allegheny County Older Housing

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Older housing can impact the quality of the occupant's health in a number of ways, including lead exposure, housing quality, and factors that may exacerbate...

  8. Allegheny County Cemetery Outlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Outlines of public and private cemeteries greater than one acre in size. Areas were delineated following a generalized line along the outside edge of the area....

  9. Allegheny County Hydrology Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  10. Intrusive Rock Database for the Digital Geologic Map of Utah

    Science.gov (United States)

    Nutt, C.J.; Ludington, Steve

    2003-01-01

    Digital geologic maps offer the promise of rapid and powerful answers to geologic questions using Geographic Information System software (GIS). Using modern GIS and database methods, a specialized derivative map can be easily prepared. An important limitation can be shortcomings in the information provided in the database associated with the digital map, a database which is often based on the legend of the original map. The purpose of this report is to show how the compilation of additional information can, when prepared as a database that can be used with the digital map, be used to create some types of derivative maps that are not possible with the original digital map and database. This Open-file Report consists of computer files with information about intrusive rocks in Utah that can be linked to the Digital Geologic Map of Utah (Hintze et al., 2000), an explanation of how to link the databases and map, and a list of references for the databases. The digital map, which represents the 1:500,000-scale Geologic Map of Utah (Hintze, 1980), can be obtained from the Utah Geological Survey (Map 179DM). Each polygon in the map has a unique identification number. We selected the polygons identified on the geologic map as intrusive rock, and constructed a database (UT_PLUT.xls) that classifies the polygons into plutonic map units (see tables). These plutonic map units are the key information that is used to relate the compiled information to the polygons on the map. The map includes a few polygons that were coded as intrusive on the state map but are largely volcanic rock; in these cases we note the volcanic rock names (rhyolite and latite) as used in the original sources Some polygons identified on the digital state map as intrusive rock were misidentified; these polygons are noted in a separate table of the database, along with some information about their true character. Fields may be empty because of lack of information from references used or difficulty in finding

  11. Magnetostratigraphy of the Moenkopi Formation at Bears Ears, Utah

    Science.gov (United States)

    Lienert, Barry R.; Helsley, C. E.

    1980-03-01

    We have performed a paleomagnetic study on over 200 oriented samples collected from the Lower Triassic Moenkopi Formation at Bears Ears in southeastern Utah. Seven intervals of normal and reversed magnetic polarities are present at the Bears Ears site. We have correlated these magnetozones to a similar set established in the same formation 130 km to the northeast. At Bears Ears, magnetozone boundaries occur in different lithologic members of the Moenkopi Formation than corresponding magnetozone boundaries present in the section to the northeast. We conclude that contemporaneous lateral variations of sediment type and environement are a characteristic feature of the Moenkopi Formation.

  12. 78 FR 35181 - Approval and Promulgation of Air Quality Implementation Plans; Utah; Revisions to Utah...

    Science.gov (United States)

    2013-06-12

    ... volatile organic compounds (VOCs), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ), and 10 tons per..., EPA approved a 25 tons per year actual emissions level as a de minimis threshold for fossil fuel... ozone, particulate matter, carbon monoxide (CO), sulfur dioxide (SO 2 ), lead, nitrogen oxides (NO X...

  13. Modifying dementia risk and trajectories of cognitive decline in aging: the Cache County Memory Study.

    Science.gov (United States)

    Welsh-Bohmer, Kathleen A; Breitner, John C S; Hayden, Kathleen M; Lyketsos, Constantine; Zandi, Peter P; Tschanz, Joann T; Norton, Maria C; Munger, Ron

    2006-07-01

    The Cache County Study of Memory, Health, and Aging, more commonly referred to as the "Cache County Memory Study (CCMS)" is a longitudinal investigation of aging and Alzheimer's disease (AD) based in an exceptionally long-lived population residing in northern Utah. The study begun in 1994 has followed an initial cohort of 5,092 older individuals (many over age 84) and has examined the development of cognitive impairment and dementia in relation to genetic and environmental antecedents. This article summarizes the major contributions of the CCMS towards the understanding of mild cognitive disorders and AD across the lifespan, underscoring the role of common health exposures in modifying dementia risk and trajectories of cognitive change. The study now in its fourth wave of ascertainment illustrates the role of population-based approaches in informing testable models of cognitive aging and Alzheimer's disease.

  14. El Paso County Geothermal Project at Fort Bliss. Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Lear, Jon [Ruby Mountain Inc., Salt Lake City, UT (United State); Bennett, Carlon [Ruby Mountain Inc., Salt Lake City, UT (United State); Lear, Dan [Ruby Mountain Inc., Salt Lake City, UT (United State); Jones, Phil L. [Ruby Mountain Inc., Salt Lake City, UT (United State); Burdge, Mark [Evergreen Clean Energy Management, Provo, UT (United States); Barker, Ben [Evergreen Clean Energy Management, Provo, UT (United States); Segall, Marylin [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Moore, Joseph [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Nash, Gregory [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Jones, Clay [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Simmons, Stuart [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.; Taylor, Nancy [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.

    2016-02-01

    The El Paso County Geothermal Project at Fort Bliss was an effort to determine the scale and scope of geothermal resources previously identified on Fort Bliss’ McGregor Range in southern Otero County, New Mexico. The project was funded with a $5,000,000 grant to El Paso County from the U.S. Department of Energy (DOE) as part of the American Recovery and Reinvestment Act of 2009 and a $4,812,500 match provided by private sector partners. The project was administered through the DOE Golden Field Office to awardee El Paso County. The primary subcontractor to El Paso County and project Principal Investigator - Ruby Mountain Inc. (RMI) of Salt Lake City, Utah - assembled the project team consisting of Evergreen Clean Energy Management (ECEM) of Provo, Utah, and the Energy & Geoscience Institute at the University of Utah (EGI) in Salt Lake City, UT to complete the final phases of the project. The project formally began in May of 2010 and consisted of two preliminary phases of data collection and evaluation which culminated in the identification of a drilling site for a Resource Confirmation Well on McGregor Range. Well RMI 56-5 was drilled May and June 2013 to a depth of 3,030 ft. below ground level. A string of slotted 7 inch casing was set in 8.75 inch hole on bottom fill at 3,017 ft. to complete the well. The well was drilled using a technique called flooded reverse circulation, which is most common in mineral exploration. This technique produced an exceptionally large and complete cuttings record. An exciting development at the conclusion of drilling was the suspected discovery of a formation that has proven to be of exceptionally high permeability in three desalinization wells six miles to the south. Following drilling and preliminary testing and analysis, the project team has determined that the McGregor Range thermal anomaly is large and can probably support development in the tens of megawatts.

  15. Ground water in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present i n val ley-f i 11 deposits of six major drainages. Consolidated-rock aquifers include the birds's-nest aquifer i n the Parachute Creek Member of the G reen River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area.The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute.Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used

  16. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    Science.gov (United States)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  17. Teachers' perceptions of substitute teacher performance and training in Maury County, Tennessee

    Science.gov (United States)

    Smith, Tina Thornton

    This study examined opinions and perceptions of permanent teachers in Maury County, Tennessee, regarding performance and training of substitute teachers. In addition to demographic information and comparisons among group means, the relationships between variables were studied. The results of the study were used to determine if a substitute teacher training program would be beneficial to Maury County Schools. The study sample (N = 165) included full time K-12 teachers. Respondents were divided into three groups: elementary, middle, and high school teachers. Data was gathered using a survey created by the Substitute Teaching Institute at Utah State University in Logan, Utah. Permanent teachers responded to ten items on a Likert scale and three opinion questions. Statistically significant differences between the three responding groups were indicated. Findings were as follows: (1) There was a statistically significant difference in the way teachers rated substitute teacher performance based on grade level. Although none of the three groups had a high mean response, elementary teachers rated substitute teacher performance higher than did middle and high school teachers. (2) There was a statistically significant difference in the degree to which teachers agreed that training would improve the quality and performance of substitute teachers. All three groups agreed that substitute training would be beneficial; however, the highest ranking came from middle school teachers.

  18. Temporal variability of extreme temperature indices in Utah during the past few decades

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Costa dos Santos

    2013-12-01

    Full Text Available The main objective of this study was to analyze the trends in five annual extreme indices of temperature for Utah, USA. The analyses were conducted for 28 meteorological stations, during the period from 1970 to 2006, characterized by high quality data set. The analyses of extreme temperature indices have identified an increase in the maximum and minimum air temperatures in Utah. Predominantly, the minimum air temperature is increasing in the studied region. Most of Utah has shown a decrease in the diurnal temperature range, which indicates that the minimum temperature is increasing faster than the maximum temperature.

  19. Discriminant of validity the Wender Utah rating scale in Iranian adults.

    OpenAIRE

    Farideh Farokhzadi; Mohammad Reza Mohammadi; Maryam Salmanian

    2014-01-01

    The aim of this study is the normalization of the Wender Utah rating scale which is used to detect adults with Attention-Deficit and Hyperactivity Disorder (ADHD). Available sampling method was used to choose 400 parents of children (200 parents of children with ADHD as compared to 200 parents of normal children). Wender Utah rating scale, which has been designed to diagnose ADHD in adults, is filled out by each of the parents to most accurately diagnose of ADHD in parents. Wender Utah rating...

  20. Valencia County E-911 Roads

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains a vector digital representation of all accessible roads in the county including interstate highways, State highways, county roads and some...

  1. Allegheny County Employee Salaries 2016

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Employee salaries are a regular Right to Know request the County receives. Here is the disclaimer language that is included with the dataset from the Open Records...

  2. Allegheny County Fatal Accidental Overdoses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Fatal accidental overdose incidents in Allegheny County, denoting age, gender, race, drugs present, zip code of incident and zip code of residence. Zip code of...

  3. Allegheny County Land Use Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Allegheny County land use as ascribed to areas of land. The Land Use Feature Dataset contains photogrammetrically compiled information concerning vegetation and...

  4. Allegheny County Mortgage Foreclosure Records

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data includes filings related to mortgage foreclosure in Allegheny County. The foreclosure process enables a lender to take possession of a property due to an...

  5. DOT Official County Highway Map

    Data.gov (United States)

    Minnesota Department of Natural Resources — The County Highway Map theme is a scanned and rectified version of the original MnDOT County Highway Map Series. The cultural features on some of these maps may be...

  6. Allegheny County Property Sale Transactions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA. Before doing any market analysis on property sales, check...

  7. Allegheny County School District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the school district boundaries within Allegheny County If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  8. Allegheny County Fast Food Establishments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Allegheny County Health Department has generated this list of fast food restaurants by exporting all chain restaurants without an alcohol permit from the...

  9. Allegheny County Public Building Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of municipal facilities in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  10. Allegheny County Cell Tower Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays cell tower locations as points in Allegheny County. The dataset is based on outbuilding codes in the Property Assessment Parcel Database used...

  11. Providing engineering services to counties.

    Science.gov (United States)

    2008-09-01

    An engineer is required by law to safeguard the health, safety and welfare of the public. The current Kansas : statute state, The Board of County Commissioners of each county shall appoint a licensed professional : engineer, whose title shall be c...

  12. Allegheny County Park Rangers Outreach

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Launched in June 2015, the Allegheny County Park Rangers program reached over 48,000 people in its first year. Park Rangers interact with residents of all ages and...

  13. Allegheny County Primary Care Access

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The data on health care facilities includes the name and location of all the hospitals and primary care facilities in Allegheny County. The current listing of...

  14. Allegheny County Commercial Vehicle Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset lists the locations and results of all commercial vehicle inspections performed by the Allegheny County Police Motor Carrier Safety Assistance Program...

  15. Allegheny County Addressing Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the address points in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  16. Allegheny County Addressing Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the road centerlines in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  17. Allegheny County Summer Food Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set shows the Summer Food Sites located within Allegheny County for children (18 years and younger) for breakfast and lunch during summer recess. OPEN...

  18. TERRAIN, KENT COUNTY, RHODE ISLAND

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Kent AOI consists of the costal portion of the county, and meshes up seamlessly with the Providence county AOI directly north. Ground Control is collected...

  19. TERRAIN, PROVIDENCE COUNTY, RHODE ISLAND

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Providence AOI consists of the costal portion of the county, and meshes up seamlessly with the Kent county AOI directly south. Ground Control is collected...

  20. Allegheny County Jail Daily Census

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A daily census of the inmates at the Allegheny County Jail (ACJ). Includes gender, race, age at booking, and current age. The records for each month contain a...

  1. Sonoma County, CA, 2013 Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sonoma County Vegetation Mapping and LiDAR Consortium retained WSI to provide lidar and Orthophoto data and derived products in Sonoma County, CA. A classified LAS...

  2. Allegheny County Poor Housing Conditions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This estimate of the percent of distressed housing units in each Census Tract was prepared using data from the American Community Survey and the Allegheny County...

  3. Allegheny County Addressing Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the road centerlines in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  4. Comparison of Radiocarbon Ages for Multiproxy Paleoclimate Reconstruction of the Great Salt Lake, Utah

    Science.gov (United States)

    Nielson, K. E.; Bowen, G. J.; Eglinton, T. I.

    2008-12-01

    Multiproxy paleoclimate reconstructions from high sedimentation-rate systems offer promising opportunities to deconvolve multiple aspects climate system response to past forcing. However, the time-equivalence of proxies must be established before such reconstructions can be usefully interpreted. Differences in source ages, transport pathways, and surface residence times for substrates may lead to differences in lag times between proxy formation and deposition, compromising comparative analysis of data from multiple proxies. We used multi-substrate radiocarbon dating to investigate the potential for multi-proxy reconstruction of Holocene changes in the volume of the Great Salt Lake (GSL), Utah, based on the stable isotope composition of organic and inorganic substrates in lake sediment cores. Among potential substrates for this work are normal alkanes of vascular higher plant and algal origin, fossil cysts of lake-dwelling brine shrimp (Artemia), and micritic aragonite. Radiocarbon ages for all organic substrates (alkanes, cysts) sampled at any given core depth are concordant within analytical uncertainty and are similar to ages determined on land-plant debris and filamentous algae isolated from the sediment. Inorganic carbonate, in contrast, is depleted in 14C compare to the organic proxies, giving ages that were apparently 2000 to 3000 years older, likely due to winnowing and re-deposition of carbonate at the core site. These results suggest that the maximum temporal resolution achievable through analysis of mineral substrates is on the order of several millennia. Although the limited precision of the radiocarbon analysis precludes precise determination of the maximum potential resolution of organic-proxy based climate reconstructions, the relatively high sedimentation rates (50--150 cm/kyr) and age-equivalence of the substrates analyzed implies that sub- centennial scale resolution should be achievable throughout much of the Holocene portion of the GSL

  5. Negligent care and malpractice claiming behavior in Utah and Colorado.

    Science.gov (United States)

    Studdert, D M; Thomas, E J; Burstin, H R; Zbar, B I; Orav, E J; Brennan, T A

    2000-03-01

    Previous studies relating the incidence of negligent medical care to malpractice lawsuits in the United States may not be generalizable. These studies are based on data from 2 of the most populous states (California and New York), collected more than a decade ago, during volatile periods in the history of malpractice litigation. The study objectives were (1) to calculate how frequently negligent and nonnegligent management of patients in Utah and Colorado in 1992 led to malpractice claims and (2) to understand the characteristics of victims of negligent care who do not or cannot obtain compensation for their injuries from the medical malpractice system. We linked medical malpractice claims data from Utah and Colorado with clinical data from a review of 14,700 medical records. We then analyzed characteristics of claimants and nonclaimants using evidence from their medical records about whether they had experienced a negligent adverse event. The study measures were negligent adverse events and medical malpractice claims. Eighteen patients from our study sample filed claims: 14 were made in the absence of discernible negligence and 10 were made in the absence of any adverse event. Of the patients who suffered negligent injury in our study sample, 97% did not sue. Compared with patients who did sue for negligence occurring in 1992, these nonclaimants were more likely to be Medicare recipients (odds ratio [OR], 3.5; 95% CI [CI], 1.3 to 9.6), Medicaid recipients (OR, 3.6; 95% CI, 1.4 to 9.0), > or =75 years of age (OR, 7.0; 95% CI, 1.7 to 29.6), and low income earners (OR, 1.9; 95% CI, 0.9 to 4.2) and to have suffered minor disability as a result of their injury (OR, 6.3; 95% CI, 2.7 to 14.9). The poor correlation between medical negligence and malpractice claims that was present in New York in 1984 is also present in Utah and Colorado in 1992. Paradoxically, the incidence of negligent adverse events exceeds the incidence of malpractice claims but when a physician is

  6. Minnesota County Boundaries - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  7. Minnesota County Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  8. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  9. Computer-aided dispatch--traffic management center field operational test : state of Utah final report

    Science.gov (United States)

    2006-07-01

    This document provides the final report for the evaluation of the USDOT-sponsored Computer-Aided Dispatch Traffic Management Center Integration Field Operations Test in the State of Utah. The document discusses evaluation findings in the followin...

  10. Lead shot: its settlement, oxidation, and general availability to waterfowl in Utah marshes.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In an attempt to further knowledge in the area of lead poisoning of waterfowl from spent shot pellets, students from the Utah Cooperative Wildlife Research Unit...

  11. Utah State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  12. Irrigation Wells from the Utah Division of Water Rights Point of Diversion Database

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are derived from a point shapefile created nightly from data in the Utah Division of Water Rights Database. The source data were acquired on October 26,...

  13. Limitations On Canada Goose Production at Fish springs National Wildlife Refuge, Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We studied the western Canada goose (B. c. moffitti) population at Fish Springs National Wildlife Refuge in western Utah from March to July in 1996 and 1997 to...

  14. Compactional deformation bands in Wingate Sandstone; additional evidence of an impact origin for Upheaval Dome, Utah

    Science.gov (United States)

    Okubo, Chris H.; Schultz, Richard A.

    2007-04-01

    Field and microstructural observations from Upheaval Dome, in Canyonlands National Park, Utah, show that inelastic strain of the Wingate Sandstone is localized along compactional deformation bands. These bands are tabular discontinuities (Jurassic) age for this impact.

  15. 78 FR 23290 - Notice of Utah's Resource Advisory Council Conference Call Meeting

    Science.gov (United States)

    2013-04-18

    ... teleconference, orally present material during the teleconference, or submit written material for the Council to... System Strategy. Results of their findings will be presented to the BLM-Utah and the RAC. A public...

  16. Utah Marbles and Mars Blueberries: Comparitive Terrestrial Analogs for Hematite Concretions on Mars

    Science.gov (United States)

    Chan, M. A.; Beitler, B.; Parry, W. T.; Ormö, J.; Komatsu, G.

    2005-03-01

    Compelling comparisons show why Utah iron oxide-cemented "marbles" are a good analog for Mars hematite "blueberries". Terrestrial examples offer valuable models for interpreting the diagenetic history and importance of water on Mars.

  17. Spread and genetic relatedness of native vs. introduced Phragmites australis in Utah wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Utah is experiencing a dramatic invasion of an aggressive European subspecies of the common reed (Phragmites australis subsp. australis). This invasion is...

  18. Hypercorrection in Response to the Apparent Merger of (c) and (a) in Utah English.

    Science.gov (United States)

    Di Paolo, Marianna

    1992-01-01

    Acoustic analysis of two vowels thought to be merged in Utah English suggest that there are small but consistent differences between them. A matched guise experiment provides evidence that when the vowels are merged hypercorrection is involved. (33 references) (LB)

  19. Supplementary report on Pony Express-Overland Stage sites in western Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following report is a description by site of Pony Express and Overland Stage stations between Rush Valley and Deep Creek, Utah. Descriptions, including...

  20. A survey of locally endemic mollusca of Utah, Colorado, Wyoming, Montana, North Dakota, and South Dakota

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a culmination of field, laboratory, and bibliographic work begun in August, 1974. The project as originally contracted called for a survey of Utah and...

  1. The University of Utah Clinical Genetics Research Program as an NF1 Consortium Site

    National Research Council Canada - National Science Library

    Viskochil, David H; Stevenson, David; Carey, John

    2007-01-01

    The University of Utah Clinical Genetics Research Program (CGRP) provided the infrastructure for our site to perform clinical trials within the scope of a consortium to treat multiple medical complications of neurofibromatosis type 1...

  2. TIN Dataset Model of Overburden Above the Mahogany Bed in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the overburden material above the Mahogany bed was needed to perform calculations in the Uinta Basin, Utah and Colorado as part of a 2009...

  3. Muskrat population estimates for Fish Springs NWR, Utah : An assessment of techniques

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Completion report for a study of muskrat population dynamics and vegetation utilization, being led by Utah State University for a doctorate dissertation. The study...

  4. Deep resistivity structure in southwestern Utah and its geothermal significance

    Energy Technology Data Exchange (ETDEWEB)

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1983-02-01

    Magnetotelluric (MT) measurements in southwestern Utah have yielded a model of resistivity structure in this area to a depth of about 100 km. The MT observations are strongly affected by Great Basin graben sedimentary fill, which constitutes conductive upper-crustal lateral inhomogeneity and requires simulation using two- and three-dimensional modeling algorithms before deeper portions of the resistivity section can be resolved. Included in the model is a layer of low resistivity (20 ..cap omega..-m) residing from 35 to 65 km depth. Sensitivity tests of the data to the structure weigh strongly against the top of this layer being as shallow as 25 km and against the conductivity and thickness of the layer being highly correlated. No intra-crustal low-resistivity layer is indicated by the MT data.

  5. The University of Utah Urban Undertaking (U4)

    Science.gov (United States)

    Lin, J. C.; Mitchell, L.; Bares, R.; Mendoza, D. L.; Fasoli, B.; Bowling, D. R.; Garcia, M. A.; Buchert, M.; Pataki, D. E.; Crosman, E.; Horel, J.; Catharine, D.; Strong, C.; Ehleringer, J. R.

    2015-12-01

    The University of Utah is leading efforts to understand the spatiotemporal patterns in both emissions and concentrations of greenhouse gases (GHG) and criteria pollutants within urban systems. The urbanized corridor in northern Utah along the Wasatch Front, anchored by Salt Lake City, is undergoing rapid population growth that is projected to double in the next few decades. The Wasatch Front offers multiple advantages as an unique "urban laboratory": urban regions in multiple valleys spanning numerous orders of magnitude in population, each with unique airsheds, well-defined boundary conditions along deserts and tall mountains, strong signals during cold air pool events, seasonal contrasts in pollution, and a legacy of productive partnerships with local stakeholders and governments. We will show results from GHG measurements from the Wasatch Front, including one of the longest running continuous CO2 records in urban areas. Complementing this record are comprehensive meteorological observations and GHG/pollutant concentrations on mobile platforms: light rail, helicopter, and research vans. Variations in the GHG and pollutant observations illustrate human behavior and the resulting "urban metabolism" taking place on hourly, weekly, and seasonal cycles, resulting in a coupling between GHG and criteria pollutants. Moreover, these observations illustrate systematic spatial gradients in GHG and pollutant distributions between and within urban areas, traced to underlying gradients in population, energy use, terrain, and land use. Over decadal time scales the observations reveal growth of the "urban dome" due to expanding urban development. Using numerical models of the atmosphere, we further link concentrations of GHG and air quality-relevant pollutants to underlying emissions at the neighborhood scale as well as urban planning considerations.

  6. Estimating pinyon and juniper cover across Utah using NAIP imagery

    Directory of Open Access Journals (Sweden)

    Darrell B. Roundy

    2016-11-01

    Full Text Available Expansion of Pinus L. (pinyon and Juniperus L. (juniper (P-J trees into sagebrush (Artemisia L. steppe communities can lead to negative effects on hydrology, loss of wildlife habitat, and a decrease in desirable understory vegetation. Tree reduction treatments are often implemented to mitigate these negative effects. In order to prioritize and effectively plan these treatments, rapid, accurate, and inexpensive methods are needed to estimate tree canopy cover at the landscape scale. We used object based image analysis (OBIA software (Feature AnalystTM for ArcMap 10.1®, ENVI Feature Extraction®, and Trimble eCognition Developer 8.2® to extract tree canopy cover using NAIP (National Agricultural Imagery Program imagery. We then compared our extractions with ground measured tree canopy cover (crown diameter and line point intercept on 309 plots across 44 sites in Utah. Extraction methods did not consistently over- or under-estimate ground measured P-J canopy cover except where tree cover was >45%. Estimates of tree canopy cover using OBIA techniques were strongly correlated with estimates using the crown diameter method (r = 0.93 for ENVI, 0.91 for Feature AnalystTM, and 0.92 for eCognition. Tree cover estimates using OBIA techniques had lower correlations with tree cover measurements using the line-point intercept method (r = 0.85 for ENVI, 0.83 for Feature AnalystTM, and 0.83 for eCognition. All software packages accurately and inexpensively extracted P-J canopy cover from NAIP imagery when the imagery was not blurred, and when P-J cover was not mixed with Amelanchier alnifolia (Utah serviceberry and Quercus gambelii (Gambel’s oak, which had similar spectral values as P-J.

  7. Climate Forcings on Groundwater Variations in Utah and the Great Basin

    OpenAIRE

    Hakala, Kirsti A.

    2014-01-01

    Groundwater levels over northern Utah have undergone a declining trend since the 1960’s. This trend has made apparent the need to understand the relationship between climate and groundwater resources. Such necessary information is already in dire need in places such as California. At the close of 2013, California had experienced its driest year in recorded history, with severe drought continuing for the foreseeable future. Utah is the second driest state in the U.S., and therefore has been pa...

  8. The oldest vertebrate trace fossils from Comb Ridge (Bears Ears Region, southeastern Utah)

    OpenAIRE

    Gay, Robert J.; Jenkins, Xavier A.; Lepore, Taormina

    2017-01-01

    Vertebrate trace fossils are common in Upper Triassic deposits across the American southwest. These ichnofauna are dominated by Grallator, Brachychirotherium, and Pseudotetrasauropus, and lack ichnotaxa traditionally considered to be Early Jurassic in age, such as Eubrontes and Anomoepus. While known from Indian Creek and Lisbon Valley, Utah, vertebrate trace fossils have not been previously reported from Comb Ridge, Utah. This is significant considering that lithostratigraphic work has been ...

  9. 78 FR 53477 - Second Call for Nominations to the Utah Resource Advisory Council

    Science.gov (United States)

    2013-08-29

    ...The purpose of this notice is to request public nominations to fill vacant positions on the Bureau of Land Management (BLM) Utah Resource Advisory Council (RAC), which has two positions with terms expiring on January 12, 2014. The RAC provides advice and recommendations to the BLM on land use planning and management of the National System of Public Lands within Utah. The BLM will accept public nominations for 30 days after the publication of this notice.

  10. 78 FR 28240 - Call for Nominations for the Utah Resource Advisory Council

    Science.gov (United States)

    2013-05-14

    ...The purpose of this notice is to request public nominations for upcoming vacancies on the Bureau of Land Management (BLM) Utah Resource Advisory Council (RAC) which has four members with terms expiring on January 12, 2014. The RAC provides advice and recommendations to the BLM on land use planning and management of the National System of Public Lands within Utah. The BLM will accept public nominations for 45 days after the publication of this notice.

  11. Field guide to geologic excursions in southwestern Utah and adjacent areas of Arizona and Nevada

    Science.gov (United States)

    Lund, William R.; Lund, William R.

    2002-01-01

    This field guide contains road logs for field trips planned in conjunction with the 2002 Rocky Mountain Section meeting of the Geological Society of America held at Southern Utah University in Cedar City, Utah. There are a total of eight field trips, covering various locations and topics in southwestern Utah and adjacent areas of Arizona and Nevada. In addition, the field guide contains a road log for a set of Geological Engineering Field Camp Exercises run annually by the University of Missouri at Rolla in and around Cedar City. Two of the field trips address structural aspects of the geology in southwestern Utah and northwestern Arizona; two trips deal with ground water in the region; and along with the Field Camp Exercises, one trip, to the Grand Staircase, is designed specifically for educators. The remaining trips examine the volcanology and mineral resources of a large area in and around the Tusher Mountains in Utah; marine and brackish water strata in the Grand Staircase-Escalante National Monument; and the Pine Valley Mountains, which are cored by what may be the largest known laccolith in the world. The "Three Corners" area of Utah, Arizona, and Nevada is home to truly world-class geology, and I am confident that all of the 2002 Rocky Mountain Section meeting attendees will find a field trip suited to their interests.

  12. Utah's ban on abortion coverage for low-income women challenged.

    Science.gov (United States)

    1995-02-10

    On January 30 (1995) two women's health care providers, a rape crisis center, and a YWCA-run battered women's shelter asked the federal district court in Utah to declare invalid and enjoin enforcement of the state's virtual ban on abortion coverage for Medicaid-eligible women. The plaintiffs argue that Utah's criminal prohibition on state Medicaid coverage for abortion--except when the procedure is necessary to prevent a woman's death--violates federal Medicaid law because it does not cover abortions for survivors of rape or incest. The Hyde Amendment has provided federal Medicaid funds for abortions in cases of rape and incest since 1993, and federal courts have since ruled against eight other states that refused to cover those procedures. In late December, Utah was one of seven states notified by the federal Health Care Financing Administration (HCFA) that the state is "out of compliance" with federal Medicaid law. With nearly 46 rapes per 100,000 people, Utah has one of the highest rates of rape in the country. CRLP (Center for Reproductive Law and Policy) has previously filed lawsuits in Utah challenging the state's 1991 abortion ban and a 1993 mandatory delay and biased counseling requirement. Plaintiffs in Utah Women's Clinic v. Graham are represented by CRLP's Eve Gartner, with Salt Lake City attorneys Howard Lundgren and Jeffrey Oritt. full text

  13. Elemental sulfur in Eddy County, New Mexico

    Science.gov (United States)

    Hinds, Jim S.; Cunningham, Richard R.

    1970-01-01

    Sulfur has been reported in Eddy County, N. Mex., in rocks ranging from Silurian to Holocene in age at depths of 0-15,020 feet. Targets of present exploration are Permian formations in the Delaware Basin and northwest shelf areas at depths of less than 4,000 feet. Most of the reported sulfur occurrences in the shelf area are in the 'Abo' (as used by some subsurface geologists), Yeso, and San Andres Formations and the Artesia Group. Sulfur deposition in the dense dolomites of the 'Abo,' Yeso, and San Andres Formations is attributed to the reduction of ionic sulfate by hydrogen sulfide in formation waters in zones of preexisting porosity and permeability. A similar origin accounts for most of the sulfur deposits in the formations of the Artesia Group, but some of the sulfur in these formations may have originated in place through the alteration of anhydrite to carbonate and sulfur by the metabolic processes of bacteria in the presence of hydrocarbons. Exploration in the Delaware Basin area is directed primarily toward the Castile Formation. Sulfur deposits in the Castile Formation are found in irregular masses of cavernous brecciated secondary carbonate rock enveloped by impermeable anhydrite. The carbonate masses, or 'castiles,' probably originated as collapse features resulting from subsurface solution and upward stopping. Formation of carbonate rock and sulfur in the castiles is attributed to the reduction of brecciated anhydrite by bacteria and hydrocarbons in the same process ascribed to the formation of carbonate and sulfur in the caprocks of salt domes.

  14. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  15. UNEMPLOYMENT IN HUNEDOARA COUNTY

    Directory of Open Access Journals (Sweden)

    CLAUDIA ISAC

    2015-12-01

    Full Text Available Unemployment highlights a state of imbalance on the labour market which is characterized by a surplus of workforce in relation to job vacancies. This imbalance has been more apparent in Hunedoara County than in other counties, due to the fact that there are 3 mono-industrial areas that have been restructured over the past two decades. The effects are presented in this paper in the form of a complex statistical analysis. Thus, based on the evolution of the number of unemployed individuals in 1995, one can observe the periods of significant adverse effects upon the degree of employment. Moreover, one can make correlations with periods of international financial crisis and with the number of employees in the County in order to determine significant variables of the unemployment phenomenon. The content of this paper is significant and represents the analysis of the number of unemployed in the Jiu Valley, scattered across towns. As a form of financial protection, the unemployment benefit represents a financial instrument in the cases determined by this negative phenomenon, which is why in conclusion we make a comparison of the ways this aid is granted throughout several years and in various forms.

  16. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which

  17. 75 FR 8393 - Central Utah Project Completion Act

    Science.gov (United States)

    2010-02-24

    ... irrigation season period of water shortage, and perforated infiltration pipelines to recharge water to the...-- Water and Science. ACTION: Notice of Availability of the Finding of No Significant Impact associated with the Environmental Assessment for the East Juab Water Efficiency Project--Phase II, Juab County...

  18. Aerometric measurement and modeling of the mass of CO2 emissions from Crystal Geyser, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, F J; Johnson, M R; Leif, R N; Friedmann, S J

    2005-02-07

    Crystal Geyser in eastern Utah is a rare, non-geothermal geyser that emits carbon dioxide gas in periodic eruptions. This geyser is the largest single source of CO{sub 2} originating from a deep reservoir. For this study, the amount of CO{sub 2} emitted from Crystal Geyser is estimated through measurements of downwind CO{sub 2} air concentration applied to an analytical model for atmospheric dispersion. Five eruptions occurred during the 48-hour field study, for a total of almost 3 hours of eruption. Pre-eruption emissions were also timed and sampled. Slow wind during three of the active eruptions conveyed the plume over a grid of samplers arranged in arcs from 25 to 100 m away from the geyser. An analytical, straight-line Gaussian model matched the pattern of concentration measurements. Plume width was determined from least-squares fit of the CO{sub 2} concentrations integrated over time. The CO{sub 2} emission rate was found to be between 2.6 and 5.8 kg/s during the eruption events, and about 0.17 kg/s during the active pre-eruptive events. Our limited field study can be extrapolated to an annual CO{sub 2} emission of 12 kilotonnes from this geyser. As this is the first application of Gaussian dispersion modeling and objective timing to CO{sub 2} emissions from a geyser of any type, the present study demonstrates the feasibility of applying this method more completely in the future.

  19. Microbial Composition and Preliminary Age of Ooids from the Great Salt Lake, Utah

    Science.gov (United States)

    Piazza, O.; Corsetti, F. A.; Stamps, B. W.; Stevenson, B. S.; Bardsley, A.; Hammond, D. E.; Nunn, H. S.; Berelson, W.; Spear, J. R.

    2016-12-01

    Ooids (laminated coated grains) are common in the geologic record in lacustrine and marine systems. Traditionally interpreted as abiogenic precipitates, recent work suggests that microbial metabolism/byproducts may enhance the calcium carbonate precipitation of some ooids. Thus, the processes that govern ooid formation remain enigmatic, making it difficult to assess their significance as biosigntatures and environmental indicators in modern/ancient environments. The Great Salt Lake, Utah, provides a unique environment to assess the microbial community and growth rate of aragonitic ooids. Ooids collected near Antelope Island were first sieved into coarse, medium, and fine size fractions. One aliquot of each fraction was left untreated and another was washed with ethanol to remove the biomass/biofilm from the exterior. The microbial communities of each aliquot and the surrounding lake water were compared using small subunit rRNA gene sequencing. Since 50% of the ooids studied contain nuclei that were fecal pellets from the Great Salt Lake Artemia (brine shrimp), Artemia pellets were also collected and sequenced to compare to the ooids and the lake water. 228Ra/226Ra of ooids and lake water was measured to evaluate ooid age. Preliminary 228Ra/226Ra results indicate that ooid growth has occurred in the last few decades. Alphaproteobacteria, Deltaproteobacteria, Planctomycetes, and Bacteriodetes were the most abundant bacterial taxa present within ooid samples. In contrast, the lake water was significantly different in composition, dominated by the halophilic Halobacteria (Euryarchaeota). Both the treated and untreated ooids had a microbial community that more closely resembled the composition of the Artemia fecal pellets than the Great Salt Lake water. We conclude that 1) preliminary dating using a novel chronometer suggests very recent ooid formation, and 2) nuclei composition may skew the results when investigating ooid microbial communities.

  20. Somerset County Renewable Energy Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Katula, Denise [County of Somerset, Somervile, NJ (United States)

    2014-05-07

    The County of Somerset, New Jersey, through the Somerset County Improvement Authority (SCIA), applied Federal funding through the U.S. Department of Energy to will apply project funds to buy-down the capital costs of equipment associated with the installation of solar photovoltaic (PV) systems at two sites owned by the County. This Renewable Energy Initiative allows the County to take advantage of clean renewable energy, without any adverse debt impacts, and at a price that results in operating budget savings beyond what is presently available in the marketplace. This project addressed the objectives of the Office of Energy Efficiency and Renewable Energy by making the acquisition of renewable energy more affordable for the County, thereby, encouraging other counties and local units to develop similar programs and increase the deployment of solar energy technologies. The two sites that were funded by the DOE grant are part of a much larger, ambitious, and unique renewable energy project, described in the next section.

  1. Heritage Awareness in County Wicklow.

    OpenAIRE

    Dagg, Anne, (Thesis)

    2008-01-01

    This research project investigated the community’s current level of heritage awareness in County Wicklow. The study was initiated by Wicklow County Council and the Heritage Council in response to objective 1, action 1.2 of the County Wicklow heritage plan 2004-2008, which pointed to the need to undertake a study to determine public attitudes towards heritage and to gauge the current level of awareness about heritage in the county. The findings of this research are being used on an ongoing bas...

  2. Hydrosalinity studies of the Virgin River, Dixie Hot Springs, and Littlefield Springs, Utah, Arizona, and Nevada

    Science.gov (United States)

    Gerner, Steven J.; Thiros, Susan A.; Gerner, Steven J.; Thiros, Susan A.

    2014-01-01

    in the Virgin River Gorge containing known fault zones accounted for about 48 percent of this total seepage loss. An additional seepage loss of 6.7 ft3/s was calculated for the reach of the Virgin River between Bloomington, Utah, and the Utah/Arizona State line. This loss in flow is small compared to total flow in the river and is comparable to the rated error in streamflow measurements in this reach; consequently, it should be used with caution. Littlefield Springs were studied to determine the fraction of its discharge that originates as upstream seepage from the Virgin River and residence time of this water in the subsurface. Geochemical and environmental tracer data from groundwater and surface-water sites in the Virgin River Gorge area suggest that discharge from Littlefield Springs is a mixture of modern (post-1950s) seepage from the Virgin River upstream of the springs and older groundwater from a regional carbonate aquifer. Concentrations of the chlorofluorocarbons (CFCs) CFC-12 and CFC-113, chloride/fluoride and chloride/bromide ratios, and the stable isotope deuterium indicate that water discharging from Littlefield Springs is about 60 percent seepage from the Virgin River and about 40 percent discharge from the regional carbonate aquifer. The river seepage component was determined to have an average subsurface traveltime of about 26 ±1.6 years before discharging at Littlefield Springs. Radiocarbon data for Littlefield Springs suggest groundwater ages from 1,000 to 9,000 years. Because these are mixed waters, the component of discharge from the carbonate aquifer is likely much older than the groundwater ages suggested by the Littlefield Springs samples. If the dissolved-solids load from Dixie Hot Springs to the Virgin River were reduced, the irrigation water subsequently applied to agricultural fields in the St. George and Washington areas, which originates as water from the Virgin River downstream of Dixie Hot Springs, would have a lower dissolved

  3. Data flows and water woes: The Utah Data Center

    Directory of Open Access Journals (Sweden)

    Mél Hogan

    2015-07-01

    Full Text Available Using a new materialist line of questioning that looks at the agential potentialities of water and its entanglements with Big Data and surveillance, this article explores how the recent Snowden revelations about the National Security Agency (NSA have reignited media scholars to engage with the infrastructures that enable intercepting, hosting, and processing immeasurable amounts of data. Focusing on the expansive architecture, location, and resource dependence of the NSA’s Utah Data Center, I demonstrate how surveillance and privacy can never be disconnected from the material infrastructures that allow and render natural the epistemological state of mass surveillance. Specifically, I explore the NSA’s infrastructure and the million of gallons of water it requires daily to cool its servers, while located in one of the driest states in the US. Complicating surveillance beyond the NSA, as also already imbricated with various social media companies, this article questions the emplacement and impact of corporate data centers more generally, and the changes they are causing to the landscape and local economies. I look at how water is an intriguing and politically relevant part of the surveillance infrastructure and how it has been constructed as the main tool for activism in this case, and how it may eventually help transform the public’s conceptualization of Big Data, as deeply material.

  4. Geology and resources of the Tar Sand Triangle, southeastern Utah

    Energy Technology Data Exchange (ETDEWEB)

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.

    1984-05-01

    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  5. Important considerations in the use of carbon and hydrogen stable isotopes to determine the origin of hydrocarbons in groundwater – A case study from pre-shale gas Tioga County

    Science.gov (United States)

    stable carbon and hydrogen isotopic compositional ranges of methanes (δ13C and δ2H (D)) enable us to distinguish between microbial and thermogenic origin of natural gases. To identify stray gas origins, identify possible gas sources, create baseline, carry out site-specific monitoring, and monitor long-term changes

  6. Water availability for development of major tar sands areas in Utah

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, T.N.; McQuivey, R.S.

    1979-05-01

    The Sutron Corporation, under contract with Colorado State University, has conducted a study for the Laramie Energy Technology Center (LETC) to determine the availability of water for future extraction of viscous petroleum (bitumen) from the six major tar sands deposits in Utah. Specifically, the areas are: Asphalt Ridge and Whiterocks, which lie immediately west of Vernal, Utah; P.R. Spring, a large area extending from the Colorado River to the White River along Utah's eastern border; Hill Creek, adjacent to P.R. Spring to the west; Sunnyside, immediately across the Green River from Hill Creek between the Price and Green Rivers; and Tar Sand Triangle, near the confluence of the Colorado and Dirty Devil Rivers. The study, conducted between September and December of 1978, was a fact-finding effort involving the compilation of information from publications of the US Geological Survey (USGS), Utah State Engineer, Utah Department of Natural Resources, and other federal and state agencies. The information covers the general physiographic and geologic features of the total area, the estimated water requirements for tar sands development, the availability of water in each of the six areas, and the legal and sociological restraints and impacts. The conclusions regarding water availability for tar sands development in each of the six areas and specific recommendations related to the development of each area are presented also.

  7. The San Juan Canyon, southeastern Utah: A geographic and hydrographic reconnaissance

    Science.gov (United States)

    Miser, Hugh D.

    1924-01-01

    This report, which describes the San Juan Canyon, San Juan River and the tributary streams and the geography and to some extent the geology of the region, presents information obtained by me during the descent of the river with the Trimble party in 1921. The exploration of the canyon, which was financed jointly by the United States Geological Survey and the Southern California Edison Co., had as its primary object the mapping and study of the San Juan in connection with proposed power and storage projects along this and Colorado rivers.1 The exploration party was headed by K. W. Thimble, topographic engineer of the United States Geological Survey. Other members of the party were Robert N. Allen, Los Angeles, Calif., recorder; H. E. Blake, jr., Monticello, Utah, and Hugh Hyde, Salt Lake City, Utah, rodmen; Bert Loper, Green River, Utah, boatman; Heber Christensen, Moab, Utah, cook; and H. D. Miser, geologist. Wesley Oliver, of Mexican Hat, Utah, served as packer for the party and brought mail and provisions by pack train twice a month to specified accessible places west of Goodridge.

  8. Allegheny County Beltway System Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Authoritative dataset of the beltway system in Allegheny County. The system was developed to help motorists navigate through Allegheny County on low-traffic roads....

  9. 2016 Resident Survey (City and County)

    Data.gov (United States)

    City and County of Durham, North Carolina — The purpose of the annual City/County survey: To objectively assess citizen satisfaction with the delivery of City/County servicesTo set a baseline for future...

  10. 2015 Resident Survey (City and County)

    Data.gov (United States)

    City and County of Durham, North Carolina — The purpose of the annual City/County survey: To objectively assess citizen satisfaction with the delivery of City/County servicesTo set a baseline for future...

  11. Hydrogeology and groundwater quality of Highlands County, Florida

    Science.gov (United States)

    Spechler, Rick M.

    2010-01-01

    sand, or relatively impermeable layers of clay, clayey sand, or clayey carbonates. The thickness of the intermediate aquifer system/ intermediate confining unit ranges from about 200 feet in northwestern Highlands County to more than 600 feet in the southwestern part. Although the intermediate aquifer system is present in the county, it is unclear where the aquifer system grades into a confining unit in the eastern part of the county. Up to two water-bearing units are present in the intermediate aquifer system within the county. The lateral continuity and water-bearing potential of the various aquifers within the intermediate aquifer system are highly variable. The Floridan aquifer system is composed of a thick sequence of limestone and dolostone of Upper Paleocene to Oligocene age. The top of the aquifer system ranges from less than 200 feet below NGVD 29 in extreme northwestern Highlands County to more than 600 feet below NGVD 29 in the southwestern part. The principal source of groundwater supply in the county is the Upper Floridan aquifer. As of 2005, about 89 percent of the groundwater withdrawn from the county was obtained from this aquifer, mostly for agricultural irrigation and public supply. Over most of Highlands County, the Upper Floridan aquifer generally contains freshwater, and the Lower Floridan aquifer contains more mineralized water. The potentiometric surface of the Upper Floridan aquifer is constantly fluctuating, mainly in response to seasonal variations in rainfall and groundwater withdrawals. The potentiometric surface of the Upper Floridan aquifer in May 2007, which represents the hydrologic conditions near the end of the dry season when water levels generally are near their lowest, ranged from about 79 feet above NGVD 29 in northwestern Highlands County to about 40 feet above NGVD 29 in the southeastern part of the county. The potentiometric surface of the Upper Floridan aquifer in September 2007 was about 3 to 10 feet high

  12. 2006 Fulton County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Fulton County. The Fulton County LiDAR Survey project area consists of approximately 690.5 square...

  13. Late Mississippian gastropods of the Chainman Shale, west-central Utah

    Science.gov (United States)

    Gordon, Mackenzie; Yochelson, Ellis L.

    1987-01-01

    The Chainman Shale of Mississippian (Osagean to late Chesterian) age, well exposed in the Confusion Range of western Utah, has yielded a profusion of fossils during investigations conducted by the U.S. Geological Survey in the past 30 years. Conspicuous among these fossils are gastropods, which range in age from latest Meramecian to late Chesterian. In west-central Utah, not far from the State boundary, the Chainman outcrop belt stretches from Granite Mountain south to the northern part of the Needle Range, a distance of69 miles (110 km). The Chainman thickens from north to south; the section at Granite Mountain is 1,315 feet (401 m) thick and that at Jensen Wash in the Burbank Hills, 2,203 feet (671 m). The rocks of the Chainman Shale record a general though irregular shallowing of the area from moderate depths of 330 feet (100 m) or so to quite shallow depths of perhaps locally little more than 3-6 feet (1-2 m). Most of the gastropods occur with ammonoids in a facies of shale or shale containing phosphatic limestone concretions, In this lutaceous facies, Glabrocingulum is predominant and Lunulazona and Retispira are common; these genera are represented by a succession of species. A thick limestone unit is present in some areas in the upper part of the formation, particularly in the vicinity of Skunk Spring, where it is 318 feet (97 m) thick. This limestone unit represents a calcareous shoal facies having an entirely different gastropod fauna, characterized by Catazona and species of Naticopsis. The Chainman Shale could be easily zoned by gastropods, but we are not proposing such azonation. A framework of ammonoid and foraminiferal zones already is available, and we prefer to regard the gastropod assemblages as part of this framework. The assemblages are confined to the major ammonoid and foraminiferal zones, and only three of the gastropod species seem to range across major zonal boundaries. These species are Bellerophon (Bellerophon vespertinus Gordon and

  14. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium and bicarbonate. Dissolved-solids concentration increases in the central and northern parts of Tooele Valley, at the distal ends of the ground-water flow paths. Increased concentration is due mainly to greater amounts of sodium and chloride. Deuterium and oxygen-18 values indicate water recharged primarily from precipitation occurs throughout the ground-water basin. Ground water with the highest percentage of recharge from irrigation exists along the eastern margin of Tooele Valley, indicating negligible recharge from the adjacent consolidated rock. Tritium and tritiogenic helium-3 concentrations indicate modern water exists along the flow paths originating in the Oquirrh Mountains between Settlement and Pass Canyons and extending between the steep hydraulic gradient areas at Tooele Army Depot and Erda. Pre-modern water exists in areas east of Erda and near Stansbury Park. Using the change in tritium along the flow paths originating in the Oquirrh Mountains, a first-order estimate of average linear ground-water velocity for the general area is roughly 2 to 5 feet per day. A numerical ground-water flow model was developed to simulate ground-water flow in the Tooele Valley ground-water basin and to test the conceptual understanding of the ground-water system. Simulating flow in consolidated rock allows recharge and withdrawal from wells in or near consolidated rock to be simulated more accurately. In general, the model accurately simulates water levels and water-level fluctuations and can be considered an adequate tool to help determine the valley-wide effects on water levels of additional ground-water withdrawal and changes in water use. The simulated increase in storage during a projection simulation using 2003 withdrawal rates and average recharge indicates that repeated years of average precipitation and recharge conditions do not completely restore the system after multiple years of below-normal precipitation. In the similar case where precipitation is 90

  15. Multielement geochemical exploration data for the Cove Fort-Sulphurdale Known Geothermal Resource Area, Beaver and Millard counties, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bamford, R.W.; Christensen, O.D.

    1979-09-01

    Multielement geochemical exploration data have been acquired for the Cove Fort-Sulphurdale Known Geothermal Resource Area (KGRA). This was accomplished by analysis of both whole rock and +3.3 specific gravity concentrate samples from cuttings composites collected from shallow rotary drill holes. Areal distributions are reported for arsenic, mercury, lead and zinc. These are elements indicated by previous studies to be broadly zoned around thermal centers in geothermal systems and thus to be useful for selecting and prioritizing drilling targets. Results from this work suggest that reservoir temperature and/or reservoir to surface permeability, and thus possibly overall potential for a geothermal resource, increase northward beneath the approximately 18 square mile area containing shallow drill holes, possibly to beyond the northern limits of the area. The data provide a basis for development of three principal target models for the geothermal system but do not permit prioritization of these models. It is recommended that geochemical, geological, and temperature gradient surveys be expanded northward from the present survey area to more fully define the area which appears to have the best resource potential and to aid prioritization of the target models.

  16. Environmental survey - tar sands in situ processing research program (Vernal, Uintah County, Utah). [Reverse-forward combustion; steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Q.

    1980-03-01

    Research will be done on the reverse-forward combustion and steam injection for the in-situ recovery of oil from tar sands. This environmental survey will serve as a guideline for the consideration of environmental consequences of such research. It covers the construction phase, operational phase, description of the environment, potential impacts and mitigations, coordination, and alternatives. (DLC)

  17. 77 FR 75186 - Notice of Closure, Target Shooting Public Safety Closure on the Lake Mountains in Utah County, UT

    Science.gov (United States)

    2012-12-19

    ... Bureau of Land Management Notice of Closure, Target Shooting Public Safety Closure on the Lake Mountains... shooting to protect public safety. This closure does not restrict other public activities or access to the Lake Mountains area. DATES: This target shooting closure within the described area will remain in...

  18. 2016 Cartographic Boundary File, 2010 Urban Areas (UA) within 2010 County and Equivalent for Utah, 1:500,000

    Data.gov (United States)

    US Census Bureau, Department of Commerce — The 2016 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically...

  19. Bibliography of U.S. Geological Survey water-resources reports for Utah

    Science.gov (United States)

    Hardy, Ellen E.; Dragos, Stefanie L.

    1994-01-01

    This bibliography contains a complete listing of reports prepared by personnel of the U.S. Geological Survey from 1886 through December 31, 1993, that discuss the water resources of Utah. The reports were prepared primarily by personnel of the Water Resources Division, Utah District, in cooperation with State, other Federal, and local agencies. Several reports were prepared as a part of studies directly funded by the U.S. Geological Survey, and several were prepared by contractors for the U.S. Geological Survey.The bibliography is divided into three major parts: (1) publications of the U.S. Geological Survey; (2) publications prepared by the U.S. Geological Survey in cooperation with and published by agencies of the State of Utah; and (3) reports printed in other publications reports prepared by the U.S. Geological Survey but published by other agencies or by professional organizations. Publications of the U.S. Geological Survey still in print may be purchased from the U.S. Geological Survey, Earth Science Information Center, Open-File Reports Section, Box 25286, MS 517, Denver Federal Center, Denver, Colorado 80225. Publications that are out of print at the time of this compilation are marked with an asterisk (*). Except for water-supply papers, most publications that are out of print and unavailable for purchase may be examined at the U.S. Geological Survey Earth Science Information Center, 2222 West 2300 South, 2nd Floor, Salt Lake City, Utah 84119.Reports published by the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources, are available on request from these agencies or from the U.S. Geological Survey, Water Resources Division, Room 1016 Administration Building, 1745 West 1700 South, Salt Lake City, Utah 84104. Water-Resources Bulletins of the Utah Geological Survey may be purchased from that agency at 2363 Foothill Drive, Salt Lake City, Utah 84109-1491.Inquiries as to the availability of reports listed as "reports printed in

  20. Use of diuretics is associated with reduced risk of Alzheimer's disease: the Cache County Study.

    Science.gov (United States)

    Chuang, Yi-Fang; Breitner, John C S; Chiu, Yen-Ling; Khachaturian, Ara; Hayden, Kathleen; Corcoran, Chris; Tschanz, JoAnn; Norton, Maria; Munger, Ron; Welsh-Bohmer, Kathleen; Zandi, Peter P

    2014-11-01

    Although the use of antihypertensive medications has been associated with reduced risk of Alzheimer's disease (AD), it remains unclear which class provides the most benefit. The Cache County Study of Memory Health and Aging is a prospective longitudinal cohort study of dementing illnesses among the elderly population of Cache County, Utah. Using waves I to IV data of the Cache County Study, 3417 participants had a mean of 7.1 years of follow-up. Time-varying use of antihypertensive medications including different class of diuretics, angiotensin converting enzyme inhibitors, β-blockers, and calcium channel blockers was used to predict the incidence of AD using Cox proportional hazards analyses. During follow-up, 325 AD cases were ascertained with a total of 23,590 person-years. Use of any antihypertensive medication was associated with lower incidence of AD (adjusted hazard ratio [aHR], 0.77; 95% confidence interval [CI], 0.61-0.97). Among different classes of antihypertensive medications, thiazide (aHR, 0.7; 95% CI, 0.53-0.93), and potassium-sparing diuretics (aHR, 0.69; 95% CI, 0.48-0.99) were associated with the greatest reduction of AD risk. Thiazide and potassium-sparing diuretics were associated with decreased risk of AD. The inverse association of potassium-sparing diuretics confirms an earlier finding in this cohort, now with longer follow-up, and merits further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    The water resources of Deep Creek Valley were assessed during 2012–13 with an emphasis on better understanding the groundwater flow system and groundwater budget. Surface-water resources are limited in Deep Creek Valley and are generally used for agriculture. Groundwater is the predominant water source for most other uses and to supplement irrigation. Most groundwater withdrawal in Deep Creek Valley occurs from the unconsolidated basin-fill deposits, in which conditions are generally unconfined near the mountain front and confined in the lower-altitude parts of the valley. Productive aquifers are also present in fractured bedrock that occurs along the valley margins and beneath the basin-fill deposits. The consolidated-rock and basin-fill aquifers are hydraulically connected in many areas with much of the recharge occurring in the consolidated-rock mountain blocks and most of the discharge occurring from the lower-altitude basin-fill deposits.

  2. Geochemistry and hydrothermal alteration at selected Utah hot springs. Final report: Volume 3 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Parry, W.T.; Benson, N.L.; Miller, C.D.

    1976-07-01

    Application of Na-K-Ca geothermometry to warm springs in Utah indicates several areas with sufficiently high apparent temperatures to be of interest as geothermal exploration targets. A zone of warm springs in the Bonneville Basin show Na-K-Ca temperatures from 150/sup 0/C to 233/sup 0/C. Examination of Great Salt Lake, Bonneville sediment pore water, and Jordan Valley well-water chemistry indicates that mixing a small percent of these fluids with warm spring water can cause substantial errors in Na-K-Ca temperature estimates. Other saline deposits which may influence Na-K-Ca temperature estimates are the Paradox formation in southeastern Utah, the Muddy Creek formation in southwestern Utah, the Arapien shale in central Utah, the Preuss formation in northeastern Utah, and Playa salts in much of western Utah. The Roosevelt KGRA is the most attractive target identified by Na-K-Ca geothermometry. Hydrothermal alteration, heavy metal distribution, and water chemistry provide additional characterization of the Roosevelt system. Chemistry of a cool water seep (25/sup 0/C) shows Na-K-Ca temperature of 241/sup 0/C and SiO/sub 2/ temperature of 125/sup 0/C. A Phillips well flowing from below 1500' (457m) shows Na-K-Ca temperature of 262/sup 0/C, SiO/sub 2/ temperature of 262/sup 0/C, and K of 1.5 times the surface spring value. The near surface alteration assemblage is best explained in terms of a decrease in pH of near surface fluids as sulfide oxidizes. Increasing potassium and pH with depth indicates that a K-feldspar stable zone may be intersected with deeper drilling. Geology and alteration were mapped in the Monroe KGRA. (JGB)

  3. Hydrogeology of the Point Lookout Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    Science.gov (United States)

    Craigg, Steven D.; Dam, W.L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.

    1990-01-01

    structural basin), 180 miles long, and has an area of about 19,400 square miles. Altitudes in the study area range from about 4,500 feet in San Juan County, Utah, to about 11,000 feet in Cibola County, New Mexico. Annual precipitation in the high mountainous areas along the north and east margins of the basin is as much as 45 inches, whereas annual precipitation in the lower altitude, central basin is generally less than 8 inches. Mean annual precipitation in the study area is about 12 inches.Data obtained from documents published by the U.S. Bureau of the Census, 1980 and 1985, were used to estimate the population of the study area. The population of the study area in 1970 was estimated to be about 134,000. The population rose to about 194,000 in 1980, 212,000 in 1982, 221,000 in 1984, and then fell to about 210,000 in 1985. The economy of the basin is supported by exploration and development of petroleum, natural gas, coal, and uranium resources; urban enterprise, farming "and ranching; tourism; and recreation. The rise and fall in population were related to changes in the economic strength of the mining, petroleum, and natural-gas industries, and support services. Uranium mining and milling activities grew rapidly until the late 1970's when most uranium-mining activity ended in the study area. Likewise, the oil and gas industry prospered until about 1983 and then declined rapidly, also affecting many jobs in support industries.

  4. Hydrogeology of the Cliff House Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    Science.gov (United States)

    Thorn, Conde R.; Levings, G.W.; Craigg, S.D.; Dam, W.L.; Kernodle, J.M.

    1990-01-01

    structural basin), 180 miles long, and has an area of about 19,400 square miles. Altitudes in the study area range from about 4,500 feet in San Juan County, Utah, to about 11,000 feet in Cibola County, New Mexico. Annual precipitation in the high mountainous areas along the north and east margins of the basin is as much as 45 inches, whereas annual precipitation in the lower altitude, central basin is generally less than 8 inches. Mean annual precipitation in the study area is about 12 inches. Data obtained from documents published by the U.S. Bureau of the Census, 1980 and 1985, were used to estimate the population of the study area. The population of the study area in 1970 was estimated to be about 134,000. The population rose to about 194,000 in 1980, 212,000 in 1982, 221,000 in 1984, and then fell to about 210,000 in 1985. The economy of the basin is supported by exploration and development of petroleum, natural gas, coal, and uranium resources; urban enterprise, farming and ranching; tourism; and recreation. The rise and fall in population were related to changes in the economic strength of the mining, petroleum, and natural-gas industries, and support services. Uranium mining and milling activities grew rapidly until the late 1970's when most uranium-mining activity ended in the study area. Likewise, the oil and gas industry prospered until about 1983 and then declined rapidly, also affecting many jobs in support industries.

  5. The Basin and Range Province in Utah, Nevada, and California

    Science.gov (United States)

    Nolan, Thomas B.

    1943-01-01

    In this report an attempt has been made to summarize and in places to interpret the published information that was available through 1938 on the geology of those parts of Nevada, California, and Utah that are included in the geologic province known as the Basin and Range province. This region includes most of the Great Basin, from which no water flows to the sea, as well as part of the drainage basin of the lower Colorado River. It is characterized by numerous parallel, linear mountain ranges that are separated from one another by wide valleys or topographic basins. All the major divisions of geologic time are represented by the rocks exposed in this region. The oldest are of pre-Cambrian age and crop out chiefly along the eastern and southern borders. They have been carefully studied at only a few localities, and the correlation and extent of the subdivision so far recognized is uncertain. There appear to be at least three series of pre-Cambrian rocks which are probably separated from one another by profound unconformities. Large masses of intrusive igneous rocks have been recognized only in the oldest series. During the Paleozoic era the region was a part of the Cordilleran geosyncline, and sediments were deposited during all of the major and most of the minor subdivisions of the era. There are thick and widespread accumulations of Cambrian and Ordovician strata, the maximum aggregate thickness possibly exceeding 23,000 feet. The eastern and western boundaries of the province were approximately those of the area of rapid subsidence within the geosyncline, though the axes of maximum subsidence oscillated back and forth during the two periods. The Silurian and Devonian seas, on the other hand, extended beyond the province and, possibly as a consequence, are represented by much thinner sections - of the order of 6,000 feet. At the end of the Devonian period the geosyncline was split by the emergence of a geanticline in western Nevada, and Mississippian and

  6. Utah: basic data for thermal springs and wells as recorded in GEOTHERM

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, J.D.

    1983-05-01

    This GEOTHERM sample file contains 643 records for Utah. Records may be present which are duplicates for the same analyses. A record may contain data on location, sample description, analysis type (water, condensate, or gas), collection condition, flow rates, and the chemical and physical properties of the fluid. Stable and radioactive isotopic data are occasionally available. Some records may contain only location and temperature. This compilation should contain all the chemical data for geothermal fluids in Utah available as of December, 1981. 7 refs. (ACR)

  7. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    Science.gov (United States)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  8. Soil and Water Assessment Tool (SWAT) Applicability on Nutrients Loadings Prediction in Mountainous Lower Bear Malad River (LBMR) Watershed, Utah.

    Science.gov (United States)

    Salha, A. A.; Stevens, D. K.

    2014-12-01

    The application of watershed simulation models is indispensable when pollution is generated by a nonpoint source. These models should be able to simulate large complex watersheds with varying soils, land use and management conditions over long periods of time. This study presents the application of Soil and Water Assessment Tool (SWAT) to investigate, manage, and research the transport and fate of nutrients in (Subbasin HUC 16010204) Lower Bear Malad River (LBMR) watershed, Box elder County, Utah. Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by increasing agricultural and farming activities and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses). Using the available input data (Digital Elevation Model (DEM), land use/Land cover (LULC), soil map and weather and climate data for 20 years (1990-2010) to predict the water quantity and quality of the LBMR watershed using a spatially distributed model version of hydrological ArcSWAT model (ArcSWAT 2012.10_1.14). No previous studies have been found in the literature regarding an in-depth simulation study of the Lower Bear Malad River (LBMR) watershed to simulate stream flow and to quantify the associated movement of nitrogen, phosphorus, and sediment. It is expected that the model mainly will predict monthly mean total phosphorus (TP) concentration and loadings in a mountainous LBRM watershed (steep Wellsville mountain range with peak of (2,857 m)) having into consideration the snow and runoff variables affecting the prediction process. The simulated nutrient concentrations were properly consistent with observations based on the R2 and Nash- Sutcliffe fitness factors. Further, the model will be able to manage and assess the land application in that area with corresponding to proper BMPs regarding water quality management. Keywords: Water Quality Modeling; Soil and

  9. Kemper County IGCC (tm) Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

    2012-07-01

    The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

  10. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M.L.; Morgan, C.D.

    1996-05-01

    The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then applying an acid-fracture stimulation treatment to the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. The study identified reservoir characteristics of beds that have the greatest long-term production potential.

  11. Lithology, fault displacement, and origin of secondary calcium carbonate and opaline silica at Trenches 14 and 14D on the Bow Ridge Fault at Exile Hill, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, E.M.; Huckins, H.E.

    1995-02-01

    Yucca Mountain, a proposed site for a high-level nuclear-waste repository, is located in southern Nevada, 20 km east of Beatty, and adjacent to the southwest comer of the Nevada Test Site (NTS) (fig. 1). Yucca Mountain is located within the Basin and Range province of the western United States. The climate is semiarid, and the flora is transitional between that of the Mojave Desert to the south and the Great Basin Desert to the north. As part of the evaluation, hydrologic conditions, especially water levels, of Yucca Mountain and vicinity during the Quaternary, and especially the past 20,000 years, are being characterized. In 1982, the US Geological Survey, in cooperation with the US Department of Energy (under interagency agreement DE-A104-78ET44802), excavated twenty-six bulldozer and backhoe trenches in the Yucca Mountain region to evaluate the nature and frequency of Quaternary faulting (Swadley and others, 1984). The trenches were oriented perpendicular to traces of suspected Quaternary faults and across projections of known bedrock faults into Quaternary deposits. Trench 14 exposes the Bow Ridge Fault on the west side of Exile Hill. Although the original purpose of the excavation of trench 14 was to evaluate the nature and frequency of Quaternary faulting on the Bow Ridge Fault, concern arose as to whether or not the nearly vertical calcium carbonate (the term ``carbonate`` in this study refers to calcium carbonate) and opaline silica veins in the fault zone were deposited by ascending waters (ground water). These veins resemble in gross morphology veins commonly formed by hydrothermal processes.

  12. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, T.C. Jr. [ed.] [comp.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  13. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  14. ORTHOIMAGERY, LICKING COUNTY, OHIO USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The 2006 OSIP digital orthophotography was collected during the months of March and April (leaf-off conditions). The MrSID Images covering each county at 1-foot...

  15. Allegheny County Environmental Justice Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Environmental Justice areas in this guide have been defined by the Pennsylvania Department of Environmental Protection. The Department defines an environmental...

  16. 2009 SCDNR Horry County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Horry County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  17. Allegheny County Soil Type Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains soil type and soil classification, by area. Additional info at: http://mcdc.cas.psu.edu/datawiz.htm;...

  18. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  19. 2009 SCDNR Berkeley County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Berkeley County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  20. Allegheny County Basin Outlines Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This basins dataset was created to initiate regional watershed approaches with respect to sewer rehabilitation. If viewing this description on the Western...

  1. Montgomery County Council Legislation - Bills

    Data.gov (United States)

    Montgomery County of Maryland — The Council enacts local public laws for the ‘peace, good government, health, and welfare of the county’. The bills dataset contains all legislation considered by...

  2. ORTHOIMAGERY, ERIE COUNTY, OHIO USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The 2006 OSIP digital orthophotography was collected during the months of March and April (leaf-off conditions). The MrSID Images covering each county at 1-foot...

  3. Sierra County E-911 Roads

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains a vector digital representation of all accessible roads including interstate highways, State highways, county roads and some city streets in...

  4. Allegheny County Map Index Grid

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid...

  5. Allegheny County WIC Vendor Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of Women, Infants, and Children (WIC) program vendors. If viewing this description on the Western Pennsylvania Regional Data...

  6. Allegheny County Illegal Dump Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Illegal Dump Site dataset includes information on illegal dump sites, their type of trash, and the estimate tons of trash at each site. The information was...

  7. Uninsured Young Adults by County

    Data.gov (United States)

    U.S. Department of Health & Human Services — This data file indicates the estimated number of uninsured individuals ages 19-25 in each U.S. county. These individuals may be eligible to join their parents health...

  8. Allegheny County Property Assessment Appeals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Lists property assessment appeals filed and heard with the Board of Property Assessment Appeals and Review (BPAAR) and the hearing results, for tax years 2015 and...

  9. Allegheny County Building Footprint Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains photogrammetrically compiled roof outlines of buildings. All near orthogonal corners are square. Buildings that are less than 400 square feet...

  10. Allegheny County Certified MWDBE Businesses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — According to the Federal Department of Transportation, Disadvantaged Business Enterprises (DBE) are for-profit small business concerns where socially and...

  11. 2014 Mobile County, AL Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atlantic was contracted to acquire high resolution topographic LiDAR (Light Detection and Ranging) data located in Mobile County, Alabama. The intent was to collect...

  12. Torrance County E-911 Roads

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The Torrance County digital road network wa created as part of the State of New Mexico Enhanced 911 Addressing Grant. The original primary function was to lay the...

  13. County Boundaries with Shorelines (National)

    Data.gov (United States)

    Department of Transportation — County boundaries with shorelines cut in (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and...

  14. Allegheny County Wooded Area Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates stands of trees (coniferous and deciduous) too numerous to plot as individual trees. The area is delineated following a generalized line...

  15. 2006 Volusia County, Florida Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar...

  16. Allegheny County Land Cover Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Land Cover dataset demarcates 14 land cover types by area; such as Residential, Commercial, Industrial, Forest, Agriculture, etc. If viewing this description on...

  17. 2009 Chatham County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR generated point cloud acquired in spring 2009 for Chatham County, Georgia for the Metropolitan Planning Commission. The data are classified as follows: Class 1...

  18. Allegheny County Toxics Release Inventory

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Toxics Release Inventory (TRI) data provides information about toxic substances released into the environment or managed through recycling, energy recovery, and...

  19. 2009 SCDRN Lidar: Florence County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The South Carolina Department of Natural Resources (SCDNR) contracted with Sanborn to provide LiDAR mapping services for Florence County, SC. Utilizing multi-return...

  20. Differential and correlation analyses of microarray gene expression data in the CEPH Utah families

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, Jinghua; Li, Shuxia

    2008-01-01

    The widespread microarray technology capable of analyzing global gene expression at the level of transcription is expanding its application not only in medicine but also in studies on basic biology. This paper presents our analysis on microarray gene expression data in the CEPH Utah families...