WorldWideScience

Sample records for carbon constrained world

  1. Electricity in a Climate-Constrained World

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    After experiencing a historic drop in 2009, electricity generation reached a record high in 2010, confirming the close linkage between economic growth and electricity usage. Unfortunately, CO2 emissions from electricity have also resumed their growth: Electricity remains the single-largest source of CO2 emissions from energy, with 11.7 billion tonnes of CO2 released in 2010. The imperative to 'decarbonise' electricity and improve end-use efficiency remains essential to the global fight against climate change. The IEA’s Electricity in a Climate-Constrained World provides an authoritative resource on progress to date in this area, including statistics related to CO2 and the electricity sector across ten regions of the world (supply, end-use and capacity additions). It also presents topical analyses on the challenge of rapidly curbing CO2 emissions from electricity. Looking at policy instruments, it focuses on emissions trading in China, using energy efficiency to manage electricity supply crises and combining policy instruments for effective CO2 reductions. On regulatory issues, it asks whether deregulation can deliver decarbonisation and assesses the role of state-owned enterprises in emerging economies. And from technology perspectives, it explores the rise of new end-uses, the role of electricity storage, biomass use in Brazil, and the potential of carbon capture and storage for ‘negative emissions’ electricity supply.

  2. A comparative economic assessment of hydrogen production from large central versus smaller distributed plant in a carbon constrained world

    International Nuclear Information System (INIS)

    Nguyen, Y.V.; Ngo, Y.A.; Tinkler, M.J.; Cowan, N.

    2003-01-01

    This paper compares the economics of producing hydrogen at large central plants versus smaller distributed plants at user sites. The economics of two types of central plant, each at 100 million standard cubic feet per day of hydrogen, based on electrolysis and natural gas steam reforming technologies, will be discussed. The additional cost of controlling CO 2 emissions from the natural gas steam reforming plant will be included in the analysis in order to satisfy the need to live in a future carbon constrained world. The cost of delivery of hydrogen from the large central plant to the user sites in a large metropolitan area will be highlighted, and the delivered cost will be compared to the cost from on-site distributed generation plants. Five types of distributed generation plants, based on proton exchange membrane, alkaline electrolysis and advanced steam reforming, will be analysed and discussed. Two criteria were used to rank various hydrogen production options, the cost of production and the price of hydrogen to achieve an acceptable return of investment. (author)

  3. Oil sands development in a carbon constrained world

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, J. [Alberta Research Council, Devon, AB (Canada)

    2006-07-01

    The challenges facing oilsands development in Alberta were discussed in this PowerPoint presentation. In 2005, 71 per cent of Alberta's export value was derived from energy and mining. The author addressed the issue that resource based economies have rarely succeeded in the long term. He then demonstrated how such economies could capture value from technology. The primary focus was on the goal to develop and adapt greenhouse gas (GHG) transformational technologies that will break the link between hydrocarbon energy use and GHG emissions. The role of oil sands in this endeavour was also discussed. Alberta's oil sands are the world's largest hydrocarbon resource, with 315 b bbls proven reserves, and 2.5 t bbls potential reserves. As an important economic driver for Alberta, oil sands production is expected to grow significantly in the next 2 decades. Since bitumen production is more energy intensive than conventional oil, the industry is faced with the challenge of sustainable development. Concentrated GHG emissions create opportunities to proceed with long-term oil sands development with a sustainable level of GHG emissions, but technology and infrastructure are needed to take advantage of them. Current carbon dioxide (CO{sub 2}) storage projects in Alberta were highlighted. The economic potential of geological storage of CO{sub 2} through acid gas injection or deep disposal was discussed in terms of enhanced oil recovery, enhanced coalbed methane recovery, enhanced gas recovery and cost avoidance of CO{sub 2} per tonne. It was emphasized that a long-term vision and commitment is needed to balance with short term problems solving and longer-term strategic agendas. tabs., figs.

  4. Poverty eradication in a carbon constrained world.

    Science.gov (United States)

    Hubacek, Klaus; Baiocchi, Giovanni; Feng, Kuishuang; Patwardhan, Anand

    2017-10-24

    The UN Framework Convention on Climate Change aims to keep warming below 2 °C while recognizing developing countries' right to eradicate extreme poverty. Poverty eradication is also the first of the Sustainable Development Goals. This paper investigates potential consequences for climate targets of achieving poverty eradication. We find that eradicating extreme poverty, i.e., moving people to an income above $1.9 purchasing power parity (PPP) a day, does not jeopardize the climate target even in the absence of climate policies and with current technologies. On the other hand, bringing everybody to a still modest expenditure level of at least $2.97 PPP would have long-term consequences on achieving emission targets. Compared to the reference mitigation pathway, eradicating extreme poverty increases the effort by 2.8% whereas bringing everybody to at least $2.97 PPP would increase the required mitigation rate by 27%. Given that the top 10% global income earners are responsible for 36% of the current carbon footprint of households; the discourse should address income distribution and the carbon intensity of lifestyles.

  5. The economics and environmental impacts of large-scale wind power in a carbon constrained world

    Science.gov (United States)

    Decarolis, Joseph Frank

    Serious climate change mitigation aimed at stabilizing atmospheric concentrations of CO2 will require a radical shift to a decarbonized energy supply. The electric power sector will be a primary target for deep reductions in CO2 emissions because electric power plants are among the largest and most manageable point sources of emissions. With respect to new capacity, wind power is currently one of the most inexpensive ways to produce electricity without CO2 emissions and it may have a significant role to play in a carbon constrained world. Yet most research in the wind industry remains focused on near term issues, while energy system models that focus on century-long time horizons undervalue wind by imposing exogenous limits on growth. This thesis fills a critical gap in the literature by taking a closer look at the cost and environmental impacts of large-scale wind. Estimates of the average cost of wind generation---now roughly 4¢/kWh---do not address the cons arising from the spatial distribution and intermittency of wind. This thesis develops a theoretical framework for assessing the intermittency cost of wind. In addition, an economic characterization of a wind system is provided in which long-distance electricity transmission, storage, and gas turbines are used to supplement variable wind power output to meet a time-varying load. With somewhat optimistic assumptions about the cost of wind turbines, the use of wind to serve 50% of demand adds ˜1--2¢/kWh to the cost of electricity, a cost comparable to that of other large-scale low carbon technologies. This thesis also explores the environmental impacts posed by large-scale wind. Though avian mortality and noise caused controversy in the early years of wind development, improved technology and exhaustive siting assessments have minimized their impact. The aesthetic valuation of wind farms can be improved significantly with better design, siting, construction, and maintenance procedures, but opposition may

  6. Bioenergy and the importance of land use policy in a carbon-constrained world

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Katherine V.; Edmonds, James A.; Wise, Marshall A.

    2010-06-01

    Policies aimed at limiting anthropogenic climate change would result in significant transformations of the energy and land-use systems. However, increasing the demand for bioenergy could have a tremendous impact on land use, and can result in land clearing and deforestation. Wise et al. (2009a,b) analyzed an idealized policy to limit the indirect land use change emissions from bioenergy. The policy, while effective, would be difficult, if not impossible, to implement in the real world. In this paper, we consider several different land use policies that deviate from this first-best, using the Joint Global Change Research Institute’s Global Change Assessment Model (GCAM). Specifically, these new frameworks are (1) a policy that focuses on just the above-ground or vegetative terrestrial carbon rather than the total carbon, (2) policies that focus exclusively on incentivizing and protecting forestland, and (3) policies that apply an economic penalty on the use of biomass as a proxy to limit indirect land use change emissions. For each policy, we examine its impact on land use, land-use change emissions, atmospheric CO2 concentrations, agricultural supply, and food prices.

  7. The geopolitics of oil in a carbon-constrained world

    OpenAIRE

    Verbruggen, Aviel; Van de Graaf, Thijs

    2015-01-01

    Aviel Verbruggen and Thijs Van de Graaf posit that the dominant view of oil geopolitics as a struggle over scarce reserves is lopsided. Assuming that strict carbon limits will be imposed as a result of expected climate change, they believe oil markets will face a structural glut. The geopolitics of oil revolves around abundance-induced conflict, with rival oil producers competing to serve the shrinking oil market.

  8. Multiple Observation Types Jointly Constrain Terrestrial Carbon and Water Cycles

    Science.gov (United States)

    Raupach, M. R.; Haverd, V.; Briggs, P. R.; Canadell, J.; Davis, S. J.; Isaac, P. R.; Law, R.; Meyer, M.; Peters, G. P.; Pickett Heaps, C.; Roxburgh, S. H.; Sherman, B.; van Gorsel, E.; Viscarra Rossel, R.; Wang, Z.

    2012-12-01

    Information about the carbon cycle potentially constrains the water cycle, and vice versa. This paper explores the utility of multiple observation sets to constrain carbon and water fluxes and stores in a land surface model, and a resulting determination of the Australian terrestrial carbon budget. Observations include streamflow from 416 gauged catchments, measurements of evapotranspiration (ET) and net ecosystem production (NEP) from 12 eddy-flux sites, litterfall data, and data on carbon pools. The model is a version of CABLE (the Community Atmosphere-Biosphere-Land Exchange model), coupled with CASAcnp (a biogeochemical model) and SLI (Soil-Litter-Iso, a soil hydrology model including liquid and vapour water fluxes and the effects of litter). By projecting observation-prediction residuals onto model uncertainty, we find that eddy flux measurements provide a significantly tighter constraint on Australian continental net primary production (NPP) than the other data types. However, simultaneous constraint by multiple data types is important for mitigating bias from any single type. Results emerging from the multiply-constrained model are as follows (with all values applying over 1990-2011 and all ranges denoting ±1 standard error): (1) on the Australian continent, a predominantly semi-arid region, over half (0.64±0.05) of the water loss through ET occurs through soil evaporation and bypasses plants entirely; (2) mean Australian NPP is 2200±400 TgC/y, making the NPP/precipitation ratio about the same for Australia as the global land average; (3) annually cyclic ("grassy") vegetation and persistent ("woody") vegetation respectively account for 0.56±0.14 and 0.43±0.14 of NPP across Australia; (4) the average interannual variability of Australia's NEP (±180 TgC/y) is larger than Australia's total anthropogenic greenhouse gas emissions in 2011 (149 TgCeq/y), and is dominated by variability in desert and savannah regions. The mean carbon budget over 1990

  9. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    OpenAIRE

    He, Longfei; Xu, Zhaoguang; Niu, Zhanwen

    2014-01-01

    We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optim...

  10. The World Banks' BioCarbon Fund

    Energy Technology Data Exchange (ETDEWEB)

    Noble, I.

    2003-03-01

    In November 2002 the World Bank launched the BioCarbon Fund, a public/private initiative to provide finance to projects that store carbon in vegetation and soils ('sinks') while helping to reverse land degradation, conserve biodiversity and improve the livelihoods of local communities. The Fund will seek projects to sequester or conserve carbon in non-Annex I countries and in countries in transition. Sinks may be the only option for poor nations with small energy to benefit from the carbon finance business. The Fund will include a portion of assets based on reductions in emissions such as substitution of biofuels for fossil fuels. The author Ian Noble of the World Bank, is chairman of the BioCarbon Fund Technical Advisory Committee.

  11. Low carbon development. Key issues

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Frauke; Nordensvaard, Johan (eds.)

    2013-03-07

    This comprehensive textbook addresses the interface between international development and climate change in a carbon constrained world. It discusses the key conceptual, empirical and policy-related issues of low carbon development and takes an international and interdisciplinary approach to the subject by drawing on insights from across the natural sciences and social sciences whilst embedding the discussion in a global context. The first part explores the concept of low carbon development and explains the need for low carbon development in a carbon constrained world. The book then discusses the key issues of socio-economic, political and technological nature for low carbon development, exploring topics such as the political economy, social justice, financing and carbon markets, and technologies and innovation for low carbon development. This is followed by key issues for low carbon development in policy and practice, which is presented based on cross-cutting issues such as low carbon energy, forestry, agriculture and transportation. Afterwards, practical case studies are discussed from low carbon development in low income countries in Africa, middle income countries in Asia and Latin America and high income countries in Europe and North America.

  12. Multiple Observation Types Jointly Constrain Australian Terrestrial Carbon and Water Cycles

    Science.gov (United States)

    Haverd, Vanessa; Raupach, Michael; Briggs, Peter; Canadell, Pep; Davis, Steven; Isaac, Peter; Law, Rachel; Meyer, Mick; Peters, Glenn; Pickett-Heaps, Christopher; Roxburgh, Stephen; Sherman, Bradford; van Gorsel, Eva; Viscarra Rossel, Raphael; Wang, Ziyuan

    2013-04-01

    Information about the carbon cycle potentially constrains the water cycle, and vice versa. This paper explores the utility of multiple observation sets to constrain carbon and water fluxes and stores in a land surface model, and a resulting determination of the Australian terrestrial carbon budget. Observations include streamflow from 416 gauged catchments, measurements of evapotranspiration (ET) and net ecosystem production (NEP) from 12 eddy-flux sites, litterfall data, and data on carbon pools. The model is a version of CABLE (the Community Atmosphere-Biosphere-Land Exchange model), coupled with CASAcnp (a biogeochemical model) and SLI (Soil-Litter-Iso, a soil hydrology model including liquid and vapour water fluxes and the effects of litter). By projecting observation-prediction residuals onto model uncertainty, we find that eddy flux measurements provide a significantly tighter constraint on Australian continental net primary production (NPP) than the other data types. However, simultaneous constraint by multiple data types is important for mitigating bias from any single type. Results emerging from the multiply-constrained model are as follows (with all values applying over 1990-2011 and all ranges denoting ±1 standard error): (1) on the Australian continent, a predominantly semi-arid region, over half (0.64±0.05) of the water loss through ET occurs through soil evaporation and bypasses plants entirely; (2) mean Australian NPP is 2200±400 TgC/y, making the NPP/precipitation ratio about the same for Australia as the global land average; (3) annually cyclic ("grassy") vegetation and persistent ("woody") vegetation respectively account for 0.56±0.14 and 0.43±0.14 of NPP across Australia; (4) the average interannual variability of Australia's NEP (±180 TgC/y) is larger than Australia's total anthropogenic greenhouse gas emissions in 2011 (149 TgCeq/y), and is dominated by variability in desert and savannah regions. The mean carbon budget over 1990

  13. Carbon-constrained scenarios. Final report

    International Nuclear Information System (INIS)

    2009-05-01

    This report provides the results of the study entitled 'Carbon-Constrained Scenarios' that was funded by FONDDRI from 2004 to 2008. The study was achieved in four steps: (i) Investigating the stakes of a strong carbon constraint for the industries participating in the study, not only looking at the internal decarbonization potential of each industry but also exploring the potential shifts of the demand for industrial products. (ii) Developing an hybrid modelling platform based on a tight dialog between the sectoral energy model POLES and the macro-economic model IMACLIM-R, in order to achieve a consistent assessment of the consequences of an economy-wide carbon constraint on energy-intensive industrial sectors, while taking into account technical constraints, barriers to the deployment of new technologies and general economic equilibrium effects. (iii) Producing several scenarios up to 2050 with different sets of hypotheses concerning the driving factors for emissions - in particular the development styles. (iv) Establishing an iterative dialog between researchers and industry representatives on the results of the scenarios so as to improve them, but also to facilitate the understanding and the appropriate use of these results by the industrial partners. This report provides the results of the different scenarios computed in the course of the project. It is a partial synthesis of the work that has been accomplished and of the numerous exchanges that this study has induced between modellers and stakeholders. The first part was written in April 2007 and describes the first reference scenario and the first mitigation scenario designed to achieve stabilization at 450 ppm CO 2 at the end of the 21. century. This scenario has been called 'mimetic' because it has been build on the assumption that the ambitious climate policy would coexist with a progressive convergence of development paths toward the current paradigm of industrialized countries: urban sprawl, general

  14. Natural Gas, Wind and Nuclear Options for Generating Electricity in a Carbon Constrained World

    NARCIS (Netherlands)

    Kooten, van G.C.

    2012-01-01

    A linear programming model is used to examine the impact of carbon taxes on the optimal generation mix in the Alberta electrical system. The model permits decommissioning of generating assets with high carbon dioxide emissions and investment in new gas-fired, wind and, in some scenarios, nuclear

  15. Panorama of explicit carbon pricing instruments around the world

    International Nuclear Information System (INIS)

    2016-09-01

    In September 2016, I4CE updated its database on carbon pricing policies and published a panorama of explicit carbon pricing policies. This panorama presents an implementation timeline, a world map and a table that together, provide information on the jurisdictions that have implemented or plan to implement explicit carbon pricing policies, the type of instrument chosen, the sectors covered and the carbon prices

  16. World-Economy Centrality and Carbon Dioxide Emissions: A New Look at the Position in the Capitalist World-System and Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Paul Prew

    2015-08-01

    Full Text Available With the ever-growing concern of climate change, much attention has been paid to the factors driving carbon dioxide emissions. Previous research in the World-Systems perspective has identified a relationship between carbon dioxide emissions and position in the world-economy. This study intends to build on the previous research by developing a new, more parsimonious indicator of World-System position based on Immanuel Wallerstein’s theoretical concepts of incorporation and core-periphery processes. The new World-System indicator is derived from the centrality measure in network analysis based on import data from the International Monetary Fund’s Direction of Trade Statistics. Based on the theoretical concepts of core-periphery processes, carbon dioxide emissions are predicted to rise based on the predominance of energy-intensive, high-technology, core processes within the nation. The results tend to demonstrate a strong relationship between carbon dioxide emissions and position in the world-economy, and the new World-System position indicator is more strongly related with carbon dioxide emissions than Gross Domestic Product per capita.

  17. Complementarity of flux- and biometric-based data to constrain parameters in a terrestrial carbon model

    Directory of Open Access Journals (Sweden)

    Zhenggang Du

    2015-03-01

    Full Text Available To improve models for accurate projections, data assimilation, an emerging statistical approach to combine models with data, have recently been developed to probe initial conditions, parameters, data content, response functions and model uncertainties. Quantifying how many information contents are contained in different data streams is essential to predict future states of ecosystems and the climate. This study uses a data assimilation approach to examine the information contents contained in flux- and biometric-based data to constrain parameters in a terrestrial carbon (C model, which includes canopy photosynthesis and vegetation–soil C transfer submodels. Three assimilation experiments were constructed with either net ecosystem exchange (NEE data only or biometric data only [including foliage and woody biomass, litterfall, soil organic C (SOC and soil respiration], or both NEE and biometric data to constrain model parameters by a probabilistic inversion application. The results showed that NEE data mainly constrained parameters associated with gross primary production (GPP and ecosystem respiration (RE but were almost invalid for C transfer coefficients, while biometric data were more effective in constraining C transfer coefficients than other parameters. NEE and biometric data constrained about 26% (6 and 30% (7 of a total of 23 parameters, respectively, but their combined application constrained about 61% (14 of all parameters. The complementarity of NEE and biometric data was obvious in constraining most of parameters. The poor constraint by only NEE or biometric data was probably attributable to either the lack of long-term C dynamic data or errors from measurements. Overall, our results suggest that flux- and biometric-based data, containing different processes in ecosystem C dynamics, have different capacities to constrain parameters related to photosynthesis and C transfer coefficients, respectively. Multiple data sources could also

  18. Liberating energy from carbon introduction to decarbonization

    CERN Document Server

    Muradov, Nazim

    2014-01-01

    Liberating Energy from Carbon analyzes energy options in a carbon-constrained world. Major strategies and pathways to decarbonizing the carbon-intensive economy are laid out with a special emphasis on the prospects of achieving low-risk atmospheric CO2 levels. The opportunities and challenges in developing and bringing to market novel low and zero-carbon technologies are highlighted from technical, economic and environmental viewpoints. This book takes a unique approach by treating carbon in a holistic manner?tracking its complete transformation chain from fossil fuel sources to the unique pro

  19. Major oil exporters may profit rather than lose, in a carbon-constrained world

    International Nuclear Information System (INIS)

    Persson, Tobias A.; Azar, C.; Johansson, D.; Lindgren, K.

    2007-01-01

    The Organization of Petroleum Exporting Countries (OPEC) claims compensation for losses in expected oil export revenues due to CO 2 mitigation measures in developing countries. These losses are expected for two primary reasons: a reduction in the consumption of oil in importing countries and a reduction in the producer price of oil (taxation in an importing country implies a transfer of rents from producers to consumers). So far, most studies have focused on these two mechanisms and corroborated that revenue losses for OPEC are to be expected. However, there are also mechanisms that may be expected to raise the price of oil products. In a cost-effective regime for dealing with climate change, i.e., a regime in which all or most countries participate and in which the same carbon price is applied on all carbon-emitting activities, the cost of using unconventional oil, or synthetic diesel from coal, will increase even more than the cost of using conventional oil. Given that reserves of conventional oil are expected to dwindle over time, heavy oils and coal to liquids might set the long-run price for liquid fuels, which means that the price of oil would increase beyond the carbon fee; i.e., the rent on conventional oil would increase. We use an energy-economic optimization model to analyze these three mechanisms. We find that the net present value of OPEC revenue from conventional oil increases slightly (at most by 4 percent) with a global CO 2 restriction regime. We also consider conditions under which this result does not hold

  20. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests

    Science.gov (United States)

    Smallman, T. L.; Exbrayat, J.-F.; Mencuccini, M.; Bloom, A. A.; Williams, M.

    2017-03-01

    Forest carbon sink strengths are governed by plant growth, mineralization of dead organic matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground states of forests and this information can be linked to models to estimate carbon cycling in forests close to steady state. For aggrading forests this approach is more challenging and has not been demonstrated. Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information content, for two aggrading forests. We compare high information content analyses using local observations with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody biomass observations). The net biome productivity of both forests is constrained to be a net sink with litter dynamics at one forest, while at the second forest total dead organic matter estimates are within observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis is reduced by up to 50% compared to analyses with less biomass information. This study quantifies the importance of repeated woody observations in constraining the dynamics of both wood and dead organic matter, highlighting the benefit of proposed remote sensing missions.

  1. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  2. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    Directory of Open Access Journals (Sweden)

    Longfei He

    2014-01-01

    Full Text Available We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optimization algorithm to obtain joint optimal production quantities combination for maximizing overall profit under regulatory policies, respectively. Furthermore, numerical studies by featuring exponentially distributed demand compare systemwide performances in various scenarios. We build the “carbon emission elasticity of profit (CEEP” index as a metric to evaluate the impact of regulatory policies on both chainwide emissions and profit. Our results manifest that by facilitating the mandatory emission cap in proper installation within the network one can balance well effective emission reduction and associated acceptable profit loss. The outcome that CEEP index when implementing Carbon emission tax is elastic implies that the scale of profit loss is greater than that of emission reduction, which shows that this policy is less effective than mandatory cap from industry standpoint at least.

  3. Oil refining in a CO2 constrained world: Effects of carbon pricing on refineries globally

    International Nuclear Information System (INIS)

    Abdul-Manan, Amir F.N.; Arfaj, Abdullah; Babiker, Hassan

    2017-01-01

    Six aggregated refinery linear programming (LP) models were developed to represent actual refineries in North America, Latin America, Europe (including the CIS), Middle East, Asia (excluding China) and China. The models were used to conduct regional comparative assessments and to evaluate the effects of carbon pricing on refinery operations globally. We found that the average refinery energy efficiencies for the regions were estimated to range from 92.2% to 95.2%. The well-to-refinery gate carbon intensities for gasoline, diesel and jet fuels were estimated to be 17.1 (16.4–19.4), 13.3 (12.5–14.2) and 10.1 (9.6–10.8) gCO2eq/MJ, respectively. If refineries are forced to at least meet the 2014 regional volume demands for oil products, pricing CO 2 would not have an impact on either refinery productions, efficiency or emissions. If refineries are allowed to re-optimize production slates to reduce CO 2 emissions, refineries would opt to increase gasoline yield at the expense of diesel. This is counter intuitive since gasoline has a higher carbon intensity than diesel. The refinery bias against dieselization creates a supply preference toward a less efficient transportation end use. Here, we argue that if carbon pricing is not administered properly, this can lead to emissions leakage from refineries to the road transport sector. - Highlights: • Investigate actual refinery productions in 6 regions globally. • Refineries already operate at the most efficient levels. • Complex refineries tolerate higher CO 2 prices better. • Carbon pricing induces bias against dieselization. • Identify potential emissions leakage.

  4. Integrating satellite retrieved leaf chlorophyll into land surface models for constraining simulations of water and carbon fluxes

    KAUST Repository

    Houborg, Rasmus

    2013-07-01

    In terrestrial biosphere models, key biochemical controls on carbon uptake by vegetation canopies are typically assigned fixed literature-based values for broad categories of vegetation types although in reality significant spatial and temporal variability exists. Satellite remote sensing can support modeling efforts by offering distributed information on important land surface characteristics, which would be very difficult to obtain otherwise. This study investigates the utility of satellite based retrievals of leaf chlorophyll for estimating leaf photosynthetic capacity and for constraining model simulations of water and carbon fluxes. © 2013 IEEE.

  5. Constraining the Exchange of Carbon and Nitrogen in Eastern Long Island Sound

    Science.gov (United States)

    Byrd, A.; Warren, J. K.; Vlahos, P.; Whitney, M. M.

    2017-12-01

    Long Island Sound (LIS) is an urban estuary on the US east coast that undergoes seasonal hypoxia in its western and central regions. Currently, the budgets of both carbon and nitrogen in LIS remain unbalanced, despite their importance to the efficient and strategic management of the health of coastal and aquatic ecosystems. In this study, we evaluated the exchange values of C and N at the mouth of LIS (the Race), in order to constrain export through this important boundary. Discreet water samples were collected during four 15 km transects over the Race at five stations and three depths each station to resolve the temporal variability over a complete tidal cycle, in order to assess both net flux and variations across the tidal period. By evaluating both the particulate and dissolved pools of carbon (POC, PIC, DOC, DIC) and nitrogen (PON, DON, DIN) during the spring, summer and winter (high and low flow conditions) and pairing these measurements with physical data, we were able to identify a variety of forcing and export regimes. Preliminary results indicate the importance of spatial and tidal variability on flux estimates and show little or no export (and sometimes import) of nitrogen and significant export of organic carbon.

  6. Analysis of market penetration of renewable energy alternatives under uncertain and carbon constrained world

    Science.gov (United States)

    Future energy prices and supply, availability and costs can have a significant impact on how fast and cost effectively we could abate carbon emissions. Two-staged decision making methods embedded in U.S. EPA's MARKAL modeling system will be utilized to find the most robust mitig...

  7. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Catling, David C

    2017-05-22

    The relative influences of tectonics, continental weathering and seafloor weathering in controlling the geological carbon cycle are unknown. Here we develop a new carbon cycle model that explicitly captures the kinetics of seafloor weathering to investigate carbon fluxes and the evolution of atmospheric CO 2 and ocean pH since 100 Myr ago. We compare model outputs to proxy data, and rigorously constrain model parameters using Bayesian inverse methods. Assuming our forward model is an accurate representation of the carbon cycle, to fit proxies the temperature dependence of continental weathering must be weaker than commonly assumed. We find that 15-31 °C (1σ) surface warming is required to double the continental weathering flux, versus 3-10 °C in previous work. In addition, continental weatherability has increased 1.7-3.3 times since 100 Myr ago, demanding explanation by uplift and sea-level changes. The average Earth system climate sensitivity is  K (1σ) per CO 2 doubling, which is notably higher than fast-feedback estimates. These conclusions are robust to assumptions about outgassing, modern fluxes and seafloor weathering kinetics.

  8. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations

    Directory of Open Access Journals (Sweden)

    W. Li

    2017-11-01

    Full Text Available The use of dynamic global vegetation models (DGVMs to estimate CO2 emissions from land-use and land-cover change (LULCC offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite- and inventory-based biomass observations to constrain historical cumulative LULCC emissions (ELUCc from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and ELUCc. This method is applicable on the global and regional scale. The original DGVM estimates of ELUCc range from 94 to 273 PgC during 1901–2012. After constraining by current biomass observations, we derive a best estimate of 155 ± 50 PgC (1σ Gaussian error. The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained ELUCc is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.

  9. Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    KAUST Repository

    Schull, M. A.

    2015-03-11

    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  10. Continuous In-situ Measurements of Carbonyl Sulfide (OCS) and Carbon Dioxide Isotopes to Constrain Ecosystem Carbon and Water Exchanges

    Science.gov (United States)

    Rastogi, B.; Still, C. J.; Noone, D. C.; Berkelhammer, M. B.; Whelan, M.; Lai, C. T.; Hollinger, D. Y.; Gupta, M.; Leen, J. B.; Huang, Y. W.

    2015-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf- level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from four heights as well as the soil to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere for the growing season. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings also seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  11. Carbon Reduction Strategies Based on an NW Small-World Network with a Progressive Carbon Tax

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2017-09-01

    Full Text Available There is an increasingly urgent need to reduce carbon emissions. Devising effective carbon tax policies has become an important research topic. It is necessary to explore carbon reduction strategies based on the design of carbon tax elements. In this study, we explore the effect of a progressive carbon tax policy on carbon emission reductions using the logical deduction method. We apply experience-weighted attraction learning theory to construct an evolutionary game model for enterprises with different levels of energy consumption in an NW small-world network, and study their strategy choices when faced with a progressive carbon tax policy. The findings suggest that enterprises that adopt other energy consumption strategies gradually transform to a low energy consumption strategy, and that this trend eventually spreads to the entire system. With other conditions unchanged, the rate at which enterprises change to a low energy consumption strategy becomes faster as the discount coefficient, the network externality, and the expected adjustment factor increase. Conversely, the rate of change slows as the cost of converting to a low energy consumption strategy increases.

  12. Poverty eradication in a carbon constrained world

    OpenAIRE

    Hubacek, Klaus; Baiocchi, Giovanni; Feng, Kuishuang; Patwardhan, Anand

    2017-01-01

    The UN Framework Convention on Climate Change aims to keep warming below 2 °C while recognizing developing countries’ right to eradicate extreme poverty. Poverty eradication is also the first of the Sustainable Development Goals. This paper investigates potential consequences for climate targets of achieving poverty eradication. We find that eradicating extreme poverty, i.e., moving people to an income above $1.9 purchasing power parity (PPP) a day, does not jeopardize the climate target even...

  13. Continuous In-situ Measurements of Carbonyl Sulfide to Constrain Ecosystem Carbon and Water Exchange

    Science.gov (United States)

    Rastogi, B.; Kim, Y.; Berkelhammer, M. B.; Noone, D. C.; Lai, C. T.; Hollinger, D. Y.; Bible, K.; Leen, J. B.; Gupta, M.; Still, C. J.

    2014-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf-level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from three heights to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  14. Grain Yield Observations Constrain Cropland CO2 Fluxes Over Europe

    Science.gov (United States)

    Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.

    2017-12-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily to seasonal time scales. A better description of this exchange in terrestrial biosphere models—most of which currently treat crops as unmanaged grasslands—is needed to improve atmospheric CO2 simulations. In the framework we present here, we model gross European cropland CO2 fluxes with a crop growth model constrained by grain yield observations. Our approach follows a two-step procedure. In the first step, we calculate day-to-day crop carbon fluxes and pools with the WOrld FOod STudies (WOFOST) model. A scaling factor of crop growth is optimized regionally by minimizing the final grain carbon pool difference to crop yield observations from the Statistical Office of the European Union. In a second step, we re-run our WOFOST model for the full European 25 × 25 km gridded domain using the optimized scaling factors. We combine our optimized crop CO2 fluxes with a simple soil respiration model to obtain the net cropland CO2 exchange. We assess our model's ability to represent cropland CO2 exchange using 40 years of observations at seven European FluxNet sites and compare it with carbon fluxes produced by a typical terrestrial biosphere model. We conclude that our new model framework provides a more realistic and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal and serve as a new cropland component in the CarbonTracker Europe inverse model.

  15. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback.

    Science.gov (United States)

    Koven, C D; Schuur, E A G; Schädel, C; Bohn, T J; Burke, E J; Chen, G; Chen, X; Ciais, P; Grosse, G; Harden, J W; Hayes, D J; Hugelius, G; Jafarov, E E; Krinner, G; Kuhry, P; Lawrence, D M; MacDougall, A H; Marchenko, S S; McGuire, A D; Natali, S M; Nicolsky, D J; Olefeldt, D; Peng, S; Romanovsky, V E; Schaefer, K M; Strauss, J; Treat, C C; Turetsky, M

    2015-11-13

    We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of -14 to -19 Pg C °C(-1) on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach

  16. Government control or low carbon lifestyle? – Analysis and application of a novel selective-constrained energy-saving and emission-reduction dynamic evolution system

    International Nuclear Information System (INIS)

    Fang, Guochang; Tian, Lixin; Fu, Min; Sun, Mei

    2014-01-01

    This paper explores a novel selective-constrained energy-saving and emission-reduction (ESER) dynamic evolution system, analyzing the impact of cost of conserved energy (CCE), government control, low carbon lifestyle and investment in new technology of ESER on energy intensity and economic growth. Based on artificial neural network, the quantitative coefficients of the actual system are identified. Taking the real situation in China for instance, an empirical study is undertaken by adjusting the parameters of the actual system. The dynamic evolution behavior of energy intensity and economic growth in reality are observed, with the results in perfect agreement with actual situation. The research shows that the introduction of CCE into ESER system will have certain restrictive effect on energy intensity in the earlier period. However, with the further development of the actual system, carbon emissions could be better controlled and energy intensity would decline. In the long run, the impacts of CCE on economic growth are positive. Government control and low carbon lifestyle play a decisive role in controlling ESER system and declining energy intensity. But the influence of government control on economic growth should be considered at the same time and the controlling effect of low carbon lifestyle on energy intensity should be strengthened gradually, while the investment in new technology of ESER can be neglected. Two different cases of ESER are proposed after a comprehensive analysis. The relations between variables and constraint conditions in the ESER system are harmonized remarkably. A better solution to carry out ESER is put forward at last, with numerical simulations being carried out to demonstrate the results. - Highlights: • Use of nonlinear dynamical method to model the selective-constrained ESER system. • Monotonic evolution curves of energy intensity and economic growth are obtained. • Detailed analysis of the game between government control and low

  17. A data assimilation framework for constraining upscaled cropland carbon flux seasonality and biometry with MODIS

    Directory of Open Access Journals (Sweden)

    O. Sus

    2013-04-01

    , observing carbon cycling at one single field with its individual sowing pattern is not sufficient to constrain large-scale agroecosystem carbon flux seasonality. Study area average growing season length is 20 days longer than observed at Bondville, primarily because of an earlier estimated start of season. (3 For carbon budgeting, additional information on cropland soil management and belowground carbon cycling has to be considered, as such constraints are not provided by MODIS.

  18. Studies of world carbon fiber industry from a perspective of patent analysis

    Institute of Scientific and Technical Information of China (English)

    郑佳

    2016-01-01

    Patents are the manifestation of the industry R&D endeavor;therefore, World carbon fiber in-dustry from the perspective of patent analysis is studied .Findings from the analysis show a continual increase of carbon fibers patents since 1969 , and the growth rate began even faster after the year of 2005.Five countries (Japan, China, US, Germany and Korea) took dominant positions in global carbon fibers R&D , and the sum of patents applied in these five countries accounted for 80%of the total patents in the world .Corporations do play an active role in global carbon fibers R&D , and over 60%of patents were applied by corporations .Among them , the top 3 corporations were all from Ja-pan, which had much more patents than the other patent assignees .Furthermore, most corporations were not active in cooperation with others , except Toyota Motor Corp .Global carbon fibers R&D fo-cused on sheet manufacture cloth , core wire layer , heat connect provide and filter activated draw . And there is big difference between Japan and China in the R&D focus .China ’ s corporations have exhibited rapid growth in the number of patent applications in recent years , but there is still a large gap between China and foreign countries in view of global patent layout and influence .By providing the insight into the evolution of global carbon fibers industrial and technological development through the perspective of patent analysis , this study hopes to provide an objective statistic reference for fu-ture policy directions and academic researches .

  19. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marta [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct

  20. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    Science.gov (United States)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  1. Constrained systems described by Nambu mechanics

    International Nuclear Information System (INIS)

    Lassig, C.C.; Joshi, G.C.

    1996-01-01

    Using the framework of Nambu's generalised mechanics, we obtain a new description of constrained Hamiltonian dynamics, involving the introduction of another degree of freedom in phase space, and the necessity of defining the action integral on a world sheet. We also discuss the problem of quantizing Nambu mechanics. (authors). 5 refs

  2. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes

    Science.gov (United States)

    Jost, A. B.; Mundil, R.; He, B.; Brown, S. T.; Altiner, D.; Sun, Y.; DePaolo, D. J.; Payne, J.

    2013-12-01

    A negative δ13C excursion in carbonate sediments from Guadalupian (Middle Permian) and Lopingian (Late Permian) stratigraphic sections has been interpreted to result from a large carbon cycle disturbance during end-Guadalupian extinction event (ca. 260 Ma). However, the carbon isotope data alone are insufficient to uniquely determine the type and magnitude of perturbations to the global carbon cycle. The carbon and calcium cycles are coupled via CaCO3 burial, so changes in calcium isotopes can be used to constrain the cause of a carbon isotope excursion. In this study, we present coupled carbon and calcium isotope records from three Guadalupian-Lopingian (G/L) sections in China and Turkey. Isotope records among our studied sections are inconsistent in both their δ13C and δ44/40Ca records. Similar inconsistencies in δ13C among sections occur across previously published datasets. Sections with large (>3‰) changes in δ13C either show evidence for diagenetic alteration or do not show δ13C and δ44/40Ca changes consistent with severe volcanic degassing from Emeishan or methane clathrate destabilization. We conclude that the large isotopic changes are more likely the result of local burial conditions or diagenetic effects, rather than a large carbon cycle disturbance. Perturbations to the global carbon and calcium cycles appear to have been much smaller across the G/L transition than across the subsequent Permian-Triassic boundary. This finding is consistent with recent paleobiological data showing that the end-Guadalupian extinction was much less severe than previously believed, and was indistinguishable in magnitude from background intervals. However, selective extinction of marine animals with passive respiratory physiology indicates that the G/L extinction cannot simply be due to background extinction or sampling failure, and that it was triggered by some environmental event. Therefore, any environmental event must have been small enough to not generate large

  3. Role of organic soils in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V. (ed.)

    1979-01-01

    Findings and recommendations of the workshop on organic soils are summarized. The major finding of the workshop is that organic soils are important in the overall carbon budget. Histosols and gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/. Current annual release of carbon from organic soils is estimated to fall within the range of 0.03 to 0.37 x 10/sup 9/ t, a release equivalent to 1.3% to 16% of the annual increase of carbon in the atmosphere. If half of the released carbon remains airborne, organic soils contribute 0.6% to 8.0% of the annual rise in CO/sub 2/. Uncertainties in data suggest the actual release could lie outside the range. Present annual releases of carbon from the Everglades Agricultural Area in Florida and the Sacramento-San Joaquin Valley in California are estimated at 0.017 x 10/sup 9/ tons. When combined with additional carbon release from other known drainage programs and the possibility of major drainage activity in the tropics, this figure suggests that the lower limit of the world estimate of carbon release from organic soils is too low. Annual sequestering of carbon by undrained organic soils has been estimated at about 0.045 x 10/sup 9/ tons. This estimate is based on only a few studies, however, and precision is probably no better than an order of magnitude. Several strategies for peatland management are available, including creation, preservation, functional designation, and use of wetlands for agriculture and energy supply.

  4. Carbon isotopic record from Upper Devonian carbonates at Dongcun in Guilin, southern China, supporting the world-wide pattern of carbon isotope excursions during Frasnian-Famennian transition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Two positive δ13C excursions are presented in records from the Frasnian-Famennian (F-F) marine carbonate sediments in Europe, America, Africa, and Australia, having been considered as a worldwide pattern, and attributed to enhanced organic carbon burial during the F-F biological mass extinction. However, this worldwide pattern has not been revealed from the well-deposited Late Devonian sequences in southern China. In this paper, a detailed investigation has been made on the Late Devonian section at Dongcun, Guilin, southern China to constrain perturbations in δ13C of carbonates in the F-F deposited sequence. The result from this section also indicates two positive δ13C excursions during the F-F transition. The first excursion with an amplitude of 1.5‰ occurred at the bottom of linguiformis Zone, later than the early excursion existing in the Late rhenana Zone of the Late Devonian profiles in other continents, especially, in central Europe. This difference has been expected to be a result as conodont Palmatolepis linguiformis occurred earlier in southern China than other sites. The second excursion with an amplitude of 2.1‰ is located at the F-F boundary, same as the records from other continents. This result strongly supports the view that two carbon isotope positive excursions during the F-F transition are common in carbonate sediments, resulting from worldwide increases of organic carbon burial intensity.

  5. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    Science.gov (United States)

    Quinn Thomas, R.; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; Gonzalez-Benecke, Carlos A.; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O.

    2017-07-01

    Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present

  6. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.

    Science.gov (United States)

    Cox, Peter M; Pearson, David; Booth, Ben B; Friedlingstein, Pierre; Huntingford, Chris; Jones, Chris D; Luke, Catherine M

    2013-02-21

    The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.

  7. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing

    International Nuclear Information System (INIS)

    Alihosseini, H.; Dehghani, K.

    2012-01-01

    Highlights: ► BH of UFG low carbon steel sheets was studied. ► Three passes of CGP are used for producing of UFG sheets. ► Maximum BH was achieved to the UFG specimen pre-strained 8% by baking at 250 °C. - Abstract: In the present work, the bake hardening of ultra-fine grained low carbon steel was compared with that of its coarse-grain counterpart. The ultra-fine grained sheets were produced by applying three passes of constrained groove pressing resulting the grains of 260–270 nm. The microstructure of ultra-fine grain specimens were characterized using electron back-scatter diffraction technique. Then, the bake hardenability of ultra-fine grain and coarse-grain samples were compared by pre-straining to 4, 6 and 8% followed by baking at 150 °C and 250 °C for 20 min. The results show that in case of baking at 250 °C, there was an increase about 108%, 93%, and 72% in the bake hardening for 4%, 6% and 8% pre-strain, respectively. As for baking at 150 °C, these values were 170%, 168%, and 100%, respectively for 4%, 6% and 8% pre-strain. The maximum in bake hardenability (103 MPa) and final yield stress (563 MPa) were pertaining to the ultra-fine grain specimen pre-strained 8% followed by baking at 250 °C.

  8. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests.

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G; Lindenmayer, David B

    2009-07-14

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.

  9. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.

    2009-01-01

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199

  10. Constraining the sources and cycling of dissolved organic carbon in a large oligotrophic lake using radiocarbon analyses

    Science.gov (United States)

    Zigah, Prosper K.; Minor, Elizabeth C.; McNichol, Ann P.; Xu, Li; Werne, Josef P.

    2017-07-01

    We measured the concentrations and isotopic compositions of solid phase extracted (SPE) dissolved organic carbon (DOC) and high molecular weight (HMW) DOC and their constituent organic components in order to better constrain the sources and cycling of DOC in a large oligotrophic lacustrine system (Lake Superior, North America). SPE DOC constituted a significant proportion (41-71%) of the lake DOC relative to HMW DOC (10-13%). Substantial contribution of 14C-depleted components to both SPE DOC (Δ14C = 25-43‰) and HMW DOC (Δ14C = 22-32‰) was evident during spring mixing, and depressed their radiocarbon values relative to the lake dissolved inorganic carbon (DIC; Δ14C ∼ 59‰). There was preferential removal of 14C-depleted (older) and thermally recalcitrant components from HMW DOC and SPE DOC in the summer. Contemporary photoautotrophic addition to HMW DOC was observed during summer stratification in contrast to SPE DOC, which decreased in concentration during stratification. Serial thermal oxidation radiocarbon analysis revealed a diversity of sources (both contemporary and older) within the SPE DOC, and also showed distinct components within the HMW DOC. The thermally labile components of HMW DOC were 14C-enriched and are attributed to heteropolysaccharides (HPS), peptides/amide and amino sugars (AMS) relative to the thermally recalcitrant components reflecting the presence of older material, perhaps carboxylic-rich alicyclic molecules (CRAM). The solvent extractable lipid-like fraction of HMW DOC was very 14C-depleted (as old as 1270-2320 14C years) relative to the carbohydrate-like and protein-like substances isolated by acid hydrolysis of HMW DOC. Our data constrain relative influences of contemporary DOC and old DOC, and DOC cycling in a modern freshwater ecosystem.

  11. Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development

    International Nuclear Information System (INIS)

    Chen, QianQian; Tang, ZhiYong; Lei, Yang; Sun, YuHan; Jiang, MianHeng

    2015-01-01

    Highlights: • We report a nuclear–coal hybrid energy systems. • We address the high-carbon energy resource integrating with a low-carbon energy resource. • We establish a systematic techno-economic model. • Improving both energy and carbon efficiency. • A significantly lower CO 2 emission intensity is achieved by the system. - Abstract: Global energy consumption is expected to increase significantly due to the growth of the economy and population. The utilization of fossil resource, especially coal, will likely be constrained by carbon dioxide emissions, known to be the principal contributor to climate change. Therefore, the world is facing the challenge of how to utilize fossil resource without a large carbon footprint. In the present work, a nuclear–coal hybrid energy system is proposed as a potential solution to the aforementioned challenge. A high-carbon energy such as coal is integrated effectively with a low-carbon energy such as nuclear in a flexible and optimized manner, which is able to generate the chemicals and fuels with low carbon dioxide emissions. The nuclear–coal hybrid energy system is presented in this paper for the detailed analysis. In this case, the carbon resource required by the fuel syntheses and chemical production processes is mainly provided by coal while the hydrogen resource is derived from nuclear energy. Such integration can not only lead to a good balance between carbon and hydrogen, but also improve both energy and carbon efficiencies. More importantly, a significantly lower CO 2 emission intensity is achieved. A systematic techno-economic model is established, and a scenario analysis is carried out on the hybrid system to assess the economic competitiveness based on the considerations of various types of externalities. It is found that with the rising carbon tax and coal price as well as the decreasing cost of nuclear energy, the hybrid energy system will become more and more economically competitive with the

  12. Using n-alkane records to constrain carbon cycle - hydrological cycle coupling: Case study from the Northern Hemisphere mid-latitudes during the PETM

    Science.gov (United States)

    Krishnan, S.; Pagani, M.; Tipple, B. J.

    2010-12-01

    The early Eocene was a warmer world compared to the present and is characterized by rising temperatures interspersed with rapid hyperthermal events. During the largest of these rapid warming events; the Paleocene-Eocene Thermal Maximum (PETM), proxy records suggest that sea surface temperatures (SST) rose by 3-5 deg. C in the tropics (Zachos et al., 2003, Tripati and Elderfield, 2004), >5 deg. C in the Arctic (Sluijs et al., 2006) and perhaps has high as 9 deg. C in some sub-Antarctic regions (Kennett and Stott, 1991; Thomas et al., 1999). This warming is believed to be the result of massive input of 13C-depleted carbon into the ocean-atmosphere system, evidenced by the large negative carbon isotope excursion (CIE) and carbonate dissolution associated with the event. However, there are several questions regarding the exact mechanism of warming and feedbacks between the carbon cycle and climate. Did climate shift prior to the main event that led to the release of isotopically light carbon? Do we observe consistent leads or lags between changes in carbon isotopes and hydrological conditions during warm intervals? This study aims to reconstruct hydrological changes in the in the Northern Hemisphere mid-latitudes during the PETM using terrestrial biomarkers. Terrestrial biomarkers, such leaf-wax lipids stored in sediments, have the unique advantage of recording carbon and hydrogen isotopic compositions of atmospheric CO2 (modified by plant fractionation) and precipitation (modified by plant fractionation and evapotranspiration), allowing evaluation of the relative timing of carbon and hydrogen isotopic (i.e., climate) shifts. In this study, we compile and present three mid-latitude PETM records from the Northern Hemisphere, i.e. Alamedilla (Spain), Cicogna and Forada (Italy). The Cicogna and Forada sections are located in the Belluno basin (~12 km apart). Preliminary results do not indicate any significant pre-excursion hydrogen isotope changes at Cicogna, while at

  13. Tracking global carbon revenues: A survey of carbon taxes versus cap-and-trade in the real world

    International Nuclear Information System (INIS)

    Carl, Jeremy; Fedor, David

    2016-01-01

    We investigate the current use of public revenues which are generated through both carbon taxes and cap-and-trade systems. More than $28.3 billion in government “carbon revenues” are currently collected each year in 40 countries and another 16 states or provinces around the world. Of those revenues, 27% ($7.8 billion) are used to subsidize “green” spending in energy efficiency or renewable energy; 26% ($7.4 billion) go toward state general funds; and 36% ($10.1 billion) are returned to corporate or individual taxpayers through paired tax cuts or direct rebates. Cap-and-trade systems ($6.57 billion in total public revenue) earmark a larger share of revenues for “green” spending (70%), while carbon tax systems ($21.7 billion) more commonly refund revenues or otherwise direct them towards government general funds (72% of revenues). Drawing from an empirical dataset, we also identify various trends in systems’ use of “carbon revenues” in terms of the total revenues collected annually per capita in each jurisdiction and offer commensurate qualitative observations on carbon policy design choices. - Highlights: •We analyze public revenue generated from global carbon tax and cap-and-trade systems. •70% of cap-and-trade revenues ($4.60 billion) are earmarked for “green spending”. •72% of carbon tax revenues ($15.6 billion) are refunded or used in general funds. •Revenues per capita vary widely and are a useful qualitative explanatory variable.

  14. Trends in PDE constrained optimization

    CERN Document Server

    Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan

    2014-01-01

    Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics.   The book is divided into five sections on “Constrained Optimization, Identification and Control”...

  15. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    Directory of Open Access Journals (Sweden)

    R. Q. Thomas

    2017-07-01

    Full Text Available Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2 concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6  ×  105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field

  16. Carbon Dioxide Effects Research and Assessment Program. The role of tropical forests on the world carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.; Lugo, A. E.; Liegel, B. [eds.

    1980-08-01

    Tropical forests constitute about half of the world's forest and are characterized by rapid rates of organic matter turnover and high storages of organic matter. Tropical forests are considered to be one of the most significant terrestrial elements in the equation that balances the carbon cycle of the world. As discussed in the paper by Tosi, tropical and subtropical latitudes are more complex in terms of climate and vegetation composition than temperate and boreal latitudes. The implications of the complexity of the tropics and the disregard of this complexity by many scientists is made evident in the paper by Brown and Lugo which shows that biomass estimates for tropical ecosystems have been overestimated by at least 100%. The paper by Brown shows that that rates of succession in the tropics are extremely rapid in terms of the ability of moist and wet forests to accumulate organic matter. Yet, in arid tropical Life Zones succession is slow. This leads to the idea that the question of whether tropical forests are sinks or sources of carbon must be analyzed in relation to Life Zones and to intensities of human activity in these Zones. The paper by Lugo presents conceptual models to illustrate this point and the paper by Tosi shows how land uses in the tropics also correspond to Life Zone characteristics. The ultimate significance of land use to the question of the carbon balance in a large region is addressed in the paper by Detwiler and Hall.

  17. Social Roots of Global Environmental Change: A World-Systems Analysis of Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    J. Timmons Roberts

    2015-08-01

    Full Text Available Carbon dioxide is understood to be the most important greenhouse gas believed to be altering the global climate. This article applies world-system theory to environmental damage. An analysis of 154 countries examines the contribution of both position in the world economy and internal class and political forces in determining a nation's CO, intensity. CO, intensity is defined here as the amount of carbon dioxide released per unit of economic output. An inverted U distribution of CO, intensity across the range of countries in the global stratification system is identified and discussed. Ordinary Least Squares regression suggests that the least efficient consumers of fossil fuels are some countries within the semi-periphery and upper periphery, spe-cifically those nations which are high exporters, those highly in debt, nations with higher military spending, and those with a repressive social structure.

  18. Canada's power play : the case for a Canadian energy strategy for a carbon-constrained world

    International Nuclear Information System (INIS)

    Gibbins, R.; Roberts, K.

    2008-09-01

    This paper presented the results of a series of energy sector consultations conducted across western Canada to determine expert opinions related to the subject of energy policy in Canada. The consultations indicated that many sector experts and stakeholders feel that climate change must be addressed when designing an energy policy for Canada, and that a fair balance must be obtained between the need for economic and environmental sustainability. The economy should not be compromised by action on climate change, and regional differences should be considered. Results of the study suggested that a Canadian energy strategy should coordinate federal, provincial, territorial, and municipal energy policy initiatives. Energy production targets for a range of renewable and non-renewable energy sources should be established. The strategy should inform and be compatible with a national climate change strategy, and move beyond regulation and singular initiatives such as carbon capture and storage. The strategy should stress energy conservation, send appropriate price signals as financial incentives for change, and recognize the need for public investment in research and technology. The document stated that an effective energy strategy may take many years to establish.

  19. Mesh dependence in PDE-constrained optimisation an application in tidal turbine array layouts

    CERN Document Server

    Schwedes, Tobias; Funke, Simon W; Piggott, Matthew D

    2017-01-01

    This book provides an introduction to PDE-constrained optimisation using finite elements and the adjoint approach. The practical impact of the mathematical insights presented here are demonstrated using the realistic scenario of the optimal placement of marine power turbines, thereby illustrating the real-world relevance of best-practice Hilbert space aware approaches to PDE-constrained optimisation problems. Many optimisation problems that arise in a real-world context are constrained by partial differential equations (PDEs). That is, the system whose configuration is to be optimised follows physical laws given by PDEs. This book describes general Hilbert space formulations of optimisation algorithms, thereby facilitating optimisations whose controls are functions of space. It demonstrates the importance of methods that respect the Hilbert space structure of the problem by analysing the mathematical drawbacks of failing to do so. The approaches considered are illustrated using the optimisation problem arisin...

  20. Our struggle for climate - a low carbon world with growth is possible

    International Nuclear Information System (INIS)

    Chalendar, Pierre-Andre de

    2015-01-01

    In order to avoid an irreversible climate catastrophe, and as the will and commitments of States are not enough, the mobilisation of companies and enterprises is essential. This book aims to show that enterprises, which have been for long considered as responsible of greenhouse gas emissions, are now at the forefront of the struggle against climate change. The author describes the various challenges faced by French companies regarding climate and the environment. He thinks that the world will always need more energy, more steel, more aluminium, more building materials, more cars, more chemistry, more machines, more tubes and cables. The solution is then a technological one to transform industrial activities for a low carbon or zero carbon and growing economy

  1. The decadal state of the terrestrial carbon cycle : Global retrievals of terrestrial carbon allocation, pools, and residence times

    NARCIS (Netherlands)

    Bloom, A Anthony; Exbrayat, Jean-François; van der Velde, Ivar R; Feng, Liang; Williams, Mathew

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  2. Microenterprise in the First and Third Worlds

    OpenAIRE

    Mark Schreiner

    2001-01-01

    Sparked by examples from the third world, hundreds of microenterprise programmes have been started in the first world. Will they be successful? This paper reviews the evidence and concludes that microenterprise development is more difficult in the first world. For example, the microenterprise sector in the first world is smaller because most people can get wage jobs and because of the public safety net. Unlike third-world entrepreneurs, first-world entrepreneurs are more often constrained by ...

  3. World cheating on the carbon market

    International Nuclear Information System (INIS)

    James, O.

    2010-01-01

    According to several non-governmental organizations, some industrial producers take advantage of a flaw in one of the carbon market mechanisms set up by the Kyoto protocol. These industrialists, mainly from China and India, are involved in the production of HCFC22 refrigerants, and make a substantial profit by artificially generating more greenhouse gases (HFC23) than necessary, then destroying them in order to collect carbon credits which they sell on the carbon market. Explanations about the cheat, details about companies and banks involved in the system, review of past trickeries in carbon quotas, and ways to improve the carbon market are presented

  4. Oil turbulence in the next decade. An essay on high oil prices in a supply-constrained world

    International Nuclear Information System (INIS)

    Jesse, J.H.; Van der Linde, C.

    2008-06-01

    A CIEP analysis of the recent development of demand and supply for crude oil indicates that the mismatch in supply and demand growth could cause tighter oil markets than we already experience today. In the World Energy Outlook 2007, the International Energy Agency (IEA) warned of a possible 'energy crunch'. But what was anticipated to happen in the first part of the next decade has been fast-forwarded to today, more than 5 years earlier, and could shake the very foundation of our energy systems if no action is undertaken. Without exaggeration, the recent developments in the international oil market are ground-breaking: a little over a year ago, in January 2007, the West Texas Intermediate crude oil price (WTI) traded for USD50 dollar a barrel. Within a year, the price doubled to USD100 per barrel in January 2008 and pushed through to over USD135 in June 2008, against the backdrop of the fresh market supposition about reaching a whopping USD200 per barrel in 2009. If this proves to be true, the world will not only have moved from an 'Oil Demand-led World' to an 'Oil Supply-constrained World' (since 2004) but, more importantly, will then also experience a radical change in the oil price formation. Until recently, the oil price was largely underpinned by the marginal cost of the last barrel needed to match demand, with some political and economic conjuncture mark-ups or -downs. As will be presented in this paper, the current high oil prices are still primarily driven by structural factors that can be well explained without resorting to blaming speculative investors playing the futures market or the low dollar. But if prices are heading towards USD200 a barrel in 12 months' time, or for that matter even to USD150 a barrel, other drivers will gain prominence over marginal costs as the main driver. In that case, OPEC will have accomplished a long-held wish: oil will then be priced at its real value in the Western world (for instance the economic value of mobility for

  5. Political economy constraints on carbon pricing policies: What are the implications for economic efficiency, environmental efficacy, and climate policy design?

    International Nuclear Information System (INIS)

    Jenkins, Jesse D.

    2014-01-01

    Economists traditionally view a Pigouvian fee on carbon dioxide and other greenhouse gas emissions, either via carbon taxes or emissions caps and permit trading (“cap-and-trade”), as the economically optimal or “first-best” policy to address climate change-related externalities. Yet several political economy factors can severely constrain the implementation of these carbon pricing policies, including opposition of industrial sectors with a concentration of assets that would lose considerable value under such policies; the collective action nature of climate mitigation efforts; principal agent failures; and a low willingness-to-pay for climate mitigation by citizens. Real-world implementations of carbon pricing policies can thus fall short of the economically optimal outcomes envisioned in theory. Consistent with the general theory of the second-best, the presence of binding political economy constraints opens a significant “opportunity space” for the design of creative climate policy instruments with superior political feasibility, economic efficiency, and environmental efficacy relative to the constrained implementation of carbon pricing policies. This paper presents theoretical political economy frameworks relevant to climate policy design and provides corroborating evidence from the United States context. It concludes with a series of implications for climate policy making and argues for the creative pursuit of a mix of second-best policy instruments. - Highlights: • Political economy constraints can bind carbon pricing policies. • These constraints can prevent implementation of theoretically optimal carbon prices. • U.S. household willingness-to-pay for climate policy likely falls in the range of $80–$200 per year. • U.S. carbon prices may be politically constrained to as low as $2–$8 per ton of CO 2 . • An opportunity space exists for improvements in climate policy design and outcomes

  6. Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode

    Science.gov (United States)

    Su, Junming; Zhang, Congcong; Chen, Xiang; Liu, Siyang; Huang, Tao; Yu, Aishui

    2018-03-01

    Although silicon is the most promising anode material for Li-ion batteries, large volume expansion during lithiation and delithiation is the main obstacle limiting the commercial application of silicon anodes. There are two ways to alleviate volume expansion and prevent further pulverization of a Si anode: fabrication of a rational nanostructure possessing void spaces and uniform distribution of the conducting sites, without a good balance effect in mitigating the limiting factors and enhancing battery performance. In this paper, we propose a novel nanostructure - a carbon-shell-constrained Si cluster (Si/C shell) with both adequate void space and good distribution of electrical contact sites to guarantee homogeneous lithiation in the initial cycle. Benefiting from the ability to maintain electrical conductivity of the outer carbon shell, even after cluster fragmentation, the Si/C shell synthesized from low-cost commercial Al-Si alloy spheres can deliver 0.03% capacity loss from 100th to 1000th cycles at a current density of 1 A g-1. The Si/C shell sample with the dual functional structure mentioned above can also maintain its own nanostructure during cycling and deliver excellent rate performance. It is a concise and scalable strategy which can simplify the preparation of other alloy anode materials for Li-ion batteries.

  7. Factors that influence m-health implementations in resource constrained areas in the developing world

    CSIR Research Space (South Africa)

    Ouma, S

    2011-11-01

    Full Text Available the primary healthcare levels in order to improve the delivery of services within various communities. They further provide the issues that the mhealth service providers should take into account when providing m-health solutions to the resource constrained...

  8. The decadal state of the terrestrial carbon cycle

    NARCIS (Netherlands)

    Velde, van der I.R.; Bloom, J.; Exbrayat, J.; Feng, L.; Williams, M.

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  9. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world.

    Science.gov (United States)

    Melillo, J M; Frey, S D; DeAngelis, K M; Werner, W J; Bernard, M J; Bowles, F P; Pold, G; Knorr, M A; Grandy, A S

    2017-10-06

    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. SU-F-T-134: Can We Use the Same Dose Constrains Learnt From Photon World to Plan Proton for Lung Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Z [Rutgers Cancer Institute of New Jersey, New Brunswick, NJ (United States); Zou, J; Yue, N [Rutgers University, New Brunswick, NJ (United States); Zhang, M [Rutgers Cancer Institute of New Jersey, Rutgers The State University of New, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: To evaluate if the same DVH constrains used in photon plans can be safely used to plan proton therapy for lung cancer. Since protons and photons have different dose deposition patterns, the hypothesis is following DVH constrains derived from photon world is not safe for proton. Methods: We retrospectively evaluated plans for 11 lung cancer patients. Each patient was planned with photon and proton following the same dose constrains. Dose statistics on PTV, normal lung, heart and esophagus were extracted for comparison. gEUD for normal lung was calculated and compared between proton and photon plans. We calculated series of gEUDs for each plan by varying the parameter “a” in gEUD formula from 0.1 to 3, covering the whole confidence interval. Results: For all patients, proton plans yield similar PTV coverage and lower dose to heart and esophagus than photon plans. Normal lung V5 was 32.3 % on average in proton plans than 55.4 % in photon. Normal lung gEUD monotonically increased with increasing “a” for all proton and photon plans. For a given patient, the gEUD-proton(a) had a steeper slope than gEUD-photon(a). The two curves crossed for 8 out of 11 patients when “a” = [0.1, 3]. a-crossing ranged from 0.8 to 2.44 with an average of 1.15. For a

  11. SU-F-T-134: Can We Use the Same Dose Constrains Learnt From Photon World to Plan Proton for Lung Cancer?

    International Nuclear Information System (INIS)

    Xiao, Z; Zou, J; Yue, N; Zhang, M

    2016-01-01

    Purpose: To evaluate if the same DVH constrains used in photon plans can be safely used to plan proton therapy for lung cancer. Since protons and photons have different dose deposition patterns, the hypothesis is following DVH constrains derived from photon world is not safe for proton. Methods: We retrospectively evaluated plans for 11 lung cancer patients. Each patient was planned with photon and proton following the same dose constrains. Dose statistics on PTV, normal lung, heart and esophagus were extracted for comparison. gEUD for normal lung was calculated and compared between proton and photon plans. We calculated series of gEUDs for each plan by varying the parameter “a” in gEUD formula from 0.1 to 3, covering the whole confidence interval. Results: For all patients, proton plans yield similar PTV coverage and lower dose to heart and esophagus than photon plans. Normal lung V5 was 32.3 % on average in proton plans than 55.4 % in photon. Normal lung gEUD monotonically increased with increasing “a” for all proton and photon plans. For a given patient, the gEUD-proton(a) had a steeper slope than gEUD-photon(a). The two curves crossed for 8 out of 11 patients when “a” = [0.1, 3]. a-crossing ranged from 0.8 to 2.44 with an average of 1.15. For a< a-crossing, gEUD-proton was less than gEUD-photon and vice versa. Conclusion: The current clinical guideline is the lower normal lung V5 would associated with less complications. However, proton plans with a lower normal lung V5 could yield a higher gEUD than photon if the real “a” is larger than a-crossing. Since a-crossing was within the possible range of real “a”, simply following the normal lung V5 guideline for proton plan would not be a good practice. More comprehensive methods should be developed to evaluate the proton plan.

  12. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  13. Scenarios for transition towards a low-carbon world in 2050: What's at stake for heavy industries?

    International Nuclear Information System (INIS)

    2008-11-01

    Launched in 2004, the study Scenarios for transition towards a low-carbon world in 2050: What's at stake for heavy industries explores how major industrial sectors will be impacted by a carbon constraint stabilizing atmospheric CO 2 concentration at 450 ppm. By means of an innovative hybrid modelling platform and ongoing dialogue between researchers and industrialists, the study produces conclusions concerning both general climate policy as well as the economic response of industrial sectors - specifically of the steel, aluminium, cement, and sheet glass sectors, as well as of the energy sector. (authors)

  14. Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations

    Science.gov (United States)

    Li, Wei; Ciais, Philippe; Wang, Yilong; Yin, Yi; Peng, Shushi; Zhu, Zaichun; Bastos, Ana; Yue, Chao; Ballantyne, Ashley P.; Broquet, Grégoire; Canadell, Josep G.; Cescatti, Alessandro; Chen, Chi; Cooper, Leila; Friedlingstein, Pierre; Le Quéré, Corinne; Myneni, Ranga B.; Piao, Shilong

    2018-01-01

    To assess global carbon cycle variability, we decompose the net land carbon sink into the sum of gross primary productivity (GPP), terrestrial ecosystem respiration (TER), and fire emissions and apply a Bayesian framework to constrain these fluxes between 1980 and 2014. The constrained GPP and TER fluxes show an increasing trend of only half of the prior trend simulated by models. From the optimization, we infer that TER increased in parallel with GPP from 1980 to 1990, but then stalled during the cooler periods, in 1990-1994 coincident with the Pinatubo eruption, and during the recent warming hiatus period. After each of these TER stalling periods, TER is found to increase faster than GPP, explaining a relative reduction of the net land sink. These results shed light on decadal variations of GPP and TER and suggest that they exhibit different responses to temperature anomalies over the last 35 years.

  15. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback: The PCN Incubation-Panarctic Thermal (PInc-PanTher) Scaling Approach

    Science.gov (United States)

    Koven, C. D.; Schuur, E.; Schaedel, C.; Bohn, T. J.; Burke, E.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Jafarov, E. E.; Krinner, G.; Kuhry, P.; Lawrence, D. M.; MacDougall, A.; Marchenko, S. S.; McGuire, A. D.; Natali, S.; Nicolsky, D.; Olefeldt, D.; Peng, S.; Romanovsky, V. E.; Schaefer, K. M.; Strauss, J.; Treat, C. C.; Turetsky, M. R.

    2015-12-01

    We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a 3-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100.

  16. The global carbon cycle

    International Nuclear Information System (INIS)

    Maier-Reimer, E.

    1991-01-01

    Basic concepts of the global carbon cycle on earth are described; by careful analyses of isotopic ratios, emission history and oceanic ventilation rates are derived, which provide crucial tests for constraining and calibrating models. Effects of deforestation, fertilizing, fossil fuel burning, soil erosion, etc. are quantified and compared, and the oceanic carbon process is evaluated. Oceanic and terrestrial biosphere modifications are discussed and a carbon cycle model is proposed

  17. Diffusion-type model of the global carbon cycle for the estimation of dose to the world population from releases of carbon-14 to the atmosphere

    International Nuclear Information System (INIS)

    Killough, G.G.

    1977-05-01

    A nonlinear dynamic model of the exchange of carbon among the atmosphere, terrestrial biosphere, and ocean is described and applied to estimating the radiation dose to the world's population from the release of 14 C to the atmosphere from the nuclear power industry. A computer implementation of the model, written in the IBM Continuous System Modeling Program III (CSMP III) simulation language, is presented. The model treats the ocean as a diffusive medium with respect to vertical transport of carbon, and the nonlinear variation of CO 2 partial pressure with the total inorganic carbon concentration in surface waters is taken into account in calculating the transfer rate from ocean to atmosphere. Transfers between the atmosphere and terrestrial biosphere are represented by nonlinear equations which consider CO 2 fertilization and impose a constraint on the ultimate total carbon mass in the biosphere

  18. Trading scheme 'key' to low-carbon economy

    International Nuclear Information System (INIS)

    2006-01-01

    Federal Opposition Leader Kim Beazley has emphasised the importance of getting the economics of environmental policy right by introducing market-based mechanisms for pricing emissions. 'Market-based mechanisms such as emissions trading are central to moving to a low-carbon economy,' he said in his latest blueprint. 'A functioning carbon market will deliver a price signal, so there is a long-term incentive to cut emissions further, and a mechanism for trading, so that energy can be allocated efficiently in the economy. It will also encourage greater private investment in clean energy technology.' Mr Beazley said the new market would also reward the many companies who were already adapting to a carbon-constrained world. 'This includes those global companies in Australia that already operate in emissions trading markets overseas. An effective price signal for carbon in Australia will allow these companies to benefit directly from their good corporate citizenship and long-term vision.' Mr Beazley has committed a federal Labor government to work with state governments and business to establish the national trading scheme. He also criticised the Federal Government for refusing to ratify the Kyoto Protocol, which he argued excluded Australian businesses from participating in the emerging global carbon trade. This made it harder for businesses to break into the market for cleaner production technologies overseas. While again admitting Kyoto was not perfect, Mr Beazley said ratification would see Australia part of what would potentially be 'the biggest market in the world by 2020'. He said the recent Asia Pacific Climate Change Pact was a positive step but was not an alternative to Kyoto. 'Above all, it has no economic mechanisms to drive further change. 'Without ratifying Kyoto some of our businesses are missing out on effective participation in international schemes that offer substantial financial rewards for greenhouse gas reductions. 'By ratifying Kyoto and adopting

  19. Constraining the Q10 of respiration in water-limited environments

    Science.gov (United States)

    Collins, A.; Ryan, M. G.; Xu, C.; Grossiord, C.; Michaletz, S. T.; McDowell, N. G.

    2016-12-01

    If the current rate of greenhouse emissions remains constant over the next few decades, projections of climate change forecast increased atmospheric temperatures by a least 1.1°C by the end of the century. Warmer temperatures are expected to largely influence the exchange of energy, carbon and water between plants and the atmosphere. Several studies support that terrestrial ecosystems currently act as a major carbon sink, however warmer temperatures may amplify respiration processes and shift terrestrial ecosystems from a sink to a source of carbon in the future. Most Earth System Models incorporate the temperature dependence of plant respiration (Q10) to estimate and predict respiration processes and associated carbon fluxes. Using a temperature and precipitation manipulation experiment in natural conditions, we present evidence that this parameter is poorly constrained especially in water-limited environments. We discuss the utility of the Q10 framework and suggest improvements for this parameter along with trait-based approaches to better resolve models.

  20. Using the World Health Organization's 4S-Framework to Strengthen National Strategies, Policies and Services to Address Mental Health Problems in Adolescents in Resource-Constrained Settings

    Directory of Open Access Journals (Sweden)

    Cabral de Mello Meena

    2011-09-01

    Full Text Available Abstract Background Most adolescents live in resource-constrained countries and their mental health has been less well recognised than other aspects of their health. The World Health Organization's 4-S Framework provides a structure for national initiatives to improve adolescent health through: gathering and using strategic information; developing evidence-informed policies; scaling up provision and use of health services; and strengthening linkages with other government sectors. The aim of this paper is to discuss how the findings of a recent systematic review of mental health problems in adolescents in resource-constrained settings might be applied using the 4-S Framework. Method Analysis of the implications of the findings of a systematic search of the English-language literature for national strategies, policies, services and cross-sectoral linkages to improve the mental health of adolescents in resource-constrained settings. Results Data are available for only 33/112 [29%] resource-constrained countries, but in all where data are available, non-psychotic mental health problems in adolescents are identifiable, prevalent and associated with reduced quality of life, impaired participation and compromised development. In the absence of evidence about effective interventions in these settings expert opinion is that a broad public policy response which addresses direct strategies for prevention, early intervention and treatment; health service and health workforce requirements; social inclusion of marginalised groups of adolescents; and specific education is required. Specific endorsed strategies include public education, parent education, training for teachers and primary healthcare workers, psycho-educational curricula, identification through periodic screening of the most vulnerable and referral for care, and the availability of counsellors or other identified trained staff members in schools from whom adolescents can seek assistance for

  1. SusClime. A simulation game on population and development in a resource- and climate-constrained two-country world

    International Nuclear Information System (INIS)

    De Vries, B.

    1995-10-01

    In this report we introduce simulation-gaming as a tool to explore long-term futures. The model world of SusClime is a simple world with two capital stocks, one producing goods ('goods producing capital') and one providing services including consumption ('population capital') for the people. The necessary energy is delivered by two capital stocks, one based on oil ('carbon-energy') and one on renewable energy ('alternative'). Investments in energy efficiency bring down the required energy. The important decisions in the game are about investments, that is, the allocation of the goods produced among these five capital stocks. Moreover, the two countries can trade oil and make loans. The major challenge is to go through the demographic transition by increasing the welfare per person and to make the transition from oil to renewable energy. The latter is needed to avoid negative impacts on the economy due to rising CO 2 -concentrations. After the description of the game, some suggestions for systematic experiments are made as a way to gain a better understanding about how cultural bias affects people's perception of and behaviour with regard to aspects of the quest for sustainable development. 10 figs., 2 tabs., 36 refs., 6 appendices

  2. A fusion of top-down and bottom-up modeling techniques to constrain regional scale carbon budgets

    Science.gov (United States)

    Goeckede, M.; Turner, D. P.; Michalak, A. M.; Vickers, D.; Law, B. E.

    2009-12-01

    The effort to constrain regional scale carbon budgets benefits from assimilating as many high quality data sources as possible in order to reduce uncertainties. Two of the most common approaches used in this field, bottom-up and top-down techniques, both have their strengths and weaknesses, and partly build on very different sources of information to train, drive, and validate the models. Within the context of the ORCA2 project, we follow both bottom-up and top-down modeling strategies with the ultimate objective of reconciling their surface flux estimates. The ORCA2 top-down component builds on a coupled WRF-STILT transport module that resolves the footprint function of a CO2 concentration measurement in high temporal and spatial resolution. Datasets involved in the current setup comprise GDAS meteorology, remote sensing products, VULCAN fossil fuel inventories, boundary conditions from CarbonTracker, and high-accuracy time series of atmospheric CO2 concentrations. Surface fluxes of CO2 are normally provided through a simple diagnostic model which is optimized against atmospheric observations. For the present study, we replaced the simple model with fluxes generated by an advanced bottom-up process model, Biome-BGC, which uses state-of-the-art algorithms to resolve plant-physiological processes, and 'grow' a biosphere based on biogeochemical conditions and climate history. This approach provides a more realistic description of biomass and nutrient pools than is the case for the simple model. The process model ingests various remote sensing data sources as well as high-resolution reanalysis meteorology, and can be trained against biometric inventories and eddy-covariance data. Linking the bottom-up flux fields to the atmospheric CO2 concentrations through the transport module allows evaluating the spatial representativeness of the BGC flux fields, and in that way assimilates more of the available information than either of the individual modeling techniques alone

  3. Gas turbine requirements for a carbon constrained environment

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.M.; Lacy, B.P.; Yilmaz, E.; (and others) [GE Energy, Schenectady, NY (United States)

    2006-07-01

    With carbon capture, the pre-combustion decarbonization of natural gas, or syngas derived from coal gasification results in gas turbines fuels that consist of 90% or higher hydrogen content. This paper discusses the challenge of low CO{sub 2} processes for advanced gas turbines with particular focus on high hydrogen combustion. 4 refs., 13 figs.

  4. Simulation and Optimization of One Live Pig Low-Carbon Industry Chain Using SD-RCCM

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2013-01-01

    Full Text Available The destruction of the natural environment has been drawing more and more attention. Developing low-carbon industry chains is an effective solution to the conflict between rapid economic growth and high CO2 emissions. Summarizing various traditional and new industry chain sustainable development, live pig industry was chosen as a typical industry chain to study low-carbon development using a system dynamics and random chance-constrained model (SD-RCCM. Leshan, a world natural and cultural heritage area in China, was selected as a typical city to analyze the low-carbon pig industry. Three different programs based on distribution ratios were selected to study this industry. The results showed that program 1, which considers both environmental and economic benefits, realizes sustainable development. In order to extend the pig industry chain and fully utilize pig ordure and other waste, introducing a Clean Development Mechanism (CDM and household biogas exploitation program is recommended.

  5. World nuclear performance report 2016. A new study by World Nuclear Association

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2016-08-15

    A larger number of nuclear power units are under construction than at any other time in the last 25 years, and with another ten new reactors coming online 2015 demonstrated improving new build performance all round. The existing global fleet, totally 439 by year-end, generated roughly 10 % of the world's electricity, making up around one-third of the world's low-carbon electricity supply. Nevertheless, there are challenges ahead for the global nuclear industry. The World Nuclear Association's vision for the future global electricity system consists of a diverse mix of low-carbon technologies - where renewables, nuclear and a fossil fuels work together in harmony to ensure a reliable, affordable and clean energy supply.

  6. World nuclear performance report 2016. A new study by World Nuclear Association

    International Nuclear Information System (INIS)

    Cobb, Jonathan

    2016-01-01

    A larger number of nuclear power units are under construction than at any other time in the last 25 years, and with another ten new reactors coming online 2015 demonstrated improving new build performance all round. The existing global fleet, totally 439 by year-end, generated roughly 10 % of the world's electricity, making up around one-third of the world's low-carbon electricity supply. Nevertheless, there are challenges ahead for the global nuclear industry. The World Nuclear Association's vision for the future global electricity system consists of a diverse mix of low-carbon technologies - where renewables, nuclear and a fossil fuels work together in harmony to ensure a reliable, affordable and clean energy supply.

  7. The convenient truth LPG: clean energy for a low carbon world

    International Nuclear Information System (INIS)

    Rolland, M.

    2008-01-01

    deforestation thus preserving the trees needed to maintain a global climatic equilibrium and combat climate change. When implementing climate change policies, every ton of GHG reduction helps, especially in the context of emissions trading. LP Gas offers a tremendous opportunity for a range of industries to meet or exceed their legislative requirements on GHG emissions, and it is widely available today. Policy-makers should consider LP gas when seeking a switch from business-as-usual energy solutions. The European Union (EU) is taking a world leadership towards sustainable (World Energy Technology Outlook), a 'Carbon Constraint Case' can lead to a future win-win solution: a strong reduction of CO 2 emissions and the emergence of new and clean energy technologies. The way towards a post-carbon society is challenging. Technological developments are necessary but not sufficient. Socio-economic actions, market instruments and land use measures should also help to make the difference. (author)

  8. Biological Hydrogen Carriers: Harnessing Fossil Fuels in a Carbon-Constrained World

    Directory of Open Access Journals (Sweden)

    Mark T. Holtzapple

    2009-05-01

    Full Text Available Due to their widespread availability, the use of lignocellulosic resources as feedstocks for fuels and chemicals is very promising. To make this a practical reality, 18 years of research at Texas A&M University have resulted in the development of a novel process known as MixAlco.TM This article compares this process with other technologies and provides some process details. At the end, a brief economic analysis is presented. / Debido a una amplia disponibilidad, el uso de recursos lignocelulósicos como materia prima para producir combustibles y otros productos químicos es muy prometedor. Para hacer de esto una realidad, 18 años de investigación en la Universidad de Texas A&M han resultado en el desarrollo de un proceso novedoso denominado MixAlco.TM Este artículo compara este proceso con otras tecnologías y provee algunos detalles del proceso. Por último, se presenta un breve análisis económico.

  9. Carbon footprint of premium quality export bananas: case study in Ecuador, the world's largest exporter.

    Science.gov (United States)

    Iriarte, Alfredo; Almeida, Maria Gabriela; Villalobos, Pablo

    2014-02-15

    Nowadays, the new international market demands challenge the food producing countries to include the measurement of the environmental impact generated along the production process for their products. In order to comply with the environmentally responsible market requests the measurement of the greenhouse gas emissions of Ecuadorian agricultural goods has been promoted employing the carbon footprint concept. Ecuador is the largest exporter of bananas in the world. Within this context, this study is a first assessment of the carbon footprint of the Ecuadorian premium export banana (Musa AAA) using a considerable amount of field data. The system boundaries considered from agricultural production to delivery in a European destination port. The data collected over three years permitted identifying the hot spot stages. For the calculation, the CCaLC V3.0 software developed by the University of Manchester is used. The carbon footprint of the Ecuadorian export banana ranged from 0.45 to 1.04 kg CO2-equivalent/kg banana depending on the international overseas transport employed. The principal contributors to the carbon footprint are the on farm production and overseas transport stages. Mitigation and reduction strategies were suggested for the main emission sources in order to achieve sustainable banana production. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    Science.gov (United States)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-09-01

    Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2-12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.

  11. Multi-Sensor Constrained Time Varying Emissions Estimation of Black Carbon: Attributing Urban and Fire Sources Globally

    Science.gov (United States)

    Cohen, J. B.

    2015-12-01

    The short lifetime and heterogeneous distribution of Black Carbon (BC) in the atmosphere leads to complex impacts on radiative forcing, climate, and health, and complicates analysis of its atmospheric processing and emissions. Two recent papers have estimated the global and regional emissions of BC using advanced statistical and computational methods. One used a Kalman Filter, including data from AERONET, NOAA, and other ground-based sources, to estimate global emissions of 17.8+/-5.6 Tg BC/year (with the increase attributable to East Asia, South Asia, Southeast Asia, and Eastern Europe - all regions which have had rapid urban, industrial, and economic expansion). The second additionally used remotely sensed measurements from MISR and a variance maximizing technique, uniquely quantifying fire and urban sources in Southeast Asia, as well as their large year-to-year variability over the past 12 years, leading to increases from 10% to 150%. These new emissions products, when run through our state-of-the art modelling system of chemistry, physics, transport, removal, radiation, and climate, match 140 ground stations and satellites better in both an absolute and a temporal sense. New work now further includes trace species measurements from OMI, which are used with the variance maximizing technique to constrain the types of emissions sources. Furthermore, land-use change and fire estimation products from MODIS are also included, which provide other constraints on the temporal and spatial nature of the variations of intermittent sources like fires or new permanent sources like expanded urbanization. This talk will introduce a new, top-down constrained, weekly varying BC emissions dataset, show that it produces a better fit with observations, and draw conclusions about the sources and impacts from urbanization one hand, and fires on another hand. Results specific to the Southeast and East Asia will demonstrate inter- and intra-annual variations, such as the function of

  12. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  13. How market environment may constrain global franchising in emerging markets

    OpenAIRE

    Baena Graciá, Verónica

    2011-01-01

    Although emerging markets are some of the fastest growing economies in the world and represent countries that are experiencing a substantial economic transformation, little is known about the factors influencing country selection for expansion in those markets. In an attempt to enhance the knowledge that managers and scholars have on franchising expansion, the present study examines how market conditions may constrain international diffusion of franchising in emerging markets. They are: i) ge...

  14. Fabrication of (PPC/NCC)/PVA composites with inner-outer double constrained structure and improved glass transition temperature.

    Science.gov (United States)

    Cui, Shaoying; Li, Li; Wang, Qi

    2018-07-01

    Improving glass transition temperature (T g ) and mechanical property of the environment-friendly poly(propylene carbonate) via intermacromolecular complexation through hydrogen bonding is attractive and of great importance. A novel and effective strategy to prepare (polypropylene carbonate/nanocrystalline cellulose)/polyvinyl alcohol ((PPC/NCC)/PVA) composites with inner-outer double constrained structure was reported in this work. Outside the PPC phase, PVA, as a strong skeleton at microscale, could constrain the movement of PPC molecular chains by forming hydrogen bonding with PPC at the interface of PPC and PVA phases; inside the PPC phase, the rod-like NCC could restrain the flexible molecular chains of PPC at nanoscale by forming multi-hydrogen bonding with PPC. Under the synergistic effect of this novel inner-outer double constrained structure, T g , mechanical properties and thermal stability of (PPC/NCC)/PVA composite were significantly increased, e.g. T g of the composite researched the maximum value of 49.6 °C, respectively 15.6 °C, 5.7 °C and 4.2 °C higher than that of PPC, PPC/NCC and PPC/PVA composite. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The origins and behaviour of carbon in a major semi-arid river, the Murray River, Australia, as constrained by carbon isotopes and hydrochemistry

    International Nuclear Information System (INIS)

    Cartwright, Ian

    2010-01-01

    Research highlights: → δ 13 C and concentrations of DIC in Murray River controlled by mineralisation of organic carbon and evasion. → Murray River is source of atmospheric CO 2 . → In-river processing of carbon results in difficulties in determining carbon sources. - Abstract: δ 13 C values of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate organic C (POC) together with δ 18 O and δ 2 H values of water, δ 34 S values of dissolved SO 4 , and major ion concentrations were measured in the Murray River and its tributaries between November 2005 and April 2007 to constrain the origins and behaviour of riverine C. δ 13 C DIC values in the Murray River vary between -9.5 and -4.7 per mille with a range of 13 C DIC values of the tributaries are -11.0 per mille to -5.1 per mille. DIC concentrations of the Murray River increase from ∼25 mg/L in the middle and upper reaches of the river to 45-55 mg/L in the lower reaches. However, the mass ratio of DIC as a proportion of the total dissolved solids (TDS) decreases from ∼0.6-0.7 in the headwaters to ∼0.2-0.3 in the lower reaches of the river, with similar downstream changes in DIC/Cl ratios. This precludes simple evaporative concentration of DIC and is interpreted as the river evading CO 2 ; this interpretation is consistent with pCO 2 values that are in the range 550-11,200 ppm volume (ppmv), which are far higher than those in equilibrium with the atmosphere (∼360 ppmv). The δ 13 C DIC values are similar to those that would be produced by the weathering of marine limestone (δ 13 C ∼ 0 per mille). However, the lack of marine limestones cropping out in the Murray-Darling Basin and the relatively uniform δ 13 C DIC values of the Murray River (even in upland reaches where the dominant rock types are metamorphosed silicates and granites) make this unlikely. Rather the high pCO 2 values and δ 13 C DIC values are best explained by a combination of mineralisation of low δ 13 C organic C

  16. Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city

    International Nuclear Information System (INIS)

    Zhang, Shaojun; Wu, Ye; Un, Puikei; Fu, Lixin; Hao, Jiming

    2016-01-01

    Modeling fuel consumption of light-duty passenger vehicles has created substantial concerns due to the uncertainty from real-world operating conditions. Macao is world-renowned for its tourism industry and high population density. An empirical model is developed to estimate real-world fuel consumption and carbon dioxide emissions for gasoline-powered light-duty passenger vehicles in Macao by considering local fleet configuration and operating conditions. Thanks to increasingly stringent fuel consumption limits in vehicle manufacturing countries, estimated type-approval fuel consumption for light-duty passenger vehicles in Macao by model year was reduced from 7.4 L/100 km in 1995 to 5.9 L/100 km in 2012, although a significant upsizing trend has considerably offset potential energy-saving benefit. However, lower driving speed and the air-conditioning usage tend to raise fleet-average fuel consumption and carbon dioxide emission factors, which are estimated to be 10.1 L/100 km and 240 g/km in 2010. Fleet-total fuel consumption and carbon dioxide emissions are modeled through registered vehicle population-based and link-level traffic demand approaches and the results satisfactorily coincide with the historical record of fuel sales in Macao. Temporal and spatial variations in fuel consumption and carbon dioxide emissions from light-duty passenger vehicles further highlight the importance of effective traffic management in congested areas of Macao. - Highlights: • A fuel consumption model is developed for Macao's light-duty passenger cars. • Increased vehicle size partially offset energy benefit from tightened fuel consumption standard. • Lower speed and use of air-conditioning greatly increase fuel use of Macao light-duty passenger cars. • A high resolution inventory of fuel use and carbon dioxide emissions is built with link-level traffic data. • Policy suggestions are provided to mitigate fuel use in a traffic populated city.

  17. World commitment to reduce carbon dioxide emissions

    International Nuclear Information System (INIS)

    Burge, R.

    1991-01-01

    A meeting of energy experts in Toronto, sponsored by the Canadian World Energy Council (CANWEC), to examine the implications of sustainable development for the energy industry, is reported. Canada, according to the World Resources Institute, ranks second only to the Arab oil producers as the world's worst energy hog. Although it contributes only 2% of total world greenhouse gases, its per capita emissions rank higher than even the United States, and this despite the fact that over 75% of its electrical energy is produced by hydro and nuclear power. Its intentions to stabilize CO 2 emissions by 2000 have already been signalled. Although arguments on the supply side strategies of clean coal and nuclear power were presented at the CANWEC meeting, the accent was firmly on demand side management, through energy conservation and efficiency, to meet the challenge of global warming. (author)

  18. An Equilibrium Chance-Constrained Multiobjective Programming Model with Birandom Parameters and Its Application to Inventory Problem

    Directory of Open Access Journals (Sweden)

    Zhimiao Tao

    2013-01-01

    Full Text Available An equilibrium chance-constrained multiobjective programming model with birandom parameters is proposed. A type of linear model is converted into its crisp equivalent model. Then a birandom simulation technique is developed to tackle the general birandom objective functions and birandom constraints. By embedding the birandom simulation technique, a modified genetic algorithm is designed to solve the equilibrium chance-constrained multiobjective programming model. We apply the proposed model and algorithm to a real-world inventory problem and show the effectiveness of the model and the solution method.

  19. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    Science.gov (United States)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-12-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have

  20. The Global Turnover Time Distribution of Soil Carbon Derived from a Meta-analysis of Radiocarbon Profiles

    Science.gov (United States)

    He, Y.; Randerson, J. T.; Allison, S. D.; Torn, M. S.; Harden, J. W.; Smith, L. J.; van der Voort, T.; Trumbore, S.

    2015-12-01

    Soil is the largest terrestrial carbon reservoir and may influence the sign and magnitude of carbon cycle feedbacks under climate change. Soil carbon turnover times provide information about the sensitivity of carbon pools to changes in inputs and warming. The spatial and vertical distribution of soil carbon turnover times emerges from the interplay between climate, vegetation, and soil properties. Radiocarbon levels of soil organic matter can be used to estimate soil carbon turnover using models that take into account radioactive decay over centuries to millennia and inputs of 14C from atmospheric weapons testing ("bomb carbon") during the second half of the 20th century. By synthesizing more than 200 soil radiocarbon profiles from all major biomes and soil orders, we 1) explored the major controlling factors for soil carbon turnover times of surface and deeper soil layers; 2) developed predictive models (tree-based regression, support vector regression and linear regression models) of Δ14C that depends on depth, climate, vegetation, and soil types; and 3) extrapolated the predictive model to produce the first global distribution of soil carbon turnover times to the depth of 1m. Preliminary results indicated that climate and depth were primary controls of the vertical distribution of Δ14C, contributing to about 70% of the variability in our model. Vegetation and soil order exerted similar level of controls (about 15% each). The predictive model performed reasonably well with an R2 of 0.81 and RMSE (root-mean-squared error) of about 50‰ for topsoil and 100‰ for subsoil, as estimated using cross-validation. Extrapolation of the predictive model to the globe in combination with existing soil carbon information (e.g., Harmonized World Soil Database) indicated that more than half of the global total soil carbon in the top 1m had a turnover time of less than 500 years. Subsoils (30-100cm) had millennium-scale turnover times, with the majority (70%) turning over

  1. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data

    Directory of Open Access Journals (Sweden)

    Sandra Eckert

    2012-03-01

    Full Text Available Accurate estimation of aboveground biomass and carbon stock has gained importance in the context of the United Nations Framework Convention on Climate Change (UNFCCC and the Kyoto Protocol. In order to develop improved forest stratum–specific aboveground biomass and carbon estimation models for humid rainforest in northeast Madagascar, this study analyzed texture measures derived from WorldView-2 satellite data. A forest inventory was conducted to develop stratum-specific allometric equations for dry biomass. On this basis, carbon was calculated by applying a conversion factor. After satellite data preprocessing, vegetation indices, principal components, and texture measures were calculated. The strength of their relationships with the stratum-specific plot data was analyzed using Pearson’s correlation. Biomass and carbon estimation models were developed by performing stepwise multiple linear regression. Pearson’s correlation coefficients revealed that (a texture measures correlated more with biomass and carbon than spectral parameters, and (b correlations were stronger for degraded forest than for non-degraded forest. For degraded forest, the texture measures of Correlation, Angular Second Moment, and Contrast, derived from the red band, contributed to the best estimation model, which explained 84% of the variability in the field data (relative RMSE = 6.8%. For non-degraded forest, the vegetation index EVI and the texture measures of Variance, Mean, and Correlation, derived from the newly introduced coastal blue band, both NIR bands, and the red band, contributed to the best model, which explained 81% of the variability in the field data (relative RMSE = 11.8%. These results indicate that estimation of tropical rainforest biomass/carbon, based on very high resolution satellite data, can be improved by (a developing and applying forest stratum–specific models, and (b including textural information in addition to spectral information.

  2. EU Energy Policy in a Supply-constrained World

    International Nuclear Information System (INIS)

    De Jong, J.; Van der Linde, C.

    2008-10-01

    evaluate its robustness against the background of the different energy landscapes in the world. Striking a balance between the priorities of energy policy is, however, difficult in an EU where a wide diversity of energy mixes and import dependencies prevails, and where foreign policy and security approaches are even more diverse. The current weaknesses of the EU energy policy, which is in essence comprised of an internal market and competition policy, a nascent sustainable energy policy and an absent security of supply policy will either be addressed under the mounting pressures of the outside world or will derail any hopes of a common energy policy. The main challenges to this common policy are thus political, both internally and externally.

  3. The World Bank and climate change

    International Nuclear Information System (INIS)

    Shih, W.-C.

    2000-01-01

    The reduction of greenhouse gas emissions is inextricably linked with economic and development policies. This raises the question, to what extent do the commitments to reduce carbon dioxide emissions under the Climate Change Convention affect the practices and policies of the World Bank? After briefly describing the interaction between climate change and economic development, as well as the respective instruments of the Climate Change Treaty and the World Bank, this paper identifies several windows through which the obligations set out by the Climate Change treaty affect the World Bank. These include the Global Environmentally Facility, the Operational Policies adopted by the Executive Directors of the World Bank, specific loan structures and conditions as well as the recent Prototype Carbon Fund. (Author)

  4. On the Ability of Space- Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle

    Science.gov (United States)

    Crowell, Sean M. R.; Kawa, S. Randolph; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.

    2018-01-01

    Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT (Greenhouse Gases Observing Satellite) and OCO-2 (Orbiting Carbon Observatory 2), however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint. Plain Language Summary: Active and passive remote sensors show the potential to provide unprecedented information on the carbon cycle. With the all-season sampling, active remote sensors are more capable of constraining high-latitude emissions. The reduced sensitivity to cloud and aerosol also makes active sensors more capable of providing information in cloudy and polluted scenes with sufficient accuracy. These experiments account for errors that are fundamental to the top-down approach for constraining emissions, and even including these sources of error, we show that satellite remote sensors are critical for understanding the carbon cycle.

  5. Improving carbon model phenology using data assimilation

    Science.gov (United States)

    Exrayat, Jean-François; Smallman, T. Luke; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Carbon cycle dynamics is significantly impacted by ecosystem phenology, leading to substantial seasonal and inter-annual variation in the global carbon balance. Representing inter-annual variability is key for predicting the response of the terrestrial ecosystem to climate change and disturbance. Existing terrestrial ecosystem models (TEMs) often struggle to accurately simulate observed inter-annual variability. TEMs often use different phenological models based on plant functional type (PFT) assumptions. Moreover, due to a high level of computational overhead in TEMs they are unable to take advantage of globally available datasets to calibrate their models. Here we describe the novel CARbon DAta MOdel fraMework (CARDAMOM) for data assimilation. CARDAMOM is used to calibrate the Data Assimilation Linked Ecosystem Carbon version 2 (DALEC2) model using Bayes' Theorem within a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC). CARDAMOM provides a framework which combines knowledge from observations, such as remotely sensed LAI, and heuristic information in the form of Ecological and Dynamical Constraints (EDCs). The EDCs are representative of real world processes and constrain parameter interdependencies and constrain carbon dynamics. We used CARDAMOM to bring together globally spanning datasets of LAI and the DALEC2 and DALEC2-GSI models. These analyses allow us to investigate the sensitivity ecosystem processes to the representation of phenology. DALEC2 uses an analytically solved model of phenology which is invariant between years. In contrast DALEC2-GSI uses a growing season index (GSI) calculated as a function of temperature, vapour pressure deficit (VPD) and photoperiod to calculate bud-burst and leaf senescence, allowing the model to simulate inter-annual variability in response to climate. Neither model makes any PFT assumptions about the phenological controls of a given ecosystem, allowing the data alone to determine the impact of the meteorological

  6. Game theoretic analysis for carbon emission permits trading among multiple world regions with an optimizing global energy model; Saitekikagata sekai energy model ni motozuku tachiikikan CO2 haishutsu kyokasho torihiki no game ronteki bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, K.; Matsunaga, A.; Fujii, Y. [Yokohama National University, Yokohama (Japan); Yamaji, K. [The University of Tokyo, Tokyo (Japan)

    1998-10-01

    Carbon emissions which would cause global warming were agreed to be constrained at COP3 in Kyoto. In addition, carton emission permits trading was also approved to be introduced. The emission permits trading is expected to achieve efficient carbon emission reduction, equalizing the marginal costs of the emission reduction for the participating countries. In other words, the permits trading allows participants to reduce emissions where it is least expensive to do so. However, the inadequate introduction of the trading systems may impose unfairly greater burden on some countries, and therefore careful evaluation of the system would be indispensable for its implementation. In this paper, we attempt to analyze the emission permits trading. using the theory of cooperative games with a global energy model of optimization type. We assumed that seven world regions as players participate the permits trading system under the condition of the emission reduction target presented at COP3 and so on, and show the nucleolus of the grand coalition games, and the computational results of primary energy supplies and CO2 shadow prices. The insights of this research indicate that in order to stabilize the grand coalition, a noticeable amount of additional transfer of money would be needed besides the payments associated with the emission permits trading. 10 refs., 7 figs., 5 tabs.

  7. Sweden's Leadership in a Climate Constrained World. An analysis for Sweden of the Greenhouse Development Rights framework

    Energy Technology Data Exchange (ETDEWEB)

    Kartha, Sivan; Baer, Paul; Athanasiou, Tom; Kemp-Benedict, Eric

    2008-10-15

    This report presents an analysis of the Greenhouse Development Rights framework applied to the case of Sweden. Its objective is to provide useful quantitative guidance on Sweden's role as a leader in our climate constrained world. It presents guidance that is rigorous from the standpoint of climate science and framed in the context of a right to development for the world's poor. This analysis fully accounts for Sweden's true responsibility, by looking beyond territorial emissions alone, and reckoning emissions in terms of Sweden's net 'carbon footprint.' Accounting for carbon embedded in imports, exports and international transport reveals that Sweden's responsibility is 17% larger than would be inferred by considering Sweden's territorial emissions alone. Sweden will naturally have significant obligations under any burden-sharing regime that is based on capacity and responsibility, and only more so under a regime that honors a right to development. Under the GDR framework, our indicative quantification suggests that Sweden's share of responsibility and capacity, and hence its obligation under a politically viable climate regime, will be approximately 0.51% of the global total in 2010. This can be compared to the US's 33%, the EU's 26%, Japan's 7.8%, China's 5.5%, and India's 0.5%. Sweden's 0.51% share of the global total is thus not large in absolute terms, though it is rather large relative to Sweden's small size (0.14% of the global population). These national shares shift over time, as countries' relative proportion of income and emissions change. In light of the emergence of rapidly growing developing country economies, Sweden's share of the global total obligation is projected to decline to 0.43% by 2020, and to 0.35% by 2030. This quantification of Sweden's obligation is useful in two complementary ways. First, if the total global costs of an emergency climate

  8. Assessing the value of wind generation in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2013-01-01

    This paper employs a novel Monte-Carlo based generation portfolio assessment tool to explore the implications of increasing wind penetration and carbon prices within future electricity generation portfolios under considerable uncertainty. This tool combines optimal generation mix techniques with Monte Carlo simulation and portfolio analysis methods to determine expected overall generation costs, associated cost uncertainty and expected CO 2 emissions for different possible generation portfolios. A case study of an electricity industry with coal, Combined Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines (OCGT) and wind generation options that faces uncertain future fossil-fuel prices, carbon pricing, electricity demand and plant construction costs is presented to illustrate some of the key issues associated with growing wind penetrations. The case study uses half-hourly demand and wind generation data from South Eastern Australia, and regional estimates of new-build plant costs and characteristics. Results suggest that although wind generation generally increases overall industry costs, it reduces associated cost uncertainties and CO 2 emissions. However, there are some cases in which wind generation can reduce the overall costs of generation portfolios. The extent to which wind penetration affects industry expected costs and uncertainties depends on the level of carbon price and the conventional technology mix in the portfolios. - Highlights: ► A probabilistic portfolio analysis tool to assess generation portfolios with wind power. ► Explore the impacts of wind penetrations and carbon prices under uncertainties. ► Wind generation increases overall portfolio costs but reduces cost risks and emissions. ► The value of wind power depends on the carbon price and the technology mix. ► Complex interactions between wind penetration level and carbon pricing.

  9. The origins and behaviour of carbon in a major semi-arid river, the Murray River, Australia, as constrained by carbon isotopes and hydrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Ian, E-mail: ian.cartwright@monash.edu [School of Geosciences, Monash University, Clayton, Vic. 3800 (Australia)] [National Centre for Groundwater Research and Training, Flinders University, Adelaide SA 5001 (Australia)

    2010-11-15

    Research highlights: {yields} {delta}{sup 13}C and concentrations of DIC in Murray River controlled by mineralisation of organic carbon and evasion. {yields} Murray River is source of atmospheric CO{sub 2}. {yields} In-river processing of carbon results in difficulties in determining carbon sources. - Abstract: {delta}{sup 13}C values of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate organic C (POC) together with {delta}{sup 18}O and {delta}{sup 2}H values of water, {delta}{sup 34}S values of dissolved SO{sub 4}, and major ion concentrations were measured in the Murray River and its tributaries between November 2005 and April 2007 to constrain the origins and behaviour of riverine C. {delta}{sup 13}C{sub DIC} values in the Murray River vary between -9.5 and -4.7 per mille with a range of <3 per mille within any sampling round. {delta}{sup 13}C{sub DIC} values of the tributaries are -11.0 per mille to -5.1 per mille. DIC concentrations of the Murray River increase from {approx}25 mg/L in the middle and upper reaches of the river to 45-55 mg/L in the lower reaches. However, the mass ratio of DIC as a proportion of the total dissolved solids (TDS) decreases from {approx}0.6-0.7 in the headwaters to {approx}0.2-0.3 in the lower reaches of the river, with similar downstream changes in DIC/Cl ratios. This precludes simple evaporative concentration of DIC and is interpreted as the river evading CO{sub 2}; this interpretation is consistent with pCO{sub 2} values that are in the range 550-11,200 ppm volume (ppmv), which are far higher than those in equilibrium with the atmosphere ({approx}360 ppmv). The {delta}{sup 13}C{sub DIC} values are similar to those that would be produced by the weathering of marine limestone ({delta}{sup 13}C {approx} 0 per mille). However, the lack of marine limestones cropping out in the Murray-Darling Basin and the relatively uniform {delta}{sup 13}C{sub DIC} values of the Murray River (even in upland reaches where the

  10. Constraining estimates of methane emissions from Arctic permafrost regions with CARVE

    Science.gov (United States)

    Chang, R. Y.; Karion, A.; Sweeney, C.; Henderson, J.; Mountain, M.; Eluszkiewicz, J.; Luus, K. A.; Lin, J. C.; Dinardo, S.; Miller, C. E.; Wofsy, S. C.

    2013-12-01

    Permafrost in the Arctic contains large carbon pools that are currently non-labile, but can be released to the atmosphere as polar regions warm. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents in-situ measurements of methane made on board an aircraft during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), which sampled over the permafrost regions of Alaska. Using measurements from May to September 2012, seasonal emission rate estimates of methane from tundra are constrained using the Stochastic Time-Inverted Lagrangian Transport model, a Lagrangian particle dispersion model driven by custom polar-WRF fields. Preliminary results suggest that methane emission rates have not greatly increased since the Arctic Boundary Layer Experiment conducted in southwest Alaska in 1988.

  11. The economic case for low-carbon development in rapidly growing developing world cities: A case study of Palembang, Indonesia

    International Nuclear Information System (INIS)

    Colenbrander, Sarah; Gouldson, Andy; Sudmant, Andrew Heshedahl; Papargyropoulou, Effie

    2015-01-01

    Where costs or risks are higher, evidence is lacking or supporting institutions are less developed, policymakers can struggle to make the case for low-carbon investment. This is especially the case in developing world cities where decision-makers struggle to keep up with the pace and scale of change. Focusing on Palembang in Indonesia, this paper considers the economic case for proactive investment in low-carbon development. We find that a rapidly growing industrial city in a developing country can reduce emissions by 24.1% in 2025, relative to business as usual levels, with investments of USD405.6 million that would reduce energy expenditure in the city by USD436.8 million. Emissions from the regional grid could be reduced by 12.2% in 2025, relative to business as usual trends, with investments of USD2.9 billion that would generate annual savings of USD175 million. These estimates understate the savings from reduced expenditure on energy subsidies and energy infrastructure. The compelling economic case for mainstreaming climate mitigation in this developing country city suggests that the constraints on climate action can be political and institutional rather than economic. There is therefore a need for more effective energy governance to drive the transition to a low-carbon economy. - Highlights: • We evaluate the economic case for low carbon investment in a developing world city. • Cost-effective measures could reduce emissions by 24.1% relative to BAU levels. • These pay for themselves in <1 year and generate savings throughout their lifetime. • Further savings come from reduced expenditure on energy infrastructure, subsidies. • Limitations on climate action seem to be political/institutional – not economic

  12. Deciphering ocean carbon in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Mary Ann; Kujawinski, Elizabeth B.; Stubbins, Aron; Fatland, Rob; Aluwihare, Lihini I.; Buchan, Alison; Crump, Byron C.; Dorrestein, Pieter C.; Dyhrman, Sonya T.; Hess, Nancy J.; Howe, Bill; Longnecker, Krista; Medeiros, Patricia M.; Niggemann, Jutta; Obernosterer, Ingrid; Repeta, Daniel J.; Waldbauer, Jacob R.

    2016-03-07

    Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. The cycling of DOM over short and long time scales has profound impacts on the quantity of carbon sequestered in the oceans and the foundations of the food webs that support ocean life. At the heart of this cycle lie molecular-level relationships between the individual molecules in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have defied clear definition and study because both DOM and microbial communities consist of many thousands of individual components. Emerging tools in analytical chemistry, microbiology and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions that are being addressed using this new toolkit and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.

  13. The economic case for low carbon waste management in rapidly growing cities in the developing world: The case of Palembang, Indonesia.

    Science.gov (United States)

    Papargyropoulou, Effie; Colenbrander, Sarah; Sudmant, Andrew Heshedahl; Gouldson, Andy; Tin, Lee Chew

    2015-11-01

    The provision of appropriate waste management is not only an indicator of development but also of broader sustainability. This is particularly relevant to expanding cities in developing countries faced with rising waste generation and associated environmental health problems. Despite these urgent issues, city authorities often lack the evidence required to make well-informed decisions. This study evaluates the carbon and economic performance of low-carbon measures in the waste sector at a city level, within the context of a developing country. Palembang in Indonesia is used as a case of a medium-sized city in a newly industrialized country, with relevance to other similar cities in the developing world. Evidence suggests that the waste sector can achieve substantial carbon emission reductions, and become a carbon sink, in a cost effective way. Hence there is an economic case for a low carbon development path for Palembang, and possibly for other cities in developing and developed countries facing similar challenges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Constrained evolution in numerical relativity

    Science.gov (United States)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  15. Ocean acidification-induced food quality deterioration constrains trophic transfer.

    Directory of Open Access Journals (Sweden)

    Dennis Rossoll

    Full Text Available Our present understanding of ocean acidification (OA impacts on marine organisms caused by rapidly rising atmospheric carbon dioxide (CO(2 concentration is almost entirely limited to single species responses. OA consequences for food web interactions are, however, still unknown. Indirect OA effects can be expected for consumers by changing the nutritional quality of their prey. We used a laboratory experiment to test potential OA effects on algal fatty acid (FA composition and resulting copepod growth. We show that elevated CO(2 significantly changed the FA concentration and composition of the diatom Thalassiosira pseudonana, which constrained growth and reproduction of the copepod Acartia tonsa. A significant decline in both total FAs (28.1 to 17.4 fg cell(-1 and the ratio of long-chain polyunsaturated to saturated fatty acids (PUFA:SFA of food algae cultured under elevated (750 µatm compared to present day (380 µatm pCO(2 was directly translated to copepods. The proportion of total essential FAs declined almost tenfold in copepods and the contribution of saturated fatty acids (SFAs tripled at high CO(2. This rapid and reversible CO(2-dependent shift in FA concentration and composition caused a decrease in both copepod somatic growth and egg production from 34 to 5 eggs female(-1 day(-1. Because the diatom-copepod link supports some of the most productive ecosystems in the world, our study demonstrates that OA can have far-reaching consequences for ocean food webs by changing the nutritional quality of essential macromolecules in primary producers that cascade up the food web.

  16. Ocean acidification-induced food quality deterioration constrains trophic transfer.

    Science.gov (United States)

    Rossoll, Dennis; Bermúdez, Rafael; Hauss, Helena; Schulz, Kai G; Riebesell, Ulf; Sommer, Ulrich; Winder, Monika

    2012-01-01

    Our present understanding of ocean acidification (OA) impacts on marine organisms caused by rapidly rising atmospheric carbon dioxide (CO(2)) concentration is almost entirely limited to single species responses. OA consequences for food web interactions are, however, still unknown. Indirect OA effects can be expected for consumers by changing the nutritional quality of their prey. We used a laboratory experiment to test potential OA effects on algal fatty acid (FA) composition and resulting copepod growth. We show that elevated CO(2) significantly changed the FA concentration and composition of the diatom Thalassiosira pseudonana, which constrained growth and reproduction of the copepod Acartia tonsa. A significant decline in both total FAs (28.1 to 17.4 fg cell(-1)) and the ratio of long-chain polyunsaturated to saturated fatty acids (PUFA:SFA) of food algae cultured under elevated (750 µatm) compared to present day (380 µatm) pCO(2) was directly translated to copepods. The proportion of total essential FAs declined almost tenfold in copepods and the contribution of saturated fatty acids (SFAs) tripled at high CO(2). This rapid and reversible CO(2)-dependent shift in FA concentration and composition caused a decrease in both copepod somatic growth and egg production from 34 to 5 eggs female(-1) day(-1). Because the diatom-copepod link supports some of the most productive ecosystems in the world, our study demonstrates that OA can have far-reaching consequences for ocean food webs by changing the nutritional quality of essential macromolecules in primary producers that cascade up the food web.

  17. The global economic long-term potential of modern biomass in a climate-constrained world

    Science.gov (United States)

    Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann

    2014-07-01

    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at 5 GJ-1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by 5 GJ-1 in 2055 and by 10 GJ-1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha-1 yr-1 with and without tax.

  18. The global economic long-term potential of modern biomass in a climate-constrained world

    International Nuclear Information System (INIS)

    Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Leon Bodirsky, Benjamin; Bonsch, Markus; Lotze-Campen, Hermann

    2014-01-01

    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at $5 GJ −1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by $5 GJ −1 in 2055 and by $10 GJ −1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N 2 O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha −1 yr −1 with and without tax. (letter)

  19. Changing Climates. The Role of Renewable Energy in a Carbon-Constrained World. A Paper Prepared for REN21

    International Nuclear Information System (INIS)

    Christensen, J.; Denton, F.; Garg, A.; Kamel, S.; Pacudan, R.; Usher, E.

    2005-12-01

    The current paper on renewable energy and climate change is focused on the key characteristics of the climate change challenge, the intergovernmental action to address the challenge, and how current and future renewable energy projects can contribute to global carbon mitigation and adaptation efforts at the local level. The report presents the current and possible different future contributions that renewable energy can make. This is based on analysis of different authoritative global scenarios and their underlying assumptions, and is aimed at providing guidance on what would be required in terms of policy decisions and technological developments if renewable energy is going to significantly mitigate climate change. Although the focus is particularly on climate change and the opportunities for renewable energy, other issues are closely interlinked. Reducing GHG emissions by introducing more renewable energy, for example, will also have positive impacts on the security of energy supply, while potentially compounding the need for investment capital. The report begins with the current global energy demand and the contribution of renewable energy to meeting that demand. Next, different key internationally recognised energy development scenarios are presented from the Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA), together with selected policy scenarios of very different specific options to mitigate climate change and stabilize CO2 levels in the range of 450-550 ppm. These scenarios are presented with both high and limited penetrations of renewable energy, along with discussions of underlying assumptions leading to these different results, including comparisons of projected technology costs. Existing policies worldwide to promote renewable energy are then analysed for their relative efficiency and results. Guidance is presented on the possible policy tools governments can use to move from the stipulated 'business

  20. Changing Climates. The Role of Renewable Energy in a Carbon-Constrained World. A Paper Prepared for REN21

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J.; Denton, F.; Garg, A.; Kamel, S.; Pacudan, R. [UNEP Risoe Centre on Energy, Climate and Sustainable Development URC, Roskilde (Denmark); Usher, E. [UNEP Energy Unit, Paris (France)

    2005-12-15

    The current paper on renewable energy and climate change is focused on the key characteristics of the climate change challenge, the intergovernmental action to address the challenge, and how current and future renewable energy projects can contribute to global carbon mitigation and adaptation efforts at the local level. The report presents the current and possible different future contributions that renewable energy can make. This is based on analysis of different authoritative global scenarios and their underlying assumptions, and is aimed at providing guidance on what would be required in terms of policy decisions and technological developments if renewable energy is going to significantly mitigate climate change. Although the focus is particularly on climate change and the opportunities for renewable energy, other issues are closely interlinked. Reducing GHG emissions by introducing more renewable energy, for example, will also have positive impacts on the security of energy supply, while potentially compounding the need for investment capital. The report begins with the current global energy demand and the contribution of renewable energy to meeting that demand. Next, different key internationally recognised energy development scenarios are presented from the Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA), together with selected policy scenarios of very different specific options to mitigate climate change and stabilize CO2 levels in the range of 450-550 ppm. These scenarios are presented with both high and limited penetrations of renewable energy, along with discussions of underlying assumptions leading to these different results, including comparisons of projected technology costs. Existing policies worldwide to promote renewable energy are then analysed for their relative efficiency and results. Guidance is presented on the possible policy tools governments can use to move from the stipulated &apos

  1. Energy storage applications of activated carbons: supercapacitors and hydrogen storage

    OpenAIRE

    Sevilla Solís, Marta; Mokaya, Robert

    2014-01-01

    Porous carbons have several advantageous properties with respect to their use in energy applications that require constrained space such as in electrode materials for supercapacitors and as solid state hydrogen stores. The attractive properties of porous carbons include, ready abundance, chemical and thermal stability, ease of processability and low framework density. Activated carbons, which are perhaps the most explored class of porous carbons, have been traditionally employed as catalyst s...

  2. Calcium constrains plant control over forest ecosystem nitrogen cycling.

    Science.gov (United States)

    Groffman, Peter M; Fisk, Melany C

    2011-11-01

    Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.

  3. Transition? What transition? : Changing energy systems in an increasingly carbon constrained world

    NARCIS (Netherlands)

    Mc Cahery, J.A.; Lopez de Silanes, Florencio; de Roode, Alexander

    2014-01-01

    Energy transitions have been taking place continuously since the Industrial Revolution. These transitions primarily involve national energy mixes. In general, countries keep moving up the energy ladder, meaning that they integrate larger and larger proportions of specialized fuels into their energy

  4. The energy transition in a climate-constrained world: Regional vs. global optimization

    NARCIS (Netherlands)

    Brede, M.; de Vries, B.

    2013-01-01

    In this paper we present a stylized economy-energy-climate model and discuss the role of the atmosphere, fossil fuels, and a stock of accumulated knowledge about renewable energy technologies in collaboratively and competitively managed worlds. The model highlights that assumptions about the 'degree

  5. Controversies, development and trends of biofuel industry in the world

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-09-01

    Full Text Available Controversies, development and trends of biofuel industry in the world were discussed in present article. First-generation biofuels, i.e., grain and land based biofuels, occupied large areas of arable lands and severely constrained food supplies, are widely disputed. They have been replaced by second-generation biofuels. The raw materials of the second-generation biofuels include plants, straw, grass and other crops and forest residues. However, the cost for production of the second-generation biofuels is higher. Therefore the development of the third-generation biofuels is undergoing. The third-generation technologies use, mainly algae, as raw material to produce bioethanol, biobutanol, biodiesel and hydrogen, and use discarded fruits to produce dimethylfuran, etc. Different countries and regions are experiencing different stages of biofuel industry. In the future the raw materials for biofuel production will be focused on various by-products, wastes, and organisms that have not direct economic benefit for human. Production technologies should be improved or invented to reduce carbon emission and environmental pollution during biofuel production and to reduce production cost.

  6. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for ecosystem carbon cycle studies

    Science.gov (United States)

    Y. He; Q. Zhuang; A.D. McGuire; Y. Liu; M. Chen

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations inmodeling regional carbon dynamics and explore the...

  7. Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California.

    Science.gov (United States)

    Baker, Nameer R; Khalili, Banafshe; Martiny, Jennifer B H; Allison, Steven D

    2018-06-01

    Microbial decomposers mediate the return of CO 2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities. © 2018 by the Ecological Society of America.

  8. Simulation of low-carbon tourism in world natural and cultural heritage areas: An application to Shizhong District of Leshan City in China

    International Nuclear Information System (INIS)

    Xu Jiuping; Yao Liming; Mo Liwen

    2011-01-01

    The national goal of 40-45% mitigation of the 2005 level intensity of carbon by 2020 was announced by the Chinese government at the Copenhagen Conference. Every industry in China is preparing to realize this national reduction target. Some attempts have been made to achieve low-carbon development in a few industries, but relatively little work has linked low-carbon development to tourism. This article concentrates on how to develop low-carbon tourism using a quantitative approach. Firstly, the tourism system including some mutual influence factors is investigated and some historical data are given in support for the research of their quantitative relationship. Secondly, a differential dynamic system model with fuzzy coefficients is proposed to predict tourism revenue, energy consumption, waste emissions and the carbon intensity. Finally, an application to Shizhong District of Leshan City in China (LCSD), as a representative of a world natural and cultural heritage area, is presented to show the trend of modern tourism in a low-carbon economy and prove the effectiveness of the proposed model. - Highlights: → The system of low-carbon tourism is described. → A differential dynamic model with fuzzy coefficients is developed. → Carbon intensity in the tourism system will gradually decrease. → Some suggestions about developing low-carbon tourism are exhibited.

  9. Simulation of low-carbon tourism in world natural and cultural heritage areas: An application to Shizhong District of Leshan City in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiuping, E-mail: xujiuping@scu.edu.cn [Low Carbon Technology and Economy Research Center, Sichuan University, Chengdu 610064 (China); Yao Liming; Mo Liwen [Low Carbon Technology and Economy Research Center, Sichuan University, Chengdu 610064 (China)

    2011-07-15

    The national goal of 40-45% mitigation of the 2005 level intensity of carbon by 2020 was announced by the Chinese government at the Copenhagen Conference. Every industry in China is preparing to realize this national reduction target. Some attempts have been made to achieve low-carbon development in a few industries, but relatively little work has linked low-carbon development to tourism. This article concentrates on how to develop low-carbon tourism using a quantitative approach. Firstly, the tourism system including some mutual influence factors is investigated and some historical data are given in support for the research of their quantitative relationship. Secondly, a differential dynamic system model with fuzzy coefficients is proposed to predict tourism revenue, energy consumption, waste emissions and the carbon intensity. Finally, an application to Shizhong District of Leshan City in China (LCSD), as a representative of a world natural and cultural heritage area, is presented to show the trend of modern tourism in a low-carbon economy and prove the effectiveness of the proposed model. - Highlights: > The system of low-carbon tourism is described. > A differential dynamic model with fuzzy coefficients is developed. > Carbon intensity in the tourism system will gradually decrease. > Some suggestions about developing low-carbon tourism are exhibited.

  10. Organic carbon and nitrogen in the surface sediments of world oceans and seas: distribution and relationship to bottom topography

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.

    1980-06-01

    Information dealing with the distribution of organic carbon and nitrogen in the top sediments of world oceans and seas has been gathered and evaluated. Based on the available information a master chart has been constructed which shows world distribution of sedimentary organic matter in the oceans and seas. Since organic matter exerts an influence upon the settling properties of fine inorganic particles, e.g. clay minerals and further, the interaction between organic matter and clay minerals is maximal, a relationship between the overall bottom topography and the distribution of clay minerals and organic matter should be observable on a worldwide basis. Initial analysis of the available data indicates that such a relationship does exist and its significance is discussed.

  11. A distance constrained synaptic plasticity model of C. elegans neuronal network

    Science.gov (United States)

    Badhwar, Rahul; Bagler, Ganesh

    2017-03-01

    Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.

  12. Allowable carbon emissions for medium-to-high mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tachiiri, Kaoru; Hargreaves, Julia C.; Annan, James D.; Kawamiya, Michio [Research Inst. for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, (Japan)], e-mail: tachiiri@jamstec.go.jp; Huntingford, Chris [Centre for Ecology and Hydrology, Wallingford (United Kingdom)

    2013-11-15

    Using an ensemble of simulations with an intermediate complexity climate model and in a probabilistic framework, we estimate future ranges of carbon dioxide (CO{sub 2}) emissions in order to follow three medium-high mitigation concentration pathways: RCP2.6, RCP4.5 and SCP4.5 to 2.6. Uncertainty is first estimated by allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within widely accepted ranges. Results are then constrained by comparison against contemporary measurements. For both constrained and unconstrained projections, our calculated allowable emissions are close to the standard (harmonised) emission scenarios associated with these pathways. For RCP4.5, which is the most moderate scenario considered in terms of required emission abatement, then after year 2100 very low net emissions are needed to maintain prescribed year 2100 CO{sub 2} concentrations. As expected, RCP2.6 and SCP4.5 to 2.6 require more strict emission reductions. The implication of this is that direct sequestration of carbon dioxide is likely to be required for RCP4.5 or higher mitigation scenarios, to offset any minimum emissions for society to function (the 'emissions floor'). Despite large uncertainties in the physical and biogeochemical processes, constraints from model-observational comparisons support a high degree of confidence in predicting the allowable emissions consistent with a particular concentration pathway. In contrast the uncertainty in the resulting temperature range remains large. For many parameter sets, and especially for RCP2.6, the land will turn into a carbon source within the twenty first century, but the ocean will remain as a carbon sink. For land carbon storage and our modelling framework, major reductions are seen in northern high latitudes and the Amazon basin even after atmospheric CO{sub 2} is stabilised, while for ocean carbon uptake, the tropical ocean regions will be a

  13. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  14. Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration

    Science.gov (United States)

    D.C. Donato; J.B. Kauffman; R.A. Mackenzie; A. Ainsworth; A.Z. Pfleeger

    2012-01-01

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced...

  15. Chrysotile dissolution rates: Implications for carbon sequestration

    International Nuclear Information System (INIS)

    Thom, James G.M.; Dipple, Gregory M.; Power, Ian M.; Harrison, Anna L.

    2013-01-01

    Highlights: • Uncertainties in serpentine dissolution kinetics hinder carbon sequestration models. • A pH dependent, far from equilibrium dissolution rate law for chrysotile. • F chrysotile (mol/m 2 /s) = 10 −0.21pH−10.57 at 22 °C over pH 2–10. • Laboratory dissolution rates consistent with mine waste weathering observations. • Potential for carbon sequestration in mine tailings and aquifers is assessed. - Abstract: Serpentine minerals (e.g., chrysotile) are a potentially important medium for sequestration of CO 2 via carbonation reactions. The goals of this study are to report a steady-state, far from equilibrium chrysotile dissolution rate law and to better define what role serpentine dissolution kinetics will have in constraining rates of carbon sequestration via serpentine carbonation. The steady-state dissolution rate of chrysotile in 0.1 m NaCl solutions was measured at 22 °C and pH ranging from 2 to 8. Dissolution experiments were performed in a continuously stirred flow-through reactor with the input solutions pre-equilibrated with atmospheric CO 2 . Both Mg and Si steady-state fluxes from the chrysotile surface, and the overall chrysotile flux were regressed and the following empirical relationships were obtained: F Mg =-0.22pH-10.02;F Si =-0.19pH-10.37;F chrysotile =-0.21pH-10.57 where F Mg , F Si , and F chrysotile are the log 10 Mg, Si, and molar chrysotile fluxes in mol/m 2 /s, respectively. Element fluxes were used in reaction-path calculations to constrain the rate of CO 2 sequestration in two geological environments that have been proposed as potential sinks for anthropogenic CO 2 . Carbon sequestration in chrysotile tailings at 10 °C is approximately an order of magnitude faster than carbon sequestration in a serpentinite-hosted aquifer at 60 °C on a per kilogram of water basis. A serpentinite-hosted aquifer, however, provides a larger sequestration capacity. The chrysotile dissolution rate law determined in this study has

  16. Exploring Constrained Creative Communication

    DEFF Research Database (Denmark)

    Sørensen, Jannick Kirk

    2017-01-01

    Creative collaboration via online tools offers a less ‘media rich’ exchange of information between participants than face-to-face collaboration. The participants’ freedom to communicate is restricted in means of communication, and rectified in terms of possibilities offered in the interface. How do...... these constrains influence the creative process and the outcome? In order to isolate the communication problem from the interface- and technology problem, we examine via a design game the creative communication on an open-ended task in a highly constrained setting, a design game. Via an experiment the relation...... between communicative constrains and participants’ perception of dialogue and creativity is examined. Four batches of students preparing for forming semester project groups were conducted and documented. Students were asked to create an unspecified object without any exchange of communication except...

  17. How can mountaintop CO2 observations be used to constrain regional carbon fluxes?

    Science.gov (United States)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.

    2017-05-01

    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  18. Combining multiple ecosystem productivity measurements to constrain carbon uptake estimates in semiarid grasslands and shrublands

    Science.gov (United States)

    Maurer, G. E.; Krofcheck, D. J.; Collins, S. L.; Litvak, M. E.

    2016-12-01

    Recent observational and modeling studies have indicated that semiarid ecosystems are more dynamic contributors to the global carbon budget than once thought. Semiarid carbon fluxes, however, are generally small, with high interannual and spatial variability, which suggests that validating their global significance may depend on examining multiple productivity measures and their associated uncertainties and inconsistencies. We examined ecosystem productivity from eddy covariance (NEE), harvest (NPP), and terrestrial biome models (NEPm) at two very similar grassland sites and one creosote shrubland site in the Sevilleta National Wildlife Refuge of central New Mexico, USA. Our goal was to assess site and methodological correspondence in annual carbon uptake, patterns of interannual variability, and measurement uncertainty. One grassland site was a perennial carbon source losing 30 g C m-2 per year on average, while the other two sites were carbon sources or sinks depending on the year, with average net uptake of 5 and 25 g C m-2 per year at the grassland and shrubland site, respectively. Uncertainty values for cumulative annual NEE overlapped between the three sites in most years. When combined, aboveground and belowground annual NPP measurements were 15% higher than annual NEE values and did not confirm a loss of carbon at any site in any year. Despite differences in mean site carbon balance, year-to-year changes in cumulative annual NEE and NPP were similar at all sites with years 2010 and 2013 being favorable for carbon uptake and 2011 and 2012 being unfavorable at all sites. Modeled NEPm data for a number of nearby grid cells reproduced only a fraction of the observed range in carbon uptake and its interannual variability. These three sites are highly similar in location and climate and multiple carbon flux measurements confirm the high interannual variability in carbon flux. The exact magnitude of these fluxes, however, remains difficult to discern.

  19. Scenarios for transition towards a low-carbon world in 2050: what's at stake for heavy industries? Joint Research Project 'Carbon-constrained scenarios'. Results and final report

    International Nuclear Information System (INIS)

    2008-11-01

    The EpE-IDDRI study, Launched in 2004, explores how major industrial sectors will be impacted by a carbon constraint stabilizing atmospheric CO 2 concentration at 450 ppm. By means of an innovative hybrid modelling platform and ongoing dialogue between researchers and industrials, the study produces conclusions concerning both general climate policy as well as the economic response of industrial sectors- specifically of the steel, aluminium, cement, and sheet glass sectors, as well as of the energy sector

  20. Technologies for a greenhouse-constrained society

    International Nuclear Information System (INIS)

    Kuliasha, M.A.; Zucker, A.; Ballew, K.J.

    1992-01-01

    This conference explored how three technologies might help society adjust to life in a greenhouse-constrained environment. Technology experts and policy makers from around the world met June 11--13, 1991, in Oak Ridge, Tennessee, to address questions about how energy efficiency, biomass, and nuclear technologies can mitigate the greenhouse effect and to explore energy production and use in countries in various stages of development. The conference was organized by Oak Ridge National Laboratory and sponsored by the US Department of Energy. Energy efficiency biomass, and nuclear energy are potential substitutes for fossil fuels that might help slow or even reverse the global warming changes that may result from mankind's thirst for energy. Many other conferences have questioned whether the greenhouse effect is real and what reductions in greenhouse gas emissions might be necessary to avoid serious ecological consequences; this conference studied how these reductions might actually be achieved. For these conference proceedings, individuals papers are processed separately for the Energy Data Base

  1. Why is the South Orkney Island shelf (the world's first high seas marine protected area) a carbon immobilization hotspot?

    Science.gov (United States)

    Barnes, David K A; Ireland, Louise; Hogg, Oliver T; Morley, Simon; Enderlein, Peter; Sands, Chester J

    2016-03-01

    The Southern Ocean archipelago, the South Orkney Islands (SOI), became the world's first entirely high seas marine protected area (MPA) in 2010. The SOI continental shelf (~44 000 km(2) ), was less than half covered by grounded ice sheet during glaciations, is biologically rich and a key area of both sea surface warming and sea-ice losses. Little was known of the carbon cycle there, but recent work showed it was a very important site of carbon immobilization (net annual carbon accumulation) by benthos, one of the few demonstrable negative feedbacks to climate change. Carbon immobilization by SOI bryozoans was higher, per species, unit area and ice-free day, than anywhere-else polar. Here, we investigate why carbon immobilization has been so high at SOI, and whether this is due to high density, longevity or high annual production in six study species of bryozoans (benthic suspension feeders). We compared benthic carbon immobilization across major regions around West Antarctica with sea-ice and primary production, from remotely sensed and directly sampled sources. Lowest carbon immobilization was at the northernmost study regions (South Georgia) and southernmost Amundsen Sea. However, data standardized for age and density showed that only SOI was anomalous (high). High immobilization at SOI was due to very high annual production of bryozoans (rather than high densities or longevity), which were 2x, 3x and 5x higher than on the Bellingshausen, South Georgia and Amundsen shelves, respectively. We found that carbon immobilization correlated to the duration (but not peak or integrated biomass) of phytoplankton blooms, both in directly sampled, local scale data and across regions using remote-sensed data. The long bloom at SOI seems to drive considerable carbon immobilization, but sea-ice losses across West Antarctica mean that significant carbon sinks and negative feedbacks to climate change could also develop in the Bellingshausen and Amundsen seas. © 2015 John Wiley

  2. The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling

    International Nuclear Information System (INIS)

    Chen Wenying

    2005-01-01

    In this paper MARKAL-MACRO, an integrated energy-environment-economy model, is used to generate China's reference scenario for future energy development and carbon emission through the year 2050. The results show that with great efforts on structure adjustment, energy efficiency improvement and energy substitution, China's primary energy consumption is expected to be 4818 Mtce and carbon emission 2394 MtC by 2050 with annual decrease rate of 3% for the carbon intensity per GDP during the period 2000-2050. On the basis of this reference scenario, China's marginal abatement cost curves of carbon for the year 2010, 2020 and 2030 are derived from the model, and the impacts of carbon emission abatement on GDP are also simulated. The results are compared with those from other sources. The research shows that the marginal abatement costs vary from 12US$/tC to 216US$/tC and the rates of GDP losses relative to reference range from 0.1% to 2.54% for the reduction rates between 5% and 45%. Both the marginal abatement costs and the rates of GDP losses further enlarge on condition that the maximum capacity of nuclear power is constrained to 240 GW or 160 GW by 2050. The paper concludes that China's costs of carbon abatement is rather high in case of carbon emissions are further cut beyond the reference scenario, and China's carbon abatement room is limited due to her coal-dominant energy resource characteristic. As economic development still remains the priority and per capita income as well as per capita carbon emission are far below the world average, it will be more realistic for China to make continuous contributions to combating global climate change by implementing sustainable development strategy domestically and playing an active role in the international carbon mitigation cooperation mechanisms rather than accepting a carbon emission ceiling

  3. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  4. Constraining the global carbon budget from global to regional scales - The measurement challenge

    International Nuclear Information System (INIS)

    Francey, R.J.; Rayner, P.J.; Allison, C.E.

    2002-01-01

    The Global Carbon Cycle can be modelled by a Bayesian synthesis inversion technique, where measured atmospheric CO 2 concentrations and isotopic compositions are analysed by use of an atmospheric transport model and estimates of regional sources and sinks of atmospheric carbon. The uncertainty associated to carbon flux estimates even on a regional scale can be improved considerably using the inversion technique. In this approach, besides the necessary control on the precision of atmospheric transport models and on the constraints for surface fluxes, an important component is the calibration of atmospheric CO 2 concentration and isotope measurements. The recent improved situation in respect to data comparability is discussed using results of conducted interlaboratory comparison exercises and larger scale calibration programs are proposed for the future to further improve the comparability of analytical data. (author)

  5. Sample Dilution and Bacterial Community Composition Influence Empirical Leucine-to-Carbon Conversion Factors in Surface Waters of the World's Oceans

    KAUST Repository

    Teira, Eva

    2015-09-25

    The transformation of leucine incorporation rates to prokaryotic carbon production rates requires the use of either theoretical or empirically determined conversion factors. Empirical leucine-to-carbon conversion factors (eCFs) vary widely across environments, and little is known about their potential controlling factors. We conducted 10 surface seawater manipulation experiments across the world\\'s oceans, where the growth of the natural prokaryotic assemblages was promoted by filtration (i.e., removal of grazers [F treatment]) or filtration combined with dilution (i.e., also relieving resource competition [FD treatment]). The impact of sunlight exposure was also evaluated in the FD treatments, and we did not find a significant effect on the eCFs. The eCFs varied from 0.09 to 1.47 kg C mol Leu−1 and were significantly lower in the FD than in the F samples. Also, changes in bacterial community composition during the incubations, as assessed by automated ribosomal intergenic spacer analysis (ARISA), were more pronounced in the FD than in the F treatments, compared to unmanipulated controls. Thus, we discourage the common procedure of diluting samples (in addition to filtration) for eCF determination. The eCFs in the filtered treatment were negatively correlated with the initial chlorophyll a concentration, picocyanobacterial abundance (mostly Prochlorococcus), and the percentage of heterotrophic prokaryotes with high nucleic acid content (%HNA). The latter two variables explained 80% of the eCF variability in the F treatment, supporting the view that both Prochlorococcus and HNA prokaryotes incorporate leucine in substantial amounts, although this results in relatively low carbon production rates in the oligotrophic ocean.

  6. Choosing health, constrained choices.

    Science.gov (United States)

    Chee Khoon Chan

    2009-12-01

    In parallel with the neo-liberal retrenchment of the welfarist state, an increasing emphasis on the responsibility of individuals in managing their own affairs and their well-being has been evident. In the health arena for instance, this was a major theme permeating the UK government's White Paper Choosing Health: Making Healthy Choices Easier (2004), which appealed to an ethos of autonomy and self-actualization through activity and consumption which merited esteem. As a counterpoint to this growing trend of informed responsibilization, constrained choices (constrained agency) provides a useful framework for a judicious balance and sense of proportion between an individual behavioural focus and a focus on societal, systemic, and structural determinants of health and well-being. Constrained choices is also a conceptual bridge between responsibilization and population health which could be further developed within an integrative biosocial perspective one might refer to as the social ecology of health and disease.

  7. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France

    Science.gov (United States)

    Tifafi, Marwa; Guenet, Bertrand; Hatté, Christine

    2018-01-01

    Soils are the major component of the terrestrial ecosystem and the largest organic carbon reservoir on Earth. However, they are a nonrenewable natural resource and especially reactive to human disturbance and climate change. Despite its importance, soil carbon dynamics is an important source of uncertainty for future climate predictions and there is a growing need for more precise information to better understand the mechanisms controlling soil carbon dynamics and better constrain Earth system models. The aim of our work is to compare soil organic carbon stocks given by different global and regional databases that already exist. We calculated global and regional soil carbon stocks at 1 m depth given by three existing databases (SoilGrids, the Harmonized World Soil Database, and the Northern Circumpolar Soil Carbon Database). We observed that total stocks predicted by each product differ greatly: it is estimated to be around 3,400 Pg by SoilGrids and is about 2,500 Pg according to Harmonized World Soil Database. This difference is marked in particular for boreal regions where differences can be related to high disparities in soil organic carbon concentration. Differences in other regions are more limited and may be related to differences in bulk density estimates. Finally, evaluation of the three data sets versus ground truth data shows that (i) there is a significant difference in spatial patterns between ground truth data and compared data sets and that (ii) data sets underestimate by more than 40% the soil organic carbon stock compared to field data.

  8. Ten years of multiple data stream assimilation with the ORCHIDEE land surface model to improve regional to global simulated carbon budgets: synthesis and perspectives on directions for the future

    Science.gov (United States)

    Peylin, P. P.; Bacour, C.; MacBean, N.; Maignan, F.; Bastrikov, V.; Chevallier, F.

    2017-12-01

    Predicting the fate of carbon stocks and their sensitivity to climate change and land use/management strongly relies on our ability to accurately model net and gross carbon fluxes. However, simulated carbon and water fluxes remain subject to large uncertainties, partly because of unknown or poorly calibrated parameters. Over the past ten years, the carbon cycle data assimilation system at the Laboratoire des Sciences du Climat et de l'Environnement has investigated the benefit of assimilating multiple carbon cycle data streams into the ORCHIDEE LSM, the land surface component of the Institut Pierre Simon Laplace Earth System Model. These datasets have included FLUXNET eddy covariance data (net CO2 flux and latent heat flux) to constrain hourly to seasonal time-scale carbon cycle processes, remote sensing of the vegetation activity (MODIS NDVI) to constrain the leaf phenology, biomass data to constrain "slow" (yearly to decadal) processes of carbon allocation, and atmospheric CO2 concentrations to provide overall large scale constraints on the land carbon sink. Furthermore, we have investigated technical issues related to multiple data stream assimilation and choice of optimization algorithm. This has provided a wide-ranging perspective on the challenges we face in constraining model parameters and thus better quantifying, and reducing, model uncertainty in projections of the future global carbon sink. We review our past studies in terms of the impact of the optimization on key characteristics of the carbon cycle, e.g. the partition of the northern latitudes vs tropical land carbon sink, and compare to the classic atmospheric flux inversion approach. Throughout, we discuss our work in context of the abovementioned challenges, and propose solutions for the community going forward, including the potential of new observations such as atmospheric COS concentrations and satellite-derived Solar Induced Fluorescence to constrain the gross carbon fluxes of the ORCHIDEE

  9. Carbon emissions in China

    International Nuclear Information System (INIS)

    Liu, Zhu

    2016-01-01

    This study analyzes the spatial-temporal pattern and processes of China's energy-related carbon emissions. Based on extensive quantitative analysis, it outlines the character and trajectory of China's energy-related carbon emissions during the period 1995-2010, examining the distribution pattern of China's carbon emissions from regional and sectoral perspectives and revealing the driving factors of China's soaring emission increase. Further, the book investigates the supply chain carbon emissions (the carbon footprints) of China's industrial sectors. Anthropogenic climate change is one of the most serious challenges currently facing humankind. China is the world's largest developing country, top primary energy consumer and carbon emitter. Achieving both economic growth and environmental conservation is the country's twofold challenge. Understanding the status, features and driving forces of China's energy-related carbon emissions is a critical aspect of attaining global sustainability. This work, for the first time, presents both key findings on and a systematic evaluation of China's carbon emissions from energy consumption. The results have important implications for global carbon budgets and burden-sharing with regard to climate change mitigation. The book will be of great interest to readers around the world, as it addresses a topic of truly global significance.

  10. Globalizing carbon lock-in

    International Nuclear Information System (INIS)

    Unruh, Gregory C.; Carrillo-Hermosilla, Javier

    2006-01-01

    This paper extends the arguments surrounding carbon lock-in elaborated in Unruh (Energy Policy 28 (2000) 817; 30 (2002) 317) to countries currently undergoing industrialization. It argues that, for numerous reasons, industrializing countries are unlikely to leapfrog carbon intensive energy development. On the contrary, carbon lock-in may be globalizing and could further constrain climate change mitigation options. It is then argued that many policy recommendations ignore carbon lock-in, possibly limiting their potential for successful implementation. The paper then discusses four policy approaches that appear to have advantages given lock-in conditions. It is recognized, however, that relative ease of implementation does not necessarily equate with superiority. Instead, it is merely a path dependent outcome of past development decisions. Pursuing policies on the basis of relative implementation ease may help address the issue of climate change, but could also result in sub-optimal outcomes along other dimensions of sustainable development

  11. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile.

    Directory of Open Access Journals (Sweden)

    Rocio Urrutia-Jalabert

    Full Text Available Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP, carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1 and 448-517 Mg C ha(-1 in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1 year(-1 in AC and 2.22-2.54 Mg C ha(-1 year(-1 in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1 year(-1 in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.

  12. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile.

    Science.gov (United States)

    Urrutia-Jalabert, Rocio; Malhi, Yadvinder; Lara, Antonio

    2015-01-01

    Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1) and 448-517 Mg C ha(-1) in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1) year(-1) in AC and 2.22-2.54 Mg C ha(-1) year(-1) in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1) year(-1) in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.

  13. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.

    2012-01-01

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  14. Influence of climate change factors on carbon dynamics in northern forested peatlands

    Science.gov (United States)

    C.C Trettin; R. Laiho; K. Minkkinen; J. Laine

    2005-01-01

    Peatlands are carbon-accumulating wetland ecosystems, developed through an imbalance among organic matter production and decomposition processes. Soil saturation is the principal cause of anoxic conditions that constrain organic matter decay. Accordingly, changes in the hydrologic regime will affect the carbon (C) dynamics in forested peatlands. Our objective is to...

  15. World polarization in carbon emissions, potential conflict and groups: An updated revision

    International Nuclear Information System (INIS)

    Antonio Duro, Juan; Teixidó-Figueras, Jordi

    2014-01-01

    Typically, conflicts in world environmental negotiations are related, amongst other aspects, to the level of polarization of the countries in groups with conflicting interests. Given the predictable relationship between polarization and conflict, it would seem logical to evaluate the degree to which the distribution of countries – for example, in terms of their CO 2 emissions per capita – would be structured through groups which in themselves are antagonistic, as well as their evolution over time. This paper takes the concept of polarization to explore this distribution for the period 1992–2010, looking at different analytic approaches related to the concept. Specifically, it makes a comparative evaluation of the results associated with endogenous multi-polarization measures (i.e. EGR and DER indices), exogenous measures (i.e. Z–K or multidimensional index) and strict bipolarization measures (i.e. Wolfson’s measure). Indeed, the interest lies not only in evaluating the global situation of polarization by comparing the different approaches and their temporal patterns, but also in examining the explanatory capacity of the different proxy groups used as a possible reference for designing global environmental policy from a group premise. - Highlights: • The world seems to have (multi) polarized typically less in terms of carbon emissions since 1992. • The advance of the within-groups cohesion and the equalization in their size allows some caution. • The division of countries into two endogenous groups appears as relevant. • It would be interesting the simplification through three exogenous income-groups of countries. • It would seem useful to design global negotiating mechanisms based on these types of groups

  16. Neoproterozoic marine carbonates and their paleoceanographic significance

    Science.gov (United States)

    Hood, Ashleigh van Smeerdijk; Wallace, Malcolm William

    2018-01-01

    The primary mineralogy of marine carbonate precipitates has been a crucial factor in constraining the major element composition of ancient oceans. Secular changes in Phanerozoic marine chemistry, including Mg/Ca, have been well-documented using the original carbonate mineralogy of ooids, marine cements and biominerals. However, the history of Precambrian seawater chemistry is not as well constrained, partially due to the prevalence of dolomitisation in the Precambrian geological record. The Neoproterozoic ( 1000 Ma to 541 Ma) record of primary carbonate mineralogy is documented here using a combination of literature data and new analysis of marine carbonate precipitates from the Otavi Fold Belt, Namibia, the Death Valley succession, USA and the Adelaide Fold Belt, Australia. These data suggest that the last 460 million years of the Proterozoic were dominated by aragonite and high-Mg calcite precipitation in shallow marine settings. In contrast, low-Mg calcite has only been recognised in a small number of formations. In addition to aragonite and calcite precipitation, marine dolomite precipitation was widespread in Neoproterozoic oceans, including mimetic (syn-sedimentary) dolomitisation and primary dolomite marine cementation. The combination of marine aragonite, high Mg-calcite and dolomite precipitation during the Neoproterozoic suggests extremely high seawater Mg/Ca conditions relative to Phanerozoic oceans. Marine dolomite precipitation may also be linked to widespread marine anoxia during this time.

  17. The world review

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A world-wide review of hydrocarbon processing is presented. Following a general introduction discussing issues such as the crisis in Asia, the mergers between the oil giants, the concern over carbon dioxide emissions in Europe, the expected decline in output of oil in the USA and the attraction of Latin America in terms of natural gas, the article goes on to review the situations and prospects in various parts of the world. Fifty-one countries are discussed individually in this 34-page article. The focus throughout is very much on the activities of individual companies and contracts rather than on technical details. (UK)

  18. "This One's for VIP Users!": Participation and Commercial Strategies in Children's Virtual Worlds

    Directory of Open Access Journals (Sweden)

    Carolina Martinez

    2014-06-01

    Full Text Available Through the integrated framework of participation theory and political economy, this article analyzes participatory opportunities in the virtual world Habbo Hotel, and how participation is constrained and framed by the producer's commercial strategies, which are based on advertising and sales of virtual goods. The study also looks into the ways in which the producer Sulake Corporation discursively represents the virtual world, and how the users with various forms of tactics try to bypass the commercial constraints. The methods used include observations of the English and Swedish language versions of Habbo Hotel, document analysis, and an interview with one designer employed by Sulake. The results show how participation in this virtual world takes minimalist forms, and that it is foremost an arena for interaction and consumption. Users' participation in the virtual world is constrained by the commercial strategies in numerous ways, and the producer strategically takes advantage of children's need to gain status in their peer group, in order to get them to purchase on the site. Habbo Hotel is represented by the producer as a safe and creative environment with learning opportunities for the children. Observations of the virtual world instead reveal Habbo as a panopticon-like shopping mall where users, through the practice of begging and other tactics, try to resist the commercial strategies. Virtual worlds could be potential spaces for children's participation and contribute to a democratization of the social; however, this study shows how participation in this virtual world is clearly structured and limited for commercial purposes.

  19. Constraining the redox landscape of the mid-Proterozoic oceans: new insights from the carbonate uranium isotope record

    Science.gov (United States)

    Gilleaudeau, G. J.; Kaufman, A. J.; Luo, G.; Romaniello, S. J.; Zhang, F.; Kah, L. C.; Azmy, K.; Bartley, J. K.; Sahoo, S. K.; Knoll, A. H.; Anbar, A. D.

    2017-12-01

    The redox landscape of the global oceans during the prolonged period between the Great Oxidation Event (GOE) and the Neoproterozoic Oxygenation Event (NOE) is a topic of considerable debate. Data from local redox proxies such as iron speciation suggest largely ferruginous conditions in the subsurface oceans (with the exception of one report of oxic subsurface waters) and a variable degree of euxinia in shallow shelf and epeiric sea environments. There is general consensus that anoxia was more widespread than in the modern ocean, but quantifying the degree of seafloor anoxia is challenging given that most redox proxies are inherently local and/or based on the relatively sparse black shale record. Here, we present new uranium (U) isotope data from carbonate rocks than span the mid-Proterozoic Eon. U-isotopes operate as a proxy for seafloor anoxia because the δ238U value of seawater is largely controlled by the size of the anoxic/euxinic U sink, which preferentially removes isotopically heavy 238U, leaving the oceans enriched in 235U. Our compilation of data from mid-Proterozoic successions reveals δ238U values similar to modern seawater (-0.39 ± 0.19 ‰ [1 s.d.] for the Gaoyuzhuang, Angmaat, El Mreiti, Vazante, and Turukhansk successions spanning 1.5 to 0.9 Ga). Given the potential for an isotopic offset between carbonate minerals and seawater of up to 0.3 ‰, we suggest that mid-Proterozoic seawater had a δ238U value generally between -0.4 and -0.7 ‰, which is lower than modern seawater, but higher than has been inferred for intervals of expanded anoxia elsewhere in Earth history. These results are consistent with recently published U-isotope data from the 1.36 Ga Velkerri Formation, and suggest that large portions of the seafloor may have been covered by at least weakly oxygenated waters during the mid-Proterozoic Eon. Uncertainty remains, however, because the isotopic effects of the non-euxinic anoxic sink are poorly constrained. Nonetheless, our data

  20. Not just graphene: The wonderful world of carbon and related nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury

    2015-11-27

    Carbon, with its variety of allotropes and forms, is the most versatile material, and virtually any combination of mechanical, optical, electrical, and chemical properties can be achieved with carbon by controlling its structure and surface chemistry. The goal of this article is to help readers appreciate the variety of carbon nanomaterials and to describe some engineering applications of the most important of these. Many different materials are needed to meet a variety of performance requirements, but they can all be built of carbon. Considering the example of supercapacitor electrodes, zero- and one-dimensional nanoparticles, such as carbon onions and nanotubes, respectively, deliver very high power because of fast ion sorption/desorption on their outer surfaces. Two-dimensional (2D) graphene offers higher charge/discharge rates than porous carbons and a high volumetric energy density. Three-dimensional porous activated, carbide-derived, and templated carbon networks, with high surface areas and porosities in the angstrom or nanometer range, can provide high energy densities if the pore size is matched with the electrolyte ion size. Finally, carbon-based nanostructures further expand the range of available nanomaterials: Recently discovered 2D transition-metal carbides (MXenes) have already grown into a family with close to 20 members in about four years and challenge graphene in some applications.

  1. Nested Sampling with Constrained Hamiltonian Monte Carlo

    OpenAIRE

    Betancourt, M. J.

    2010-01-01

    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.

  2. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    Science.gov (United States)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  3. Multiyear high-resolution carbon exchange over European croplands from the integration of observed crop yields into CarbonTracker Europe

    Science.gov (United States)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; de Wit, Allard; Peters, Wouter

    2016-04-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily-to-seasonal time scales. Not only do crops occupy one fourth of the European land area, but their photosynthesis and respiration are large and affect CO2 mole fractions at nearly every atmospheric CO2 monitoring site. A better description of this crop carbon exchange in our CarbonTracker Europe data assimilation system - which currently treats crops as unmanaged grasslands - could strongly improve its ability to constrain terrestrial carbon fluxes. Available long-term observations of crop yield, harvest, and cultivated area allow such improvements, when combined with the new crop-modeling framework we present. This framework can model the carbon fluxes of 10 major European crops at high spatial and temporal resolution, on a 12x12 km grid and 3-hourly time-step. The development of this framework is threefold: firstly, we optimize crop growth using the process-based WOrld FOod STudies (WOFOST) agricultural crop growth model. Simulated yields are downscaled to match regional crop yield observations from the Statistical Office of the European Union (EUROSTAT) by estimating a yearly regional parameter for each crop species: the yield gap factor. This step allows us to better represent crop phenology, to reproduce the observed multiannual European crop yields, and to construct realistic time series of the crop carbon fluxes (gross primary production, GPP, and autotrophic respiration, Raut) on a fine spatial and temporal resolution. Secondly, we combine these GPP and Raut fluxes with a simple soil respiration model to obtain the total ecosystem respiration (TER) and net ecosystem exchange (NEE). And thirdly, we represent the horizontal transport of carbon that follows crop harvest and its back-respiration into the atmosphere during harvest consumption. We distribute this carbon using observations of the density of human and ruminant populations from EUROSTAT. We assess the model

  4. Carbon accounting of forest bioenergy: from model calibrations to policy options (Invited)

    Science.gov (United States)

    Lamers, P.

    2013-12-01

    Programs to stimulate biomass use for the production of heating/cooling and electricity have been implemented in many countries as part of their greenhouse gas emission reduction strategies. Critiques claim however that the use of forest biomass, e.g. as a replacement of hard-coal in large-scale power plants or mineral oil fuelled residential heating boilers, countervails carbon saving and thus also climate change mitigation strategies, at least in the short-term, as forest biomass combustion releases previously stored biogenic carbon back into the atmosphere. While there seems general agreement that carbon emitted from bioenergy combustion was and will again be sequestered from the atmosphere given a sustainable biomass management system, there is inherent concern that carbon release and sequestration rates may not be in temporal balance with each other and eventually jeopardize mid-century carbon/temperature/climate targets. So far, biomass carbon accounting systems (including those that are part of regulatory standards) have not incorporated this potential temporal imbalance or ';carbon debt'. The potential carbon debt caused by wood harvest and the resulting time spans needed to reach pre-harvest carbon levels (payback) or those of a reference case (parity) have become important parameters for climate and bioenergy policy developments. The present range of analyses however varies in assumptions, regional scopes, and conclusions. Policy makers are confronted with this portfolio while needing to address the temporal carbon aspect in current regulations. In order to define policies for our carbon constrained world, it is critical to better understand the dimensions and regional differences of these carbon cycles. This paper/presentation discusses to what extent and under which circumstances (i.e. bioenergy systems) a temporal forest carbon imbalance could jeopardize future temperature and eventually climate targets. It further reviews the current state of

  5. Clustering Using Boosted Constrained k-Means Algorithm

    Directory of Open Access Journals (Sweden)

    Masayuki Okabe

    2018-03-01

    Full Text Available This article proposes a constrained clustering algorithm with competitive performance and less computation time to the state-of-the-art methods, which consists of a constrained k-means algorithm enhanced by the boosting principle. Constrained k-means clustering using constraints as background knowledge, although easy to implement and quick, has insufficient performance compared with metric learning-based methods. Since it simply adds a function into the data assignment process of the k-means algorithm to check for constraint violations, it often exploits only a small number of constraints. Metric learning-based methods, which exploit constraints to create a new metric for data similarity, have shown promising results although the methods proposed so far are often slow depending on the amount of data or number of feature dimensions. We present a method that exploits the advantages of the constrained k-means and metric learning approaches. It incorporates a mechanism for accepting constraint priorities and a metric learning framework based on the boosting principle into a constrained k-means algorithm. In the framework, a metric is learned in the form of a kernel matrix that integrates weak cluster hypotheses produced by the constrained k-means algorithm, which works as a weak learner under the boosting principle. Experimental results for 12 data sets from 3 data sources demonstrated that our method has performance competitive to those of state-of-the-art constrained clustering methods for most data sets and that it takes much less computation time. Experimental evaluation demonstrated the effectiveness of controlling the constraint priorities by using the boosting principle and that our constrained k-means algorithm functions correctly as a weak learner of boosting.

  6. Carbon emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhu [Harvard Univ., Cambridge, MA (United States). Sustainability Science Program

    2016-07-01

    This study analyzes the spatial-temporal pattern and processes of China's energy-related carbon emissions. Based on extensive quantitative analysis, it outlines the character and trajectory of China's energy-related carbon emissions during the period 1995-2010, examining the distribution pattern of China's carbon emissions from regional and sectoral perspectives and revealing the driving factors of China's soaring emission increase. Further, the book investigates the supply chain carbon emissions (the carbon footprints) of China's industrial sectors. Anthropogenic climate change is one of the most serious challenges currently facing humankind. China is the world's largest developing country, top primary energy consumer and carbon emitter. Achieving both economic growth and environmental conservation is the country's twofold challenge. Understanding the status, features and driving forces of China's energy-related carbon emissions is a critical aspect of attaining global sustainability. This work, for the first time, presents both key findings on and a systematic evaluation of China's carbon emissions from energy consumption. The results have important implications for global carbon budgets and burden-sharing with regard to climate change mitigation. The book will be of great interest to readers around the world, as it addresses a topic of truly global significance.

  7. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  8. The biological carbon pump in the ocean: Reviewing model representations and its feedbacks on climate perturbations.

    Science.gov (United States)

    Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie

    2016-04-01

    The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate

  9. Conceptualizations of sustainability in carbon markets

    DEFF Research Database (Denmark)

    Karavai, Maryna; Hinostroza, Miriam L.

    2013-01-01

    This paper focuses on market responses to climate change, specifically a particular example of voluntary carbon market development, in sub-Saharan Africa, and seeks to identify the principles of sustainability that carbon markets draw upon. We explore how key discourses and their application...... in the context of the carbon market construct a vision of sustainability. We argue that the prevalence of neoliberal and technocratic ideas and values preferring weak ecological modernization, coupled with the contemporary climate regime, marginalize alternative perspectives on climate-constrained development......, thus weakening prospects of averting the dangerous impacts of a changing climate. The analysis is based on the evaluation of 78 projects in the voluntary market across supply chains in 23 countries in the region....

  10. Constraining the 2012-2014 growing season Alaskan methane budget using CARVE aircraft measurements

    Science.gov (United States)

    Hartery, S.; Chang, R. Y. W.; Commane, R.; Lindaas, J.; Miller, S. M.; Wofsy, S. C.; Karion, A.; Sweeney, C.; Miller, C. E.; Dinardo, S. J.; Steiner, N.; McDonald, K. C.; Watts, J. D.; Zona, D.; Oechel, W. C.; Kimball, J. S.; Henderson, J.; Mountain, M. E.

    2015-12-01

    Soil in northen latitudes contains rich carbon stores which have been historically preserved via permafrost within the soil bed; however, recent surface warming in these regions is allowing deeper soil layers to thaw, influencing the net carbon exchange from these areas. Due to the extreme nature of its climate, these eco-regions remain poorly understood by most global models. In this study we analyze methane fluxes from Alaska using in situ aircraft observations from the 2012-2014 Carbon in Arctic Reservoir Vulnerability Experiment (CARVE). These observations are coupled with an atmospheric particle transport model which quantitatively links surface emissions to atmospheric observations to make regional methane emission estimates. The results of this study are two-fold. First, the inter-annual variability of the methane emissions was found to be <1 Tg over the area of interest and is largely influenced by the length of time the deep soil remains unfrozen. Second, the resulting methane flux estimates and mean soil parameters were used to develop an empirical emissions model to help spatially and temporally constrain the methane exchange at the Alaskan soil surface. The empirical emissions model will provide a basis for exploring the sensitivity of methane emissions to subsurface soil temperature, soil moisture, organic carbon content, and other parameters commonly used in process-based models.

  11. "This One's for VIP Users!": Participation and Commercial Strategies in Children's Virtual Worlds

    OpenAIRE

    Carolina Martinez

    2014-01-01

    Through the integrated framework of participation theory and political economy, this article analyzes participatory opportunities in the virtual world Habbo Hotel, and how participation is constrained and framed by the producer's commercial strategies, which are based on advertising and sales of virtual goods. The study also looks into the ways in which the producer Sulake Corporation discursively represents the virtual world, and how the users with various forms of tactics try to bypass the ...

  12. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    International Nuclear Information System (INIS)

    Sathaye, J.; Goldman, N.

    1991-06-01

    The ''International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries

  13. Carbon markets - an opportunity for the world's forests?

    International Nuclear Information System (INIS)

    Chenost, Clement

    2012-01-01

    Forests cover 30% of the land surface and contain more than half of the carbon stored in terrestrial ecosystems. Carbon credits can be used to compensate the environmental service provided by forests. The sale of carbon credits could be a lever to steer investment. Demand for credits in the forestry sector remains relatively small. However, negotiations directed at a post-Kyoto agreement may create a context that is more favourable to forestry projects by reinstating the question of including forests at the core of the global fight against climate change. (authors)

  14. Dissolved organic carbon and dissolved organic nitrogen data collected using bottle in a world wide distribution from 02 September 1998 to 02 November 2003 (NODC Accession 0002403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) data were collected using bottle casts in a world wide distribution. Data were collected from 02...

  15. Economic impact assessment and operational decision making in emission and transmission constrained electricity markets

    International Nuclear Information System (INIS)

    Nanduri, Vishnu; Kazemzadeh, Narges

    2012-01-01

    Highlights: ► We develop a bilevel game-theoretic model for allowance and electricity markets. ► We solve the model using a reinforcement learning algorithm. ► Model accounts for transmission constraints, cap-and-trade constraints. ► Study demonstrated on 9-bus electric power network. ► Obtain insights about supply shares, impact of transmission constraints, and cost pass through. -- Abstract: Carbon constrained electricity markets are a reality in 10 northeastern states and California in the US, as well as the European Union. Close to a Billion US Dollars have been spent by entities (mainly generators) in the Regional Greenhouse Gas Initiative in procuring CO 2 allowances to meet binding emissions restrictions. In the near future, there are expected to be significant impacts due to the cap-and-trade program, especially when the cap stringency increases. In this research we develop a bilevel, complete-information, matrix game-theoretic model to assess the economic impact and make operational decisions in carbon-constrained restructured electricity markets. Our model is solved using a reinforcement learning approach, which takes into account the learning and adaptive nature of market participants. Our model also accounts for all the power systems constraints via a DC-OPF problem. We demonstrate the working of the model and compute various economic impact indicators such as supply shares, cost pass-through, social welfare, profits, allowance prices, and electricity prices. Results from a 9-bus power network are presented.

  16. Deciphering ocean carbon in a changing world.

    Science.gov (United States)

    Moran, Mary Ann; Kujawinski, Elizabeth B; Stubbins, Aron; Fatland, Rob; Aluwihare, Lihini I; Buchan, Alison; Crump, Byron C; Dorrestein, Pieter C; Dyhrman, Sonya T; Hess, Nancy J; Howe, Bill; Longnecker, Krista; Medeiros, Patricia M; Niggemann, Jutta; Obernosterer, Ingrid; Repeta, Daniel J; Waldbauer, Jacob R

    2016-03-22

    Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM, and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology, and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.

  17. Carbon disclosure project report 2009 : Canada 200

    International Nuclear Information System (INIS)

    Campbell, G.

    2009-01-01

    The carbon disclosure project conducts an annual survey to determine the strategies and actions of major cap companies in relation to climate change. This report discussed initiatives implemented by Canada's largest companies to prepare for a carbon-constrained future. The report documented results from 97 companies. The aim of the report was to help companies make use of the disclosures as reference points for future carbon markets and regulations relating to reporting requirements. Results of the survey demonstrated that Canada's low-carbon and high-carbon impact sectors have implemented several significant initiatives and best practices for operations. However, widespread engagement in a comprehensive manner has yet to be achieved. Many respondents were in the process of developing a more balanced risk-opportunity agenda in relation to climate change, and nearly half of all respondents have implemented governance arrangements or personal incentives in both both the high-carbon and low-carbon impact sectors. 5 tabs., 26 figs.

  18. Lightweight cryptography for constrained devices

    DEFF Research Database (Denmark)

    Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco

    2014-01-01

    Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...... complexity, with the consequence that traditional cryptography solutions become too costly to be implemented. In this paper, we survey design strategies and techniques suitable for implementing security primitives in constrained devices....

  19. The effect of assimilating satellite derived soil moisture in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2015-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture and carbon fluxes as compared to e.g. Europe. To better constrain our

  20. Constraining soil C cycling with strategic, adaptive action for data and model reporting

    Science.gov (United States)

    Harden, J. W.; Swanston, C.; Hugelius, G.

    2015-12-01

    Regional to global carbon assessments include a variety of models, data sets, and conceptual structures. This includes strategies for representing the role and capacity of soils to sequester, release, and store carbon. Traditionally, many soil carbon data sets emerged from agricultural missions focused on mapping and classifying soils to enhance and protect production of food and fiber. More recently, soil carbon assessments have allowed for more strategic measurement to address the functional and spatially explicit role that soils play in land-atmosphere carbon exchange. While soil data sets are increasingly inter-comparable and increasingly sampled to accommodate global assessments, soils remain poorly constrained or understood with regard to their role in spatio-temporal variations in carbon exchange. A more deliberate approach to rapid improvement in our understanding involves a community-based activity than embraces both a nimble data repository and a dynamic structure for prioritization. Data input and output can be transparent and retrievable as data-derived products, while also being subjected to rigorous queries for merging and harmonization into a searchable, comprehensive, transparent database. Meanwhile, adaptive action groups can prioritize data and modeling needs that emerge through workshops, meta-data analyses or model testing. Our continual renewal of priorities should address soil processes, mechanisms, and feedbacks that significantly influence global C budgets and/or significantly impact the needs and services of regional soil resources that are impacted by C management. In order to refine the International Soil Carbon Network, we welcome suggestions for such groups to be led on topics such as but not limited to manipulation experiments, extreme climate events, post-disaster C management, past climate-soil interactions, or water-soil-carbon linkages. We also welcome ideas for a business model that can foster and promote idea and data sharing.

  1. Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite

    Directory of Open Access Journals (Sweden)

    S. M. Miller

    2018-05-01

    Full Text Available NASA's Orbiting Carbon Observatory 2 (OCO-2 satellite launched in summer of 2014. Its observations could allow scientists to constrain CO2 fluxes across regions or continents that were previously difficult to monitor. This study explores an initial step toward that goal; we evaluate the extent to which current OCO-2 observations can detect patterns in biospheric CO2 fluxes and constrain monthly CO2 budgets. Our goal is to guide top-down, inverse modeling studies and identify areas for future improvement. We find that uncertainties and biases in the individual OCO-2 observations are comparable to the atmospheric signal from biospheric fluxes, particularly during Northern Hemisphere winter when biospheric fluxes are small. A series of top-down experiments indicate how these errors affect our ability to constrain monthly biospheric CO2 budgets. We are able to constrain budgets for between two and four global regions using OCO-2 observations, depending on the month, and we can constrain CO2 budgets at the regional level (i.e., smaller than seven global biomes in only a handful of cases (16 % of all regions and months. The potential of the OCO-2 observations, however, is greater than these results might imply. A set of synthetic data experiments suggests that retrieval errors have a salient effect. Advances in retrieval algorithms and to a lesser extent atmospheric transport modeling will improve the results. In the interim, top-down studies that use current satellite observations are best-equipped to constrain the biospheric carbon balance across only continental or hemispheric regions.

  2. Emissions of carbon tetrachloride from Europe

    Science.gov (United States)

    Graziosi, Francesco; Arduini, Jgor; Bonasoni, Paolo; Furlani, Francesco; Giostra, Umberto; Manning, Alistair J.; McCulloch, Archie; O'Doherty, Simon; Simmonds, Peter G.; Reimann, Stefan; Vollmer, Martin K.; Maione, Michela

    2016-10-01

    Carbon tetrachloride (CCl4) is a long-lived radiatively active compound with the ability to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer (MP), the last two decades have seen a sharp decrease in its large-scale emissive use with a consequent decline in its atmospheric mole fractions. However, the MP restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived from reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006-2014 were 2.2 (± 0.8) Gg yr-1, with an average decreasing trend of 6.9 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of approximately 26 %. The inversion was also able to allow the localisation of emission "hot spots" in the domain, with major source areas in southern France, central England (UK) and Benelux (Belgium, the Netherlands, Luxembourg), where most industrial-scale production of basic organic chemicals is located. According to our results, European emissions correspond, on average, to 4.0 % of global emissions for 2006-2012. Together with other regional studies, our results allow a better constraint

  3. Modeling of the global carbon cycle - isotopic data requirements

    International Nuclear Information System (INIS)

    Ciais, P.

    1994-01-01

    Isotopes are powerful tools to constrain carbon cycle models. For example, the combinations of the CO 2 and the 13 C budget allows to calculate the net-carbon fluxes between atmosphere, ocean, and biosphere. Observations of natural and bomb-produced radiocarbon allow to estimate gross carbon exchange fluxes between different reservoirs and to deduce time scales of carbon overturning in important reservoirs. 18 O in CO 2 is potentially a tool to make the deconvolution of C fluxes within the land biosphere (assimilation vs respirations). The scope of this article is to identify gaps in our present knowledge about isotopes in the light of their use as constraint for the global carbon cycle. In the following we will present a list of some future data requirements for carbon cycle models. (authors)

  4. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation.

    Science.gov (United States)

    Van Oijen, Marcel; Schapendonk, Ad; Höglind, Mats

    2010-05-01

    The carbon balance of vegetation is dominated by the two large fluxes of photosynthesis (P) and respiration (R). Mechanistic models have attempted to simulate the two fluxes separately, each with their own set of internal and external controls. This has led to model predictions where environmental change causes R to exceed P, with consequent dieback of vegetation. However, empirical evidence suggests that the R : P ratio is constrained to a narrow range of about 0.4-0.5. Physiological explanations for the narrow range are not conclusive. The aim of this work is to introduce a novel perspective by theoretical study of the quantitative relationship between the four carbon fluxes of P, R, growth and storage (or its inverse, remobilization). Starting from the law of conservation of mass - in this case carbon - equations are derived for the relative magnitudes of all carbon fluxes, which depend on only two parameters: the R : P ratio and the relative rate of storage of carbon in remobilizable reserves. The equations are used to explain observed flux ratios and to analyse incomplete data sets of carbon fluxes. The storage rate is shown to be a freely varying parameter, whereas R : P is narrowly constrained. This explains the constancy of the ratio reported in the literature. With the information thus gained, a data set of R and P in grassland was analysed, and flux estimates could be derived for the periods after cuts in which plant growth is dominated by remobilization before photosynthesis takes over. It is concluded that the relative magnitudes of photosynthesis, respiration, growth and substrate storage are indeed tightly constrained, but because of mass conservation rather than for physiological reasons. This facilitates analysis of incomplete data sets. Mechanistic models, as the embodiment of physiological mechanisms, need to show consistency with the constraints.

  5. Embodied carbon dioxide emission at supra-national scale: A coalition analysis for G7, BRIC, and the rest of the world

    International Nuclear Information System (INIS)

    Chen, Z.M.; Chen, G.Q.

    2011-01-01

    Presented in this study is an empirical analysis of embodied carbon dioxide emissions induced by fossil fuel combustion for the world divided into three supra-national coalitions, i.e., G7, BRIC, and the rest of the world (ROW), via the application of a multi-region input-output modeling for 2004. Embodied emission intensities for the three coalitions are calculated and compared, with market exchange rate and purchase power parity separately used to investigate the difference between nominal and real production efficiencies. Emissions embodied in different economic activities such as production, consumption, import, and export are calculated and analyzed accordingly, and remarkable carbon trade imbalances associated with G7 (surplus of 1.53 billion tons, or 36% its traded emissions) and BRIC (deficit of 1.37 billion tons, or 51% its traded emissions) and approximate balance with ROW (deficit of 0.16 billion tons, or 3% its traded emissions) are concretely revealed. Carbon leakages associated with industry transfer and international trades are illustrated in terms of impacts on global climate policies. The last but not least, per capita consumption based emissions for G7, BRIC, and ROW are determined as 12.95, 1.53, and 2.22 tons, respectively, and flexible abatement policies as well as equity on per capita entitlement are discussed. - Research highlights: → We compare the embodied CO 2 emissions in 2004 for G7, BRIC, and ROW. → Emissions embodied in production, consumption, import, and export are investigated. → Considerable CO 2 trade surplus and deficit are obtained by G7 and BRIC, respectively. → Per head embodied emissions are 13, 1.5, and 2.2 tons for G7, BRIC, and ROW, respectively.

  6. Actions on climate change, Intended Reducing carbon emissions in China via optimal industry shifts: Toward hi-tech industries, cleaner resources and higher carbon shares in less-develop regions

    International Nuclear Information System (INIS)

    Fu, Xue; Lahr, Michael; Yaxiong, Zhang; Meng, Bo

    2017-01-01

    This paper uses an optimal interregional input-output model to focus on how interregional industrial shifts alone might enable China to reduce carbon intensity instead of national shifts. The optimal industry shifts assure integration of all regions by regional products and goods in which carbon emissions are embodied via energy consumption. Generally speaking, high-tech industries concentrate in affluent regions to replace construction. Selected services increase output shares across most of regions. Meanwhile, energy-intensive manufacturing, rather than agriculture, decrease their shares to achieve the national annual growth constrained by nation’s carbon targets. Due to the need to decelerate energy use, carbon intensity goal puts particularly extreme pressure on less-developed regions to shutter heavy industries. Explicit shifts toward cleaner resources and renewable energy appear to be quite important for coal mines in Central China. - Highlights: • The model optimizes GDP constrained by industry-based emissions targets. • Scenario on carbon intensity, growth rate, energy mix, and technology advance. • Interregional I-O table informs technology, industry mix, and interregional trade. • China could raise the output of high-tech in South Coast and of selected services. • Shifts toward cleaner resources and renewable energy are important in the Central.

  7. Constraining the subsoil carbon source to cave-air CO2 and speleothem calcite in central Texas

    Science.gov (United States)

    Bergel, Shelly J.; Carlson, Peter E.; Larson, Toti E.; Wood, Chris T.; Johnson, Kathleen R.; Banner, Jay L.; Breecker, Daniel O.

    2017-11-01

    Canonical models for speleothem formation and the subsurface carbon cycle invoke soil respiration as the dominant carbon source. However, evidence from some karst regions suggests that belowground CO2 originates from a deeper, older source. We therefore investigated the carbon sources to central Texas caves. Drip-water chemistry of two caves in central Texas implies equilibration with calcite at CO2 concentrations (PCO2_sat) higher than the maximum CO2 concentrations observed in overlying soils. This observation suggests that CO2 is added to waters after they percolate through the soils, which requires a subsoil carbon source. We directly evaluate the carbon isotope composition of the subsoil carbon source using δ13C measurements on cave-air CO2, which we independently demonstrate has little to no contribution from host rock carbon. We do so using the oxidative ratio, OR, defined as the number of moles of O2 consumed per mole of CO2 produced during respiration. However, additional belowground processes that affect O2 and CO2 concentrations, such as gas-water exchange and/or diffusion, may also influence the measured oxidative ratio, yielding an apparent OR (ORapparent). Cave air in Natural Bridge South Cavern has ORapparent values (1.09 ± 0.06) indistinguishable from those expected for respiration alone (1.08 ± 0.06). Pore space gases from soils above the cave have lower values (ORapparent = 0.67 ± 0.05) consistent with respiration and gas transport by diffusion. The simplest explanation for these observations is that cave air in NB South is influenced by respiration in open-system bedrock fractures such that neither diffusion nor exchange with water influence the composition of the cave air. The radiocarbon activities of NB South cave-air CO2 suggest the subsoil carbon source is hundreds of years old. The calculated δ13C values of the subsoil carbon source are consistent with tree-sourced carbon (perhaps decomposing root matter), the δ13C values of which

  8. Strategies for Local Low-Carbon Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ohshita, Stephanie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Min, Hu [Energy Foundation China, Beijing (China); Xiulian, Hu [Energy Research Inst., Beijing (China)

    2012-11-14

    Cities around the world are implementing policies and programs with the goal to reduce greenhouse gas emissions, as well as save energy, reduce costs, and protect the local, regional, and global environment. In China, low-carbon development is a key element of the 12th Five Year Plan. Pilot low-carbon development zones have been initiated in five provinces and eight cities and many other locations around China also want to pursue a low-carbon development pathway. This booklet provides information for government officials, policy makers, program designers and implementers, provincial and city planners, and others who want an overview of the key options available for low-carbon development at local level. These Strategies for Local Low-Carbon Development draw from successful experiences from around the world. Information is provided for low-carbon actions that can be taken in the sectors of (1) Industry, (2) Buildings and Appliances, (3) Electric Power, (4) Consumption and Waste Management, (5) Transportation and Urban Form, and (6) Agriculture and Forestry. A description of each policy is provided along with information on the stakeholders involved in implementation, the conditions for successful implementation, the expected energy and carbon savings, and the policy cost-effectiveness. Case studies show how each policy has been implemented somewhere around the world. While there are many low-carbon options available for local implementation, this booklet aims to provide guidance on those that have been most successful, that have the largest impact, and that are cost-effective in order to support low-carbon development efforts in Chinese cities.

  9. The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2016-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our

  10. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  11. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    International Nuclear Information System (INIS)

    Cushman, R.M.; Stoss, F.W.; Univ. of Tennessee, Knoxville, TN

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provide technical responses to specific inquiries related to carbon dioxide (CO 2 ), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also presented

  12. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center]|[Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  13. Parametrization consequences of constraining soil organic matter models by total carbon and radiocarbon using long-term field data

    Science.gov (United States)

    Menichetti, Lorenzo; Kätterer, Thomas; Leifeld, Jens

    2016-05-01

    Soil organic carbon (SOC) dynamics result from different interacting processes and controls on spatial scales from sub-aggregate to pedon to the whole ecosystem. These complex dynamics are translated into models as abundant degrees of freedom. This high number of not directly measurable variables and, on the other hand, very limited data at disposal result in equifinality and parameter uncertainty. Carbon radioisotope measurements are a proxy for SOC age both at annual to decadal (bomb peak based) and centennial to millennial timescales (radio decay based), and thus can be used in addition to total organic C for constraining SOC models. By considering this additional information, uncertainties in model structure and parameters may be reduced. To test this hypothesis we studied SOC dynamics and their defining kinetic parameters in the Zürich Organic Fertilization Experiment (ZOFE) experiment, a > 60-year-old controlled cropland experiment in Switzerland, by utilizing SOC and SO14C time series. To represent different processes we applied five model structures, all stemming from a simple mother model (Introductory Carbon Balance Model - ICBM): (I) two decomposing pools, (II) an inert pool added, (III) three decomposing pools, (IV) two decomposing pools with a substrate control feedback on decomposition, (V) as IV but with also an inert pool. These structures were extended to explicitly represent total SOC and 14C pools. The use of different model structures allowed us to explore model structural uncertainty and the impact of 14C on kinetic parameters. We considered parameter uncertainty by calibrating in a formal Bayesian framework. By varying the relative importance of total SOC and SO14C data in the calibration, we could quantify the effect of the information from these two data streams on estimated model parameters. The weighing of the two data streams was crucial for determining model outcomes, and we suggest including it in future modeling efforts whenever SO14C

  14. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  15. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  16. Constrained optimization via simulation models for new product innovation

    Science.gov (United States)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  17. A coccolithophore concept for constraining the Cenozoic carbon cycle

    Science.gov (United States)

    Henderiks, J.; Rickaby, R. E. M.

    2007-06-01

    An urgent question for future climate, in light of increased burning of fossil fuels, is the temperature sensitivity of the climate system to atmospheric carbon dioxide (pCO>sub>2). To date, no direct proxy for past levels of pCO2 exists beyond the reach of the polar ice core records. We propose a new methodology for placing a constraint on pCO2 over the Cenozoic based on the physiological plasticity of extant coccolithophores. Specifically, our premise is that the contrasting calcification tolerance of various extant species of coccolithophore to raised pCO2 reflects an "evolutionary memory" of past atmospheric composition. The different times of evolution of certain morphospecies allows an upper constraint of past pCO2 to be placed on Cenozoic timeslices. Further, our hypothesis has implications for the response of marine calcifiers to ocean acidification. Geologically "ancient" species, which have survived large changes in ocean chemistry, are likely more resilient to predicted acidification.

  18. Building a low carbon society

    International Nuclear Information System (INIS)

    Graca Carvalho, Maria da; Bonifacio, Matteo; Dechamps, Pierre

    2011-01-01

    This paper presents the strategy of the European Union in the field of energy and climate change. At the heart of the package are three commitments to be met by 2020: to reduce greenhouse gas emissions by at least 20%, to ensure that 20% of final energy consumption is met with renewable sources, and to raise energy efficiency by 20%. This strategy is based on the scientific consensus drawn by the International Panel for Climate Change, and implements the EU political strategy to limit the anthropogenic temperature rise to no more than 2 o C. A Directive for the geological storage of CO 2 is another integral part of the package. This should enable the development and subsequent deployment of zero emission power plants. From a research and technology perspective, the Strategic Energy Technology Plan (SET-Plan) lists several energy technologies which will be required to reconcile economic growth and a vision of a decarbonised society. The EU climate and energy package and the SET-Plan are part of the solution both to the climate crisis and to the current economic and financial crisis. They represent a green 'new deal' which will enhance the competitiveness of EU industry in an increasingly carbon-constrained world.

  19. Affine Lie algebraic origin of constrained KP hierarchies

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-07-01

    It is presented an affine sl(n+1) algebraic construction of the basic constrained KP hierarchy. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and we show that these approaches are equivalent. The model is recognized to be generalized non-linear Schroedinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Backlund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. The construction uncovers origin of the Toda lattice structure behind the latter hierarchy. (author). 23 refs

  20. Microbial Decomposers Not Constrained by Climate History Along a Mediterranean Climate Gradient

    Science.gov (United States)

    Baker, N. R.; Khalili, B.; Martiny, J. B. H.; Allison, S. D.

    2017-12-01

    The return of organic carbon to the atmosphere through terrestrial decomposition is mediated through the breakdown of complex organic polymers by extracellular enzymes produced by microbial decomposer communities. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. To address this question, we deployed fine-pore nylon mesh "microbial cage" litterbags containing grassland litter with and without local inoculum across five sites in southern California, spanning a gradient of 10.3-22.8° C in mean annual temperature and 100-400+ mm mean annual precipitation. Litterbags were deployed in October 2014 and collected four times over the course of 14 months. Recovered litter was assayed for mass loss, litter chemistry, microbial biomass, extracellular enzymes (Vmax and Km­), and enzyme temperature sensitivities. We hypothesized that grassland litter would decompose most rapidly in the grassland site, and that access to local microbial communities would enhance litter decomposition rates and microbial activity in the other sites along the gradient. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbes were not restricted in their ability to decompose litter under different climate conditions. Although we observed a strong correlation between bacterial biomass and mass loss across the gradient, litter that was inoculated with local microbial communities lost less mass despite having greater bacterial biomass and potentially accumulating more microbial residues. Our results suggest that microbial community composition may not constrain C-cycling rates under climate change in our system. However, there may be community constraints on decomposition if climate change alters litter chemistry, a

  1. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  2. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation

    Science.gov (United States)

    van Oijen, M.

    2012-04-01

    • Background and Aims. The carbon balance of vegetation is dominated by the two large fluxes of photosynthesis (P) and respiration (R). Mechanistic models have attempted to simulate the two fluxes separately, each with their own set of internal and external controls. This has led to model predictions where environmental change causes R to exceed P, with consequent dieback of vegetation. However, empirical evidence suggests that the R:P ratio is constrained to a narrow range of about 0.4-0.5. Physiological explanations for the narrow range are not conclusive. We aim to introduce a novel perspective by theoretical study of the quantitative relationship between the four carbon fluxes of P, R, growth and storage (or its inverse, remobilisation). • Methods. Starting from the law of conservation of mass - in this case carbon - we derive equations for the relative magnitudes of all carbon fluxes which depend on only two parameters: the R:P ratio and the relative rate of storage of carbon into remobilisable reserves. The equations are used to explain observed flux ratios and to analyse incomplete data sets of carbon fluxes. • Key Results. Storage rate is shown to be a freely varying parameter, whereas R:P is narrowly constrained. This explains the constancy of the ratio reported in the literature. With the information thus gained, a data set of R and P in grassland was analysed, and flux estimates could be derived for the periods after cuts in which plant growth is dominated by remobilisation before photosynthesis takes over. • Conclusions. We conclude that the relative magnitudes of photosynthesis, respiration, growth and substrate storage are indeed tightly constrained, but because of mass conservation rather than for physiological reasons. This facilitates analysis of incomplete data sets. Mechanistic models, as the embodiment of physiological mechanisms, need to show consistency with the constraints. • Reference. Van Oijen, M., Schapendonk, A. & Höglind, M

  3. Carbonate stability in the reduced lower mantle

    Science.gov (United States)

    Dorfman, Susannah M.; Badro, James; Nabiei, Farhang; Prakapenka, Vitali B.; Cantoni, Marco; Gillet, Philippe

    2018-05-01

    Carbonate minerals are important hosts of carbon in the crust and mantle with a key role in the transport and storage of carbon in Earth's deep interior over the history of the planet. Whether subducted carbonates efficiently melt and break down due to interactions with reduced phases or are preserved to great depths and ultimately reach the core-mantle boundary remains controversial. In this study, experiments in the laser-heated diamond anvil cell (LHDAC) on layered samples of dolomite (Mg, Ca)CO3 and iron at pressure and temperature conditions reaching those of the deep lower mantle show that carbon-iron redox interactions destabilize the MgCO3 component, producing a mixture of diamond, Fe7C3, and (Mg, Fe)O. However, CaCO3 is preserved, supporting its relative stability in carbonate-rich lithologies under reducing lower mantle conditions. These results constrain the thermodynamic stability of redox-driven breakdown of carbonates and demonstrate progress towards multiphase mantle petrology in the LHDAC at conditions of the lowermost mantle.

  4. The Carbon and Global Warming Potential Impacts of Organic Farming: Does It Have a Significant Role in an Energy Constrained World?

    Directory of Open Access Journals (Sweden)

    Ralph C. Martin

    2011-01-01

    Full Text Available About 130 studies were analyzed to compare farm-level energy use and global warming potential (GWP of organic and conventional production sectors. Cross cutting issues such as tillage, compost, soil carbon sequestration and energy offsets were also reviewed. Finally, we contrasted E and GWP data from the wider food system. We concluded that the evidence strongly favours organic farming with respect to whole-farm energy use and energy efficiency both on a per hectare and per farm product basis, with the possible exception of poultry and fruit sectors. For GWP, evidence is insufficient except in a few sectors, with results per ha more consistently favouring organic farming than GWP per unit product. Tillage was consistently a negligible contributor to farm E use and additional tillage on organic farms does not appear to significantly deplete soil C. Energy offsets, biogas, energy crops and residues have a more limited role on organic farms compared to conventional ones, because of the nutrient and soil building uses of soil organic matter, and the high demand for organic foods in human markets. If farm E use represents 35% of total food chain E use, improvements shown of 20% or more in E efficiency through organic farm management would reduce food-chain E use by 7% or more. Among other food supply chain stages, wholesale/retail (including cooling and packaging and processing often each contribute 30% or more to total food system E. Thus, additional improvements can be obtained with reduced processing, whole foods and food waste minimization.

  5. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    OpenAIRE

    Battaglia Gianna; Steinacher Marco; Joos Fortunat

    2016-01-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo sche...

  6. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  7. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    Science.gov (United States)

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.

  8. Late Carboniferous to Late Permian carbon isotope stratigraphy

    DEFF Research Database (Denmark)

    Buggisch, Werner; Krainer, Karl; Schaffhauser, Maria

    2015-01-01

    An integrated study of the litho-, bio-, and isotope stratigraphy of carbonates in the Southern Alps was undertaken in order to better constrain δ13C variations during the Late Carboniferous to Late Permian. The presented high resolution isotope curves are based on 1299 δ13Ccarb and 396 δ13Corg...

  9. Constraining Marsh Carbon Budgets Using Long-Term C Burial and Contemporary Atmospheric CO2 Fluxes

    Science.gov (United States)

    Forbrich, I.; Giblin, A. E.; Hopkinson, C. S.

    2018-03-01

    Salt marshes are sinks for atmospheric carbon dioxide that respond to environmental changes related to sea level rise and climate. Here we assess how climatic variations affect marsh-atmosphere exchange of carbon dioxide in the short term and compare it to long-term burial rates based on radiometric dating. The 5 years of atmospheric measurements show a strong interannual variation in atmospheric carbon exchange, varying from -104 to -233 g C m-2 a-1 with a mean of -179 ± 32 g C m-2 a-1. Variation in these annual sums was best explained by differences in rainfall early in the growing season. In the two years with below average rainfall in June, both net uptake and Normalized Difference Vegetation Index were less than in the other three years. Measurements in 2016 and 2017 suggest that the mechanism behind this variability may be rainfall decreasing soil salinity which has been shown to strongly control productivity. The net ecosystem carbon balance was determined as burial rate from four sediment cores using radiometric dating and was lower than the net uptake measured by eddy covariance (mean: 110 ± 13 g C m-2 a-1). The difference between these estimates was significant and may be because the atmospheric measurements do not capture lateral carbon fluxes due to tidal exchange. Overall, it was smaller than values reported in the literature for lateral fluxes and highlights the importance of investigating lateral C fluxes in future studies.

  10. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  11. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    Science.gov (United States)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2

  12. Carbonate system parameters of an algal-dominated reef along west Maui

    Science.gov (United States)

    Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan A.; Gallagher, Christopher; Cheriton, Olivia; Storlazzi, Curt

    2018-01-01

    Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean end-member TA and DIC measurements. A shift from net community production and calcification to net respiration and carbonate dissolution was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.

  13. Hydrogen-enriched natural gas; Bridge to an ultra low carbon world

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Joshua; Oliver, Mike

    2010-09-15

    Natural gas is recognized as an important part of the solution to climate change, as it has the smallest carbon footprint among fossil fuels and can be used with high efficiency. This alone is not enough. Supplementing natural gas with hydrogen creating hydrogen-enriched natural gas (HENG), where the hydrogen comes from a low- or zero-carbon energy source. HENG, the subject of this paper, can leverage existing natural gas infrastructure to reduce CO2 and NOx, improve the efficiency of end-use equipment, and lower the overall carbon intensity of energy consumption.

  14. Globalised rebellion: the Darfur insurgents and the world

    OpenAIRE

    Jumbert, Maria Gabrielsen; Lanz, David

    2017-01-01

    This article is concerned with the rebellion in Darfur as a way to illustrate the politics of insurgency in the era of globalisation. We first show how the Darfur rebels have projected their struggle onto the world stage, before examining the effects that this has engendered. On the one hand, Darfur's global profile solidified the rebels' cause and co-opted international actors in support of it. This translated into real leverage for the rebels, and it constrained the Sudanese government by r...

  15. A Global Outlook to the Carbon Dioxide Emissions in the World and Emission Factors of the Thermal Power Plants in Turkey

    International Nuclear Information System (INIS)

    Atimtay, Aysel T.

    2003-01-01

    World primary energy demand increases with increases in population and economic development. Within the last 25 yr, the total energy consumption has almost doubled. For the purpose of meeting this demand, fossil energy sources are used and various pollutants are generated. CO 2 is also one of these gases, which cannot be removed like other pollutants, and it causes greenhouse effect and climate change. Reducing the CO 2 emission is very important because of the environmental concerns and regulations, especially the Kyoto Protocol. This paper reviews the estimated world carbon emissions, Turkey's situation in electrical energy production, emission amounts estimated until the year 2020 and emission factors for dust, SO 2 , NO x and CO 2 . The estimated results show that CO 2 emissions from thermal power plants in Turkey will make about 0.66 % of the global CO 2 emissions in 2020

  16. Carbon capture and storage (CCS)

    International Nuclear Information System (INIS)

    Martin-Amouroux, Jean-Marie

    2016-01-01

    The author first defines what carbon capture and storage (CCS)is, describes more precisely the various technologies, methods and processes involved in carbon capture, carbon transport, and carbon geological storage. He briefly evokes the various applications and uses of CCS. In the second part, he proposes an overview of advances and deadlocks of CCS in the world, of the status of installations and projects, of the development of capture practices in the industry, of some existing and important storage sites, of some pilot installations developed by various industrial actors in different countries (26 installations in the world). He indicates power stations equipped for CCS (in Canada, USA, United-Kingdom, Netherlands, Norway, China, South Korea and United Arab Emirates). He evokes projects which have been given up or postponed. He proposes an overview of policies implemented in different countries (USA, Canada, European Union, Australia, and others) to promote CCS

  17. Review of voluntary and regulatory carbon reporting by companies around the world

    International Nuclear Information System (INIS)

    Borie, Sylvain; Decq, Juliette; Wang, Xin; Alberola, Emilie; Afriat, Marion; Gourdon, Thomas

    2016-01-01

    What countries have instituted regulations requiring companies to measure their greenhouse gas (GHG) emissions? How could these regulations be strengthened to help meet the '2 deg. C' goal adopted by all member countries at the COP21 summit? In what ways do new French regulations on reporting of significant GHG emissions constitute a major advance in carbon reporting? To complement recent news focusing on reporting of carbon emissions in France, Carbone 4 offers its readers this review to put voluntary and regulatory carbon reporting mechanisms used by companies in a global perspective

  18. On the origin of constrained superfields

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, G. [Dipartimento di Fisica “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Dudas, E. [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Farakos, F. [Dipartimento di Fisica “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-05-06

    In this work we analyze constrained superfields in supersymmetry and supergravity. We propose a constraint that, in combination with the constrained goldstino multiplet, consistently removes any selected component from a generic superfield. We also describe its origin, providing the operators whose equations of motion lead to the decoupling of such components. We illustrate our proposal by means of various examples and show how known constraints can be reproduced by our method.

  19. Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback

    Science.gov (United States)

    Dean, J. F.; van der Velde, Y.; Garnett, M. H.; Dinsmore, K. J.; Baxter, R.; Lessels, J. S.; Smith, P.; Street, L. E.; Subke, J.-A.; Tetzlaff, D.; Washbourne, I.; Wookey, P. A.; Billett, M. F.

    2018-03-01

    Mobilization of soil/sediment organic carbon into inland waters constitutes a substantial, but poorly-constrained, component of the global carbon cycle. Radiocarbon (14C) analysis has proven a valuable tool in tracing the sources and fate of mobilized carbon, but aquatic 14C studies in permafrost regions rarely detect ‘old’ carbon (assimilated from the atmosphere into plants and soil prior to AD1950). The emission of greenhouse gases derived from old carbon by aquatic systems may indicate that carbon sequestered prior to AD1950 is being destabilized, thus contributing to the ‘permafrost carbon feedback’ (PCF). Here, we measure directly the 14C content of aquatic CO2, alongside dissolved organic carbon, in headwater systems of the western Canadian Arctic—the first such concurrent measurements in the Arctic. Age distribution analysis indicates that the age of mobilized aquatic carbon increased significantly during the 2014 snow-free season as the active layer deepened. This increase in age was more pronounced in DOC, rising from 101-228 years before sampling date (a 120%-125% increase) compared to CO2, which rose from 92-151 years before sampling date (a 59%-63% increase). ‘Pre-industrial’ aged carbon (assimilated prior to ~AD1750) comprised 15%-40% of the total aquatic carbon fluxes, demonstrating the prevalence of old carbon to Arctic headwaters. Although the presence of this old carbon is not necessarily indicative of a net positive PCF, we provide an approach and baseline data which can be used for future assessment of the PCF.

  20. Carbon taxation in Russia : prospects for a double dividend and improved energy efficiency

    OpenAIRE

    Orlov, Anton

    2013-01-01

    Russia is not only one of the world?s major sources of carbon based energy ? coal, oil and gas ? but is also one the most intensive users of energy. Furthermore, Russia accounts for a disproportionately large share of global carbon dioxide emissions ? some 5% to 6% of global carbon dioxide emissions (EIA, 2011a). It has been estimated (World Bank, 2008) that Russia could reduce its use of primary energy use by 45% with consequent economic and environmental benefits. High energy and carbon int...

  1. Non-energy use of fossil fuels and resulting carbon dioxide emissions: bottom-up estimates for the world as a whole and for major developing countries

    NARCIS (Netherlands)

    Weiss, M.; Neelis, M.L.; Blok, K.; Patel, M.K.

    2009-01-01

    We present and apply a simple bottom–up model for estimating non-energy use of fossil fuels and resulting CO2 (carbon dioxide) emissions.We apply this model for the year 2000: (1) to the world as a whole, (2) to the aggregate of Annex I countries and non-Annex I countries, and (3) to the ten

  2. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  3. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    Science.gov (United States)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  4. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  5. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report; ANNUAL

    International Nuclear Information System (INIS)

    Cushman, R.M.

    2001-01-01

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO(sub 2)) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO(sub 2) and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO(sub 2) on vegetation; and the vulnerability of coastal areas to rising sea levels

  6. Operator approach to solutions of the constrained BKP hierarchy

    International Nuclear Information System (INIS)

    Shen, Hsin-Fu; Lee, Niann-Chern; Tu, Ming-Hsien

    2011-01-01

    The operator formalism to the vector k-constrained BKP hierarchy is presented. We solve the Hirota bilinear equations of the vector k-constrained BKP hierarchy via the method of neutral free fermion. In particular, by choosing suitable group element of O(∞), we construct rational and soliton solutions of the vector k-constrained BKP hierarchy.

  7. High Relative Abundance of Biofuel Sourced Ethanol in Precipitation in the US and Brazil Determined Using Compound Specific Stable Carbon Isotopes

    Science.gov (United States)

    Shimizu, M. S.; Felix, J. D. D.; Casas, M.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.; Willey, J. D.; Lane, C.

    2017-12-01

    Ethanol biofuel production and consumption have increased exponentially over the last two decades to help reduce greenhouse gas emissions. Currently, 85% of global ethanol production and consumption occurs in the US and Brazil. Increasing biofuel ethanol usage in these two countries enhances emissions of uncombusted ethanol to the atmosphere contributing to poor air quality. Although measurements of ethanol in the air and the precipitation reveal elevated ethanol concentrations in densely populated cities, other sources such as natural vegetation can contribute to emission to the atmosphere. Previous modeling studies indicated up to 12% of atmospheric ethanol is from anthropogenic emissions. Only one gas phase study in southern Florida attempted to constrain the two sources through direct isotopic measurements. The current study used a stable carbon isotope method to constrain sources of ethanol in rainwater from the US and Brazil. A method was developed using solid phase microextraction (SPME) with subsequent analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Stable carbon isotope signatures (δ13C) of vehicle ethanol emission sources for both the US (-9.8‰) and Brazil (-12.7‰) represented C4 plants as feedstock (corn and sugarcane) for biofuel production. An isotope mixing model using biofuel from vehicles (C4 plants) and biogenic (C3 plants) end-members was implemented to estimate ethanol source apportionment in the rain. We found that stable carbon isotope ratio of ethanol in the rain ranged between -22.6‰ and -12.7‰. Our results suggest that the contribution of biofuel to atmospheric ethanol can be higher than previously estimated. As biofuel usage increasing globally, it is essential to determine the relative abundance of anthropogenic ethanol in other areas of the world.

  8. Information report published in application of article 145 of the Regulation on the behalf of the Commission for sustainable development and land planning about the transition to carbon-free world. Nr 3305

    International Nuclear Information System (INIS)

    Chanteguet, Jean-Paul

    2015-01-01

    In a first chapter, this report proposes an overview of the world climate negotiation process within the COPs: structuring of the climate regime in Rio, a very slow process, a victory of market for quota over tax, the emergence of new climate geopolitics, and difficult climate governance. The second part outlines that the transition towards a de-carbonated world is not negotiable any longer because of the reality of climate change and of its consequences, and of a necessary alternative approach in front of an acknowledged failure. The third part highlights the different ways of a transition towards a more sustainable model by negotiation: evolution towards a new governance, a necessary transformation of the energy system, the assignment of a carbon price, to put the support to fossil energies into question again, to implement innovating financing means as a keystone of an ambitious agreement, to define more sustainable and more carbon saving policies (in urban planning, in production, in agriculture), to preserve and restore carbon sinks, and to territorialize climate again. The second part reports several hearings, and the content of the discussion within the Commission

  9. Carbonate system parameters of an algal-dominated reef along West Maui

    Science.gov (United States)

    Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan; Gallagher, Chris; Cheriton, Olivia; Storlazzi, Curt D.

    2018-04-01

    Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-day sampling period in March 2016. Abiotic process - primarily SGD fluxes - controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean endmember TA and DIC measurements. A shift from positive net community production and positive net community calcification to negative net community production and negative net community calcification was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.

  10. Constraining the thermal history of the North American Midcontinent Rift System using carbonate clumped isotopes and organic thermal maturity indices

    Science.gov (United States)

    Gallagher, Timothy M.; Sheldon, Nathan D.; Mauk, Jeffrey L.; Petersen, Sierra V.; Gueneli, Nur; Brocks, Jochen J.

    2017-01-01

    The Midcontinent Rift System (MRS) is a Late Mesoproterozoic (∼1.1 Ga) sequence of volcanic and sedimentary rocks exposed in the Lake Superior Region of North America. The MRS continues to be the focus of much research due to its economic mineral deposits as well as its archive of Precambrian life and tectonic processes. In order to constrain the post-depositional thermal history of the MRS, samples were analyzed for carbonate clumped isotope composition and organic thermal maturity. Clumped isotope values from sedimentary/early-diagenetic samples were partially reset during burial to temperatures between 68 and 75 °C. Solid-state reordering models indicate that maximum burial temperatures of 125–155 °C would reset the clumped isotope values to the observed temperature range prior to the onset of regional cooling and uplift. Clumped isotope results from late-stage veins in the White Pine Mine encompass a greater temperature range (49–116 °C), indicative of spatially variable hydrothermal activity and vein emplacement after burial temperatures fell below 100 °C during regional cooling and uplift. Clumped isotope and organic thermal maturity data do not indicate significant spatial differences in thermal history along the MRS. Observed variability in bulk organic matter composition and biomarker indices are therefore more likely a result of shifts in primary productivity or early-degradation processes. These results demonstrate that the MRS experienced a spatially consistent, relatively mild thermal history (125–155 °C) and is therefore a valuable archive for understanding the Late Mesoproterozoic environment.

  11. Influencing attitudes toward carbon capture and sequestration: a social marketing approach.

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Dowlatabadi, Hadi; McDaniels, Tim; Ray, Isha

    2011-08-15

    Carbon capture and sequestration (CCS), while controversial, is seen as promising because it will allow the United States to continue using its vast fossil fuel resources in a carbon-constrained world. The public is an important stakeholder in the national debate about whether or not the U.S. should include CCS as a significant part of its climate change strategy. Understanding how to effectively engage with the public about CCS has become important in recent years, as interest in the technology has intensified. We argue that engagement efforts should be focused on places where CCS will first be deployed, i.e., places with many "energy veteran" (EV) citizens. We also argue that, in addition to information on CCS, messages with emotional appeal may be necessary in order to engage the public. In this paper we take a citizen-guided social marketing approach toward understanding how to (positively or negatively) influence EV citizens' attitudes toward CCS. We develop open-ended interview protocols, and a "CCS campaign activity", for Wyoming residents from Gillette and Rock Springs. We conclude that our participants believed expert-informed CCS messages, embedded within an emotionally self-referent (ESR) framework that was relevant to Wyoming, to be more persuasive than the expert messages alone. The appeal to core values of Wyomingites played a significant role in the citizen-guided CCS messages.

  12. Historical Carbon Dioxide Emissions Caused by Land-Use Changes are Possibly Larger than Assumed

    Science.gov (United States)

    Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B. D.; Ciais, P.; Poulter, B.; Bayer, A. D.; Bondeau, A.; Calle, L.; Chini, L. P.; hide

    2017-01-01

    The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change andCO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.

  13. Vital Signs: Seismology of Icy Ocean Worlds.

    Science.gov (United States)

    Vance, Steven D; Kedar, Sharon; Panning, Mark P; Stähler, Simon C; Bills, Bruce G; Lorenz, Ralph D; Huang, Hsin-Hua; Pike, W T; Castillo, Julie C; Lognonné, Philippe; Tsai, Victor C; Rhoden, Alyssa R

    2018-01-01

    Ice-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such investigations could reveal the transport properties and radial structures, with possibilities for locating and characterizing trapped liquids that may host life and yielding critical constraints on redox fluxes and thus on habitability. Modeling efforts have examined seismic sources from tectonic fracturing and impacts. Here, we describe other possible seismic sources, their associations with science questions constraining habitability, and the feasibility of implementing such investigations. We argue, by analogy with the Moon, that detectable seismic activity should occur frequently on tidally flexed ocean worlds. Their ices fracture more easily than rocks and dissipate more tidal energy than the worlds also should create less thermal noise due to their greater distance and consequently smaller diurnal temperature variations. They also lack substantial atmospheres (except in the case of Titan) that would create additional noise. Thus, seismic experiments could be less complex and less susceptible to noise than prior or planned planetary seismology investigations of the Moon or Mars. Key Words: Seismology-Redox-Ocean worlds-Europa-Ice-Hydrothermal. Astrobiology 18, 37-53.

  14. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    Science.gov (United States)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  15. World Engineer’s Convention 2011: Engineers Power the World

    CERN Multimedia

    Yi Ling Hwong (Knowledge Transfer) and Katarina Anthony

    2011-01-01

    Can the increasing global energy consumption be met without intensifying global warming? Do the necessary technical solutions exist, and is the switch to a low-carbon energy supply feasible and financially viable? These crucial questions and many others were dealt with at the 2011World Engineer’s Convention (WEC). CERN was invited to participate in the event, highlighting its significant contribution to global engineering with an exhibition space devoted to the LHC on the convention floor and a keynote speech delivered by CERN’s Director-General.   From 4 – 9 September 2011, more than 2000 engineers and researchers, as well as politicians and business representatives from about 100 countries gathered at the 2011World Engineer’s Convention (WEC). Held in Geneva, Switzerland, they met to discuss solutions for a sustainable energy future. Discussions looked at the development of engineering solutions through a variety of approaches, with ...

  16. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Science.gov (United States)

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  17. Financing the low-carbon transition in a fragile world economy

    International Nuclear Information System (INIS)

    Hourcade, Jean-Charles

    2015-01-01

    An unfavorable economic situation will hinder the launching of the 'low-carbon transition' in compliance with an increase of approximately 2 deg. C - the official goal set by the international community for global warming. Reversing the perspective, this transition is seen, herein, as the grounds for a 'sustainable' growth based on a monetary policy that ties the emission of liquidities to investments in low-carbon facilities. 'Climate remediation [sic] assets' with a social value set by an agreement in the framework of the Convention on the Climate are discussed

  18. Carbon storage in young growth coast redwood stands

    Science.gov (United States)

    Dryw A. Jones; Kevin A. O' Hara

    2012-01-01

    Carbon sequestration is an emerging forest management objective within California and around the world. With the passage of the California's Global Warming Solutions Act (AB32) our need to understand the dynamics of carbon sequestration and to accurately measure carbon storage is essential to insure successful implementation of carbon credit projects throughout...

  19. NASA World Wind: A New Mission

    Science.gov (United States)

    Hogan, P.; Gaskins, T.; Bailey, J. E.

    2008-12-01

    Virtual Globes are well into their first generation, providing increasingly rich and beautiful visualization of more types and quantities of information. However, they are still mostly single and proprietary programs, akin to a web browser whose content and functionality are controlled and constrained largely by the browser's manufacturer. Today Google and Microsoft determine what we can and cannot see and do in these programs. NASA World Wind started out in nearly the same mode, a single program with limited functionality and information content. But as the possibilities of virtual globes became more apparent, we found that while enabling a new class of information visualization, we were also getting in the way. Many users want to provide World Wind functionality and information in their programs, not ours. They want it in their web pages. They want to include their own features. They told us that only with this kind of flexibility, could their objectives and the potential of the technology be truly realized. World Wind therefore changed its mission: from providing a single information browser to enabling a whole class of 3D geographic applications. Instead of creating one program, we create components to be used in any number of programs. World Wind is NASA open source software. With the source code being fully visible, anyone can readily use it and freely extend it to serve any use. Imagery and other information provided by the World Wind servers is also free and unencumbered, including the server technology to deliver geospatial data. World Wind developers can therefore provide exclusive and custom solutions based on user needs.

  20. Hybrid-Electric Passenger Car Carbon Dioxide and Fuel Consumption Benefits Based on Real-World Driving.

    Science.gov (United States)

    Holmén, Britt A; Sentoff, Karen M

    2015-08-18

    Hybrid-electric vehicles (HEVs) have lower fuel consumption and carbon dioxide (CO2) emissions than conventional vehicles (CVs), on average, based on laboratory tests, but there is a paucity of real-world, on-road HEV emissions and performance data needed to assess energy use and emissions associated with real-world driving, including the effects of road grade. This need is especially great as the electrification of the passenger vehicle fleet (from HEVs to PHEVs to BEVs) increases in response to climate and energy concerns. We compared tailpipe CO2 emissions and fuel consumption of an HEV passenger car to a CV of the same make and model during real-world, on-the-road network driving to quantify the in-use benefit of one popular full HEV technology. Using vehicle specific power (VSP) assignments that account for measured road grade, the mean CV/HEV ratios of CO2 tailpipe emissions or fuel consumption defined the corresponding HEV "benefit" factor for each VSP class (1 kW/ton resolution). Averaging over all VSP classes for driving in all seasons, including temperatures from -13 to +35 °C in relatively steep (-13.2 to +11.5% grade), hilly terrain, mean (±SD) CO2 emission benefit factors were 4.5 ± 3.6, 2.5 ± 1.7, and 1.4 ± 0.5 for city, exurban/suburban arterial and highway driving, respectively. Benefit factor magnitude corresponded to the frequency of electric-drive-only (EDO) operation, which was modeled as a logarithmic function of VSP. A combined model explained 95% of the variance in HEV benefit for city, 75% for arterial and 57% for highway driving. Benefit factors consistently exceeded 2 for VSP classes with greater than 50% EDO (i.e., only city and arterial driving). The reported HEV benefits account for real-world road grade that is often neglected in regulatory emissions and fuel economy tests. Fuel use HEV benefit factors were 1.3 and 2 for the regulatory highway (HWFET) and city (FTP) cycles, respectively, 18% and 31% higher than the EPA adjusted

  1. Potentials and costs of carbon dioxide mitigation in the world's buildings

    International Nuclear Information System (INIS)

    Urge-Vorsatz, Diana; Novikova, Aleksandra

    2008-01-01

    Buildings are responsible for over a third of global energy-related carbon dioxide (CO 2 ) emissions. A significant share of these emissions can be avoided cost effectively through improved energy efficiency, while providing the same or higher level of energy services. How large is this emission reduction potential globally and how much will it cost for society to unlock it? This paper provides answers to these questions, presenting the results of bottom-up research conducted for the Intergovernmental Panel on Climate Change (IPCC), based on the assessment of 80 country- or regional-level mitigation studies throughout the world. First, the paper analyses the findings of these studies in a common framework. Then, it aggregates their results into a global estimate of CO 2 mitigation potential. The paper concludes that by 2020 it is possible to cut cost effectively approximately 29% of buildings-related global CO 2 emissions, the largest among all sectors reported by the IPCC, representing a 3.2 GtCO 2 eq. reduction. Developing countries house the largest cost-effective potential with up to 52% of building-level emissions, whereas transition economies and industrialised countries have cost-effective potentials of up to 37% and 25%, respectively. Energy-efficient lighting was identified as the most attractive measure worldwide, in terms of both reduction potential and cost effectiveness. If this potential is realised, the building-related CO 2 emissions would stay constant over 2004-2030. These stabilisation levels (if achieved by all other sectors) would cancel about 3 o C temperature increase over the projected period of time

  2. The role of ecosystem memory in predicting inter-annual variations of the tropical carbon balance.

    Science.gov (United States)

    Bloom, A. A.; Liu, J.; Bowman, K. W.; Konings, A. G.; Saatchi, S.; Worden, J. R.; Worden, H. M.; Jiang, Z.; Parazoo, N.; Williams, M. D.; Schimel, D.

    2017-12-01

    Understanding the trajectory of the tropical carbon balance remains challenging, in part due to large uncertainties in the integrated response of carbon cycle processes to climate variability. Satellite observations atmospheric CO2 from GOSAT and OCO-2, together with ancillary satellite measurements, provide crucial constraints on continental-scale terrestrial carbon fluxes. However, an integrated understanding of both climate forcings and legacy effects (or "ecosystem memory") on the terrestrial carbon balance is ultimately needed to reduce uncertainty on its future trajectory. Here we use the CARbon DAta-MOdel fraMework (CARDAMOM) diagnostic model-data fusion approach - constrained by an array of C cycle satellite surface observations, including MODIS leaf area, biomass, GOSAT solar-induced fluorescence, as well as "top-down" atmospheric inversion estimates of CO2 and CO surface fluxes from the NASA Carbon Monitoring System Flux (CMS-Flux) - to constrain and predict spatially-explicit tropical carbon state variables during 2010-2015. We find that the combined assimilation of land surface and atmospheric datasets places key constraints on the temperature sensitivity and first order carbon-water feedbacks throughout the tropics and combustion factors within biomass burning regions. By varying the duration of the assimilation period, we find that the prediction skill on inter-annual net biospheric exchange is primarily limited by record length rather than model structure and process representation. We show that across all tropical biomes, quantitative knowledge of memory effects - which account for 30-50% of interannual variations across the tropics - is critical for understanding and ultimately predicting the inter-annual tropical carbon balance.

  3. Tradeable carbon permits

    International Nuclear Information System (INIS)

    Koutstaal, P.R.

    1995-01-01

    The research project on tradeable carbon permits has focused on three elements. First of all, the practical implications of designing a system of tradeable emission permits for reducing CO2 has been studied. In the second part, the consequences of introducing a system of tradeable carbon permits for entry barriers have been considered. Finally, the institutional requirements and welfare effects of coordination of CO2 abatement in a second-best world have been examined

  4. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    Science.gov (United States)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  5. Carbon nanotubes purification constrains due to large Fe–Ni/Al2O3 ...

    Indian Academy of Sciences (India)

    The phenomenon is due to liquid-like behaviour of the active phase at reaction temperature (700 ◦C) which is higher than both .... purified carbon nanotubes were washed with distilled water .... easy catalyst active phase extraction, followed by “tip-mode” .... racterization of porous solids and powders: surface area, pore.

  6. Seismic Wave Propagation in Icy Ocean Worlds

    Science.gov (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  7. Continuation of Sets of Constrained Orbit Segments

    DEFF Research Database (Denmark)

    Schilder, Frank; Brøns, Morten; Chamoun, George Chaouki

    Sets of constrained orbit segments of time continuous flows are collections of trajectories that represent a whole or parts of an invariant set. A non-trivial but simple example is a homoclinic orbit. A typical representation of this set consists of an equilibrium point of the flow and a trajectory...... that starts close and returns close to this fixed point within finite time. More complicated examples are hybrid periodic orbits of piecewise smooth systems or quasi-periodic invariant tori. Even though it is possible to define generalised two-point boundary value problems for computing sets of constrained...... orbit segments, this is very disadvantageous in practice. In this talk we will present an algorithm that allows the efficient continuation of sets of constrained orbit segments together with the solution of the full variational problem....

  8. Constrained consequence

    CSIR Research Space (South Africa)

    Britz, K

    2011-09-01

    Full Text Available their basic properties and relationship. In Section 3 we present a modal instance of these constructions which also illustrates with an example how to reason abductively with constrained entailment in a causal or action oriented context. In Section 4 we... of models with the former approach, whereas in Section 3.3 we give an example illustrating ways in which C can be de ned with both. Here we employ the following versions of local consequence: De nition 3.4. Given a model M = hW;R;Vi and formulas...

  9. Carbon Pricing: Design, Experiences and Issues

    DEFF Research Database (Denmark)

    Carbon Pricing reflects upon and further develops the ongoing and worthwhile global debate into how to design carbon pricing, and how to utilize the financial proceeds in the best possible way for society. The world has recently witnessed a significant downward adjustment in fossil fuel prices...

  10. Carbon emissions and an equitable emission reduction criterion

    International Nuclear Information System (INIS)

    Golomb, Dan

    1999-01-01

    In 1995 the world-wide carbon emissions reached 5.8 billion metric tonnes per year (GTC/y). The Kyoto protocol calls for a reduction of carbon emissions from the developed countries (Annex I countries) of 6-8% below 1990 levels on the average, and unspecified commitments for the less developed (non-Annex I) countries. It is doubtful that the Kyoto agreement will be ratified by some parliaments, especially the USA Congress. Furthermore, it is shown that if the non-Annex I countries will not curtail their carbon emissions drastically, the global emissions will soar to huge levels by the middle of the next century. An equitable emission criterion is proposed which may lead to a sustainable rate of growth of carbon emissions, and be acceptable to all countries of the world. The criterion links the rate of growth of carbon emissions to the rate of growth of the Gross Domestic Product (GDP). A target criterion is proposed R = 0.15 KgC/SGDP, which is the current average for western European countries and Japan. This allows for both the growth of the GDP and carbon emissions. However, to reach the target in a reasonable time, the countries for which R≤ 0.3 would be allowed a carbon emission growth rate of 1%./y, and countries for which R≥ 0.3, 0.75%/y. It is shown that by 2050 the world-wide carbon emissions would reach about 10 GTC/y, which is about 3 times less than the Kyoto agreement would allow. (Author)

  11. A carbon copy of the NEP

    Energy Technology Data Exchange (ETDEWEB)

    Koch, G.

    1997-06-23

    An industry view of the international debate about global warming is presented as a prelude to the forthcoming Kyoto Conference on Carbon Dioxide Emissions. Scientific skepticism about whether rising emissions of carbon dioxide are heating the planet`s atmosphere, and the threat of ruinous economic consequences of green-inspired schemes to slash carbon dioxide emissions are cited by industry spokesmen as the reasons why most Third World countries are not willing to institute measures to reduce emissions of greenhouse gases. It is argued that the refusal of Third World countries precludes the possibility of world-wide reductions which, in any case, are considered as probably not necessary. The efforts of First World governments and scientific and ecological interests continuing push for intervention are denounced as ill-informed, even self-serving. Proposed legislated Canadian action on carbon dioxide emissions to replace the limited success voluntary compliance program is likened to the 1981 National Energy Program in its impact on the industry. Opponents of the green agenda are girding for battle throughout North America, basing their defence against a tax or a cap on emissions on scientific, economic and political arguments. They believe existing scientific theories to be fundamentally flawed, claim little or no linkage between global warming and recent flood and hurricane events, and maintain that in actual fact there has been a slight but measurable global cooling in recent decades. It is also argued that it would be far more difficult and vastly more costly to gain additional energy efficiencies in the industrialized world than in the developing countries such as China, India, and Brazil where rapid gains could be made at far less cost by replacing antiquated industrial plants.

  12. How drought severity constrains GPP and its partitioning among carbon pools in a Quercus ilex coppice?

    Science.gov (United States)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-06-01

    The partitioning of photosynthates toward biomass compartments has a crucial role in the carbon sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought prone forests. We analyzed the fate of GPP in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Gross and net carbon fluxes between the ecosystem and the atmosphere were measured with an eddy-covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy-covariance fluxes with annual productions we managed to close a C budget and derive values of autotrophic and heterotrophic respirations, NPP and carbon use efficiency (CUE, the ratio between NPP and GPP). Average values of yearly NEP, GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding ANPP components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems. Gross and net carbon exchange between the ecosystem and the atmosphere were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected, the stem growth, to the least affected, the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease more slightly in response to drought than GPP and NPP, probably due to drought-acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem and highlight the value of maintaining continuous experimental

  13. Looking Forward. The Carbon Markets

    International Nuclear Information System (INIS)

    Wilder, M.

    2006-02-01

    An overview is given of possible future developments in the market for carbon dioxide emissions trading. In this presentation it is concluded that the carbon market is here and now, that the carbon market is global and China and India are major players, that global capital is on the move and delay is dangerous, that there is a world of opportunity for Australian companies and with inaction there is a risk to fall off the fringe

  14. Free and constrained symplectic integrators for numerical general relativity

    International Nuclear Information System (INIS)

    Richter, Ronny; Lubich, Christian

    2008-01-01

    We consider symplectic time integrators in numerical general relativity and discuss both free and constrained evolution schemes. For free evolution of ADM-like equations we propose the use of the Stoermer-Verlet method, a standard symplectic integrator which here is explicit in the computationally expensive curvature terms. For the constrained evolution we give a formulation of the evolution equations that enforces the momentum constraints in a holonomically constrained Hamiltonian system and turns the Hamilton constraint function from a weak to a strong invariant of the system. This formulation permits the use of the constraint-preserving symplectic RATTLE integrator, a constrained version of the Stoermer-Verlet method. The behavior of the methods is illustrated on two effectively (1+1)-dimensional versions of Einstein's equations, which allow us to investigate a perturbed Minkowski problem and the Schwarzschild spacetime. We compare symplectic and non-symplectic integrators for free evolution, showing very different numerical behavior for nearly-conserved quantities in the perturbed Minkowski problem. Further we compare free and constrained evolution, demonstrating in our examples that enforcing the momentum constraints can turn an unstable free evolution into a stable constrained evolution. This is demonstrated in the stabilization of a perturbed Minkowski problem with Dirac gauge, and in the suppression of the propagation of boundary instabilities into the interior of the domain in Schwarzschild spacetime

  15. Carbon footprint of milk from sheep farming systems in northern Spain including soil carbon sequestration in grasslands

    DEFF Research Database (Denmark)

    Batalla, Inma M.; Knudsen, Marie Trydeman; Mogensen, Lisbeth

    2015-01-01

    The link between climate change and livestock production has made carbon footprint based on life cycle assessment a world-wide indicator to assess and communicate the amount of greenhouse gases emitted per unit of product. Nevertheless, the majority of studies have not included soil carbon seques...

  16. I/O-Efficient Construction of Constrained Delaunay Triangulations

    DEFF Research Database (Denmark)

    Agarwal, Pankaj Kumar; Arge, Lars; Yi, Ke

    2005-01-01

    In this paper, we designed and implemented an I/O-efficient algorithm for constructing constrained Delaunay triangulations. If the number of constraining segments is smaller than the memory size, our algorithm runs in expected O( N B logM/B NB ) I/Os for triangulating N points in the plane, where...

  17. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  18. Hyperbolicity and constrained evolution in linearized gravity

    International Nuclear Information System (INIS)

    Matzner, Richard A.

    2005-01-01

    Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). Since computational solution of differential equations introduces almost inevitable errors, it is clearly 'more correct' to introduce a scheme which actively maintains the constraints by solution (constrained evolution). This has shown promise in computational settings, but the analysis of the resulting mixed elliptic hyperbolic method has not been completely carried out. We present such an analysis for one method of constrained evolution, applied to a simple vacuum system, linearized gravitational waves. We begin with a study of the hyperbolicity of the unconstrained Einstein equations. (Because the study of hyperbolicity deals only with the highest derivative order in the equations, linearization loses no essential details.) We then give explicit analytical construction of the effect of initial data setting and constrained evolution for linearized gravitational waves. While this is clearly a toy model with regard to constrained evolution, certain interesting features are found which have relevance to the full nonlinear Einstein equations

  19. Natural gas central to world's future energy mix

    International Nuclear Information System (INIS)

    Carson, M.M.

    1997-01-01

    Continued growth in demand for natural gas is one of three pillars around which the energy mix of the future will take shape and upon which energy strategies should be based. The others are consumption efficiency and growth of renewable energy sources. This paper evaluates world energy supply and demand and includes an analysis of world pipeline gas, electricity, and LNG trends. The paper discusses the natural gas resource, proved reserves, reserves growth, gas prices and demand, country demand trends, world energy use, gas pipeline construction, power generation, electricity consumption and prices, and global carbon emissions

  20. Carbon dioxide from fossil fuels: adapting to uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K; Winter, R C; Bergman, M K

    1980-12-01

    If present scientific information is reasonable, the world is likely to experience noticeable global warming by the beginning of the next century if high annual growth rates of fossil-fuel energy use continue. Only with optimistic assumptions and low growth rates will carbon-dioxide-induced temperature increases be held below 2/sup 0/C or so over the next century. Conservation, flexible energy choices, and control options could lessen the potential effects of carbon dioxide. Though perhaps impractical from the standpoint of costs and efficiency losses, large coastal centralized facilities would be the most amenable to carbon dioxide control and disposal. Yet no country can control carbon dioxide levels unilaterally. The USA, however, which currently contributes over a quarter of all fossil-fuel carbon dioxide emissions and possesses a quarter of the world's coal resources, could provide a much needed role in leadership, research and education. 70 references.

  1. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    related to the rise of oxygen and the evolution of the biosphere. However, before the Cr isotopesystem can be applied to faithfully delineate paleo-environmental changes, careful assessment of the signal robustness and a thorough understanding of the Cr cycle in Earth system processes is necessary...... composition of contemporaneous seawater. Marine carbonates are ubiquitous throughout Earth’s rock record rendering them a particularly interesting archive for constraining past changes in ocean chemistry. This thesis includes an investigation of the fractionation behavior of Cr isotopesduring coprecipitation...

  2. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by

  3. Global Carbon Budget 2017

    Science.gov (United States)

    Le Quéré, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Klein Goldewijk, Kees; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Rödenbeck, Christian; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Sönke; Zhu, Dan

    2018-03-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the global carbon budget - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007-2016), EFF was 9.4 ± 0.5 GtC yr-1, ELUC 1.3 ± 0.7 GtC yr-1, GATM 4.7 ± 0.1 GtC yr-1, SOCEAN 2.4 ± 0.5 GtC yr-1, and SLAND 3.0 ± 0.8 GtC yr-1, with a budget imbalance BIM of 0.6 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr-1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr-1, GATM was 6.1 ± 0.2 GtC yr-1, SOCEAN was 2.6 ± 0.5 GtC yr-1, and SLAND was 2.7 ± 1.0 GtC yr-1, with a small BIM of -0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small SLAND

  4. Constrained noninformative priors

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1994-10-01

    The Jeffreys noninformative prior distribution for a single unknown parameter is the distribution corresponding to a uniform distribution in the transformed model where the unknown parameter is approximately a location parameter. To obtain a prior distribution with a specified mean but with diffusion reflecting great uncertainty, a natural generalization of the noninformative prior is the distribution corresponding to the constrained maximum entropy distribution in the transformed model. Examples are given

  5. Climate-carbon cycle feedbacks under stabilization: uncertainty and observational constraints

    International Nuclear Information System (INIS)

    Jones, Chris D.; Cox, Peter M.; Huntingford, Chris

    2006-01-01

    Avoiding 'dangerous climate change' by stabilization of atmospheric CO 2 concentrations at a desired level requires reducing the rate of anthropogenic carbon emissions so that they are balanced by uptake of carbon by the natural terrestrial and oceanic carbon cycles. Previous calculations of profiles of emissions which lead to stabilized CO 2 levels have assumed no impact of climate change on this natural carbon uptake. However, future climate change effects on the land carbon cycle are predicted to reduce its ability to act as a sink for anthropogenic carbon emissions and so quantification of this feedback is required to determine future permissible emissions. Here, we assess the impact of the climate-carbon cycle feedback and attempt to quantify its uncertainty due to both within-model parameter uncertainty and between-model structural uncertainty. We assess the use of observational constraints to reduce uncertainty in the future permissible emissions for climate stabilization and find that all realistic carbon cycle feedbacks consistent with the observational record give permissible emissions significantly less than previously assumed. However, the observational record proves to be insufficient to tightly constrain carbon cycle processes or future feedback strength with implications for climate-carbon cycle model evaluation

  6. Atmospheric Chemistry in a Changing World

    Science.gov (United States)

    Brune, William H.

    The world is changing,and the atmosphere's composition is changing with it. Human activity is responsible for much of this. Global population growth and migration to urban centers, extensive biomass burning, the spread of fertilizer-intensive agribusiness, globalization of business and industry, rising standards of living in the developing world, and increased energy use fuels atmospheric change. If current practices continue, atmospheric increases are likely for the greenhouse gases carbon dioxide, methane, nitrous oxide; and for the chemically active gases nitric oxide, sulfur dioxide,and ammonia. Increases in global tropospheric ozone and aerosols are a distinct possibility.

  7. Resource Management in Constrained Dynamic Situations

    Science.gov (United States)

    Seok, Jinwoo

    Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments

  8. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    Science.gov (United States)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  9. Frontiers of graphene and carbon nanotubes devices and applications

    CERN Document Server

    2015-01-01

    This book focuses on carbon nanotubes and graphene as representatives of nano-carbon materials, and describes the growth of new technology and applications of new devices. As new devices and as new materials, nano-carbon materials are expected to be world pioneers that could not have been realized with conventional semiconductor materials, and as those that extend the limits of conventional semiconductor performance. This book introduces the latest achievements of nano-carbon devices, processes, and technology growth. It is anticipated that these studies will also be pioneers in the development of future research of nano-carbon devices and materials. This book consists of 18 chapters. Chapters 1 to 8 describe new device applications and new growth methods of graphene, and Chapters 9 to 18, those of carbon nanotubes. It is expected that by increasing the advantages and overcoming the weak points of nanocarbon materials, a new world that cannot be achieved with conventional materials will be greatly expanded. W...

  10. Carbon dioxide, the feedstock for using renewable energy

    Science.gov (United States)

    Hashimoto, K.; Kumagai, N.; Izumiya, K.; Kato, Z.

    2011-03-01

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  11. Cosmicflows Constrained Local UniversE Simulations

    Science.gov (United States)

    Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Courtois, Helene M.; Steinmetz, Matthias; Tully, R. Brent; Pomarède, Daniel; Carlesi, Edoardo

    2016-01-01

    This paper combines observational data sets and cosmological simulations to generate realistic numerical replicas of the nearby Universe. The latter are excellent laboratories for studies of the non-linear process of structure formation in our neighbourhood. With measurements of radial peculiar velocities in the local Universe (cosmicflows-2) and a newly developed technique, we produce Constrained Local UniversE Simulations (CLUES). To assess the quality of these constrained simulations, we compare them with random simulations as well as with local observations. The cosmic variance, defined as the mean one-sigma scatter of cell-to-cell comparison between two fields, is significantly smaller for the constrained simulations than for the random simulations. Within the inner part of the box where most of the constraints are, the scatter is smaller by a factor of 2 to 3 on a 5 h-1 Mpc scale with respect to that found for random simulations. This one-sigma scatter obtained when comparing the simulated and the observation-reconstructed velocity fields is only 104 ± 4 km s-1, I.e. the linear theory threshold. These two results demonstrate that these simulations are in agreement with each other and with the observations of our neighbourhood. For the first time, simulations constrained with observational radial peculiar velocities resemble the local Universe up to a distance of 150 h-1 Mpc on a scale of a few tens of megaparsecs. When focusing on the inner part of the box, the resemblance with our cosmic neighbourhood extends to a few megaparsecs (<5 h-1 Mpc). The simulations provide a proper large-scale environment for studies of the formation of nearby objects.

  12. A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings

    International Nuclear Information System (INIS)

    Gerlagh, Reyer

    2008-01-01

    We develop an endogenous growth model with capital, labor and carbon-energy as production factors and three technology variables that measure accumulated innovations for carbon-energy production, carbon-energy savings, and neutral growth. All markets are complete and perfect, except for research, for which we assume that the marginal social benefits exceed the marginal private benefits by factor four. The model constants are calibrated so that the model reproduces the relevant global trends over the 1970-2000 period. The model contains a simple climate module, and is used to assess the impact of Induced Technological Change (ITC) for a policy that aims at a maximum level of atmospheric CO 2 concentration (450 ppmv). ITC is shown to reduce the required carbon tax by more than a factor 2, and to reduce costs of such a policy by half. When we do not constrain aggregate R and D expenditures to benchmark levels, costs are further reduced. Numerical simulations show that knowledge accumulation shifts from energy production to energy saving technology. We discuss reasons for differences between our results and earlier results reported in the literature. (author)

  13. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    Science.gov (United States)

    Zakharova, Natalia V.

    basalt in flow interiors. Other large igneous provinces and ocean floor basalts could accommodate centuries' worth of world's CO2 emissions. Low-volume basaltic flows and fractured intrusives may potentially serve as smaller-scale CO2 storage targets. However, as illustrated by the example of the Palisade sill in the Newark basin, even densely fractured intrusive basalts are often impermeable, and instead may serve as caprock for underlying formations. Hydraulic properties of fractured formations are very site-specific, but observations and theory suggest that the majority of fractures at depth remain closed. Hydraulic tests in the northern Newark basin indicate that fractures introduce strong anisotropy and heterogeneity to the formation properties, and very few of them augment hydraulic conductivity of these fractured formations. Overall, they are unlikely to provide enough storage capacity for safe CO 2 injection at large scales, but can be suitable for small-scale controlled experiments and pilot injection tests. The risk of inducing earthquakes by underground injection has emerged as one of the primary concerns for large-scale carbon sequestration, especially in fractured and moderately permeable formations. Analysis of in situ stress and distribution of fractures in the subsurface are important steps for evaluating the risks of induced seismicity. Preliminary results from the Newark basin suggest that local stress perturbation may potentially create favorable stress conditions for CO2 sequestration by allowing a considerable pore pressure increase without carrying large risks of fault reactivation. Additional in situ stress data are needed, however, to accurately constrain the magnitude of the minimum horizontal stress, and it is recommended that such tests be conducted at all potential CO 2 storage sites.

  14. Carbonate sedimentology of Seribu Islands patch reef complex: a literature review

    Science.gov (United States)

    Utami, D. A.; Hakim, A. R.

    2018-02-01

    Many oil and gas reservoirs in the world are reserved in fossil carbonate sediment. Knowledge of modern carbonate sedimentology is important for a better understanding of ancient carbonate sedimentation. Equatorial coral reefs comprise almost half of the world coral reef production, and yet their dynamics, distributions, and cycles are still not well understood. Contrary to their subtropical counterpart, South East Asian carbonate system is known to be strongly influenced by the combination of oceanographic and climatic conditions. Hence carbonate sediments in the tropics have a distinct depositional system, and ought to be treated differently since common distribution models were developed from the (sub-tropical) Atlantic and Pacific regions. This paper systematically summarizes carbonate sediment studies in Seribu Islands and its dominant oceanographic configuration to provide insights and a sense of research direction in the future.

  15. Evaluation of HOx sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO and monoterpene (MT dominated ecosystem

    Directory of Open Access Journals (Sweden)

    S. B. Henry

    2013-02-01

    Full Text Available We present a detailed analysis of OH observations from the BEACHON (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-ROCS (Rocky Mountain Organic Carbon Study 2010 field campaign at the Manitou Forest Observatory (MFO, which is a 2-methyl-3-butene-2-ol (MBO and monoterpene (MT dominated forest environment. A comprehensive suite of measurements was used to constrain primary production of OH via ozone photolysis, OH recycling from HO2, and OH chemical loss rates, in order to estimate the steady-state concentration of OH. In addition, the University of Washington Chemical Model (UWCM was used to evaluate the performance of a near-explicit chemical mechanism. The diurnal cycle in OH from the steady-state calculations is in good agreement with measurement. A comparison between the photolytic production rates and the recycling rates from the HO2 + NO reaction shows that recycling rates are ~20 times faster than the photolytic OH production rates from ozone. Thus, we find that direct measurement of the recycling rates and the OH loss rates can provide accurate predictions of OH concentrations. More importantly, we also conclude that a conventional OH recycling pathway (HO2 + NO can explain the observed OH levels in this non-isoprene environment. This is in contrast to observations in isoprene-dominated regions, where investigators have observed significant underestimation of OH and have speculated that unknown sources of OH are responsible. The highly-constrained UWCM calculation under-predicts observed HO2 by as much as a factor of 8. As HO2 maintains oxidation capacity by recycling to OH, UWCM underestimates observed OH by as much as a factor of 4. When the UWCM calculation is constrained by measured HO2, model calculated OH is in better agreement with the observed OH levels. Conversely, constraining the model to observed OH only slightly reduces the model-measurement HO2 discrepancy, implying unknown HO2

  16. Factorization of Constrained Energy K-Network Reliability with Perfect Nodes

    OpenAIRE

    Burgos, Juan Manuel

    2013-01-01

    This paper proves a new general K-network constrained energy reliability global factorization theorem. As in the unconstrained case, beside its theoretical mathematical importance the theorem shows how to do parallel processing in exact network constrained energy reliability calculations in order to reduce the processing time of this NP-hard problem. Followed by a new simple factorization formula for its calculation, we propose a new definition of constrained energy network reliability motiva...

  17. Towards regional, error-bounded landscape carbon storage estimates for data-deficient areas of the world.

    Directory of Open Access Journals (Sweden)

    Simon Willcock

    Full Text Available Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as 'lowland tropical forest' are often used, termed 'Tier 1 type' analyses by the Intergovernmental Panel on Climate Change (IPCC. Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC 'Tier 2' reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92-6.74 Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced

  18. Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter

    International Nuclear Information System (INIS)

    Son, Junbo; Zhou, Shiyu; Sankavaram, Chaitanya; Du, Xinyu; Zhang, Yilu

    2016-01-01

    In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries. - Highlights: • A computationally efficient constrained Kalman filter is proposed. • Proposed filter is integrated into an online failure prognosis framework. • A set of proper constraints significantly improves the failure prediction accuracy. • Promising results are reported in the application of battery failure prognosis.

  19. ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS

    Science.gov (United States)

    Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...

  20. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  1. Constrained superfields in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-02-16

    We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.

  2. Special issue : transport in a post-carbon society

    Science.gov (United States)

    2009-04-01

    This special issue of World Transport Policy & Practice is an outcome of the conference Planning for the Carbon Neutral World: Challenges for Cities and Regions, held 15-18 May 2008 in Salzburg, Austria. The conference, organised by SCUPAD Salzbu...

  3. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  4. Carbon sequestration via wood burial

    Directory of Open Access Journals (Sweden)

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  5. Carbon Dioxide Effects Research and Assessment Program: Proceedings of the carbon dioxide and climate research program conference

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, L E [ed.

    1980-12-01

    Papers presented at the Carbon Dioxide and Climate Research Program Conference are included in this volume. Topics discussed are: the carbon cycle; modeling the carbon system; climatic response due to increased CO2; climate modeling; the use of paleoclimatic data in understanding climate change; attitudes and implications of CO2; social responses to the CO2 problem; a scenario for atmospheric CO2 to 2025; marine photosynthesis and the global carbon cycle; and the role of tropical forests in the carbon balance of the world. Separate abstracts of nine papers have been prepared for inclusion in the Energy Data Base. (RJC)

  6. Towards self-assembled devices, a carbon nanotube approach

    OpenAIRE

    Del Rio Castillo, Antonio Esau

    2012-01-01

    2010/2011 In the last decade the nanostructured carbon materials, especially single walled carbon nanotubes (SWNTs), had emerged as probable substitutes for Silicon in the next generation of electronic devices. This is due to their unique physic and chemical properties. Likewise, scientists all around the world have made a huge effort to introduce carbon materials into the market. Despite this effort, commercial application for carbon nanotubes in electronic devices has not yet been achiev...

  7. [Review of lime carbon sink.

    Science.gov (United States)

    Liu, Li Li; Ling, Jiang Hua; Tie, Li; Wang, Jiao Yue; Bing, Long Fei; Xi, Feng Ming

    2018-01-01

    Under the background of "missing carbon sink" mystery and carbon capture and storage (CCS) technology development, this paper summarized the lime material flow process carbon sink from the lime carbonation principles, impact factors, and lime utilization categories in chemical industry, metallurgy industry, construction industry, and lime kiln ash treatment. The results showed that the lime carbonation rate coefficients were mainly impacted by materials and ambient conditions; the lime carbon sink was mainly in chemical, metallurgy, and construction industries; and current researches focused on the mechanisms and impact factors for carbonation, but their carbon sequestration calculation methods had not been proposed. Therefore, future research should focus on following aspects: to establish a complete system of lime carbon sequestration accounting method in view of material flow; to calculate lime carbon sequestration in both China and the world and explain their offset proportion of CO 2 emission from lime industrial process; to analyze the contribution of lime carbon sequestration to missing carbon sink for clarifying part of missing carbon sinks; to promote the development of carbon capture and storage technology and provide some scientific bases for China's international negotiations on climate change.

  8. In vitro transcription of a torsionally constrained template

    DEFF Research Database (Denmark)

    Bentin, Thomas; Nielsen, Peter E

    2002-01-01

    RNA polymerase (RNAP) and the DNA template must rotate relative to each other during transcription elongation. In the cell, however, the components of the transcription apparatus may be subject to rotary constraints. For instance, the DNA is divided into topological domains that are delineated...... of torsionally constrained DNA by free RNAP. We asked whether or not a newly synthesized RNA chain would limit transcription elongation. For this purpose we developed a method to immobilize covalently closed circular DNA to streptavidin-coated beads via a peptide nucleic acid (PNA)-biotin conjugate in principle...... constrained. We conclude that transcription of a natural bacterial gene may proceed with high efficiency despite the fact that newly synthesized RNA is entangled around the template in the narrow confines of torsionally constrained supercoiled DNA....

  9. Terrestrial Sagnac delay constraining modified gravity models

    Science.gov (United States)

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  10. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from Δ14C and δ13C isotopes

    Science.gov (United States)

    Feng, D.; Peckmann, J.; Peng, Y.; Liang, Q.; Roberts, H. H.; Chen, D.

    2017-12-01

    Sulfate-driven anaerobic oxidation of methane (AOM) limits the release of methane from marine sediments and promotes the formation of carbonates close to the seafloor along continental margins. It has been established that hydrocarbon seeps are a source of dissolved inorganic and organic carbon to marine environments. However, questions remain about the contribution of deep sourced carbon from hydrocarbon seeps to the sedimentary organic carbon pool. For a number of hydrocarbon seeps from the South China Sea and the Gulf of Mexico, the portion of modern carbon was determined based on natural radiocarbon abundances (Δ14C) and stable carbon isotope (δ13Corganic carbon) compositions of the non-carbonate fractions extracted from authigenic carbonates. Samples from both areas show a mixing trend between ideal planktonic organic carbon (δ13C = -22‰ VPDB and 90% modern carbon) and the ambient methane. The δ13Corganic carbon values of non-carbonate fractions from three ancient seep deposits (northern Italy, Miocene; western Washington State, USA, Eocene to Oligocene) confirm that the proxy can be used to constrain the record of sulfate-driven AOM through most of Earth history by measuring the δ13C values of organic carbon. This study reveals the potential of using δ13C values of organic carbon to discern seep and non-seep environments. This new approach is particularly promising when authigenic carbonate is not present in ancient sedimentary environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support of the deep-sea dives. Funding was provided by the NSF of China (Grants: 41422602 and 41373085).

  11. Alpine hydropower in a low carbon economy: Assessing the local implication of global policies

    Science.gov (United States)

    Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    In the global transition towards a more efficient and low-carbon economy, renewable energy plays a major role in displacing fossil fuels, meeting global energy demand while reducing carbon dioxide emissions. In Europe, Variable Renewable Sources (VRS), such as wind and solar power sources, are becoming a relevant share of the generation portfolios in many countries. Beside the indisputable social and environmental advantages of VRS, on the short medium term the VRS-induced lowering energy prices and increasing price's volatility might challenge traditional power sources and, among them, hydropower production, because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. In this study, we focus on the Swiss hydropower sector analysing how different low-carbon targets and strategies established at the Swiss and European level might affect energy price formation and thus impact - through hydropower operation - water availability and ecosystems services at the catchment scale. We combine a hydrological model to simulate future water availability and an electricity market model to simulate future evolution of energy prices based on official Swiss and European energy roadmaps and CO2 price trends in the European Union. We use Multi-Objective optimization techniques to design alternative hydropower reservoir operation strategies, aiming to maximise the hydropower companies' income or to provide reliable energy supply with respect to the energy demand. This integrated model allows analysing to which extent global low-carbon policies impact reservoir operation at the local scale, and to gain insight on how to prioritise compensation measures and/or adaptation strategies to mitigate the impact of VRS on hydropower companies in increasingly water constrained settings. Numerical results are shown for a real-world case study in the Swiss Alps.

  12. Broad-scale small-world network topology induces optimal synchronization of flexible oscillators

    International Nuclear Information System (INIS)

    Markovič, Rene; Gosak, Marko; Marhl, Marko

    2014-01-01

    The discovery of small-world and scale-free properties of many man-made and natural complex networks has attracted increasing attention. Of particular interest is how the structural properties of a network facilitate and constrain its dynamical behavior. In this paper we study the synchronization of weakly coupled limit-cycle oscillators in dependence on the network topology as well as the dynamical features of individual oscillators. We show that flexible oscillators, characterized by near zero values of divergence, express maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid) oscillators are best correlated in more heterogeneous scale-free networks. We found that the synchronization behavior is governed by the interplay between the networks global efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid oscillators. The results are discussed in terms of evolutionary advantages of broad-scale small-world networks in biological systems

  13. Constrained principal component analysis and related techniques

    CERN Document Server

    Takane, Yoshio

    2013-01-01

    In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? What kind of benefits are we getting from them? Addressing these questions, Constrained Principal Component Analysis and Related Techniques shows how constrained PCA (CPCA) offers a unified framework for these approaches.The book begins with four concre

  14. Sample Dilution and Bacterial Community Composition Influence Empirical Leucine-to-Carbon Conversion Factors in Surface Waters of the World's Oceans

    KAUST Repository

    Teira, Eva; Hernando-Morales, Ví ctor; Cornejo-Castillo, Francisco M.; Alonso-Sá ez, Laura; Sarmento, Hugo; Valencia-Vila, Joaquí n; Serrano Catalá , Teresa; Herná ndez-Ruiz, Marta; Varela, Marta M.; Ferrera, Isabel; Moran, Xose Anxelu G.; Gasol, Josep M.

    2015-01-01

    The transformation of leucine incorporation rates to prokaryotic carbon production rates requires the use of either theoretical or empirically determined conversion factors. Empirical leucine-to-carbon conversion factors (eCFs) vary widely across environments, and little is known about their potential controlling factors. We conducted 10 surface seawater manipulation experiments across the world's oceans, where the growth of the natural prokaryotic assemblages was promoted by filtration (i.e., removal of grazers [F treatment]) or filtration combined with dilution (i.e., also relieving resource competition [FD treatment]). The impact of sunlight exposure was also evaluated in the FD treatments, and we did not find a significant effect on the eCFs. The eCFs varied from 0.09 to 1.47 kg C mol Leu−1 and were significantly lower in the FD than in the F samples. Also, changes in bacterial community composition during the incubations, as assessed by automated ribosomal intergenic spacer analysis (ARISA), were more pronounced in the FD than in the F treatments, compared to unmanipulated controls. Thus, we discourage the common procedure of diluting samples (in addition to filtration) for eCF determination. The eCFs in the filtered treatment were negatively correlated with the initial chlorophyll a concentration, picocyanobacterial abundance (mostly Prochlorococcus), and the percentage of heterotrophic prokaryotes with high nucleic acid content (%HNA). The latter two variables explained 80% of the eCF variability in the F treatment, supporting the view that both Prochlorococcus and HNA prokaryotes incorporate leucine in substantial amounts, although this results in relatively low carbon production rates in the oligotrophic ocean.

  15. The World energy outlook in 2020: a presentation of the World energy outlook 2000

    International Nuclear Information System (INIS)

    Cattier, F.

    2000-01-01

    In November 2000, the International Energy Agency published the new edition of the 'World Energy Outlook'. This work presents forecasts from the energy sector for the next 20 years. It describes changes in the supply and demand of energy as well as their consequences in terms of CO 2 emissions. The forecasts emerging are: continued growth in energy consumption and the associated carbon emissions; the ever preponderant role of fossil fuels, the importance of the developing countries in the global energy situation, the key role of the electrical sector and transport in changes in energy consumption and carbon emissions; the increased dependency of OECD and Asian countries; as well as the necessity of implementing additional policies and measures to reach the objectives detailed in the Kyoto Protocol. (author)

  16. Recent Progress in Measuring and Modeling Patterns of Biomass and Soil Carbon Pools Across the Amazon Basin

    Science.gov (United States)

    Potter, Christopher; Malhi, Yadvinder

    2004-01-01

    Ever more detailed representations of above-ground biomass and soil carbon pools have been developed during the LBA project. Environmental controls such as regional climate, land cover history, secondary forest regrowth, and soil fertility are now being taken into account in regional inventory studies. This paper will review the evolution of measurement-extrapolation approaches, remote sensing, and simulation modeling techniques for biomass and soil carbon pools, which together help constrain regional carbon budgets and enhance in our understanding of uncertainty at the regional level.

  17. The effect of carbon tax on carbon emission abatement and GDP: a case study

    Science.gov (United States)

    Liu, Xiao; Leung, Yee; Xu, Yuan; Yung, Linda Chor Wing

    2017-10-01

    Carbon tax has been advocated as an effective economic instrument for the abatement of CO2 emission by various countries, including China, the world's biggest carbon emission country. However, carbon emission abatement cannot be done while ignoring the impact on economic growth. A delicate balance needs to be achieved between the two to find an appropriate pathway for sustainable development. This paper applies a multi-objective optimization approach to analyze the impact of levying carbon tax on the energy-intensive sectors of Guangdong province in China under the constraint of emission reduction target. This approach allows us to evaluate carbon emission minimization while maximizing GDP. For policy analysis, we construct five scenarios for evaluation and optimal choice. The results of the analysis show that a lower initial carbon tax rate is not necessarily better, and that a carbon tax is an effective means to reduce CO2 emissions while maintaining a certain level of GDP growth.

  18. The Global Carbon Cycle: It's a Small World

    Science.gov (United States)

    Ineson, Philip; Milcu, Alexander; Subke, Jens-Arne; Wildman, Dennis; Anderson, Robert; Manning, Peter; Heinemeyer, Andreas

    2010-05-01

    Predicting future atmospheric concentrations of carbon dioxide (CO2), together with the impacts of these changes on global climate, are some of the most urgent and important challenges facing mankind. Modelling is the only way in which such predictions can be made, leading to the current generation of increasingly complex computer simulations, with associated concerns about embedded assumptions and conflicting model outputs. Alongside analysis of past climates, the GCMs currently represent our only hope of establishing the importance of potential runaway positive feedbacks linking climate change and atmospheric greenhouse gases yet the incorporation of necessary biospheric responses into GCMs markedly increases the uncertainty of predictions. Analysis of the importance of the major components of the global carbon (C) cycle reveals that an understanding of the conditions under which the terrestrial biosphere could switch from an overall carbon (C) sink to a source is critical to our ability to make future climate predictions. Here we present an alternative approach to assessing the short term biotic (plant and soil) sensitivities to elevated temperature and atmospheric CO2 through the use of a purely physical analogue. Centred on the concept of materially-closed systems containing scaled-down ratios of the global C stocks for the atmosphere, vegetation and soil we show that, in these model systems, the terrestrial biosphere is able to buffer a rise of 3oC even when coupled to very strong CO2-temperature positive feedbacks. The system respiratory response appears to be extremely well linked to temperature and is critical in deciding atmospheric concentrations of CO2. Simulated anthropogenic emissions of CO2 into the model systems showed an initial corresponding increase in atmospheric CO2 but, somewhat surprisingly, CO2 concentrations levelled off at ca. 480 p.p.m.v., despite continuing additions of CO2. Experiments were performed in which reversion of atmospheric

  19. An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X.

    Science.gov (United States)

    Maffei, Giovanni; Santos-Pata, Diogo; Marcos, Encarni; Sánchez-Fibla, Marti; Verschure, Paul F M J

    2015-12-01

    Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Global Carbon Budget 2017

    Directory of Open Access Journals (Sweden)

    C. Le Quéré

    2018-03-01

    Full Text Available Accurate assessment of anthropogenic carbon dioxide (CO2 emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC, mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN and terrestrial CO2 sink (SLAND are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM, the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016, EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be

  1. Onomatopoeia characters extraction from comic images using constrained Delaunay triangulation

    Science.gov (United States)

    Liu, Xiangping; Shoji, Kenji; Mori, Hiroshi; Toyama, Fubito

    2014-02-01

    A method for extracting onomatopoeia characters from comic images was developed based on stroke width feature of characters, since they nearly have a constant stroke width in a number of cases. An image was segmented with a constrained Delaunay triangulation. Connected component grouping was performed based on the triangles generated by the constrained Delaunay triangulation. Stroke width calculation of the connected components was conducted based on the altitude of the triangles generated with the constrained Delaunay triangulation. The experimental results proved the effectiveness of the proposed method.

  2. Designing management strategies for carbon dioxide storage and utilization under uncertainty using inexact modelling

    Science.gov (United States)

    Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong

    2017-06-01

    Effective application of carbon capture, utilization and storage (CCUS) systems could help to alleviate the influence of climate change by reducing carbon dioxide (CO2) emissions. The research objective of this study is to develop an equilibrium chance-constrained programming model with bi-random variables (ECCP model) for supporting the CCUS management system under random circumstances. The major advantage of the ECCP model is that it tackles random variables as bi-random variables with a normal distribution, where the mean values follow a normal distribution. This could avoid irrational assumptions and oversimplifications in the process of parameter design and enrich the theory of stochastic optimization. The ECCP model is solved by an equilibrium change-constrained programming algorithm, which provides convenience for decision makers to rank the solution set using the natural order of real numbers. The ECCP model is applied to a CCUS management problem, and the solutions could be useful in helping managers to design and generate rational CO2-allocation patterns under complexities and uncertainties.

  3. Leveraging FIA data for analysis beyond forest reports: examples from the world of carbon

    Science.gov (United States)

    Brian F. Walters; Grant M. Domke; Christopher W. Woodall

    2015-01-01

    The Forest Inventory and Analysis program of the USDA Forest Service is the go-to source for data to estimate carbon stocks and stock changes for the annual national greenhouse gas inventory (NGHGI) of the United States. However, the different pools of forest carbon have not always been estimated directly from FIA measurements. As part of the new forest carbon...

  4. Carbonate fuel cells: Milliwatts to megawatts

    Science.gov (United States)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  5. Constraining walking and custodial technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco

    2008-01-01

    We show how to constrain the physical spectrum of walking technicolor models via precision measurements and modified Weinberg sum rules. We also study models possessing a custodial symmetry for the S parameter at the effective Lagrangian level-custodial technicolor-and argue that these models...

  6. The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance 2001-2015

    Science.gov (United States)

    van der Laan-Luijkx, Ingrid T.; van der Velde, Ivar R.; van der Veen, Emma; Tsuruta, Aki; Stanislawska, Karolina; Babenhauserheide, Arne; Zhang, Hui Fang; Liu, Yu; He, Wei; Chen, Huilin; Masarie, Kenneth A.; Krol, Maarten C.; Peters, Wouter

    2017-07-01

    Data assimilation systems are used increasingly to constrain the budgets of reactive and long-lived gases measured in the atmosphere. Each trace gas has its own lifetime, dominant sources and sinks, and observational network (from flask sampling and in situ measurements to space-based remote sensing) and therefore comes with its own optimal configuration of the data assimilation. The CarbonTracker Europe data assimilation system for CO2 estimates global carbon sources and sinks, and updates are released annually and used in carbon cycle studies. CarbonTracker Europe simulations are performed using the new modular implementation of the data assimilation system: the CarbonTracker Data Assimilation Shell (CTDAS). Here, we present and document this redesign of the data assimilation code that forms the heart of CarbonTracker, specifically meant to enable easy extension and modification of the data assimilation system. This paper also presents the setup of the latest version of CarbonTracker Europe (CTE2016), including the use of the gridded state vector, and shows the resulting carbon flux estimates. We present the distribution of the carbon sinks over the hemispheres and between the land biosphere and the oceans. We show that with equal fossil fuel emissions, 2015 has a higher atmospheric CO2 growth rate compared to 2014, due to reduced net land carbon uptake in later year. The European carbon sink is especially present in the forests, and the average net uptake over 2001-2015 was 0. 17 ± 0. 11 PgC yr-1 with reductions to zero during drought years. Finally, we also demonstrate the versatility of CTDAS by presenting an overview of the wide range of applications for which it has been used so far.

  7. ENVIRONMENTAL SCIENCE. Profiling risk and sustainability in coastal deltas of the world.

    Science.gov (United States)

    Tessler, Z D; Vörösmarty, C J; Grossberg, M; Gladkova, I; Aizenman, H; Syvitski, J P M; Foufoula-Georgiou, E

    2015-08-07

    Deltas are highly sensitive to increasing risks arising from local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We quantified changing flood risk due to extreme events using an integrated set of global environmental, geophysical, and social indicators. Although risks are distributed across all levels of economic development, wealthy countries effectively limit their present-day threat by gross domestic product-enabled infrastructure and coastal defense investments. In an energy-constrained future, such protections will probably prove to be unsustainable, raising relative risks by four to eight times in the Mississippi and Rhine deltas and by one-and-a-half to four times in the Chao Phraya and Yangtze deltas. The current emphasis on short-term solutions for the world's deltas will greatly constrain options for designing sustainable solutions in the long term. Copyright © 2015, American Association for the Advancement of Science.

  8. Reducing uncertainty for estimating forest carbon stocks and dynamics using integrated remote sensing, forest inventory and process-based modeling

    Science.gov (United States)

    Poulter, B.; Ciais, P.; Joetzjer, E.; Maignan, F.; Luyssaert, S.; Barichivich, J.

    2015-12-01

    Accurately estimating forest biomass and forest carbon dynamics requires new integrated remote sensing, forest inventory, and carbon cycle modeling approaches. Presently, there is an increasing and urgent need to reduce forest biomass uncertainty in order to meet the requirements of carbon mitigation treaties, such as Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we describe a new parameterization and assimilation methodology used to estimate tropical forest biomass using the ORCHIDEE-CAN dynamic global vegetation model. ORCHIDEE-CAN simulates carbon uptake and allocation to individual trees using a mechanistic representation of photosynthesis, respiration and other first-order processes. The model is first parameterized using forest inventory data to constrain background mortality rates, i.e., self-thinning, and productivity. Satellite remote sensing data for forest structure, i.e., canopy height, is used to constrain simulated forest stand conditions using a look-up table approach to match canopy height distributions. The resulting forest biomass estimates are provided for spatial grids that match REDD+ project boundaries and aim to provide carbon estimates for the criteria described in the IPCC Good Practice Guidelines Tier 3 category. With the increasing availability of forest structure variables derived from high-resolution LIDAR, RADAR, and optical imagery, new methodologies and applications with process-based carbon cycle models are becoming more readily available to inform land management.

  9. 21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal constrained cemented or uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3300 Hip joint metal constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal constrained...

  10. Coding for Two Dimensional Constrained Fields

    DEFF Research Database (Denmark)

    Laursen, Torben Vaarbye

    2006-01-01

    a first order model to model higher order constraints by the use of an alphabet extension. We present an iterative method that based on a set of conditional probabilities can help in choosing the large numbers of parameters of the model in order to obtain a stationary model. Explicit results are given...... for the No Isolated Bits constraint. Finally we present a variation of the encoding scheme of bit-stuffing that is applicable to the class of checkerboard constrained fields. It is possible to calculate the entropy of the coding scheme thus obtaining lower bounds on the entropy of the fields considered. These lower...... bounds are very tight for the Run-Length limited fields. Explicit bounds are given for the diamond constrained field as well....

  11. Q-deformed systems and constrained dynamics

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1993-01-01

    It is shown that quantum theories of the q-deformed harmonic oscillator and one-dimensional free q-particle (a free particle on the 'quantum' line) can be obtained by the canonical quantization of classical Hamiltonian systems with commutative phase-space variables and a non-trivial symplectic structure. In the framework of this approach, classical dynamics of a particle on the q-line coincides with the one of a free particle with friction. It is argued that q-deformed systems can be treated as ordinary mechanical systems with the second-class constraints. In particular, second-class constrained systems corresponding to the q-oscillator and q-particle are given. A possibility of formulating q-deformed systems via gauge theories (first-class constrained systems) is briefly discussed. (orig.)

  12. Algorithm for locating the extremum of a multi-dimensional constrained function and its application to the PPPL Hybrid Study

    International Nuclear Information System (INIS)

    Bathke, C.

    1978-03-01

    A description is presented of a general algorithm for locating the extremum of a multi-dimensional constrained function. The algorithm employs a series of techniques dominated by random shrinkage, steepest descent, and adaptive creeping. A discussion follows of the algorithm's application to a ''real world'' problem, namely the optimization of the price of electricity, P/sub eh/, from a hybrid fusion-fission reactor. Upon the basis of comparisons with other optimization schemes of a survey nature, the algorithm is concluded to yield a good approximation to the location of a function's optimum

  13. Shell's Big Dirty Secret. Insight into the world's most carbon intensive oil company and the legacy of CEO Jeroen van der Veer

    International Nuclear Information System (INIS)

    Stockman, L.; Rowell, A.; Kretzmann, S.

    2009-06-01

    Royal Dutch Shell plc is the largest oil operator in Nigeria, and holds more acreage in Canada's oil sands than any other corporation. Because of these facts, and several others, Shell is also the most carbon intensive oil company in the world. In short, for every barrel of oil it produces in the future, Shell will contribute more to global warming than any other oil company. This report documents Shell's record investment in dirty forms of energy, and it illuminates the corporate strategy and lobbying for regulations that indicate it intends to profit from that position for a long time to come (authors' abstract)

  14. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  15. Accounting for disturbance history in models: using remote sensing to constrain carbon and nitrogen pool spin-up.

    Science.gov (United States)

    Hanan, Erin J; Tague, Christina; Choate, Janet; Liu, Mingliang; Kolden, Crystal; Adam, Jennifer

    2018-03-24

    Disturbances such as wildfire, insect outbreaks, and forest clearing, play an important role in regulating carbon, nitrogen, and hydrologic fluxes in terrestrial watersheds. Evaluating how watersheds respond to disturbance requires understanding mechanisms that interact over multiple spatial and temporal scales. Simulation modeling is a powerful tool for bridging these scales; however, model projections are limited by uncertainties in the initial state of plant carbon and nitrogen stores. Watershed models typically use one of two methods to initialize these stores: spin-up to steady state or remote sensing with allometric relationships. Spin-up involves running a model until vegetation reaches equilibrium based on climate. This approach assumes that vegetation across the watershed has reached maturity and is of uniform age, which fails to account for landscape heterogeneity and non-steady-state conditions. By contrast, remote sensing, can provide data for initializing such conditions. However, methods for assimilating remote sensing into model simulations can also be problematic. They often rely on empirical allometric relationships between a single vegetation variable and modeled carbon and nitrogen stores. Because allometric relationships are species- and region-specific, they do not account for the effects of local resource limitation, which can influence carbon allocation (to leaves, stems, roots, etc.). To address this problem, we developed a new initialization approach using the catchment-scale ecohydrologic model RHESSys. The new approach merges the mechanistic stability of spin-up with the spatial fidelity of remote sensing. It uses remote sensing to define spatially explicit targets for one or several vegetation state variables, such as leaf area index, across a watershed. The model then simulates the growth of carbon and nitrogen stores until the defined targets are met for all locations. We evaluated this approach in a mixed pine-dominated watershed in

  16. Carbon-carbon: Multi-use composite of exotic artifact?

    International Nuclear Information System (INIS)

    Hager, J.W.

    1993-01-01

    Carbon-Carbon composites evolved as the pyrolyzed cousins of the polymer matrix composites, capitalizing on the development of carbon fiber reinforcements. Early success as thermal protection material in ballistic missile reentry vehicles quickly spawned other military applications such as rocket nozzles and exit cones. Despite regulations limiting dissemination of information, the space shuttle and aircraft brake industry benefited from these developments by adapting the C-C fabrication processes to their products. Carbon-carbon has been considered, proposed or used for many other exotic applications: protection against laser weapon assault for SDI; thermal protection for NASP; components of expendable gas turbine engines: dimensionally stable space platforms, mirrors and antennas; thermal management applications such as printed circuit boards and space-based radiators. They have also been incorporated into the design of the Tokamak fusion reactors and NASA space probes and are being considered as replacements for graphite in other nuclear applications. There is significant world-wide interest and research in C-C. The paper traces the history of these developments and explores the technical consequences of rapid product development in the absence of an adequate science base. The unexploited potential of this material system is examined, and the technical challenges and barriers to commercialization are highlighted

  17. Mapping the Carbon Footprint of Nations.

    Science.gov (United States)

    Kanemoto, Keiichiro; Moran, Daniel; Hertwich, Edgar G

    2016-10-04

    Life cycle thinking asks companies and consumers to take responsibility for emissions along their entire supply chain. As the world economy becomes more complex it is increasingly difficult to connect consumers and other downstream users to the origins of their greenhouse gas (GHG) emissions. Given the important role of subnational entities-cities, states, and companies-in GHG abatement efforts, it would be advantageous to better link downstream users to facilities and regulators who control primary emissions. We present a new spatially explicit carbon footprint method for establishing such connections. We find that for most developed countries the carbon footprint has diluted and spread: for example, since 1970 the U.S. carbon footprint has grown 23% territorially, and 38% in consumption-based terms, but nearly 200% in spatial extent (i.e., the minimum area needed to contain 90% of emissions). The rapidly growing carbon footprints of China and India, however, do not show such a spatial expansion of their consumption footprints in spite of their increasing participation in the world economy. In their case, urbanization concentrates domestic pollution and this offsets the increasing importance of imports.

  18. Constrained Local UniversE Simulations: a Local Group factory

    Science.gov (United States)

    Carlesi, Edoardo; Sorce, Jenny G.; Hoffman, Yehuda; Gottlöber, Stefan; Yepes, Gustavo; Libeskind, Noam I.; Pilipenko, Sergey V.; Knebe, Alexander; Courtois, Hélène; Tully, R. Brent; Steinmetz, Matthias

    2016-05-01

    Near-field cosmology is practised by studying the Local Group (LG) and its neighbourhood. This paper describes a framework for simulating the `near field' on the computer. Assuming the Λ cold dark matter (ΛCDM) model as a prior and applying the Bayesian tools of the Wiener filter and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the ΛCDMscenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of haloes must obey specific isolation, mass and separation criteria. At the second level, the orbital angular momentum and energy are constrained, and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations, 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG `factory' enables the construction of a large ensemble of simulated LGs. Suitable candidates for high-resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG.

  19. Following Carbon Isotopes from Methane to Molecules

    Science.gov (United States)

    Freeman, K. H.

    2017-12-01

    Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.

  20. Expanding the development benefits from carbon offsets

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, Jessica; Grieg-Gran, Maryanne; Harris, Lizzie; Huq, Saleemul

    2006-10-15

    The Clean Development Mechanism (CDM) of the Kyoto Protocol which allows for trade in emission reductions between developing and developed countries has a specific aim of ensuring that carbon emission reduction projects contribute to sustainable development of the host country according to standards set by that country. However, the development potential of transactions under the CDM is constrained by a number of factors. Governments face the dilemma of setting demanding sustainable development criteria and running the risk of losing investments to other developing countries with less demanding standards, or setting less stringent standards and thus generating little benefit at the local level. This is compounded by the fact that concluding deals under the CDM in developing countries is more expensive, time-consuming and risky than buying carbon credits elsewhere.

  1. Mangrove production and carbon sinks: A revision of global budget estimates

    Science.gov (United States)

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  2. Energy Data Visualization Requires Additional Approaches to Continue to be Relevant in a World with Greater Low-Carbon Generation

    International Nuclear Information System (INIS)

    Grant Wilson, I. A.

    2016-01-01

    The hypothesis described in this article proposes that energy visualization diagrams commonly used need additional changes to continue to be relevant in a world with greater low-carbon generation. The diagrams that display national energy data are influenced by the properties of the type of energy being displayed, which in most cases has historically meant fossil fuels, nuclear fuels, or hydro. As many energy systems throughout the world increase their use of electricity from wind- or solar-based renewables, a more granular display of energy data in the time domain is required. This article also introduces the shared axes energy diagram that provides a simple and powerful way to compare the scale and seasonality of the demands and supplies of an energy system. This aims to complement, rather than replace existing diagrams, and has an additional benefit of promoting a whole systems approach to energy systems, as differing energy vectors, such as natural gas, transport fuels, and electricity, can all be displayed together. This, in particular, is useful to both policy makers and to industry, to build a visual foundation for a whole systems narrative, which provides a basis for discussion of the synergies and opportunities across and between different energy vectors and demands. The diagram’s ability to wrap a sense of scale around a whole energy system in a simple way is thought to explain its growing popularity.

  3. Energy Data Visualization Requires Additional Approaches to Continue to be Relevant in a World with Greater Low-Carbon Generation

    Energy Technology Data Exchange (ETDEWEB)

    Grant Wilson, I. A., E-mail: grant.wilson@sheffield.ac.uk [Environmental and Energy Engineering Group, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield (United Kingdom)

    2016-08-31

    The hypothesis described in this article proposes that energy visualization diagrams commonly used need additional changes to continue to be relevant in a world with greater low-carbon generation. The diagrams that display national energy data are influenced by the properties of the type of energy being displayed, which in most cases has historically meant fossil fuels, nuclear fuels, or hydro. As many energy systems throughout the world increase their use of electricity from wind- or solar-based renewables, a more granular display of energy data in the time domain is required. This article also introduces the shared axes energy diagram that provides a simple and powerful way to compare the scale and seasonality of the demands and supplies of an energy system. This aims to complement, rather than replace existing diagrams, and has an additional benefit of promoting a whole systems approach to energy systems, as differing energy vectors, such as natural gas, transport fuels, and electricity, can all be displayed together. This, in particular, is useful to both policy makers and to industry, to build a visual foundation for a whole systems narrative, which provides a basis for discussion of the synergies and opportunities across and between different energy vectors and demands. The diagram’s ability to wrap a sense of scale around a whole energy system in a simple way is thought to explain its growing popularity.

  4. Dynamics regulating major trends in Barents Sea temperatures and subsequent effect on remotely sensed particulate inorganic carbon

    DEFF Research Database (Denmark)

    Hovland, Erlend Kjeldsberg; Dierssen, Heidi M.; Ferreira, Ana Sofia

    2013-01-01

    A more comprehensive understanding of how ocean temperatures influence coccolithophorid production of particulate inorganic carbon (PIC) will make it easier to constrain the effect of ocean acidification in the future. We studied the effect of temperature on Emiliania huxleyi PIC production...

  5. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  6. The World energy issue

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2011-01-01

    This Power Point document proposes figures and data about the current world energy consumption, the various energy sources, the share of primary energy consumption by different sectors, and the levels of energy reserves. It addresses the issue of global warming (evolution of temperature, regional anomalies, the challenge of limitation of temperature, the greenhouse gas emissions), the strategic role of electricity (energy mix, heat production with electricity), energy savings, electricity production (key data on solar, wind, solar and biomass energy, possibilities of carbon capture, nuclear energy, costs of these different energies)

  7. Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature

    International Nuclear Information System (INIS)

    Jones, Chris D.; Cox, Peter; Huntingford, Chris

    2003-01-01

    Carbon-cycle feedbacks have been shown to be very important in predicting climate change over the next century, with a potentially large positive feedback coming from the release of carbon from soils as global temperatures increase. The magnitude of this feedback and whether or not it drives the terrestrial carbon cycle to become a net source of carbon dioxide during the next century depends particularly on the response of soil respiration to temperature. Observed global atmospheric CO 2 concentration, and its response to naturally occurring climate anomalies, is used to constrain the behaviour of soil respiration in our coupled climate-carbon-cycle GCM. This constraint is used to quantify some of the uncertainties in predictions of future CO 2 levels. The uncertainty is large, emphasizing the importance of carbon-cycle research with respect to future climate change predictions

  8. Sample dilution and bacterial community composition influence empirical leucine-to-carbon conversion factors in surface waters of the world's oceans.

    Science.gov (United States)

    Teira, Eva; Hernando-Morales, Víctor; Cornejo-Castillo, Francisco M; Alonso-Sáez, Laura; Sarmento, Hugo; Valencia-Vila, Joaquín; Serrano Catalá, Teresa; Hernández-Ruiz, Marta; Varela, Marta M; Ferrera, Isabel; Gutiérrez Morán, Xosé Anxelu; Gasol, Josep M

    2015-12-01

    The transformation of leucine incorporation rates to prokaryotic carbon production rates requires the use of either theoretical or empirically determined conversion factors. Empirical leucine-to-carbon conversion factors (eCFs) vary widely across environments, and little is known about their potential controlling factors. We conducted 10 surface seawater manipulation experiments across the world's oceans, where the growth of the natural prokaryotic assemblages was promoted by filtration (i.e., removal of grazers [F treatment]) or filtration combined with dilution (i.e., also relieving resource competition [FD treatment]). The impact of sunlight exposure was also evaluated in the FD treatments, and we did not find a significant effect on the eCFs. The eCFs varied from 0.09 to 1.47 kg C mol Leu(-1) and were significantly lower in the FD than in the F samples. Also, changes in bacterial community composition during the incubations, as assessed by automated ribosomal intergenic spacer analysis (ARISA), were more pronounced in the FD than in the F treatments, compared to unmanipulated controls. Thus, we discourage the common procedure of diluting samples (in addition to filtration) for eCF determination. The eCFs in the filtered treatment were negatively correlated with the initial chlorophyll a concentration, picocyanobacterial abundance (mostly Prochlorococcus), and the percentage of heterotrophic prokaryotes with high nucleic acid content (%HNA). The latter two variables explained 80% of the eCF variability in the F treatment, supporting the view that both Prochlorococcus and HNA prokaryotes incorporate leucine in substantial amounts, although this results in relatively low carbon production rates in the oligotrophic ocean. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. The outlook for the world and Australian oil markets

    International Nuclear Information System (INIS)

    Donaldson, K.; Fok, G.

    1996-01-01

    Global demand for oil is projected to continue its upward trend to 2000-1, with growth in the transport sector expected to underpin future increases in oil consumption. World oil consumption is projected to be matched by global production, keeping the average annual oil price relatively stable. In many countries, the diversion of oil revenue to other projects is threatening to constrain increases in production capacity, particularly in the OPEC countries. The encouragement of foreign investment in state oil industries is a likely method of easing the constraint. Australian exploration activity is rising steadily with the prospect of stable oil prices, expanding gas markets and the incentives provided by a number of recent discoveries. While the geographical pattern of Australian production has now changed, with Western Australian production exceeding Victoria production, Australia is expected to maintain its position in the world oil market as a significant producer, importer and exporter. (author). 6 figs., 23 refs

  10. Short-term dissolved organic carbon dynamics reflect water management and precipitation patterns in a subtropical estuary

    Directory of Open Access Journals (Sweden)

    Peter Regier

    2016-12-01

    Full Text Available Estuaries significantly impact the global carbon cycle by regulating the exchange of organic matter, primarily in the form of dissolved organic carbon (DOC, between terrestrial and marine carbon pools. Estuarine DOC dynamics are complex as tides and other hydrological and climatic drivers can affect carbon fluxes on short and long time scales. While estuarine and coastal DOC dynamics have been well studied, variations on short time scales are less well constrained. Recent advancements in sonde technology enable autonomous in situ collection of high frequency DOC data using fluorescent dissolved organic matter (fDOM as a proxy, dramatically improving our capacity to characterize rapid changes in DOC, even in remote ecosystems. This study utilizes high-frequency fDOM measurements to untangle rapid and complex hydrologic drivers of DOC in the Shark River estuary, the main drainage of Everglades National Park, Florida. Non-conservative mixing of fDOM along the salinity gradient suggested mangrove inputs accounted for 6% of the total DOC pool. Average changes in fDOM concentrations through individual tidal cycles ranged from less than 10% to greater than 50% and multi-day trends greater than 100% change in fDOM concentration were observed. Salinity and water level both inversely correlated to fDOM at sub-hourly and daily resolutions, while freshwater controls via precipitation and water management were observed at diel to monthly time-scales. In particular, the role of water management in rapidly shifting estuarine salinity gradients and DOC export regimes at sub-weekly time-scales was evident. Additionally, sub-hourly spikes in ebb-tide fDOM indicated rapid exchange of DOC between mangrove sediments and the river channel. DOC fluxes calculated from high-resolution fDOM measurements were compared to monthly DOC measurements with high-resolution fluxes considerably improving accuracy of fluxes (thereby constraining carbon budgets. This study provides

  11. Web-based public health geographic information systems for resources-constrained environment using scalable vector graphics technology: a proof of concept applied to the expanded program on immunization data

    Directory of Open Access Journals (Sweden)

    Kamadjeu Raoul

    2006-06-01

    Full Text Available Abstract Background Geographic Information Systems (GIS are powerful communication tools for public health. However, using GIS requires considerable skill and, for this reason, is sometimes limited to experts. Web-based GIS has emerged as a solution to allow a wider audience to have access to geospatial information. Unfortunately the cost of implementing proprietary solutions may be a limiting factor in the adoption of a public health GIS in a resource-constrained environment. Scalable Vector Graphics (SVG is used to define vector-based graphics for the internet using XML (eXtensible Markup Language; it is an open, platform-independent standard maintained by the World Wide Web Consortium (W3C since 2003. In this paper, we summarize our methodology and demonstrate the potential of this free and open standard to contribute to the dissemination of Expanded Program on Immunization (EPI information by providing interactive maps to a wider audience through the Internet. Results We used SVG to develop a database driven web-based GIS applied to EPI data from three countries of WHO AFRO (World Health Organization – African Region. The system generates interactive district-level country immunization coverage maps and graphs. The approach we describe can be expanded to cover other public health GIS demanding activities, including the design of disease atlases in a resources-constrained environment. Conclusion Our system contributes to accumulating evidence demonstrating the potential of SVG technology to develop web-based public health GIS in resources-constrained settings.

  12. Web-based public health geographic information systems for resources-constrained environment using scalable vector graphics technology: a proof of concept applied to the expanded program on immunization data.

    Science.gov (United States)

    Kamadjeu, Raoul; Tolentino, Herman

    2006-06-03

    Geographic Information Systems (GIS) are powerful communication tools for public health. However, using GIS requires considerable skill and, for this reason, is sometimes limited to experts. Web-based GIS has emerged as a solution to allow a wider audience to have access to geospatial information. Unfortunately the cost of implementing proprietary solutions may be a limiting factor in the adoption of a public health GIS in a resource-constrained environment. Scalable Vector Graphics (SVG) is used to define vector-based graphics for the internet using XML (eXtensible Markup Language); it is an open, platform-independent standard maintained by the World Wide Web Consortium (W3C) since 2003. In this paper, we summarize our methodology and demonstrate the potential of this free and open standard to contribute to the dissemination of Expanded Program on Immunization (EPI) information by providing interactive maps to a wider audience through the Internet. We used SVG to develop a database driven web-based GIS applied to EPI data from three countries of WHO AFRO (World Health Organization - African Region). The system generates interactive district-level country immunization coverage maps and graphs. The approach we describe can be expanded to cover other public health GIS demanding activities, including the design of disease atlases in a resources-constrained environment. Our system contributes to accumulating evidence demonstrating the potential of SVG technology to develop web-based public health GIS in resources-constrained settings.

  13. Role of temperate zone forests in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V.; Hett, J. (eds.)

    1979-01-01

    The proceedings of a workshop on carbon uptake and losses from temperate zone forests are presented. The goals of the workshop were to analyze existing data on growth and utilization of the temperate zone forest carbon pool and to identify further research needs in relation to the role of temperate forests in the global carbon cycle. Total standing stock and growth recovery transients were examined for most of the temperate region over a period from pre-settlement times to the present, with emphasis on the last three decades. Because of data availability, certain regions and topics were covered more in detail than others. Forest inventory data from most of the commercial timberlands of the north temperate zone suggest these forests have functioned over the past several decades as an annual sink for about 10/sup 9/ metric tons of carbon. Thus, net growth of these forests has withdrawn carbon from the atmosphere at a rate equivalent, approximately, to 50% of the annual rise in atmospheric carbon. Various data inadequacies make this estimate probably no more precise than plus or minus half of the value. Analysis of growth and vegetation changes in New England and the southeastern United States shows that forest biomass has partly recovered since extensive clearing took place in the 18th and 19th centuries. This regrowth represents a net withdrawal of carbon (carbon sink) from the atmosphere in recent decades, although the difference in pool size between present and original forests means that, in the longer term, the two regions have functioned as carbon sources.

  14. Volume-constrained optimization of magnetorheological and electrorheological valves and dampers

    Science.gov (United States)

    Rosenfeld, Nicholas C.; Wereley, Norman M.

    2004-12-01

    This paper presents a case study of magnetorheological (MR) and electrorheological (ER) valve design within a constrained cylindrical volume. The primary purpose of this study is to establish general design guidelines for volume-constrained MR valves. Additionally, this study compares the performance of volume-constrained MR valves against similarly constrained ER valves. Starting from basic design guidelines for an MR valve, a method for constructing candidate volume-constrained valve geometries is presented. A magnetic FEM program is then used to evaluate the magnetic properties of the candidate valves. An optimized MR valve is chosen by evaluating non-dimensional parameters describing the candidate valves' damping performance. A derivation of the non-dimensional damping coefficient for valves with both active and passive volumes is presented to allow comparison of valves with differing proportions of active and passive volumes. The performance of the optimized MR valve is then compared to that of a geometrically similar ER valve using both analytical and numerical techniques. An analytical equation relating the damping performances of geometrically similar MR and ER valves in as a function of fluid yield stresses and relative active fluid volume, and numerical calculations are provided to calculate each valve's damping performance and to validate the analytical calculations.

  15. Comparison of phase-constrained parallel MRI approaches: Analogies and differences.

    Science.gov (United States)

    Blaimer, Martin; Heim, Marius; Neumann, Daniel; Jakob, Peter M; Kannengiesser, Stephan; Breuer, Felix A

    2016-03-01

    Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase-constrained parallel MRI formulations, namely the standard phase-constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k-space symmetry. Both formulations were combined with image-domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k-space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal-to-noise ratio by modifying the sampling scheme was implemented. For SENSE, the VCC concept was mathematically equivalent to the standard phase-constrained formulation and therefore yielded identical results. In conjunction with k-space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC-GRAPPA reconstructed images provided spatial phase information with full resolution. Although both phase-constrained parallel MRI formulations are very similar conceptually, there exist important differences between image-domain and k-space domain reconstructions regarding the calibration robustness and the availability of high-resolution phase information. © 2015 Wiley Periodicals, Inc.

  16. Designing equitable antiretroviral allocation strategies in resource-constrained countries.

    Directory of Open Access Journals (Sweden)

    David P Wilson

    2005-02-01

    Full Text Available Recently, a global commitment has been made to expand access to antiretrovirals (ARVs in the developing world. However, in many resource-constrained countries the number of individuals infected with HIV in need of treatment will far exceed the supply of ARVs, and only a limited number of health-care facilities (HCFs will be available for ARV distribution. Deciding how to allocate the limited supply of ARVs among HCFs will be extremely difficult. Resource allocation decisions can be made on the basis of many epidemiological, ethical, or preferential treatment priority criteria.Here we use operations research techniques, and we show how to determine the optimal strategy for allocating ARVs among HCFs in order to satisfy the equitable criterion that each individual infected with HIV has an equal chance of receiving ARVs. We present a novel spatial mathematical model that includes heterogeneity in treatment accessibility. We show how to use our theoretical framework, in conjunction with an equity objective function, to determine an optimal equitable allocation strategy (OEAS for ARVs in resource-constrained regions. Our equity objective function enables us to apply the egalitarian principle of equity with respect to access to health care. We use data from the detailed ARV rollout plan designed by the government of South Africa to determine an OEAS for the province of KwaZulu-Natal. We determine the OEAS for KwaZulu-Natal, and we then compare this OEAS with two other ARV allocation strategies: (i allocating ARVs only to Durban (the largest urban city in KwaZulu-Natal province and (ii allocating ARVs equally to all available HCFs. In addition, we compare the OEAS to the current allocation plan of the South African government (which is based upon allocating ARVs to 17 HCFs. We show that our OEAS significantly improves equity in treatment accessibility in comparison with these three ARV allocation strategies. We also quantify how the size of the

  17. Determining How Atmospheric Carbon Dioxide Concentrations Have Changed during the History of the Earth

    Science.gov (United States)

    Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.

    2011-01-01

    The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…

  18. Carbon emissions linked to capital and technology transfer

    International Nuclear Information System (INIS)

    Smith, P.F.

    1994-01-01

    Reducing carbon dioxide emissions, and hence global warming, could be achieved by placing a carbon budget on buildings and light vehicles. In this scheme, a building or vehicle is allocated an annual carbon budget expressed as kg/carbon. The user of the building or vehicle is then taxed for every carbon unit used over its budget limit. The aim of this paper is to extend this carbon budget idea in order to set up a formula for achieving capital and technology transfer from industrialized countries to developing countries. In addition, the author proposes a mechanism for linking historic carbon emissions caused in the industrialized world with compensation strategies for the developing nations. (UK)

  19. Key figures for the climate in France and in the World - Issue 2016

    International Nuclear Information System (INIS)

    Dussud, Francois-Xavier; Joassard, Irenee; Wong, Florine; Duvernoy, Jerome; Morel, Romain

    2015-01-01

    This publication proposes graphs, maps and tables to illustrate the status and the evolution of climate in France and in the World. The first part addresses climate change: global warming, consequences of climate change, predictions, factors influencing temperature, greenhouse effect and greenhouse gases, greenhouse gas tanks and flows (case of CO 2 ), and increase of greenhouse gas atmospheric stock. The second part proposes an overview of greenhouse gas emissions in the world, globally and due to energy combustion or to electricity production. The third part addresses greenhouse gas emissions in France and in Europe and gives data on carbon footprint and imported emissions. The fourth part addresses the distribution of emissions among sectors in Europe and in France (energy industry, transports, manufacturing and building industry, other sectors, emissions out of energy use). The last part addresses climate policies: carbon pricing in the World, international negotiations, the Kyoto protocol in its successive periods (2008-2012, 2013-2020), the EU commitments, the European ETS, carbon price in the EU ETS, the Energy Climate package for 2030, financing of the struggle against climate change, and the French climate policy

  20. A discretized algorithm for the solution of a constrained, continuous ...

    African Journals Online (AJOL)

    A discretized algorithm for the solution of a constrained, continuous quadratic control problem. ... The results obtained show that the Discretized constrained algorithm (DCA) is much more accurate and more efficient than some of these techniques, particularly the FSA. Journal of the Nigerian Association of Mathematical ...

  1. A Rank-Constrained Matrix Representation for Hypergraph-Based Subspace Clustering

    Directory of Open Access Journals (Sweden)

    Yubao Sun

    2015-01-01

    Full Text Available This paper presents a novel, rank-constrained matrix representation combined with hypergraph spectral analysis to enable the recovery of the original subspace structures of corrupted data. Real-world data are frequently corrupted with both sparse error and noise. Our matrix decomposition model separates the low-rank, sparse error, and noise components from the data in order to enhance robustness to the corruption. In order to obtain the desired rank representation of the data within a dictionary, our model directly utilizes rank constraints by restricting the upper bound of the rank range. An alternative projection algorithm is proposed to estimate the low-rank representation and separate the sparse error from the data matrix. To further capture the complex relationship between data distributed in multiple subspaces, we use hypergraph to represent the data by encapsulating multiple related samples into one hyperedge. The final clustering result is obtained by spectral decomposition of the hypergraph Laplacian matrix. Validation experiments on the Extended Yale Face Database B, AR, and Hopkins 155 datasets show that the proposed method is a promising tool for subspace clustering.

  2. Estimating national forest carbon stocks and dynamics: combining models and remotely sensed information

    Science.gov (United States)

    Smallman, Thomas Luke; Exbrayat, Jean-François; Bloom, Anthony; Williams, Mathew

    2017-04-01

    Forests are a critical component of the global carbon cycle, storing significant amounts of carbon, split between living biomass and dead organic matter. The carbon budget of forests is the most uncertain component of the global carbon cycle - it is currently impossible to quantify accurately the carbon source/sink strength of forest biomes due to their heterogeneity and complex dynamics. It has been a major challenge to generate robust carbon budgets across landscapes due to data scarcity. Models have been used for estimating carbon budgets, but outputs have lacked an assessment of uncertainty, making a robust assessment of their reliability and accuracy challenging. Here a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC) data assimilation framework has been used to combine remotely sensed leaf area index (MODIS), biomass (where available) and deforestation estimates, in addition to forest planting information from the UK's national forest inventory, an estimate of soil carbon from the Harmonized World Database (HWSD) and plant trait information with a process model (DALEC) to produce a constrained analysis with a robust estimate of uncertainty of the UK forestry carbon budget between 2000 and 2010. Our analysis estimates the mean annual UK forest carbon sink at -3.9 MgC ha-1 yr-1 with a 95 % confidence interval between -4.0 and -3.1 MgC ha-1yr-1. The UK national forest inventory (NFI) estimates the mean UK forest carbon sink to be between -1.4 and -5.5 MgC ha-1 yr-1. The analysis estimate for total forest biomass stock in 2010 is estimated at 229 (177/232) TgC, while the NFI an estimated total forest biomass carbon stock of 216 TgC. Leaf carbon area (LCA) is a key plant trait which we are able to estimate using our analysis. Comparison of median estimates for (LCA) retrieved from the analysis and a UK land cover map show higher and lower values for LCA are estimated areas dominated by needle leaf and broad leaf forests forest respectively, consistent with

  3. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-surface Martian Materials?

    Science.gov (United States)

    Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Niles, P. B.; Eigenbrode, J. L.

    2015-12-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of ~0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2is released below 400 °C, much lower than traditional carbonate decomposition temperatures which can be as low as 400 °C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of ~550 °C for CO2, which is about 200 °C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400 °C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be > 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  4. Will Invertebrates Require Increasingly Carbon-Rich Food in a Warming World?

    Science.gov (United States)

    Anderson, Thomas R; Hessen, Dag O; Boersma, Maarten; Urabe, Jotaro; Mayor, Daniel J

    2017-12-01

    Elevated temperature causes metabolism and respiration to increase in poikilothermic organisms. We hypothesized that invertebrate consumers will therefore require increasingly carbon-rich diets in a warming environment because the increased energetic demands are primarily met using compounds rich in carbon, that is, carbohydrates and lipids. Here, we test this hypothesis using a new stoichiometric model that has carbon (C) and nitrogen (N) as currencies. Model predictions did not support the hypothesis, indicating instead that the nutritional requirements of invertebrates, at least in terms of food quality expressed as C∶N ratio, may change little, if at all, at elevated temperature. Two factors contribute to this conclusion. First, invertebrates facing limitation by nutrient elements such as N have, by default, excess C in their food that can be used to meet the increased demand for energy in a warming environment, without recourse to extra dietary C. Second, increased feeding at elevated temperature compensates for the extra demands of metabolism to the extent that, when metabolism and intake scale equally with temperature (have the same Q 10 ), the relative requirement for dietary C and N remains unaltered. Our analysis demonstrates that future climate-driven increases in the C∶N ratios of autotroph biomass will likely exacerbate the stoichiometric mismatch between nutrient-limited invertebrate grazers and their food, with important consequences for C sequestration and nutrient cycling in ecosystems.

  5. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    NARCIS (Netherlands)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-01-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global

  6. Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World

    DEFF Research Database (Denmark)

    Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.

    2012-01-01

    estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been...

  7. Short Communication Evidence of carbon transport between shelf ...

    African Journals Online (AJOL)

    The world ocean is pivotal in the global carbon cycle and, subsequent to anthropogenic loading of the atmosphere with CO2, its ability to sequestrate photosynthetically-fixed carbon is important with respect to our ability to predict climate change. A study of the Benguela Edge Exchange Processes was carried out to better ...

  8. Ring-constrained Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Karras, Panagiotis; Mamoulis, Nikos

    2008-01-01

    . This new operation has important applications in decision support, e.g., placing recycling stations at fair locations between restaurants and residential complexes. Clearly, RCJ is defined based on a geometric constraint but not on distances between points. Thus, our operation is fundamentally different......We introduce a novel spatial join operator, the ring-constrained join (RCJ). Given two sets P and Q of spatial points, the result of RCJ consists of pairs (p, q) (where p ε P, q ε Q) satisfying an intuitive geometric constraint: the smallest circle enclosing p and q contains no other points in P, Q...

  9. Development of improved space sampling strategies for ocean chemical properties: Total carbon dioxide and dissolved nitrate

    Science.gov (United States)

    Goyet, Catherine; Davis, Daniel; Peltzer, Edward T.; Brewer, Peter G.

    1995-01-01

    Large-scale ocean observing programs such as the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) today, must face the problem of designing an adequate sampling strategy. For ocean chemical variables, the goals and observing technologies are quite different from ocean physical variables (temperature, salinity, pressure). We have recently acquired data on the ocean CO2 properties on WOCE cruises P16c and P17c that are sufficiently dense to test for sampling redundancy. We use linear and quadratic interpolation methods on the sampled field to investigate what is the minimum number of samples required to define the deep ocean total inorganic carbon (TCO2) field within the limits of experimental accuracy (+/- 4 micromol/kg). Within the limits of current measurements, these lines were oversampled in the deep ocean. Should the precision of the measurement be improved, then a denser sampling pattern may be desirable in the future. This approach rationalizes the efficient use of resources for field work and for estimating gridded (TCO2) fields needed to constrain geochemical models.

  10. Climatic servitude: climate change, business and politics

    International Nuclear Information System (INIS)

    Belouve, J.M.

    2009-01-01

    This book is together a contemporary history book and a global dossier about a topic of prime importance in our civilization. It treats of the history of science, of ideas and events put in the modern civilization context, of science situation and scientific controversies, of the media aspects, of carbon economy and its related business, of Al Gore's and Maurice Strong's biographies, and finally, it makes a critical geopolitical analysis and makes proposals for a renovated ecology. In the conclusion, the author shows how climate change has become the hobbyhorse of a new thinking trend, namely the New World Order, aiming at conducting people to the acceptance of constraining policies encompassing the energy security of nations, new taxes, a worldwide economic disruption, the limitation of the World's population, and a World governance supported by the United Nations and not constrained by classical democratic rules. (J.S.)

  11. Real-world dose-relativity, tablet burden, and cost comparison of conversion between sevelamer hydrochloride/carbonate and lanthanum carbonate monotherapies.

    Science.gov (United States)

    Keith, Michael S; Sibbel, Scott; Copley, J Brian; Wilson, Rosamund J; Brunelli, Steven M

    2014-10-01

    Sevelamer hydrochloride/carbonate (SH/C) and lanthanum carbonate (LC) are noncalcium-based phosphate binders used for the management of hyperphosphatemia in patients with end-stage renal disease (ESRD). The objectives of this study were to examine the dose-relativity, tablet burden, and cost difference of bidirectional conversion between SH/C and LC monotherapy in a large cohort of real-world patients with ESRD. This retrospective cohort study included three 30-day preconversion periods (days -90 to -61, -60 to -31, and -30 to -1) followed by three 30-day postconversion periods (days 1 to 30, 31 to 60, and 61 to 90); day 0 was the index date of conversion. The full analysis population (FAP) comprised two cohorts: SH/C to LC (S-L) converters and LC to SH/C (L-S) converters. The SH/C:LC dose-relativity ratio was assessed in the dose-relativity subset, defined as patients whose serum phosphate levels fell within a caliper range of ± 0.5 mg/dL in the final preconversion (days -30 to -1) and postconversion (days 61 to 90) periods. Tablet burden and phosphate binder costs were assessed in the FAP. Phosphate binder costs were based on average wholesale prices. The FAP contained a total of 303 patients, comprising the S-L (128 patients) and L-S (175 patients) converter cohorts. The dose-relativity subset contained 159 patients, 72 from the S-L cohort and 87 from the L-S cohort. The overall mean SH/C:LC dose-relativity ratio was 2.27 (95% CI, 2.04 to 2.52). In SH/C dose strata >800 to 2400, >2400 to 4800, >4800 to 7200, and >7200 mg/d, overall mean dose-relativity ratios were 0.79 (95% CI, 0.57 to 1.10), 1.45 (95% CI, 1.20 to 1.75), 2.05 (95% CI, 1.75 to 2.39), and 3.24 (95% CI, 2.89 to 3.66), respectively. The overall mean tablet burden was 6.6 tablets per day lower with LC monotherapy than with SH/C monotherapy (95% CI, -7.1 to -6.0; P 7800 mg/d was the inflection point at which conversion to LC resulted in mean cost savings. Patients requiring SH/C >7800 mg/d comprised

  12. Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks

    Science.gov (United States)

    Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.

    2017-12-01

    Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.

  13. Constraining the SIF - GPP relationship via estimation of NPQ

    Science.gov (United States)

    Silva, C. E.; Yang, X.; Tang, J.; Lee, J. E.; Cushman, K.; Toh Yuan Kun, L.; Kellner, J. R.

    2016-12-01

    Airborne and satellite measurements of solar-induced fluorescence (SIF) have the potential to improve estimates of gross primary production (GPP). Plants dissipate absorbed photosynthetically active radiation (APAR) among three de-excitation pathways: SIF, photochemical quenching (PQ), which results in electron transport and the production of ATP and NADPH consumed during carbon fixation (i.e., GPP), and heat dissipation via conversion of xanthophyll pigments (non-photochemical quenching: NPQ). As a result, the relationship between SIF and GPP is a function of NPQ and may vary temporally and spatially with environmental conditions (e.g., light and water availability) and plant traits (e.g., leaf N content). Accurate estimates of any one of the de-excitation pathways require measurement of the other two. Here we combine half-hourly measurements of canopy APAR and SIF with eddy covariance estimates of GPP at Harvard Forest to close the canopy radiation budget and infer canopy NPQ throughout the 2013 growing season. We use molecular-level photosynthesis equations to compute PQ (umol photons m-2s-1) from GPP (umol CO2 m-2s-1) and invert an integrated canopy radiative transfer and leaf-level photosynthesis/fluorescence model (SCOPE) to quantify hemispherically and spectrally-integrated SIF emission (umol photons m-2s-1) from single band (760 nm) top-of-canopy SIF measurements. We estimate half-hourly NPQ as the residual required to close the radiation budget (NPQ = APAR - SIF - PQ). Our future work will test estimated NPQ against simultaneously acquired measurements of the photochemical reflectance index (PRI), a spectral index sensitive to xanthopyll pigments. By constraining two of the three de-excitation pathways, simultaneous SIF and PRI measurements are likely to improve GPP estimates, which are crucial to the study of climate - carbon cycle interactions.

  14. CP properties of symmetry-constrained two-Higgs-doublet models

    CERN Document Server

    Ferreira, P M; Nachtmann, O; Silva, Joao P

    2010-01-01

    The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.

  15. Constrained multi-degree reduction with respect to Jacobi norms

    KAUST Repository

    Ait-Haddou, Rachid; Barton, Michael

    2015-01-01

    We show that a weighted least squares approximation of Bézier coefficients with factored Hahn weights provides the best constrained polynomial degree reduction with respect to the Jacobi L2L2-norm. This result affords generalizations to many previous findings in the field of polynomial degree reduction. A solution method to the constrained multi-degree reduction with respect to the Jacobi L2L2-norm is presented.

  16. Constrained multi-degree reduction with respect to Jacobi norms

    KAUST Repository

    Ait-Haddou, Rachid

    2015-12-31

    We show that a weighted least squares approximation of Bézier coefficients with factored Hahn weights provides the best constrained polynomial degree reduction with respect to the Jacobi L2L2-norm. This result affords generalizations to many previous findings in the field of polynomial degree reduction. A solution method to the constrained multi-degree reduction with respect to the Jacobi L2L2-norm is presented.

  17. Mathematical Modeling of Constrained Hamiltonian Systems

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    1995-01-01

    Network modelling of unconstrained energy conserving physical systems leads to an intrinsic generalized Hamiltonian formulation of the dynamics. Constrained energy conserving physical systems are directly modelled as implicit Hamiltonian systems with regard to a generalized Dirac structure on the

  18. Benchmark carbon stocks from old-growth forests in northern New England, USA

    Science.gov (United States)

    Coeli M. Hoover; William B. Leak; Brian G. Keel

    2012-01-01

    Forests world-wide are recognized as important components of the global carbon cycle. Carbon sequestration has become a recognized forest management objective, but the full carbon storage potential of forests is not well understood. The premise of this study is that old-growth forests can be expected to provide a reasonable estimate of the upper limits of carbon...

  19. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N; Catling, David C

    2018-04-17

    The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO 2 , which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. Copyright © 2018 the Author(s). Published by PNAS.

  20. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-01-07

    Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Decoupling reconsidered: Does world society integration influence the relationship between the environment and economic development?

    Science.gov (United States)

    Longhofer, Wesley; Jorgenson, Andrew

    2017-07-01

    This study advances scholarship on environment and development by examining whether nations more embedded in the pro-environmental world society are more or less likely to experience a relative decoupling between economic development and carbon emissions over time. The authors calculate a network centrality measure using national-level membership data on environmental international nongovernmental organizations (INGOs), and then employ the measure to create four subsamples of nations that are relatively more or less integrated in the environmental world society. The authors use interactions between measures of economic development and time in two-way fixed effects models to estimate the potentially changing effects of development on carbon emissions for the four subsamples of nations from 1970 to 2009. Results indicate that nations that are the most embedded in the environmental world society experienced a moderate decrease through time in the effect of development on carbon emissions, while the effect of development on emissions increased through time in the most peripheral nations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nuclear astrophysics of worlds in the string landscape

    International Nuclear Information System (INIS)

    Hogan, Craig J.

    2006-01-01

    Motivated by landscape models in string theory, cosmic nuclear evolution is analyzed allowing the standard model Higgs expectation value w to take values different from that in our world (w≡1), while holding the Yukawa couplings fixed. Thresholds are estimated, and astrophysical consequences are described, for several sensitive dependences of nuclear behavior on w. The dependence of the neutron-proton mass difference on w is estimated based on recent calculations of strong isospin symmetry breaking, and is used to derive the threshold of neutron-stable worlds, w≅0.6±0.2. The effect of a stable neutron on nuclear evolution in the big bang and stars is shown to lead to radical differences from our world, such as a predominance of heavy r-process and s-process nuclei and a lack of normal galaxies, stars, and planets. Rough estimates are reviewed of w thresholds for deuteron stability and the pp and pep reactions dominant in many stars. A simple model of nuclear resonances is used to estimate the w dependence of overall carbon and oxygen production during normal stellar nucleosynthesis; carbon production is estimated to change by a fraction ≅15(1-w). Radical changes in astrophysical behavior seem to require changes in w of more than a few percent, even for the most sensitive phenomena

  3. Cosmogenic photons strongly constrain UHECR source models

    Directory of Open Access Journals (Sweden)

    van Vliet Arjen

    2017-01-01

    Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.

  4. Constrained bidirectional propagation and stroke segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S; Gillespie, W; Suen, C Y

    1983-03-01

    A new method for decomposing a complex figure into its constituent strokes is described. This method, based on constrained bidirectional propagation, is suitable for parallel processing. Examples of its application to the segmentation of Chinese characters are presented. 9 references.

  5. International Search for Life in Ocean Worlds

    Science.gov (United States)

    Sherwood, B.

    2015-12-01

    decision points and program options that will constrain ocean-world exploration through mid-century; and findings of the COSPAR Planetary Protection Panel colloquium for ocean-world exploration held in September 2015.

  6. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data.

    Science.gov (United States)

    MacBean, Natasha; Maignan, Fabienne; Bacour, Cédric; Lewis, Philip; Peylin, Philippe; Guanter, Luis; Köhler, Philipp; Gómez-Dans, Jose; Disney, Mathias

    2018-01-31

    Accurate terrestrial biosphere model (TBM) simulations of gross carbon uptake (gross primary productivity - GPP) are essential for reliable future terrestrial carbon sink projections. However, uncertainties in TBM GPP estimates remain. Newly-available satellite-derived sun-induced chlorophyll fluorescence (SIF) data offer a promising direction for addressing this issue by constraining regional-to-global scale modelled GPP. Here, we use monthly 0.5° GOME-2 SIF data from 2007 to 2011 to optimise GPP parameters of the ORCHIDEE TBM. The optimisation reduces GPP magnitude across all vegetation types except C4 plants. Global mean annual GPP therefore decreases from 194 ± 57 PgCyr -1 to 166 ± 10 PgCyr -1 , bringing the model more in line with an up-scaled flux tower estimate of 133 PgCyr -1 . Strongest reductions in GPP are seen in boreal forests: the result is a shift in global GPP distribution, with a ~50% increase in the tropical to boreal productivity ratio. The optimisation resulted in a greater reduction in GPP than similar ORCHIDEE parameter optimisation studies using satellite-derived NDVI from MODIS and eddy covariance measurements of net CO 2 fluxes from the FLUXNET network. Our study shows that SIF data will be instrumental in constraining TBM GPP estimates, with a consequent improvement in global carbon cycle projections.

  7. Assessing ocean alkalinity for carbon sequestration

    Science.gov (United States)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  8. Does Aspartic Acid Racemization Constrain the Depth Limit of the Subsurface Biosphere?

    Science.gov (United States)

    Onstott, T C.; Magnabosco, C.; Aubrey, A. D.; Burton, A. S.; Dworkin, J. P.; Elsila, J. E.; Grunsfeld, S.; Cao, B. H.; Hein, J. E.; Glavin, D. P.; hide

    2013-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  9. Key figures for climate in France and in the World - 2013 edition

    International Nuclear Information System (INIS)

    Ouradou, Frederic; Wong, Florine; Delalande, Daniel; Morel, Romain

    2012-01-01

    Graphs and figures related to different aspects of climate in France and in the World are presented and briefly commented. The different parts respectively address climate change (global warming, consequences, forecasts, greenhouse effect, impact of human activity, carbon reservoirs, evolution and concentrations of greenhouse gases, temperatures), emissions of greenhouse gases (in the world, in Europe, in France), CO 2 emissions due to energy and to electricity production, the shares of sectors in greenhouse gas emissions in Europe and in France (energy production and transformation, transports, industry, other sectors, without energy combustion, CO 2 emission factors), and climate policies (international negotiations, Kyoto protocol and its flexibility mechanisms, the European Union commitments, the European Union Emission Trading Scheme and its carbon price, the French climate policy)

  10. Carbonate preservation during the 'mystery interval' in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D.

    maximum is a feature noted across the world oceans and considered to signify carbonate preservation, although it is missing from many sediment cores from the eastern equatorial Pacific, tropical Atlantic and subtropical Indian Ocean The carbonate...

  11. World energy outlook 2007 -- China and India insights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-07

    World leaders have pledged to act to change the energy future. Some new policies are in place. But the trends in energy demand, imports, coal use and greenhouse gas emissions to 2030 in this year's World Energy Outlook are even worse than projected in WEO 2006. China and India are the emerging giants of the world economy. Their unprecedented pace of economic development will require ever more energy, but it will transform living standards for billions. There can be no question of asking them selectively to curb growth so as to solve problems which are global. So how is the transition to be achieved to a more secure, lower-carbon energy system? WEO 2007 provides the answers. With extensive statistics, projections in three scenarios, analysis and advice, it shows China, India and the rest of the world why we need to co-operate to change the energy future and how to do it.

  12. World energy outlook 2007 -- China and India insights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-07

    World leaders have pledged to act to change the energy future. Some new policies are in place. But the trends in energy demand, imports, coal use and greenhouse gas emissions to 2030 in this year's World Energy Outlook are even worse than projected in WEO 2006. China and India are the emerging giants of the world economy. Their unprecedented pace of economic development will require ever more energy, but it will transform living standards for billions. There can be no question of asking them selectively to curb growth so as to solve problems which are global. So how is the transition to be achieved to a more secure, lower-carbon energy system? WEO 2007 provides the answers. With extensive statistics, projections in three scenarios, analysis and advice, it shows China, India and the rest of the world why we need to co-operate to change the energy future and how to do it.

  13. Reconciling biodiversity and carbon conservation.

    Science.gov (United States)

    Thomas, Chris D; Anderson, Barbara J; Moilanen, Atte; Eigenbrod, Felix; Heinemeyer, Andreas; Quaife, Tristan; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J

    2013-05-01

    Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process. © 2012 John Wiley & Sons Ltd/CNRS.

  14. A gas extraction system for the measurement of carbon dioxide and carbon isotopes in polar ice cores

    International Nuclear Information System (INIS)

    Steig, E.

    1992-06-01

    Knowledge of the distribution of Carbon 13 in the glacial ocean, atmosphere, and biosphere is important to understanding the causes of glacial/interglacial changes in atmospheric CO 2 levels. Although deep-ocean Carbon 13 values are well-constrained by ocean sediment studies, model-based estimates of changes in the carbon budget for the biosphere and atmosphere vary considerably. Measurement of atmospheric Carbon 13 in CO 2 in ice cores will provide additional constraints on this budget and will also improve estimates of changes in the ocean surface layer Carbon 13. Direct measurement of ancient atmospheric Carbon 13 can be accomplished through polar ice core studies. A gas-extraction line for ice cores has been designed and constructed with particular attention to the specific difficulties of measuring Carbon 13 in CO 2 . The ice is shaved, rather than crushed, to minimize fractionation effects resulting from gas travel through long air-paths in the ice. To minimize the risk of isotopic contamination and fractionation within the vacuum line, CO 2 is separated immediately from the air; the CO 2 concentration is then measured by a simple pressure/volume comparison rather than by gas chromatography or spectroscopy. Measurements from Greenland ice core samples give an average value of 280±2 ppM CO 2 for preindustrial samples, demonstrating that the extraction system gives accurate, precise determinations Of CO 2 concentrations. Measurement of δ 13 C from polar ice samples has not been achieved at this time. However, results on standard air samples demonstrate a precision for δ 13 C of less than 0.2 per-thousand at the 95% confidence level

  15. Climate Change: A Future of Less Water and More people - Strategies for a Water Constrained World

    Science.gov (United States)

    Nahai, D.

    2010-12-01

    Today, the fact that the Earth is warming is indisputable. The evidence of climate change is already all around us, with the occurence of ever more intense weather events, droughts, heat waves, floods and sea level rise. Predictions of greater calamities in the future without swift action must be taken seriously. However, while international summits have focused on means to reduce greenhouse gas emissions, these are largely strategies of containment, not of cure. Even if emissions were to cease today, the current effects of climate change would remain with us for millenia. This is clear from the 2007 report of the Intergovernmental Panel on Climate Change. The world must not only tackle the causes of global warming; it must adapt to the damage already done. This need is most acute where water supply is concerned. The world already faces daunting chalenges. According to United Nations' reports, even today 1.8 million children under 5 die from water related diseases every year; 900 million people lack access to safe drinking water; and 2.6 billion go without basic sanitation. In the developing world, 90% of sewage is discharged to water bodies without adequate treatment contributing to "dead zones". Population increases will make matters worse (an addition of around 3 billion people by 2050 is expected) and climate change will compound the crisis. It is forecast that, as the Earth warms, deserts will expand and droughts will intensify causing demographic shifts even as the world's population burgeons. We are already seeing different regions react to water shortages. Many countries are pursuing seawater desalination. However, seawater desalination has numerous drawbacks; it remains the most expensive of water treatment options and the most energy intensive. Some societies may have no choice but to turn to the sea; others should look to other alternatives first. Such frontrunners could include: (1) enhanced conservation, utilizing public education programs, price

  16. Energy data visualisation requires additional approaches to continue to be relevant in a world with greater low-carbon generation.

    Directory of Open Access Journals (Sweden)

    I.A. Grant Wilson

    2016-08-01

    Full Text Available The hypothesis described in this article proposes that energy visualisation diagrams commonly used need additional changes to continue to be relevant in a world with greater low-carbon generation. The diagrams that display national energy data are influenced by the properties of the type of energy being displayed, which in most cases has historically meant fossil fuels, nuclear fuels or hydro. As many energy systems throughout the world increase their use of electricity from wind or solar based renewables, a more granular display of energy data in the time domain is required. This article also introduces the shared axes energy diagram that provides a simple and powerful way in which to compare the scale and seasonality of the demands and supplies of an energy system. This aims to complement rather than replace existing diagrams, and has an additional benefit of promoting a whole systems approach to energy systems, as differing energy vectors such as natural gas, transport fuels, and electricity can all be displayed together. This in particular, is useful to both policy makers and to industry, to build a visual foundation for a whole systems narrative, which provides a basis for discussion of the synergies and opportunities across and between different energy vectors and demands. The diagram’s ability to wrap a sense of scale around a whole energy system in a simple way is thought to explain its growing popularity.

  17. Carbon Nanomaterials in Biological Studies and Biomedicine.

    Science.gov (United States)

    Teradal, Nagappa L; Jelinek, Raz

    2017-09-01

    The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption.

    Science.gov (United States)

    Hammond, Geoffrey P; Li, Bo

    2016-09-01

    Environmental or 'ecological' footprints have been widely used in recent years as indicators of resource consumption and waste absorption presented in terms of biologically productive land area [in global hectares (gha)] required per capita with prevailing technology. In contrast, 'carbon footprints' are the amount of carbon (or carbon dioxide equivalent) emissions for such activities in units of mass or weight (like kilograms per functional unit), but can be translated into a component of the environmental footprint (on a gha basis). The carbon and environmental footprints associated with the world production of liquid biofuels have been computed for the period 2010-2050. Estimates of future global biofuel production were adopted from the 2011 International Energy Agency (IEA) 'technology roadmap' for transport biofuels. This suggests that, although first generation biofuels will dominate the market up to 2020, advanced or second generation biofuels might constitute some 75% of biofuel production by 2050. The overall environmental footprint was estimated to be 0.29 billion (bn) gha in 2010 and is likely to grow to around 2.57 bn gha by 2050. It was then disaggregated into various components: bioproductive land, built land, carbon emissions, embodied energy, materials and waste, transport, and water consumption. This component-based approach has enabled the examination of the Manufactured and Natural Capital elements of the 'four capitals' model of sustainability quite broadly, along with specific issues (such as the linkages associated with the so-called energy-land-water nexus). Bioproductive land use was found to exhibit the largest footprint component (a 48% share in 2050), followed by the carbon footprint (23%), embodied energy (16%), and then the water footprint (9%). Footprint components related to built land, transport and waste arisings were all found to account for an insignificant proportion to the overall environmental footprint, together amounting to

  19. Wronskian type solutions for the vector k-constrained KP hierarchy

    International Nuclear Information System (INIS)

    Zhang Youjin.

    1995-07-01

    Motivated by a relation of the 1-constrained Kadomtsev-Petviashvili (KP) hierarchy with the 2 component KP hierarchy, the tau-conditions of the vector k-constrained KP hierarchy are constructed by using an analogue of the Baker-Akhiezer (m + 1)-point function. These tau functions are expressed in terms of Wronskian type determinants. (author). 20 refs

  20. A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification

    Science.gov (United States)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.

    MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.

  1. A constrained supersymmetric left-right model

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Martin [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Krauss, Manuel E. [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Staub, Florian [Theory Division, CERN,1211 Geneva 23 (Switzerland)

    2016-03-02

    We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model’s capability to explain current anomalies observed at the LHC.

  2. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback

    Science.gov (United States)

    Koven, C.D.; Schuur, E.A.G.; Schädel, C.; Bohn, T. J.; Burke, E. J.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Jafarov, Elchin E.; Krinner, G.; Kuhry, P.; Lawrence, D.M.; MacDougall, A. H.; Marchenko, Sergey S.; McGuire, A. David; Natali, Susan M.; Nicolsky, D.J.; Olefeldt, David; Peng, S.; Romanovsky, V.E.; Schaefer, Kevin M.; Strauss, J.; Treat, C.C.; Turetsky, M.

    2015-01-01

    We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 Pg C °C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The

  3. Terrestrial ecosystems in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [CSIRO Marine and Atmospheric Research, Canberra, ACT (Australia). Global Carbon Project; Pataki, D.E. [California Univ., Irvine, CA (United States). Dept. of Earth System Science]|[California Univ., Irvine, CA (United States). Dept. of Ecology and Evolutionary Biology; Pitelka, L.F. (eds.) [Maryland Univ., Frostburg, MD (United States). Appalachian Lab.

    2007-07-01

    Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including: * key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity, * ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and * sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate. The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system. (orig.)

  4. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N.; Catling, David C.

    2018-04-01

    The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6‑0.4+0.6 (2σ) at 4.0 Ga to 7.0‑0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9‑0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.

  5. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  6. Forest carbon sink: A potential forest investment

    Science.gov (United States)

    Zheng, Chaocheng; Zhang, Yi; Cheng, Dongxiang

    2017-01-01

    A major problem being confronted to our human society currently is that the global temperature is undoubtedly considered to be rising significantly year by year due to abundant human factors releasing carbon dioxide to around atmosphere. The problem of increasing atmospheric carbon dioxide can be addressed in a number of ways. One of these is forestry and forest management. Hence, this paper investigates a number of current issues related to mitigating the global warming problem from the point of forestry view previous to discussion on ongoing real-world activities utilizing forestry specifically to sequester carbon.

  7. Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design

    OpenAIRE

    Kaminski, T.; Rayner, P. J.; Vossbeck, M.; Scholze, M.; Koffi, E.

    2012-01-01

    This paper investigates the relationship between the heterogeneity of the terrestrial carbon cycle and the optimal design of observing networks to constrain it. We combine the methods of quantitative network design and carbon-cycle data assimilation to a hierarchy of increasingly heterogeneous descriptions of the European terrestrial biosphere as indicated by increasing diversity of plant functional types. We employ three types of observat...

  8. Radiation processing of organics and biological materials exposed to ocean world surface conditions.

    Science.gov (United States)

    Hand, K. P.; Carlson, R. W.

    2017-12-01

    Assessing the habitability of ocean worlds, such as Europa and Enceladus, motivates a search for endogenous carbon compounds that could be indicative of a habitable, or even inhabited, subsurface liquid water environment. We have examined the role of destruction and synthesis of organic compounds via 10 keV electron bombardment of ices generated under temperature and pressure conditions comparable to Europa and Enceladus. Short-chain organics and ammonia, in combination with water, were exposed to Mrad to Grad doses and observed to evolve to a `lost' carbon fraction (CO and CO2) and a `retained' carbon fraction (consisting of a highly refractory `ocean world tholin' populated by highly radiation resistant carbonyl, aldehyde, and nitrile components). The retained fraction is of key importance as this likely represents the observable fraction for future spacecraft investigations. We also irradiated microbial spores (B. pumilis) to approximately 2 Grad and have found persistence of biomolecule fractions derived from proteins and nucleic acids.

  9. World relation per capita between income and emission of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Fernando Artico Bigarani1

    2014-12-01

    Full Text Available The aim of this article is to verify the existence of relation per capita between emission of carbon dioxide and the growth of the income. The used methodology is the exploratory analysis of space data for the years of 1994 and 2009. By means of maps and of the Index of Moran one searched to observe the existence of space autocorrelation enters carbonic gas emission the per capita and per capita Gross domestic product of the countries of the Europe and Africa and to verify the space existence of clusters. The analysis of the results presented significant space autocorrelation between the studied variable and allowed the space identification of clusters in the Europe and Africa. The conclusion confirms the theory of the Curve of Ambient Kuznets and also it was identified that the protocol of Kyoto was capable to promote alterations in univariate clusters analyzed in the period.

  10. Deep time evidence for climate sensitivity increase with warming

    DEFF Research Database (Denmark)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto

    2016-01-01

    warming analogue. We obtain constrained estimates of CO2 and climate sensitivity before and during the PETM and of the PETM carbon input amount and nature. Sensitivity increased from 3.3-5.6 to 3.7-6.5K (Kelvin) into the PETM. When taken together with Last Glacial Maximum and modern estimates, this result...... world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8Ma ago, a possible future...

  11. Coal utilization in a carbon policy uncertain world. The North America situation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ligang [CanmentENERGY, Ottawa, ON (Canada)

    2013-07-01

    Both the United State of America and Canada has very high CO{sub 2}/capita emission: 16.53 tonnes for Canada and 18.38 for the U.S. while the world average is at 4.39 and China at 4.91. Canadian economy is heavily intertwined with that of the U.S.: the cross board trading between the U.S. and Canada is valued at more than $2 billion/day. The United State of America is one of the most important coal users in the world and one the key player in climate change issue.

  12. A carbon risk prediction model for Chinese heavy-polluting industrial enterprises based on support vector machine

    International Nuclear Information System (INIS)

    Zhou, Zhifang; Xiao, Tian; Chen, Xiaohong; Wang, Chang

    2016-01-01

    Chinese heavy-polluting industrial enterprises, especially petrochemical or chemical industry, labeled low carbon efficiency and high emission load, are facing the tremendous pressure of emission reduction under the background of global shortage of energy supply and constrain of carbon emission. However, due to the limited amount of theoretic and practical research in this field, problems like lacking prediction indicators or models, and the quantified standard of carbon risk remain unsolved. In this paper, the connotation of carbon risk and an assessment index system for Chinese heavy-polluting industrial enterprises (eg. coal enterprise, petrochemical enterprises, chemical enterprises et al.) based on support vector machine are presented. By using several heavy-polluting industrial enterprises’ related data, SVM model is trained to predict the carbon risk level of a specific enterprise, which allows the enterprise to identify and manage its carbon risks. The result shows that this method can predict enterprise’s carbon risk level in an efficient, accurate way with high practical application and generalization value.

  13. An algorithm for mass matrix calculation of internally constrained molecular geometries

    International Nuclear Information System (INIS)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-01

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model

  14. An algorithm for mass matrix calculation of internally constrained molecular geometries.

    Science.gov (United States)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-28

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model.

  15. Global agriculture and carbon trade-offs.

    Science.gov (United States)

    Johnson, Justin Andrew; Runge, Carlisle Ford; Senauer, Benjamin; Foley, Jonathan; Polasky, Stephen

    2014-08-26

    Feeding a growing and increasingly affluent world will require expanded agricultural production, which may require converting grasslands and forests into cropland. Such conversions can reduce carbon storage, habitat provision, and other ecosystem services, presenting difficult societal trade-offs. In this paper, we use spatially explicit data on agricultural productivity and carbon storage in a global analysis to find where agricultural extensification should occur to meet growing demand while minimizing carbon emissions from land use change. Selective extensification saves ∼ 6 billion metric tons of carbon compared with a business-as-usual approach, with a value of approximately $1 trillion (2012 US dollars) using recent estimates of the social cost of carbon. This type of spatially explicit geospatial analysis can be expanded to include other ecosystem services and other industries to analyze how to minimize conflicts between economic development and environmental sustainability.

  16. Quantifying global soil carbon losses in response to warming.

    Science.gov (United States)

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  17. Modelling the world oil market: Assessment of a quarterly econometric model

    International Nuclear Information System (INIS)

    Dees, Stephane; Karadeloglou, Pavlos; Kaufmann, Robert K.; Sanchez, Marcelo

    2007-01-01

    This paper describes a structural econometric model of the world oil market that can be used to analyse oil market developments and risks. Oil demand depends on domestic economic activity and the real price of oil. Oil supply for non-OPEC producers, based on competitive behaviours, is constrained by geological and institutional conditions. Oil prices are determined by a 'price rule' that includes market conditions and OPEC behaviour. Policy simulations indicate that oil demand and non-OPEC supply are rather inelastic to changes in price, while OPEC decisions about quota and capacity utilisation have a significant, immediate impact on oil prices

  18. THE ROLE OF ACTIVATED CARBON IN SOLVING ECOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. M. Mukhin

    2008-06-01

    Full Text Available The authors present a brief analysis of the current global situation concerning the utilization of activated carbon in various fields. The article presents data concerning the synthesis and adsorption and structure properties of new activated carbons, used for solving ecological problems. The authors investigated the newly obtained activated carbons in comparison with several AC marks known in the world. It has been shown that currently synthesized AC are competitive with foreign marks.

  19. Constraining Lipid Biomarker Paleoclimate Proxies in a Small Arctic Watershed

    Science.gov (United States)

    Dion-Kirschner, H.; McFarlin, J. M.; Axford, Y.; Osburn, M. R.

    2017-12-01

    Arctic amplification of climate change renders high-latitude environments unusually sensitive to changes in climatic conditions (Serreze and Barry, 2011). Lipid biomarkers, and their hydrogen and carbon isotopic compositions, can yield valuable paleoclimatic and paleoecological information. However, many variables affect the production and preservation of lipids and their constituent isotopes, including precipitation, plant growth conditions, biosynthesis mechanisms, and sediment depositional processes (Sachse et al., 2012). These variables are particularly poorly constrained for high-latitude environments, where trees are sparse or not present, and plants grow under continuous summer light and cool temperatures during a short growing season. Here we present a source-to-sink study of a single watershed from the Kangerlussuaq region of southwest Greenland. Our analytes from in and around `Little Sugarloaf Lake' (LSL) include terrestrial and aquatic plants, plankton, modern lake water, surface sediments, and a sediment core. This diverse sample set allows us to fulfill three goals: 1) We evaluate the production of lipids and isotopic signatures in the modern watershed in comparison to modern climate. Our data exhibit genus-level trends in leaf wax production and isotopic composition, and help clarify the difference between terrestrial and aquatic signals. 2) We evaluate the surface sediment of LSL to determine how lipid biomarkers from the watershed are incorporated into sediments. We constrain the relative contributions of terrestrial plants, aquatic plants, and other aquatic organisms to the sediment in this watershed. 3) We apply this modern source-to-sink calibration to the analysis of a 65 cm sediment core record. Our core is organic-rich, and relatively high deposition rates allow us to reconstruct paleoenvironmental changes with high resolution. Our work will help determine the veracity of these common paleoclimate proxies, specifically for research in

  20. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.

    Science.gov (United States)

    Mang, Andreas; Biros, George

    2017-01-01

    We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 × speedup for a two dimensional, real world multi-subject medical image registration problem.

  1. Self-constrained inversion of microgravity data along a segment of the Irpinia fault

    Science.gov (United States)

    Lo Re, Davide; Florio, Giovanni; Ferranti, Luigi; Ialongo, Simone; Castiello, Gabriella

    2016-01-01

    A microgravity survey was completed to precisely locate and better characterize the near-surface geometry of a recent fault with small throw in a mountainous area in the Southern Apennines (Italy). The site is on a segment of the Irpinia fault, which is the source of the M6.9 1980 earthquake. This fault cuts a few meter of Mesozoic carbonate bedrock and its younger, mostly Holocene continental deposits cover. The amplitude of the complete Bouguer anomaly along two profiles across the fault is about 50 μGal. The data were analyzed and interpreted according to a self-constrained strategy, where some rapid estimation of source parameters was later used as constraint for the inversion. The fault has been clearly identified and localized in its horizontal position and depth. Interesting features in the overburden have been identified and their interpretation has allowed us to estimate the fault slip-rate, which is consistent with independent geological estimates.

  2. Self-constrained inversion of potential fields

    Science.gov (United States)

    Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F.

    2013-11-01

    We present a potential-field-constrained inversion procedure based on a priori information derived exclusively from the analysis of the gravity and magnetic data (self-constrained inversion). The procedure is designed to be applied to underdetermined problems and involves scenarios where the source distribution can be assumed to be of simple character. To set up effective constraints, we first estimate through the analysis of the gravity or magnetic field some or all of the following source parameters: the source depth-to-the-top, the structural index, the horizontal position of the source body edges and their dip. The second step is incorporating the information related to these constraints in the objective function as depth and spatial weighting functions. We show, through 2-D and 3-D synthetic and real data examples, that potential field-based constraints, for example, structural index, source boundaries and others, are usually enough to obtain substantial improvement in the density and magnetization models.

  3. New Exact Penalty Functions for Nonlinear Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Bingzhuang Liu

    2014-01-01

    Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.

  4. Rethinking CCD's Significance in Estimating Late Neogene Whole Ocean Carbonate Budget

    Science.gov (United States)

    Si, W.; Rosenthal, Y.

    2017-12-01

    The global averaged calcite compensation depth (CCD) record is conventionally used to reconstruct two correlatable parameters of the carbonate system - the alkalinity budget of the ocean and/or the saturation state of the ocean. Accordingly, the available CCD reconstructions have been interpreted to suggest either relative stable (Pearson and Palmer, 2000) or increased alkalinity of the ocean over the past 15 Ma (Tyrrell and Zeebe, 2004; Pälike et al., 2012). However, CCD alone is insufficient to constrain the carbonate system because the weathering flux of alkalinity into the ocean is not only balanced by CaCO3 dissolution on the seafloor but also by the biologic production in the euphotic zone and, the CCD records cannot be readily interpreted as changes in either process. Here, we present evidence of the co-evolution of surface CaCO3 production and deepsea dissolution through the late Neogene. By examining separately the mass accumulation rates (MAR) of coccoliths, planktonic foraminifera, and quantifying dissolution (using a proxy revised from Broecker et al., 1999) in seventeen deepsea cores from multiple depth-transects, we find that 1) MAR of dissolution-resistant coccoliths was substantially higher in the mid Miocene and declining on a global scale towards the present; 2) unlike coccoliths, MAR of planktonic foraminifera, shows no apparent secular trend through that time; 3) the revised dissolution index, shows significantly improved preservation of planktonic foraminiferal shells over that time, particularly at intermediate water depth and exhibits close association between changes in preservation with key climatic events. Our new records have two immediate implications. First, the substantially weakened pelagic biogenic carbonate production from mid Miocene to present alone could account for the improved preservation of deepsea carbonates without calling for a scenario of increased weathering input. Second, with the constrain of global averaged CCD

  5. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem

    Science.gov (United States)

    Karina V.R. Schafer; Ram Oren; David S. Ellsworth; Chun-Ta Lai; Jeffrey D. Herricks; Adrien C. Finzi; Daniel D. Richter; Gabriel G. Katul

    2003-01-01

    We linked a leaf-level C02 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy C02 uptake (AnC) at...

  6. Leveraging Carbon Cycling in Coastal Wetlands for Habitat Conservation: Blue Carbon Policy Opportunities (Invited)

    Science.gov (United States)

    Sutton-Grier, A.

    2013-12-01

    Recent scientific studies suggest that the carbon sequestered and stored in coastal wetlands (specifically mangroves, salt marshes, and seagrass meadows) is an important, previously not well-recognized service provided by these ecosystems. Coastal wetlands have unique characteristics that make them incredibly efficient, natural carbon sinks with most carbon stored belowground in soils. Based on this new scientific evidence, there is growing interest in leveraging the carbon services of these habitats (termed 'blue carbon') to develop new policy opportunities to protect and restore coastal wetlands around the globe. The overall goal is to take full advantage of the carbon services of these habitats in order to ensure and maintain the many benefits provided to society by these habitats - including natural climate, food security, and storm protection benefits - and to enhance the resiliency of coastal communities and economies around the world. This presentation will give an update on some of the policy opportunities including: (1) examining how the implementation of U.S. federal policies can be expanded to include carbon services of ecosystems in order to improve management and decision making; (2) developing an international blue carbon community of science and practice to provide best practice guidance for protection and restoration of blue carbon habitats; and (3) developing innovative financing mechanisms for coastal conservation including carbon market credits for wetlands. Finally, the presentation will conclude by highlighting some of the most pressing blue carbon scientific gaps that need to be filled in order to support these developing policies.

  7. Changing global carbon cycle

    International Nuclear Information System (INIS)

    Canadell, Pep

    2007-01-01

    Full text: The increase in atmospheric carbon dioxide (C02) is the single largest human perturbation on the earth's radiative balance contributing to climate change. Its rate of change reflects the balance between anthropogenic carbon emissions and the dynamics of a number of terrestrial and ocean processes that remove or emit C02. It is the long term evolution of this balance that will determine to large extent the speed and magnitude of the human induced climate change and the mitigation requirements to stabilise atmospheric C02 concentrations at any given level. In this talk, we show new trends in global carbon sources and sinks, with particularly focus on major shifts occurring since 2000 when the growth rate of atmospheric C02 has reached its highest level on record. The acceleration in the C02 growth results from the combination of several changes in properties of the carbon cycle, including: acceleration of anthropogenic carbon emissions; increased carbon intensity of the global economy, and decreased efficiency of natural carbon sinks. We discuss in more detail some of the possible causes of the reduced efficiency of natural carbon sinks on land and oceans, such as the decreased net sink in the Southern Ocean and on terrestrial mid-latitudes due to world-wide occurrence of drought. All these changes reported here characterise a carbon cycle that is generating stronger than expected climate forcing, and sooner than expected

  8. Climatic servitude: climate change, business and politics; La servitude climatique: Changement climatique, Business et Politique

    Energy Technology Data Exchange (ETDEWEB)

    Belouve, J.M.

    2009-07-01

    This book is together a contemporary history book and a global dossier about a topic of prime importance in our civilization. It treats of the history of science, of ideas and events put in the modern civilization context, of science situation and scientific controversies, of the media aspects, of carbon economy and its related business, of Al Gore's and Maurice Strong's biographies, and finally, it makes a critical geopolitical analysis and makes proposals for a renovated ecology. In the conclusion, the author shows how climate change has become the hobbyhorse of a new thinking trend, namely the New World Order, aiming at conducting people to the acceptance of constraining policies encompassing the energy security of nations, new taxes, a worldwide economic disruption, the limitation of the World's population, and a World governance supported by the United Nations and not constrained by classical democratic rules. (J.S.)

  9. Bounds on the Capacity of Weakly constrained two-dimensional Codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2002-01-01

    Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...... on the capacity for 2-D channel models based on occurrences of neighboring 1s are considered....

  10. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  12. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  13. A study on carbon emissions in Shanghai 2000–2008, China

    International Nuclear Information System (INIS)

    Wang, Yansong; Ma, Weichun; Tu, Wei; Zhao, Qian; Yu, Qi

    2013-01-01

    Highlights: ► This paper establishes a carbon emission inventory in Shanghai from 2000 to 2008. ► The total emission in Shanghai during 2000–2008 increased from 136 Tg CO 2 e to 200 Tg CO 2 e. ► In 2008, carbon emission per capita in Shanghai is 14.03 tons CO 2 . ► In 2008, carbon emission per $10,000 in Shanghai is around 10 tons CO 2 . ► In the data collection, there are several problems found on China statistical system. -- Abstract: This paper presents a carbon emission inventory in Shanghai for the period from 2000 to 2008 covering six sectors of stationary combustion, transportation, industrial processes, waste disposal and treatment, agricultural activities and forestry sink and three greenhouse gases (CO 2 , CH 4 , and N 2 O). The aim is to reflect carbon emissions in Shanghai, and guides policymakers to take effective actions to mitigate carbon emissions. Several results are obtained: (1) the total carbon emissions in Shanghai increased by 48%, from 136 Tg CO 2 e in 2000 to 200 Tg CO 2 e in 2008; (2) only the sector of agriculture activities saw reduced emissions; (3) the comparisons among Shanghai, China and world average level confirm that during 2000–2008 Shanghai's carbon emissions per capita are higher than both the world and the China average level, and its carbon emission per GDP is also higher than the world average level, but both of them are lower than the China average level; (4) in 2008, Shanghai's carbon emission per GDP is around 10 tons CO 2 per $10,000 and higher than that of Taiwan, Hong Kong, the G7 and the BRIC (Brazil, Russia, India and China) except China and India. In addition, this paper also illustrates the problems about China statistical system in terms of emission inventory establishment, including the classification system, data quality and temporal resolution

  14. Carbon sequestration R&D overview

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Justine [Office of Fossil Energy, U.S. Department of Energy (United States)

    2008-07-15

    In this presentation the author discusses over the technological options for the handling of carbon. He shows the objectives and challenges of the program of carbon sequestration of the Department of Energy of the United States, as well as a table with the annual CO{sub 2} emissions in the United States; a graph with the world-wide capacity of CO{sub 2} geologic storage and a listing with the existing projects of CCS at the moment in the world. [Spanish] En esta presentacion el autor platica sobre las opciones tecnologicas para el manejo del carbono. Muestra los objetivos y retos del programa de secuestro de carbono del Departamento de Energia de los Estados Unidos, asi como una tabla con las emisiones anuales de CO{sub 2} en los Estados Unidos; un grafico con la capacidad mundial de almacenamiento de CO{sub 2} en el subsuelo y un listado con los proyectos de CCS existentes actualmente en el mundo.

  15. Risk-constrained self-scheduling of a fuel and emission constrained power producer using rolling window procedure

    International Nuclear Information System (INIS)

    Kazempour, S. Jalal; Moghaddam, Mohsen Parsa

    2011-01-01

    This work addresses a relevant methodology for self-scheduling of a price-taker fuel and emission constrained power producer in day-ahead correlated energy, spinning reserve and fuel markets to achieve a trade-off between the expected profit and the risk versus different risk levels based on Markowitz's seminal work in the area of portfolio selection. Here, a set of uncertainties including price forecasting errors and available fuel uncertainty are considered. The latter uncertainty arises because of uncertainties in being called for reserve deployment in the spinning reserve market and availability of power plant. To tackle the price forecasting errors, variances of energy, spinning reserve and fuel prices along with their covariances which are due to markets correlation are taken into account using relevant historical data. In order to tackle available fuel uncertainty, a framework for self-scheduling referred to as rolling window is proposed. This risk-constrained self-scheduling framework is therefore formulated and solved as a mixed-integer non-linear programming problem. Furthermore, numerical results for a case study are discussed. (author)

  16. A Low Carbon EU Energy System and Unconventional Sources

    International Nuclear Information System (INIS)

    Gracceva, F.; Kanudia, A.; Tosato, GC.

    2013-01-01

    The paper investigates the potential role of unconventional fossil fuels in a global low carbon energy system. Making use of a systemic approach, the paper presents an original application of a global partial equilibrium energy system model (TIAM-JET). In order to give a worldwide perspective with higher detail on European energy systems, the model links a set of extra-European macro-regions to the 30 European countries. First, a review of the most recent estimates of the available stocks of unconventional hydrocarbon resources is used to build the set of assumption for the scenario analysis. Secondly, a set of scenarios assuming different availability and cost of unconventional fuels are added to both a Current Trend scenario and a Carbon Constrained (CC) scenario, to explore the perspectives of unconventional gas and oil in a scenario halving CO 2 emissions by 2050, which is consistent with a 2 degree temperature increase. The results show if/how unconventional sources can contribute to the robustness of the European energy system with respect to the stress of a strong carbon constraint. We define this robustness as the capacity of the energy system to adapt its evolution to long-term constraints and keep delivering energy services to end users. In our approach robustness represents the long-term dimension of energy security. Assessing this ''system property'' requires analysing the wide range of factors that can exercise a stabilizing influence on the energy services delivery system, together with their relations, actual interactions and synergies. The energy system approach used for the analysis seeks to take into account as much of this complexity as possible. We assess the robustness of the EU system to the carbon constraint by looking at how the CC scenario affects energy system costs and energy prices under scenarios with different deployment of unconventional sources. This provides insights on the synergies and/or trade-offs between energy security and

  17. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  18. Badlands and the Carbon cycle: a significant source of petrogenic organic carbon in rivers and marine environments?

    Science.gov (United States)

    Copard, Yoann; Eyrolle-Boyer, Frederique; Radakovitch, Olivier; Poirel, Alain; Raimbault, Patrick; Lebouteiller, Caroline; Gairoard, Stéphanie; Di-Giovanni, Christian

    2016-04-01

    A key issue in the study of carbon biogeochemical cycle is to well constrain each carbon origin in term of fluxes between all C-reservoirs. From continental surfaces to oceans, rivers convey particulate organic carbon originate from the biomass (biospheric OC) and /or from the sedimentary rocks (petrogenic OC). Existence and importance of this petrogenic OC export to oceans was debated for several decades (see Copard et al., 2007 and ref.), but it is now assumed that 20% of the global carbon export to ocean has a geological origin (Galy et al., 2015). The main current challenge is to constrain the major contributors to this petrogenic OC flux. Amongst the expected sedimentary sources of petrogenic OC in rivers, sedimentary rocks forming badlands can be rightly considered as some viable candidates. Indeed these rocks show a strong erosion rate, may exceed 50 kt km-2 y-1 and in addition, shales, marls and argillaceous rocks, frequently forming badlands (see Nadal-Romero et al., 2011 for the Mediterranean area), contain a significant amount of petrogenic OC (frequently over 0.50 wt. %, Ronov and Yaroshevsky 1976). Our work illustrates the contribution of badlands, mainly distributed within the Durance catchment (a main tributary of the Rhône river), in the petrogenic OC export to the Mediterranean Sea. The approach is based on (i) the use of previous and new data on radiogenic carbon, (ii) bulk organic geochemistry (Rock-Eval pyrolysis), (iii) optical quantification of particulate OM (palynofacies), performed on suspended sediments from the Durance, the Rhône rivers and from small rivers draining the badlands. A mean erosion rate of badlands, previously calculated for instrumented catchments (SOERE Draix-Bléone, Graz et al., 2012) was also applied to the badlands disseminated within the Durance catchment. These different methodologies converge to a petrogenic contribution of the OC export to the Mediterranean Sea close to 30 %. Badlands from the Durance catchment

  19. Stochastic Lot-Sizing under Carbon Emission Control for Profit Optimisation in MTO Manufacturing

    Directory of Open Access Journals (Sweden)

    Qiao A.

    2017-01-01

    Full Text Available Aggravating global warming has heightened the imminent need by the world to step up forceful efforts on curbing emission of greenhouse gases. Although manufacturing is a major resource of carbon emission, few research works have studied the impacts of carbon constraints on manufacturing, leading to environmentally unsustainable production strategies and operations. This paper incorporates carbon emission management into production planning for make-to-order (MTO manufacturing. This paper proposes a model that solves lot-sizing problems to maximise profits under carbon emission caps. The model adopts stochastic interarrival times for customer orders to enhance the practicality of the results for real-world manufacturing. Numerical experiments show that reducing carbon emission undercuts short-term profits of a company. However, it is conducive to the company’s market image as being socially responsible which would attract more customers who concern about environmental protection. Hence, reducing carbon emission in manufacturing is beneficial to long-term profitability and sustainability. The results provide managerial insights into manufacture operations for balancing profitability and carbon control.

  20. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schmitt, J.; Seth, B.; Bock, M; van der Veen, C.; Möller, L.; Sapart, C.J.; Prokopiou, M.; Sowers, T.; Röckmann, T.; Fischer, H

    2013-01-01

    Stable carbon isotope analysis of methane ( 13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a

  1. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  2. Global low-carbon transition and China's response strategies

    Directory of Open Access Journals (Sweden)

    Jian-Kun He

    2016-12-01

    Full Text Available The Paris Agreement establishes a new mechanism for post-2020 global climate governance, and sets long-term goals for global response to climate change, which will accelerate worldwide low-carbon transformation of economic development pattern, promote the revolutionary reform of energy system, boost a fundamental change in the mode of social production and consumption, and further the civilization of human society from industrial civilization to eco-civilization. The urgency of global low-carbon transition will reshape the competition situation of world's economy, trade and technology. Taking the construction of eco-civilization as a guide, China explores green and low-carbon development paths, establishes ambitious intended nationally determined contribution (INDC targets and action plans, advances energy production and consumption revolution, and speeds up the transformation of economic development pattern. These strategies and actions not only confirm to the trend of the world low-carbon transition, but also meet the intrinsic requirements for easing the domestic resources and environment constraints and realizing sustainable development. They are multi-win-win strategies for promotion of economic development and environmental protection and mitigation of carbon emissions. China should take the global long-term emission reduction targets as a guide, and formulate medium and long-term low-carbon development strategy, build the core competitiveness of low-carbon advanced technology and development pattern, and take an in-depth part in global governance so as to reflect the responsibility of China as a great power in constructing a community of common destiny for all mankind and addressing global ecological crisis.

  3. Neuroevolutionary Constrained Optimization for Content Creation

    DEFF Research Database (Denmark)

    Liapis, Antonios; Yannakakis, Georgios N.; Togelius, Julian

    2011-01-01

    and thruster types and topologies) independently of game physics and steering strategies. According to the proposed framework, the designer picks a set of requirements for the spaceship that a constrained optimizer attempts to satisfy. The constraint satisfaction approach followed is based on neuroevolution...... and survival tasks and are also visually appealing....

  4. Estimating zonal electricity supply curves in transmission-constrained electricity markets

    International Nuclear Information System (INIS)

    Sahraei-Ardakani, Mostafa; Blumsack, Seth; Kleit, Andrew

    2015-01-01

    Many important electricity policy initiatives would directly affect the operation of electric power networks. This paper develops a method for estimating short-run zonal supply curves in transmission-constrained electricity markets that can be implemented quickly by policy analysts with training in statistical methods and with publicly available data. Our model enables analysis of distributional impacts of policies affecting operation of electric power grid. The method uses fuel prices and zonal electric loads to determine piecewise supply curves, identifying zonal electricity price and marginal fuel. We illustrate our methodology by estimating zonal impacts of Pennsylvania's Act 129, an energy efficiency and conservation policy. For most utilities in Pennsylvania, Act 129 would reduce the influence of natural gas on electricity price formation and increase the influence of coal. The total resulted savings would be around 267 million dollars, 82 percent of which would be enjoyed by the customers in Pennsylvania. We also analyze the impacts of imposing a $35/ton tax on carbon dioxide emissions. Our results show that the policy would increase the average prices in PJM by 47–89 percent under different fuel price scenarios in the short run, and would lead to short-run interfuel substitution between natural gas and coal. - Highlights: • We develop a method to estimate of zonal supply curves in electricity markets. • The model estimates zonal electricity prices and zonal fuel utilization. • The model implicitly captures the average impacts of transmission constraints. • Using the method, we project supply curves for the seventeen utility zones of PJM. • We use the estimated supply curves to study the impacts of Pennsylvania's Act 129 and a carbon tax of $35 per ton

  5. Tuber size variation and organ preformation constrain growth responses of a spring geophyte.

    Science.gov (United States)

    Werger, Marinus J A; Huber, Heidrun

    2006-03-01

    Functional responses to environmental variation do not only depend on the genetic potential of a species to express different trait values, but can also be limited by characteristics, such as the timing of organ (pre-) formation, aboveground longevity or the presence of a storage organ. In this experiment we tested to what degree variation in tuber size and organ preformation constrain the responsiveness to environmental quality and whether responsiveness is modified by the availability of stored resources by exposing the spring geophyte Bunium bulbocastanum to different light and nutrient regimes. Growth and biomass partitioning were affected by initial tuber size and resource availability. On average, tuber weight amounted to 60%, but never less than 30% of the total plant biomass. Initial tuber size, considered an estimate of the total carbon pool available at the onset of treatments, affected plant growth and reproduction throughout the experiment but had little effect on the responsiveness of plants to the treatments. The responsiveness was partly constrained by organ preformation: in the second year variation of leaf number was considerably larger than in the first year of the treatments. The results indicate that a spring geophyte with organ preformation has only limited possibilities to respond to short-term fluctuations of the environment, as all leaves and the inflorescence are preformed in the previous growing season and resources stored in tubers are predominantly used for survival during dormancy and are not invested into plastic adjustments to environmental quality. Such spring geophytes have only limited possibilities to buffer environmental variation. This explains their restriction to habitats characterized by predictable changes of the environmental conditions.

  6. Asymptotic Likelihood Distribution for Correlated & Constrained Systems

    CERN Document Server

    Agarwal, Ujjwal

    2016-01-01

    It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.

  7. On the convergence of the dynamic series solution of a constrained ...

    African Journals Online (AJOL)

    The one dimensional problem of analysing the dynamic behaviour of an elevated water tower with elastic deflection–control device and subjected to a dynamic load was examined in [2]. The constrained elastic system was modeled as a column carrying a concentrated mass at its top and elastically constrained at a point ...

  8. Structure and multiscale mechanics of carbon nanomaterials

    CERN Document Server

    2016-01-01

    This book aims at providing a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials.

  9. Exploring the Metabolic and Perceptual Correlates of Self-Selected Walking Speed under Constrained and Un-Constrained Conditions

    Directory of Open Access Journals (Sweden)

    David T Godsiff, Shelly Coe, Charlotte Elsworth-Edelsten, Johnny Collett, Ken Howells, Martyn Morris, Helen Dawes

    2018-03-01

    Full Text Available Mechanisms underpinning self-selected walking speed (SSWS are poorly understood. The present study investigated the extent to which SSWS is related to metabolism, energy cost, and/or perceptual parameters during both normal and artificially constrained walking. Fourteen participants with no pathology affecting gait were tested under standard conditions. Subjects walked on a motorized treadmill at speeds derived from their SSWS as a continuous protocol. RPE scores (CR10 and expired air to calculate energy cost (J.kg-1.m-1 and carbohydrate (CHO oxidation rate (J.kg-1.min-1 were collected during minutes 3-4 at each speed. Eight individuals were re-tested under the same conditions within one week with a hip and knee-brace to immobilize their right leg. Deflection in RPE scores (CR10 and CHO oxidation rate (J.kg-1.min-1 were not related to SSWS (five and three people had deflections in the defined range of SSWS in constrained and unconstrained conditions, respectively (p > 0.05. Constrained walking elicited a higher energy cost (J.kg-1.m-1 and slower SSWS (p 0.05. SSWS did not occur at a minimum energy cost (J.kg-1.m-1 in either condition, however, the size of the minimum energy cost to SSWS disparity was the same (Froude {Fr} = 0.09 in both conditions (p = 0.36. Perceptions of exertion can modify walking patterns and therefore SSWS and metabolism/ energy cost are not directly related. Strategies which minimize perceived exertion may enable faster walking in people with altered gait as our findings indicate they should self-optimize to the same extent under different conditions.

  10. Carbon Nanotubes and Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Barbara P. Barna

    2014-06-01

    Full Text Available Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.

  11. Priority classes and weighted constrained equal awards rules for the claims problem

    DEFF Research Database (Denmark)

    Szwagrzak, Karol

    2015-01-01

    . They are priority-augmented versions of the standard weighted constrained equal awards rules, also known as weighted gains methods (Moulin, 2000): individuals are sorted into priority classes; the resource is distributed among the individuals in the first priority class using a weighted constrained equal awards...... rule; if some of the resource is left over, then it is distributed among the individuals in the second priority class, again using a weighted constrained equal awards rule; the distribution carries on in this way until the resource is exhausted. Our characterization extends to a generalized version...

  12. Client's Constraining Factors to Construction Project Management

    African Journals Online (AJOL)

    factors as a significant system that constrains project management success of public and ... finance for the project and prompt payment for work executed; clients .... consideration of the loading patterns of these variables, the major factor is ...

  13. The need for nuclear power. Viewpoint on the world's challenging energy future

    International Nuclear Information System (INIS)

    Rhodes, R.; Beller, D.

    2000-01-01

    To meet the world's growing need for energy, the Royal Society and Royal Academy report proposes 'the formation of an international body for energy research and development, funded by contributions from individual nations on the basis of Gross Domestic Product (GDP) or total national energy consumption'. The body would be 'a funding agency supporting research, development and demonstrators elsewhere, not a research center itself'. Its budget might build to an annual level of some $25 billion, 'roughly 1% of the total global energy budget'. If it truly wants to develop efficient and responsible energy supplies, such a body should focus on the nuclear option, on establishing a secure international nuclear-fuel storage and reprocessing system, and on providing expertise for siting, financing, and licensing modular nuclear power systems to developing nations. According to authors, who study the dynamics of energy technologies, 'the share of energy supplied by electricity is growing rapidly in most countries and worldwide'. Throughout history, humankind has gradually decarbonized its dominant fuels, moving steadily away from the more polluting, carbon-rich sources. Thus the world has gone from coal (which has one hydrogen atom per carbon atom and was dominant from 1880 to 1950) to oil (with two hydrogens per carbon, dominant from 1950 to today). Natural gas (four hydrogens per carbon) is steadily increasing its market share. But nuclear fission produces no carbon at all. Physical reality - not arguments about corporate greed, hypothetical risks, radiation exposure, or waste disposal - ought to inform decisions vital to the future of the world. Because diversity and redundancy are important for safety and security, renewable energy sources ought to retain a place in the energy economy of the century to come. But nuclear power should be central. Despite its outstanding record, it has instead been relegated by its opponents to the same twilight zone of contentious

  14. Venus Surface Composition Constrained by Observation and Experiment

    Science.gov (United States)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-11-01

    the rarity of wollastonite and instability of carbonate at the Venus surface. Sulfur in the Venus atmosphere has been shown experimentally to react with Ca in surface minerals to produce anhydrite. The extent of this SO2 buffer is constrained by the Ca content of surface rocks and sulfur content of the atmosphere, both of which are likely variable, perhaps due to active volcanism. Experimental work on a range of semiconductor and ferroelectric minerals is placing constraints on the cause(s) of Venus' anomalously radar bright highlands.

  15. Node Discovery and Interpretation in Unstructured Resource-Constrained Environments

    DEFF Research Database (Denmark)

    Gechev, Miroslav; Kasabova, Slavyana; Mihovska, Albena D.

    2014-01-01

    for the discovery, linking and interpretation of nodes in unstructured and resource-constrained network environments and their interrelated and collective use for the delivery of smart services. The model is based on a basic mathematical approach, which describes and predicts the success of human interactions...... in the context of long-term relationships and identifies several key variables in the context of communications in resource-constrained environments. The general theoretical model is described and several algorithms are proposed as part of the node discovery, identification, and linking processes in relation...

  16. Second-best carbon taxation in the global economy: The Green Paradox and carbon leakage revisited

    NARCIS (Netherlands)

    van der Ploeg, F.

    2016-01-01

    Acceleration of global warming resulting from a future carbon tax is large if the price elasticities of oil demand are large and that of oil supply is small. The fall in the world interest rate weakens this weak Green Paradox effect, especially if intertemporal substitution is weak. Still, social

  17. Small-kernel constrained-least-squares restoration of sampled image data

    Science.gov (United States)

    Hazra, Rajeeb; Park, Stephen K.

    1992-10-01

    Constrained least-squares image restoration, first proposed by Hunt twenty years ago, is a linear image restoration technique in which the restoration filter is derived by maximizing the smoothness of the restored image while satisfying a fidelity constraint related to how well the restored image matches the actual data. The traditional derivation and implementation of the constrained least-squares restoration filter is based on an incomplete discrete/discrete system model which does not account for the effects of spatial sampling and image reconstruction. For many imaging systems, these effects are significant and should not be ignored. In a recent paper Park demonstrated that a derivation of the Wiener filter based on the incomplete discrete/discrete model can be extended to a more comprehensive end-to-end, continuous/discrete/continuous model. In a similar way, in this paper, we show that a derivation of the constrained least-squares filter based on the discrete/discrete model can also be extended to this more comprehensive continuous/discrete/continuous model and, by so doing, an improved restoration filter is derived. Building on previous work by Reichenbach and Park for the Wiener filter, we also show that this improved constrained least-squares restoration filter can be efficiently implemented as a small-kernel convolution in the spatial domain.

  18. A penalty method for PDE-constrained optimization in inverse problems

    International Nuclear Information System (INIS)

    Leeuwen, T van; Herrmann, F J

    2016-01-01

    Many inverse and parameter estimation problems can be written as PDE-constrained optimization problems. The goal is to infer the parameters, typically coefficients of the PDE, from partial measurements of the solutions of the PDE for several right-hand sides. Such PDE-constrained problems can be solved by finding a stationary point of the Lagrangian, which entails simultaneously updating the parameters and the (adjoint) state variables. For large-scale problems, such an all-at-once approach is not feasible as it requires storing all the state variables. In this case one usually resorts to a reduced approach where the constraints are explicitly eliminated (at each iteration) by solving the PDEs. These two approaches, and variations thereof, are the main workhorses for solving PDE-constrained optimization problems arising from inverse problems. In this paper, we present an alternative method that aims to combine the advantages of both approaches. Our method is based on a quadratic penalty formulation of the constrained optimization problem. By eliminating the state variable, we develop an efficient algorithm that has roughly the same computational complexity as the conventional reduced approach while exploiting a larger search space. Numerical results show that this method indeed reduces some of the nonlinearity of the problem and is less sensitive to the initial iterate. (paper)

  19. The Australian terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2013-02-01

    Full Text Available This paper reports a study of the full carbon (C-CO2 budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP; net ecosystem production (NEP; fire; land use change (LUC; riverine export; dust export; harvest (wood, crop and livestock and fossil fuel emissions (both territorial and non-territorial. Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012, a fine-spatial-resolution (0.05° offline modelling environment in which predictions of CABLE (Wang et al., 2011, a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 24 (1σ error on mean and 68 ± 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes, which caused net losses of 26 ± 4 TgC yr−1 and 18 ± 7 TgC yr−1, respectively. The resultant net biome production (NBP is 36 ± 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 ± 6 TgC yr−1 by 38 ± 30%. The interannual variability (IAV in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.

  20. The 2015-2016 El Niño and the response of the carbon cycle: Findings from the Orbiting Carbon Observatory-2 (OCO-2) mission

    Science.gov (United States)

    Chatterjee, A.; Schimel, D.; Stephens, B. B.; Crisp, D.; Eldering, A.; Gunson, M. R.; Feely, R. A.; Gierach, M. M.; Keeling, R. F.; Sutton, A. J.; Weir, B.

    2017-12-01

    The El Nino Southern Oscillation (ENSO) is the most important mode of tropical climate variability on interannual to decadal time scales. Correlations between atmospheric CO2 growth rate and ENSO activity are relatively well known but the magnitude of this correlation, the contribution from tropical marine vs. terrestrial flux components, and the causal mechanisms, are poorly constrained in space and time. The launch of NASA's Orbiting Carbon Observatory-2 (OCO-2) mission in July 2014 was rather timely given the development of strong ENSO conditions over the tropical Pacific Ocean in 2015-2016. In this presentation, we will discuss how the high-density observations from OCO-2 provided us with a novel dataset to resolve the linkages between El Niño and atmospheric CO2. Along with information from in situ observations of ΔpCO2 from NOAA's Tropical Atmosphere Ocean (TAO) project and atmospheric CO2 from the Scripps CO2 Program, and other remote-sensing missions, we are able to piece together the time dependent response of atmospheric CO2 concentrations over the Tropics. Our findings confirm the hypothesis from studies following the 1997-1998 El Niño event that an early reduction in CO2 outgassing from the tropical Pacific Ocean is later reversed by enhanced net CO2 emissions from the terrestrial biosphere. This implies that a component of the interannual variability (IAV) in the growth rate of atmospheric CO2, which has typically been used to constrain the climate sensitivity of tropical land carbon fluxes, is strongly influenced and modified by ocean fluxes during the early phase of the ENSO event. Our analyses shed further light on the understanding of the marine vs. terrestrial partitioning of tropical carbon fluxes during El Niño events, their relative contributions to the global atmospheric CO2 growth rate, and provide clues about the sensitivity of the carbon cycle to climate forcing on interannual time scales.

  1. Communication Schemes with Constrained Reordering of Resources

    DEFF Research Database (Denmark)

    Popovski, Petar; Utkovski, Zoran; Trillingsgaard, Kasper Fløe

    2013-01-01

    This paper introduces a communication model inspired by two practical scenarios. The first scenario is related to the concept of protocol coding, where information is encoded in the actions taken by an existing communication protocol. We investigate strategies for protocol coding via combinatorial...... reordering of the labelled user resources (packets, channels) in an existing, primary system. However, the degrees of freedom of the reordering are constrained by the operation of the primary system. The second scenario is related to communication systems with energy harvesting, where the transmitted signals...... are constrained by the energy that is available through the harvesting process. We have introduced a communication model that covers both scenarios and elicits their key feature, namely the constraints of the primary system or the harvesting process. We have shown how to compute the capacity of the channels...

  2. Closed-Loop Control of Constrained Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2014-03-27

    predicts forces and moments for the class of flapping wing fliers that makes up most insects and hummingbirds. Large bird and butterfly “clap- and...Closed-Loop Control of Constrained Flapping Wing Micro Air Vehicles DISSERTATION Garrison J. Lindholm, Captain, USAF AFIT-ENY-DS-14-M-02 DEPARTMENT...States Air Force, Department of Defense, or the United States Government. AFIT-ENY-DS-14-M-02 Closed-Loop Control of Constrained Flapping Wing Micro Air

  3. European CO2 prices and carbon capture investments

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2008-01-01

    We assess the option to install a carbon capture and storage (CCS) unit in a coal-fired power plant operating in a carbon-constrained environment. We consider two sources of risk, namely the price of emission allowance and the price of the electricity output. First we analyse the performance of the EU market for CO 2 emission allowances. Specifically, we focus on the contracts maturing in the Kyoto Protocol's first commitment period (2008 to 2012) and calibrate the underlying parameters of the allowance price process. Then we refer to the Spanish wholesale electricity market and calibrate the parameters of the electricity price process. We use a two-dimensional binomial lattice to derive the optimal investment rule. In particular, we obtain the trigger allowance prices above which it is optimal to install the capture unit immediately. We further analyse the effect of changes in several variables on these critical prices, among them allowance price volatility and a hypothetical government subsidy. We conclude that, at current permit prices, immediate installation does not seem justified from a financial point of view. This need not be the case, though, if carbon market parameters change dramatically, carbon capture technology undergoes significant improvements, and/or a specific governmental policy to promote these units is adopted. (author)

  4. Constraining new physics models with isotope shift spectroscopy

    Science.gov (United States)

    Frugiuele, Claudia; Fuchs, Elina; Perez, Gilad; Schlaffer, Matthias

    2017-07-01

    Isotope shifts of transition frequencies in atoms constrain generic long- and intermediate-range interactions. We focus on new physics scenarios that can be most strongly constrained by King linearity violation such as models with B -L vector bosons, the Higgs portal, and chameleon models. With the anticipated precision, King linearity violation has the potential to set the strongest laboratory bounds on these models in some regions of parameter space. Furthermore, we show that this method can probe the couplings relevant for the protophobic interpretation of the recently reported Be anomaly. We extend the formalism to include an arbitrary number of transitions and isotope pairs and fit the new physics coupling to the currently available isotope shift measurements.

  5. Constraining the noncommutative spectral action via astrophysical observations.

    Science.gov (United States)

    Nelson, William; Ochoa, Joseph; Sakellariadou, Mairi

    2010-09-03

    The noncommutative spectral action extends our familiar notion of commutative spaces, using the data encoded in a spectral triple on an almost commutative space. Varying a rather simple action, one can derive all of the standard model of particle physics in this setting, in addition to a modified version of Einstein-Hilbert gravity. In this Letter we use observations of pulsar timings, assuming that no deviation from general relativity has been observed, to constrain the gravitational sector of this theory. While the bounds on the coupling constants remain rather weak, they are comparable to existing bounds on deviations from general relativity in other settings and are likely to be further constrained by future observations.

  6. Constraining recent Shiveluch volcano eruptions (Kamchatka, Russia by means of dendrochronology

    Directory of Open Access Journals (Sweden)

    O. Solomina

    2008-10-01

    Full Text Available Shiveluch (N 56°38´, E 161°19´; elevation: active dome ~2500 m, summit of Old Shiveluch 3283 m is one of the most active volcanoes in Kamchatka. The eruptions of Shiveluch commonly result in major environmental damage caused by debris avalanches, hot pyroclastic flows, tephra falls and lahars. Constraining these events in time and space is important for the understanding and prediction of these natural hazards. The last major eruption of Shiveluch occurred in 2005; earlier ones, dated by instrumental, historical, 14C and tephrochronological methods, occurred in the last millennium around AD 1030, 1430, 1650, 1739, 1790–1810, 1854, 1879–1883, 1897–1898, 1905, 1927–1929, 1944–1950, and 1964. A lava dome has been growing in the 1964 crater since 1980, occasionally producing tephra falls and pyroclastic flows. Several Shiveluch eruptions (~AD 1050, 1650, 1854, 1964 may have been climatically effective and are probably recorded in the Greenland ice cores.

    Previously, most dates for eruptions before AD 1854 were obtained by tephrochronology and constrained by radiocarbon dating with an accuracy of several decades or centuries. In this paper we report tree-ring dates for a recent pyroclastic flow in Baidarnaia valley. Though the wood buried in these deposits is carbonized, fragile and poorly preserved, we were able to measure ring-width using standard tree-ring equipment or photographs and to cross-date these samples against the regional Kamchatka larch ring-width chronology. The dates of the outer rings indicate the date of the eruptions. In the Baidarnaia valley the eruption occurred shortly after AD 1756, but not later than AD 1758. This date coincides with the decrease of ring-width in trees growing near Shiveluch volcano in 1758–1763 in comparison with the control "non-volcanic" chronology. The pyroclastic flow in Kamenskaia valley, although similar in appearance to the one in Baidarnaia valley, definitively

  7. Global carbon inequality

    Energy Technology Data Exchange (ETDEWEB)

    Hubacek, Klaus [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Masaryk University, Department of Environmental Studies, Brno (Czech Republic); Baiocchi, Giovanni [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); University of Maryland, Department of Economics, College Park, MD (United States); Feng, Kuishuang [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Munoz Castillo, Raul [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Interamerican Development Bank, Washington, DC (United States); Sun, Laixiang [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); SOAS, University of London, London (United Kingdom); International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Xue, Jinjun [Nagoya University, Graduate School of Economics, Nagoya (Japan); Hubei University of Economics, Wuhan (China)

    2017-12-01

    Global climate change and inequality are inescapably linked both in terms of who contributes climate change and who suffers the consequences. This fact is also partly reflected in two United Nations (UN) processes: on the one hand, the Paris Agreement of the UN Framework Convention on Climate Change under which countries agreed to hold the increase in the global average temperature to below 2 C above pre-industrial levels and, on the other hand, the UN's Sustainable Development Goals aiming to end poverty. These agreements are seen as important foundation to put the world nations on a sustainable pathway. However, how these agreements can be achieved or whether they are even mutually compatible is less clear. We explore the global carbon inequality between and within countries and the carbon implications of poverty alleviation by combining detailed consumer expenditure surveys for different income categories for a wide range of countries with an environmentally extended multi-regional input-output approach to estimate carbon footprints of different household groups, globally, and assess the carbon implications of moving the poorest people out of poverty. Given the current context, increasing income leads to increasing carbon footprints and makes global targets for mitigating greenhouse gases more difficult to achieve given the pace of technological progress and current levels of fossil fuel dependence. We conclude that the huge level of carbon inequality requires a critical discussion of undifferentiated income growth. Current carbon-intensive lifestyles and consumption patterns need to enter the climate discourse to a larger extent. (orig.)

  8. Global carbon inequality

    International Nuclear Information System (INIS)

    Hubacek, Klaus; Baiocchi, Giovanni; Feng, Kuishuang; Munoz Castillo, Raul; Sun, Laixiang; Xue, Jinjun

    2017-01-01

    Global climate change and inequality are inescapably linked both in terms of who contributes climate change and who suffers the consequences. This fact is also partly reflected in two United Nations (UN) processes: on the one hand, the Paris Agreement of the UN Framework Convention on Climate Change under which countries agreed to hold the increase in the global average temperature to below 2 C above pre-industrial levels and, on the other hand, the UN's Sustainable Development Goals aiming to end poverty. These agreements are seen as important foundation to put the world nations on a sustainable pathway. However, how these agreements can be achieved or whether they are even mutually compatible is less clear. We explore the global carbon inequality between and within countries and the carbon implications of poverty alleviation by combining detailed consumer expenditure surveys for different income categories for a wide range of countries with an environmentally extended multi-regional input-output approach to estimate carbon footprints of different household groups, globally, and assess the carbon implications of moving the poorest people out of poverty. Given the current context, increasing income leads to increasing carbon footprints and makes global targets for mitigating greenhouse gases more difficult to achieve given the pace of technological progress and current levels of fossil fuel dependence. We conclude that the huge level of carbon inequality requires a critical discussion of undifferentiated income growth. Current carbon-intensive lifestyles and consumption patterns need to enter the climate discourse to a larger extent. (orig.)

  9. Chapter 10. Trees have Already been Invented: Carbon in Woodlands

    Directory of Open Access Journals (Sweden)

    Susanna B. Hecht

    2016-12-01

    Full Text Available In the developed world, discussions of climate change mitigation and adaptation tend to focus on technological solutions such as decarbonizing electric grids and regulating emissions of methane, black carbon, and so on. However, an often overlooked strategy for reaching greenhouse gas reduction targets in much of the developing world is rooted, not in new technologies, but in vegetation management. Trees and other vegetation absorb carbon as they grow and release carbon when they are burnt, so landscapes function as carbon sinks and carbon storage sites when forests are growing, on one hand, and as carbon sources when forests are cleared, on the other. Since greenhouse gas emissions from such land use changes rival emissions from the entire transport sector, trees and vegetation are essential to efforts to slow and adapt to climate change. Under the right circumstances, vegetation recovery and its carbon uptake occur quickly. Moreover, carbon uptake can be strongly affected by human management of forests; the right kinds of management can improve rates of recovery and carbon sequestration substantially. This chapter reviews carbon dynamics in mature forests, secondary forests, agroforests and tree landscapes in urban areas to point out the variability of these systems and the potential for enhancing carbon uptake and storage. Furthermore, vegetation systems have many additional benefits in the form of other environmental services, such as improving livelihoods, subsistence insurance habitat, microclimates, and water systems. Finally, by managing forests better, we can also make significant contributions to climate justice because most global forests and forested landscapes are under the stewardship of small holders.

  10. Electrochemomechanical constrained multiobjective optimization of PPy/MWCNT actuators

    International Nuclear Information System (INIS)

    Khalili, N; Naguib, H E; Kwon, R H

    2014-01-01

    Polypyrrole (PPy) conducting polymers have shown a great potential for the fabrication of conjugated polymer-based actuating devices. Consequently, they have been a key point in developing many advanced emerging applications such as biomedical devices and biomimetic robotics. When designing an actuator, taking all of the related decision variables, their roles and relationships into consideration is of pivotal importance to determine the actuator’s final performance. Therefore, the central focus of this study is to develop an electrochemomechanical constrained multiobjective optimization model of a PPy/MWCNTs trilayer actuator. For this purpose, the objective functions are designed to capture the three main characteristics of these actuators, namely their tip vertical displacement, blocking force and response time. To obtain the optimum range of the designated decision variables within the feasible domain, a multiobjective optimization algorithm is applied while appropriate constraints are imposed. The optimum points form a Pareto surface on which they are consistently spread. The numerical results are presented; these results enable one to design an actuator with consideration to the desired output performances. For the experimental analysis, a multilayer bending-type actuator is fabricated, which is composed of a PVDF layer and two layers of PPy with an incorporated layer of multi-walled carbon nanotubes deposited on each side of the PVDF membrane. The numerical results are experimentally verified; in order to determine the performance of the fabricated actuator, its outputs are compared with a neat PPy actuator’s experimental and numerical counterparts. (paper)

  11. On Tree-Constrained Matchings and Generalizations

    NARCIS (Netherlands)

    S. Canzar (Stefan); K. Elbassioni; G.W. Klau (Gunnar); J. Mestre

    2011-01-01

    htmlabstractWe consider the following \\textsc{Tree-Constrained Bipartite Matching} problem: Given two rooted trees $T_1=(V_1,E_1)$, $T_2=(V_2,E_2)$ and a weight function $w: V_1\\times V_2 \\mapsto \\mathbb{R}_+$, find a maximum weight matching $\\mathcal{M}$ between nodes of the two trees, such that

  12. Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-climate feedback

    Science.gov (United States)

    Lombardozzi, Danica L.; Bonan, Gordon B.; Smith, Nicholas G.; Dukes, Jeffrey S.; Fisher, Rosie A.

    2015-10-01

    Earth System Models typically use static responses to temperature to calculate photosynthesis and respiration, but experimental evidence suggests that many plants acclimate to prevailing temperatures. We incorporated representations of photosynthetic and leaf respiratory temperature acclimation into the Community Land Model, the terrestrial component of the Community Earth System Model. These processes increased terrestrial carbon pools by 20 Pg C (22%) at the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario. Including the less certain estimates of stem and root respiration acclimation increased terrestrial carbon pools by an additional 17 Pg C (~40% overall increase). High latitudes gained the most carbon with acclimation, and tropical carbon pools increased least. However, results from both of these regions remain uncertain; few relevant data exist for tropical and boreal plants or for extreme temperatures. Constraining these uncertainties will produce more realistic estimates of land carbon feedbacks throughout the 21st century.

  13. Iceland as a demonstrator for a transition to low carbon economy?

    Science.gov (United States)

    Asbjornsson, Einar Jon; Stefansson, Hlynur; Finger, David Christian

    2017-04-01

    The energy supply in Iceland is quite unique, about 85% of the total primary energy is coming from renewable resources. Nevertheless, the ecological footprint of an average Icelander is with 6.5 worlds, one of the highest worldwide and the energy consumption per capita is about 7 times higher than the European average. Recent developments have shown that there is a great potential to reduce the footprint and develop towards low carbon economy. With its small population, well educated and governed society and clear system boundaries to the outside world, Iceland is a good research laboratory and an ideal demonstrator for a transition towards a low carbon economy. This presentation will outline how several innovative research projects at Reykjavik University could lead Iceland towards a sustainable and low carbon economy. The presentations will conclude with a visionary outlook how Iceland can become a demonstration nation towards a prosperous, low carbon and sustainable economy, helping stabilize global warming at an acceptable level.

  14. Pole shifting with constrained output feedback

    International Nuclear Information System (INIS)

    Hamel, D.; Mensah, S.; Boisvert, J.

    1984-03-01

    The concept of pole placement plays an important role in linear, multi-variable, control theory. It has received much attention since its introduction, and several pole shifting algorithms are now available. This work presents a new method which allows practical and engineering constraints such as gain limitation and controller structure to be introduced right into the pole shifting design strategy. This is achieved by formulating the pole placement problem as a constrained optimization problem. Explicit constraints (controller structure and gain limits) are defined to identify an admissible region for the feedback gain matrix. The desired pole configuration is translated into an appropriate cost function which must be closed-loop minimized. The resulting constrained optimization problem can thus be solved with optimization algorithms. The method has been implemented as an algorithmic interactive module in a computer-aided control system design package, MVPACK. The application of the method is illustrated to design controllers for an aircraft and an evaporator. The results illustrate the importance of controller structure on overall performance of a control system

  15. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Science.gov (United States)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  16. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  17. The effect of stimulus intensity on response time and accuracy in dynamic, temporally constrained environments.

    Science.gov (United States)

    Causer, J; McRobert, A P; Williams, A M

    2013-10-01

    The ability to make accurate judgments and execute effective skilled movements under severe temporal constraints are fundamental to elite performance in a number of domains including sport, military combat, law enforcement, and medicine. In two experiments, we examine the effect of stimulus strength on response time and accuracy in a temporally constrained, real-world, decision-making task. Specifically, we examine the effect of low stimulus intensity (black) and high stimulus intensity (sequin) uniform designs, worn by teammates, to determine the effect of stimulus strength on the ability of soccer players to make rapid and accurate responses. In both field- and laboratory-based scenarios, professional soccer players viewed developing patterns of play and were required to make a penetrative pass to an attacking player. Significant differences in response accuracy between uniform designs were reported in laboratory- and field-based experiments. Response accuracy was significantly higher in the sequin compared with the black uniform condition. Response times only differed between uniform designs in the laboratory-based experiment. These findings extend the literature into a real-world environment and have significant implications for the design of clothing wear in a number of domains. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Carbon emissions of infrastructure development.

    Science.gov (United States)

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.

  19. An Integrated Carbon Policy-Based Interactive Strategy for Carbon Reduction and Economic Development in a Construction Material Supply Chain

    Directory of Open Access Journals (Sweden)

    Liming Zhang

    2017-11-01

    Full Text Available Carbon emissions from the construction material industry have become of increasing concern due to increasingly urbanization and extensive infrastructure. Faced with serious atmospheric deterioration, governments have been seeking to reduce carbon emissions, with carbon trading and carbon taxes being considered the most effective regulatory policies. Over time, there has been a global consensus that integrated carbon trading/carbon tax policies are more effective in reducing carbon emissions. However, in an integrated carbon reduction policy framework, balancing the relationship between emission reductions and low-carbon benefits has been found to be a critical issue for governments and enterprises in both theoretical research and carbon emission reduction practices. As few papers have sought to address these issues, this paper seeks to reach a trade-off between economic development and environmental protection involving various stakeholders: regional governments which aim to maximize social benefits, and producers who seek economic profit maximization. An iterative interactive algorithmic method with fuzzy random variables (FRVs is proposed to determine the satisfactory equilibrium between these decision-makers. This methodology is then applied to a real-world case to demonstrate its practicality and efficiency.

  20. Death and bereavement in the First World War: the Australian experience.

    Science.gov (United States)

    Jalland, Pat

    2014-06-01

    The First World War was a turning point in the cultural history of death and bereavement in Australia. The mass deaths of some 60,000 soldiers overseas led to communal rituals of mourning for the war dead and minimal public expressions of private grief. The mass slaughter of so many young men and the interminable grief of so many families devalued the deaths of civilians at home and helped to create a new cultural model of suppressed and privatised grieving which deeply constrained the next two generations. Emotional and expressive grieving became less common, mourning ritual was minimised and sorrow became a private matter. Copyright © 2014. Published by Elsevier Ltd.

  1. The carbon footprint of global tourism

    Science.gov (United States)

    Lenzen, Manfred; Sun, Ya-Yen; Faturay, Futu; Ting, Yuan-Peng; Geschke, Arne; Malik, Arunima

    2018-06-01

    Tourism contributes significantly to global gross domestic product, and is forecast to grow at an annual 4%, thus outpacing many other economic sectors. However, global carbon emissions related to tourism are currently not well quantified. Here, we quantify tourism-related global carbon flows between 160 countries, and their carbon footprints under origin and destination accounting perspectives. We find that, between 2009 and 2013, tourism's global carbon footprint has increased from 3.9 to 4.5 GtCO2e, four times more than previously estimated, accounting for about 8% of global greenhouse gas emissions. Transport, shopping and food are significant contributors. The majority of this footprint is exerted by and in high-income countries. The rapid increase in tourism demand is effectively outstripping the decarbonization of tourism-related technology. We project that, due to its high carbon intensity and continuing growth, tourism will constitute a growing part of the world's greenhouse gas emissions.

  2. Neutron Powder Diffraction and Constrained Refinement

    DEFF Research Database (Denmark)

    Pawley, G. S.; Mackenzie, Gordon A.; Dietrich, O. W.

    1977-01-01

    The first use of a new program, EDINP, is reported. This program allows the constrained refinement of molecules in a crystal structure with neutron diffraction powder data. The structures of p-C6F4Br2 and p-C6F4I2 are determined by packing considerations and then refined with EDINP. Refinement is...

  3. Have You Switched to a Low-Carbon Diet? The Ultimate Value of Low-Carbon Consumerism

    Directory of Open Access Journals (Sweden)

    Yu-Ling Lin

    2014-04-01

    Full Text Available Since the 1990s many governments around the world have been encouraging their people to participate in green or low carbon living. With the background of rising consumer awareness in environmental protection, green consumption, and green marketing are receiving growing attention from consumers and enterprises. Therefore, the purpose of this paper is to identify the goals and values of 60 Taiwanese consumers in a low-carbon diet. This study uses the theory of Mean-end chain as basis, applying the “Soft-laddering” of “Laddering” to understand the perceived value of low carbon food in depth interviews. The results revealed that the attributes of users care for green living in the, order of, Less meat more vegetables, Seasonal food, Local food, Food with minimal artificial processing, Energy-saving preparation and Carbon footprint. After classifying by content analysis, we draw the Hierarchical value map (HVM to explore that consumer’s pursuit of the final value and benefits by adopting a low-carbon diet relate to healthy living.

  4. A real-time Java tool chain for resource constrained platforms

    DEFF Research Database (Denmark)

    Korsholm, Stephan Erbs; Søndergaard, Hans; Ravn, Anders P.

    2013-01-01

    The Java programming language was originally developed for embedded systems, but the resource requirements of previous and current Java implementations - especially memory consumption - tend to exclude them from being used on a significant class of resource constrained embedded platforms. The con......The Java programming language was originally developed for embedded systems, but the resource requirements of previous and current Java implementations - especially memory consumption - tend to exclude them from being used on a significant class of resource constrained embedded platforms...... by integrating: (1) a lean virtual machine (HVM) without any external dependencies on POSIX-like libraries or other OS functionalities, (2) a hardware abstraction layer, implemented almost entirely in Java through the use of hardware objects, first level interrupt handlers, and native variables, and (3....... An evaluation of the presented solution shows that the miniCDj benchmark gets reduced to a size where it can run on resource constrained platforms....

  5. World uranium resources, production and demand

    International Nuclear Information System (INIS)

    Lindholm, I.

    1988-01-01

    Reasonably assured resources of uranium in WOCA (World Outside the Centrally Planned Economies Area) countries recoverable at less than US $80/kg U increased by about 9% between 1983 and 1985 and currently stand at 1.5 million tonnes. Uranium also exists in significant quantities in higher cost resources or in less known resources. However, the annual exploration expenditure is less than 20% that of the 1979 level. Uranium production in WOCA countries was higher than consumption during the period 1965 to 1984 and considerable stocks were accumulated. However, the production figures for 1985 were estimated to be slightly less than those of consumption. Production from centres now on stand-by or new centres will probably be necessary around 1990. Analysis of the longer term production possibilities indicates that uranium supplies will probably not be constrained by an ultimate resource adequacy. Constraints, if any, are more likely to be of political nature. (author). 11 figs, 1 tab

  6. How well do different tracers constrain the firn diffusivity profile?

    Directory of Open Access Journals (Sweden)

    C. M. Trudinger

    2013-02-01

    Full Text Available Firn air transport models are used to interpret measurements of the composition of air in firn and bubbles trapped in ice in order to reconstruct past atmospheric composition. The diffusivity profile in the firn is usually calibrated by comparing modelled and measured concentrations for tracers with known atmospheric history. However, in most cases this is an under-determined inverse problem, often with multiple solutions giving an adequate fit to the data (this is known as equifinality. Here we describe a method to estimate the firn diffusivity profile that allows multiple solutions to be identified, in order to quantify the uncertainty in diffusivity due to equifinality. We then look at how well different combinations of tracers constrain the firn diffusivity profile. Tracers with rapid atmospheric variations like CH3CCl3, HFCs and 14CO2 are most useful for constraining molecular diffusivity, while &delta:15N2 is useful for constraining parameters related to convective mixing near the surface. When errors in the observations are small and Gaussian, three carefully selected tracers are able to constrain the molecular diffusivity profile well with minimal equifinality. However, with realistic data errors or additional processes to constrain, there is benefit to including as many tracers as possible to reduce the uncertainties. We calculate CO2 age distributions and their spectral widths with uncertainties for five firn sites (NEEM, DE08-2, DSSW20K, South Pole 1995 and South Pole 2001 with quite different characteristics and tracers available for calibration. We recommend moving away from the use of a firn model with one calibrated parameter set to infer atmospheric histories, and instead suggest using multiple parameter sets, preferably with multiple representations of uncertain processes, to assist in quantification of the uncertainties.

  7. 21 CFR 888.3350 - Hip joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer semi-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3350 Hip joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/polymer semi...

  8. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer non-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3120 Ankle joint metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  9. Value, Cost, and Sharing: Open Issues in Constrained Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2006-01-01

    Clustering is an important tool for data mining, since it can identify major patterns or trends without any supervision (labeled data). Over the past five years, semi-supervised (constrained) clustering methods have become very popular. These methods began with incorporating pairwise constraints and have developed into more general methods that can learn appropriate distance metrics. However, several important open questions have arisen about which constraints are most useful, how they can be actively acquired, and when and how they should be propagated to neighboring points. This position paper describes these open questions and suggests future directions for constrained clustering research.

  10. Appearance and substance: World petroleum market review

    International Nuclear Information System (INIS)

    Ronchi, M.

    1992-01-01

    This review of supply and demand trends in the world petroleum market includes comments on the influence of the Brent quotations, political unrest in the Middle East and OPEC's reaction to the carbon tax proposed during the Rio Earth's Summit on global environmental protection. Overall, the analysis suggests increases in surplus, following a 15 month period of stagnant demand, with increases in Asiatic countries balanced by decreases in the Eastern Bloc nations currently periencing difficulties with their transition economies

  11. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  12. Continuing growth for world energy consumption

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The World Energy Outlook of the global energy markets from 1971 to 2020, recently released by the International Energy Agency, is summarised. Covering demand, supply and energy prices, it provides an in-depth review of oil, gas, coal, biomass and power generation. With projections for all energy sectors, it offers a valuable insight into the development of the international energy business. The projections cover all world regions, including industrial and developing countries, and provide a comprehensive view of the main developments and issues affecting demand and supply on a global basis. The Outlook's projections have been derived from a 'reference scenario' that assumes global economic growth of more than 3% per annum, but a slowdown in population growth. Fossil-fuel prices are generally assumed to remain flat throughout the first decade of the projection period (to 2020), with oil and gas prices increasing after 2010 in response to the supply-side pressures. The scenario takes account of a range of major new policies and measures adopted in OECD countries, many of which relate to commitments under the Kyoto Protocol enacted or announced up to mid-2000. Despite the policies and measures in the OECD countries, energy-related carbon dioxide emissions will increase, averaging 2.1% per annum to 2020. This amounts to 60% increase between 1997 and 2020. Fast-growing developing countries heavily contributing to increase in carbon dioxide, as they do in global energy demand

  13. Putting a price on carbon. Accelerating the dialogue: a challenge for governments and a request from businesses

    International Nuclear Information System (INIS)

    Alberola, Emilie; Leguet, Benoit; Ducret, Pierre; Vaidyula, Manasvini; Dahan, Lara; Afriat, Marion; Cochran, Ian

    2015-01-01

    Today, the world's top greenhouse gas emitting countries are adopting a variety of policy instruments to regulate emissions in parts of their economy. The World Bank currently estimates that carbon policies generated almost $45 billion in 2014. Cap-and-trade systems, as well as carbon taxes now represent a key means by which to finance the transition to a low-carbon economy by providing public authorities with a new source of funding via the additional levy or auctions of GHG emissions allowances

  14. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks.

    Science.gov (United States)

    John B. Bradford; Nicholas R. Jensen; Grant M. Domke; Anthony W. D' Amato

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior...

  15. How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China's Loess Plateau.

    Science.gov (United States)

    Feng, Xiaoming; Fu, Bojie; Lu, Nan; Zeng, Yuan; Wu, Bingfang

    2013-10-03

    Restoring disturbed and over-exploited ecosystems is important to mitigate human pressures on natural ecosystems. China has launched an ambitious national ecosystem restoration program called Grain to Green Program (GTGP) over the last decade. By using remote sensing techniques and ecosystem modelling, we quantitatively evaluated the changes in ecosystem carbon sequestration since China's GTGP program during period of 2000-2008. It was found the NPP and NEP in this region had steadily increased after the initiative of the GTGP program, and a total of 96.1 Tg of additional carbon had been sequestered during that period. Changes in soil carbon storage were lagged behind and thus insignificant over the period, but was expected to follow in the coming decades. As a result, the Loess Plateau ecosystem had shifted from a net carbon source in 2000 to a net carbon sink in 2008. The carbon sequestration efficiency was constrained by precipitation, and appropriate choices of restoration types (trees, shrubs, and grasses) in accordance to local climate are critical for achieving the best benefit/cost efficiency.

  16. Identification of different geologic units using fuzzy constrained resistivity tomography

    Science.gov (United States)

    Singh, Anand; Sharma, S. P.

    2018-01-01

    Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.

  17. Capacity Constrained Routing Algorithms for Evacuation Route Planning

    National Research Council Canada - National Science Library

    Lu, Qingsong; George, Betsy; Shekhar, Shashi

    2006-01-01

    .... In this paper, we propose a new approach, namely a capacity constrained routing planner which models capacity as a time series and generalizes shortest path algorithms to incorporate capacity constraints...

  18. Climate constraints on the carbon intensity of economic growth

    International Nuclear Information System (INIS)

    Rozenberg, Julie; Narloch, Ulf; Hallegatte, Stephane; Davis, Steven J

    2015-01-01

    Development and climate goals together constrain the carbon intensity of production. Using a simple and transparent model that represents committed CO 2 emissions (future emissions expected to come from existing capital), we explore the carbon intensity of production related to new capital required for different temperature targets across several thousand scenarios. Future pathways consistent with the 2 °C target which allow for continued gross domestic product growth require early action to reduce carbon intensity of new production, and either (i) a short lifetime of energy and industry capital (e.g. early retrofit of coal power plants), or (ii) large negative emissions after 2050 (i.e. rapid development and dissemination of carbon capture and sequestration). To achieve the 2 °C target, half of the scenarios indicate a carbon intensity of new production between 33 and 73 g CO 2 /$—much lower than the global average today, at 360 g CO 2 /$. The average lifespan of energy capital (especially power plants), and industry capital, are critical because they commit emissions far into the future and reduce the budget for new capital emissions. Each year of lifetime added to existing, carbon intensive capital, decreases the carbon intensity of new production required to meet a 2 °C carbon budget by 1.0–1.5 g CO 2 /$, and each year of delaying the start of mitigation decreases the required CO 2 intensity of new production by 20–50 g CO 2 /$. Constraints on the carbon intensity of new production under a 3 °C target are considerably relaxed relative to the 2 °C target, but remain daunting in comparison to the carbon intensity of the global economy today. (letter)

  19. Constraining the mass of the Local Group

    Science.gov (United States)

    Carlesi, Edoardo; Hoffman, Yehuda; Sorce, Jenny G.; Gottlöber, Stefan

    2017-03-01

    The mass of the Local Group (LG) is a crucial parameter for galaxy formation theories. However, its observational determination is challenging - its mass budget is dominated by dark matter that cannot be directly observed. To meet this end, the posterior distributions of the LG and its massive constituents have been constructed by means of constrained and random cosmological simulations. Two priors are assumed - the Λ cold dark matter model that is used to set up the simulations, and an LG model that encodes the observational knowledge of the LG and is used to select LG-like objects from the simulations. The constrained simulations are designed to reproduce the local cosmography as it is imprinted on to the Cosmicflows-2 data base of velocities. Several prescriptions are used to define the LG model, focusing in particular on different recent estimates of the tangential velocity of M31. It is found that (a) different vtan choices affect the peak mass values up to a factor of 2, and change mass ratios of MM31 to MMW by up to 20 per cent; (b) constrained simulations yield more sharply peaked posterior distributions compared with the random ones; (c) LG mass estimates are found to be smaller than those found using the timing argument; (d) preferred Milky Way masses lie in the range of (0.6-0.8) × 1012 M⊙; whereas (e) MM31 is found to vary between (1.0-2.0) × 1012 M⊙, with a strong dependence on the vtan values used.

  20. Tax regulating carbon market in Brazil: barriers and perspectives

    International Nuclear Information System (INIS)

    Marques, Fernando; Magalhaes, Gerusa; Parente, Virginia

    2010-01-01

    The world is moving towards a low carbon economy to fight global warming caused by increases in anthropogenic emissions of greenhouse gases (GHGs). The carbon market beckons as a promising opportunity for Brazil through Clean Development Mechanism (CDM) projects, which result in Certified Emission Reductions (CERs). Although Brazil is responsible for about 8% of all CDM projects in the world, there is still no specific tax regulation for CERs, thus hindering the development of carbon market in Brazil. It is essential that Brazil have a consistent internal framework which guarantees to potential investors a minimum security on the legal and fiscal operations of CERs. There are government institutions, considering the current law and that, given the number of bills being processed in Congress, are not definitive. Such bills have different understandings for the legal classification of CERs and the related tax treatment. This article supports an urgent need for a regulatory tax system for CERs, proposing a tax exemption on transactions involving CERs in order to encourage the effective development of carbon markets in Brazil in the context of the currently international legal system in which Kyoto Protocol is based. (author)

  1. Study on multimodal transport route under low carbon background

    Science.gov (United States)

    Liu, Lele; Liu, Jie

    2018-06-01

    Low-carbon environmental protection is the focus of attention around the world, scientists are constantly researching on production of carbon emissions and living carbon emissions. However, there is little literature about multimodal transportation based on carbon emission at home and abroad. Firstly, this paper introduces the theory of multimodal transportation, the multimodal transport models that didn't consider carbon emissions and consider carbon emissions are analyzed. On this basis, a multi-objective programming 0-1 programming model with minimum total transportation cost and minimum total carbon emission is proposed. The idea of weight is applied to Ideal point method for solving problem, multi-objective programming is transformed into a single objective function. The optimal solution of carbon emission to transportation cost under different weights is determined by a single objective function with variable weights. Based on the model and algorithm, an example is given and the results are analyzed.

  2. 21 CFR 888.3510 - Knee joint femorotibial metal/polymer constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer constrained... Knee joint femorotibial metal/polymer constrained cemented prosthesis. (a) Identification. A knee joint... of a knee joint. The device limits translation or rotation in one or more planes and has components...

  3. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint... ankle joint. The device limits translation and rotation: in one or more planes via the geometry of its...

  4. Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest

    OpenAIRE

    Serrano-Ortiz, P.; Marañón-Jiménez, S.; Reverter, B.R.; Sánchez-Cañete, E.P.; Castro, J.; Zamora, R.; Kowalski, A.S.

    2011-01-01

    Post-fire salvage logging is a common silvicultural practice around the world, with the potential to alter the regenerative capacity of an ecosystem and thus its role as a source or a sink of carbon. However, there is no information on the effect of burnt wood management on the net ecosystem carbon balance. Here, we examine for the first time the effect of post-fire burnt wood management on the net ecosystem carbon balance by comparing the carbon exchange of two treatments in a burnt Mediterr...

  5. Fine Tuning of Basic Forces through the Existence of Carbon-Based Life

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The bulk of the carbon in our universe is produced in the triple-alpha process in helium-burning red giant stars. We calculated the change of the triple-alpha reaction rate in a microscopic twelve-nucleon model of the 12C nucleus and looked for the effects of minimal variations of the strengths of the underlying strong and Coulomb interactions. Stellar model calculations are performed using the alternative reaction rates. We show that outside a narrow window of 0.5% of the strength or range of the strong interaction the stellar production of carbon or oxygen is reduced by factors of 130 to 1000. Therefore, outside this window the existence of carbon-based life in our universe would be strongly disfavored. These anthropically allowed strengths of the strong and electromagnetic forces also constrain the sum of the light quark masses and the Higgs vacuum expectation value.

  6. Microelectrode characterization of coral daytime interior pH and carbonate chemistry.

    Science.gov (United States)

    Cai, Wei-Jun; Ma, Yuening; Hopkinson, Brian M; Grottoli, Andréa G; Warner, Mark E; Ding, Qian; Hu, Xinping; Yuan, Xiangchen; Schoepf, Verena; Xu, Hui; Han, Chenhua; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Matsui, Yohei; Baumann, Justin H; Levas, Stephen; Ying, Ye; Wang, Yongchen

    2016-04-04

    Reliably predicting how coral calcification may respond to ocean acidification and warming depends on our understanding of coral calcification mechanisms. However, the concentration and speciation of dissolved inorganic carbon (DIC) inside corals remain unclear, as only pH has been measured while a necessary second parameter to constrain carbonate chemistry has been missing. Here we report the first carbonate ion concentration ([CO3(2-)]) measurements together with pH inside corals during the light period. We observe sharp increases in [CO3(2-)] and pH from the gastric cavity to the calcifying fluid, confirming the existence of a proton (H(+)) pumping mechanism. We also show that corals can achieve a high aragonite saturation state (Ωarag) in the calcifying fluid by elevating pH while at the same time keeping [DIC] low. Such a mechanism may require less H(+)-pumping and energy for upregulating pH compared with the high [DIC] scenario and thus may allow corals to be more resistant to climate change related stressors.

  7. Constrained optimization of test intervals using a steady-state genetic algorithm

    International Nuclear Information System (INIS)

    Martorell, S.; Carlos, S.; Sanchez, A.; Serradell, V.

    2000-01-01

    There is a growing interest from both the regulatory authorities and the nuclear industry to stimulate the use of Probabilistic Risk Analysis (PRA) for risk-informed applications at Nuclear Power Plants (NPPs). Nowadays, special attention is being paid on analyzing plant-specific changes to Test Intervals (TIs) within the Technical Specifications (TSs) of NPPs and it seems to be a consensus on the need of making these requirements more risk-effective and less costly. Resource versus risk-control effectiveness principles formally enters in optimization problems. This paper presents an approach for using the PRA models in conducting the constrained optimization of TIs based on a steady-state genetic algorithm (SSGA) where the cost or the burden is to be minimized while the risk or performance is constrained to be at a given level, or vice versa. The paper encompasses first with the problem formulation, where the objective function and constraints that apply in the constrained optimization of TIs based on risk and cost models at system level are derived. Next, the foundation of the optimizer is given, which is derived by customizing a SSGA in order to allow optimizing TIs under constraints. Also, a case study is performed using this approach, which shows the benefits of adopting both PRA models and genetic algorithms, in particular for the constrained optimization of TIs, although it is also expected a great benefit of using this approach to solve other engineering optimization problems. However, care must be taken in using genetic algorithms in constrained optimization problems as it is concluded in this paper

  8. Chance constrained uncertain classification via robust optimization

    NARCIS (Netherlands)

    Ben-Tal, A.; Bhadra, S.; Bhattacharayya, C.; Saketha Nat, J.

    2011-01-01

    This paper studies the problem of constructing robust classifiers when the training is plagued with uncertainty. The problem is posed as a Chance-Constrained Program (CCP) which ensures that the uncertain data points are classified correctly with high probability. Unfortunately such a CCP turns out

  9. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Science.gov (United States)

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  10. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.

    Science.gov (United States)

    Song, Zhaoliang; Liu, Hongyan; Li, Beilei; Yang, Xiaomin

    2013-09-01

    The persistent terrestrial carbon sink regulates long-term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content-biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith-occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2  yr(-1) , 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3-80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2  yr(-1) , respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long-term terrestrial carbon sink and contribute to mitigation of global climate warming. © 2013 John Wiley & Sons Ltd.

  11. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a device...

  12. Constraining the Mechanism of D" Anisotropy: Diversity of Observation Types Required

    Science.gov (United States)

    Creasy, N.; Pisconti, A.; Long, M. D.; Thomas, C.

    2017-12-01

    A variety of different mechanisms have been proposed as explanations for seismic anisotropy at the base of the mantle, including crystallographic preferred orientation of various minerals (bridgmanite, post-perovskite, and ferropericlase) and shape preferred orientation of elastically distinct materials such as partial melt. Investigations of the mechanism for D" anisotropy are usually ambiguous, as seismic observations rarely (if ever) uniquely constrain a mechanism. Observations of shear wave splitting and polarities of SdS and PdP reflections off the D" discontinuity are among our best tools for probing D" anisotropy; however, typical data sets cannot constrain a unique scenario suggested by the mineral physics literature. In this work, we determine what types of body wave observations are required to uniquely constrain a mechanism for D" anisotropy. We test multiple possible models based on both single-crystal and poly-phase elastic tensors provided by mineral physics studies. We predict shear wave splitting parameters for SKS, SKKS, and ScS phases and reflection polarities off the D" interface for a range of possible propagation directions. We run a series of tests that create synthetic data sets by random selection over multiple iterations, controlling the total number of measurements, the azimuthal distribution, and the type of phases. We treat each randomly drawn synthetic dataset with the same methodology as in Ford et al. (2015) to determine the possible mechanism(s), carrying out a grid search over all possible elastic tensors and orientations to determine which are consistent with the synthetic data. We find is it difficult to uniquely constrain the starting model with a realistic number of seismic anisotropy measurements with only one measurement technique or phase type. However, having a mix of SKS, SKKS, and ScS measurements, or a mix of shear wave splitting and reflection polarity measurements, dramatically increases the probability of uniquely

  13. A real-time Java tool chain for resource constrained platforms

    DEFF Research Database (Denmark)

    Korsholm, Stephan E.; Søndergaard, Hans; Ravn, Anders Peter

    2014-01-01

    The Java programming language was originally developed for embedded systems, but the resource requirements of previous and current Java implementations – especially memory consumption – tend to exclude them from being used on a significant class of resource constrained embedded platforms. The con......The Java programming language was originally developed for embedded systems, but the resource requirements of previous and current Java implementations – especially memory consumption – tend to exclude them from being used on a significant class of resource constrained embedded platforms...... by integrating the following: (1) a lean virtual machine without any external dependencies on POSIX-like libraries or other OS functionalities; (2) a hardware abstraction layer, implemented almost entirely in Java through the use of hardware objects, first level interrupt handlers, and native variables; and (3....... An evaluation of the presented solution shows that the miniCDj benchmark gets reduced to a size where it can run on resource constrained platforms....

  14. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal... hip joint. The device limits translation and rotation in one or more planes via the geometry of its...

  15. Early failure mechanisms of constrained tripolar acetabular sockets used in revision total hip arthroplasty.

    Science.gov (United States)

    Cooke, Christopher C; Hozack, William; Lavernia, Carlos; Sharkey, Peter; Shastri, Shani; Rothman, Richard H

    2003-10-01

    Fifty-eight patients received an Osteonics constrained acetabular implant for recurrent instability (46), girdlestone reimplant (8), correction of leg lengthening (3), and periprosthetic fracture (1). The constrained liner was inserted into a cementless shell (49), cemented into a pre-existing cementless shell (6), cemented into a cage (2), and cemented directly into the acetabular bone (1). Eight patients (13.8%) required reoperation for failure of the constrained implant. Type I failure (bone-prosthesis interface) occurred in 3 cases. Two cementless shells became loose, and in 1 patient, the constrained liner was cemented into an acetabular cage, which then failed by pivoting laterally about the superior fixation screws. Type II failure (liner locking mechanism) occurred in 2 cases. Type III failure (femoral head locking mechanism) occurred in 3 patients. Seven of the 8 failures occurred in patients with recurrent instability. Constrained liners are an effective method for treatment during revision total hip arthroplasty but should be used in select cases only.

  16. Carbon dioxide problem: solution by technical countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Bach, W

    1978-02-15

    A rough assessment indicates that anthropogenic influences might raise the mean global surface temperature by 0.8 to 1.2 C in 2000 AD and by 2 to 4 C in 2050 AD. The rapidly increasing levels of atmospheric carbon dioxide are largely responsible for this warming trend. A variety of measures for the reduction of carbon dioxide emissions is presented. One promising approach is to work out a world-wide energy mix that can counteract a temperature increase. (In German)

  17. For the acknowledgement of a social value of carbon in the Climate agreement

    International Nuclear Information System (INIS)

    Finon, Dominique

    2015-01-01

    After having outlined that it might be difficult to define a unique price for carbon emissions, the author states that acknowledging a reference price in the Climate agreement would help to guide investment decisions and new financing modes. He proposes that the agreement could include the following article: 'The social and economic value of mitigation actions and their co-benefits to adaptation, health and sustainable development should be recognized and formalized as such. It will help to orient the investment of firms towards low carbon options, to mobilize public funding and to develop financial vehicles to allow scaling up of private investments to support development of low carbon projects and countries' transitions to low-carbon economies. This reference of carbon value will be established by consensus between parties: it should be referred to abatement action costs to reach a global emissions cap as well as the co-benefits of the actions. It will be regularly revised.' The author then discusses how to fill the gap between private and social value of low carbon investments, and how to determine this reference value. He outlines the benefit of a reference value of carbon with respect to a constraining price to reach a credible agreement

  18. Characterizing post-industrial changes in the ocean carbon cycle in an Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Katsumi; Tokos, Kathy S.; Chikamoto, Megumi O. (Geology and Geophysics, Univ. of Minnesota, MN (United States)), e-mail: katsumi@umn.edu; Ridgwell, Andy (School of Geographical Sciences, Univ. of Bristol, Bristol (United Kingdom))

    2010-10-22

    Understanding the oceanic uptake of carbon from the atmosphere is essential for better constraining the global budget, as well as for predicting the air-borne fraction of CO{sub 2} emissions and thus degree of climate change. Gaining this understanding is difficult, because the 'natural' carbon cycle, the part of the global carbon cycle unaltered by CO{sub 2} emissions, also responds to climate change and ocean acidification. Using a global climate model of intermediate complexity, we assess the evolution of the natural carbon cycle over the next few centuries. We find that physical mechanisms, particularly Atlantic meridional overturning circulation and gas solubility, alter the natural carbon cycle the most and lead to a significant reduction in the overall oceanic carbon uptake. Important biological mechanisms include reduced organic carbon export production due to reduced nutrient supply, increased organic carbon production due to higher temperatures and reduced CaCO{sub 3} production due to increased ocean acidification. A large ensemble of model experiments indicates that the most important source of uncertainty in ocean uptake projections in the near term future are the upper ocean vertical diffusivity and gas exchange coefficient. By year 2300, the model's climate sensitivity replaces these two and becomes the dominant factor as global warming continues

  19. Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the latin American Tropics

    NARCIS (Netherlands)

    Amezquita, M.C.; Ibrahim, M.; Llanderal, T.; Buurman, P.; Amezquita, E.

    2005-01-01

    Tropical America (TA) holds 8% of the world's population, 11% of the world's continental area, 23% and 22%, respectively, of the world's forest and water resources, and 13% of the world's pasture and agro-pastoral land, this representing 77% of TA's agricultural land. Recent interest in carbon

  20. Groundwater availability as constrained by hydrogeology and environmental flows.

    Science.gov (United States)

    Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications. © 2013, National Ground Water Association.