WorldWideScience

Sample records for carbon cluster formation

  1. Carbon-cluster formation from polymers caused by MeV-ion impacts and keV-cluster-ion impacts

    Science.gov (United States)

    Diehnelt, C. W.; van Stipdonk, M. J.; Schweikert, E. A.

    1999-06-01

    It has been observed that under MeV-ion bombardment of a polymer, such as polycarbonate (PC) or polyvinylidene fluoride (PVDF), large quantities of carbon clusters (C-n and CnH-) are generated. However, when PC or PVDF is bombarded with keV atomic ions, very few carbon-cluster ions are produced. This different behavior was attributed to the different sputtering/desorption mechanisms for keV- and MeV-ion impacts. Low-energy keV ions deposit their energy into a solid through nuclear stopping, while MeV ions deposit their energy mainly through electronic stopping. The formation of carbon clusters is thought to be facilitated by the high-temperatures and high-energy densities produced in the region nearest the point of MeV-ion impact, the infratrack region. We have observed extensive carbon-cluster formation from PC and PVDF under keV-cluster-ion bombardment. Despite the vastly different velocities of the high- and low-energy projectiles, identical carbon-cluster trends are produced from MeV 252Cf fission fragments and 20-keV C+60 projectile impacts on the same target. This leads us to the conclusion that a polyatomic ion impact, which deposits its kinetic energy near the surface, may create a region of high-temperature and high-energy density that is similar to the infratrack of a MeV-ion impact.

  2. Clustering at high temperatures: carbon formation in combustion

    International Nuclear Information System (INIS)

    The formation of carbonaceous particles in laminar, atmospheric pressure diffusion flames is investigated using laser ionization time-of-flight mass spectroscopy and on-line analysis of nascent-particle properties while the particles are still in gas suspension at atmospheric pressure. This latter analysis includes photoelectric yield spectroscopy of the particle surface. Combustion gases from the, e.g. argon-diluted methane (CH4) flame are extracted and diluted with an inert gas prior to analysis. The molecules are ionized by two-photon photoemission inside a time-of-flight mass-spectrometer which makes it possible to observe polycyclic aromatic hydrocarbons (PAHs) at molecular masses up to ∼600 amu. The mobility diameter of the carbonaceous particles was determined in the range from 2 to 20 nm. Formation and destruction of particles and their concomitant density and surface transformations are studied together with the PAH molecules as they depend on the height in the flame. It is found that particles are formed before large PAHs appear. As opposed to previous models where the flat PAHs were generated in homogeneous gas phase reactions, we conclude that PAHs are synthesized on the particles using their surface as templates and evaporate into the gas-phase when synthesis is completed. We present a comprehensive, new mechanism for particle formation in diffusion flames

  3. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  4. Inhibition of nitrobenzene adsorption by water cluster formation at acidic oxygen functional groups on activated carbon.

    Science.gov (United States)

    Kato, Yuichi; Machida, Motoi; Tatsumoto, Hideki

    2008-06-15

    The inhibition effect of nitrobenzene adsorption by water clusters formed at the acidic groups on activated carbon was examined in aqueous and n-hexane solution. The activated carbon was oxidized with nitric acid to introduce CO complexes and then outgassed in helium flow at 1273 K to remove them completely without changing the structural properties of the carbon as a reference adsorbent. The amounts of acidic functional groups were determined by applying Boehm titration. A relative humidity of 95% was used to adsorb water onto the carbon surface. Strong adsorption of water onto the oxidized carbon can be observed by thermogravimetric analysis. The adsorption kinetic rate was estimated to be controlled by diffusion from the kinetic analysis. Significant decline in both capacity and kinetic rate for nitrobenzene adsorption onto the oxidized carbon was also observed in n-hexane solution by preadsorption of water to the carbon surface, whereas it was not detected for the outgassed carbons. These results might reveal that water molecules forming clusters at the CO complexes inhibited the entrance of nitrobenzene into the interparticles of the carbon. PMID:18440013

  5. Formation and properties of astrophysical carbonaceous dust. I: ab-initio calculations of the configuration and binding energies of small carbon clusters

    CERN Document Server

    Mauney, Christopher; Lazzati, Davide

    2014-01-01

    The binding energies of n < 100 carbon clusters are calculated using the ab-initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen poor environments, such as the inner layers of c...

  6. Isolated crater formation by gas cluster ion impact and their use as templates for carbon nanotube growth

    Science.gov (United States)

    Toyoda, Noriaki; Kimura, Asahi; Yamada, Isao

    2016-03-01

    Crater-like defects formations with gas cluster ion beams (GCIB) were used as templates for carbon nanotube (CNT) growth. Upon a gas cluster ion impact, dense energy is deposited on a target surface while energy/atom of gas cluster ion is low, which creates crater-like defects. Si and SiO2 were irradiated with Ar-GCIB, subsequently CNTs were grown with an alcohol catalytic CVD using Co and ethanol as catalyst and precursor, respectively. From SEM, AFM and Raman spectroscopy, it was shown that growth of CNT with small diameter was observed on SiO2 with Ar-GCIB irradiation. On Si targets, formation of craters with bottom oxide prevented Co diffusion during CNT growth, as a result, CNT growth was observed only on Si irradiated with high-energy Ar-GCIB. These results showed that isolated defects created by GCIB can be used as templates for nanotube growth.

  7. Globular Cluster Formation in the Virgo Cluster

    CERN Document Server

    Moran, C Corbett; Lake, G

    2014-01-01

    Metal poor globular clusters (MPGCs) are a unique probe of the early universe, in particular the reionization era. Systems of globular clusters in galaxy clusters are particularly interesting as it is in the progenitors of galaxy clusters that the earliest reionizing sources first formed. Although the exact physical origin of globular clusters is still debated, it is generally admitted that globular clusters form in early, rare dark matter peaks (Moore et al. 2006; Boley et al. 2009). We provide a fully numerical analysis of the Virgo cluster globular cluster system by identifying the present day globular cluster system with exactly such early, rare dark matter peaks. A popular hypothesis is that that the observed truncation of blue metal poor globular cluster formation is due to reionization (Spitler et al. 2012; Boley et al. 2009; Brodie & Strader 2006); adopting this view, constraining the formation epoch of MPGCs provides a complementary constraint on the epoch of reionization. By analyzing both the l...

  8. Modes of clustered star formation

    CERN Document Server

    Pfalzner, S; Olczak, C

    2012-01-01

    The realization that most stars form in clusters, raises the question of whether star/planet formation are influenced by the cluster environment. The stellar density in the most prevalent clusters is the key factor here. Whether dominant modes of clustered star formation exist is a fundamental question. Using near-neighbour searches in young clusters Bressert et al. (2010) claim this not to be the case and conclude that star formation is continuous from isolated to densely clustered. We investigate under which conditions near-neighbour searches can distinguish between different modes of clustered star formation. Near-neighbour searches are performed for model star clusters investigating the influence of the combination of different cluster modes, observational biases, and types of diagnostic and find that the cluster density profile, the relative sample sizes, limitations in observations and the choice of diagnostic method decides whether modelled modes of clustered star formation are detected. For centrally ...

  9. Formation and Properties of Astrophysical Carbonaceous Dust. I. Ab-initio Calculations of the Configuration and Binding Energies of Small Carbon Clusters

    Science.gov (United States)

    Mauney, Christopher; Buongiorno Nardelli, Marco; Lazzati, Davide

    2015-02-01

    The binding energies of n work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen-poor environments, such as the inner layers of core-collapse supernovae and supernova remnants.

  10. Formation of multibaryon clusters in collisions of high energy hadrons and nuclei with carbon and neon nuclei

    International Nuclear Information System (INIS)

    Formation of multibaryon clusters in 4He + 12C and 12C + 12C collisions at 4.2A GeV/c, and in π- + 12C and p + 20Ne collisions at 40 and 300 GeV/c, respectively, is studied using universal binary B algorithm of separation of clusters in 4-velocity space. The masses and widths of multibaryon clusters increase linearly with an increase in the number of protons (np) in a cluster. The dependences of width of clusters on np in π- + 12C and p + 20Ne collisions differ noticeably from the corresponding dependences in 4He + 12C and 12C + 12C collisions. In nucleus–nucleus collisions, the widths of clusters are significantly larger and grow more rapidly, as the number of protons in a cluster increases, as compared to hadron–nucleus collisions. This result is in line with the fact that, in case of identical target nuclei, the degree of “destruction” of a target nucleus is greater in case of nucleus–nucleus collisions as compared to hadron–nucleus collisions. The lifetimes of multibaryon clusters are of the same order of magnitude with those of strongly decaying baryon resonances. The lifetime of clusters decreases with an increase in np. (author)

  11. When efficient star formation drives cluster formation

    CERN Document Server

    Parmentier, G

    2008-01-01

    We investigate the impact of the star formation efficiency in cluster forming cores on the evolution of the mass in star clusters over the age range 1-100Myr, when star clusters undergo their infant weight-loss/mortality phase. Assuming a constant formation rate of gas-embedded clusters and a weak tidal field, we show that the ratio between the total mass in stars bound to the clusters over that age range and the total mass in stars initially formed in gas-embedded clusters is a strongly increasing function of the averaged local SFE, with little influence from any assumed core mass-radius relation. Our results suggest that, for young starbursts with estimated tidal field strength and known recent star formation history, observed cluster-to-star mass ratios, once corrected for the undetected clusters, constitute promising probes of the local SFE, without the need of resorting to gas mass estimates. Similarly, the mass ratio of stars which remain in bound clusters at the end of the infant mortality/weight-loss ...

  12. Star Formation in Clusters

    CERN Document Server

    Larsen, S S

    2004-01-01

    HST is very well tailored for observations of extragalactic star clusters. One obvious reason is HST's high spatial resolution, but equally important is the wavelength range offered by the instruments on board HST, in particular the blue and near-UV coverage which is essential for age-dating young clusters. HST observations have helped establish the ubiquity of young massive clusters (YMCs) in a wide variety of star-forming environments, from dwarf galaxies and spiral disks to nuclear starbursts and mergers. These YMCs have masses and sizes similar to those of old globular clusters (GCs), and the two may be closely related. A large fraction of all stars seem to be born in clusters, but most clusters disrupt rapidly and the stars disperse to become part of the field population. In most cases studied to date the luminosity functions of young cluster systems are well fit by power-laws dN(L)/dL ~ L^-2, and the luminosity of the brightest cluster can (with few exceptions) be predicted from simple sampling statisti...

  13. Integrating cluster formation and cluster evaluation in interactive visual analysis

    OpenAIRE

    Turkay, C.; Parulek, J.; Reuter, N.; Hauser, H.

    2011-01-01

    Cluster analysis is a popular method for data investigation where data items are structured into groups called clusters. This analysis involves two sequential steps, namely cluster formation and cluster evaluation. In this paper, we propose the tight integration of cluster formation and cluster evaluation in interactive visual analysis in order to overcome the challenges that relate to the black-box nature of clustering algorithms. We present our conceptual framework in the form of an interac...

  14. Polymer modification via. cluster formation

    International Nuclear Information System (INIS)

    Ion beam treatment studies have been carried out to investigate the potential for improvements in conductivity properties of the polymers. Change in polymer stoichiometry were characterised by investigating into the carbon clusters formed along the latent tracks of energetic ions in polymers. Here we present some new results which have been derived from UV-Vis spectroscopic examinations. (author)

  15. Simulations of Nuclear Cluster formation

    CERN Document Server

    Miocchi, P

    2009-01-01

    Preliminary results are presented about a fully self-consistent N-body simulation of a sample of four massive globular clusters in close interaction within the central region of a galaxy. The N-body representation (with N=1.5x10^6 particles in total) of both the clusters and the galaxy allows to include in a natural and self-consistent way dynamical friction and tidal interactions. The results confirm the decay and merging of globulars as a viable scenario for the formation/accretion of compact nuclear clusters. Specifically: i) the frictional orbital decay is about 2 times faster than that predicted by the generalized Chandrasekhar formula; ii) the progenitor clusters merge in less than 20 galactic core-crossing time; iii) the NC configuration keeps a quasi-stable state at least within 70 galactic core-crossing times.

  16. Star formation in dense clusters

    OpenAIRE

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion, and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dyna...

  17. Doping and cluster formation in diamond

    KAUST Repository

    Schwingenschlögl, Udo

    2011-09-09

    Introducing a cluster formation model, we provide a rational fundamental viewpoint for the difficulty to achieve n-type dopeddiamond. We argue that codoping is the way forward to form appropriately doped shallow regions in diamond and other forms of carbon such as graphene. The electronegativities of the codopants are an important design criterion for the donor atom to efficiently donate its electron. We propose that the nearest neighbour codopants should be of a considerably higher electronegativity compared to the donor atom. Codoping strategies should focus on phosphorous for which there are a number of appropriate codopants.

  18. Modeling Formation of Globular Clusters: Beacons of Galactic Star Formation

    CERN Document Server

    Gnedin, Oleg Y

    2010-01-01

    Modern hydrodynamic simulations of galaxy formation are able to predict accurately the rates and locations of the assembly of giant molecular clouds in early galaxies. These clouds could host star clusters with the masses and sizes of real globular clusters. I describe current state-of-the-art simulations aimed at understanding the origin of the cluster mass function and metallicity distribution. Metallicity bimodality of globular cluster systems appears to be a natural outcome of hierarchical formation and gradually declining fraction of cold gas in galaxies. Globular cluster formation was most prominent at redshifts z>3, when massive star clusters may have contributed as much as 20% of all galactic star formation.

  19. STAR FORMATION IN DENSE CLUSTERS

    International Nuclear Information System (INIS)

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  20. Investigations of acetonitrile solvent cluster formation in supercritical carbon dioxide, and its impact on microscale syntheses of carbon-11-labeled radiotracers for PET

    International Nuclear Information System (INIS)

    A new strategy has been developed for synthesizing positron emission tomography (PET) radiotracers using [11C]methyl iodide. This strategy relies on the ability of organic co-solvents to cluster within mixtures of supercritical fluids resulting in localized regions of high density which can serve as microscopic pockets for reaction. We've shown that acetonitrile will cluster about dilute solutes when mixtures of this co-solvent with carbon dioxide are forced to behave as a homogeneous fluid at the critical point. We applied this strategy in a systematic investigation of the conditions for optimized reaction between methyl iodide and L-α-methyl-N-2-propynyl phenethylamine (nordeprenyl) to yield L-deprenyl. Variables such as temperature, ultraviolet light exposure, co-solvent concentration, system pressure, and methyl iodide concentration were explored. The synthesis of radioactive [11C]-L-deprenyl using no-carrier-added concentrations of [11C]methyl iodide was also tested. Results showed that greater than 90% radiochemical yield of the desired product could be attained using 40 times less labeling substrate than in conventional PET tracer syntheses

  1. Quenching star formation in cluster galaxies

    CERN Document Server

    Taranu, Dan S; Balogh, Michael L; Smith, Russell J; Power, Chris; Krane, Brad

    2012-01-01

    In order to understand the processes that quench star formation within rich clusters, we construct a library of subhalo orbits drawn from lambdaCDM cosmological N-body simulations of four rich clusters. The orbits are combined with models of star formation followed by quenching in the cluster environment to predict colours and spectroscopic line indices of satellite galaxies. Simple models with only halo mass-dependent quenching and without environmental (i.e. cluster-dependent) quenching fail to reproduce the observed cluster-centric colour and absorption linestrength gradients. Models in which star formation is instantly quenched at the virial radius also fail to match the observations. Better matches to the data are achieved by more complicated bulge-disc models in which the bulge stellar populations depend only on the galaxy subhalo mass while the disc quenching depends on the cluster environment. In the most successful models quenching begins at pericentre, operating on an exponential timescale of 2 -- 3...

  2. The hierarchical formation of a stellar cluster

    OpenAIRE

    Bonnell, Ian A.; Bate, Matthew R.; Vine, Stephen G.

    2003-01-01

    Recent surveys of star forming regions have shown that most stars, and probably all massive stars, are born in dense stellar clusters. The mechanism by which a molecular cloud fragments to form several hundred to thousands of individual stars has remained elusive. Here, we use a numerical simulation to follow the fragmentation of a turbulent molecular cloud and the subsequent formation and early evolution of a stellar cluster containing more than 400 stars. We show that the stellar cluster fo...

  3. Formation and stability of sputtered clusters

    International Nuclear Information System (INIS)

    Current theory for the formation of sputtered clusters states that either atoms are sputtered individually and aggregate after having left the surface or they are sputtered as complete clusters. There is no totally sharp boundary between the two interpretations, but experimental evidence is mainly thought to favour the latter model. Both theories demand a criterion for the stability of the clusters. In computer simulations of sputtering, the idea has been to use the same interaction potential as in the lattice computations to judge the stability. More qualitatively, simple geometrical shapes have also been looked for. It is found here, that evidence for 'magic numbers' and electron parity effects in clusters have existed in the sputtering literature for a long time, making more sophisticated stability criteria necessary. The breakdown of originally sputtered metastable clusters into stable clusters gives strong support to the 'sputtered as clusters' hypothesis. (author)

  4. Properties and Formation of Star Clusters

    Science.gov (United States)

    Sharina, M. E.

    2016-03-01

    Many key problems in astrophysics involve research on the properties of star clusters, for example: stellar evolution and nucleosynthesis, the history of star formation in galaxies, formation dynamics of galaxies and their subsystems, the calibration of the fundamental distance scale in the universe, and the luminosity functions of stars and star clusters. This review is intended to familiarize the reader with modern observational and theoretical data on the formation and evolution of star clusters in our galaxy and others. Unsolved problems in this area are formulated and research on ways to solve them is discussed. In particular, some of the most important current observational and theoretical problems include: (1) a more complete explanation of the physical processes in molecular clouds leading to the formation and evolution of massive star clusters; (2) observation of these objects in different stages of evolution, including protoclusters, at wavelengths where interstellar absorption is minimal; and, (3) comparison of the properties of massive star clusters in different galaxies and of galaxies during the most active star formation phase at different red shifts. The main goal in solving these problems is to explain the variations in the abundance of chemical elements and in the multiple populations of stars in clusters discovered at the end of the twentieth century.

  5. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Frederic Aubriet; Jean-Jacques Gaumet; Wibe A de Jong; Groenewold, Gary S (058000); Gianotto, Anita K (057404); McIlwain, Michael E (051783); Michael J. Van Stipdonk; Christopher M. Leavitt

    2009-06-01

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  6. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Aubriet, F.; Gaumet, Jean-Jacques; De Jong, Wibe A.; Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Leavitt, Christopher M.

    2009-05-11

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  7. Star Formation and Substructure in Galaxy Clusters

    CERN Document Server

    Cohen, Seth A; Wegner, Gary A; Einasto, Maret; Vennik, Jaan

    2014-01-01

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. The...

  8. Cluster formation in low-density condition

    International Nuclear Information System (INIS)

    We study cluster formation in low-density condition by using antisymmetrized molecular dynamics (AMD). We use the frictional cooling method constraining a root-mean-square radius to make low-density situation. We apply this method to 40Ca, 44Ca and 48Ca. We find that α cluster is the basic unit in any low density situation for 40Ca which is saturated by spin and isospin, and that the magic number n=8 plays an important role in cluster formation in low density situation in common with these three nuclei, and that the 14C cluster appears in case of 44Ca and 48Ca due to the neutron-rich property, and so on. (author)

  9. Formation of Compact Binaries in Globular Clusters

    OpenAIRE

    Rappaport, Saul; Pfahl, Eric; Rasio, Fred; Podsiadlowski, Philipp

    2001-01-01

    We report here on two complementary population synthesis studies which relate directly to the formation and evolution of neutron star binaries in globular clusters. In the first, we compute the probability of retaining neutron stars in globular clusters, and quantitatively confirm the idea that the retention fraction for neutron stars born in binary systems is greatly enhanced over those born in isolated stars. However, the retention fraction may well be insufficient to explain the current po...

  10. Globular Cluster Formation in M82

    OpenAIRE

    Lipscy, S. J.; Plavchan, P.

    2003-01-01

    We present high resolution mid-infrared (mid-IR; 11.7 and 17.65 micron) maps of the central 400 pc region of the starburst galaxy M82. Seven star forming clusters are identified which together provide ~ 15% of the total mid-IR luminosity of the galaxy. Combining the mid-IR data with thermal radio measurements and near- and mid-IR line emission, we find that these young stellar clusters have inferred masses and sizes comparable to globular clusters. At least 20% of the star formation in M82 is...

  11. Cluster formation in quantum critical systems

    International Nuclear Information System (INIS)

    The presence of magnetic clusters has been verified in both antiferromagnetic and ferromagnetic quantum critical systems. We review some of the strongest evidence for strongly doped quantum critical systems (Ce(Ru0.24Fe0.76)2Ge2) and we discuss the implications for the response of the system when cluster formation is combined with finite size effects. In particular, we discuss the change of universality class that is observed close to the order-disorder transition. We detail the conditions under which clustering effects will play a significant role also in the response of stoichiometric systems and their experimental signature.

  12. Globular Cluster Formation Within The Aquarius Simulation

    CERN Document Server

    Griffen, B F; Thomas, P A; Helly, J C; Pimbblet, K A

    2009-01-01

    The Aquarius project is the first simulation that can resolve the full mass range of potential globular cluster formation sites. With a particle mass $m_\\mathrm{p}=1.4 \\times 10^4$\\Msun, Aquarius yields more than 100 million particles within the virial radius of the central halo which has a mass of $1.8 \\times 10^{12}$\\Msun, similar to that of the Milky Way. With this particle mass, dark matter concentrations (haloes) as small as 10$^6$ M$_\\odot$ will contain a minimum of 100 particles.Here, we use this simulation to test a model of metal-poor globular cluster formation based on collapse physics. In our model, globular clusters form when the virial temperatures of haloes first exceed $10^4$ K as this is when electronic transitions allow the gas to cool efficiently. We calculate the ionising flux from the stars in these first clusters and stop the formation of new clusters when all the baryonic gas of the galaxy is ionised. This is achieved by adopting reasonable values for the star formation efficiencies and ...

  13. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) film deposited using C60 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C60 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  14. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    CERN Document Server

    Kitagawa, T; Kanda, K; Shimizugawa, Y; Toyoda, N; Matsui, S; Yamada, I; Tsubakino, H; Matsuo, J

    2003-01-01

    Diamond-like carbon (DLC) film deposited using C sub 6 sub 0 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp sup 2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C sub 6 sub 0 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp sup 2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  15. Cluster Beams Sources. Part 2. The Formation of Cluster Beams in Nozzle Sources

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-12-01

    Full Text Available The article briefly examines the processes occurring during the formation of cluster beams in sources of clusters, using the expansion of the gas mixture through a nozzle. The basic parameters of the gas cluster flow at the outlet nozzle, leading to the formation of clusters are analyzed. Some aspects of the formation of cluster beams from aerodynamic flows are discussed.

  16. Galactic Nuclei Formation Via Globular Cluster Merging

    CERN Document Server

    Capuzzo-Dolcetta, R

    2009-01-01

    Preliminary results are presented about a fully self-consistent N-body simulation of a sample of four massive globular clusters in close interaction within the central region of a galaxy. The N-body representation (with N=1.5x10^6 particles in total) of both the clusters and the galaxy allows to include in a natural and self-consistent way dynamical friction and tidal interactions. The results confirm the decay and merging of globulars as a viable scenario for the formation/accretion of compact nuclear clusters. Specifically: i) the frictional orbital decay is about 2 times faster than that predicted by the generalized Chandrasekhar formula; ii) the progenitor clusters merge in less than 20 galactic core-crossing times; iii) the NC configuration keeps quasi-stable at least within 70 galactic core-crossing times.

  17. Carbon-cluster mass calibration at SHIPTRAP

    International Nuclear Information System (INIS)

    A carbon-cluster ion source has been installed and tested at SHIPTRAP, the Penning-trap mass spectrometer for precision mass measurements of heavy elements at GSI (Darmstadt, Germany). Carbon-cluster ions 12Cn+, 5 ≤ n ≤ 23, were produced by laser-induced desorption and ionization from a carbon sample. They were tested for the first time as reference ions in an on-line mass measurement of the radionuclides 144Dy, 146Dy and 147Ho. In addition, carbon clusters of various sizes were used for an investigation of the systematic uncertainty of SHIPTRAP covering a mass range from 84 u to 240 u. The mass-dependent uncertainty was found to be negligible for the case of (m - m(ref)) -8 was revealed. (authors)

  18. Cluster formation probability in the trans-tin and trans-lead nuclei

    CERN Document Server

    Santhosh, K P; Sahadevan, Sabina; 10.1016/j.nuclphysa.2010.03.004

    2010-01-01

    Within our fission model, the Coulomb and proximity potential model (CPPM) cluster formation probabilities are calculated for different clusters ranging from carbon to silicon for the parents in the trans-tin and trans- lead regions. It is found that in trans-tin region the 12^C, 16^O, 20^Ne and 24^Mg clusters have maximum cluster formation probability and lowest half lives as compared to other clusters. In trans-lead region the 14^C, 18, 20^O, 23^F, 24,26^Ne, 28,30^Mg and 34^Si clusters have the maximum cluster formation probability and minimum half life, which show that alpha like clusters are most probable for emission from trans-tin region while non-alpha clusters are probable from trans-lead region. These results stress the role of neutron proton symmetry and asymmetry of daughter nuclei in these two cases.

  19. Formation of Millisecond Pulsars in Globular Clusters

    CERN Document Server

    Ivanova, Natalia; Rasio, Frederic A

    2007-01-01

    In this contribution we discuss how neutron stars are produced and retained in globular clusters, outlining the most important dynamical channels and evolutionary events that affect thepopulation of mass-transferring binaries with neutron stars and result in the formation of recycled pulsars. We confirm the importance of electron-capture supernovae in globular clusters as the major supplier of retained neutron stars.By comparing the observed millisecond pulsar population and the results obtained from simulations, we discuss several constraints on the evolution of mass-transferring systems.In particular, we find that in our cluster model the following mass-gaining events create populations of MSPs that do not match the observations (with respect to binary periods and companion masses or the number of produced systems) and therefore likely do not lead to NSs spun up to millisecond periods: (i) accretion during a common envelope event with a NS formed through accretion-induced collapse, and (ii) mass transfer fr...

  20. Formation Mechanisms of IMBH in Globular Clusters

    CERN Document Server

    Giersz, Mirek; Hypki, Arkadiusz; Askar, Abbas; Lützgendorf, Nora

    2016-01-01

    We very briefly discuss proposed in the literature possible scenarios for intermediate mass black holes (IMBH) formation in globular clusters. We also discuss the results of the MOCCA simulations of about 2000 models (BigSurvey) regarding the distribution of events connected with electromagnetic and gravitational radiations, namely: mass transfer on IMBH, collisions and mergers with IMBH and mergers with IMBH due to gravitational radiation. The rates of these events are very small, so their observation is very improbable.

  1. Cluster formation, breaking, and excitation in light nuclei

    International Nuclear Information System (INIS)

    In this paper, we discuss cluster phenomena in light nuclei based on calculations using the antisymmetrized molecular dynamics (AMD) method. Cluster structures in C, B, and Be were studied systematically, and their cluster formation and excitation are discussed. Cluster gas states and their band members are suggested for the excited states of 12C and 11B. The ground state cluster correlation and excited cluster gas state are discussed from the point of view of symmetry breaking and restoration. (authors)

  2. Nanodroplet cluster formation in ionic liquid microemulsions.

    Science.gov (United States)

    Gao, Yanan; Voigt, Andreas; Hilfert, Liane; Sundmacher, Kai

    2008-08-01

    A common ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), is used as polar solvent to induce the formation of a reverse bmimBF(4)-in-toluene IL microemulsion with the aid of the nonionic surfactant Triton X-100. The swelling process of the microemulsion droplets by increasing bmimBF(4) content is detected by dynamic light scattering (DLS), conductivity, UV/Vis spectroscopy, and freeze-fracture transmission electron microscopy (FF-TEM). The results show that the microemulsion droplets initially formed are enlarged by the addition of bmimBF(4). However, successive addition of bmimBF(4) lead to the appearance of large-sized microemulsion droplet clusters (200-400 nm). NMR spectroscopic analysis reveal that the special structures and properties of bmimBF(4) and Triton X-100 together with the polar nature of toluene contribute to the formation of such self-assemblies. These unique self-assembled structures of IL-based microemulsion droplet clusters may have some unusual and unique properties with a number of interesting possibilities for potential applications. PMID:18576451

  3. Carbon-cluster mass calibration at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Ankur

    2007-12-10

    A carbon-cluster ion source has been installed and tested at SHIPTRAP, the Penning-trap mass spectrometer for mass measurements of heavy elements at GSI/Darmstadt, Germany. A precision mass determination is carried out by measuring the ion cyclotron frequency {omega}{sub c}=qB=m, where q/m is the charge-to-mass ratio of the ion and B is the magnetic field. The mass of the ion of interest is obtained from the comparison of its cyclotron frequency {omega}{sub c} with that of a well-known reference ion. Carbon clusters are the mass reference of choice since the unified atomic mass unit is defined as 1/12 of the mass of the {sup 12}C atom. Thus the masses of carbon clusters {sup 12}C{sub n}, n=1,2,3,.. are multiples of the unified atomic mass unit. Carbon-cluster ions {sup 12}C{sub n}{sup +}, 5{<=}n{<=}23, were produced by laser-induced desorption and ionization from a carbon sample. Carbon clusters of various sizes ({sup 12}C{sub 7}{sup +}, {sup 12}C{sub 9}{sup +}, {sup 12}C{sub 10}{sup +}, {sup 12}C{sub 11}{sup +}, {sup 12}C{sub 12}{sup +}, {sup 12}C{sub 15}{sup +}, {sup 12}C{sub 18}{sup +}, {sup 12}C{sub 19}{sup +}, {sup 12}C{sub 20}{sup +}) were used for an investigation of the accuracy of SHIPTRAP covering a mass range from 84 u to 240 u. To this end the clusters were used both as ions of interest and reference ions. Hence the true values of the frequency ratios are exactly known. The mass-dependent uncertainty was found to be negligible for the case of (m-m{sub ref})<100 u. However, a systematic uncertainty of 4.5 x 10{sup -8} was revealed. In addition, carbon clusters were employed for the first time as reference ions in an on-line studies of short-lived nuclei. Absolute mass measurements of the radionuclides {sup 144}Dy, {sup 146}Dy and {sup 147}Ho were performed using {sup 12}C{sub 11}{sup +} as reference ion. The results agree with measurements during the same run using {sup 85}Rb{sup +} as reference ion. The investigated radionuclides were produced in the

  4. Sarcomeric pattern formation by actin cluster coalescence.

    Directory of Open Access Journals (Sweden)

    Benjamin M Friedrich

    Full Text Available Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

  5. On the formation of massive stellar clusters

    CERN Document Server

    Tenorio-Tagle, G; Silich, S A; Medina-Tanco, G A; Muñoz-Tunón, C; Tenorio-Tagle, Guillermo; Palous, Jan; Silich, Sergiy; Medina-Tanco, Gustavo A.; Munoz-Tunon, Casiana

    2003-01-01

    Here we model a star forming factory in which the continuous creation of stars results in a highly concentrated, massive (globular cluster-like) stellar system. We show that under very general conditions a large-scale gravitational instability in the ISM, which triggers the collapse of a massive cloud, leads with the aid of a spontaneous first generation of massive stars, to a standing, small-radius, cold and dense shell. Eventually, as more of the collapsing matter is processed and incorporated, the shell becomes gravitationally unstable and begins to fragment, allowing the formation of new stars, while keeping its location. This is due to a detailed balance established between the ram pressure from the collapsing cloud which, together with the gravitational force exerted on the shell by the forming cluster, acts against the mechanical energy deposited by the collection of new stars. We analyze the mass spectrum of fragments that result from the continuous fragmentation of the standing shell and show that it...

  6. The physics and modes of star cluster formation: observations.

    Science.gov (United States)

    Lada, Charles J

    2010-02-28

    Stellar clusters are born in cold and dusty molecular clouds and the youngest clusters are embedded to various degrees in a dusty dark molecular material. Such embedded clusters can be considered protocluster systems. The most deeply buried examples are so heavily obscured by dust that they are only visible at infrared wavelengths. These embedded protoclusters constitute the nearest laboratories for a direct astronomical investigation of the physical processes of cluster formation and early evolution. I review the present state of empirical knowledge concerning embedded-cluster systems and discuss the implications for understanding their formation and subsequent evolution to produce bound stellar clusters. PMID:20083503

  7. Reactions of carbon cluster ions stored in an RF trap

    International Nuclear Information System (INIS)

    Reactions of carbon cluster ions with O2 were studied by using an RF ion trap in which cluster ions of specific size produced by laser ablation could be stored selectively. Reaction rate constants for positive and negative carbon cluster ions were estimated. In the case of the positive cluster ions, these were consistent with the previous experimental results using FTMS. Negative carbon cluster ions C-n (n=4-8) were much less reactive than positive cluster ions. The CnO- products were seen only in n=4 and 6. (orig.)

  8. THEORETICAL FOUNDATIONS OF FORMATION OF ENTREPRENEURIAL CLUSTER

    Directory of Open Access Journals (Sweden)

    Rizhikova A. M.

    2015-06-01

    Full Text Available This article investigates the development of entrepreneurial cluster set direction to support the creation of innovation clusters in Russia. In the face of increasing international competition, one of the most effective ways of development of small and medium-sized enterprises in the field of innovation is their clustering. We have discussed foreign experience of studying cluster initiatives and events on social development of the regions in the context of sociological knowledge about clusters. We have revealed the meaning of an innovation cluster and the difference between business and innovation clusters. The analysis has shown that a key advantage of the business cluster in relation to the network is the participation of state authorities, as well as functional and territorial factor. On the basis of the author's research we have highlighted a number of problems which solution has been carried out through the creation of business clusters

  9. Dynamic cluster formation using level set methods.

    Science.gov (United States)

    Yip, Andy M; Ding, Chris; Chan, Tony F

    2006-06-01

    Density-based clustering has the advantages for 1) allowing arbitrary shape of cluster and 2) not requiring the number of clusters as input. However, when clusters touch each other, both the cluster centers and cluster boundaries (as the peaks and valleys of the density distribution) become fuzzy and difficult to determine. We introduce the notion of cluster intensity function (CIF) which captures the important characteristics of clusters. When clusters are well-separated, CIFs are similar to density functions. But, when clusters become closed to each other, CIFs still clearly reveal cluster centers, cluster boundaries, and degree of membership of each data point to the cluster that it belongs. Clustering through bump hunting and valley seeking based on these functions are more robust than that based on density functions obtained by kernel density estimation, which are often oscillatory or oversmoothed. These problems of kernel density estimation are resolved using Level Set Methods and related techniques. Comparisons with two existing density-based methods, valley seeking and DBSCAN, are presented which illustrate the advantages of our approach. PMID:16724583

  10. Reversible cluster formation in concentrated monoclonal antibody solutions

    Science.gov (United States)

    Godfrin, P. Douglas; Porcar, Lionel; Falus, Peter; Zarraga, Isidro; Wagner, Norm; Liu, Yun

    2015-03-01

    Protein cluster formation in solution is of fundamental interest for both academic research and industrial applications. Recently, industrial scientists are also exploring the effect of reversible cluster formation on biopharmaceutical processing and delivery. However, despite of its importance, the understanding of protein clusters at concentrated solutions remains scientifically very challenging. Using the neutron spin echo technique to study the short time dynamics of proteins in solutions, we have recently systematically studied cluster formation in a few monoclonal antibody (mAb) solutions and their relation with solution viscosity. We show that the existence of anisotropic attraction can cause the formation of finite sized clusters, which increases the solution viscosity. Interestingly, once clusters form at relatively low concentrations, the average size of clusters in solutions remains almost constant over a wide range of concentrations similar to that of micelle formation. For a different mAb we have also investigated, the attraction is mostly induced by hydrophobic patches. As a result, these mAbs form large clusters with loosely linked proteins. In both cases, the formation of clusters all increases the solution viscosity substantially. However, due to different physics origins of cluster formation, solutions viscosities for these two different types of mAbs need to be controlled by different ways.

  11. Panchromatic Hubble Andromeda Treasury XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    OpenAIRE

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-01-01

    We use the Panchromatic Hubble Andromeda Treasury (PHAT) survey dataset to perform spatially resolved measurements of star cluster formation efficiency ($\\Gamma$), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color-magnitude diagram analysis of resolved stellar populations, to study Andromeda's cluster and field populations over the last $\\sim$300 Myr. We measure $\\Gamma$ of 4-8% for y...

  12. Resolving Globular Cluster Formation within a Cosmological Context

    CERN Document Server

    Boley, Aaron C; Read, Justin; Teyssier, Romain

    2009-01-01

    We place constraints on the formation redshifts for blue globular clusters (BGCs), independent of the details of hydrodynamics and population III star formation. We argue that BGCs and stellar halos have a common origin and that simulations of 1 Mpc boxes up to $z\\sim10$ must resolve BGC formation. We present a proof-of-concept simulation that captures the formation of globular-like star clusters.

  13. Formation of Globular Clusters in Turbulent Molecular Clouds

    OpenAIRE

    Geyer, Michael P.; Burkert, Andreas

    2001-01-01

    The formation of massive stellar clusters in turbulent molecular clouds is investigated. We include artificial star formation and energy feedback of newly born stars. The obtained systems are not likely to survive. Case studies to determine conditions necessary for forming bound clusters will be done in the future.

  14. Star Formation in Extreme Starburst Environments - "Super" Star Clusters

    CERN Document Server

    De Grijs, R

    2003-01-01

    The currently available empirical evidence on the star formation processes in the extreme, high-pressure environments induced by galaxy encounters, mostly based on high-resolution Hubble Space Telescope imaging observations, strongly suggests that star CLUSTER formation is an important and perhaps even the dominant mode of star formation in the starburst events associated with galaxy interactions. The production of "super star clusters" (SSCs; luminous, compact star clusters) seems to be a hallmark of intense star formation, particularly in interacting and starburst galaxies. Their sizes, luminosities, and mass estimates are entirely consistent with what is expected for young Milky Way-type globular clusters (GCs). SSCs are important because of what they can tell us about GC formation and evolution (e.g., initial characteristics and early survival rates). They are also of prime importance as probes of the formation and (chemical) evolution of their host galaxies, and of the initial mass function in the extrem...

  15. Reaction of the C3(X1Σg+) carbon cluster with H2S(X1A1), hydrogen sulfide: Photon-induced formation of C3S, tricarbon sulfur

    International Nuclear Information System (INIS)

    In this paper we report on the neutral-neutral reaction of the C3 carbon cluster with H2S in solid inert argon at 12 K, conditions that mimic, in part, the surfaces of interstellar grains. In the first step of the reaction, a C3•H2S complex is formed via an almost barrierless entrance addition mechanism. This complex, stabilized by an estimated 7.45 kJ/mol (CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(d,p) level), is formed by the interaction of a terminal carbon of C3 with a hydrogen in H2S. This con-covalent complex displays a band at 2044.1 cm−1 observed via Fourier transform infrared absorption spectroscopy. With the help of the MP2/aug-ccpVDZ level method, this band is assigned to the CC asymmetric vibration mode. When the complex is exposed to UV-visible photons (hν < 5.5 eV) the tricarbon sulfur C3S molecule is identified, based on the appearance of a characteristic CC stretching band at 2047.5 cm−1. Calculated ground-state potential energy surfaces also confirm the concomitant formation of molecular H2. This facile reaction pathway involves an attainable transition state of 174.4 kJ/mol. Conversely, competing lower-energy reaction pathways that would lead to the generation of H2C3S (propadienethione), or C2H2 (acetylene) and CS, involve much more complex, multi-stage pathways, and are not observed experimentally

  16. Mass spectrometric studies of the cluster formation of radon progeny

    International Nuclear Information System (INIS)

    A new experimental system is developed to study the cluster formation of radon progeny with neutral molecules in the environment, which includes a modified mass spectrometer and a surface barrier detector. With the system, the cluster research is carried out at molecular level at which the mass of individual cluster formed is measured. A theory is also proposed to treat the cluster formation as a discrete process based on the ion-dipole and dipole-dipole interactions. Comparison between the theory and experiment is given. (author). 16 refs., 6 figs

  17. Panchromatic Hubble Andromeda Treasury XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    CERN Document Server

    Johnson, L Clifton; Dalcanton, Julianne J; Beerman, Lori C; Fouesneau, Morgan; Lewis, Alexia R; Weisz, Daniel R; Williams, Benjamin F; Bell, Eric F; Dolphin, Andrew E; Larsen, Søren S; Sandstrom, Karin; Skillman, Evan D

    2016-01-01

    We use the Panchromatic Hubble Andromeda Treasury (PHAT) survey dataset to perform spatially resolved measurements of star cluster formation efficiency ($\\Gamma$), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color-magnitude diagram analysis of resolved stellar populations, to study Andromeda's cluster and field populations over the last $\\sim$300 Myr. We measure $\\Gamma$ of 4-8% for young, 10-100 Myr old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These $\\Gamma$ measurements expand the range of well-studied galactic environments, providing precise constraints in an HI-dominated, low intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where $\\Gamma$ increases with increasing star formation r...

  18. The Imprints Of Galactic Environment On Cluster Formation and Evolution

    CERN Document Server

    Adamo, Angela

    2015-01-01

    Young star clusters (YSCs) appear to be a ubiquitous product of star formation in local galaxies, thus, they can be used to study the star formation process at work in their host galaxies. Moreover, YSCs are intrinsically brighter that single stars, potentially becoming the most important tracers of the recent star formation history in galaxies in the local Universe. In local galaxies, we also witness the presence of a large population of evolved star clusters, commonly called globular clusters (GCs). GCs peak formation history is very close to the redshift (z~2) when the cosmic star formation history reached the maximum. Therefore, GCs are usually associated to extreme star formation episodes in high-redshift galaxies. It is yet not clear whether YSCs and GCs share a similar formation process (same physics under different interstellar medium conditions) and evolution process, and whether the former can be used as progenitor analogs of the latter. In this invited contribution, I review general properties of Y...

  19. The star cluster formation history of the LMC

    Science.gov (United States)

    Baumgardt, H.; Parmentier, G.; Anders, P.; Grebel, E. K.

    2013-03-01

    The Large Magellanic Cloud (LMC) is one of the nearest galaxies to us and is one of only few galaxies where the star formation history can be determined from studying resolved stellar populations. We have compiled a new catalogue of ages, luminosities and masses of LMC star clusters and used it to determine the age distribution and dissolution rate of LMC star clusters. We find that the frequency of massive clusters with masses M > 5000 M⊙ is almost constant between 10 and 200 Myr, showing that the influence of residual gas expulsion is limited to the first 10 Myr of cluster evolution or clusters less massive than 5000 M⊙. Comparing the cluster frequency in that interval with the absolute star formation rate, we find that about 15 per cent of all stars in the LMC were formed in long-lived star clusters that survive for more than 10 Myr. We also find that the mass function of LMC clusters younger than 109 Gyr can be fitted by a power-law mass function N(m) ˜ m-α with slope α = 2.3, while older clusters follow a significantly shallower slope and interpret that this is a sign of either incompleteness or the ongoing dissolution of low-mass clusters. Our data show that for ages older than 200 Myr, about 90 per cent of all clusters are lost per dex of lifetime. The implied cluster dissolution rate is significantly faster than that based on analytic estimates and N-body simulations. Our cluster age data finally show evidence for a burst in cluster formation about 109 yr ago, but little evidence for bursts at other ages.

  20. An Effective Method of Producing Small Neutral Carbon Clusters

    Institute of Scientific and Technical Information of China (English)

    XIA Zhu-Hong; CHEN Cheng-Chu; HSU Yen-Chu

    2007-01-01

    An effective method of producing small neutral carbon clusters Cn (n = 1-6) is described. The small carbon clusters (positive or negative charge or neutral) are formed by plasma which are produced by a high power 532nm pulse laser ablating the surface of the metal Mn rod to react with small hydrocarbons supplied by a pulse valve, then the neutral carbon clusters are extracted and photo-ionized by another laser (266nm or 355nm) in the ionization region of a linear time-of-flight mass spectrometer. The distributions of the initial neutral carbon clusters are analysed with the ionic species appeared in mass spectra. It is observed that the yield of small carbon clusters with the present method is about 10 times than that of the traditional widely used technology of laser vaporization of graphite.

  1. Clustering algorithms for Stokes space modulation format recognition.

    Science.gov (United States)

    Boada, Ricard; Borkowski, Robert; Monroy, Idelfonso Tafur

    2015-06-15

    Stokes space modulation format recognition (Stokes MFR) is a blind method enabling digital coherent receivers to infer modulation format information directly from a received polarization-division-multiplexed signal. A crucial part of the Stokes MFR is a clustering algorithm, which largely influences the performance of the detection process, particularly at low signal-to-noise ratios. This paper reports on an extensive study of six different clustering algorithms: k-means, expectation maximization, density-based DBSCAN and OPTICS, spectral clustering and maximum likelihood clustering, used for discriminating between dual polarization: BPSK, QPSK, 8-PSK, 8-QAM, and 16-QAM. We determine essential performance metrics for each clustering algorithm and modulation format under test: minimum required signal-to-noise ratio, detection accuracy and algorithm complexity. PMID:26193532

  2. Young star clusters: Clues to galaxy formation and evolution

    OpenAIRE

    Anders, P.; Alvensleben, U. Fritze--v.; de Grijs, R.

    2003-01-01

    Young clusters are observed to form in a variety of interacting galaxies and violent starbursts, a substantial number resembling the progenitors of the well-studied globular clusters in mass and size. By studying young clusters in merger remnants and peculiar galaxies, we can therefore learn about the violent star formation history of these galaxies. We present a new set of evolutionary synthesis models of our GALEV code specifically developed to include the gaseous emission of presently form...

  3. Quantum fluctuation effects on nuclear fragment and atomic cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Randrup, J.

    1997-05-01

    We investigate the nuclear fragmentation and atomic cluster formation by means of the recently proposed quantal Langevin treatment. It is shown that the effect of the quantal fluctuation is in the opposite direction in nuclear fragment and atomic cluster size distribution. This tendency is understood through the effective classical temperature for the observables. (author)

  4. Turbulent Clustering of Protoplanetary Dust and Planetesimal Formation

    CERN Document Server

    Pan, Liubin; Scalo, John; Kritsuk, Alexei G; Norman, Michael L

    2011-01-01

    We study clustering of inertial particles in turbulent flows and discuss its applications to dust particles in protoplanetary disks. Using numerical simulations, we compute the radial distribution function (RDF), which measures the probability of finding particle pairs at given distances, and the probability density function of the particle concentration. The clustering statistics depend on the Stokes number, $St$, defined as the ratio of the particle friction timescale, $\\tau_{\\rm p} $, to the Kolmogorov timescale in the flow. In the dissipation range, the clustering intensity strongly peaks at $St \\simeq 1$, and the RDF for $St \\sim 1$ shows a fast power-law increase toward small scales, suggesting that turbulent clustering may considerably enhance the particle collision rate. Clustering at inertial-range scales is of particular interest to the problem of planetesimal formation. At these scales, the strongest clustering is from particles with $\\tau_{\\rm p}$ in the inertial range. Clustering of these particl...

  5. Application of fractals and kinetic equations to cluster formation

    Science.gov (United States)

    Villarica, M.; Casey, M. J.; Goodisman, J.; Chaiken, J.

    1993-03-01

    The log normal distribution is shown to be useful for characterizing cluster distributions produced by coalescence growth mechanisms. The Smoluchowski equation and variations thereof produce cluster size distributions very similar to those produced using nozzle beam expansions and laser chemistry of organometallics. The model provides a statistically unbiased basis for interpreting cluster size distributions produced using a wide variety of synthetic methods. It also provides a unified chemical and physical basis for discussing and rationalizing the results of a wide range of gas phase cluster experiments. Under certain conditions, size distributions can be produced in which there is an alteration in the number of odd and even clusters produced. In addition to some inferences regarding fullerene chemistry, data gleaned from the literature are rationalized on the basis of the kinematics of cluster formation, the fractal dimension of clusters composed of different atoms, the Periodic Table, and the degree to which the translational motion of the coalescing species is diffusional or ballistic.

  6. Master equation calculations of cluster formation in supersonic jets

    International Nuclear Information System (INIS)

    The kinetics of cluster formation in supersonic jets is examined by numerical integration of the master equation system. Some general characteristics of cluster kinetics could be formulated. Excellent agreement between experimental curves of p-cresol (H2O)0,1,2,3 formation as function of H2O pressure and the corresponding calculated curves were obtained assuming successive cluster formation. From the kinetic curves, and unambiguous assignment of cluster size was possible which agreed with mass-resolved REMPI measurements. The fit of the rate coefficients shows the formation of p-cresol (H2O)1 to be faster than p-cresol (H2O)2 and p-cresol (H2O)3. (orig.)

  7. Growth of Functional FeTi Clusters Covered with Carbon Layer

    International Nuclear Information System (INIS)

    FeTi clusters with a diameter of less than 10 nm and covered with a graphitic layer have been preferentially produced in an H2 gas atmosphere at pressures of 10 and 26.6 kPa by the simultaneous evaporation of Fe and Ti wires from a concave carbon boat. To compare this result with cluster formation in an inert gas atmosphere, the result for an Ar gas pressure of 10 kPa is also discussed. The formation of disordered FeNi clusters predominately took place in an H2 gas atmosphere.

  8. The Era of Star Formation in Galaxy Clusters

    CERN Document Server

    Brodwin, M; Gonzalez, Anthony H; Zeimann, G R; Snyder, G F; Mancone, C L; Pope, A; Eisenhardt, P R; Stern, D; Alberts, S; Ashby, M L N; Brown, M J I; Chary, R -R; Dey, Arjun; Galametz, A; Gettings, D P; Jannuzi, B T; Miller, E D; Moustakas, J; Moustakas, L A

    2013-01-01

    We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at $1 1.35$. Using infrared luminosities measured with deep Spitzer/MIPS observations at 24 $\\mu$m, along with robust optical+IRAC photometric redshifts and SED-fitted stellar masses, we present the dust-obscured star-forming fractions, star formation rates and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that $z\\sim 1.4$ represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at $z>1.4$ environment-dependent quenching had not yet been established in ISCS clusters. Combining these obse...

  9. Formation of Proto-Globular Cluster Clouds by Thermal Instability

    OpenAIRE

    Kang, Hyesung; Lake, George; Ryu, Dongsu

    2000-01-01

    Many models of globular cluster formation assume the presence of cold dense clouds in early universe. Here we re-examine the Fall & Rees (1985) model for formation of proto-globular cluster clouds (PGCCs) via thermal instabilities in a protogalactic halo. We first argue, based on the previous study by others, that under the protogalactic environments only nonlinear density inhomogeneities can condense into PGCCs. We then carry out numerical simulations of the collapse of overdense clouds in o...

  10. Structure and cluster formation in granular media

    Indian Academy of Sciences (India)

    S Luding

    2005-06-01

    The two most important phenomena at the basis of granular media are excluded volume and dissipation. The former is captured by the hard sphere model and is responsible for, e.g., crystallization, the latter leads to interesting structures like clusters in non-equilibrium dynamical, freely cooling states. The freely cooling system is examined concerning the energy decay and the cluster evolution in time. Corrections for crystallization and multi-particle contacts are provided, which become more and more important with increasing density.

  11. Formation, Evolution, and Survival of Massive Star Clusters

    Science.gov (United States)

    Fall, Michael

    2015-08-01

    This talk presents a synoptic theory for the formation, evolution, and survival of massive star clusters. These objects are important in the ecology of galaxies, as the sites of star formation and stellar feedback, as the building blocks of stellar populations. The talk is organized around the mass function of star clusters (i.e., the spectrum of cluster masses) and how it evolves with time (age). Observations show some remarkable similarities in the mass functions of clusters in different galaxies, analogous to the similarities in stellar initial mass functions (IMFs). Explaining the similarity of the mass functions of star clusters is one of the goals and successes of the theory presented here. A byproduct of this theory is a unified concept of star clusters of all types: associations, open clusters, populous clusters, globular clusters, etc. The physical processes that affect the mass functions of star clusters include the following: star formation and stellar feedback in the gas-dominated protoclusters, and the subsequent gravitational effects in the gas-free clusters, primarily stellar mass loss, tidal interactions with passing molecular clouds, and internal two-body relaxation. These processes all reduce the masses of clusters, thus lowering the amplitude of their mass function, but in such a way that the shape of the mass function is nearly preserved. The talk presents a quantitative, albeit approximate, analysis of all these effects. As a result of recent developments, there is now a growing connection between theory and observation in this field. The work presented here points to some future observations that would strengthen this connection.

  12. Active transport and cluster formation on 2D networks

    CERN Document Server

    Greulich, Philip

    2009-01-01

    We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment and investigate the formation of particle clusters. In the presence of a hard-core interaction, cluster sizes exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The results are compared with a diffusion limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size-scale if the relevant time-scales and particle densities are considered.

  13. Quasars formation around clusters of primordial black holes

    OpenAIRE

    Dokuchaev, Vyacheslav; Eroshenko, Yury; Rubin, Sergei

    2004-01-01

    We propose the model of first quasars formation around the cluster of rimordial black holes (PBHs). It is supposed, that mass fraction of the universe ~10^-3 is composed of the compact clusters of PBHs, produced during the phase transitions in the early universe. The clusters of PBHs become the centers of dark matter condensation. As a result, the galaxies with massive central black holes are formed. In the process of galaxies formation the central black holes are growing due to accretion. Th...

  14. Star formation properties of galaxy cluster A1767

    International Nuclear Information System (INIS)

    Abell 1767 is a dynamically relaxed, cD cluster of galaxies with a redshift of 0.0703. Among 250 spectroscopically confirmed member galaxies within a projected radius of 2.5r200, 243 galaxies (∼ 97%) are spectroscopically covered by the Sloan Digital Sky Survey. Based on this homogeneous spectral sample, the stellar evolutionary synthesis code STARLIGHT is applied to investigate the stellar populations and star formation histories of galaxies in this cluster. The star formation properties of galaxies, such as mean stellar ages, metallicities, stellar masses, and star formation rates, are presented as functions of local galaxy density. A strong environmental effect is found such that massive galaxies in the high-density core region of the cluster tend to have higher metallicities, older mean stellar ages, and lower specific star formation rates (SSFRs), and their recent star formation activities have been remarkably suppressed. In addition, the correlations of the metallicity and SSFR with stellar mass are confirmed. (paper)

  15. Electrostatic cluster formation in lipid monolayers

    OpenAIRE

    Ellenbroek, Wouter G.; Wang, Yu-Hsiu; Christian, David A.; Discher, Dennis E.; Janmey, Paul A.; Liu, Andrea J.

    2010-01-01

    We study phase separation in mixed monolayers of neutral and highly negatively charged lipids, induced by the addition of divalent positively charged counterions. We find good agreement between experiments on mixtures of pip2 and sopc and simulations of a simplified model in which only the essential electrostatic interactions are retained. Thus, our results support an interpretation of pip2 clustering as governed primarily by electrostatic interactions, in which divalent ions such as calcium ...

  16. Formation and Levitation of Unconfined Droplet Clusters

    Science.gov (United States)

    Liu, S.; Ruff, G. A.

    1999-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. The overall objective of this research is to study the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. This paper describes current work on the design and performance of an apparatus to generate and stabilize droplet clusters using acoustic and electrostatic forces.

  17. Characterizing star cluster formation with WISE: 652 newly found star clusters and candidates

    CERN Document Server

    Camargo, Denilso; Bonatto, Charles

    2015-01-01

    We report the discovery of 652 star clusters, stellar groups and candidates in the Milky Way with WISE. Most of the objects are projected close to Galactic Plane and are embedded clusters. The present sample complements a similar study (Paper I) which provided 437 star clusters and alike. We find evidence that star formation processes span a wide range of sizes, from populous dense clusters to small compact embedded ones, sparse stellar groups or in relative isolation. The present list indicates multiple stellar generations during the embedded phase, with giant molecular clouds collapsing into several clumps composing an embedded cluster aggregate. We investigate the field star decontaminated Colour Magnitude Diagrams and Radial Density Profiles of 9 cluster candidates in the list, and derive their parameters, confirming them as embedded clusters.

  18. The double galaxy cluster Abell 2465 - II. Star formation in the cluster

    CERN Document Server

    Wegner, Gary A; Hwang, Ho Seong

    2014-01-01

    We investigate the star formation rate and its location in the major merger cluster Abell 2465 at $z$ = 0.245. Optical properties of the cluster are described in Paper I. Measurements of the H$\\alpha$ and infrared dust emission of galaxies in the cluster were made with an interference filter centred on the redshifted line at a wavelength of 817 nm and utilized data from the WISE satellite 12 $\\mu$m band. Imaging in the Johnson $U$ and $B$ bands was obtained, and along with SDSS $u$ and $r$ was used to study the blue fraction, which appears enhanced, as a further signatures of star formation in the cluster. Star formation rates were calculated using standard calibrations. The total star formation rate normalized by the cluster mass, $\\Sigma SFR/M_{cl}$ compared to compilations for other clusters indicate that the components of Abell 2465 lie above the mean $z$ and $M_{cl}$ relations, suggestive that interacting galaxy clusters have enhanced star formation. The projected radial distribution of the star forming ...

  19. Hα star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    International Nuclear Information System (INIS)

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 Cluster Survey. We use Wide Field Camera 3 grism data to spectroscopically identify Hα emitters in both the cores of galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M * < 10.0 M ☉). We therefore conclude that environmental effects are still important at 1.0 clusters with log M * ≲ 10.0 M ☉.

  20. Tracing Star Formation in Cool Core Clusters with GALEX

    CERN Document Server

    Hicks, Amalia; Donahue, Megan

    2009-01-01

    We present recent results from a GALEX investigation of star formation in 16 cooling core clusters of galaxies, selected to span a broad range in both redshift and central cooling time. Initial results demonstrate clear UV excesses in most, but not all, brightest cluster galaxies in our sample. This UV excess is a direct indication of the presence of young massive stars and, therefore, recent star formation. We report on the physical extent of UV emission in these objects as well as their FUV-NUV colors, and compare GALEX inferred star formation rates to central cooling times, H-alpha and IR luminosities for our sample.

  1. Cluster formation through the action of a single picosecond laser pulse

    International Nuclear Information System (INIS)

    We demonstrate experimentally and describe theoretically the formation of carbon nanoclusters created by single picosecond laser pulses. We show that the average size of a nanocluster is determined exclusively by single laser pulse parameters and is independent of the gas fill (He, Ar, Kr, Xe) and pressure in a range from 20mTorr to 200 Torr. Simple kinetic theory allows estimates to be made of the cluster size, which are in qualitative agreement with the experimental data. We conclude that the role of the buffer gas is to induce a transition between thin solid film formation on the substrate and foam formation by diffusing the clusters through the gas, with no significant effect upon the average cluster size

  2. Clusters in strong laser fields: Comparison between carbon, platinum, and lead clusters

    Science.gov (United States)

    Schumacher, M.; Teuber, S.; Köller, L.; Köhn, J.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    Carbon and metal clusters are excited by strong femtosecond laser pulses with up to 1016 W/cm2, yielding ionized clusters and highly charged atomic ions. For small carbon clusters and fullerenes the abundance of charged species correlates with the laser power, while for metal clusters the ionization efficiency is additionally strongly affected by the chosen laser pulse width which may result in an enhanced up-charging of the metal particle. In the case of platinum atomic charge states up to z=20 are detected at a pulse duration of about 600 fs. This observation is in accordance with a model based on a multi-plasmon excitation process.

  3. Theoretical study of the nucleation/growth process of carbon clusters under pressure.

    Science.gov (United States)

    Pineau, N; Soulard, L; Los, J H; Fasolino, A

    2008-07-14

    We used molecular dynamics and the empirical potential for carbon LCBOPII to simulate the nucleation/growth process of carbon clusters both in vacuum and under pressure. In vacuum, our results show that the growth process is homogeneous and yields mainly sp(2) structures such as fullerenes. We used an argon gas and Lennard-Jones potentials to mimic the high pressures and temperatures reached during the detonation of carbon-rich explosives. We found that these extreme thermodynamic conditions do not affect substantially the topologies of the clusters formed in the process. However, our estimation of the growth rates under pressure are in much better agreement with the values estimated experimentally than our vacuum simulations. The formation of sp(3) carbon was negligible both in vacuum and under pressure which suggests that larger simulation times and cluster sizes are needed to allow the nucleation of nanodiamonds. PMID:18624553

  4. Stable Carbon Isotope Ratios for Giant Stars in the Globular Cluster M13

    Science.gov (United States)

    Rhee, Jaehyon; Pilachowski, C. A.

    2013-01-01

    Recently, our paradigm for the formation and evolution of globular clusters has shifted. We now understand that the majority of present-day stars in globular clusters formed as second-generation stars, primarily from the ejecta of first-generation AGB stars, while the majority of first generation, less centrally concentrated stars, have been dynamically lost to the cluster (D'Ercole et al. 2011). This paradigm explains the observed star-to-star variations in the abundances of light element observed in globular clusters, and suggests that the carbon isotope ratio should be similarly differentiated between first and second generation stars. In an effort to verify this scenario, we have recently utilized the Gemini/NIFS to determine carbon isotope abundances (12C and 13C) for 18 giant stars in the globular clusters M13 through medium-resolution (R ˜ 5300) infrared spectroscopy of the first-overtone CO bands near 2.3 μm. Our program stars are distributed from the tip of the RGB to the BLF (the bump in the luminosity function) of M13, and their Na, Mg, and Al abundances are already known from homogeneous data set analysis. Therefore, adding reliable abundances of the stable carbon isotopes to this homogeneous spectroscopic sample permits systematic tests of cluster chemical evolution models. We report preliminary results of the carbon abundance analysis for our NIFS K-band spectra and present an overview of our ongoing effort with other globular clusters.

  5. Simulation of swift boron clusters traversing amorphous carbon foils

    OpenAIRE

    Heredia Ávalos, Santiago; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; García Molina, Rafael

    2007-01-01

    We use a simulation code to study the interaction of swift boron clusters (Bn+, n=2–6, 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interacti...

  6. Star Formation and Relaxation in 379 Nearby Galaxy Clusters

    CERN Document Server

    Cohen, Seth A; Wegner, Gary A

    2015-01-01

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M_r < -19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 +/- 0.003) is higher than that in all relaxed clusters (0.097 +/- 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.

  7. Cluster Formation in Protostellar Outflow-Driven Turbulence

    CERN Document Server

    Li, Z Y; Li, Zhi-Yun; Nakamura, Fumitaka

    2006-01-01

    Most, perhaps all, stars go through a phase of vigorous outflow during formation. We examine, through 3D MHD simulation, the effects of protostellar outflows on cluster formation. We find that the initial turbulence in the cluster-forming region is quickly replaced by motions generated by outflows. The protostellar outflow-driven turbulence (``protostellar turbulence'' for short) can keep the region close to a virial equilibrium long after the initial turbulence has decayed away. We argue that there exist two types of turbulence in star-forming clouds: a primordial (or ``interstellar'') turbulence and a protostellar turbulence, with the former transformed into the latter mostly in embedded clusters such as NGC 1333. Since the majority of stars are thought to form in clusters, an implication is that the stellar initial mass function is determined to a large extent by the stars themselves, through outflows which individually limit the mass accretion onto forming stars and collectively shape the environments (de...

  8. The physics and modes of star cluster formation: simulations

    CERN Document Server

    Clarke, Cathie

    2009-01-01

    We review progress in numerical simulations of star cluster formation. These simulations involve the bottom-up assembly of clusters through hierarchical mergers, which produces a fractal stellar distribution at young (~0.5 Myr) ages. The resulting clusters are predicted to be mildly aspherical and highly mass-segregated, except in the immediate aftermath of mergers. The upper initial mass function within individual clusters is generally somewhat flatter than for the aggregate population. Recent work has begun to clarify the factors that control the mean stellar mass in a star-forming cloud and also the efficiency of star formation. The former is sensitive to the thermal properties of the gas while the latter depends both on the magnetic field and the initial degree of gravitational boundedness of the natal cloud. Unmagnetized clouds that are initially bound undergo rapid collapse, which is difficult to reverse by ionization feedback or stellar winds.

  9. Star formation in shocked cluster spirals and their tails

    CERN Document Server

    Roediger, E; Owers, M S; Ebeling, H; Sun, M

    2014-01-01

    Recent observations of ram pressure stripped spiral galaxies in clusters revealed details of the stripping process, i.e., the truncation of all interstellar medium (ISM) phases and of star formation (SF) in the disk, and multiphase star-forming tails. Some stripped galaxies, in particular in merging clusters, develop spectacular star-forming tails, giving them a jellyfish-like appearance. In merging clusters, merger shocks in the intra-cluster medium (ICM) are thought to have overrun these galaxies, enhancing the ambient ICM pressure and thus triggering SF, gas stripping and tail formation. We present idealised hydrodynamical simulations of this scenario, including standard descriptions for SF and stellar feedback. To aid the interpretation of recent and upcoming observations, we focus on particular structures and dynamics in SF patterns in the remaining gas disk and in the near tails, which are easiest to observe. The observed jellyfish morphology is qualitatively reproduced for, both, face-on and edge-on st...

  10. Mass distributions of star clusters for different star formation histories in a galaxy cluster environment

    CERN Document Server

    Schulz, Christine; Kroupa, Pavel

    2015-01-01

    Clusters of galaxies usually contain rich populations of globular clusters (GCs). We investigate how different star formation histories (SFHs) shape the final mass distribution of star clusters. We assume that every star cluster population forms during a formation epoch of length dt at a constant star-formation rate (SFR). The mass distribution of such a population is described by the embedded cluster mass function (ECMF), which is a pure power law extending to an upper limit M_max. Since the SFR determines M_max, the ECMF implicitly depends on the SFR. Starting with different SFHs, each SFH is divided into formation epochs of length dt at different SFRs. The requested mass function arises from the superposition of the star clusters of all formation epochs. An improved optimal sampling technique is introduced that allows generating number and mass distributions, both of which accurately agree with the ECMF. Moreover, for each SFH the distribution function of all involved SFRs, F(SFR), is computed. For monoton...

  11. Star cluster formation in cosmological simulations. I. properties of young clusters

    CERN Document Server

    Li, Hui; Gnedin, Nickolay Y; Meng, Xi; Semenov, Vadim A; Kravtsov, Andrey V

    2016-01-01

    We present a new implementation of star formation in cosmological simulations, by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift, by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is $\\alpha\\approx 1.8-2$, while the cutoff at high mass scales with the star formation rate. A related trend is a positive correlation between the surface density of star formation rate and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clust...

  12. Cluster Formation in Protostellar Outflow-driven Turbulence

    Science.gov (United States)

    Li, Zhi-Yun; Nakamura, Fumitaka

    2006-04-01

    Most, perhaps all, stars go through a phase of vigorous outflow during formation. We examine, through three-dimensional MHD simulation, the effects of protostellar outflows on cluster formation. We find that the initial turbulence in the cluster-forming region is quickly replaced by motions generated by outflows. The protostellar outflow-driven turbulence (``protostellar turbulence'' for short) can keep the region close to a virial equilibrium long after the initial turbulence has decayed away. We argue that there exist two types of turbulence in star-forming clouds: a primordial (or ``interstellar'') turbulence and a protostellar turbulence, with the former transformed into the latter mostly in embedded clusters such as NGC 1333. Since the majority of stars are thought to form in clusters, an implication is that the stellar initial mass function is determined to a large extent by the stars themselves, through outflows that individually limit the mass accretion onto forming stars and collectively shape the environments (density structure and velocity field) in which most cluster members form. We speculate that massive cluster-forming clumps supported by protostellar turbulence gradually evolve toward a highly centrally condensed ``pivotal'' state, culminating in rapid formation of massive stars in the densest part through accretion.

  13. METALS IN THE ICM: WITNESSES OF CLUSTER FORMATION AND EVOLUTION

    OpenAIRE

    Lorenzo Lovisari; Laganá, Tatiana F.; Katharina Borm; Gerrit Schellenberger; Reiprich, Thomas H.

    2013-01-01

    The baryonic composition of galaxy clusters and groups is dominated by a hot, X-ray emitting Intra-Cluster Medium (ICM). The mean metallicity of the ICM has been found to be roughly 0.3 ÷ 0.5 times the solar value, therefore a large fraction of this gas cannot be of purely primordial origin. Indeed, the distribution and amount of metals in the ICM is a direct consequence of the past history of star formation in the cluster galaxies and of the processes responsible for the injection of enriche...

  14. The Peculiarities of Cluster Formation in the Russian Nanotechnology Industry

    Directory of Open Access Journals (Sweden)

    Kurchenkov Vladimir Viktorovich

    2015-05-01

    Full Text Available The innovative development of the Russian economy in modern conditions should be based on the development of advanced nanotechnology. The formation of the nanotechnology industry in Russia requires optimal organization, the development of networking, the search for new forms of integrating the primary and secondary productions. The cluster organization in nanotech industry is based on high-tech production and has a number of advantages: uncertainty elimination, restriction of the competition by monopolization of supply with raw materials and semi-finished products, improvement of quality and decrease in expenses. The main forms of interaction of the enterprises and organizations which are a part of a nanoindustrial cluster are allocated. The article describes the peculiarities of the Russian nanoidustry formation, determines the significance of the cluster policy in this sphere. The author develops the criteria for identifying the nanoclusters on the basis of the basic nanotechnology and the nomenclature of final product. The author also proposes the approach to the analysis of cluster interaction and determines the boundaries of the cluster based on the difference between system and quasisystem cluster interaction. In this regard it is necessary to consider possibilities of the analysis of both system, and quasisystem interaction of the main participants of a nanoindustrial cluster.

  15. Formation of Cool Cores in Galaxy Clusters via Hierarchical Mergers

    CERN Document Server

    Motl, P M; Loken, C; Norman, M L; Bryan, G; Motl, Patrick M.; Burns, Jack O.; Loken, Chris; Norman, Michael L.; Bryan, Greg

    2004-01-01

    We present a new scenario for the formation of cool cores in rich galaxy clusters based on results from recent high spatial dynamic range, adaptive mesh Eulerian hydrodynamic simulations of large-scale structure formation. We find that cores of cool gas, material that would be identified as a classical cooling flow based on its X-ray luminosity excess and temperature profile, are built from the accretion of discrete, stable subclusters. Any ``cooling flow'' present is overwhelmed by the velocity field within the cluster - the bulk flow of gas through the cluster typically has speeds up to about 2,000 km s^-1 and significant rotation is frequently present in the cluster core. The inclusion of consistent initial cosmological conditions for the cluster within its surrounding supercluster environment is crucial when simulating the evolution of cool cores in rich galaxy clusters. This new model for the hierarchical assembly of cool gas naturally explains the high frequency of cool cores in rich galaxy clusters des...

  16. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    Science.gov (United States)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ˜300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  17. More Magic Numbers in Anionic Titanium-carbon Mixed Clusters

    Institute of Scientific and Technical Information of China (English)

    ZHAU Huajin; LIU Bingchen; ZHOU Rufang; NI Guoquan

    2000-01-01

    @@ Met-Cars[1] and related transition metal-carbon clusters represent a latest breakthrough in gas phase cluster research following the discovery and macroscopic synthesis of fullerenes. Different kinds of structural growth patterns (SGPs) have been proposed to analyze the observed magic numbers of these transition metal-carbon mixed clusters, including the multicage SGP[2], the nanocrystal SGP[3], and the recent layered SGP[4]. Recording larger magic numbers will be of great help to test and distinguish between the various SGPs.

  18. Clustered Star Formation in W75 N

    CERN Document Server

    Shepherd, D S; Stark, D P

    2003-01-01

    We present 2" to 7" resolution 3 mm continuum and CO(J=1-0) line emission and near infrared Ks, H2, and [FeII] images toward the massive star forming region W75 N. The CO emission uncovers a complex morphology of multiple, overlapping outflows. A total flow mass of greater than 255 Msun extends 3 pc from end-to-end and is being driven by at least four late to early-B protostars. More than 10% of the molecular cloud has been accelerated to high velocities by the molecular flows (> 5.2 km/s relative to v{LSR}) and the mechanical energy in the outflowing gas is roughly half the gravitational binding energy of the cloud. The W75 N cluster members represent a range of evolutionary stages, from stars with no apparent circumstellar material to deeply embedded protostars that are actively powering massive outflows. Nine cores of millimeter-wavelength emission highlight the locations of embedded protostars in W75 N. The total mass of gas & dust associated with the millimeter cores ranges from 340 Msun to 11 Msun. ...

  19. New insights on the formation of nuclear star clusters

    CERN Document Server

    Guillard, Nicolas; Renaud, Florent

    2016-01-01

    Nuclear Clusters (NCs) are common stellar systems in the centres of galaxies. Yet, the physical mechanisms involved in their formation are still debated. Using a parsec-resolution hydrodynamical simulation of a dwarf galaxy, we propose an updated formation scenario for NCs. In this 'wet migration scenario', a massive star cluster forms in the gas-rich disc, keeping a gas reservoir, and growing further while it migrates to the centre via a combination of interactions with other substructures and dynamical friction. A wet merger with another dense cluster and its own gas reservoir can occur, although this is not a pre-requisite for the actual formation of the NC. The merging process does significantly alter the properties of the NC (mass, morphology, star formation history), also quenching the on-going local star formation activity, thus leading to interesting observational diagnostics for the physical origin of NCs. A population of lower mass clusters co-exist during the simulation, but these are either destro...

  20. Two-Dimensional Nanoparticle Cluster Formation in Supercritical Fluid CO2.

    Science.gov (United States)

    Wang, Joanna S; Wai, Chien M; Brown, Gail J; Apt, Scott D

    2016-05-10

    Supercritical fluid carbon dioxide (sc-CO2) is capable of depositing nanoparticles in small structures of silicon substrates because of its gas-like penetration, liquid-like solvation abilities, and near-zero surface tension. In nanometer-sized shallow wells on silicon surface, formation of two-dimensional (2D) monolayer metal nanoparticle (NP) clusters can be achieved using the sc-CO2 deposition method. Nanoparticles tend to fill nanostructured holes first, and then, if sufficient nanoparticles are available, they will continue to cover the flat areas nearby, unless defects or other surface imperfections are available. In addition, SEM images of two-dimensional gold (Au) nanoparticle clusters formed on a flat silicon surface with two to a dozen or more of the nanoparticles are provided to illustrate the patterns of nanoparticle cluster formation in sc-CO2. PMID:27088712

  1. Is acetylene essential for carbon dust formation?

    CERN Document Server

    Dhanoa, Harpreet

    2013-01-01

    We have carried out an investigation of the chemical evolution of gas in different carbon-rich circumstellar environments. Previous studies have tended to invoke terrestrial flame chemistries, based on acetylene (C2H2) combustion to model the formation of carbon dust, via Polycyclic Aromatic Hydrocarbons (PAHs). In this work we pay careful attention to the accurate calculation of the molecular photoreaction rate coefficients to ascertain whether there is a universal formation mechanism for carbon dust in strongly irradiated astrophysical environments. A large number of possible chemical channels may exist for the formation of PAHs, so we have concentrated on the viability of the formation of the smallest building block species, C2H2, in a variety of carbon-rich stellar outflows. C2H2 is very sensitive to dissociation by UV radiation. This sensitivity is tested, using models of the time-dependent chemistry. We find that C2H2 formation is sensitive to some of the physical parameters and that in some known sourc...

  2. The Impact of Star Formation on Cool Core Galaxy Clusters

    OpenAIRE

    Motl, P. M.; Burns, J. O.; Norman, M. L.; Bryan, G L

    2003-01-01

    We present results from recent simulations of the formation and evolution of clusters of galaxies in a LambdaCDM cosmology. These simulations contain our most physically complete input physics to date including radiative cooling, star formation that transforms rapidly cooling material into aggregate star particles and we also model the thermal feedback from resulting supernovae in the star particles. We use an adaptive mesh refinement (AMR) Eulerian hydrodynamics scheme to obtain very high sp...

  3. Teenage suicide cluster formation and contagion: implications for primary care

    Directory of Open Access Journals (Sweden)

    Eriksson Anders

    2006-05-01

    Full Text Available Abstract Background We have previously studied unintentional as well as intentional injury deaths among teenagers living in the four northernmost counties, forming approximately 55% of Sweden with 908,000 inhabitants in 1991. During this work, we found what we suspected to be a suicide cluster among teenagers and we also suspected contagion since there were links between these cases. In this present study, we investigate the occurrence of suicide clustering among teenagers, analyze cluster definitions, and suggest preventive measures. Methods A retrospective study of teenager suicides autopsied at the Department of Forensic Medicine in Umeå, Sweden, during 1981 through 2000. Police reports, autopsy protocols, and medical records were studied in all cases, and the police officers that conducted the investigation at the scene were interviewed in all cluster cases. Parents of the suicide victims of the first cluster were also interviewed. Two aggregations of teenager suicides were detected and evaluated as possible suicide clusters using the US Centers for Disease Control definition of a suicide cluster. Results Two clusters including six teenagers were confirmed, and contagion was established within each cluster. Conclusion The general practitioner is identified as a key person in the aftermath of a teenage suicide since the general practitioner often meet the family, friends of the deceased, and other acquaintances early in the process after a suicide. This makes the general practitioner suitable to initiate contacts with others involved in the well-being of the young, in order to prevent suicide cluster formation and para-suicidal activities.

  4. METALS IN THE ICM: WITNESSES OF CLUSTER FORMATION AND EVOLUTION

    Directory of Open Access Journals (Sweden)

    Lorenzo Lovisari

    2013-12-01

    Full Text Available The baryonic composition of galaxy clusters and groups is dominated by a hot, X-ray emitting Intra-Cluster Medium (ICM. The mean metallicity of the ICM has been found to be roughly 0.3 ÷ 0.5 times the solar value, therefore a large fraction of this gas cannot be of purely primordial origin. Indeed, the distribution and amount of metals in the ICM is a direct consequence of the past history of star formation in the cluster galaxies and of the processes responsible for the injection of enriched material into the ICM. We here shortly summarize the current views on the chemical enrichment, focusing on the observational evidence in terms of metallicity measurements in clusters, spatial metallicity distribution and evolution, and expectations from future missions.

  5. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    Directory of Open Access Journals (Sweden)

    J. C. Corbin

    2013-10-01

    Full Text Available We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS. The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (xxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1. In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1x+ intensity. Furthermore, the ratio of these major ions C1+/C3+ could be used to predict whether significant Cxn+ signals with x>5 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  6. Linked supramolecular building blocks for enhanced cluster formation

    DEFF Research Database (Denmark)

    McLellan, Ross; Palacios, Maria A.; Beavers, Christine M.;

    2015-01-01

    (Figure Presented). Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the com...

  7. Star formation activities in early-type brightest cluster galaxies

    CERN Document Server

    Liu, F S; Meng, X M

    2012-01-01

    We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with both H{\\alpha} and [O II]{\\lambda}3727 line emission, which indicates significant ongoing star formation. They constitute about ~ 0.5% of the largest, optically-selected, low-redshift BCG sample, and the fraction is a strong function of cluster richness. Their star formation history can be well described by a recent minor and short starburst superimposed on an old stellar component, with the recent episode of star formation contributing on average only less than 1 percent of the total stellar mass. We show that the more massive star-forming BCGs in richer clusters tend to have higher star formation rate (SFR) and specific SFR (SFR per unit galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous c...

  8. Carbon and nitrogen abundance variations in globular cluster red giants

    Science.gov (United States)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  9. Formation of Very Young Massive Clusters and implications for globular clusters

    CERN Document Server

    Banerjee, Sambaran

    2015-01-01

    How Very Young Massive star Clusters (VYMCs; also known as "starburst" clusters), which typically are of $\\gtrsim 10^4M_\\odot$ and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and computational studies provide clues about their formation scenarios and the underlying physical processes involved. This chapter is focused on reviewing the decade-long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modeling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of thes...

  10. Numerical simulation of primary cluster formation in silane plasmas

    CERN Document Server

    Gupta, N; Kroesen, G

    2003-01-01

    The usage of low-cost silicon-based solar cells is limited by their tendency to degrade on prolonged exposure to sunlight. Current research has indicated that the inclusion of nano-particles in the plasma-deposited film enhances its efficiency considerably. It is therefore essential to identify the plasma operating conditions such that nano-particles are formed and deposited in the film. The early stages of cluster formation, nucleation and coagulation are still open to experimental and theoretical investigation. In this paper, a simulation of the first stage of particle formation in capacitively coupled radio-frequency discharges in SiH sub 4 is attempted. A molecular dynamics based model has been set up to simulate one of the principal reaction pathways in cluster formation. This simulation model appears to produce valid and meaningful trends. Further studies are planned to explore the effect of other parameters and alternate pathways.

  11. Young stellar clusters and star formation throughout the Galaxy

    CERN Document Server

    Feigelson, Eric; Allen, Lori; Bergin, Edwin; Bally, John; Balog, Zoltan; Bourke, Tyler; Brogan, Crystal; Chu, You-Hua; Churchwell, Edward; Gagne, Marc; Getman, Konstantin; Hunter, Todd; Morgan, Larry; Massey, Philip; Mac Low, Mordecai-Mark; Mamajek, Eric; Megeath, S Thomas; O'Dell, C Robert; Rathborne, Jill; Rebull, Luisa; Stahler, Steven; Townsley, Leisa; Wang, Junfeng; Williams, Jonathan

    2009-01-01

    Most stars are born in rich young stellar clusters (YSCs) embedded in giant molecular clouds. The most massive stars live out their short lives there, profoundly influencing their natal environments by ionizing HII regions, inflating wind-blown bubbles, and soon exploding as supernovae. Thousands of lower-mass pre-main sequence stars accompany the massive stars, and the expanding HII regions paradoxically trigger new star formation as they destroy their natal clouds. While this schematic picture is established, our understanding of the complex astrophysical processes involved in clustered star formation have only just begun to be elucidated. The technologies are challenging, requiring both high spatial resolution and wide fields at wavelengths that penetrate obscuring molecular material and remove contaminating Galactic field stars. We outline several important projects for the coming decade: the IMFs and structures of YSCs; triggered star formation around YSC; the fate of OB winds; the stellar populations of...

  12. Galaxy Proto-clusters as an Interface Between Structure, Cluster, and Galaxy Formation

    Science.gov (United States)

    Chiang, Yi-Kuan

    2016-01-01

    Proto-clusters, the progenitor large-scale structures of present day galaxy clusters, are unique laboratories to study dark matter assembly, cosmic baryon cycle, galaxy growth, and environmental impact on galaxy evolution. In this dissertation talk, I will present our recent progress in this subject, both theoretical and observational. Using a set of cosmological N-body simulations and semi-analytic galaxy models, we extract the mass, size, and overdensity evolution for ˜3000 simulated clusters from z=8 to z=0. In line with the scenario of cosmic downsizing, the models predict that the fraction of cosmic star formation rate occurs in (proto-)clusters increases from <1% at z=0 to 20-30% at z=8. This result demonstrates that the seemingly sharp distinction when discussing field and cluster galaxy evolution has to be blurred at high redshift, and a significant fraction of cosmic reionization was done by cluster progenitors. Observationally, we focus on the epoch of z≈2 when the first cluster scale halos (1014 M⊙) were about to form. We perform a systematic proto-cluster search using a photometric redshift catalog in the COSMOS field, revealing a large sample of 36 candidate proto-clusters at 1.6cluster in this field at z=2.44 with Mz=0 = 1014.5±0.4 M⊙ using a sample of Lyα emitters (LAE) in the HETDEX Pilot Survey with a highly homogeneous selection function in 3D redshift space. Compared to the cosmic mean, this structure shows a LAE overdensity of 4 on a scale of few tens cMpc, a 5 times higher fraction of extended Lya blobs, a 2 times higher median stellar mass of NIR selected galaxies with photometric redshift, and a significantly enhanced intergalactic gas revealed in the Lyα absorption maps of Lee et al. (2014, 2015). With these results, I will discuss proto-clusters in the context of

  13. Star formation in the massive cluster merger Abell 2744

    CERN Document Server

    Rawle, T D; Egami, E; Perez-Gonzalez, P G; Richard, J; Santos, J S; Valtchanov, I; Walth, G; Bouy, H; Haines, C P; Okabe, N

    2014-01-01

    We present a comprehensive study of star-forming (SF) galaxies in the HST Frontier Field recent cluster merger A2744 (z=0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFR{UV+IR}=343+/-10 Msun/yr. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFR{UV+IR}=201+/-9 Msun/yr. Focussing on obscured star formation, this core region exhibits a total SFR{IR}=138+/-8 Msun/yr, a mass-normalised SFR{IR} of Sigma{SFR}=11.2+/-0.7 Msun/yr per 10^14 Msun and a fraction of IR-detected SF galaxies f{SF}=0.080(+0.010,-0.037). Overall, the cluster population at z~0.3 exhibits significant intrinsic scatter in IR properties (total SFR{IR}, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galax...

  14. The formation and evolution of star clusters in interacting galaxies

    CERN Document Server

    Maji, Moupiya; Li, Yuexing; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2016-01-01

    Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at $\\sim 2\\times 10^{5}\\, {\\rm{M_{\\odot}}}$, but the origin of this peaked distribution is highly debated. Here we investigate the formation and evolution of star clusters in interacting galaxies using high-resolution hydrodynamical simulations performed with two different codes in order to mitigate numerical artifacts. We find that massive star clusters in the range of $\\sim 10^{5.5} - 10^{7.5}\\, {\\rm{M_{\\odot}}}$ form preferentially in the highly-shocked regions produced by galaxy interactions. The nascent cluster-forming clouds have high gas pressures in the range of $P/k \\sim 10^8 - 10^{12}\\, \\rm{K}\\,\\rm{cm^{-3}}$, which is $\\sim 10^4 - 10^8$ times higher than the typical pressure of the interstellar medium but consistent with recent observations of a pre-super star cluster cloud in the Antennae Galaxies. Furthermore, these massive star clusters have quasi-lognormal initial mass functions wi...

  15. Star Formation and Chemical Enrichment for Globular Clusters

    Institute of Scientific and Technical Information of China (English)

    林清; 束成钢; 常瑞香; 赵君亮

    2001-01-01

    A model considering gas outflows due to supernova explosions is developed for the star formation and chemical enrichment for the globular clusters (GCs) in the Milky Way galaxy. Through Monte Carlo simulations, the observed global properties of GCs can be well reproduced, including the metallicity distribution, no-correlation between cluster masses and galactocentric distances, etc. The predicted mass function of the parent clouds for the observed GCs at present day can be well described as a power law with the index of-1.8, which is consistent with the current observations for the molecular clouds.

  16. Mining the VVV: star formation and embedded clusters

    CERN Document Server

    Solin, Otto; Ukkonen, Esko

    2013-01-01

    The aim of this study is to locate previously unknown stellar clusters from the VISTA variables in the V\\'ia L\\'actea Survey (VVV) catalogue data. The method, fitting a mixture model of Gaussian densities and background noise using the expectation maximization algorithm to a pre-filtered NIR survey stellar catalogue data, was developed by the authors for the UKIDSS Galactic Plane Survey (GPS). The search located 88 previously unknown mainly embedded stellar cluster candidates and 39 previously unknown sites of star formation in the 562 deg2 covered by VVV in the Galactic bulge and the southern disk.

  17. Starbursts versus Truncated Star Formation in Nearby Clusters of Galaxies

    CERN Document Server

    Rose, J A; Caldwell, N; Chaboyer, B; Rose, James A.; Gaba, Alejandro E.; Caldwell, Nelson; Chaboyer, Brian

    2001-01-01

    We present long-slit spectroscopy, B and R bandpass imaging, and 21 cm observations of a sample of early-type galaxies in nearby clusters which are known to be either in a star-forming phase or to have had star formation which recently terminated. From the long-slit spectra, obtained with the Blanco 4-m telescope, we find that emission lines in the star-forming cluster galaxies are significantly more centrally concentrated than in a sample of field galaxies. The broadband imaging reveals that two currently star-forming early-type galaxies in the Pegasus I cluster have blue nuclei, again indicating that recent star formation has been concentrated. In contrast, the two galaxies for which star formation has already ended show no central color gradient. The Pegasus I galaxy with the most evident signs of ongoing star formation (NGC7648), exhibits signatures of a tidal encounter. Neutral hydrogen observations of that galaxy with the Arecibo radiotelescope reveal the presence of ~4 x 10^8 solar masses of HI. Arecib...

  18. Star Formation Activity in CLASH Brightest Cluster Galaxies

    CERN Document Server

    Fogarty, Kevin; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-01-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains ten brightest cluster galaxies (BCGs) that exhibit significant ($>$5 $\\sigma$) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and H$\\alpha$+[NII] emission in knots and filaments detected in CLASH HST observations. These measurements are supplemented with [OII], [OIII], and H$\\beta$ fluxes measured from spectra obtained with the SOAR telescope. Reddening-corrected UV-derived SFRs in these BCGs are broadly consistent with H$\\alpha$-derived SFRs. Five BCGs exhibit SFRs $>$10 M$_{\\odot}$ yr$^{-1}$ and an additional two have a SFR $>$ 100 M$_{\\odot}$ yr$^{-1}$. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence for a LINER-like contribution. Using Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation ...

  19. Functionalization of carbon nanotubes with silver clusters

    Science.gov (United States)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-09-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  20. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  1. Positronium formation in positron-simple metal cluster collisions

    International Nuclear Information System (INIS)

    Positronium formation through electron capture from ground-state closed-shell sodium clusters is studied theoretically at intermediate impact energies. The charge transfer process is described in the independent electron model by a continuum distorted-wave approximation. In this approximation, distortions in the final state are introduced by using two Coulomb wavefunctions associated with the positron- and electron-residual target interactions. The cluster is described within the framework of the spherical background jellium model and the Kohn-Sham formalism with a local-density approximation that includes exchange, correlation, and a self-interaction correction. Using a partial-wave technique, differential and total cross sections for the isoelectronic neutral and charged closed-shell sodium clusters Na20, Na19- and Na21+ are computed and compared with the predictions of the Coulomb-Born type approximation which neglects the distortions in the final state. (author)

  2. Tetrathiomolybdate Inhibits Copper Trafficking Proteins Through Metal Cluster Formation

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Hamsell M.; Xue, Yi; Robinson, Chandler D.; Canalizo-Hernández, Mónica A.; Marvin, Rebecca G.; Kelly, Rebekah A.; Mondragón, Alfonso; Penner-Hahn, James E.; O’Halloran, Thomas V. (Michigan); (NWU)

    2010-05-06

    Tetrathiomolybdate (TM) is an orally active agent for treatment of disorders of copper metabolism. Here we describe how TM inhibits proteins that regulate copper physiology. Crystallographic results reveal that the surprising stability of the drug complex with the metallochaperone Atx1 arises from formation of a sulfur-bridged copper-molybdenum cluster reminiscent of those found in molybdenum and iron sulfur proteins. Spectroscopic studies indicate that this cluster is stable in solution and corresponds to physiological clusters isolated from TM-treated Wilson's disease animal models. Finally, mechanistic studies show that the drug-metallochaperone inhibits metal transfer functions between copper-trafficking proteins. The results are consistent with a model wherein TM can directly and reversibly down-regulate copper delivery to secreted metalloenzymes and suggest that proteins involved in metal regulation might be fruitful drug targets.

  3. Signatures of Star Formation in Brightest Cluster Galaxies

    CERN Document Server

    Donahue, Megan

    2009-01-01

    I discuss and review recent studies of the signatures of activity in brightest cluster galaxies. Mid-IR spectra appear to show indications of star formation in a sample of 9 BCGs from de Messieres et al. (2009). Other processes like cosmic ray heating and conduction may play a role. The incidence of emission-line BCGs in X-ray selected clusters is higher than in optically-selected clusters, and higher still in systems known to be cool cores. We report early results of a UV and H-alpha survey of the BCGs in the REXCESS sample, which reveals that this sample has an interestingly low number of emission-line or UV excess systems. [Note added post facto: fainter emission-line sources discovered this summer increasses the rate to 22%.

  4. Formation of young massive clusters from turbulent molecular clouds

    Science.gov (United States)

    Fujii, Michiko; Portegies Zwart, Simon

    2015-08-01

    We simulate the formation and evolution of young star clusters using smoothed-particle hydrodynamics (SPH) and direct N-body methods. We start by performing SPH simulations of the giant molecular cloud with a turbulent velocity field, a mass of 10^4 to 10^6 M_sun, and a density between 17 and 1700 cm^-3. We continue the SPH simulations for a free-fall time scale, and analyze the resulting structure of the collapsed cloud. We subsequently replace a density-selected subset of SPH particles with stars. As a consequence, the local star formation efficiency exceeds 30 per cent, whereas globally only a few per cent of the gas is converted to stars. The stellar distribution is very clumpy with typically a dozen bound conglomerates that consist of 100 to 10000 stars. We continue to evolve the stars dynamically using the collisional N-body method, which accurately treats all pairwise interactions, stellar collisions and stellar evolution. We analyze the results of the N-body simulations at 2 Myr and 10 Myr. From dense massive molecular clouds, massive clusters grow via hierarchical merging of smaller clusters. The shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with a power-law slope of beta = -1.73 at 2 Myr and beta = -1.67 at 10 Myr, which fits to observed cluster mass function of the Carina region. The superposition of mass functions have a power-law slope of < -2, which fits the observed mass function of star clusters in the Milky Way, M31 and M83. We further find that the mass of the most massive cluster formed in a single molecular cloud with a mass of M_g scales with 6.1 M_g^0.51 which also agrees with recent observation in M51. The molecular clouds which can form massive clusters are much denser than those typical in the Milky Way. The velocity dispersion of such molecular clouds reaches 20 km/s and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603

  5. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    International Nuclear Information System (INIS)

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. (paper)

  6. ON THE FORMATION OF MULTIPLE STELLAR POPULATIONS IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Nearly all globular clusters (GCs) studied to date show evidence for multiple stellar populations, in stark contrast to the conventional view that GCs are a mono-metallic, coeval population of stars. This generic feature must therefore emerge naturally within massive star cluster formation. Building on earlier work, we propose a simple physical model for the early evolution (several 108 yr) of GCs. We consider the effects of stellar mass loss, Type II supernovae (SNe II) and prompt Type Ia supernovae (SNe Ia), ram pressure, and accretion from the ambient interstellar medium (ISM) on the development of a young GC's own gas reservoir. In our model, SNe II from a first generation of star formation clears the GC of its initial gas reservoir. Over the next several 108 yr, mass lost from asymptotic giant branch stars and matter accreted from the ambient ISM collect at the center of the GC. This material must remain quite cool (T ∼ 102 K), but does not catastrophically cool on a crossing time because of the high Lyman-Werner flux density in young GCs. The collection of gas within the GC must compete with ram pressure from the ambient ISM. After several 108 yr, the Lyman-Werner photon flux density drops by more than three orders of magnitude, allowing molecular hydrogen and then stars to form. After this second generation of star formation, SNe II from the second generation and then prompt SNe Ia associated with the first generation maintain a gas-free GC, thereby ending the cycle of star formation events. Our model makes clear predictions for the presence or absence of multiple stellar populations within GCs as a function of GC mass and formation environment. While providing a natural explanation for the approximately equal number of first- and second-generation stars in GCs, substantial accretion from the ambient ISM may produce fewer chemically peculiar second-generation stars than are observed. Analyzing intermediate-age LMC clusters, we find for the first time

  7. Observations of Protostellar Outflow Feedback in Clustered Star Formation

    CERN Document Server

    Nakamura, Fumitaka

    2015-01-01

    We discuss the role of protostellar outflow feedback in clustered star formation using the observational data of recent molecular outflow surveys toward nearby cluster-forming clumps. We found that for almost all clumps, the outflow momentum injection rate is significantly larger than the turbulence dissipation rate. Therefore, the outflow feedback is likely to maintain supersonic turbulence in the clumps. For less massive clumps such as B59, L1551, and L1641N, the outflow kinetic energy is comparable to the clump gravitational energy. In such clumps, the outflow feedback probably affects significantly the clump dynamics. On the other hand, for clumps with masses larger than about 200 M$_\\odot$, the outflow kinetic energy is significantly smaller than the clump gravitational energy. Since the majority of stars form in such clumps, we conclude that outflow feedback cannot destroy the whole parent clump. These characteristics of the outflow feedback support the scenario of slow star formation.

  8. The Impact of Star Formation on Cool Core Galaxy Clusters

    CERN Document Server

    Motl, P M; Norman, M L; Bryan, G L

    2003-01-01

    We present results from recent simulations of the formation and evolution of clusters of galaxies in a LambdaCDM cosmology. These simulations contain our most physically complete input physics to date including radiative cooling, star formation that transforms rapidly cooling material into aggregate star particles and we also model the thermal feedback from resulting supernovae in the star particles. We use an adaptive mesh refinement (AMR) Eulerian hydrodynamics scheme to obtain very high spatial resolution (~ 2 kpc) in a computational volume 256 Mpc on a side with mass resolution for dark matter and star particles of ~ 10^8 M_solar. We examine in detail the appearance and evolution of the core region of our simulated clusters.

  9. Cluster formation rate in models with ''dark energy''

    CERN Document Server

    Basilakos, S

    2003-01-01

    Based on flat Friedmann-Robertson Walker cold dark matter (CDM) type models driven by non-relativistic matter and an exotic fluid (quintessence) with an equation of state: $p_{Q}=w\\rho_{Q}$ ($-1\\le w<0$), we investigate whether or not the large scale dynamical effects regarding the cluster formation and virialization are related to the cosmic equation of state. Using the non-linear spherical collapse we find that the cluster formation rate, in quintessence models, is intermediate between the open and $\\Lambda$CDM respectively. For the QCDM case, using the virial theorem and energy conservation and assuming a spherical mass overdensity shell, we obtain analytically the ratio between the final (virial) and the turn-around radius. We find that the above ratio is almost independent from the equation of state.

  10. A cluster in the making: ALMA reveals the initial conditions for high-mass cluster formation

    Science.gov (United States)

    Rathborne, Jill

    2015-08-01

    Despite their importance, very little is known about the formation of star clusters. An understanding of their formation requires observations of their natal dust and gas well before the onset of star formation. In recent Galactic Plane surveys, one object, G0.253+0.016, stands out as extreme. Identified as a cold, dense, massive molecular clump devoid of prevalent star-formation, it has exactly the properties expected for a clump that may form an Arches-like cluster. Located at a distance of ~8.5 kpc, G0.253+0.016 lies ~100 pc from the Galactic Centre, in the Central Molecular Zone (CMZ).In this talk I will showcase our recent ALMA data of the 90 GHz continuum and line emission toward G0.253+0.016. The data are spectacular reveal a complex network of structures: there is emission on all spatial scales, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. A statistical analysis of the structure within G0.253+0.016 demonstrates the dominance of turbulence. The talk will summarise our recent results and the emerging picture of cluster formation in the extreme, high-pressure environment of the CMZ that is revealed by the new ALMA data.

  11. The Peculiarities of Cluster Formation in the Russian Nanotechnology Industry

    OpenAIRE

    Kurchenkov Vladimir Viktorovich

    2015-01-01

    The innovative development of the Russian economy in modern conditions should be based on the development of advanced nanotechnology. The formation of the nanotechnology industry in Russia requires optimal organization, the development of networking, the search for new forms of integrating the primary and secondary productions. The cluster organization in nanotech industry is based on high-tech production and has a number of advantages: uncertainty elimination, restriction of the competition ...

  12. The Formation and Early Evolution of Young Massive Clusters

    CERN Document Server

    Longmore, Steven N; Bastian, Nate; Bally, John; Rathborne, Jill; Testi, Leonardo; Stolte, Andrea; Dale, James; Bressert, Eli; Alves, Joao

    2014-01-01

    We review the formation and early evolution of the most massive and dense young stellar clusters, focusing on the role they can play in our understanding of star and planet formation as a whole. Young massive cluster (YMC) progenitor clouds in the Galactic Center can accumulate to a high enough density without forming stars that the initial protostellar densities are close to the final stellar density. For this to hold in the disk, the time scale to accumulate the gas to such high densities must be much shorter than the star formation timescale. Otherwise the gas begins forming stars while it is being accumulated to high density. The distinction between the formation regimes in the two environments is consistent with the predictions of environmentally-dependent density thresholds for star formation. This implies that stars in YMCs of similar total mass and radius can have formed at widely different initial protostellar densities. The fact that no systematic variations in fundamental properties are observed be...

  13. What the Spatial Distribution of Stars tells us about Star Formation and Massive Cluster Formation

    Science.gov (United States)

    Bressert, Eli; Bastian, N.; Testi, L.; Patience, J.; Longmore, S.

    2012-01-01

    We present a dissertation study on two recent results regarding the clustering properties of young stars. First, we discuss a global study of young stellar object (YSO) surface densities in star forming regions based on a comprehensive collection of Spitzer Space Telescope surveys, which encompasses nearly all star formation in the solar neighbourhood. It is shown that the distribution of YSO surface densities is a smooth distribution, being adequately described by a lognormal function from a few to 103 YSOs pc-2, with a peak at 22 YSOs pc-2 and a dispersion of 0.85. We find no evidence for multiple discrete modes of star-formation (e.g. clustered and distributed) and that not all stars form in clusters. A Herschel Space Observatory study confirms the YSO surface density results by observing and analyzing the prestellar core population in several star forming regions. Secondly, we propose that bound stellar clusters primarily form from dense clouds having escape speeds greater than the sound speed in photo-ionized gas. A list of giant molecular clumps with masses >103 M⊙ that have escape speeds greater than the sound speed in photo-ionized plasma is compiled from the Bolocam Galactic Plane Survey. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We present over ten candidates that will most likely form >103 M⊙ star clusters and two of them that are comparable to NGC 3603 (>104 M⊙). Thus, providing us with an outlook on the next generation of star clusters in the Milky Way and clues to the initial conditions of massive cluster formation.

  14. Merging of globular clusters within inner galactic regions. II. The Nuclear Star Cluster formation

    CERN Document Server

    Capuzzo-Dolcetta, R

    2008-01-01

    In this paper we present the results of two detailed N-body simulations of the interaction of a sample of four massive globular clusters in the inner region of a triaxial galaxy. A full merging of the clusters takes place, leading to a slowly evolving cluster which is quite similar to observed Nuclear Clusters. Actually, both the density and the velocity dispersion profiles match qualitatively, and quantitatively after scaling, with observed features of many nucleated galaxies. In the case of dense initial clusters, the merger remnant shows a density profile more concentrated than that of the progenitors, with a central density higher than the sum of the central progenitors central densities. These findings support the idea that a massive Nuclear Cluster may have formed in early phases of the mother galaxy evolution and lead to the formation of a nucleus, which, in many galaxies, has indeed a luminosity profile similar to that of an extended King model. A correlation with galactic nuclear activity is suggeste...

  15. The star cluster mass--galactocentric radius relation: Implications for cluster formation

    CERN Document Server

    Sun, Weijia; Fan, Zhou; Cameron, Ewan

    2015-01-01

    Whether or not the initial star cluster mass function is established through a universal, galactocentric-distance-independent stochastic process, on the scales of individual galaxies, remains an unsolved problem. This debate has recently gained new impetus through the publication of a study that concluded that the maximum cluster mass in a given population is not solely determined by size-of-sample effects. Here, we revisit the evidence in favor and against stochastic cluster formation by examining the young ($\\lesssim$ a few $\\times 10^8$ yr-old) star cluster mass--galactocentric radius relation in M33, M51, M83, and the Large Magellanic Cloud. To eliminate size-of-sample effects, we first adopt radial bin sizes containing constant numbers of clusters, which we use to quantify the radial distribution of the first- to fifth-ranked most massive clusters using ordinary least-squares fitting. We supplement this analysis with an application of quantile regression, a binless approach to rank-based regression takin...

  16. Structural and bonding trends in platinum-carbon clusters

    OpenAIRE

    Miller, Thomas F., III; Hall, Michael B.

    1999-01-01

    Density functional calculations with the B3-LYP functional were used to optimize the platinum−carbon cationic clusters, PtC_x^+, 1 ≤ x ≤ 16, in both the doublet and quartet states of the linear, fan, open-ring, closed-ring, and one-carbon-ring geometries. Trends in stability, Pt^+−C_x binding energy, doublet-quartet excitation energy, and Pt−C bond lengths were investigated. Explanations for these patterns are provided in terms of orbital interactions and changes imposed on the carbon chain b...

  17. Modeling the formation and evolution of star cluster populations in galaxy simulations

    CERN Document Server

    Kruijssen, J M Diederik; Lamers, Henny J G L M; Zwart, Simon F Portegies; Icke, Vincent

    2011-01-01

    (Abridged) The formation and evolution of star cluster populations are related to the galactic environment. Cluster formation is governed by processes acting on galactic scales, and star cluster disruption is driven by the tidal field. In this paper, we present a self-consistent model for the formation and evolution of star cluster populations, for which we combine an N-body/SPH galaxy evolution code with semi-analytic models for star cluster evolution. The model includes star formation, feedback, stellar evolution, and star cluster disruption by two-body relaxation and tidal shocks. We apply the model by simulating a suite of 9 isolated disc galaxies and 24 galaxy mergers. The evolutionary histories of individual clusters in these simulations are discussed to illustrate how the environment of clusters changes in time and space. The resulting variability of the disruption rate with time and space affects the properties of star cluster populations. The combined effect of clusters escaping their dense formation...

  18. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    International Nuclear Information System (INIS)

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition

  19. Sequential clustering of star formations in IC 1396

    International Nuclear Information System (INIS)

    We present a comprehensive study of the H II region IC 1396 and its star forming activity, in which multi-wavelength data ranging from the optical to the near- and far-infrared were employed. The surface density distribution of all the 2MASS sources with a certain detection toward IC 1396 indicates the existence of a compact cluster spatially consistent with the position of the exciting source of the H II region, HD 206267. The spatial distribution of the sources with excessive infrared emission, selected based on archived 2MASS data, reveals the existence of four sub-clusters in this region. One is associated with the open cluster Trumpler 37. The other three are found to be spatially coincident with the bright rims of the H II region. All the sources with excessive emission in the near infrared are cross-identified with AKARI IRC data. An analysis of the spectral energy distributions (SEDs) of the resultant sample leads to the identification of eight CLASS I, 15 CLASS II and 15 CLASS III sources in IC 1396. Optical identification of the sample sources with R magnitudes brighter than 17 mag corroborates the results from the SED analysis. Based on the spatial distribution of the infrared young stellar objects at different evolutionary stages, the surrounding sub-clusters located in the bright rims are believed to be younger than the central one. This is consistent with a scenario of sequential star formation in this region. Imaging data of a dark patch in IC 1396 by Herschel SPIRE, on the other hand, indicate the presence of two far-infrared cores in LDN 1111, which are likely to be a new generation of protostellar objects in formation. So we infer that the star formation process in this H II region was not continuous but rather episodic

  20. Sequential clustering of star formations in IC 1396

    Institute of Scientific and Technical Information of China (English)

    Ya-Fang Huang; Jin-Zeng Li

    2013-01-01

    We present a comprehensive study of the H Ⅱ region IC 1396 and its star forming activity,in which multi-wavelength data ranging from the optical to the nearand far-infrared were employed.The surface density distribution of all the 2MASS sources with a certain detection toward IC 1396 indicates the existence of a compact cluster spatially consistent with the position of the exciting source of the H Ⅱ region,HD 206267.The spatial distribution of the sources with excessive infrared emission,selected based on archived 2MASS data,reveals the existence of four sub-clusters in this region.One is associated with the open cluster Trumpler 37.The other three are found to be spatially coincident with the bright rims of the H Ⅱ region.All the sources with excessive emission in the near infrared are cross-identified with AKARI IRC data.An analysis of the spectral energy distributions (SEDs) of the resultant sample leads to the identification of eight CLASS I,15 CLASS Ⅱ and 15 CLASS Ⅲ sources in IC 1396.Optical identification of the sample sources with R magnitudes brighter than 17 mag corroborates the results from the SED analysis.Based on the spatial distribution of the infrared young stellar objects at different evolutionary stages,the surrounding sub-clusters located in the bright rims are believed to be younger than the central one.This is consistent with a scenario of sequential star formation in this region.Imaging data of a dark patch in IC 1396 by Herschel SPIRE,on the other hand,indicate the presence of two far-infrared cores in LDN 1111,which are likely to be a new generation of protostellar objects in formation.So we infer that the star formation process in this H Ⅱ region was not continuous but rather episodic.

  1. Simulating radiative feedback and star cluster formation in GMCs - I. Dependence on gravitational boundedness

    Science.gov (United States)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.

    2016-09-01

    Radiative feedback is an important consequence of cluster formation in giant molecular clouds (GMCs) in which newly formed clusters heat and ionize their surrounding gas. The process of cluster formation, and the role of radiative feedback, has not been fully explored in different GMC environments. We present a suite of simulations which explore how the initial gravitational boundedness, and radiative feedback, affect cluster formation. We model the early evolution (<5 Myr) of turbulent, 106 M⊙ clouds with virial parameters ranging from 0.5 to 5. To model cluster formation, we use cluster sink particles, coupled to a raytracing scheme, and a custom subgrid model which populates a cluster via sampling an initial mass function (IMF) with an efficiency of 20 per cent per free-fall time. We find that radiative feedback only decreases the cluster particle formation efficiency by a few per cent. The initial virial parameter plays a much stronger role in limiting cluster formation, with a spread of cluster formation efficiencies of 37-71 per cent for the most unbound to the most bound model. The total number of clusters increases while the maximum mass cluster decreases with an increasing initial virial parameter, resulting in steeper mass distributions. The star formation rates in our cluster particles are initially consistent with observations but rise to higher values at late times. This suggests that radiative feedback alone is not responsible for dispersing a GMC over the first 5 Myr of cluster formation.

  2. The formation of globular clusters through minihalo-minihalo mergers

    CERN Document Server

    Trenti, Michele; Jimenez, Raul

    2015-01-01

    We propose a novel scenario for the formation of Globular Clusters (GCs) based on the merger of two or more atomic cooling halos at high-redshift (z>6). The model naturally fulfills several key observational constraints on GCs that have emerged in the last decade. Specifically, absolute and relative ages, widespread presence of multiple stellar populations, spatial distribution around host galaxies, and correlations between galactocentric radius and metallicity. In our framework, the oldest globular clusters form the first generation stars as an intense burst in the center of a minihalo that grows above the threshold for hydrogen cooling (halo mass M_h~1e8 Msun) and undergoes a major merger within the cooling timescale (~150 Myr). Subsequent minor mergers and sustained gas infall bring new supply of pristine gas at the halo center, diluting AGB ejecta, and triggering additional bursts of star formation which form multiple generation of stars in the majority of the clusters. The DM halo around the GC is then s...

  3. The quenching of the star formation activity in cluster galaxies

    CERN Document Server

    Boselli, A; Fossati, M; Buat, V; Boissier, S; Boquien, M; Burgarella, D; Ciesla, L; Gavazzi, G; Serra, P

    2016-01-01

    We study the star formation quenching mechanism in cluster galaxies by fitting the SED of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SED are fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies is parametrised using a specific SFH with 2 free parameters, the quenching age QA and the quenching factor QF. These 2 parameters are crucial for the identification of the quenching mechanism which acts on long timescales if starvation while rapid and efficient if ram pressure. To be sensitive to an abrupt and recent variation of the star formation activity, we combine in a new way 20 UV to FIR photometric bands with 3 age-sensitive Balmer line absorption indices extracted from available medium-resolution integrated spectroscopy and with Halpha narrow band imaging data. The use of a truncated SFH significantly increases the...

  4. Constraints on cold dark matter accelerating cosmologies and cluster formation

    International Nuclear Information System (INIS)

    We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Ωm=1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background (CMB) + SNe Ia data yields Ω-tildem=0.28±0.01 (1σ), where Ω-tildem is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from the large-scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual ΛCDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with ΛCDM scenarios through a more detailed analysis involving CMB, weak lensing, as well as the large-scale structure.

  5. Star Formation Activity in CLASH Brightest Cluster Galaxies

    Science.gov (United States)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  6. Interacting star clusters in the LMC Overmerging problem solved by cluster group formation

    CERN Document Server

    Leon, S; Vallenari, A

    1999-01-01

    We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from $1.8\\times 10^3$ to $3\\times 10^4$\\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as $r^{-\\gamma}$, with $\\gamma= 2.27$ and $\\gamma=3.44$, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few $10^6$ yr to $10^8$ yr). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai 1997). We refer to this as the ``overmerging'' problem.A differe...

  7. CELL FORMATION IN GROUP TECHNOLOGY: A SIMILARITY ORDER CLUSTERING APPROACH

    Directory of Open Access Journals (Sweden)

    Godfrey C. Onwubolu

    2012-01-01

    Full Text Available Grouping parts into families which can be produced by a cluster of machine cells is the cornerstone of cellular manufacturing, which in turn is the building block for flexible manufacturing systems. Cellular manufacturing is a group technology (GT concept that has recently attracted the attention of manufacturing firms operating under jobshop environment to consider redesigning their manufacturing systems so as to take advantage of increased throughput, reduction in work-in-progress, set-up time, and lead times; leading to product quality and customer satisfaction. The paper presents a generalised approach for machine cell formation from a jobshop using similarity order clustering technique for preliminary cell grouping and considering machine utilisation for the design of nonintergrouping material handling using the single-pass heuristic. The work addresses the shortcomings of cellular manufacturing systems design and implementations which ignore machine utilisations, group sizes and intergroup moves.

  8. Galaxy Formation at z~3 Constraints from Spatial Clustering

    CERN Document Server

    Wechsler, R H; Bullock, J S; Kolatt, T S; Primack, Joel R; Blumenthal, G R; Dekel, A; Wechsler, Risa H.; Somerville, Rachel S.; Bullock, James S.; Kolatt, Tsafrir S.; Primack, Joel R.; Blumenthal, George R.; Dekel, Avishai

    2001-01-01

    We use N-body simulations combined with semi-analytic models to compute the clustering properties of modeled galaxies at z~3, and confront these predictions with the clustering properties of the observed population of Lyman-break galaxies (LBGs). Several scenarios for the nature of LBGs are explored, which may be broadly categorized into models in which high-redshift star formation is driven by collisional starbursts and those in which quiescent star formation dominates. For each model, we make predictions for the LBG overdensity distribution, the variance of counts-in-cells, the correlation length, and close pair statistics. Models which assume a one-to-one relationship between massive dark-matter halos and galaxies are disfavored by close pair statistics, as are models in which colliding halos are associated with galaxies in a simplified way. However, when modeling of gas consumption and star formation is included using a semi-analytic treatment, the quiescent and collisional starburst models predict simila...

  9. The formation of cosmic fullerenes from arophatic clusters

    CERN Document Server

    Micelotta, Elisabetta R; Cami, Jan; Peeters, Els; Bernard-Salas, Jeronimo; Fanchini, Giovanni

    2012-01-01

    Fullerenes have recently been identified in space and they may play a significant role in the gas and dust budget of various astrophysical objects including planetary nebulae (PNe), reflection nebulae (RNe) and H II regions. The tenuous nature of the gas in these environments precludes the formation of fullerene materials following known vaporization or combustion synthesis routes even on astronomical timescales. We have studied the processing of hydrogenated amorphous carbon (a-C:H or HAC) nano-particles and their specific derivative structures, which we name "arophatics", in the circumstellar environments of young, carbon-rich PNe. We find that UV-irradiation of such particles can result in the formation of fullerenes, consistent with the known physical conditions in PNe and with available timescales.

  10. Modeling jet and outflow feedback during star cluster formation

    International Nuclear Information System (INIS)

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  11. Modeling jet and outflow feedback during star cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  12. Cluster formation in liverwort-associated methylobacteria and its implications

    Science.gov (United States)

    Kutschera, U.; Thomas, J.; Hornschuh, M.

    2007-08-01

    Pink-pigmented methylotropic bacteria of the genus Methylobacterium inhabit the surfaces of plant organs. In bryophytes, these methylobacteria enhance cell growth, but the nature of this plant-microbe interaction is largely unknown. In this study, methylobacteria were isolated from the upper surface of the free-living thalli of the liverwort Marchantia polymorpha L. Identification of one strain by 16S ribosomal RNA (rRNA) gene-targeted polymerase chain reaction (PCR) and other data show that these microbes represent an undescribed species of the genus Methylobacterium ( Methylobacterium sp.). The growth-promoting activity of these wild-type methylobacteria was tested and compared with that of the type strain Methylobacterium mesophilicum. Both types of methylobacteria stimulated surface expansion of isolated gemmae from Marchantia polymorpha by about 350%. When suspended in water, the liverwort-associated bacteria ( Methylobacterium sp.) formed dense clusters of up to 600 cells. In liquid cultures of Methylobacterium mesophilicum, single cells were observed, but no clustering occurred. We suggest that the liverwort-associated methylobacteria are co-evolved symbionts of the plants: Cluster formation may be a behavior that enhances the survival of the epiphytic microbes during periods of drought of these desiccation-tolerant lower plants.

  13. Modeling the Formation of Globular Cluster Systems in the Virgo Cluster

    CERN Document Server

    Li, Hui

    2014-01-01

    Globular cluster (GC) systems are some of the oldest and most unique building blocks of galaxies. The mass and chemical composition of GCs preserve the fossil record of the early stages of formation of their host galaxies. The observed distribution of GC colors within massive early-type galaxies in the ACS Virgo Cluster Survey (ACSVCS) reveals a multi-modal shape, which likely corresponds to a multi-modal metallicity distribution. In this paper, we present a simple model for the formation and dynamical disruption of globular clusters that aims to match the ACSVCS data. We test the hypothesis that GCs are formed during major mergers of gas-rich galaxies and inherit the metallicity of their hosts. To trace merger events, we use halo merger trees extracted from a large cosmological N-body simulation. We select 20 halos in the mass range 2*10^{12}-7*10^{13} M_sun and match them to 18 Virgo galaxies with K-band luminosity between 3*10^{10} and 3*10^{11}L_sun. To set the Iron abundances, we use an empirical galaxy ...

  14. Hydrophilic carbon clusters as therapeutic, high capacity antioxidants

    OpenAIRE

    Samuel, Errol L. G.; Duong, MyLinh T.; Bitner, Brittany R.; Marcano, Daniela C.; James M. Tour; Kent, Thomas A

    2014-01-01

    Oxidative stress reflects an excessive accumulation of reactive oxygen species (ROS) and is a hallmark of several acute and chronic human pathologies. While many antioxidants have been investigated, the majority have demonstrated poor efficacy in clinical trials. Here, we discuss limitations of current antioxidants and describe a new class of nanoparticle antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs). PEG-HCCs show high capacity to annihilate ROS su...

  15. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  16. The life-cycle of young star-clusters; the role of the galactic environment on cluster formation and evolution

    Science.gov (United States)

    Adamo, Angela

    2015-08-01

    Our understanding of star formation on galactic scales has been fairly grasped (e.g. the rate at which stars form scales proportionally to the molecular gas content) both in the local and high redshift universe. However, our knowledge on how star formation proceeds at small scales (e.g. the fraction of star formation happening in stellar clusters, the time-scales for star-forming regions to dissolve, the impact of the galactic environment on star and cluster formation) remains a challenge. Gravitationally bound young stellar clusters appear to be a commune product of star formation. There are tantalizing similarities between young star clusters and globular clusters, the latter formed by gravitationally bound ancient stellar populations. However, the young and globular cluster populations show statistical properties (mass functions, formation efficiencies, and survival times) that have been claimed incompatible, leaving the two populations being the results of distinct processes of formation. In my contribution, I will discuss the latest results produced with the analysis of the young cluster populations in several nearby galaxies. The use of new statistical methods, the link with dense gas fueling star formation, the access to homogenous datasets show, for the first time, clear evidence of the influence of the galactic environment in shaping the properties of young star cluster populations. After all, the differences between the two cluster populations may not be so pronounced, suggesting that the same physical formation process under different environmental conditions has been (and currently is) at work at high redshift (when globular clusters were formed) and in the local universe.

  17. Structures and energetics of carbon bridged C60 clusters

    International Nuclear Information System (INIS)

    The structures and energetics of carbon bridged C60 clusters (C 60)nCm have been studied by simulated annealing technique within the tight-binding molecular-dynamics. The ''sp2 addition'' ball-and-chain dimers exhibit odd-even alternations over the number of chain atoms, with the dimers containing even chain atoms more stable against dissociation than their immediate neighbors containing odd chain atoms. In addition to the usual ''sp2 addition'' dimers, a pentagon-linked C121 isomer and a hexagon-linked C122 isomer are also found to be stable. Based on our tight-binding calculations, trimers and larger clusters can be simply regarded as being made up of independent or weakly interacting dimers, if the C-C60 joints on a single cage are not too close to each other. Large C60 clusters connected by chains each containing only one or two carbon atoms have similar stability to that of constituent dimers, indicating the possibility to form stable C60-carbon polymers. (orig.)

  18. Young Massive Clusters: Their Population Properties, Formation and Evolution, and Their Relation to the Ancient Globular Clusters

    CERN Document Server

    Bastian, Nate

    2016-01-01

    This review summarises the main properties of Young Massive Clusters (YMCs), including their population properties, particularly focusing on extragalactic cluster samples. We discuss potential biases and caveats that can affect the construction of cluster samples and how incompleteness effects can result in erroneous conclusions regarding the long term survival of clusters. In addition to the luminosity, mass and age distributions of the clusters, we discuss the size distribution and profile evolution of the clusters. We also briefly discuss the stellar populations within YMCs. The final part of the review focusses on the connections between YMCs and the ancient globular clusters, whether or not they are related objects and how we can use what we know about YMC formation and evolution to understand how GCs formed in the early universe and how they relate to galaxy formation/evolution.

  19. The Relation Between Cool Cluster Cores and Herschel-Detected Star Formation in Brightest Cluster Galaxies

    CERN Document Server

    Rawle, T D; Egami, E; Rex, M; Smith, G P; Altieri, B; Fiedler, A; Haines, C P; Pereira, M J; Pérez-González, P G; Portouw, J; Valtchanov, I; Walth, G; van der Werf, P P; Zemcov, M

    2012-01-01

    We present far-infrared (FIR) analysis of 68 Brightest Cluster Galaxies (BCGs) at 0.08 2x10^11 L_sun), only a small (<0.4 mag) reddening correction is required for SFR(Ha) to agree with SFR_FIR. The relatively low Ha extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate form normal stellar mass loss.

  20. Cluster size and substrate temperature affecting thin film formation during copper cluster deposition on a Si (001) surface

    Institute of Scientific and Technical Information of China (English)

    Gong Heng-Feng; Lü Wei; Wang Lu-Min; Li Gong-Ping

    2012-01-01

    The soft deposition of Cu clusters on a Si (001) surface was studied by molecular dynamics simulations.The embedded atom method,the Stillinger-Weber and the Lennar Jones potentials were used to describe the interactions between the cluster atoms,between the substrate atoms,and between the cluster and the substrate atoms,respectively.The Cu13,Cu55,and Cu147 clusters were investigated at different substrate temperatures.We found that the substrate temperature had a significant effect on the Cu147 cluster.For smaller Cu13 and Cu55 clusters,the substrate temperature in the range of study appeared to have little effect on the mean center-of-mass height.The clusters showed better degrees of epitaxy at 800 K.With the same substrate temperature,the Cu55 cluster demonstrated the highest degree of epitaxy,followed by Cu147 and then Cu13 clusters.In addition,the Cu55 cluster showed the lowest mean center-of-mass height.These results suggested that the Cu55 cluster is a better choice for the thin-film formation among the clusters considered.Our studies may provide insight into the formation of desired Cu thin films on a Si substrate.

  1. Deprojecting the quenching of star formation in and near clusters

    CERN Document Server

    Mamon, G A; Raychaudhury, S

    2010-01-01

    Using H_delta and D_n4000 as tracers of recent or ongoing efficient star formation, we analyze the fraction of SDSS galaxies with recent or ongoing efficient star formation (GORES) in the vicinity of 268 clusters. We confirm the well-known segregation of star formation, and using Abel deprojection, we find that the fraction of GORES increases linearly with physical radius and then saturates. Moreover, we find that the fraction of GORES is modulated by the absolute line-of-sight velocity (ALOSV): at all projected radii, higher fractions of GORES are found in higher ALOSV galaxies. We model this velocity modulation of GORES fraction using the particles in a hydrodynamical cosmological simulation, which we classify into virialized, infalling and backsplash according to their position in radial phase space at z=0. Our simplest model, where the GORES fraction is only a function of class does not produce an adequate fit to our observed GORES fraction in projected phase space. On the other hand, assuming that in eac...

  2. Star Formation in Massive Clusters via Bondi Accretion

    Science.gov (United States)

    Murray, Norman; Chang, Philip

    2012-02-01

    Essentially all stars form in giant molecular clouds (GMCs). However, inside GMCs, most of the gas does not participate in star formation; rather, denser gas accumulates in clumps in the GMC, with the bulk of the stars in a given GMC forming in a few of the most massive clumps. In the Milky Way, these clumps have masses M cl ffM_{cl}/\\tau _{cl}, with epsilonff ≈ 0.017). However, after ~2 GMC free-fall times τGMC, the clump accretion rate accelerates rapidly; formally, the clump can accrete the entire GMC in ~3τGMC. At the same time, the star formation rate accelerates, tracking the Bondi accretion rate. If the GMC is disrupted by feedback from the largest clump, half the stars in that clump form in the final τGMC before the GMC is disrupted. The theory predicts that the distribution of effective star formation rates, measured per GMC free-fall time, is broad, ranging from ~0.001 up to 0.1 or larger and that the mass spectrum of star clusters is flatter than that of clumps, consistent with observations.

  3. Revisiting the formation of cyclic clusters in liquid ethanol

    Science.gov (United States)

    Balanay, Mannix P.; Kim, Dong Hee; Fan, Haiyan

    2016-04-01

    The liquid phase of ethanol in pure and in non-polar solvents was studied at room temperature using Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR) spectroscopies together with theoretical approach. The FT-IR spectra for pure ethanol and solution in cyclohexane at different dilution stages are consistent with 1H NMR results. The results from both methods were best explained by the results of the density functional theory based on a multimeric model. It is suggested that cyclic trimers and tetramers are dominated in the solution of cyclohexane/hexane with the concentration greater than 0.5M at room temperature. In liquid ethanol, while the primary components at room temperature are cyclic trimers and tetramers, there is a certain amount (˜14%) of open hydroxide group representing the existence of chain like structures in the equilibria. The cyclic cluster model in the liquid and concentrated solution phase (>0.5M) can be used to explain the anomalously lower freezing point of ethanol (159 K) than that of water (273 K) at ambient conditions. In addition, 1H NMR at various dilution stages reveals the dynamics for the formation of cyclic clusters.

  4. M82, Starbursts, Star Clusters, and the Formation of Globular Clusters

    CERN Document Server

    Keto, E; Lo, K Y; Keto, Eric; Ho, Luis C.

    2005-01-01

    We observed the nearby starburst galaxy M82 in CO in the higher frequency (2--1) transition to achieve an angular resolution below 1 arc second or 17 pc at the target. We resolved the molecular gas into a large number of compact clouds, with masses ranging from about 2x10^3 to 2x10^6 solar masses. The mass spectrum scales as N(M) ~ M^-1.5, similar to the mass spectra of young massive star clusters suggesting that individual molecular clouds are transformed in the starburst into individual star clusters. The larger clouds are surrounded by supernovae and HII regions suggesting that star formation proceeds from the outside of the clouds and progresses inward consistent with triggering by a sudden increase in external pressure. The clouds with internal star formation have velocity gradients and inverse P-Cygni spectral line profiles indicating inward motions of 35 kms consistent with shock driven compression. Diffuse free-free radio emission and X-ray emission around the clouds provides evidence for superheated ...

  5. Constraining globular cluster formation through studies of young massive clusters - IV. Testing the fast rotating massive star scenario

    Science.gov (United States)

    Bastian, N.; Hollyhead, K.; Cabrera-Ziri, I.

    2014-11-01

    One of the leading models for the formation of multiple stellar populations within globular clusters is the `fast rotating massive star' (FRMS) scenario, where the ejecta of rapidly rotating massive stars is mixed with primordial material left over from the star formation process, to form a second generation of stars within the decretion discs of the high-mass stars. A requirement of this model, at least in its current form, is that young massive (i.e. proto-globular) clusters are not able to eject the unused gas and dust from the star formation process from the cluster for 20-30 Myr after the formation of the first generation of stars, i.e. the cluster remains embedded within the gas cloud in which it forms. Here, we test this prediction by performing a literature search for young massive clusters in nearby galaxies, which have ages less than 20 Myr that are not embedded. We report that a number of such clusters exist, with masses near or significantly above 106 M⊙, with ages between a few Myr and ˜15 Myr, suggesting that even high-mass clusters are able to clear any natal gas within them within a few Myr after formation. Additionally, one cluster, Cluster 23 in ESO 338-IG04, has a metallicity below that of some Galactic globular clusters that have been found to host multiple stellar populations, mitigating any potential effect of differences in metallicity in the comparison. The clusters reported here are in contradiction to the expectations of the FRMS scenario, at least in its current form.

  6. Deep Mixing and Metallicity: Carbon Depletion in Globular Cluster Giants

    CERN Document Server

    Martell, Sarah L; Briley, Michael M

    2008-01-01

    We present the results of an observational study of the efficiency of deep mixing in globular cluster red giants as a function of stellar metallicity. We determine [C/Fe] abundances based on low-resolution spectra taken with the Kast spectrograph on the 3m Shane telescope at Lick Observatory. Spectra centered on the 4300 Angstrom CH absorption band were taken for 42 bright red giants in 11 Galactic globular clusters ranging in metallicity from M92 ([Fe/H]=-2.29) to NGC 6712 ([Fe/H]=-1.01). Carbon abundances were derived by comparing values of the CH bandstrength index S2(CH) measured from the data with values measured from a large grid of SSG synthetic spectra. Present-day abundances are combined with theoretical calculations of the time since the onset of mixing, which is also a function of stellar metallicity, to calculate the carbon depletion rate across our metallicity range. We find that the carbon depletion rate is twice as high at a metallicity of [Fe/H]=-2.3 than at [Fe/H]=-1.3, which is a result qual...

  7. Open star cluster: formation, parameters, membership and importance

    CERN Document Server

    Joshi, Gireesh C

    2016-01-01

    We have been represented the collective information of estimation procedures of parameters of the open clusters and put them together for showing the importance of clusters to understand their role in stellar evolution phenomenon. Moreover, we have been discussed about analytic techniques to determine the structural and dynamical properties of galactic clusters. The members of clusters provide unique opportunity to determine their basic parameters such as: age, metallicity, distance, reddening etc. The membership probabilities of stars of clusters is assigned through the various approaches and each approach provides different number of probable members of the cluster. Here, we have been briefly discussed about various approaches to determine the stellar membership within clusters.

  8. Thermal recovery of bitumen from carbonate reservoirs: formation damage aspects

    Energy Technology Data Exchange (ETDEWEB)

    Thimm, H.F. [Thimm Petroleum Technologies Inc. (Canada)

    2011-07-01

    In Alberta, about a third of bitumen resources are located in carbonate reservoirs but none of it is considered as a reserve by the Alberta Energy Resources Conservation Board (ERCB). In fact no pilot has been successful in recovering bitumen from carbonate reservoirs due to formation damage problems. Carbonate rock is chemically active at the high temperatures reached in thermal recovery processes, carbon dioxide is generated and carbonate minerals are precipitated. The aim of this paper is to find methods to control the phenomenon. Kinetic and thermodynamic controls were used. Results showed that formation damage is due to aqueous carbon dioxide attacking the reservoir rock. They found that a reduction of the partial pressure of carbon dioxide could inhibit the initial dissolution of rock material by reducing the concentration of aqueous carbon dioxide. A method to overcome the formation damage problem was found and a co-injection of gas and steam process was developed to apply it.

  9. Modeling jet and outflow feedback during star cluster formation

    CERN Document Server

    Federrath, Christoph; Banerjee, Robi; Klessen, Ralf S

    2014-01-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ~ 1000 times lower resolution than would be required without SGS model. We apply the new SGS model to t...

  10. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  11. On the formation of cD galaxies and their parent clusters

    Science.gov (United States)

    Tovmassian, Hrant M.; Andernach, Heinz

    2012-12-01

    In order to study the mechanism of the formation of cD galaxies, we search for possible dependencies between the K-band luminosity of cD galaxies and the parameters of their host clusters which we select to have a dominant cD galaxy, corresponding to a cluster morphology of Bautz-Morgan type I (BM I). As a comparison sample we use cD galaxies in clusters where they are not dominant, which we define here as non-BM I (NBMI) type clusters. We find that for 71 BM I clusters the absolute K-band luminosity of cD galaxies depends on the cluster richness, but less strongly on the cluster velocity dispersion. Meanwhile, for 35 NBMI clusters the correlation between cD luminosity and cluster richness is weaker, and is absent between cD luminosity and velocity dispersion. In addition, we find that the luminosity of the cD galaxy hosted in BM I clusters tends to increase with the cD's peculiar velocity with respect to the cluster mean velocity. In contrast, for NBMI clusters the cD luminosity decreases with increasing peculiar velocity. Also, the X-ray luminosity of BM I clusters depends on the cluster velocity dispersion, while in NBMI clusters such a correlation is absent. These findings favour the cannibalism scenario for the formation of cD galaxies. We suggest that cD galaxies in clusters of BM I type were formed and evolved preferentially in one and the same cluster. In contrast, cD galaxies in NBMI-type clusters were either originally formed in clusters that later merged with groups or clusters to form the current cluster, or are now in the process of merging.

  12. CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Fumitaka; Kawabe, Ryohei; Shinnaga, Hiroko [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Tanaka, Tomohiro; Kimura, Kimihiko; Tokuda, Kazuki; Kozu, Minato; Okada, Nozomi; Hasegawa, Yutaka; Ogawa, Hideo [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Nishitani, Hiroyuki; Mizuno, Izumi [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Dobashi, Kazuhito; Shimoikura, Tomomi [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Shimajiri, Yoshito [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Yonekura, Yoshinori [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kameno, Seiji [Joint ALMA Observatory, Alonso de Crdova 3107 Vitacura, Santiago (Chile); Momose, Munetake [Institute of Astrophysics and Planetary Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Nakajima, Taku, E-mail: fumitaka.nakamura@nao.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); and others

    2014-08-20

    The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS (J{sub N} = 4{sub 3}-3{sub 2}), HC{sub 3}N (J = 5-4), N{sub 2}H{sup +} (J = 1-0), and SiO (J = 2-1, v = 0) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely strong CCS emission is detected. The CCS-to-N{sub 2}H{sup +} abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different V {sub LSR}. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few × 10{sup 5} yr because CCS is abundant only for a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is 0.4 × 10{sup 5} yr, is extremely high, about 70% in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.

  13. Fe-inserted and shell-shaped carbon nanoparticles by cluster-mediated laser pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fleaca, C.T., E-mail: claudiufleaca@yahoo.com [Laser Photochemistry Laboratory, National Institute for Lasers, Plasma and Radiation Physics (NILPRP), P.O. Box MG 36, R-077125 Bucharest-Magurele (Romania); Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Sandu, I.; Luculescu, C.; Birjega, S. [Laser Photochemistry Laboratory, National Institute for Lasers, Plasma and Radiation Physics (NILPRP), P.O. Box MG 36, R-077125 Bucharest-Magurele (Romania); Prodan, G. [Ovidius University of Constanta, 124 Mamaia Bd., Constanta (Romania); Stamatin, I. [3 Nano-SAE Research Center, University of Bucharest, P.O. Box MG-38, R-077125 Bucharest-Magurele (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Iron-inserted carbon nanoparticles were obtained by laser pyrolysis technique. Black-Right-Pointing-Pointer Two different structures (shell-shape and turbostratic) were found in the same experiment. Black-Right-Pointing-Pointer Increasing the pressure causes the increasing in carbon crystallinity/decreasing the Fe content. Black-Right-Pointing-Pointer Iron nanoinclusions are protected from oxidation by the carbon matrix. Black-Right-Pointing-Pointer Magnetism-related applications of these nanoparticles in life sciences are proposed. - Abstract: We report here the high-yield continuous synthesis of carbon nanoparticles with and without Fe content by laser pyrolysis technique. The laser beam decomposes (via C{sub 2}H{sub 4} sensitizer) the Fe(CO){sub 5} as Fe clusters which absorb themselves the laser radiation. They trigger the fast carbon particles formation by exothermic dehydrogenation/polymerization of the surrounded C{sub 2}H{sub 2} molecules. This combination between Fe clusters and C{sub 2}H{sub 2} generates nanoparticles with unusual structure. Depending on the gas pressure in the reaction chamber, two kinds of nanoparticles were obtained: at lower pressure, 30-40 nm diameter particles with a defective structure, part of them crowded with Fe clusters (3-6 nm) and two types of nanoparticles (around 50-60 nm) at the highest pressure. Some of them have a shell-shape structure, presenting a distinct envelope, other with a turbostratic arrangement, and few containing one or several smaller (3-20 nm) Fe nanoparticles trapped inside. We consider that these particular structures of our nanoparticles may be useful in applications such as MRI applications, drug delivery or catalysts.

  14. Constraining globular cluster formation through studies of young massive clusters - II. A Single Stellar Population Young Massive Cluster in NGC 34

    CERN Document Server

    Cabrera-Ziri, I; Davies, B; Magris, G; Bruzual, G; Schweizer, F

    2014-01-01

    Currently there are two competing scenarios to explain the origin of the stellar population in globular clusters (GCs). The main difference between them is whether or not multiple events of star formation took place within GCs. In this paper we present the star formation history (SFH) of Cluster 1, a massive young cluster in NGC 34 $(\\sim10^7\\mbox{ M}_\\odot)$. We use DynBaS, a spectrum fitting algorithm, to retrieve the SFH and find that Cluster 1 is consistent with a single stellar population of solar metallicity with an age of $100\\pm30$ Myr and a mass of $1.9\\pm0.4\\times10^7\\mbox{ M}_\\odot$. These results are in conflict with the expectations/predictions of the scenarios that invoke extended or multiple episodes within 30--100 Myr of the initial star-formation burst in young massive clusters.

  15. Formation of a sodium bicarbonate cluster in the structure of sodium-substituted hydroxyapatite

    Science.gov (United States)

    Tkachenko, M. V.; Kamzin, A. S.

    2015-02-01

    Ceramic sodium-substituted carbonated hydroxyapatite has been synthesized using the method of the solid-phase reaction in the temperature range of 640-820°C in water vapor. It has been established that substitutions of Ca2+ ions in the cation and anion subsystems with Na+ ions and the PO{4/3-} and OH- groups with CO{3/2-} ions lead to a considerable acceleration of the shrinkage and synthesis of dense ceramics at substantially lower temperatures than in the case of unsubstituted hydroxyapatite. Sintering in water vapor leads to densification of carbonate groups in channel positions, which induces the appearance of orderings of A2 and B2 types (bands with wave numbers 867 and 865 cm-1 in IR spectra, respectively) as well as the protonation of carbonate groups both in A and B sites and the formation of sodium bicarbonate clusters (856 and 859 cm-1) in addition to carbonate ordering of A1 and B1 types (879 and 872 cm-1).

  16. Cluster merger blast wave and the mystery of ringlike radio-relic formation around some galaxy clusters

    International Nuclear Information System (INIS)

    In this work I studied the nature and important effects of massive galaxy cluster merger phenomena. Due to inherent complexity of such events analytical solution is impossible, so, numerical simulations are performed using ENZO-2.1 hydrodynamic code. It is noticed that the formation of Mega parsec scale merger shocks in such events substantially change the energy distribution of Inter Cluster Medium. A striking similarity is noticed between expanding intra cluster medium during mergers with the blast wave formation in supernovae explosion. The blast wave meets the void/ accretion shocks when propagated out to the virial radius. Particle acceleration at the meeting point produce a significant amount of synchrotron radio emission through which curved shocks are made visible in radio waves. This study thus also sheds some light on the formation of curved and nearly symmetric radio emission found in Abell 3376, Abell 3667, CIZA J2242.8+5301, plck g287.0+32.9 etc. clusters.

  17. A molecular dynamics simulation study of small cluster formation and migration in metals

    International Nuclear Information System (INIS)

    Molecular dynamics (MD) simulations were performed to investigate the kinetics and energetics of self-interstitial atom (SIA) clusters in vanadium, tantalum and copper. The formation energies of the SIA clusters in all the metals are well represented by a power function with a 0.75 exponent of the cluster size. The cluster diffusivities strongly depend on their structure. In vanadium and tantalum, all the SIA pairs in clusters are located along the direction rather than the direction. The clusters can migrate one-dimensionally in the direction with a small activation energy of around 0.1 eV. In copper, the collective orientation preference of the SIA pairs is not observed indicating that rotation of several pairs in the cluster is required for the cluster to migrate. The activation energy for the rotation is not so high as the cluster migration energy itself. The difference in the SIA cluster migration behavior between bcc and fcc metals is discussed

  18. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size...... capability in formation of supported size-selected metal nanoparticles with controllable coverage for various practical applications....

  19. Clustering algorithms for Stokes space modulation format recognition

    DEFF Research Database (Denmark)

    Boada, Ricard; Borkowski, Robert; Tafur Monroy, Idelfonso

    2015-01-01

    influences the performance of the detection process, particularly at low signal-to-noise ratios. This paper reports on an extensive study of six different clustering algorithms: k-means, expectation maximization, density-based DBSCAN and OPTICS, spectral clustering and maximum likelihood clustering, used for...

  20. Formation of nanopore in a suspended graphene sheet with argon cluster bombardment: A molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Formation of a nanopore in a suspended graphene sheet using an argon gas beam was simulated using molecular dynamics (MD) method. The Lennard-Jones (LJ) two-body potential and Tersoff–Brenner empirical potential energy function are applied in the MD simulations for different interactions between particles. The simulation results demonstrated that the incident energy and cluster size played a crucial role in the collisions. Simulation results for the Ar55–graphene collisions show that the Ar55 cluster bounces back when the incident energy is less than 11 eV/atom, the argon cluster penetrates when the incident energy is greater than 14 eV/atom. The two threshold incident energies, i.e., threshold incident energy of defect formation in graphene and threshold energy of penetration argon cluster were observed in the simulation. The threshold energies were found to have relatively weak negative power law dependence on the cluster size. The number of sputtered carbon atoms is obtained as a function of the kinetic energy of the cluster

  1. Formation of rare earth silicide clusters on Si(111)7 x 7

    International Nuclear Information System (INIS)

    Magic clusters on surfaces are of high interest because of their fascinating quantum properties and their possible application in future nanodevices. Here, the formation process as well as the structural and electronic properties of dysprosium silicide clusters on the Si(111)7 x 7 surface were studied using scanning tunneling microscopy (STM). The dysprosium silicide clusters were grown by molecular beam epitaxy using the 7 x 7 reconstructed Si(111) surface as a template for cluster formation using submonolayer metal coverages and moderate annealing temperatures. It was found that the clusters grow self-organized preferentially on the faulted halves of the 7 x 7 unit cells, and a variety of cluster shapes could be observed. At appropriate growth conditions, the formation of magic clusters, which appear centered on the 7 x 7 half unit cells, could be achieved.

  2. What is the ground-state structure of intermediate-sized carbon clusters?

    OpenAIRE

    Yu, Ming; Chaudhuri, Indira; Leahy, C.; Jayanthi, C. S.; Wu, S Y

    2008-01-01

    A comprehensive study on the relative structural stability of various nanostructures of carbon clusters (including fullerenes, cages, onions, icosahedral clusters, bucky-diamond clusters, spherically bulk terminated clusters, and clusters with faceted termination) in the range of d < 5 nm has been carried out using a semi-empirical method based on a self-consistent and environment-dependent/linear combination of atomic orbital (SCED-LCAO) Hamiltonian. It was found that among these nanostructu...

  3. Simulating the Formation of Carbon-rich Molecules on an idealised Graphitic Surface

    CERN Document Server

    Marshall, David W

    2015-01-01

    There is accumulating evidence for the presence of complex molecules, including carbon-bearing and organic molecules, in the interstellar medium. Much of this evidence comes to us from studies of chemical composition, photo- and mass-spectroscopy in cometary, meteoritic and asteroid samples, indicating a need to better understand the surface chemistry of astrophysical objects. There is also considerable interest in the origins of life-forming and life-sustaining molecules on Earth. Here, we perform reactive molecular dynamics simulations to probe the formation of carbon-rich molecules and clusters on carbonaceous surfaces resembling dust grains and meteoroids. Our results show that large chains form on graphitic surfaces at low temperatures (100K - 500K) and smaller fullerene-like molecules form at higher temperatures (2000K - 3000K). The formation is faster on the surface than in the gas at low temperatures but slower at high temperatures as surface interactions prevent small clusters from coagulation. We fi...

  4. Star Formation Ecology: YSO Outflow Feedback in Young Clusters

    Science.gov (United States)

    Frank, Adam; Bally, John; Blackman, Eric; Gutermuth, Robert; Pipher, Judy; Quillen, Alice

    2007-05-01

    Energetic outflows associated with young stellar objects exert a strong effect on their parent molecular clouds. The dynamics of this interaction is yet to be well understood. In particular the role of jets and outflows in powering cloud turbulence, modifying the star formation efficiency (SFE) and/or disrupting the parent clouds remains unclear. Spitzer images of young clusters have provided new views of jet-cloud interactions that can help resolve these critical issues. In this proposal we seek to continue a highly successful (cycle 2) theory program to explore theoretical issues of jet-cloud interactions, turbulence and cloud disruption. Our research relies on 3-D Adaptive Mesh Refinement hydrodynamic and MHD simulations developed in house, in concert with Spitzer databases and other complementary observations. The team we have assembled includes computational and analytic theorists (Frank, Blackman) as well as observers who have worked closely with existing Spitzer Datasets (Bally, Quillen, Pipher, Gutermuth) The work funded through the previous TR program revealed fundamentally new aspects of YSO outflow feedback on parent cloud cores including the importance of the temporal evolution of outflow power. In this proposal we seek to extend the understanding gained in those studies to address specific questions on the nature and efficacy of outflow feedback in real systems.

  5. Early formation of galaxies initiated by clusters of primordial black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.

    2008-01-01

    Model of supermassive black holes formation inside the clusters of primordial black holes is developed. Namely, it is supposed, that some mass fraction of the universe ~10^-3 is composed of the compact clusters of primordial (relic) black holes, produced during phase transitions in the early universe. These clusters are the centers of dark matter condensation. We model the formation of protogalaxies with masses about 2*10^8M_sun at the redshift z=15. These induced protogalaxies contain centra...

  6. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  7. Electron propagator calculations on linear and branched carbon cluster dianions

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, V.G.; Ortiz, J.V. [Univ. of New Mexico, Albuquerque, NM (United States)

    1994-12-31

    Electron propagator calculations have been performed on linear carbon cluster dianions from C{sub 7}{sup 2-} to C{sub 10}{sup 2-} and on branched C{sub 7}{sup 2-}, C{sub 9}{sup 2-} and C{sub 11}{sup 2-} structures which have a central, tricoordinate carbon bound to three branches with alternating long and short bonds. The more stable, branched isomer of C{sub 7}{sup 2-} has a positive vertical ionization energy, but the linear form does not. While linear C{sub 10}{sup 2-} is stable with respect to electron loss, it is not possible to decide from these calculations whether linear C{sub 8}{sup 2-} and C{sub 9}{sup 2-} have the same property. There is evidence that better calculations would obtain bound C{sub 8}{sup 2-} and C{sub 9}{sup 2-} species. All branched dianions have positive, vertical ionization energies. Feynman-Dyson amplitudes for dianion ionization energies display delocalized {pi} bonding, with the two terminal carbons of the longest branches making the largest contributions.

  8. Simulating radiative feedback and star cluster formation in GMCs: 1. Dependence on gravitational boundedness

    CERN Document Server

    Howard, Corey; Harris, William

    2016-01-01

    Radiative feedback is an important consequence of cluster formation in Giant Molecular Clouds (GMCs) in which newly formed clusters heat and ionize their surrounding gas. The process of cluster formation, and the role of radiative feedback, has not been fully explored in different GMC environments. We present a suite of simulations which explore how the initial gravitational boundedness, and radiative feedback, affect cluster formation. We model the early evolution (< 5 Myr) of turbulent, 10$^6$ M$_{\\odot}$ clouds with virial parameters ranging from 0.5 to 5. To model cluster formation, we use cluster sink particles, coupled to a raytracing scheme, and a custom subgrid model which populates a cluster via sampling an IMF with an efficiency of 20% per freefall time. We find that radiative feedback only decreases the cluster formation efficiency, measured via the total particle mass, by a few percent. The initial virial parameter plays a much stronger role in limiting cluster formation, with a spread of clust...

  9. On the Motion of Carbon Nanotube Clusters near Optical Fiber Tips: Thermophoresis, Radiative Pressure, and Convection Effects.

    Science.gov (United States)

    Vélez-Cordero, J Rodrigo; Hernández-Cordero, J

    2015-09-15

    We analyze the motion of multiwalled carbon nanotubes clusters in water or ethanol upon irradiation with a 975 and 1550 nm laser beam guided by an optical fiber. Upon measuring the velocities of the nanotube clusters in and out of the laser beam cone, we were able to identify thermophoresis, convection and radiation pressure as the main driving forces that determine the equilibrium position of the dispersion at low optical powers: while thermophoresis and convection pull the clusters toward the laser beam axis (negative Soret coefficient), radiation pressure pushes the clusters away from the fiber tip. A theoretical solution for the thermophoretic velocity, which considers interfacial motion and a repulsive potential interaction between the nanotubes and the solvent (hydrophobic interaction), shows that the main mechanism implicated in this type of thermophoresis is the thermal expansion of the fluid, and that the clusters migrate to hotter regions with a characteristic thermal diffusion coefficient D(T) of 9 × 10(-7) cm(2) K(-1) s(-1). We further show that the characteristic length associated with thermophoresis is not that of the nanotube clusters size, O(1) μm, but that corresponding to the microstructure of the clusters, O(1) nm. We finally discuss the role of the formation of gas-liquid interfaces (microbubbles) at high optical powers on the deposition of carbon nanotubes on the optical fiber end faces. PMID:26309145

  10. Cluster formation in molecular clouds: I. stellar populations, star formation rates, and ionizing radiation

    CERN Document Server

    Howard, Corey S; Harris, William E

    2013-01-01

    We present a model for the radiative output of star clusters in the process of star formation suitable for use in hydrodynamical simulations of radiative feedback. Gas in a clump, defined as a region whose density exceeds 10^4 cm^-3, is converted to stars via the random sampling of the Chabrier IMF. A star formation efficiency controls the rate of star formation. We have completed a suite of simulations which follow the evolution of accretion-fed clumps with initial masses ranging from 0 to 10^5 M_sol and accretion rates ranging from 10^-5 to 10^-1 M_sol yr^-1. The stellar content is tracked over time which allows the aggregate luminosity, ionizing photon rate, number of stars, and star formation rate (SFR) to be determined. For a fiducial clump of 10^4 M_sol, the luminosity is ~4x10^6 L_sol with a SFR of roughly 3x10^-3 M_sol yr^-1. We identify two regimes in our model. The accretion-dominated regime obtains the majority of its gas through accretion and is characterized by an increasing SFR while the reservo...

  11. Teenage suicide cluster formation and contagion: implications for primary care

    OpenAIRE

    Eriksson Anders; Lindqvist Per; Johansson Lars

    2006-01-01

    Abstract Background We have previously studied unintentional as well as intentional injury deaths among teenagers living in the four northernmost counties, forming approximately 55% of Sweden with 908,000 inhabitants in 1991. During this work, we found what we suspected to be a suicide cluster among teenagers and we also suspected contagion since there were links between these cases. In this present study, we investigate the occurrence of suicide clustering among teenagers, analyze cluster de...

  12. Impact of diagenesis on carbonate mound formation

    NARCIS (Netherlands)

    van der Land, C.

    2011-01-01

    This thesis is devoted to define the parameters influencing cold-water coral growth and therefore carbonate mound development with a focus on the impact of diagenesis on mound sediments. The first part of this thesis (Chapters 2 to 4) discusses the distributionand growth history of carbonate mounds,

  13. Environments and Morphologies of Red Sequence Galaxies with Residual Star Formation in Massive Clusters

    CERN Document Server

    Crossett, Jacob P; Stott, John P; Jones, D Heath

    2013-01-01

    We present a photometric investigation into recent star formation in galaxy clusters at z ~ 0.1. We use spectral energy distribution templates to quantify recent star formation in large X-ray selected clusters from the LARCS survey using matched GALEX NUV photometry. These clusters all have signs of red sequence galaxy recent star formation (as indicated by blue NUV-R colour), regardless of cluster morphology and size. A trend in environment is found for these galaxies, such that they prefer to occupy low density, high cluster radius environments. The morphology of these UV bright galaxies suggests that they are in fact red spirals, which we confirm with light curves and Galaxy Zoo voting percentages as morphological proxies. These UV bright galaxies are therefore seen to be either truncated spiral galaxies, caught by ram pressure in falling into the cluster, or high mass spirals, with the photometry dominated by the older stellar population.

  14. Still Red and Dead? Measuring feedback and star-formation in clusters at z > 1

    Science.gov (United States)

    Khullar, Gourav; McDonald, Michael; Bleem, Lindsey; Benson, Bradford; Gladders, Michael; South Pole Telescope (SPT) Collaboration

    2016-06-01

    Optical and infrared (IR) surveys have discovered that galaxy clusters at z 2 and underwent passive evolution thereafter without dominant star formation, some samples indicate that an era of star formation and AGN activity is seen in cluster galaxies at z > 1. Only recently have large samples of z > 1 clusters been identified, mostly through IR and Sunyaev-Zel’dovich (SZ) surveys, which indicate an increase in SFR in clusters at high redshifts and incomplete quenching. Moreover, a robust cluster sample in-hand allows us to understand how galaxy clusters become "red and dead", and the role of astrophysical feedback in this process. The South Pole Telescope (SPT) collaboration has produced mass-limited redshift-independent catalog of 516 clusters from 0.0 1.0, with three newly found systems having a zphot > 1.5. In this work, we focus on a sub-sample of SPT-SZ selected clusters at z > 1.2 with multi-wavelength observations in X-ray (Chandra), infrared (Herschel, Spitzer), optical (Magellan - imaging and spectroscopy), and mm-wavelength (SPT) bands. These observations enable constraints on cluster stellar, baryonic, and total mass, in addition to a host of other information, including the star-formation rate, level of AGN activity, cluster dynamical state, and signatures of astrophysical feedback in the intra-cluster gas. We will describe the overall observing program, early results, and future directions.

  15. Tin-carbon clusters and the onset of microscopic level immiscibility: Experimental and computational study

    Science.gov (United States)

    Bernstein, J.; Landau, A.; Zemel, E.; Kolodney, E.

    2015-09-01

    We report the experimental observation and computational analysis of the binary tin-carbon gas phase species. These novel ionic compounds are generated by impact of C60 - anions on a clean tin target at some kiloelectronvolts kinetic energies. Positive SnmCn+ (m = 1-12, 1 ≤ n ≤ 8) ions were detected mass spectrometrically following ejection from the surface. Impact induced shattering of the C60 - ion followed by sub-surface penetration of the resulting atomic carbon flux forces efficient mixing between target and projectile atoms even though the two elements (Sn/C) are completely immiscible in the bulk. This approach of C60 - ion beam induced synthesis can be considered as an effective way for producing novel metal-carbon species of the so-called non-carbide forming elements, thus exploring the possible onset of molecular level miscibility in these systems. Sn2C2+ was found to be the most abundant carbide cluster ion. Its instantaneous formation kinetics and its measured kinetic energy distribution while exiting the surface demonstrate a single impact formation/emission event (on the sub-ps time scale). Optimal geometries were calculated for both neutral and positively charged species using Born-Oppenheimer molecular dynamics for identifying global minima, followed by density functional theory (DFT) structure optimization and energy calculations at the coupled cluster singles, doubles and perturbative triples [CCSD(T)] level. The calculated structures reflect two distinct binding tendencies. The carbon rich species exhibit polyynic/cummulenic nature (tin end capped carbon chains) while the more stoichiometrically balanced species have larger contributions of metal-metal bonding, sometimes resulting in distinct tin and carbon moieties attached to each other (segregated structures). The Sn2Cn (n = 3-8) and Sn2Cn+ (n = 2-8) are polyynic/cummulenic while all neutral SnmCn structures (m = 3-4) could be described as small tin clusters (dimer, trimer, and tetramer

  16. Cluster formation and the low-density nuclear matter

    International Nuclear Information System (INIS)

    Full text: We explore the abundance of light clusters in core-collapse supernovae at post-bounce stage in a quantum statistical approach. Adopting the profile of a supernova core from detailed numerical simulations, we study the distribution of light bound clusters up to alpha particles (2 /leq A /leq 4) as well as heavy nuclei (A > 4) in dense matter at finite temperature. Within the frame of a cluster-mean field approach, the abundances of light clusters are evaluated accounting for self-energy, Pauli blocking and effects of continuum correlations. We find that deuterons and tritons, in addition to 3He and 4He, appear abundantly in a wide region from the surface of the proto-neutron star to the position of the shock wave. The appearance of light clusters may modify the neutrino emission in the cooling region and the neutrino absorption in the heating region, and thereby, influence the supernova mechanism. (author)

  17. Transient cluster formation in sheared non-Brownian suspensions.

    Science.gov (United States)

    Thøgersen, Kjetil; Dabrowski, Marcin; Malthe-Sørenssen, Anders

    2016-02-01

    We perform numerical simulations of non-Brownian suspensions in the laminar flow regime to study the scaling behavior of particle clusters and collisions under shear. As the particle fraction approaches the maximum packing fraction, large transient clusters appear in the system. We use methods from percolation theory to discuss the cluster size distribution. We also give a scaling relation for the percolation threshold as well as system size effects through time-dependent fluctuations of this threshold and relate them to system size. System size effects are important close to the maximum packing fraction due to the divergence of the cluster length scale. We then investigate the transient nature of the clusters through characterization of particle collisions and show that collision times exhibit scale-invariant properties. Finally, we show that particle collision times can be modeled as first-passage processes. PMID:26986381

  18. Captured older stars as the reason for apparently prolonged star formation in young star clusters

    OpenAIRE

    Pflamm-Altenburg, Jan; Kroupa, Pavel

    2006-01-01

    The existence of older stars within a young star cluster can be interpreted to imply that star formation occurs on time scales longer than a free-fall time of a pre-cluster cloud core. Here the idea is explored that these older stars are not related to the star formation process forming the young star cluster but rather that the orbits of older field stars are focused by the collapsing pre-cluster cloud core. Two effects appear: The focussing of stellar orbits leads to an enhancement of the d...

  19. Beyond the Cool Core: The Formation of Cool Core Galaxy Clusters

    CERN Document Server

    Burns, J O; Gantner, B; Motl, P M; Norman, M L; Burns, Jack O.; Hallman, Eric J.; Gantner, Brennan; Motl, Patrick M.; Norman, Michael L.

    2006-01-01

    Why do some clusters have cool cores while others do not? In this paper, cosmological simulations, including radiative cooling and heating, are used to examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. Numerical CC clusters at z=0 accreted mass more slowly over time and grew enhanced cool cores via hierarchical mergers; when late major mergers occurred, the CCs survived the collisions. By contrast, NCC clusters of similar mass experienced major mergers early in their evolution that destroyed embryonic cool cores and produced conditions that prevent CC re-formation. We discuss observational consequences.

  20. Beyond the Cool Core: The Formation of Cool Core Galaxy Clusters

    Science.gov (United States)

    Burns, J. O.; Hallman, E. J.; Gantner, B.; Motl, P. M.; Norman, M. L.

    Why do some clusters have cool cores while others do not? In this paper, cosmological simulations, including radiative cooling and heating, are used to examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. Numerical CC clusters at z=0 accreted mass more slowly over time and grew enhanced cool cores via hierarchical mergers; when late major mergers occurred, the CCs survived the collisions. By contrast, NCC clusters of similar mass experienced major mergers early in their evolution that destroyed embryonic cool cores and produced conditions that prevent CC re-formation. We discuss observational consequences.

  1. Simulating the formation of carbon-rich molecules on an idealized graphitic surface

    Science.gov (United States)

    Marshall, David W.; Sadeghpour, H. R.

    2016-01-01

    There is accumulating evidence for the presence of complex molecules, including carbon-bearing and organic molecules, in the interstellar medium. Much of this evidence comes to us from studies of chemical composition, photo- and mass spectroscopy in cometary, meteoritic and asteroid samples, indicating a need to better understand the surface chemistry of astrophysical objects. There is also considerable interest in the origins of life-forming and life-sustaining molecules on the Earth. Here, we perform reactive molecular dynamics simulations to probe the formation of carbon-rich molecules and clusters on carbonaceous surfaces resembling dust grains and meteoroids. Our results show that large chains form on graphitic surfaces at low temperatures (100-500 K) and smaller fullerene-like molecules form at higher temperatures (2000-3000 K). The formation is faster on the surface than in the gas at low temperatures but slower at high temperatures as surface interactions prevent small clusters from coagulation. We find that for efficient formation of molecular complexity, mobility about the surface is important and helps to build larger carbon chains on the surface than in the gas phase at low temperatures. Finally, we show that the temperature of the surface strongly determines what kind of structures forms and that low turbulent environments are needed for efficient formation.

  2. The formation of filamentary structures in radiative cluster winds

    OpenAIRE

    Rodr'iguez-Gonz'alez, A.; Esquivel, A.; A. C. Raga; Cant'o, J.

    2008-01-01

    We explore the dynamics of a ``cluster wind'' flow in the regime in which the shocks resulting from the interaction of winds from nearby stars are radiative. We first show that for a cluster with T Tauri stars and/or Herbig Ae/Be stars, the wind interactions are indeed likely to be radiative. We then compute a set of four, three dimensional, radiative simulations of a cluster of 75 young stars, exploring the effects of varying the wind parameters and the density of the initial ISM that permea...

  3. Clues on galaxy and cluster formation from their scaling relations

    CERN Document Server

    Lanzoni, B; Cappi, A; Tormen, G; Zamorani, G

    2003-01-01

    By means of high-resolution N-body simulations in a LambdaCDM cosmology, we verify that scaling relations similar to those observed for nearby galaxy clusters are also defined by their dark matter hosts; the slopes, however, are not the same. We then show that the scaling relations of galaxy clusters can be explained as the result of the cosmological collapse of density fluctuations at the appropriate scales, plus a systematic trend of the M/L ratio with cluster mass. The empirical fact that the exponent of the Faber-Jackson relation of elliptical galaxies is significantly different (higher) than that of clusters, force us to conclude that the galaxy scaling laws might derive from the cosmological collapse of density fluctuations at the epoch when galactic scales became non-linear, plus modifications afterward due to early-time dissipative merging.

  4. Computational Approaches for Probing the Formation of Atmospheric Molecular Clusters

    DEFF Research Database (Denmark)

    Elm, Jonas

    This thesis presents the investigation of atmospheric molecular clusters using computational methods. Previous investigations have focused on solving problems related to atmospheric nucleation, and have not been targeted at the performance of the applied methods. This thesis focuses on assessing...

  5. Mining the UKIDSS GPS: star formation and embedded clusters

    CERN Document Server

    Solin, O; Haikala, L

    2012-01-01

    Data mining techniques must be developed and applied to analyse the large public data bases containing hundreds to thousands of millions entries. The aim of this study is to develop methods for locating previously unknown stellar clusters from the UKIDSS Galactic Plane Survey catalogue data. The cluster candidates are computationally searched from pre-filtered catalogue data using a method that fits a mixture model of Gaussian densities and background noise using the Expectation Maximization algorithm. The catalogue data contains a significant number of false sources clustered around bright stars. A large fraction of these artefacts were automatically filtered out before or during the cluster search. The UKIDSS data reduction pipeline tends to classify marginally resolved stellar pairs and objects seen against variable surface brightness as extended objects (or "galaxies" in the archive parlance). 10% or 66 x 10^6 of the sources in the UKIDSS GPS catalogue brighter than 17 magnitudes in the K band are classif...

  6. Multi-phase Hydrodynamics and X-ray Clusters Formation

    OpenAIRE

    Teyssier, Romain; CHIEZE, Jean-Pierre; Alimi, Jean-Michel

    1997-01-01

    We investigate the role of radiative cooling within the core of large X-ray clusters using multi-phase hydrodynamics. We developed for that purpose a spherically symmetric hydrodynamical code, coupled to a "fluid model" that describes accurately the dark matter component. Cooling is included using a self-consistent multi-phase approach, leading to "cooled gas" mass deposition throughout the flow. We simulate the collapse and the subsequent evolution of a Coma-like X-ray cluster, avoiding the ...

  7. Cluster formation in complex multi-scale systems

    OpenAIRE

    Gibbon, J. D.; Titi, E. S.

    2005-01-01

    Based on the competition between members of a hierarchy of length scales in complex multi-scale systems, it is shown how clustering of active quantities into concentrated sets, like bubbles in a Swiss cheese, is a generic property that dominates the intermittent structure. The halo-like surfaces of these clusters have scaling exponents lower than that of their kernels, which can be as high as the domain dimension. Examples include spots in fluid turbulence and droplets in spin-glasses.

  8. Cluster formation in complex multi-scale systems

    CERN Document Server

    Titi, J D G E S

    2005-01-01

    Based on the ordering and competition of length scales in complex multi-scale systems, it is shown how clustering of active quantities into concentrated sets, like bubbles in a Swiss cheese, is a generic property that dominates the intermittent structure. The halo-like surfaces of these clusters have scaling exponents lower than that of their kernels, which can be as high as the domain dimension. Examples, among others, are spots in fluid turbulence and droplets in spin-glasses.

  9. Formation of dislocation loops during He clustering in bcc Fe

    Science.gov (United States)

    Gao, N.; Van Swygenhoven, H.; Victoria, M.; Chen, J.

    2011-11-01

    The clustering of helium in bcc (body centered cubic) iron and the growth of a helium bubble are simulated at the atomistic level for the helium-rich vacancy-poor condition. It is shown that a \\frac{1}{2}\\langle 111\\rangle dislocation loop is formed as a sequential collection of crowdions, the latter being the most stable self-interstitial atom configuration in the presence of a He cluster.

  10. Formation of dislocation loops during He clustering in bcc Fe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, N; Chen, J [NES-High Temperature Materials, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Van Swygenhoven, H [NUM/ASQ-Materials Science and Simulation, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Victoria, M, E-mail: helena.vanswygenhoven@psi.ch [Lawrence Livermore National Laboratory, PO Box 808 L-370, Livermore, CA 94550 (United States)

    2011-11-09

    The clustering of helium in bcc (body centered cubic) iron and the growth of a helium bubble are simulated at the atomistic level for the helium-rich vacancy-poor condition. It is shown that a 1/2 <111> dislocation loop is formed as a sequential collection of <111> crowdions, the latter being the most stable self-interstitial atom configuration in the presence of a He cluster. (fast track communication)

  11. The reactivity of stoichiometric tungsten oxide clusters towards carbon monoxide: the effects of cluster sizes and charge states.

    Science.gov (United States)

    Lin, Shu-Juan; Cheng, Jing; Zhang, Chang-Fu; Wang, Bin; Zhang, Yong-Fan; Huang, Xin

    2015-05-01

    Density functional theory (DFT) calculations are employed to investigate the reactivity of tungsten oxide clusters towards carbon monoxide. Extensive structural searches show that all the ground-state structures of (WO3)n(+) (n = 1-4) contain an oxygen radical center with a lengthened W-O bond which is highly active in the oxidation of carbon monoxide. Energy profiles are calculated to determine the reaction mechanisms and evaluate the effect of cluster sizes. The monomer WO3(+) has the highest reactivity among the stoichiometric clusters of different sizes (WO3)n(+) (n = 1-4). The reaction mechanisms for CO with mono-nuclear stoichiometric tungsten oxide clusters with different charges (WO3(-/0/+)) are also studied to clarify the influence of charge states. Our calculated results show that the ability to oxidize CO gets weaker from WO3(+) to WO3(-) as the negative charge accumulates progressively. PMID:25854200

  12. Formation of globular clusters induced by external ultraviolet radiation II: Three-dimensional radiation hydrodynamics simulations

    CERN Document Server

    Abe, Makito; Hasegawa, Kenji

    2016-01-01

    We explore the possibility of the formation of globular clusters under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (10^6-10^7 solar masses) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like globular clusters (GCs) if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semi-cosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a "supersonic infall" cloud, since photo-dissociating radiation supp...

  13. Knowledge cluster formation as a science policy in Malaysia: lessons learned

    OpenAIRE

    Hans-Dieter Evers; Solvay Gerke

    2015-01-01

    Regional science policy aims to create productive knowledge clusters, which are central places within an epistemic landscape of knowledge production and dissemination. These so-called K-clusters are said to have the organisational capability to drive innovations and create new industries. Many governments have used cluster formation as one of their development strategies. This paper looks at Malaysia's path towards a knowledge-based economy and offers some evidence on the current state of kno...

  14. Star formation in the first galaxies - III. Formation, evolution, and characteristics of the first stellar cluster

    CERN Document Server

    Safranek-Shrader, Chalence; Milosavljevic, Milos; Bromm, Volker

    2015-01-01

    We simulate the formation of a low metallicity (0.01 Zsun) stellar cluster in a dwarf galaxy at redshift z~14. Beginning with cosmological initial conditions, the simulation utilizes adaptive mesh refinement and sink particles to follow the collapse and evolution of gas past the opacity limit for fragmentation, thus resolving the formation of individual protostellar cores. A time- and location-dependent protostellar radiation field, which heats the gas by absorption on dust, is computed by integration of protostellar evolutionary tracks with the MESA code. The simulation also includes a robust non-equilibrium chemical network that self-consistently treats gas thermodynamics and dust-gas coupling. The system is evolved for 18 kyr after the first protostellar source has formed. In this time span, 30 sink particles representing protostellar cores form with a total mass of 81 Msun. Their masses range from ~0.1 Msun to 14.4 Msun with a median mass ~0.5-1 Msun. Massive protostars grow by competitive accretion while...

  15. A single model for the variety of multiple-population formation(s) in globular clusters: a temporal sequence

    Science.gov (United States)

    D'Antona, F.; Vesperini, E.; D'Ercole, A.; Ventura, P.; Milone, A. P.; Marino, A. F.; Tailo, M.

    2016-05-01

    We explain the multiple populations recently found in the `prototype' globular cluster (GC) NGC 2808 in the framework of the asymptotic giant branch (AGB) scenario. The chemistry of the five - or more - populations is approximately consistent with a sequence of star formation events, starting after the Type II supernova epoch, lasting approximately until the time when the third dredge-up affects the AGB evolution (age ˜90-120 Myr), and ending when the Type Ia supernovae begin exploding in the cluster, eventually clearing it from the gas. The formation of the different populations requires episodes of star formation in AGB gas diluted with different amounts of pristine gas. In the nitrogen-rich, helium-normal population identified in NGC 2808 by the UV Legacy Survey of GCs, the nitrogen increase is due to the third dredge-up in the smallest mass AGB ejecta involved in the star formation of this population. The possibly iron-rich small population in NGC 2808 may be a result of contamination by a single Type Ia supernova. The NGC 2808 case is used to build a general framework to understand the variety of `second-generation' stars observed in GCs. Cluster-to-cluster variations are ascribed to differences in the effects of the many processes and gas sources which may be involved in the formation of the second generation. We discuss an evolutionary scheme, based on pollution by delayed Type II supernovae, which accounts for the properties of s-Fe-anomalous clusters.

  16. Oxygen aggregation kinetics, thermal donors and carbon-oxygen defect formation in silicon containing carbon and tin

    International Nuclear Information System (INIS)

    Localized vibrational mode spectroscopy measurements on Czochralski silicon (Cz-Si) samples subjected to isothermal annealing at 450 °C are reported. First, we studied the effect of carbon (C) and tin (Sn) isovalent dopants on the aggregation kinetics of oxygen. It is determined that the reduction rate of oxygen is described by the Johnson-Mehl-Avrami equation in accordance with previous reports. The activation energy related with the reaction rate constant of the process is calculated to increase from Cz-Si, to C-doped Cz-Si (CCz-Si), to Sn-doped Cz-Si contained C (SnCz-Si). This is attributed to the presence of the isovalent dopants that may impact both the kinetics of the oxygen atoms and also may lead to the formation of other oxygen-related clusters. Second, we studied the effect of Sn on the formation and evolution of carbon-oxygen (C-O) defects. It was determined that the presence of Sn suppresses the formation of the C-O defects as indicated by the reduction in the strength of the 683, 626, and 586 cm−1 well-known bands of CsOi defect. The phenomenon is attributed to the association of Sn with C atoms that may prevent the pairing of O with C. Third, we investigated the effect of C and Sn on the formation of thermal donors (TDs). Regarding carbon our results verified previous reports that carbon suppresses the formation of TDs. Interestingly, when both C and Sn are present in Si, very weak bands of TDs were observed, although it is known that Sn alone suppress their formation. This may be attributed to the competing strains of C and Sn in the Si lattice

  17. Oxygen aggregation kinetics, thermal donors and carbon-oxygen defect formation in silicon containing carbon and tin

    Energy Technology Data Exchange (ETDEWEB)

    Angeletos, T.; Sgourou, E. N.; Andrianakis, A.; Diamantopoulou, A.; Londos, C. A. [Solid State Section, Physics Department, University of Athens, Panepistimiopolis, Zografos, 157 84 Athens (Greece); Chroneos, A. [Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry CV1 5FB (United Kingdom); Department of Materials, Imperial College London, London SW7 2BP (United Kingdom)

    2015-07-07

    Localized vibrational mode spectroscopy measurements on Czochralski silicon (Cz-Si) samples subjected to isothermal annealing at 450 °C are reported. First, we studied the effect of carbon (C) and tin (Sn) isovalent dopants on the aggregation kinetics of oxygen. It is determined that the reduction rate of oxygen is described by the Johnson-Mehl-Avrami equation in accordance with previous reports. The activation energy related with the reaction rate constant of the process is calculated to increase from Cz-Si, to C-doped Cz-Si (CCz-Si), to Sn-doped Cz-Si contained C (SnCz-Si). This is attributed to the presence of the isovalent dopants that may impact both the kinetics of the oxygen atoms and also may lead to the formation of other oxygen-related clusters. Second, we studied the effect of Sn on the formation and evolution of carbon-oxygen (C-O) defects. It was determined that the presence of Sn suppresses the formation of the C-O defects as indicated by the reduction in the strength of the 683, 626, and 586 cm{sup −1} well-known bands of C{sub s}O{sub i} defect. The phenomenon is attributed to the association of Sn with C atoms that may prevent the pairing of O with C. Third, we investigated the effect of C and Sn on the formation of thermal donors (TDs). Regarding carbon our results verified previous reports that carbon suppresses the formation of TDs. Interestingly, when both C and Sn are present in Si, very weak bands of TDs were observed, although it is known that Sn alone suppress their formation. This may be attributed to the competing strains of C and Sn in the Si lattice.

  18. From collisions to clusters: first steps of sulphuric acid nanocluster formation dynamics

    Science.gov (United States)

    Loukonen, Ville; Bork, Nicolai; Vehkamäki, Hanna

    2014-08-01

    The clustering of sulphuric acid with base molecules is one of the main pathways of new-particle formation in the Earth's atmosphere. First step in the clustering process is likely the formation of a (sulphuric acid)1(base)1(water)n cluster. Here, we present results from direct first-principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton control. As a consequence, the clusters show very dynamic ion pair structure, which differs from both the static structure optimisation calculations and the equilibrium first-principles molecular dynamics simulations. In some of the simulation runs, water mediates the proton transfer by acting as a proton bridge. In general, water is able to notably stabilise the formed clusters by allocating a fraction of the released clustering energy.

  19. On the Formation of cD Galaxies and their Parent Clusters

    CERN Document Server

    Tovmassian, H M; 10.1111/j.1365-2966.2012.22044.x

    2012-01-01

    In order to study the mechanism of formation of cD galaxies we search for possible dependencies between the K-band luminosity of cDs and the parameters of their host clusters which we select to have a dominant cD galaxy, corresponding to a cluster morphology of Bautz-Morgan (BM) type I. As a comparison sample we use cD galaxies in clusters where they are not dominant, which we define here as non-BMI (NBMI) type clusters. We find that for 71 BMI clusters the absolute K-band luminosity of cDs depends on the cluster richness, but less strongly on the cluster velocity dispersion. Meanwhile, for 35 NBMI clusters the correlation between cD luminosity and cluster richness is weaker, and is absent between cD luminosity and velocity dispersion. In addition, we find that the luminosity of the cD galaxy hosted in BMI clusters tends to increase with the cD's peculiar velocity with respect to the cluster mean velocity. In contrast, for NBMI clusters the cD luminosity decreases with increasing peculiar velocity. Also, the ...

  20. The regulation of star formation in cool-core clusters: imprints on the stellar populations of brightest cluster galaxies

    Science.gov (United States)

    Loubser, S. I.; Babul, A.; Hoekstra, H.; Mahdavi, A.; Donahue, M.; Bildfell, C.; Voit, G. M.

    2016-02-01

    A fraction of brightest cluster galaxies (BCGs) show bright emission in the ultraviolet and the blue part of the optical spectrum, which has been interpreted as evidence of recent star formation. Most of these results are based on the analysis of broad-band photometric data. Here, we study the optical spectra of a sample of 19 BCGs hosted by X-ray luminous galaxy clusters at 0.15 BCG in Abell 1835 shows remarkable A-type stellar features indicating a relatively large population of young stars, which is extremely unusual even amongst star-forming BCGs. We constrain the mass contribution of these young components to the total stellar mass to be typically between 1 and 3 per cent, but rising to 7 per cent in Abell 1835. We find that the four of the BCGs with strong evidence for recent star formation (and only these four galaxies) are found within a projected distance of 5 kpc of their host cluster's X-ray peak, and the diffuse, X-ray gas surrounding the BCGs exhibits a ratio of the radiative cooling-to-free-fall time (tc/tff) of ≤10. These are also some of the clusters with the lowest central entropy. Our results are consistent with the predictions of the precipitation-driven star formation and active galactic nucleus feedback model, in which the radiatively cooling diffuse gas is subject to local thermal instabilities once the instability parameter tc/tff falls below ˜10, leading to the condensation and precipitation of cold gas. The number of galaxies in our sample where the host cluster satisfies all the criteria for recent and ongoing star formation is small, but their stellar populations suggest a time-scale for star formation to restart of the order of ˜200 Myr.

  1. Collisions of relativistic clusters and the formation of black holes

    International Nuclear Information System (INIS)

    We perform numerical simulations of head-on collisions of relativistic clusters. The cluster particles interact only gravitationally, and so satisfy the collisionless Boltzmann equation in general relativity. We construct and follow the evolution of three classes of initial configurations: spheres of particles at rest; spheres of particles boosted towards each other; and spheres of particles in circular orbits about their respective centers. In the first two cases, the spheres implode towards their centers and may form black holes before colliding. These scenarios thus can be used to study the head-on collision of two black holes. In the third case the clusters are initially in equilibrium and cannot implode. In this case collision from rest leads either to coalescence and virialization, or collapse to a black hole. This scenario is the collisionless analog of colliding neutron stars in relativistic hydrodynamics

  2. Hierarchically Clustered Star Formation in the Magellanic Clouds

    CERN Document Server

    Gouliermis, Dimitrios A; Ossenkopf, Volker; Klessen, Ralf S; Dolphin, Andrew E

    2012-01-01

    We present a cluster analysis of the bright main-sequence and faint pre--main-sequence stellar populations of a field ~ 90 x 90 pc centered on the HII region NGC 346/N66 in the Small Magellanic Cloud, from imaging with HST/ACS. We extend our earlier analysis on the stellar cluster population in the region to characterize the structuring behavior of young stars in the region as a whole with the use of stellar density maps interpreted through techniques designed for the study of the ISM structuring. In particular, we demonstrate with Cartwrigth & Whitworth's Q parameter, dendrograms, and the Delta-variance wavelet transform technique that the young stellar populations in the region NGC 346/N66 are hierarchically clustered, in agreement with other regions in the Magellanic Clouds observed with HST. The origin of this hierarchy is currently under investigation.

  3. Formation of proto-cluster: a virialized structure from gravo-turbulent collapse I. Simulation of cluster formation in collapsing molecular cloud

    CERN Document Server

    Lee, Yueh-Ning

    2016-01-01

    Stars are often observed to form in clusters. It is therefore important to understand how such a region of concentrated mass is assembled out of the diffuse medium and its properties eventually prescribe the important physical mechanisms and determine the characteristics of the stellar cluster. We study the formation of a gaseous proto-cluster inside a molecular cloud by performing high resolution MHD simulations and associate its internal properties to those of the parent cloud by varying the level of the initial turbulence of the cloud, with a view to better characterize the subsequent stellar cluster formation. The gaseous proto-cluster is formed out of global collapse of a molecular cloud, and has non-negligible rotation due to angular momentum conservation during the collapse of the object. Most of the star formation occurs in this region which occupies only a small volume fraction of the whole cloud. We identify such regions in simulations and compare the gas and sink particles to observations. The gase...

  4. A Theoretical Assessment of the Formation of IT clusters in Kazakhstan: Approaches and Positive Effects

    OpenAIRE

    Anel A. Kireyeva

    2016-01-01

    Abstract The aim of this research is to develop new theoretical approaches of the formation of IT clusters in order to strengthen of trend of the innovative industrialization and competitiveness of the country. Keeping with the previous literature, this study determines by the novelty of the problem, concerning the formation of IT clusters, which can become a driving force of transformation due to the interaction, improving efficiency and introducing advanced technology. In this research,...

  5. Slow quenching of star formation in OMEGAWINGS clusters: galaxies in transition in the local universe

    OpenAIRE

    Paccagnella, Angela; Vulcani, Benedetta; Poggianti, Bianca Maria; Moretti, Alessia; Fritz, Jacopo; Gullieuszik, Marco; Couch, Warrick; Bettoni, Daniela; Cava, Antonio; Fasano, Giovanni; D'Onofrio, Mauro

    2015-01-01

    The star formation quenching depends on environment, but a full understanding of what mechanisms drive it is still missing. Exploiting a sample of galaxies with masses $M_\\ast>10^{9.8}M_\\odot$, drawn from the WIde-field Nearby Galaxy-cluster Survey (WINGS) and its recent extension OMEGAWINGS, we investigate the star formation rate (SFR) as a function of stellar mass (M$_*$) in galaxy clusters at $0.04

  6. Influence of carbon on the kinetics of He migration and clustering in α-Fe from first principles

    International Nuclear Information System (INIS)

    Density functional theory (DFT) calculations have been performed to study the interaction of carbon with He-vacancy complexes in α-Fe. Using the DFT predictions, a rate theory model that accounts for the evolution of carbon, helium, and defects created during irradiation has been developed to explore the influence of carbon on the kinetics of He diffusion and clustering after implantation in α-Fe. This DFT-based rate theory model predicts that carbon not only influences vacancy (V) migration but also He desorption, enhancing He mobility in particular for low V/C ratios. The reason for this behavior is mainly the formation of VC and VC2 complexes, which significantly reduces the mobility of vacancies with respect to pure Fe, inhibiting the formation of higher order clusters, i.e., HenVm, and increasing thus the number of He at substitutional positions at room temperature. Assuming reasonable values of carbon concentration, we successfully reproduce and interpret existing desorption experimental results, where all the energetic parameters for the relevant reactions were obtained from first-principles calculations. In addition, our study provides a detailed explanation of the various He migration mechanisms that prevail under the considered experimental conditions.

  7. The Turn Over of the Odd-even Pattern in Mass Spectra of Carbon Cluster Anions

    Institute of Scientific and Technical Information of China (English)

    NI Guoquan; LIU Bingchen; ZHAI Huajin

    2000-01-01

    @@ Although investigations by many authorsd on the properties of carbon cluster anions by mass spectrometry and photoelectron spectroscopy last more than a decade[1~3], a general conclusion concerning the various features of the carbon clusters generated most commonly in laser vaporization/molecular beam sources has not yet been reached. In this Letter we report that the turn-over of the odd-even patter in relative abundance in the mass spectra of carbon clusters and the "manipulation" of the pattern can be realized in a controlled way by altering the vaporizing laser intensity, the backing pressure and the conductance of carries gas.

  8. Formation mechanism of diamond nanocrystal from catalysed carbon black

    International Nuclear Information System (INIS)

    Recently, our group has synthesized nanocrystal n-diamond and diamond-like carbon (DLC) from catalysed carbon black. Based on the results of XRD, TGA and DTA, a formation mechanism has been proposed to explain the phase transformation from carbon black to diamond nanocrystal. With the increase of temperature and hence the carbon diffusion in iron, the phase sequence is from Fe(OH)3 into Fe2O3, α-Fe, γ-Fe, then liquid iron. When the carbon in the liquid iron is saturated, DLC or graphite separates out of the liquid iron. With decrease of temperature, the carbon in γ-Fe is separated out, and n-diamond nuclei form and grow

  9. Formation mechanism of diamond nanocrystal from catalysed carbon black

    Science.gov (United States)

    Wen, Bin; Li, Tingju; Dong, Chuang; Zhang, Xingguo; Yao, Shan; Cao, Zhiqiang; Wang, Dehe; Ji, Shouhua; Jin, Junze

    2004-10-01

    Recently, our group has synthesized nanocrystal n-diamond and diamond-like carbon (DLC) from catalysed carbon black. Based on the results of XRD, TGA and DTA, a formation mechanism has been proposed to explain the phase transformation from carbon black to diamond nanocrystal. With the increase of temperature and hence the carbon diffusion in iron, the phase sequence is from Fe(OH)3 into Fe2O3, agr-Fe, ggr-Fe, then liquid iron. When the carbon in the liquid iron is saturated, DLC or graphite separates out of the liquid iron. With decrease of temperature, the carbon in ggr-Fe is separated out, and n-diamond nuclei form and grow.

  10. Formation mechanism of diamond nanocrystal from catalysed carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Wen Bin [Department of Materials Engineering, Dalian University of Technology, Dalian 116023 (China); Li Tingju [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China); Dong Chuang [Department of Materials Engineering, Dalian University of Technology, Dalian 116023 (China); Zhang Xingguo [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China); Yao Shan [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China); Cao Zhiqiang [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China); Wang Dehe [Department of Materials Engineering, Dalian University of Technology, Dalian 116023 (China); Ji Shouhua [Department of Materials Engineering, Dalian University of Technology, Dalian 116023 (China); Jin Junze [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China)

    2004-10-06

    Recently, our group has synthesized nanocrystal n-diamond and diamond-like carbon (DLC) from catalysed carbon black. Based on the results of XRD, TGA and DTA, a formation mechanism has been proposed to explain the phase transformation from carbon black to diamond nanocrystal. With the increase of temperature and hence the carbon diffusion in iron, the phase sequence is from Fe(OH){sub 3} into Fe{sub 2}O{sub 3}, {alpha}-Fe, {gamma}-Fe, then liquid iron. When the carbon in the liquid iron is saturated, DLC or graphite separates out of the liquid iron. With decrease of temperature, the carbon in {gamma}-Fe is separated out, and n-diamond nuclei form and grow.

  11. SYSTEMS OF PARTICLES WITH INTERACTION AND THE CLUSTER FORMATION IN CONDENSED MATTER

    Directory of Open Access Journals (Sweden)

    V.Krasnoholovets

    2003-01-01

    Full Text Available We investigate the behaviour of a system of particles with the different character of interaction. The approach makes it possible to describe systems of interacting particles by statistical methods taking into account a spatial nonhomogeneous distribution of particles, i.e. cluster formation. For these clusters are evaluated: their size, the number of particles in a cluster, and the temperature of phase transition to the cluster state. Three systems are under consideration: electrons on the liquid helium surface, particles interacting by the shielding Coulomb potential, which are found under the effect of an elastic field (e.g. nucleons in a nucleus, and gravitating masses with the Hubble expansion.

  12. Formation and magic number characteristics of clusters formed during solidification processes

    International Nuclear Information System (INIS)

    A molecular dynamics simulation study has been performed for a large-sized system consisting of 106 liquid metal Al atoms to investigate the formation and magic number characteristics of various clusters formed during solidification processes. The cluster-type index method (CTIM) is adopted to describe various types of cluster by basic clusters. It is demonstrated that the icosahedral cluster (12 0 12 0) is the most important basic cluster, and that it plays a critical role in the microstructure transition. A new statistical method has been proposed to classify the clusters as some group levels according to the numbers of basic clusters contained in each cluster. The magic numbers can be determined by the respective peak value positions of different group levels of clusters, and the magic number sequence in the system is 13, 19, 25(27), 31(33), 38(40), 42(45), 48(51), 55(59), 61(65), 67,... the numbers in the brackets are the second magic number of the corresponding group levels of clusters. This magic number sequence is in good agreement with the experimental results obtained by Schriver and Harris et al, and the experimental results can be reasonably well explained

  13. The formation of higher-order hierarchical systems in star clusters

    CERN Document Server

    van den Berk, J; McMillan, S; Berk, Jelle van den; Zwart, Simon Portegies; Millan, Steve Mc

    2006-01-01

    We simulate open clusters containing up to 182 stars initially in the form of singles, binaries and triples. Due to the high interaction rate a large number of stable quadruples, quintuples, sextuples, and higher-order hierarchies form during the course of the simulations. For our choice of initial conditions, the formation rate of quadruple systems after about 2Myr is roughly constant with time at about 0.008 per cluster per Myr. The formation rate of quintuple and sextuple systems are about half and one quarter, respectively, of the quadruple formation rate, and both rates are also approximately constant with time. We present reaction channels and relative probabilities for the formation of persistent systems containing up to six stars. The reaction networks for the formation and destruction of quintuple and sextuple systems can become quite complicated, although the branching ratios remain largely unchanged during the course of the cluster evolution. The total numbers of quadruples is about a factor of thr...

  14. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    International Nuclear Information System (INIS)

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  15. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia)

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  16. STAR FORMATION AND UV COLORS OF THE BRIGHTEST CLUSTER GALAXIES IN THE REPRESENTATIVE XMM-NEWTON CLUSTER STRUCTURE SURVEY

    International Nuclear Information System (INIS)

    We present UV broadband photometry and optical emission-line measurements for a sample of 32 brightest cluster galaxies (BCGs) in clusters of the Representative XMM-Newton Cluster Structure Survey (REXCESS) with z = 0.06-0.18. The REXCESS clusters, chosen to study scaling relations in clusters of galaxies, have X-ray measurements of high quality. The trends of star formation and BCG colors with BCG and host properties can be investigated with this sample. The UV photometry comes from the XMM-Newton Optical Monitor, supplemented by existing archival Galaxy Evolution Explorer photometry. We detected Hα and forbidden line emission in seven (22%) of these BCGs, in optical spectra obtained using the Southern Astrophysical Research Goodman spectrograph. All of these emission-line BCGs occupy clusters classified as cool cores (CCs) based on the central cooling time in the cluster core, for an emission-line incidence rate of 70% for BCGs in REXCESS CC clusters. Significant correlations between the Hα equivalent widths, excess UV production in the BCG, and the presence of dense, X-ray bright intracluster gas with a short cooling time are seen, including the fact that all of the Hα emitters inhabit systems with short central cooling times and high central intracluster medium densities. Estimates of the star formation rates based on Hα and UV excesses are consistent with each other in these seven systems, ranging from 0.1to8 solar masses per year. The incidence of emission-line BCGs in the REXCESS sample is intermediate, somewhat lower than in other X-ray-selected samples (∼35%), and somewhat higher than but statistically consistent with optically selected, slightly lower redshift BCG samples (∼10%-15%). The UV-optical colors (UVW1 - R ∼4.7 ± 0.3) of REXCESS BCGs without strong optical emission lines are consistent with those predicted from templates and observations of ellipticals dominated by old stellar populations. We see no trend in UV-optical colors with

  17. Are globular clusters the natural outcome of regular high-redshift star formation?

    Science.gov (United States)

    Kruijssen, J. M. Diederik

    2016-02-01

    We summarise the recent progress in understanding the formation and evolution of globular clusters (GCs) in the context of galaxy formation and evolution. It is discussed that an end-to-end model for GC formation and evolution should capture four different phases: (1) star and cluster formation in the high-pressure interstellar medium of high-redshift galaxies, (2) cluster disruption by tidal shocks in the gas-rich host galaxy disc, (3) cluster migration into the galaxy halo, and (4) the final evaporation-dominated evolution of GCs until the present day. Previous models have mainly focussed on phase 4. We present and discuss a simple model that includes each of these four steps - its key difference with respect to previous work is the simultaneous addition of the high-redshift formation and early evolution of young GCs, as well as their migration into galaxy haloes. The new model provides an excellent match to the observed GC mass spectrum and specific frequency, as well as the relations of GCs to the host dark matter halo mass and supermassive black hole mass. These results show (1) that the properties of present-day GCs are reproduced by assuming that they are the natural outcome of regular high-redshift star formation (i.e. they form according to same physical processes that govern massive cluster formation in the local Universe), and (2) that models only including GC evaporation strongly underestimate their integrated mass loss over a Hubble time.

  18. Study of the formation of solute clusters under irradiation in model ferritic alloys

    International Nuclear Information System (INIS)

    Neutron irradiation results in the formation of a high number density (1023 to 1024 m-3) of ultrafine (2 nm in diameter) solute clusters in reactor vessel steels. These clusters contain a supersaturated element (copper), and some others solutes (Mn, Ni, Si and P) soluble at the temperature of irradiation (300 C). The aim of the work described in this report is to understand what are the basic processes at the origin of the formation of these clusters, and to obtain information about the effect of the different solutes. The microstructure of model alloys, after different irradiation experiments is characterised by atom probe. The comparison between experimental results and results obtained by mean field modelling (evolution of point defects under irradiation) suggests that the precipitation of the solute clusters is heterogeneous, on point defects clusters. Precipitation kinetic is slowed down by solutes other than copper. (author)

  19. Acceleration of raindrops formation due to tangling-clustering instability in turbulent stratified atmosphere

    CERN Document Server

    Elperin, T; Krasovitov, B; Kulmala, M; Liberman, M; Rogachevskii, I; Zilitinkevich, S

    2013-01-01

    Condensation of water vapor on active cloud condensation nuclei produces micron-size water droplets. To form rain, they must grow rapidly into at least 50-100 micron-size droplets. Observations show that this process takes only 15-20 minutes. The unexplained physical mechanism of such fast growth, is crucial for understanding and modeling of rain, and known as "condensation-coalescence bottleneck in rain formation". We show that the recently discovered phenomenon of the tangling clustering instability of small droplets in temperature-stratified turbulence (Phys. Fluids 25, 085104, 2013) results in the formation of droplet clusters with drastically increased droplet number densities and strong five-orders-of-magnitude enhancement of the collision-coalescence rate inside the clusters. The mechanism of tangling clustering instability in the temperature-stratified turbulence is much more effective than the previously considered pure inertial clustering caused by the centrifugal effect of turbulent vortices. Our a...

  20. Star Cluster Formation with Stellar Feedback and Large-scale Inflow

    Science.gov (United States)

    Matzner, Christopher D.; Jumper, Peter H.

    2015-12-01

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when its column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive.

  1. Massive Clusters in the Inner Regions of NGC 1365: Cluster Formation and Gas Dynamics in Galactic Bars

    CERN Document Server

    Elmegreen, Bruce G; Alloin, Danielle

    2009-01-01

    Cluster formation and gas dynamics in the central regions of barred galaxies are not well understood. This paper reviews the environment of three 10^7 Msun clusters near the inner Lindblad resonance of the barred spiral NGC 1365. The morphology, mass, and flow of HI and CO gas in the spiral and barred regions are examined for evidence of the location and mechanism of cluster formation. The accretion rate is compared with the star formation rate to infer the lifetime of the starburst. The gas appears to move from inside corotation in the spiral region to looping filaments in the interbar region at a rate of ~6 Msun/yr before impacting the bar dustlane somewhere along its length. The gas in this dustlane moves inward, growing in flux as a result of the accretion to ~40 Msun/yr near the ILR. This inner rate exceeds the current nuclear star formation rate by a factor of 4, suggesting continued buildup of nuclear mass for another ~0.5 Gyr. The bar may be only 1-2 Gyr old. Extrapolating the bar flow back in time, w...

  2. Comparison of defect cluster accumulation and pattern formation in irradiated copper and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Snead, L.L. [Oak Ridge National Lab., TN (United States); Edwards, D.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-04-01

    The objective of this study is to compare the contrasting behavior of defect cluster formation in neutron-irradiated copper and nickel specimens. Transmission electron microscopy was used to examine the density and spatial distribution of defect clusters produced in copper and nickel as the result of fission neutron irradiation to damage levels of 0.01 to 0.25 displacements per atom (dpa) at irradiation temperature between 50 and 230{degrees}C. A comparison with published results in the literature indicates that defect cluster wall formation occurs in nickel irradiated at 0.2 to 0.4 T{sub M} in a wide variety of irradiation spectra. Defect cluster wall formation apparently only occurs in copper during low temperature irradiation with electrons and light ions. These results are discussed in terms of the thermal spike model for energetic displacement cascades.

  3. Two Types of Mass Abundance Distributions for Anionic Carbon Clusters Investigated by Laser Vaporization and Pulsed Molecular Beam Techniques

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hua-Jin; LIU Bing-Chen; NI Guo-Quan; XUZhi-Zhan

    2000-01-01

    Two types of mass spectra for anionic carbon clusters Cn- have been revealed using laser vaporization and pulsed molecular beam techniques. The less structured mass spectrum characteristic of the magic-numbers at n = 5, 8,11, 15, and 17 is established at the early stage of the cluster formation process, namely, in the laser vaporization process. The more structured one is featured for a regular odd-even alternation and the magic numbers at n =10, 12, 16, 18, 22, and 28, and has been developed only after extensive clustering and qnenching processes, where low-energy electron attachment plays a vital role. Transition between these two types of mass spectra can be realized by controlling either the strength of the pulsed gas flow or the synchronism between the gas flow and the laser vaporization.

  4. Formation of new stellar populations from gas accreted by massive young star clusters.

    Science.gov (United States)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters. PMID:26819043

  5. Mean-field instabilities and cluster formation in nuclear reactions

    CERN Document Server

    Colonna, M; Baran, V

    2016-01-01

    We review recent results on intermediate mass cluster production in heavy ion collisions at Fermi energy and in spallation reactions. Our studies are based on modern transport theories, employing effective interactions for the nuclear mean-field and incorporating two-body correlations and fluctuations. Namely we will consider the Stochastic Mean Field (SMF) approach and the recently developed Boltzmann-Langevin One Body (BLOB) model. We focus on cluster production emerging from the possible occurrence of low-density mean-field instabilities in heavy ion reactions. Within such a framework, the respective role of one and two-body effects, in the two models considered, will be carefully analysed. We will discuss, in particular, fragment production in central and semi-peripheral heavy ion collisions, which is the object of many recent experimental investigations. Moreover, in the context of spallation reactions, we will show how thermal expansion may trigger the development of mean-field instabilities, leading to...

  6. Neutron stars in globular clusters: formation and observational manifestations

    CERN Document Server

    Kuranov, A G

    2006-01-01

    Population synthesis is used to model the number of neutron stars in globular clusters that are observed as LMXBs and millisecond PSRs. The dynamical interaction between binary and single stars in a GC are assumed to take place with a permanently replenished "background" of single stars whose density distribution keeps track with the cluster evolution as a whole and evolution of single stars. We use the hypothesis (Podsiadlowski et al) that NS forming in binary systems from components with initial masses \\sim 8-12 M_\\odot during the electron-capture collapse of the degenerate O-Ne-Mg core do not acquire a high space velocities (kicks). The remaining NSs (i.e. from single stars with M>8 M_\\odot or binary comonents with M>12 M_\\odot) are assumed to be born with high kicks, as found from obsrevations of single pulsars (Hobbs et al. 2005). Under this assumption, a sizeable fraction of NSs remain in GCs (about 1000 NSs in a GC with a mass of 5\\times 10^5 M_\\odot). The number of ms PSRs formed in the cluster via ac...

  7. Displacement damage rate dependence of defect cluster formation in α-Fe during irradiation

    Science.gov (United States)

    Watanabe, Y.; Morishita, K.; Yamamoto, Y.; Hamaguchi, D.; Tanigawa, H.

    2013-05-01

    Formation kinetics of defect clusters in pure iron during irradiation has been numerically investigated by reaction rate theory, with focusing on nucleation process of vacancy clusters (voids) and self-interstitial-atoms (SIA) clusters under a wide range of atomic displacement damage rate (dpa rate) and temperature conditions. In the rate theory model, the size dependence of thermal stability of a defect cluster is treated for a wide range of cluster size. The numerical analysis shows that the nucleation processes of voids and SIA-clusters are quite different from each other. As to the voids, the nucleation rate of voids depends much on temperature and dpa rate, and has the individual peak temperature for each dpa rate, during which the peak temperature increases with increasing dpa rate. This tendency for void nucleation is similar to that for void swelling observed in experiments. As to the SIA-clusters, the nucleation rate of SIA-clusters does not depend much on temperature and has no peak temperatures because of the relatively high thermal stability of an SIA-cluster, indicating that the conventional model (di-interstitial model) is applicable to describe the nucleation of SIA-clusters in a wide range of temperature.

  8. Carbon monoxide adsorption on neutral and cationic vanadium doped gold clusters

    OpenAIRE

    Le, Hai Thuy; Lang, Sandra M; de Haeck, Jorg; Lievens, Peter; Janssens, Ewald

    2012-01-01

    The effect of a single vanadium dopant atom on the reactivity of small gold clusters is studied in the gas phase. In particular we investigated carbon monoxide adsorption on vanadium doped gold clusters using a low-pressure collision cell. Employing this technique the reactivity of both neutral and cationic clusters was studied under the same experimental conditions. Analysis of the kinetic data as a function of the pressure in the reaction cell shows that the reaction mechanism is composed o...

  9. Pseudopotential Density-Functional Calculations for Structures of Small Carbon Clusters CN (N = 2~8)

    Institute of Scientific and Technical Information of China (English)

    BAI Yu-Lin; CHEN Xiang-Rong; YANG Xiang-Dong; LU Peng-Fei

    2004-01-01

    We introduce a first-principles density-functional theory, i.e. the finite-difference pseudopotential densityfunctional theory in real space and the Langevin molecular dynamics annealing technique, to the descriptions of structures and some properties of small carbon clusters (CN, N = 2 ~ 8). It is shown that the odd-numbered clusters have linear structures and most of the even-numbered clusters prefer cyclic structures.

  10. Formation of carbon nanotubes from a silicon carbide/carbon composite

    Science.gov (United States)

    Joshi, Ravi; Engstler, Jörg; Haridoss, Prathap; Schneider, Jörg J.

    2009-02-01

    The reaction of a SiC/C composite powder in an arcing plasma forms carbon nanotubes in good yield. Besides carbon nanotubes, a Si/C composite composed of β SiC covered with a shell of graphite is formed. The graphitic carbon surface layers of the carbon shell of this composite reacts further to form carbon nanotubes when heated to 600 °C. This process seems highly effective since only a small overall low weight loss, indicative for a complete carbon shell oxidation is observed by thermal analysis. The formation of the carbon nanotubes from SiC is unlikely since no SiO 2 has been found when heating the SiC/C core shell composite to its reaction temperature of 600 °C under O 2. The CNTs formed are of good quality with 3 to 6 concentric walls and high aspect ratio. Occasionally even single walled carbon naotubes have been observed.

  11. Efficiencies of Low-Mass Star and Star Cluster Formation

    OpenAIRE

    Matzner, Christopher D.; McKee, Christopher F.

    2000-01-01

    Using a quantitative model for bipolar outflows driven by hydromagnetic protostellar winds, we calculate the efficiency of star formation assuming that available gas is either converted into stars or ejected in outflows. We estimate the efficiency of a single star formation event in a protostellar core, finding 25%-70% for cores with various possible degrees of flattening. The core mass function and the stellar initial mass function have similar slopes, because the efficiency is not sensitive...

  12. Formation of a protocluster: A virialized structure from gravoturbulent collapse. I. Simulation of cluster formation in a collapsing molecular cloud

    Science.gov (United States)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Stars are often observed to form in clusters and it is therefore important to understand how such a region of concentrated mass is assembled out of the diffuse medium. The properties of such a region eventually prescribe the important physical mechanisms and determine the characteristics of the stellar cluster. Aims: We study the formation of a gaseous protocluster inside a molecular cloud and associate its internal properties with those of the parent cloud by varying the level of the initial turbulence of the cloud with a view to better characterize the subsequent stellar cluster formation. Methods: We performed high resolution magnetohydrodynamic (MHD) simulations of gaseous protoclusters forming in molecular clouds collapsing under self-gravity. We determined ellipsoidal cluster regions via gas kinematics and sink particle distribution, permitting us to determine the mass, size, and aspect ratio of the cluster. We studied the cluster properties, such as kinetic and gravitational energy, and made links to the parent cloud. Results: The gaseous protocluster is formed out of global collapse of a molecular cloud and has non-negligible rotation owing to angular momentum conservation during the collapse of the object. Most of the star formation occurs in this region, which occupies only a small volume fraction of the whole cloud. This dense entity is a result of the interplay between turbulence and gravity. We identify such regions in simulations and compare the gas and sink particles to observed star-forming clumps and embedded clusters, respectively. The gaseous protocluster inferred from simulation results presents a mass-size relation that is compatible with observations. We stress that the stellar cluster radius, although clearly correlated with the gas cluster radius, depends sensitively on its definition. Energy analysis is performed to confirm that the gaseous protocluster is a product of gravoturbulent reprocessing and that the support of turbulent

  13. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters.

    Science.gov (United States)

    Sun, Shengtong; Gebauer, Denis; Cölfen, Helmut

    2016-05-19

    A solvothermal method was developed for synthesizing organic monolayer protected amorphous calcium carbonate clusters using 10,12-pentacosadiynoic acid as ligand, ethanol as solvent and NaHCO3 decomposition as CO2 source, which can be extended to synthesize other monolayer protected mineral clusters. PMID:27161807

  14. Fragmentation of neutral carbon clusters formed by high velocity atomic collision

    International Nuclear Information System (INIS)

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  15. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane,carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  16. Policy interactions, risk and price formation in carbon markets

    International Nuclear Information System (INIS)

    Carbon pricing is an important mechanism for providing companies with incentives to invest in carbon abatement. Price formation in carbon markets involves a complex interplay between policy targets, dynamic technology costs, and market rules. Carbon pricing may under-deliver investment due to R and D externalities, requiring additional policies which themselves affect market prices. Also, abatement costs depend on the extent of technology deployment due to learning-by-doing. This paper introduces an analytical framework based on marginal abatement cost (MAC) curves with the aim of providing an intuitive understanding of the key dynamics and risk factors in carbon markets. The framework extends the usual static MAC representation of the market to incorporate policy interactions and some technology cost dynamics. The analysis indicates that supporting large-scale deployment of mature abatement technologies suppresses the marginal cost of abatement, sometimes to zero, whilst increasing total abatement costs. However, support for early stage R and D may reduce both total abatement cost and carbon price risk. An important aspect of the analysis is in elevating risk management considerations into energy policy formation, as the results of the stochastic modelling indicate wide distributions for the emergence of carbon prices and public costs around the policy expectations.

  17. Structure and stability of a silicon cluster on sequential doping with carbon atoms

    Science.gov (United States)

    AzeezullaNazrulla, Mohammed; Joshi, Krati; Israel, S.; Krishnamurty, Sailaja

    2016-02-01

    SiC is a highly stable material in bulk. On the other hand, alloys of silicon and carbon at nanoscale length are interesting from both technological as well fundamental view point and are being currently synthesized by various experimental groups (Truong et. al., 2015 [26]). In the present work, we identify a well-known silicon cluster viz., Si10 and dope it sequentially with carbon atoms. The evolution of electronic structure (spin state and the structural properties) on doping, the charge redistribution and structural properties are analyzed. It is interesting to note that the ground state SiC clusters prefer to be in the lowest spin state. Further, it is seen that carbon atoms are the electron rich centres while silicon atoms are electron deficient in every SiC alloy cluster. The carbon-carbon bond lengths in alloy clusters are equivalent to those seen in fullerene molecules. Interestingly, the carbon atoms tend to aggregate together with silicon atoms surrounding them by donating the charge. As a consequence, very few Si-Si bonds are noted with increasing concentrations of C atoms in a SiC alloy. Physical and chemical stability of doped clusters is studied by carrying out finite temperature behaviour and adsorbing O2 molecule on Si9C and Si8C2 clusters, respectively.

  18. Cluster center formation in neutron-damaged silicon

    International Nuclear Information System (INIS)

    The production of vacancy clusters in neutron-damaged silicon has been investigated by electron spin resonance. It is found that the production of P3 four vacancies and P6 di-interstitials is independent of oxygen concentration, suggesting that these defects are formed in the primary cascade. Approximately two P3 centers were formed per primary cascade independent of the primary mean recoil energy for irradiations in varying fast neutron spectra. This suggests that these defects are associated with the Brinkman spike which terminates the cascade. Low energy primaries from thermal neutron capture and subsequent gamma recoil are very inefficient in producing these centers

  19. Star formation and black hole accretion activity in rich local clusters of galaxies

    Science.gov (United States)

    Bianconi, Matteo; Marleau, Francine R.; Fadda, Dario

    2016-04-01

    Context. We present a study of star formation and central black hole accretion activity of galaxies that are hosted in the two nearby (z ~ 0.2) rich galaxy clusters Abell 983 and 1731. Aims: We aim to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy at 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations (~3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star-forming members of the two clusters present star formation rates that are comparable with those measured in coeval field galaxies. Analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with respect to the more uniform distribution of A983. The emerging picture is compatible with A983 being a fully evolved cluster, in contrast with the still actively accreting A1731. Conclusions: Analysis of the specific star formation rate reveals evidence of ongoing galaxy pre-processing along A1731's filament-like structure. Furthermore, the decrease in the number of star-forming galaxies and AGN towards the cluster cores suggests that the cluster environment is accelerating the ageing process of the galaxies and blocking further accretion of the cold gas that fuels both star formation and black hole accretion activity. The catalogue and the reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A105

  20. The regulation of star formation in cool-core clusters: imprints on the stellar populations of brightest cluster galaxies

    CERN Document Server

    Loubser, S I; Hoekstra, H; Mahdavi, A; Donahue, M; Bildfell, C; Voit, G M

    2015-01-01

    A fraction of brightest cluster galaxies (BCGs) shows bright emission in the UV and the blue part of the optical spectrum, which has been interpreted as evidence of recent star formation. Most of these results are based on the analysis of broadband photometric data. Here, we study the optical spectra of a sample of 19 BCGs hosted by X-ray luminous galaxy clusters at 0.15 < z < 0.3, a subset from the Canadian Cluster Comparison Project (CCCP) sample. We identify plausible star formation histories of the galaxies by fitting Simple Stellar Populations (SSPs) as well as composite populations, consisting of a young stellar component superimposed on an intermediate/old stellar component, to accurately constrain their star formation histories. We detect prominent young (~200 Myr) stellar populations in 4 of the 19 galaxies. Of the four, the BCG in Abell 1835 shows remarkable A-type stellar features indicating a relatively large population of young stars, which is extremely unusual even amongst star forming BCG...

  1. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    Directory of Open Access Journals (Sweden)

    S. Schobesberger

    2014-05-01

    Full Text Available The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3 and sulfuric acid (H2SO4. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 2SO4] from 3.3 × 106 to 1.4 × 109 cm−3, and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4 only form at [NH3] / [H2SO4]3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn, where n is in the range 4–18 (negatively charged clusters or 1–17 (positively charged clusters. For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on average by Δm / Δn = 1.05 and

  2. Eco-solvents--cluster-formation, surfactantless microemulsions and facilitated hydrotropy.

    Science.gov (United States)

    Klossek, Michael L; Touraud, Didier; Kunz, Werner

    2013-07-14

    In this paper we consider clusters in the ternary systems water-benzyl alcohol and ethanol, ethyl lactate or γ-valerolactone as found with the help of dynamic and static light scattering experiments. These ternary mixtures are powerful solvent media and consist only of low-toxic solvents of natural origin. In a recent work we have shown that surfactantless microemulsions are formed in the water-ethanol-n-octanol system. By contrast, in the systems studied here the sizes of the aggregates are too small to be considered as micelles. It can be postulated that the presence of clusters or larger structures as in surfactantless microemulsions is strongly influenced by the most hydrophobic compound. The phenomenon of facilitated hydrotropy is also investigated in the above-mentioned systems. In this context, ethanol is considered as the primary hydrotrope and the more hydrophobic benzyl alcohol as the facilitating secondary hydrotrope. The hydrophobic dye Disperse Red 13 is used as a marker of facilitated hydrotropy. The results suggest that the degree of self-association of eco-solvent has a significant influence on the hydrotropic efficiency of benzyl alcohol. PMID:23708062

  3. Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor

    International Nuclear Information System (INIS)

    Along with repeated implosions, the interior of an inertial fusion target chamber is exposed to short pulses of high-energy x-ray, unburned DT-fuel particles, He-ash and pellet debris. As a result, chamber wall materials are subjected to ablation, emitting particles in the plasma state. Ablated particles will either be re-deposited elsewhere or collide with each other, perhaps in the centre-of-symmetry region of the chamber volume. Colliding ablation plasma particles can lead to the formation of clusters to grow into aerosol, possibly floating thereafter, which can deteriorate the subsequent implosion performance via laser scattering, etc. In a laboratory-scale YAG laser setup, the formation of nano-scale aerosol has been demonstrated in vacuum at irradiation power densities of the orders of 108–10 W cm−2 at 10 Hz, each 6 ns long, simulating the high-repetition rate inertial fusion reactor situation. Interestingly, carbon aerosol formation has been observed in the form of fullerene onion, nano- and micro-tubes when laser-ablated plasma plumes of carbon collide with each other. In contrast, colliding plasma plumes of metals tend to generate aerosol in the form of droplets under identical laser irradiation conditions. An atomic and molecular reaction model is proposed to interpret the process of carbon allotrope aerosol formation. (letter)

  4. Formation of new stellar populations from gas accreted by massive young star clusters

    Science.gov (United States)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M.; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-01

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old ‘globular’ clusters—those with ages greater than ten billion years and masses several hundred thousand times that of the Sun—often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies’ gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  5. Feedback Regulated Star Formation: From Star Clusters to Galaxies

    CERN Document Server

    Dib, Sami

    2011-01-01

    This paper summarises results from semi-analytical modelling of star formation in protocluster clumps of different metallicities. In this model, gravitationally bound cores form uniformly in the clump following a prescribed core formation efficiency per unit time. After a contraction timescale which is equal to a few times their free-fall times, the cores collapse into stars and populate the IMF. Feedback from the newly formed OB stars is taken into account in the form of stellar winds. When the ratio of the effective wind energy of the winds to the gravitational energy of the system reaches unity, gas is removed from the clump and core and star formation are quenched. The power of the radiation driven winds has a strong dependence on metallicity and increases with increasing metallicity. Thus, winds from stars in the high metallicity models lead to a rapid evacuation of the gas from the protocluster clump and to a reduced star formation efficiency, SFE_{exp}, as compared to their low metallicity counterparts...

  6. Cluster formation in disordered systems and nuclear fragmentation

    International Nuclear Information System (INIS)

    We investigate an approach to the description of nuclear fragmentation relying on the concept of disorder which may characterise a fragmenting system of particles interacting by means of two-body short and long range potentials. We introduce different criteria in order to define clusters of bound nucleons. We work out the fragment content of events generated by means of numerical simulations. We analyse the moments of mass and charge distributions and related observables, as well as the energy content of the system. We discuss the outcome of the calculations in terms of the concept of universality which has been introduced in the field of nuclear fragmentation in the framework of percolation models. (orig.)

  7. Formation of carbon crystals from polymers using electron irradiation

    International Nuclear Information System (INIS)

    Polymers consist mainly of carbon and other atoms such as hydrogen, oxygen, fluorine and etc. Because of the gas evolution during irradiation, polymer is converted into the carbon-rich materials un deer electron as well as ion irradiation. Ions have more heavy mass than electron, so it could be easy to generate the defects through the collision between ion and polymer. But electrons are not nearly affected the formation of defects due to their light mass. Thus the crystals could be formed from the electron irradiated polymer. PMMA and PE, which are degraded and cross-linked upon electron beam irradiation respectively, are irradiated by electrons of low energy and high fluence in the vacuum. In order to investigate the properties of irradiated polymers changed by electron irradiation, Raman spectrometer, nanoidentor, X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM) are used. It reveals that the characteristic Raman bands of starting material are lost upon electron beam irradiation and the one-phonon bands near 1350 cm-1 (D line) and 1580 cm-1 (G line) of amorphous carbon appeared. Also the content of the sp2- and sp3 -bonded carbon which are related with electronic and mechanical properties in an amorphous carbon respectively, increases with fluence. And the surface hardness in the irradiated polymers increases as fluence increases in spite of the fact that PMMA has degrading property under irradiation especially. In the TEM observation, their diffraction patterns and high resolution lattice image show the formation of carbon crystals from polymer

  8. Lipid Reconstitution-Enabled Formation of Gold Nanoparticle Clusters for Mimetic Cellular Membrane

    OpenAIRE

    Jiyoung Nam; Yong-Tae Kim; Aeyeon Kang; Kook-Han Kim; KyoRee Lee; Wan Soo Yun; Yong Ho Kim

    2016-01-01

    Gold nanoparticles (AuNPs) encapsulated within reconstituted phospholipid bilayers have been utilized in various bioapplications due to their improved cellular uptake without compromising their advantages. Studies have proved that clustering AuNPs can enhance the efficacy of theranostic effects, but controllable aggregation or oligomerization of AuNPs within lipid membranes is still challenging. Here, we successfully demonstrate the formation of gold nanoparticle clusters (AuCLs), supported b...

  9. SUPERMASSIVE BLACK HOLE FORMATION VIA GAS ACCRETION IN NUCLEAR STELLAR CLUSTERS

    International Nuclear Information System (INIS)

    Black holes exceeding a billion solar masses have been detected at redshifts greater than six. The rapid formation of these objects may suggest a massive early seed or a period of growth faster than Eddington. Here we suggest a new mechanism along these lines. We propose that in the process of hierarchical structure assembly, dense star clusters can be contracted on dynamical timescales due to the nearly free-fall inflow of self-gravitating gas with a mass comparable to or larger than that of the clusters. This process increases the velocity dispersion to the point where the few remaining hard binaries can no longer effectively heat the cluster, and the cluster goes into a period of homologous core collapse. The cluster core can then reach a central density high enough for fast mergers of stellar-mass black holes and hence the rapid production of a black hole seed that could be 105 Msun or larger.

  10. A study of defect cluster formation in vanadium by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sekimura, Naoto; Shirao, Yasuyuki; Morishita, Kazunori [Tokyo Univ. (Japan)

    1996-10-01

    Formation of defect clusters in thin foils of vanadium was investigated by heavy ion irradiation. In the very thin region of the specimens less than 20 nm, vacancy clusters were formed under gold ion irradiation, while very few clusters were detected in the specimens irradiated with 200 and 400 keV self-ions up to 1 x 10{sup 16} ions/m{sup 2}. The density of vacancy clusters were found to be strongly dependent on ion energy. Only above the critical value of kinetic energy transfer density in vanadium, vacancy clusters are considered to be formed in the cascade damage from which interstitials can escape to the specimen surface in the very thin region. (author)

  11. Star formation trends in the unrelaxed, post-merger cluster A2255

    International Nuclear Information System (INIS)

    The effects of dense environments on normal field galaxies are still up for debate despite much study since Abell published his catalog of nearby clusters in 1958. There are changes in color, morphology, and star formation properties when galaxies fall into groups and clusters, but the specifics of how and where these modifications occur are not fully understood. To look for answers, we focused on star-forming galaxies in A2255, an unrelaxed cluster thought to have recently experienced a merger with another cluster or large group. We used Hα, MIPS 24 μm, and WISE 22 μm to estimate total star formation rates (SFRs) and Sloan Digital Sky Survey photometry to find stellar masses (M *) for galaxies out to ∼5 r 200. We compared the star-forming cluster galaxies with the field SFR-mass distribution and found no enhancement or suppression of star formation in currently star-forming galaxies of high mass (log (M */M ☉) ≳ 10). This conclusion holds out to very large distances from the cluster center. However, the core (r proj < 3 Mpc) has a much lower fraction of star-forming galaxies than anywhere else in the cluster. These results indicate that for the mass range studied here, the majority of the star formation suppression occurs in the core on relatively short timescales, without any enhancement prior to entering the central region. If any significant enhancement or quenching of star formation occurs, it will be in galaxies of lower mass (log (M */M ☉) < 10).

  12. Formation of new stellar populations from gas accreted by massive young star clusters

    CERN Document Server

    Li, Chengyuan; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguere, Claude-Andre

    2016-01-01

    Stars in star clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old globular clusters -- with ages greater than 10 billion years and masses of several hundred thousand solar masses -- often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often invoked as second-generation star-formation trigger. The initial cluster masses should be at least 10 times more massive than they are today for this to work. However, large populations of clusters with masses greater than a few million solar masses are not found in the local Universe. Here we report on three 1-2 billion-year-old, massive star clusters in the Magellanic Clouds, which show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could accrete sufficient gas ...

  13. Star cluster formation with stellar feedback and large-scale inflow

    CERN Document Server

    Matzner, Christopher D

    2015-01-01

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present, and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when its column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South, and with the dust temperatures observed in regions of massive star fo...

  14. Formation of fullerene clusters in the system C{sub 60}/NMP/water by SANS

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, V.L. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation)]. E-mail: aksenov@nf.jinr.ru; Avdeev, M.V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Tropin, T.V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Korobov, M.V. [Department of Chemistry, Moscow State University (Russian Federation); Kozhemyakina, N.V. [Department of Chemistry, Moscow State University (Russian Federation); Avramenko, N.V. [Department of Chemistry, Moscow State University (Russian Federation); Rosta, L. [Research Institute for Solid State Physics and Optics, Budapest (Hungary)

    2006-11-15

    Solutions of fullerenes in nitrogen-containing solvents constitute a specific class characterized by the formation of fullerene clusters. In the given work, we report the effect of cluster rearrangement in the system C{sub 60}/N-methylpyrrolidone (NMP) after addition of water (miscible with NMP) as observed by small-angle neutron scattering (SANS). The effect has a critical character and takes place if the water relative content is higher than 40%. Despite a small scattering signal, estimates of the mean scattering length density of the clusters by SANS contrast variation can be done.

  15. Formation of fullerene clusters in the system C60/NMP/water by SANS

    International Nuclear Information System (INIS)

    Solutions of fullerenes in nitrogen-containing solvents constitute a specific class characterized by the formation of fullerene clusters. In the given work, we report the effect of cluster rearrangement in the system C60/N-methylpyrrolidone (NMP) after addition of water (miscible with NMP) as observed by small-angle neutron scattering (SANS). The effect has a critical character and takes place if the water relative content is higher than 40%. Despite a small scattering signal, estimates of the mean scattering length density of the clusters by SANS contrast variation can be done

  16. Stability of Galactic Gaseous Disks and the Formation of Massive Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Escala, Andres; Larson, Richard B.

    2008-08-21

    We study gravitational instabilities in disks, with special attention to the most massive clumps that form because they are expected to be the progenitors of globular-type clusters. The maximum unstable mass is set by rotation and depends only on the surface density and orbital frequency of the disk. We propose that the formation of massive clusters is related to this largest scale in galaxies not stabilized by rotation. Using data from the literature, we predict that globular-like clusters can form in nuclear starburst disks and protogalactic disks but not in typical spiral galaxies, in agreement with observations.

  17. Catalytic Formation of Propylene Carbonate from Supercritical Carbon Dioxide/Propylene Oxide Mixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylammon-ium bromide (n-Bu4NBr) as catalyst. The high rate of reaction was attributed to rapid diffusion and the high miscibility of propylene oxide in SC-CO2 under employed conditions. Various reaction periods present different formation rate of propylene carbonate, mainly due to the existence of phase change during the reaction. The experimental results demonstrate that SC-CO2 could be used as not only an environmentally benign solvent but also a carbon precursor in synthesis.

  18. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates

    Science.gov (United States)

    Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten; Emmerling, Franziska; Tremel, Wolfgang

    2011-03-01

    During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed.During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. Electronic supplementary information (ESI) available: (S1 and S5) TEM at higher magnifications and of crystallizations conducted at pH = 6.0, 9.0 and 11.3; (S2) sketch of a spreading liquid particle on a TEM grid; (S3) wide-angle scattering of BaCO3 and CdCO3; (S4 and S6-S9) ESI-MS spectra of a solution of carbon dioxide and of bicarbonates of Sr, Ba, Pb, Mn and Cd. See DOI: 10.1039/c0nr00761g

  19. Atomic-scale study of the role of carbon on boron clustering

    International Nuclear Information System (INIS)

    Boron (BF2, 20 keV, 3.14/cm2) and carbon (13 keV, 1015/cm2) implanted silicon annealed at 800 oC during 30 min or at 1000 oC during 10 s has been investigated using a laser-assisted wide-angle tomographic atom probe (LaWaTAP) instrument. Boron-silicon clusters containing ∼ 1.3 at.% of boron atoms have been observed in boron implanted silicon with a concentration exceeding the solubility limit. Often identified as BICs, they are interpreted as a metastable phase. Furthermore, addition of carbon clearly reduced the clustering of boron. This was interpreted as a diminution of boron diffusion or as an increase of the solubility limit of boron. Carbon-silicon clusters containing ∼ 1.5 at.% of carbon atoms were observed, maybe the precursors of the SiC phase.

  20. Formation of Reversible Clusters with Controlled Degree of Aggregation.

    Science.gov (United States)

    Lotfizadeh, Saba; Aljama, Hassan; Reilly, Dan; Matsoukas, Themis

    2016-05-17

    We develop a reversible colloidal system of silica nanoparticles whose state of aggregation is controlled reproducibly from a state of fully dispersed nanoparticles to that of a colloidal gel and back. The surface of silica nanoparticles is coated with various amino silanes to identify a silane capable of forming a monolayer on the surface of the particles without causing irreversible aggregation. Of the three silanes used in this study, N-[3-(trimethoxysilyl)propyl]ethylenediamine was found to be capable of producing monolayers up to full surface coverage without inducing irreversible aggregation of the nanoparticles. At near full surface coverage the electrokinetic behavior of the functionalized silica is completely determined by that of the aminosilane. At acidic pH the ionization of the amino groups provides electrosteric stabilization and the system is fully dispersed. At basic pH, the dispersion state is dominated by the hydrophobic interaction between the uncharged aminosilane chains in the aqueous environment and the system forms a colloidal gel. At intermediate pH values the dispersion state is dominated by the balance between electrostatic and hydrophobic interactions, and the system exists in clusters whose size is determined solely by the pH. The transformation between states of aggregation is reversible and a reproducible function of pH. The rate of gelation can be controlled to be as fast as minutes while deaggregation is much slower and takes several hours to complete. PMID:27124089

  1. A Blind Equalizer Based on Unsupervised Gaussian Cluster Formation with an Adaptive Non—Linearity

    Institute of Scientific and Technical Information of China (English)

    LiuHanyu; TongWen; 等

    1997-01-01

    In this paper we present a blind equalizer algorithm based on an unsupervised Gaussian cluster formation technique with an optimized gradient adaptive step-size to update the equalizer coefficients.The novelty of this work lies in the optimization of the nonlinearity of the cluster formation used to achieve an optimal soft decision.The proposed iterative procedure combined with the variable step-size gradient-based adaptation,significantly accelerates the convergence speed of the blind equalization.The advantages of the proposed equalization techniques are illustrated by simulation.Simulation results obtained are compared with the Sato and Godard blind equalizers.

  2. Formation of a "Cluster Molecule" (C20)2 and its thermal stability

    OpenAIRE

    Podlivaev, A. I.; Openov, L. A.

    2006-01-01

    The possible formation of a "cluster molecule" (C20)2 from two single C20 fullerenes is studied by the tight-binding method. Several (C20)2 isomers in which C20 fullerenes are bound by strong covalent forces and retain their identity are found; actually, these C20 fullerenes play the role of "atoms" in the "cluster molecule". The so-called open-[2+2] isomer has a minimum energy. Its formation path and thermal stability at T = 2000 - 4000 K are analyzed in detail. This isomer loses its molecul...

  3. Molecular dynamics study of crater formation by core-shell structured cluster impact

    Science.gov (United States)

    Aoki, Takaaki; Seki, Toshio; Matsuo, Jiro

    2012-07-01

    Crater formation processes by the impacts of large clusters with binary atomic species were studied using molecular dynamics (MD) simulations. Argon and xenon atoms are artificially organized in core-shell cluster structures with various component ratios and irradiated on a Si(1 0 0) target surface. When the cluster has Xe1000 core covered with 1000 Ar atoms, and impacts at a total of 20 keV, the core Xe cluster penetrates into the deep area, and a crater with a conical shape is left on the target. On the other hand, in the case of a cluster with the opposite structure, Ar1000 core covered with 1000 Xe atoms, the cluster stops at a shallow area of the target. The incident cluster atoms are mixed and tend to spread in a lateral direction, which results in a square shaped crater with a shallower hole and wider opening. The MD simulations suggest that large cluster impacts cause different irradiation effects by changing the structure, even if the component ratio is the same.

  4. Formation and evolution properties of clusters in liquid metal copper during rapid cooling processes

    Institute of Scientific and Technical Information of China (English)

    YI Xue-hua; LIU Rang-su; TIAN Ze-an; HOU Zhao-yang; LI Xiao-yang; ZHOU Qun-yi

    2008-01-01

    Based on the quantum Sutton-Chen many-body potential, a molecular dynamics simulation was performed to investigate the formation and evolution properties of clusters in liquid Cu with 50 000 atoms. The cluster-type index method(CTIM) was used to describe the complex microstructure transitions. It is demonstrated that the amorphous structures are mainly formed with the three bond-types of 1551, 1541 and 1431 in the system, and the icosahedral cluster (12 0 12 0) and other basic polyhedron clusters of (12 2 8 2), (13 1 10 2), (13 3 6 4), (14 1 10 3), (14 2 8 4) and (14 3 6 5) play a critical and leading role in the transition from liquid to glass. The nano-clusters formed in the system consist of some basic clusters and middle cluster configurations by connecting to each other, and distinguish from those obtained by gaseous deposition and ionic spray. From the results of structural parameter pair distribution function g(r), bond-types and basic cluster-types, it is found that the glass transition temperature Tg for liquid metal Cu is about 673 K at the cooling rate of 1.0×1014 K/s.

  5. Molecular dynamics study of crater formation by core-shell structured cluster impact

    International Nuclear Information System (INIS)

    Crater formation processes by the impacts of large clusters with binary atomic species were studied using molecular dynamics (MD) simulations. Argon and xenon atoms are artificially organized in core-shell cluster structures with various component ratios and irradiated on a Si(1 0 0) target surface. When the cluster has Xe1000 core covered with 1000 Ar atoms, and impacts at a total of 20 keV, the core Xe cluster penetrates into the deep area, and a crater with a conical shape is left on the target. On the other hand, in the case of a cluster with the opposite structure, Ar1000 core covered with 1000 Xe atoms, the cluster stops at a shallow area of the target. The incident cluster atoms are mixed and tend to spread in a lateral direction, which results in a square shaped crater with a shallower hole and wider opening. The MD simulations suggest that large cluster impacts cause different irradiation effects by changing the structure, even if the component ratio is the same.

  6. FORMATION AND EVOLUTION OF NUCLEAR STAR CLUSTERS WITH IN SITU STAR FORMATION: NUCLEAR CORES AND AGE SEGREGATION

    International Nuclear Information System (INIS)

    Nuclear stellar cluster (NSCs) are known to exist around massive black holes (MBHs) in galactic nuclei. Two formation scenarios were suggested for their origin: (1) buildup of NSCs from consecutive infall of stellar clusters and (2) continuous in situ star formation. Though the cluster infall scenario has been extensively studied, the in situ formation scenario has been hardly explored. Here we use Fokker-Planck (FP) calculations to study the effects of star formation on the buildup of NSCs and its implications for their long-term evolution and their resulting structure. We use the FP equation to describe the evolution of stellar populations and add appropriate source terms to account for the effects of newly formed stars. We show that continuous star formation even 1-2 pc away from the MBH can lead to the buildup of an NSC with properties similar to those of the Milky Way NSC. We find that the structure of the old stellar population in the NSC with in situ star formation could be very similar to the steady-state Bahcall-Wolf cuspy structure. However, its younger populations do not yet achieve a steady state. In particular, formed/evolved NSCs with in situ star formation contain differential age-segregated stellar populations that are not yet fully mixed. Younger stellar populations formed in the outer regions of the NSC have a cuspy structure toward the NSC outskirts, while showing a core-like distribution inward, with younger populations having larger core sizes. In principal, such a structure can give rise to an apparent core-like radial distribution of younger stars, as observed in the Galactic center

  7. Major contribution of neutral clusters to new particle formation in the free troposphere

    Directory of Open Access Journals (Sweden)

    C. Rose

    2014-07-01

    Full Text Available The formation of new aerosol particles in the atmosphere is a key process influencing the aerosol number concentration as well as the climate, in particular in the free troposphere (FT where the newly formed particles directly influence cloud formation. However, free tropospheric new particle formation (NPF is poorly documented due to logistic limitations and complex atmospheric dynamics around high altitude stations that make the observation of this day-time process challenging. Recent improvements in measurement techniques make now possible the detection of neutral clusters down to ~ 1 nm sizes, which opens new horizons in our understanding of the nucleation process. Indeed, only the charged fraction of clusters has been reported in the upper troposphere up to now. Here we report observations of charged and neutral clusters (1 to 2.5 nm mobility diameter during day-time free tropospheric conditions at the altitude site of Puy de Dôme (1465 m a.s.l., central France, between 10 and 29 February 2012. Our findings demonstrate that in the free troposphere, the formation of 1.5 nm neutral clusters is about 40 times higher than the one of ionic clusters during NPF events, indicating that they dominate in the nucleation process. We also observe that the total cluster concentration increases by a factor of 5.5 during NPF events compared to the other days, which was not clearly observed for the charged cluster population in the past. In the FT, the nucleation process does not seem to be sulphuric acid-limited, as previously suggested, and could be promoted by the transport of pollutants to the upper troposphere.

  8. Are globular clusters the natural outcome of regular high-redshift star formation?

    CERN Document Server

    Kruijssen, J M Diederik

    2015-01-01

    We summarise some of the recent progress in understanding the formation and evolution of globular clusters (GCs) in the context of galaxy formation and evolution. It is discussed that an end-to-end model for GC formation and evolution should capture four different phases: (1) star and cluster formation in the high-pressure interstellar medium of high-redshift galaxies, (2) cluster disruption by tidal shocks in the gas-rich host galaxy disc, (3) cluster migration into the galaxy halo, and (4) the final evaporation-dominated evolution of GCs until the present day. Previous models have mainly focussed on phase 4. We present and discuss a simple model that includes each of these four steps - its key difference with respect to previous work is the simultaneous addition of the high-redshift formation and early evolution of young GCs, as well as their migration into galaxy haloes. The new model provides an excellent match to the observed GC mass spectrum and specific frequency, as well as the relations of GCs to the...

  9. THE RICH GLOBULAR CLUSTER SYSTEM OF ABELL 1689 AND THE RADIAL DEPENDENCE OF THE GLOBULAR CLUSTER FORMATION EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    Alamo-Martínez, K. A.; González-Lópezlira, R. A. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090 (Mexico); Blakeslee, J. P.; Côté, P.; Ferrarese, L. [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Jee, M. J. [Department of Physics, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Jordán, A. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, 7820436 Macul, Santiago (Chile); Meurer, G. R. [International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Peng, E. W. [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); West, M. J., E-mail: k.alamo@crya.unam.mx [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago (Chile)

    2013-09-20

    We study the rich globular cluster (GC) system in the center of the massive cluster of galaxies Abell 1689 (z = 0.18), one of the most powerful gravitational lenses known. With 28 Hubble Space Telescope/Advanced Camera for Surveys orbits in the F814W bandpass, we reach a magnitude I{sub 814} = 29 with ∼>90% completeness and sample the brightest ∼5% of the GC system. Assuming the well-known Gaussian form of the GC luminosity function (GCLF), we estimate a total population of N{sup total}{sub GC}= 162,850{sup +75,450}{sub -51,310} GCs within a projected radius of 400 kpc. As many as half of the GCs may comprise an intracluster component. Even with the sizable uncertainties, which mainly result from the uncertain GCLF parameters, this system is by far the largest GC population studied to date. The specific frequency S{sub N} is high, but not uncommon for central galaxies in massive clusters, rising from S{sub N} ≈ 5 near the center to ∼12 at large radii. Passive galaxy fading would increase S{sub N} by ∼20% at z = 0. We construct the radial mass profiles of the GCs, stars, intracluster gas, and lensing-derived total mass, and we compare the mass fractions as a function of radius. The estimated mass in GCs, M{sub GC}{sup total} = 3.9 × 10{sup 10} M{sub ☉}, is comparable to ∼80% of the total stellar mass of the Milky Way. The shape of the GC mass profile appears intermediate between those of the stellar light and total cluster mass. Despite the extreme nature of this system, the ratios of the GC mass to the baryonic and total masses, and thus the GC formation efficiency, are typical of those in other rich clusters when comparing at the same physical radii. The GC formation efficiency is not constant, but varies with radius, in a manner that appears similar for different clusters; we speculate on the reasons for this similarity in profile.

  10. Formation of the Fe-S cluster of ferredoxin in lysed spinach chloroplasts

    International Nuclear Information System (INIS)

    In vitro formation of the 35S-labeled Fe-S cluster of ferredoxin (Fd) has been achieved by incubating apo-Fd and [35S]cysteine with osmotically lysed chloroplasts of spinach (Spinacia oleracea). Correct integration of the 35S-labeled Fe-S cluster into Fd was verified on the basis of the following: (a) Under nondenaturing conditions, 35S-labeled holo-Fd showed the same electrophoretic mobility as authentic holo-Fd; (b) 35S-labeled holo-Fd showed an ability to bind Fd-NADP+ reductase; (c) the 35S-labeled moiety was removed from the Fd polypeptide by TCA treatment but not by 2-mercaptoethanol treatment; (d) externally added pea II apo-Fd was converted to 35S-labeled holo-Fd. This reconstitution was dependent on both ATP and light, and formation of the 35S-labeled Fe-S cluster was observed upon addition of ATP or when an ATP generation-system was constructed in the light. In contrast, ATP-consuming systems abolished the Fe-S cluster formation. A non-hydrolyzable ATP analog was unable to serve as an ATP substitute, indicating the requirement of ATP hydrolysis for cluster formation. GTP was able to substitute for ATP, but CTP and UTP were less effective. Fe-S cluster formation in lysed chloroplasts was stimulated by light even in the presence of added ATP. Light stimulation was inhibited by DCMU or methyl viologen but not by NH4+. NADPH was able to substitute for light, indicating that light energy is required for the production of reducing compounds such as NADPH in addition to the generation of ATP

  11. Effects of Cooling and Star Formation on the Baryon Fractions in Clusters

    Science.gov (United States)

    Kravtsov, Andrey V.; Nagai, Daisuke; Vikhlinin, Alexey A.

    2005-06-01

    We study the effects of radiative cooling and galaxy formation on the baryon fractions in clusters using high-resolution cosmological simulations that resolve formation of cluster galaxies. The simulations of nine individual clusters spanning a decade in mass are performed with the shock-capturing Eulerian adaptive mesh refinement N-body+gasdynamical Adaptive Refinement Tree code. For each cluster the simulations were done in the adiabatic regime (without dissipation) and with radiative cooling and several physical processes critical to various aspects of galaxy formation: star formation, metal enrichment, and stellar feedback. We show that radiative cooling of gas and associated star formation increase the total baryon fractions within radii as large as the virial radius. The effect is strongest within cluster cores, where the simulations with cooling have baryon fractions larger than the universal value, in contrast to the adiabatic simulations in which the fraction of baryons is substantially smaller than the universal value. At larger radii (r>~r500) the cumulative baryon fractions in simulations with cooling are close to the universal value. The gas fractions in simulations with dissipation are reduced by ~20%-40% at rentropy-conserving smoothed particle hydrodynamics (SPH) code Gadget. The cumulative gas fraction profiles in the two sets of simulations on average agree to better than ~3% outside the cluster core (r/rvir>~0.2) but differ by up to 10% at small radii. The differences are smaller than those found in previous comparisons of Eulerian and SPH simulations. Nevertheless, they are systematic and have to be kept in mind when using gas fractions from cosmological simulations.

  12. Star and Stellar Cluster Formation: ALMA-SKA Synergies

    CERN Document Server

    Fuller, G A; Rathborne, J M; Longmore, S; Molinari, S

    2015-01-01

    Over the next decade, observations conducted with ALMA and the SKA will reveal the process of mass assembly and accretion onto young stars and will be revolutionary for studies of star formation. Here we summarise the capabilities of ALMA and discuss recent results from its early science observations. We then review infrared and radio variability observations of both young low-mass and high-mass stars. A time domain SKA radio continuum survey of star forming regions is then outlined. This survey will produce radio light-curves for hundreds of young sources, providing for the first time a systematic survey of radio variability across the full range of stellar masses. These light-curves will probe the magnetospheric interactions of young binary systems, the origins of outflows, trace episodic accretion on the central sources and potentially constrain the rotation rates of embedded sources.

  13. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon

    Directory of Open Access Journals (Sweden)

    M. Schartau

    2007-01-01

    Full Text Available During phytoplankton growth a fraction of dissolved inorganic carbon (DIC assimilated by phytoplankton is exuded in the form of dissolved organic carbon (DOC, which can be transformed into extracellular particulate organic carbon (POC. A major fraction of extracellular POC is associated with carbon of transparent exopolymer particles (TEP; carbon content = TEPC that form from dissolved polysaccharides (PCHO. The exudation of PCHO is linked to an excessive uptake of DIC that is not directly quantifiable from utilisation of dissolved inorganic nitrogen (DIN, called carbon overconsumption. Given these conditions, the concept of assuming a constant stoichiometric carbon-to-nitrogen (C:N ratio for estimating new production of POC from DIN uptake becomes inappropriate. Here, a model of carbon overconsumption is analysed, combining phytoplankton growth with TEPC formation. The model describes two modes of carbon overconsumption. The first mode is associated with DOC exudation during phytoplankton biomass accumulation. The second mode is decoupled from algal growth, but leads to a continuous rise in POC while particulate organic nitrogen (PON remains constant. While including PCHO coagulation, the model goes beyond a purely physiological explanation of building up carbon rich particulate organic matter (POM. The model is validated against observations from a mesocosm study. Maximum likelihood estimates of model parameters, such as nitrogen- and carbon loss rates of phytoplankton, are determined. The optimisation yields results with higher rates for carbon exudation than for the loss of organic nitrogen. It also suggests that the PCHO fraction of exuded DOC was 63±20% during the mesocosm experiment. Optimal estimates are obtained for coagulation kernels for PCHO transformation into TEPC. Model state estimates are consistent with observations, where 30% of the POC increase was attributed to TEPC formation. The proposed model is of low complexity and is

  14. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon

    Directory of Open Access Journals (Sweden)

    C. Völker

    2007-07-01

    Full Text Available During phytoplankton growth a fraction of dissolved inorganic carbon (DIC assimilated by phytoplankton is exuded in the form of dissolved organic carbon (DOC, which can be transformed into extracellular particulate organic carbon (POC. A major fraction of extracellular POC is associated with carbon of transparent exopolymer particles (TEP; carbon content = TEPC that form from dissolved polysaccharides (PCHO. The exudation of PCHO is linked to an excessive uptake of DIC that is not directly quantifiable from utilisation of dissolved inorganic nitrogen (DIN, called carbon overconsumption. Given these conditions, the concept of assuming a constant stoichiometric carbon-to-nitrogen (C:N ratio for estimating new production of POC from DIN uptake becomes inappropriate. Here, a model of carbon overconsumption is analysed, combining phytoplankton growth with TEPC formation. The model describes two modes of carbon overconsumption. The first mode is associated with DOC exudation during phytoplankton biomass accumulation. The second mode is decoupled from algal growth, but leads to a continuous rise in POC while particulate organic nitrogen (PON remains constant. While including PCHO coagulation, the model goes beyond a purely physiological explanation of building up carbon rich particulate organic matter (POM. The model is validated against observations from a mesocosm study. Maximum likelihood estimates of model parameters, such as nitrogen- and carbon loss rates of phytoplankton, are determined. The optimisation yields results with higher rates for carbon exudation than for the loss of organic nitrogen. It also suggests that the PCHO fraction of exuded DOC was 63±20% during the mesocosm experiment. Optimal estimates are obtained for coagulation kernels for PCHO transformation into TEPC. Model state estimates are consistent with observations, where 30% of the POC increase was attributed to TEPC formation. The proposed model is of low complexity and is

  15. Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions

    CERN Document Server

    Kürten, Andreas; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S; Kulmala, Markku; Worsnop, Douglas R; Curtius, Joachim

    2014-01-01

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even tho...

  16. The formation history of massive cluster galaxies as revealed by CARLA

    CERN Document Server

    Cooke, E A; Rettura, A; Wylezalek, D; Galametz, A; Stern, D; Brodwin, M; Muldrew, S I; Almaini, O; Conselice, C J; Eisenhardt, P R; Hartley, W G; Jarvis, M; Seymour, N; Stanford, S A

    2015-01-01

    We use a sample of 37 of the densest clusters and protoclusters across $1.3 \\le z \\le 3.2$ from the Clusters Around Radio-Loud AGN (CARLA) survey to study the formation of massive cluster galaxies. We use optical $i'$-band and infrared 3.6$\\mu$m and 4.5$\\mu$m images to statistically select sources within these protoclusters and measure their median observed colours; $\\langle i'-[3.6] \\rangle$. We find the abundance of massive galaxies within the protoclusters increases with decreasing redshift, suggesting these objects may form an evolutionary sequence, with the lower redshift clusters in the sample having similar properties to the descendants of the high redshift protoclusters. We find that the protocluster galaxies have an approximately unevolving observed-frame $i'-[3.6]$ colour across the examined redshift range. We compare the evolution of the $\\langle i'-[3.6] \\rangle$ colour of massive cluster galaxies with simplistic galaxy formation models. Taking the full cluster population into account, we show tha...

  17. Star formation and black hole accretion activity in rich local clusters of galaxies

    CERN Document Server

    Bianconi, Matteo; Fadda, Dario

    2016-01-01

    We present a study of the star formation and central black hole accretion activity of the galaxies hosted in the two nearby (z$\\sim$0.2) rich galaxy clusters Abell 983 and 1731. Aims: We are able to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy @ 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations ($\\sim$ 3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star forming members of the two clusters present star formation rates comparable with those measured in coeval field galaxies. The analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with re...

  18. Architecture and Channel-Belt Clustering in the Fluvial lower Wasatch Formation, Uinta Basin, Utah

    Science.gov (United States)

    Pisel, J. R.; Pyles, D. R.; Bracken, B.; Rosenbaum, C. D.

    2013-12-01

    The Eocene lower Wasatch Formation of the Uinta Basin contains exceptional outcrops of low net-sand content (27% sand) fluvial strata. This study quantitatively documents the stratigraphy of a 7 km wide by 300 meter thick strike-oriented outcrop in order to develop a quantitative data base that can be used to improve our knowledge of how some fluvial systems evolve over geologic time scales. Data used to document the outcrop are: (1) 550 meters of decimeter to half meter scale resolution stratigraphic columns that document grain size and physical sedimentary structures; (2) detailed photopanels used to document architectural style and lithofacies types in the outcrop; (3) thickness, width, and spatial position for all channel belts in the outcrop, and (4) directional measurements of paleocurrent indicators. Two channel-belt styles are recognized: lateral and downstream accreting channel belts; both of which occur as either single or multi-story. Floodplain strata are well exposed and consist of overbank fines and sand-rich crevasse splay deposits. Key upward and lateral characteristics of the outcrop documented herein are the following. First, the shapes of 243 channels are documented. The average width, thickness and aspect ratios of the channel belts are 110 m, 7 m, and 16:1, respectively. Importantly, the size and shape of channel belts does not change upward through the 300 meter transect. Second, channels are documented to spatially cluster. 9 clusters are documented using a spatial statistic. Key upward patterns in channel belt clustering are a marked change from non-amalgamated isolated channel-belt clusters to amalgamated channel-belt clusters. Critically, stratal surfaces can be correlated from mudstone units within the clusters to time-equivalent floodplain strata adjacent to the cluster demonstrating that clusters are not confined within fluvial valleys. Finally, proportions of floodplain and channel belt elements underlying clusters and channel belts

  19. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    International Nuclear Information System (INIS)

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M☉. This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s–1) and perhaps a lower-velocity (∼10 km s–1) wind with an opening angle of about 20° from the jet axis.

  20. Deep Mixing and Metallicity: Carbon Depletion in Globular Cluster Giants

    OpenAIRE

    Martell, Sarah L.; Smith, Graeme H.; Briley, Michael M.

    2008-01-01

    We present the results of an observational study of the efficiency of deep mixing in globular cluster red giants as a function of stellar metallicity. We determine [C/Fe] abundances based on low-resolution spectra taken with the Kast spectrograph on the 3m Shane telescope at Lick Observatory. Spectra centered on the 4300 Angstrom CH absorption band were taken for 42 bright red giants in 11 Galactic globular clusters ranging in metallicity from M92 ([Fe/H]=-2.29) to NGC 6712 ([Fe/H]=-1.01). Ca...

  1. Formation of a massive black hole in the centre of a dense stellar cluster

    International Nuclear Information System (INIS)

    The evolution of a disc-like subcluster of low-mass stars formed of the gas released in inelastic stellar collisions in a dense stellar cluster is investigated. The subcluster evolution due to elastic and inelastic collisions between disc and cluster stars and of the cluster stars with one another are taken inot consideration. the processes of possible disc stellar mass rise owing to coalescences of disc stars is shown to be unimortant, hence the subcluster stellar mass remains low over the whole period of subcluster evolution, until instability coming. The contraction of self-gravitating subcluster of new stars after the instability moment is considered. It is shown that the dynamical friction can be an important mechanism of angular momentum loss during the subcluster contraction. It is shown that subcluster collapse leads to massive black hole formation, its mass being ε7/12 of the cluster mass (where ε is ellipticity)

  2. Formation of binary ion clusters from polar vapours: Effect of the dipole-charge interaction

    Directory of Open Access Journals (Sweden)

    A. B. Nadykto

    2003-10-01

    Full Text Available Formation of binary cluster ions from polar vapours is considered. The effect of vapour polarity on the size and composition of the critical clusters is investigated theoretically and a corrected version of classical Kelvin-Thomson theory of binary ion-induced nucleation is derived. The model predictions of the derived theory are compared to the results given by classical binary homogeneous nucleation theory and ion-induced nucleation theory. The calculations are performed in wide range of the ambient conditions for a system composed of sulfuric acid and water vapour. It is shown that dipole-charge interaction significantly decreases the size of the critical clusters, especially under the atmospheric conditions when the size of critical clusters is predicted to be small.

  3. Formation of binary ion clusters from polar vapours: effect of the dipole-charge interaction

    Directory of Open Access Journals (Sweden)

    A. B. Nadykto

    2004-01-01

    Full Text Available Formation of binary cluster ions from polar vapours is considered. The effect of vapour polarity on the size and composition of the critical clusters is investigated theoretically and a corrected version of classical Kelvin-Thomson theory of binary ion-induced nucleation is derived. The model predictions of the derived theory are compared to the results given by classical binary homogeneous nucleation theory and ion-induced nucleation theory. The calculations are performed in wide range of the ambient conditions for a system composed of sulfuric acid and water vapour. It is shown that dipole-charge interaction significantly decreases the size of the critical clusters, especially under the atmospheric conditions when the size of critical clusters is predicted to be small.

  4. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    International Nuclear Information System (INIS)

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  5. A new methodology to test galaxy formation models using the dependence of clustering on stellar mass

    CERN Document Server

    Campbell, David J R; Mitchell, Peter D; Helly, John C; Gonzalez-Perez, Violeta; Lacey, Cedric G; Lagos, Claudia del P; Simha, Vimal; Farrow, Daniel J

    2014-01-01

    We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a new high resolution, large volume N-body simulation, set in the WMAP7 cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highligh...

  6. Progressive star formation in the young galactic super star cluster NGC 3603

    CERN Document Server

    Beccari, Giacomo; De Marchi, Guido; Paresce, Francesco; Young, Erick; Andersen, Morten; Panagia, Nino; Balick, Bruce; Bond, Howard; Calzetti, Daniela; Carollo, C Marcella; Disney, Michael J; Dopita, Michael A; Frogel, Jay A; Hall, Donald N B; Holtzman, Jon A; Kimble, Randy A; McCarthy, Patrick J; O'Connell, Robert W; Saha, Abhijit; Silk, Joseph I; Trauger, John T; Walker, Alistair R; Whitmore, Bradley C; Windhorst, Rogier A

    2010-01-01

    Early release science observations of the cluster NGC3603 with the WFC3 on the refurbished HST allow us to study its recent star formation history. Our analysis focuses on stars with Halpha excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Halpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  7. Inherent-opening-controlled pattern formation in carbon nanotube arrays

    OpenAIRE

    Huang, Xiao; Zhou, Jijie J.; Sansom, Elijah; Gharib, Morteza; Haur, Sow Chorng

    2007-01-01

    We have introduced inherent openings into densely packed carbon nanotube arrays to study self-organized pattern formation when the arrays undergo a wetting–dewetting treatment from nanotube tips. These inherent openings, made of circular or elongated hollows in nanotube mats, serve as dewetting centres, from where liquid recedes from. As the dewetting centres initiate dry zones and the dry zones expand, surrounding nanotubes are pulled away from the dewetting centres by liquid surface tension...

  8. Star Cluster Formation and Destruction in the Merging Galaxy NGC 3256

    CERN Document Server

    Mulia, Alexander J; Whitmore, Bradley C

    2016-01-01

    We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area ($\\Sigma_{\\rm{SFR}}$). These clusters have luminosity and mass functions that follow power laws, $dN/dL \\propto L^{\\alpha}$ with $\\alpha = -2.23 \\pm 0.07$, and $dN/dM \\propto M^{\\beta}$ with $\\beta = -1.86 \\pm 0.34$ for $\\tau < 10$ Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by $dN/d\\tau \\propto \\tau ^ \\gamma$, with $\\gamma \\approx -0.67 \\pm 0.08$ for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where $\\sim 80 \\%$ of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high $\\Sigma_{\\rm{SFR}}$ form clusters more efficiently than quiescent systems by determining the fraction of sta...

  9. Introduction to the cluster formation theory. Application to the nuclear fragmentation reactions

    International Nuclear Information System (INIS)

    This course reviews the theory of geometrical models of cluster formation in nuclear reactions. After an elementary introduction to the theory of critical phenomena, illustrated by percolation models, we discuss kinetic theories of aggregation and fragmentation. The realization of these ideas in the context of nuclear fragmentation reactions and the search of signals of phase transitions is also reviewed

  10. Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    XIAO Kui; DONG Chao-fang; LI Xiao-gang; WANG Fu-ming

    2008-01-01

    The formation and development of corrosion products on carbon steel surface during the initial stage of atmospheric corrosion in a laboratory simulated environment have been studied by scanning electron microscopy (SEM)and Raman spectroscopy.The results showed that two different shapes of corrosion products,that is,ring and chain,were formed in the initial stage of corrosion.MnS clusters were found in the nuclei of corrosion products at the active local corrosion sites.The ring-shaped products were composed of lepidocrocite (γ-FeOOH) and maghemite(γ-Fe2 O3) transformed from lepidocrocite.The chain-type products were goethite (α-FeOOH).A formation mechanism of the corrosion products is proposed.

  11. The IMF and star formation history of the stellar clusters in the Vela D cloud

    Science.gov (United States)

    Massi, F.; Testi, L.; Vanzi, L.

    2006-03-01

    Aims.We present the results of a Near-Infrared deep photometric survey of a sample of six embedded star clusters in the Vela-D molecular cloud, all associated with luminous (˜ 103 L⊙) IRAS sources. The clusters are unlikely to be older than a few 106 yrs, since all are still associated with molecular gas.Methods.We employed the fact that all clusters lie at the same distance and were observed with the same instrumental setting to derive their properties in a consistent way, being affected by the same instrumental and observational biases. We extracted the clusters' K Luminosity Functions and developed a simple method to correct them for extinction, based on colour-magnitude diagrams. The reliability of the method has been tested by constructing synthetic clusters from theoretical tracks for pre-main sequence stars and a standard Initial Mass Function. The clusters' Initial Mass Functions have been derived from the dereddened K Luminosity Functions by adopting a set of pre-main sequence evolutionary tracks and assuming coeval star formation.Results.All clusters are small (˜ 100 members) and compact (radius ˜ 0.1-0.2 pc); their most massive stars are intermediate-mass (˜ 2-10 M⊙) ones. The dereddened K Luminosity Functions are likely to arise from the same distribution, suggesting that the selected clusters have quite similar Initial Mass Functions and star formation histories. The Initial Mass Functions are consistent with those derived for field stars and clusters. Adding them together we found that the "global" Initial Mass Function appears steeper at the high-mass end and exhibits a drop-off at ˜ 10 M⊙. In fact, a standard Initial Mass Function would predict a star with M > 22.5 M⊙ within one of the clusters, which is not found. Hence, either high-mass stars need larger clusters to be formed, or the Initial Mass Function of the single clusters is steeper at the high-mass end because of the physical conditions in the parental gas.

  12. Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects.

    Science.gov (United States)

    Kampf, C J; Filippi, A; Zuth, C; Hoffmann, T; Opatz, T

    2016-07-21

    Dicarbonyls are known to be important precursors of so-called atmospheric brown carbon, significantly affecting aerosol optical properties and radiative forcing. In this systematic study we report the formation of light-absorbing nitrogen containing compounds from simple 1,2-, 1,3-, 1,4-, and 1,5-dicarbonyl + amine reactions. A combination of spectrophotometric and mass spectrometric techniques was used to characterize reaction products in solutions mimicking atmospheric particulates. Experiments with individual dicarbonyls and dicarbonyl mixtures in ammonium sulfate and glycine solutions demonstrate that nitrogen heterocycles are common structural motifs of brown carbon chromophores formed in such reaction systems. 1,4- and 1,5-dicarbonyl reaction systems, which were used as surrogates for terpene ozonolysis products, showed rapid formation of light-absorbing material and products with absorbance maxima at ∼450 nm. Synergistic effects on absorbance properties were observed in mixed (di-)carbonyl experiments, as indicated by the formation of a strong absorber in ammonium sulfate solutions containing acetaldehyde and acetylacetone. This cross-reaction oligomer shows an absorbance maximum at 385 nm, relevant for the actinic flux region of the atmosphere. This study demonstrates the complexity of secondary brown carbon formation via the imine pathway and highlights that cross-reactions with synergistic effects have to be considered an important pathway for atmospheric BrC formation. PMID:27334793

  13. Ultra-fast oscillation of cobalt clusters encapsulated inside carbon nanotubes

    International Nuclear Information System (INIS)

    Using molecular dynamics (MD) simulations, the authors have studied the oscillatory characteristics of the 2Co - CNT oscillator systems. Each of these oscillator systems consists of a hosting carbon nanotube (CNT) and two encapsulated cobalt (Co) clusters, and oscillations are initiated by prescribing an initial kinetic energy to each of the two cobalt clusters. The non-symmetric oscillation mode, in which the two cobalt clusters always move towards the same direction, was found to be stable over a wide range of initial energy. However, the symmetric oscillation mode, in which the two cobalt clusters move towards or away from each other, bouncing off each other in each oscillation, is stable only when the initial kinetic energies are lower than a threshold value. Above this threshold, the oscillation becomes increasingly unstable with the increasing initial kinetic energy. The instability is found to take place through transferring energy from the translational motion to the rotational motion of the cobalt clusters, due to the fact that the impact of the cluster-cluster collisions can be slightly off-center, causing the clusters to roll and rock. The rocking motion of the cobalt clusters serves as the channel for the energy transfer. The rocking motion can be retarded and may even be eliminated by reducing the hosting CNT diameter. But a smaller hosting CNT does not always lead to more stable translational oscillation. There apparently exists an optimal CNT for a given size of clusters for stabilizing the translational oscillation. A hosting CNT that is too much smaller than optimum causes severe cobalt-carbon atomic interactions, which lead to losses of energy from the ordered translational motion of clusters to disordered thermal motions of the atoms

  14. Ultra-fast oscillation of cobalt clusters encapsulated inside carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaohong [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xin Hao [Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721 (United States); Leonard, Jon N [Advanced Programs, Raytheon Missile Systems, Tucson, AZ 85734 (United States); Chen Guanhua [Department of Chemistry, University of Hong Kong, Hong Kong (China); Jiang Qing [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)

    2007-11-07

    Using molecular dynamics (MD) simulations, the authors have studied the oscillatory characteristics of the 2Co - CNT oscillator systems. Each of these oscillator systems consists of a hosting carbon nanotube (CNT) and two encapsulated cobalt (Co) clusters, and oscillations are initiated by prescribing an initial kinetic energy to each of the two cobalt clusters. The non-symmetric oscillation mode, in which the two cobalt clusters always move towards the same direction, was found to be stable over a wide range of initial energy. However, the symmetric oscillation mode, in which the two cobalt clusters move towards or away from each other, bouncing off each other in each oscillation, is stable only when the initial kinetic energies are lower than a threshold value. Above this threshold, the oscillation becomes increasingly unstable with the increasing initial kinetic energy. The instability is found to take place through transferring energy from the translational motion to the rotational motion of the cobalt clusters, due to the fact that the impact of the cluster-cluster collisions can be slightly off-center, causing the clusters to roll and rock. The rocking motion of the cobalt clusters serves as the channel for the energy transfer. The rocking motion can be retarded and may even be eliminated by reducing the hosting CNT diameter. But a smaller hosting CNT does not always lead to more stable translational oscillation. There apparently exists an optimal CNT for a given size of clusters for stabilizing the translational oscillation. A hosting CNT that is too much smaller than optimum causes severe cobalt-carbon atomic interactions, which lead to losses of energy from the ordered translational motion of clusters to disordered thermal motions of the atoms.

  15. Quantum-Chemical Calculation of Carbododecahedron Formation in Carbon Plasma.

    Science.gov (United States)

    Poklonski, Nikolai A; Ratkevich, Sergey V; Vyrko, Sergey A

    2015-08-27

    The ground state of the molecule consisting of 10 carbon atoms in C10(rg) "ring" conformation and the energy of its metastable C10(st) "star" conformation are reported. The reaction coordinate for the isomeric transition C10(st) → C10(rg) was calculated using density functional theory (DFT) with UB3LYP/6-31G(d,p). It was established that a 5-fold symmetry axis is conserved in this isomeric transition. The total energy of the ring isomer is by 10.33 eV (9.16 eV as zero-point energy corrected) lower than that of the star isomer. The energy barrier for the transition from the metastable star state to the ring state is 2.87 eV (3.57 eV as zero-point energy corrected). An analysis of possible chemical reactions in carbon plasma involving C10(st) and C10(rg) and leading to the formation of C20 fullerenes was performed. It was revealed that the presence of the C10(st) conformation in the reaction medium is a necessary condition for C20 fullerene formation. It was shown that the presence of hydrogen atoms in carbon plasma and UV radiation accelerate the C10(st) → C10(rg) transition and thus suppress the C20 fullerene formation. PMID:26267290

  16. Electrically Percolating Clusters in Sheared Carbon Nanotube Composites

    Science.gov (United States)

    Migler, Kalman; Moon, Doyoung; Obrzut, Jan; Douglas, Jack; Lam, Thomas; Sharma, Renu; Liddle, Alex James

    2013-03-01

    The electrical conductivity of polymer nanotube composites can be dramatically modified by processing flows and subsequent annealing. The mechanism is widely believed to be nanotube structural rearrangements that occur during flow and alter the percolating pathways. We seek to directly visualize these flow-induced three-dimensional percolating clusters through three-dimensional confocal microscopy and image analysis.

  17. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  18. Influence of Carbon Nanotube Clustering on Mechanical and Electrical Properties of Cement Pastes

    OpenAIRE

    Sung-Hwan Jang; Shiho Kawashima; Huiming Yin

    2016-01-01

    Given the continued challenge of dispersion, for practical purposes, it is of interest to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) at different states of clustering on the eventual performance properties of cement paste. This study evaluated the clustering of MWCNTs and the resultant effect on the mechanical and electrical properties when incorporated into cement paste. Cement pastes containing different concentrations of MWCNTs (up to 0.5% by mass of cement) with/without...

  19. Carbon antisite clusters in SiC: a possible pathway to the D_{II} center

    OpenAIRE

    Mattausch, Alexander; Bockstedte, Michel; Pankratov, Oleg

    2003-01-01

    The photoluminescence center D_{II} is a persistent intrinsic defect which is common in all SiC polytypes. Its fingerprints are the characteristic phonon replicas in luminescence spectra. We perform ab-initio calculations of vibrational spectra for various defect complexes and find that carbon antisite clusters exhibit vibrational modes in the frequency range of the D_{II} spectrum. The clusters possess very high binding energies which guarantee their thermal stability--a known feature of the...

  20. Peptide Bond Formation in Water Mediated by Carbon Disulfide.

    Science.gov (United States)

    Leman, Luke J; Huang, Zheng-Zheng; Ghadiri, M Reza

    2015-09-01

    Demonstrating plausible nonenzymatic polymerization mechanisms for prebiotic monomers represents a fundamental goal in prebiotic chemistry. While a great deal is now known about the potentially prebiotic synthesis of amino acids, our understanding of abiogenic polymerization processes to form polypeptides is less well developed. Here, we show that carbon disulfide (CS2), a component of volcanic emission and sulfide mineral weathering, and a widely used synthetic reagent and solvent, promotes peptide bond formation in modest yields (up to ∼20%) from α-amino acids under mild aqueous conditions. Exposure of a variety of α-amino acids to CS2 initially yields aminoacyl dithiocarbamates, which in turn generate reactive 2-thiono-5-oxazolidone intermediates, the thio analogues of N-carboxyanhydrides. Along with peptides, thiourea and thiohydantoin species are produced. Amino acid stereochemistry was preserved in the formation of peptides. Our findings reveal that CS2 could contribute to peptide bond formation, and possibly other condensation reactions, in abiogenic settings. PMID:26308392

  1. Relationship among Photosys- tem Ⅱ carbonic anhydrase, extrinsic polypeptides and manganese cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of Photosystem Ⅱ (PS Ⅱ) extrinsic poly- peptides of oxygen-evolving complex and manganese clusters on PSⅡ carbonic anhydrase (CA) were studied with spinach PSⅡ membranes. The result supported that membrane-bound CA is located in the donor side of PSⅡ. The extrinsic polypeptides played an important role of maintaining CA activity. After removing manganese clusters, oxygen evolution activity was inhibited, but PSⅡ-CA activity was unchanged. It was concluded that CA activity is independent of the presence of manganese clusters, and was not directly correlated with oxygen evolution activity.

  2. Cooling, AGN Feedback and Star Formation in Simulated Cool-Core Galaxy Clusters

    CERN Document Server

    Li, Yuan; Ruszkowski, Mateusz; Voit, G Mark; O'Shea, Brian W; Donahue, Megan

    2015-01-01

    Numerical simulations of active galactic nuclei (AGN) feedback in cool-core galaxy clusters have successfully avoided classical cooling flows, but often produce too much cold gas. We perform adaptive mesh simulations that include momentum-driven AGN feedback, self-gravity, star formation and stellar feedback, focusing on the interplay between cooling, AGN heating and star formation in an isolated cool-core cluster. Cold clumps triggered by AGN jets and turbulence form filamentary structures tens of kpc long. This cold gas feeds both star formation and the supermassive black hole (SMBH), triggering an AGN outburst that increases the entropy of the ICM and reduces its cooling rate. Within 1-2 Gyr, star formation completely consumes the cold gas, leading to a brief shutoff of the AGN. The ICM quickly cools and redevelops multiphase gas, followed by another cycle of star formation/AGN outburst. Within 6.5 Gyr, we observe three such cycles. There is good agreement between our simulated cluster and the observations...

  3. A unique model for the variety of multiple populations formation(s) in globular clusters: a temporal sequence

    CERN Document Server

    D'Antona, F; D'Ercole, A; Ventura, P; Milone, A P; Marino, A F; Tailo, M

    2016-01-01

    We explain the multiple populations recently found in the 'prototype' Globular Cluster (GC) NGC 2808 in the framework of the asymptotic giant branch (AGB) scenario. The chemistry of the five -or more- populations is approximately consistent with a sequence of star formation events, starting after the supernovae type II epoch, lasting approximately until the time when the third dredge up affects the AGB evolution (age ~90-120Myr), and ending when the type Ia supernovae begin exploding in the cluster, eventually clearing it from the gas. The formation of the different populations requires episodes of star formation in AGB gas diluted with different amounts of pristine gas. In the nitrogen-rich, helium-normal population identified in NGC 2808 by the UV Legacy Survey of GCs, the nitrogen increase is due to the third dredge up in the smallest mass AGB ejecta involved in the star formation of this population. The possibly-iron-rich small population in NGC 2808 may be a result of contamination by a single type Ia su...

  4. Dissipationless Formation and Evolution of the Milky Way Nuclear Star Cluster

    CERN Document Server

    Antonini, Fabio; Mastrobuono-Battisti, Alessandra; Merritt, David

    2011-01-01

    In one widely discussed model for the formation of nuclear star clusters (NSCs), massive globular clusters spiral into the center of a galaxy and merge to form the nucleus. It is now known that at least some NSCs coexist with supermassive black holes (SBHs); this is the case, for instance, in the Milky Way (MW). In this paper, we investigate how the presence of a SMBH at the center of the MW impacts the merger hypothesis for the formation of its NSC. Starting from a model consisting of a low-density nuclear stellar disk and the SMBH, we use N-body simulations to follow the successive inspiral and merger of (12) globular clusters. The clusters are started on circular orbits of radius 20 pc, and their initial masses and radii are set up in such a way as to be consistent with the galactic tidal field at that radius. The total accumulated mass is about 1.5x10^7 Solar masses. Each cluster is disrupted by the SMBH at a distance of roughly one parsec. The density profile that results after the final inspiral event i...

  5. GOVERNMENTAL CONTROL OF THE FORMATION EFFICIENCY OF EDUCATIONAL CLUSTERS AT THE REGIONAL LEVEL

    Directory of Open Access Journals (Sweden)

    Nina Ivanovna Larionova

    2014-01-01

    Full Text Available Studying the cluster institutionalization processes in the modern practices of the social development allows determining the formation trends of an efficient governmental control system at the subfederal level. The efficiency parameters suggested by the author for the cluster policy implementation for the governmental control purposes, such as density, integrity, complementarity and institutional sphere conductivity will allow controlling the development efficiency of the educational clusters in the modern reality. The research shows that the formation of the governmental control mechanisms and instruments is based on a general study of the institutional aspects of the cluster policy. It has been determined that the main driving force and the main actor of the modernization processes at the regional level is the scientific community. The educational clusters have their potential both for generating fundamental and applied knowledge and for managing innovation projects. Education is a mobile self-organizing system, with its intellectual resources acting as a strategic resource of modernization for the regions of Russia.

  6. The role of low-mass star clusters in massive star formation. The Orion Case

    CERN Document Server

    Rivilla, V M; Jimenez-Serra, I; Rodriguez-Franco, A

    2013-01-01

    To distinguish between the different theories proposed to explain massive star formation, it is crucial to establish the distribution, the extinction, and the density of low-mass stars in massive star-forming regions. We analyze deep X-ray observations of the Orion massive star-forming region using the Chandra Orion Ultradeep Project (COUP) catalog. We studied the stellar distribution as a function of extinction, with cells of 0.03 pc x 0.03 pc, the typical size of protostellar cores. We derived stellar density maps and calculated cluster stellar densities. We found that low-mass stars cluster toward the three massive star-forming regions: the Trapezium Cluster (TC), the Orion Hot Core (OHC), and OMC1-S. We derived low-mass stellar densities of 10^{5} stars pc^{-3} in the TC and OMC1-S, and of 10^{6} stars pc^{-3} in the OHC. The close association between the low-mass star clusters with massive star cradles supports the role of these clusters in the formation of massive stars. The X-ray observations show for ...

  7. Dynamics of the tidal fields and formation of star clusters in galaxy mergers

    International Nuclear Information System (INIS)

    In interacting galaxies, strong tidal forces disturb the global morphology of the progenitors and give birth to the long stellar, gaseous and dusty tails often observed. In addition to this destructive effect, tidal forces can morph into a transient, protective setting called compressive mode. Such modes then shelter the matter in their midst by increasing its gravitational binding energy. This thesis focuses on the study of this poorly known regime by quantifying its properties thanks to numerical and analytical tools applied to a spectacular merging system of two galaxies, commonly known as the Antennae galaxies. N-body simulations of this pair yield compressive modes in the regions where observations reveal a burst of star formation. Furthermore, characteristic time- and energy scales of these modes match well those of self-gravitating substructures such as star clusters and tidal dwarf galaxies. Comparisons with star formation rates derived from hydrodynamical runs confirm the correlation between the location of compressive modes and sites where star formation is likely to show enhanced activity. Altogether, these results suggest that the compressive modes of tidal fields plays an important role in the formation and evolution of young clusters, at least in a statistical sense, over a lapse of ∼10 million years. Preliminary results from simulations of stellar associations highlight the importance of embedding the clusters in the evolving background galaxies to account precisely for their morphology and internal evolution. These conclusions have been extended to numerous configurations of interacting galaxies and remain robust to a variation of the main parameters that characterize a merger. We report however a clear anti-correlation between the importance of the compressive mode and the distance between the galaxies. Further studies including hydrodynamics are now underway and will help pin down the exact role of the compressive mode on the formation and later

  8. Star cluster versus field star formation in the nucleus of the prototype starburst galaxy M82

    CERN Document Server

    Barker, S; Cerviño, M

    2008-01-01

    We analyse high-resolution Hubble Space Telescope/Advanced Camera for Surveys imaging of the nuclear starburst region of M82, obtained as part of the Hubble Heritage mosaic made of this galaxy, in four filters (Johnson-Cousins equivalent B, V, and I broad bands, and an Halpha narrow-band filter), as well as subsequently acquired U-band images. We find a complex system of ~150 star clusters in the inner few 100 pc of the galaxy. We do not find any conclusive evidence of a cluster-formation epoch associated with the most recent starburst event, believed to have occurred about 4-6 Myr ago. This apparent evidence of decoupling between cluster and field-star formation is consistent with the view that star cluster formation requires special conditions. However, we strongly caution, and provide compelling evidence, that the `standard' simple stellar population analysis method we have used significantly underestimates the true uncertainties in the derived ages due to stochasticity in the stellar initial mass function...

  9. The star formation history of the Large Magellanic Cloud star clusters NGC1846 and NGC1783

    CERN Document Server

    Rubele, Stefano; Kozhurina-Platais, Vera; Kerber, Leandro; Goudfrooij, Paul; Bressan, Alessandro; Marigo, Paola

    2013-01-01

    NGC1846 and NGC1783 are two massive star clusters in the Large Magellanic Cloud, hosting both an extended main sequence turn-off and a dual clump of red giants. They present similar masses but differ mainly in angular size. Starting from their high-quality ACS data in the F435W, F555W and F814W filters, and updated sets of stellar evolutionary tracks, we derive their star formation rates as a function of age, SFR(t), by means of the classical method of CMD reconstruction which is usually applied to nearby galaxies. The method confirms the extended periods of star formation derived from previous analysis of the same data. When the analysis is performed for a finer resolution in age, we find clear evidence for a 50-Myr long hiatus between the oldest peak in the SFR(t), and a second prolonged period of star formation, in both clusters. For the more compact cluster NGC1846, there seems to be no significant difference between the SFR(t) in the cluster centre and in an annulus with radii between 20 and 60 arcsec (f...

  10. Formation of metallic clusters in oxide insulators by means of ion beam mixing

    International Nuclear Information System (INIS)

    The intermixing and near-interface cluster formation of Pt and FePt thin films deposited on different oxide surfaces by means of Pt+ ion irradiation and subsequent annealing was investigated. Irradiated as well as postannealed samples were investigated using high resolution transmission electron microscopy. In MgO and Y:ZrO2 covered with Pt, crystalline clusters with mean sizes of 2 and 3.5 nm were found after the Pt+ irradiations with 8x1015 and 2x1016 cm-2 and subsequent annealing, respectively. In MgO samples covered with FePt, clusters with mean sizes of 1 and 2 nm were found after the Pt+ irradiations with 8x1015 and 2x1016 cm-2 and subsequent annealing, respectively. In Y:ZrO2 samples covered with FePt, clusters up to 5 nm in size were found after the Pt+ irradiation with 2x1016 cm-2 and subsequent annealing. In LaAlO3 the irradiation was accompanied by a full amorphization of the host matrix and appearance of embedded clusters of different sizes. The determination of the lattice constant and thus the kind of the clusters in samples covered by FePt was hindered due to strong deviation of the electron beam by the ferromagnetic FePt

  11. Globular Clusters, Ultra-Compact Dwarfs, and the Formation of Galaxy Halos

    Science.gov (United States)

    Peng, Eric

    2015-08-01

    Globular clusters (GCs) are a distinctive and ubiquitous constituent of galaxy halos. Their existence alludes to an early epoch of galaxy building characterized by the high star formation rates needed to form massive clusters, and a merging process that produced the extended, spheroidal stellar halos in today's galaxies. While studies of stellar halos are generally limited by low surface brightnesses or the faintness of individual halo stars, GCs are bright and compact, making them excellent tracers of stellar halos out to hundreds of megaparsecs. The Next Generation Virgo Cluster Survey (NGVS) is a CFHT Large Program that has acquired imaging of the 104 square degrees within the Virgo Cluster's virial radius. This deep and contiguous imaging of the nearest galaxy cluster provides us a new view of globular clusters across the full range of galaxy morphology and mass, as well as in the regions between galaxies. It also provides the first complete census of ultra-compact dwarfs (UCDs) in Virgo, objects which may be related to massive GCs and galaxy nuclei. In this talk, I will present what we have learned so far about extragalactic GC systems and UCDs from the NGVS, from both photometry and spectroscopy.

  12. Formation of metal and nonmetal clusters by laser and electron beam methods

    International Nuclear Information System (INIS)

    This paper reports on the information of clusters, which was studied experimentally for the materials of metal and nonmetal elements selected in order to the periodic table. These materials were vaporized from the solid state by the irradiation of laser and electron beams. And, in relation with the clustering behavior, the deposition rate at the vapors onto their condensates was studied by measuring the film thickness. Evaporated vapors having clusters of large size are to be favorable for sticking or condensation onto their condensates. The elements giving small values of the cohesive energy such as the 1b group form clusters of sizes distributed widely, were as the elements of large cohesive energy such as the 1a(V,Nb) and 8(Fe, Co) are hardly evaporated and clustered into large sizes. The deposition rate of the evaporated vapors can be largely related with the formation of both monomer and clusters, although due to the energy difference of the beams the relationships are not always comprehensively understood. The 2b group has larger deposition rates and the 5a has smaller rates, although much larger and smaller values are observed for [Mn(7a), Cr(6a)] and [Cu(lb), Ag(1b), Ar(4a)], respectively

  13. The IMF and Star Formation History of the Stellar Clusters in the Vela D Cloud

    CERN Document Server

    Massi, F; Vanzi, L; Massi, Fabrizio; Testi, Leonardo; Vanzi, Leonardo

    2005-01-01

    We present the results of a Near-Infrared deep photometric survey of a sample of six embedded star clusters in the Vela-D molecular cloud, all associated with luminous (~10^3 Lsun) IRAS sources. The clusters are unlikely to be older than a few 10^6 yrs, since all are still associated with molecular gas. We employed the fact that all clusters lie at the same distance and were observed with the same instrumental setting to derive their properties in a consistent way, being affected by the same instrumental and observational biases. We extracted the clusters' K Luminosity Functions (KLF) and developed a simple method to correct them for extinction, based on colour-magnitude diagrams. The reliability of the method has been tested by constructing synthetic clusters from theoretical tracks for pre-main sequence stars and a standard Initial Mass Function (IMF). The clusters' IMFs have been derived from the dereddened KLFs by adopting a set of pre-main sequence evolutionary tracks and assuming coeval star formation. ...

  14. Dissipationless Formation and Evolution of the Milky Way Nuclear Star Cluster

    Science.gov (United States)

    Antonini, Fabio; Capuzzo-Dolcetta, Roberto; Mastrobuono-Battisti, Alessandra; Merritt, David

    2012-05-01

    In one widely discussed model for the formation of nuclear star clusters (NSCs), massive globular clusters spiral into the center of a galaxy and merge to form the nucleus. It is now known that at least some NSCs coexist with supermassive black holes (SMBHs); this is the case, for instance, in the Milky Way. In this paper, we investigate how the presence of an SMBH at the center of the Milky Way impacts the merger hypothesis for the formation of its NSC. Starting from a model consisting of a low-density nuclear stellar disk and the SMBH, we use direct N-body simulations to follow the successive inspiral and merger of globular clusters. The clusters are started on circular orbits of radius 20 pc, and their initial masses and radii are set up in such a way as to be consistent with the galactic tidal field at that radius. These clusters, decayed orbitally in the central region due to their large mass, were followed in their inspiral events; as a result, the total accumulated mass by ≈10 clusters is about 1.5 × 107 M ⊙. Each cluster is disrupted by the SMBH at a distance of roughly 1 pc. The density profile that results after the final inspiral event is characterized by a core of roughly this radius and an envelope with density that falls off ρ ~ r -2. These properties are similar to those of the Milky Way NSC, with the exception of the core size, which in the Milky Way is somewhat smaller. But by continuing the evolution of the model after the final inspiral event, we find that the core shrinks substantially via gravitational encounters in a time (when scaled to the Milky Way) of 10 Gyr as the stellar distribution evolves toward a Bahcall-Wolf cusp. We also show that the luminosity function of the Milky Way NSC is consistent with the hypothesis that 1/2 of the mass comes from old (~10 Gyr) stars, brought in by globular clusters, with the other half due to continuous star formation. We conclude that a model in which a large fraction of the mass of the Milky Way

  15. DISSIPATIONLESS FORMATION AND EVOLUTION OF THE MILKY WAY NUCLEAR STAR CLUSTER

    International Nuclear Information System (INIS)

    In one widely discussed model for the formation of nuclear star clusters (NSCs), massive globular clusters spiral into the center of a galaxy and merge to form the nucleus. It is now known that at least some NSCs coexist with supermassive black holes (SMBHs); this is the case, for instance, in the Milky Way. In this paper, we investigate how the presence of an SMBH at the center of the Milky Way impacts the merger hypothesis for the formation of its NSC. Starting from a model consisting of a low-density nuclear stellar disk and the SMBH, we use direct N-body simulations to follow the successive inspiral and merger of globular clusters. The clusters are started on circular orbits of radius 20 pc, and their initial masses and radii are set up in such a way as to be consistent with the galactic tidal field at that radius. These clusters, decayed orbitally in the central region due to their large mass, were followed in their inspiral events; as a result, the total accumulated mass by ≈10 clusters is about 1.5 × 107 M☉. Each cluster is disrupted by the SMBH at a distance of roughly 1 pc. The density profile that results after the final inspiral event is characterized by a core of roughly this radius and an envelope with density that falls off ρ ∼ r–2. These properties are similar to those of the Milky Way NSC, with the exception of the core size, which in the Milky Way is somewhat smaller. But by continuing the evolution of the model after the final inspiral event, we find that the core shrinks substantially via gravitational encounters in a time (when scaled to the Milky Way) of 10 Gyr as the stellar distribution evolves toward a Bahcall-Wolf cusp. We also show that the luminosity function of the Milky Way NSC is consistent with the hypothesis that 1/2 of the mass comes from old (∼10 Gyr) stars, brought in by globular clusters, with the other half due to continuous star formation. We conclude that a model in which a large fraction of the mass of the Milky

  16. The role of systematic innovation management in cluster formations based on ecologically oriented approach

    Directory of Open Access Journals (Sweden)

    L.H. Melnyk

    2014-09-01

    Full Text Available The aim of the article. The aim of the article is to study the role of the system of innovation management in cluster formations on the basis of ecologically oriented creative approach for sustainable development. The results of the analysis. The paper studies the problem of system management in the formation of cluster structures as еcopolis in the transition to environmentally sustainable development, addressed organizational and economic background applications eco-creative approach to the establishment and operation of еcopolis as self- reproduction socio-ecological-economic system. Perspective directions of solving the problems systems management in the context of sustainable development, in our view, next: the reproductive mechanism of the economic transformations directed on «green» development areas; dematerialization activation processes at various levels of management; ecologically oriented economic development (dynamic transformation of the economy, taking into account the principles of sustainable development based on innovation; clustering scientific production and educational specialization (ecopolis. Question the beneficial use of environmental conditions and initiatives arise when a key prerequisite for the formation of ecopolis. Conclusions and directions of further researches. It is shown that one of the best ways to achieve these goals, mechanisms that implement ecologically effective management at the regional level, is to create in the country such as forms of ecopolis. These studies need to continue to develop a system of tools and mechanisms to ensure the implementation of the concept of innovation management system such as cluster formations ecopolis in the context of sustainable development. Also it is required the development the organizational and economic development of system management tools cluster units.

  17. O2 activation on the outer surface of carbon nanotubes modified by encapsulated iron clusters

    International Nuclear Information System (INIS)

    Graphical abstract: Based on first-principle calculations, this study shows that the confined small Fe cluster inside the SWCNT can significantly modify the electronic structure of the carbon surface. This drastically facilitates the activation of the adsorbed O2 molecule. The calculated energy barrier (less than 0.8 eV) of the rate-determining step for the O2 dissociation indicates that the process can proceed readily at room temperature. - Highlights: • The confined Fe cluster inside the carbon nanotube can significantly modify the electronic structure of the carbon surface. • The confined Fe cluster makes the adsorption of the O2 molecule much more energetically favorable. • The calculated energies suggest that the dissociation of the O2 on the modified carbon surface can proceed readily at room temperature. - Abstract: Using first-principles calculations, the structural, magnetic, and electronic properties of the (6, 6) single-walled carbon nanotubes (SWCNT) with the confined small Fe cluster are systematically studied. We find that Fe–C interactions can induce the transfer of the electrons from the confined Fe to the carbon surface of the SWCNT considerably, and consequently the reduction of the local work function of the region in contact with the Fe. The charging of the carbon surface and the reduction of the work function make the adsorption of the O2 molecule much more energetically favorable on the outer surface of the SWCNT. Furthermore, the energy barrier of the rate-determining step, i.e., the approaching of the O2 towards the modified carbon surface, for the O2 dissociation is less than 0.8 eV, indicating that the process can proceed readily at room temperature

  18. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters

    OpenAIRE

    Samuel, Errol L. G.; Marcano, Daniela C.; Berka, Vladimir; Bitner, Brittany R.; Wu, Gang; Potter, Austin; Fabian, Roderic H.; Pautler, Robia G; Kent, Thomas A; Tsai, Ah-Lim; James M. Tour

    2015-01-01

    Mechanistic studies of nontoxic hydrophilic carbon cluster nanoparticles show that they are able to accomplish the direct conversion of superoxide to dioxygen and hydrogen peroxide. This is accomplished faster than in most single-active-site enzymes, and it is precisely what dioxygen-deficient tissue needs in the face of injury where reactive oxygen species, particularly superoxide, overwhelm the natural enzymes required to remove superoxide. We confirm here that the hydrophilic carbon cluste...

  19. Investigating the Formation of Pedogenic Carbonate Using Stable Isotopes

    Science.gov (United States)

    Breecker, D. O.; Sharp, Z. D.; McFadden, L.

    2006-12-01

    The stable isotope composition of pedogenic carbonate has been used as a paleoenvironmental proxy because it is thought to form in isotopic equilibrium with soil CO2 and soil water, which are influenced by vegetation type and atmospheric circulation patterns, respectively. However, the isotopic composition of soil CO2 and soil water change seasonally and it is not known what portion of this variability is recorded by the isotopic composition of pedogenic carbonate. It is generally believed that carbonate precipitation in soils is driven by evaporative concentration of Ca ions and/or decreasing soil pCO2. We seek to improve the proxy by determining the seasonality of pedogenic carbonate formation, in particular whether pedogenic carbonate forms during the wet season after individual rainstorms or during seasonal drying following the wet season. This was done by comparing the variations in carbon and oxygen isotope composition of soil CO2 with the isotopic composition of proximally located, newly-formed carbonates. Soil CO2 and incipient pedogenic carbonate coatings were collected in a very young (soil developing in an inset terrace on the piedmont of the Sandia Mountains, central New Mexico. We also measure soil temperatures at the same site. In May 2006, at the end of the driest 6-month period on record in central New Mexico, soil CO2 profiles displayed a 2‰ decrease in δ13C values with depth from 9 to 100 cm. In August 2006, the shapes of the profiles were similar, but the δ13C values were 3-4‰ lower at each depth than in May. These results can be explained by an increase in respiration rate during the latter half of the summer (the wettest on record) when monsoon rainfall maintained high moisture contents in soils across New Mexico. Calculated δ13C values of calcite in equilibrium with May (but not August) soil CO2 agree with measured carbonate δ13C values below 20 cm depth. Very shallow carbonate has anomalously high δ13C values. Measurements of the

  20. The location, clustering, and propagation of massive star formation in giant molecular clouds

    CERN Document Server

    Ochsendorf, B B; Chastenet, J; Tielens, A G G M; Roman-Duval, J

    2016-01-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased dataset of ~700 massive young stellar objects (MYSOs), ~200 giant molecular clouds (GMCs), and ~100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parent GMCs at the ~6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. Yet, whether a cloud is associated with a SC does not depend on either the cloud's mass or global surface density. These results reveal a conne...

  1. The general mechanisms of Cu cluster formation in the processes of condensation from the gas phase

    Indian Academy of Sciences (India)

    I V Chepkasov; Yu Ya Gafner; S L Gafner; S P Bardakhanov

    2015-06-01

    Technological applications of metallic clusters impose very strict requirements for particle size, shape, structure and defect density. Such geometrical characteristics of nanoparticles are mainly determined by the process of their growth. This work represents the basic mechanisms of cluster formation from the gas phase that has been studied on the example of copper. The process of Cu nanoclusters synthesis has been studied by the moleculardynamics method based on tight-binding potentials. It has been shown that depending on the size and temperature of the initial nanoclusters the process of nanoparticle formation can pass through different basic scenarios. The general conditions of different types of particles formation have been defined and clear dependence of the cluster shape from collision temperature of initial conglomerates has been shown. The simulation results demonstrate a very good agreement with the available experimental data. Thus, it has been shown that depending on the specific application of the synthesized particles or in electronics, where particles of a small size with a spherical shape are required, or in catalytic reactions, where the main factor of effectiveness is the maximum surface area with the help of temperature of the system it is possible to get the realization of a certain frequency of this or that scenario of the shape formation of nanocrystalline particles.

  2. The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    CERN Document Server

    Vollmer, B; Braine, J; Chung, A; Kenney, J D P

    2012-01-01

    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies, possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the m...

  3. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  4. Mapping the formation areas of giant molybdenum blue clusters: a spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Botar, Bogdan; Ellern, Arkady; Kogerler, Paul

    2012-05-18

    The self-assembly of soluble molybdenum blue species from simple molybdate solutions has primarily been associated with giant mixed-valent wheel-shaped cluster anions, derived from the {MoV/VI154/176} archetypes, and a {MoV/VI368} lemon-shaped cluster. The combined use of Raman spectroscopy and kinetic precipitation as self-assembly monitoring techniques and single-crystal X-ray diffraction is key to mapping the realm of molybdenum blue species by establishing spherical {MoV/VI102}-type Keplerates as an important giant molybdenum blue-type species. We additionally rationalize the empirical effect of reducing agent concentration on the formation of all three relevant skeletal types: wheel, lemon and spheres. Whereas both wheels and the lemon-shaped {MoV/VI368} cluster are obtained from weakly reduced molybdenum blue solutions, considerably higher reduced solutions lead to {MoV/VI102}-type Keplerates.

  5. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria

    CERN Document Server

    Peruani, Fernando; Jakovljevic, Vladimir; Sogaard-Andersen, Lotte; Deutsch, Andreas; Bar, Markus; 10.1103/PhysRevLett.108.098102

    2013-01-01

    We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by non-equilibrium cluster formation is detected for a critical cell packing fraction around 17%. This transition is characterized by a scale-free power-law cluster size distribution, with an exponent $0.88\\pm0.07$, and the appearance of giant number fluctuations. Our findings are in quantitative agreement with simulations of self-propelled rods. This suggests that the interplay of self-propulsion of bacteria and the rod-shape of bacteria is sufficient to induce collective motion.

  6. The galactocentric radius dependent upper mass limit of young star clusters: stochastic star formation ruled out

    CERN Document Server

    Pflamm-Altenburg, Jan; Kroupa, Pavel

    2013-01-01

    It is widely accepted that the distribution function of the masses of young star clusters is universal and can be purely interpreted as a probability density distribution function with a constant upper mass limit. As a result of this picture the masses of the most-massive objects are exclusively determined by the size of the sample. Here we show, with very high confidence, that the masses of the most-massive young star clusters in M33 decrease with increasing galactocentric radius in contradiction to the expectations from a model of a randomly sampled constant cluster mass function with a constant upper mass limit. Pure stochastic star formation is thereby ruled out. We use this example to elucidate how naive analysis of data can lead to unphysical conclusions.

  7. Formation of Regional Clusters as a Factor in the Investment Development

    Directory of Open Access Journals (Sweden)

    Viktor Gusak

    2014-10-01

    Full Text Available The aim of the research is to study the role of clusters in securing of regional development, particularly in enhancing the investment activitythrough the introduction of new regional mechanisms regulating these processes. In the article the importance of innovation and investmentcomponent of regional development is defined. Today, ensuring sustainable economic growth and improve the efficiency of the regioncannot be solved only through the use of standard techniques and tools. One of the most effective forms of economic integration through theformation of the spatial organization of the productive forces is the development of cluster formations within one economic territory. Theimportance of building regional cluster of social facilities, such as construction is proposed for consideration. Their importance for regionaldevelopment in general and to related industries in particular is considered. The model of return tax revenues to the local budget in the developmentof investment in the production of new housing and the development of appropriate urban infrastructure is proposed.

  8. A nine-atom rhodium–aluminum oxide cluster oxidizes five carbon monoxide molecules

    Science.gov (United States)

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium–aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  9. A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules.

    Science.gov (United States)

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  10. Halpha surface photometry of galaxies in the Virgo cluster. IV the current star formation in nearby clusters of galaxies

    CERN Document Server

    Gavazzi, G; Pedotti, P; Gallazzi, A; Carrasco, L

    2002-01-01

    Halpha+[NII] imaging observations of 369 late-type galaxies in the Virgo cluster and in the Coma/A1367 supercluster are analyzed. They constitute an optically selected sample (m_p10^9yrs) stars. Put together, the young and the old stellar indicators give the ratio of currently formed stars over the stars formed in the past, or "birthrate" parameter b. We also determine the "global gas content" combining HI with CO observations. We define the "gas deficiency" parameter as the logarithmic difference between the gas content of isolated galaxies of a given Hubble type and the measured gas content.For the isolated objects we find that b decreases with increasing NIR luminosity. The gas-deficient objects, primarily members to the Virgo cluster, have their birthrate significantly lower than the isolated objects with normal gas content and of similar NIR luminosity. This indicates that the current star formation is regulated by the gaseous content of spirals.Whatever mechanism (most plausibly ram-pressure stripping) ...

  11. Ions colliding with clusters of fullerenes—Decay pathways and covalent bond formations

    International Nuclear Information System (INIS)

    We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar2+, He2+, and Xe20+ at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n+→C60++(n−1)C60 evaporation model. Excitation energies in the range of only ∼0.7 eV per C60 molecule in a [C60]13+ cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar2+ and He2+ collisions, we observe very efficient C119+ and C118+ formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59+ or C58+ and C60 during cluster fragmentation. In the Ar2+ case, it is possible to form even smaller C120−2m+ molecules (m= 2–7), while no molecular fusion reactions are observed for the present Xe20+ collisions

  12. Ions colliding with clusters of fullerenes-Decay pathways and covalent bond formations

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, F.; Zettergren, H.; Chen, T.; Gatchell, M.; Alexander, J. D.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H. [Department of Physics, Stockholm University, S-106 91 Stockholm (Sweden); Rousseau, P.; Chesnel, J. Y.; Capron, M.; Poully, J. C.; Mery, A.; Maclot, S.; Adoui, L. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Universite de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Universite de Caen Basse-Normandie, Esplanade de la Paix, F-14032 Caen (France); Wang, Y.; Martin, F. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA-Nano), Cantoblanco, 28049 Madrid (Spain); Rangama, J.; Domaracka, A.; Vizcaino, V. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Universite de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); and others

    2013-07-21

    We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C{sub 60} molecules following collisions with Ar{sup 2+}, He{sup 2+}, and Xe{sup 20+} at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C{sub 60} monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C{sub 60}]{sub n}{sup +}{yields}C{sub 60}{sup +}+(n-1)C{sub 60} evaporation model. Excitation energies in the range of only {approx}0.7 eV per C{sub 60} molecule in a [C{sub 60}]{sub 13}{sup +} cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar{sup 2+} and He{sup 2+} collisions, we observe very efficient C{sub 119}{sup +} and C{sub 118}{sup +} formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C{sub 59}{sup +} or C{sub 58}{sup +} and C{sub 60} during cluster fragmentation. In the Ar{sup 2+} case, it is possible to form even smaller C{sub 120-2m}{sup +} molecules (m= 2-7), while no molecular fusion reactions are observed for the present Xe{sup 20+} collisions.

  13. Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities

    International Nuclear Information System (INIS)

    In conventional primary cultures, cardiac cells prepared from a newborn rat undergo spontaneous formation of cell clusters after several days. These cell clusters may be non-homogeneously distributed on a flat surface and show irregular beating which can be recorded by calcium ion imaging. In order to improve the cell cluster homogeneity and the beating regularity, patterned topographic features were used to guide the cellular growth and the cell layer formation. On the substrate with an array of broadly spaced cross features made of photoresist, cells grew on the places that were not occupied by the crosses and thus formed a cell layer with interconnected cell clusters. Accordingly, spatially coordinated regular beating could be recorded over the whole patterned area. In contrast, when cultured on the substrate with broadly spaced but inter-connected cross features, the cardiac cell layer showed beatings which were neither coordinated in space nor regular in time. Finally, when cultured on the substrate with narrowly spaced features, the cell beating became spatially coordinated but still remained irregular. Our results suggest a way to improve the rhythmic property of cultured cardiac cell layers which might be useful for further investigations. (paper)

  14. Star formation activity in a young galaxy cluster at z=0.866

    CERN Document Server

    Laganá, T F; Martins, L P; da Cunha, E

    2016-01-01

    The galaxy cluster RXJ1257$+$4738 at $z=0.866$ is one of the highest redshift clusters with a richness of multi-wavelength data, and thus a good target to study the star formation-density relation at early epochs. Using a sample of spectroscopically-confirmed cluster members, we derive the star formation rates of our galaxies using two methods, (I) the relation between SFR and total infrared luminosity extrapolated from the observed \\textit{Spitzer} MIPS 24$\\mu$m imaging data, and (II) spectral energy distribution (SED) fitting using the MAGPHYS code, including eight different bands. We show that, for this cluster, the SFR-density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming less stars per unit of mass, and thus suggesting that the increase in star-forming members is driv...

  15. Slow quenching of star formation in OMEGAWINGS clusters: galaxies in transition in the local universe

    CERN Document Server

    Paccagnella, Angela; Poggianti, Bianca Maria; Moretti, Alessia; Fritz, Jacopo; Gullieuszik, Marco; Couch, Warrick; Bettoni, Daniela; Cava, Antonio; Fasano, Giovanni; D'Onofrio, Mauro

    2015-01-01

    The star formation quenching depends on environment, but a full understanding of what mechanisms drive it is still missing. Exploiting a sample of galaxies with masses $M_\\ast>10^{9.8}M_\\odot$, drawn from the WIde-field Nearby Galaxy-cluster Survey (WINGS) and its recent extension OMEGAWINGS, we investigate the star formation rate (SFR) as a function of stellar mass (M$_*$) in galaxy clusters at $0.04cluster galaxies with reduced SFRs which is rare in the field. These {\\it transition} galaxies are mainly found within the cluster virial radius ($R_{200}$) but they impact on the SFR-M$_*$ relation only within 0.6R$_{200}$. The ratio of transition to PSF galaxies strongly depends on environment, being larger than 0.6 within 0.3R$_{200}$ and rapidly decreasing with distance, while it is almost flat with $M_*$. As ...

  16. Study of small carbon and semiconductor clusters using negative ion threshold photodetachment spectroscopy

    International Nuclear Information System (INIS)

    The bonding and electronics of several small carbon and semiconductor clusters containing less than ten atoms are probed using negative ion threshold photodetachment (zero electron kinetic energy, or ZEKE) spectroscopy. ZEKE spectroscopy is a particularly advantageous technique for small cluster study, as it combines mass selection with good spectroscopic resolution. The ground and low-lying electronic states of small clusters in general can be accessed by detaching an electron from the ground anion state. The clusters studied using this technique and described in this work are C6-/C6, Sin-/Sin (n = 2, 3, 4), Ge2-/Ge2, In2P-/In2P,InP2-/InP2, and Ga2As-. The total photodetachment cross sections of several other small carbon clusters and the ZEKE spectrum of the I-·CH3I SN2 reaction complex are also presented to illustrate the versatility of the experimental apparatus. Clusters with so few atoms do not exhibit bulk properties. However, each specie exhibits bonding properties that relate to the type of bonding found in the bulk. C6, as has been predicted, exhibits a linear cumulenic structure, where double bonds connect all six carbon atoms. This double bonding reflects how important π bonding is in certain phases of pure carbon (graphite and fullerenes). The symmetric stretch frequencies observed in the C6- spectra, however, are in poor agreement with the calculated values. Also observed as sharp structure in total photodetachment cross section scans was an excited anion state bound by only ∼40 cm-1 relative to the detachment continuum. This excited anion state appears to be a valence bound state, possible because of the high electron affinity of C6, and the open shell of the anion

  17. Tribological behavior and film formation mechanisms of carbon nanopearls

    Science.gov (United States)

    Hunter, Chad Nicholas

    amounts of undesired carbon (99.36 atomic % carbon as measured by XPS) because carbon rather than gold was sputtered from the magnetron target surface. Carbon impurities of co-deposited films were reduced with increasing oxygen concentration using argon-oxygen mixtures; EQP analysis showed that reactive oxygen species such as O and O+ effectively remove unwanted carbon during co-deposition processes. The tribological behavior of films deposited using simultaneous MAPLE and magnetron sputtering was similar to hydrogenated Diamond-like Carbon (DLC) in that a structure transformation (graphitization) occurred in the wear track during cyclic loading resulting in low friction coefficients. In fact, carbon and hydrocarbon fragments from solvent vapor were incorporated into the films leading to formation of hydrogenated DLC-gold composites. This behavior occurs for frozen toluene MAPLE targets regardless of whether they are loaded with CNPs. The exception to this is in a humid air environment where higher friction coefficients are observed for CNP-loaded targets. In these studies, the potential of carbon nanopearls to create environmentally stable solid lubricants has been demonstrated for future aerospace needs. This development could drastically change current approaches of lubrication for space applications. Additionally a new MAPLE-sputtering process in which solvent-dispersed nano-scale materials are incorporated into metal and ceramic matrices was developed to enable synthesis of novel nanostructured hybrid materials for a variety of applications.

  18. Cosmology and Astrophysics from Relaxed Galaxy Clusters V: Consistency with Cold Dark Matter Structure Formation

    CERN Document Server

    Mantz, Adam B; Morris, R Glenn

    2016-01-01

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the Cold Dark Matter (CDM) paradigm. We present constraints on the concentration--mass relation for massive clusters, finding a power-law mass dependence with a slope of $\\kappa_m=-0.16\\pm0.07$, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with $1+z$ of $\\kappa_\\zeta=-0.17\\pm0.26$), with an intrinsic scatter of $\\sigma_{\\ln c}=0.16\\pm0.03$. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically $\\sim50$kpc--1Mpc), and test for departures from the simple Navarro, Frenk & White (NFW...

  19. KAT-7 Science Verification: Cold Gas, Star Formation, and Substructure in the Nearby Antlia Cluster

    CERN Document Server

    Hess, Kelley M; Carignan, Claude; Passmoor, Sean S; Goedhart, Sharmila

    2015-01-01

    The Antlia Cluster is a nearby, dynamically young structure, and its proximity provides a valuable opportunity for detailed study of galaxy and group accretion onto clusters. We present a deep HI mosaic completed as part of spectral line commissioning of the Karoo Array Telescope (KAT-7), and identify infrared counterparts from the WISE extended source catalog to study neutral atomic gas content and star formation within the cluster. We detect 37 cluster members out to a radius of ~0.9 Mpc with M_HI > 5x10^7 M_Sun. Of these, 35 are new HI detections, 27 do not have previous spectroscopic redshift measurements, and one is the Compton thick Seyfert II, NGC 3281, which we detect in HI absorption. The HI galaxies lie beyond the X-ray emitting region 200 kpc from the cluster center and have experienced ram pressure stripping out to at least 600 kpc. At larger radii, they are distributed asymmetrically suggesting accretion from surrounding filaments. Combining HI with optical redshifts, we perform a detailed dynami...

  20. Effect of Temperature on Morphology of Metallic Iron and Formation of Clusters of Iron Ore Pellets

    Science.gov (United States)

    de Alencar, Jean Philippe Santos Gherardi; de Resende, Valdirene Gonzaga; de Castro, Luiz Fernando Andrade

    2016-02-01

    The increase of the reduction temperature in direct reduction furnaces has been a recurring tool due to the benefits that it provides to the process. However, its increase cannot be performed without taking into account some considerations, since the sticking phenomenon is directly correlated with it and could lead to permeability problems and reactor performance. An analysis of the formation of pellets clusters at different temperatures was carried out with focus on morphological characterization of reduced materials to better understand the causes and effects of these actions. The results showed a correlation between the morphology of the metallic iron present in the samples and the clustering index. At low reduction temperatures, 1123 K (850 °C), the iron formed is eroded and deformed and the cluster hardly remains after tumbling. When forming iron with fibrous structure, 1223 K (950 °C), the clustering index increases because of anchor points which make the material to stick together. Finally, under the effect of high temperature and long time, it generates fresh precipitated iron, enhancing the resistance of the clusters so that they cannot be separated.

  1. The influence of dynamical structural relaxation of point defect clusters on void formation in irradiated copper

    International Nuclear Information System (INIS)

    In the neutron-irradiation experiment with a temperature controlled capsule at JMTR, residual-gas-free copper was irradiated at 200 C and 300 C together with as-received copper. The fluences were 5 x 1018 n/cm2 (the low fluence) to 1 x 1020 n/cm2 (the high fluence). TEM observation of the irradiated specimens showed that interstitial clusters form a colony at the low fluence which develops into a dislocation structure at the high fluence. Between the colonies only vacancy clusters in the form of voids and stacking fault tetrahedra (sft) were observed. There are no effects of residual gas atoms on the formation of voids at the low fluence although the effects become appreciable at the high fluence. The number of vacancies which are accumulated in a void is 350 times larger than that in a sft at the low fluence. The number density of voids decreased with increasing neutron fluence while the number density of sft increased. The voids form uniformly in copper irradiated to the low fluence while they were observed along dislocations at the high fluence. Computer simulations by molecular dynamics show that small interstitial clusters relax to a bundle of left angle 110 right angle crowdions and move long distances in response to small strain fields. Interstitial clusters move along a left angle 110 right angle direction and can switch to other left angle 110 right angle directions, and form groups of clusters. At high temperature, a dense colony of the clusters forms and develops into a dislocation structure. It is shown that small vacancy clusters relax to movable structures at high temperature. (orig.)

  2. The structure, dynamics, and star formation rate of the Orion nebula cluster

    International Nuclear Information System (INIS)

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t ff). This implies a star formation efficiency per t ff of εff ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  3. Neutral molecular cluster formation of sulfuric acid dimethylamine observed in real time under atmospheric conditions

    OpenAIRE

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Duplissy, Jonathan; Ehrhart, Sebastian

    2015-01-01

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Res...

  4. The structure, dynamics, and star formation rate of the Orion nebula cluster

    Energy Technology Data Exchange (ETDEWEB)

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl, E-mail: ndario@ufl.edu [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2014-11-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t {sub ff}). This implies a star formation efficiency per t {sub ff} of ε{sub ff} ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  5. Coarse-Grained Model for Colloidal Protein Interactions, B22, and Protein Cluster Formation

    OpenAIRE

    Blanco, Marco A.; Sahin, Eric; Robinson, Anne S.; Roberts, Christopher J.

    2013-01-01

    Reversible protein cluster formation is an important initial step in the processes of native and non-native protein aggregation, but involves relatively long time and length scales for detailed atomistic simulations and extensive mapping of free energy landscapes. A coarse-grained (CG) model is presented to semi-quantitatively characterize the thermodynamics and key configurations involved in the landscape for protein oligomerization, as well as experimental measures of interactions such as t...

  6. Slow Quenching of Star Formation in OMEGAWINGS Clusters: Galaxies in Transition in the Local Universe

    Science.gov (United States)

    Paccagnella, A.; Vulcani, B.; Poggianti, B. M.; Moretti, A.; Fritz, J.; Gullieuszik, M.; Couch, W.; Bettoni, D.; Cava, A.; D'Onofrio, M.; Fasano, G.

    2016-01-01

    The star formation quenching depends on environment, but a full understanding of what mechanisms drive it is still missing. Exploiting a sample of galaxies with masses {M}*\\gt {10}9.8{M}⊙ , drawn from the WIde-field Nearby Galaxy-cluster Survey (WINGS) and its recent extension OMEGAWINGS, we investigate the star formation rate (SFR) as a function of stellar mass (M{}*) in galaxy clusters at 0.04\\lt z\\lt 0.07. We use non-member galaxies at 0.02 < z < 0.09 as a field control sample. Overall, we find agreement between the SFR-M{}* relation in the two environments, but detect a population of cluster galaxies with reduced SFRs, which is rare in the field. These transition galaxies are mainly found within the cluster virial radius (R200), but they impact on the SFR-M{}* relation only within 0.6R200. The ratio of transition to pure star-forming galaxies strongly depends on environment, being larger than 0.6 within 0.3R200 and rapidly decreasing with distance, while it is almost flat with M*. As galaxies move downward from the SFR-M{}* main sequence, they become redder and present older luminosity- and mass-weighted ages. These trends, together with the analysis of the star formation histories, suggest that transition galaxies have had a reduced SFR for the past 2-5 Gyr. Our results are consistent with the hypothesis that the interaction of galaxies with the intracluster medium via strangulation causes a gradual shut down of star formation, giving birth to an evolved population of galaxies in transition from being star forming to becoming passive.

  7. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    CERN Document Server

    Kirby, Evan N; Zhang, Andrew J; Deng, Michelle; Cohen, Judith G; Guhathakurta, Puragra; Shetrone, Matthew D; Lee, Young Sun; Rizzi, Luca

    2015-01-01

    We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in...

  8. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  9. X-ray Structure in Cluster Cooling Flows and Its Relationship to Star Formation and Powerful Radio Sources

    CERN Document Server

    McNamara, B R

    2001-01-01

    Analyses of Chandra's first images of cooling flow clusters find smaller cooling rates than previously thought. Cooling may be occurring preferentially near regions of star formation in central cluster galaxies, where the local cooling and star formation rates agree to within factors of a few. The radio sources in central cluster galaxies are interacting with and are often displacing the hot, intracluster gas. X-ray ``bubbles'' seen in Chandra images are used to measure the amount of energy radio sources deposit into their surroundings, and they may survive as fossil records of ancient radio activity. The bubbles are vessels that transport magnetic fields from giant black holes to the outskirts of clusters.

  10. "Dark" systems in globular clusters: GWs emission and limits on the formation of IMBHs

    CERN Document Server

    Arca-Sedda, Manuel

    2016-01-01

    Many observed globular clusters (GCs) seem to show a central overabundance of mass whose nature has not yet fully understood. Indeed, it is not clear whether it is due to a central intermediate mass black hole (IMBH) or to a massive stellar system (MSS) composed of mass segregated stars. In this contribution we present a semi-analytic approach to the problem complemented by 12 $N$-body simulations in which we followed the formation of MSSs in GCs with masses up to $3\\times 10^5$ \\Ms. Some implications for the formation of IMBHs and gravitational waves emission are discussed in perspective of a future work.

  11. A New Paradigm for Carbon-Carbon Bond Formation: Aerobic, Copper-Templated Cross-Coupling

    OpenAIRE

    Villalobos, Janette M.; Srogl, Jiri; Liebeskind, Lanny S.

    2007-01-01

    Thiol esters and boronic acids react to produce ketones under aerobic conditions in the presence of catalytic quantities of a CuI or CuII salt. The reaction occurs at reasonable rates between room temperature and 50 °C at neutral pH using thiol esters derived from bulky 2° amides of thiosalicylamides such as those based on N-tert-butyl-2-mercaptobenzamide. In this mechanistically unprecedented reaction system the carbon-carbon bond formation occurs through templating of the thiol ester and th...

  12. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  13. Constraining the high redshift formation of black hole seeds in nuclear star clusters with gas inflows

    CERN Document Server

    Lupi, Alessandro; Devecchi, Bernadetta; Galanti, Giorgio; Volonteri, Marta

    2014-01-01

    In this paper we explore a possible route of black hole seed formation that appeal to a model by Davies, Miller & Bellovary who considered the case of the dynamical collapse of a dense cluster of stellar black holes subjected to an inflow of gas. Here, we explore this case in a broad cosmological context. The working hypotheses are that (i) nuclear star clusters form at high redshifts in pre-galactic discs hosted in dark matter halos, providing a suitable environment for the formation of stellar black holes in their cores, (ii) major central inflows of gas occur onto these clusters due to instabilities seeded in the growing discs and/or to mergers with other gas-rich halos, and that (iii) following the inflow, stellar black holes in the core avoid ejection due to the steepening to the potential well, leading to core collapse and the formation of a massive seed of $<~ 1000\\, \\rm M_\\odot$. We simulate a cosmological box tracing the build up of the dark matter halos and there embedded baryons, and explore...

  14. A Theoretical Assessment of the Formation of IT clusters in Kazakhstan: Approaches and Positive Effects

    Directory of Open Access Journals (Sweden)

    Anel A. Kireyeva

    2016-04-01

    Full Text Available Abstract The aim of this research is to develop new theoretical approaches of the formation of IT clusters in order to strengthen of trend of the innovative industrialization and competitiveness of the country. Keeping with the previous literature, this study determines by the novelty of the problem, concerning the formation of IT clusters, which can become a driving force of transformation due to the interaction, improving efficiency and introducing advanced technology. In this research, we used conceptual approach employs the study of different conceptual views of scientists on a specific research object; structured approach involves determination of properties of a whole object by identifying the different relationships; system approach aims to develop research methods and design of complex objects – systems of different types. This study allows to conclude that IT-clusters will be most effective when they evolve naturally, originating under the action of internal forces of consolidation of  innovative, information and communications infrastructure (industrial parks, techno polis, research laboratories and business incubators, formation of soft infrastructure, that can help to find quick, innovative and creative ways to solve problems.

  15. Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    CERN Document Server

    Chattopadhyay, Manojit; Dan, Pranab K; 10.1007/s00170-010-2802-4

    2011-01-01

    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in t...

  16. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    CERN Document Server

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V-M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2014-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm / Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid-base bindings ...

  17. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    International Nuclear Information System (INIS)

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys295 and His261. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His261, which coordinates one of the Fe atoms with Cys295, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys295, we constructed CODH-II variants. Ala substitution for the Cys295 substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys295 indirectly and His261 together affect Ni-coordination in the C-cluster

  18. Carbon dust formation under heavy atomic hydrogen irradiation

    International Nuclear Information System (INIS)

    Dust formation mechanism in plasma-material surface interactions has been investigated by using high pressure inductively coupled plasmas (ICPs), which have a feature of high atomic particle flux (atomic hydrogen flux: ∼1024 m-2s-1, ion flux: ∼1021 m-2s-1). Experiments have been conducted in argon/hydrogen mixture plasma irradiation to graphite targets. In the present experiments, physical sputtering is not expected and the dominant erosion process of graphite target is chemical sputtering by atomic hydrogen irradiation. Carbon dust particles with various shapes have been observed on the graphite target irradiated by argon/hydrogen plasma. It is found that the shapes of the dust particles are strongly related to the target surface temperature, graphite spherical particle when the surface temperature is below ∼1100 K and polyhedral particle like diamond when above ∼1100 K. It is also shown that the carbon dust formation and growth does not choose the surface materials. The number density of dust formed decreases as the plasma input power decreases or the distance between the target and induction coil increases, while the weight loss remains almost the same even though the input power and distance between the target and induction coil are varied. The size of dust particles increases as increasing surface temperature. These experimental results indicate that the dust growth is strongly related to surface temperature. (author)

  19. On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-10-01

    Full Text Available Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2 at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4], dimethylamine ([DMA] and trimethylamine ([TMA], temperature and relative humidity (RH. We also tested how the model results change if we assume that the clusters with two sulphuric acid and two amine molecules would act as seeds for heterogeneous nucleation of organic vapours (other than amines with higher atmospheric concentrations than sulphuric acid. The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2=KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both had

  20. Formation of nanoclusters on silicon from carbon deposition

    International Nuclear Information System (INIS)

    Changes in the structure of silicon surfaces can be induced by adsorption of carbon-containing molecules followed by thermal treatments. Clean Si(111) surfaces, prepared in vacuum and exposed to different adsorbants such as methanol or carbon monoxide, change their structures with the formation of self-organised nanostructures (15-50 nm diameter) after suitable UHV annealing procedures. Evolution of the size and density per unit area over different heating periods indicates that the structures are nucleated by carbon atoms present on the surface while their growth derives from mobile surface silicon atoms during the annealing process. Methanol adsorbs dissociatively on silicon at room temperature thus leading to a high density of nucleation centres, but when the process is applied to partially oxide-masked silicon surfaces using CO as adsorbant the nanostructures form preferentially at the Si/SiO2 interface around the mask border thus offering the possibility to grow more ordered self-organised nanoscale patterns. Monte Carlo simulations of this process correlate well with STM measurements

  1. THE ACS NEARBY GALAXY SURVEY TREASURY. X. QUANTIFYING THE STAR CLUSTER FORMATION EFFICIENCY OF NEARBY DWARF GALAXIES

    International Nuclear Information System (INIS)

    We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (tage ∼< 100 Myr) cluster sample. Our data provide the first constraints on two proposed relationships between the star formation rate (SFR) of galaxies and the properties of their cluster systems in the low SFR regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data, suggesting that there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample galaxies also provide constraints on cluster destruction models.

  2. STAR FORMATION HISTORIES IN A CLUSTER ENVIRONMENT AT z ∼ 0.84

    International Nuclear Information System (INIS)

    We present a spectrophotometric analysis of galaxies belonging to the dynamically young, massive cluster RX J0152.7-1357 at z ∼ 0.84, aimed at understanding the effects of the cluster environment on the star formation history (SFH) of cluster galaxies and the assembly of the red sequence (RS). We use VLT/FORS spectroscopy, ACS/WFC optical, and NTT/SofI near-IR data to characterize SFHs as a function of color, luminosity, morphology, stellar mass, and local environment from a sample of 134 spectroscopic members. In order to increase the signal-to-noise ratio, individual galaxy spectra are stacked according to these properties. Moreover, the D4000, Balmer, CN3883, Fe4383, and C4668 indices are also quantified. The SFH analysis shows that galaxies in the blue faint-end of the RS have on average younger stars (Δt ∼ 2 Gyr) than those in the red bright-end. We also found, for a given luminosity range, differences in age (Δt ∼ 0.5-1.3 Gyr) as a function of color, indicating that the intrinsic scatter of the RS may be due to age variations. Passive galaxies in the blue faint-end of the RS are preferentially located in the low density areas of the cluster, likely being objects entering the RS from the 'blue cloud'. It is likely that the quenching of the star formation of these RS galaxies is due to interaction with the intracluster medium. Furthermore, the SFH of galaxies in the RS as a function of stellar mass reveals signatures of 'downsizing' in the overall cluster.

  3. Insights into star cluster formation from λ ≳ 1μm

    Science.gov (United States)

    Indebetouw, Rémy; Chen, Rosie; Brogan, Crystal; Whitney, Barbara; Robitaille, Thomas; Looney, Leslie; Looney

    2010-01-01

    We would like to know how molecular clouds turn into stellar clusters, and with what efficiency massive stars form in those clusters, since massive stars are the main agents responsible for evolution of the interstellar medium of galaxies, and their subsequent star-formation history. The imprint of ‘precluster’ molecular cloud conditions can be observed, but only in the least evolved, most embedded clusters, necessarily at wavelengths that can penetrate more than 10 visual magnitudes of extinction. Mid-infrared photometric imaging, most recently and extensively from Spitzer, can be used to select young stellar objects in clustered star-formation environments in our Galaxy and nearby galaxies. Relatively sophisticated methods have been developed, but the fundamental principle remains the selection of sources that have excess infrared emission from circumstellar dust. By fitting radiative-transfer models to a source's spectral-energy distribution between ~1 and ~100μm, we constrain the circumstellar dust distribution and evolutionary state. We can explore many things with this protostellar distribution in mass/luminosity and time/evolutionary state. For example we do not see strong evidence for primordial mass segregation in initial studies. We find evidence of primordial hierarchical substructure, greater clustering at the youngest stages, and even imprints of the pre-stellar Jeans scale. We see correlation of the youngest sources with dense molecular clumps and constrain the timescales for chemical processing and dispersal of those clumps. We have only begun to mine the wealth of existing Spitzer, emerging Herschel and soon ALMA data.

  4. A modified Fuzzy C-Means (FCM) Clustering algorithm and its application on carbonate fluid identification

    Science.gov (United States)

    Liu, Lifeng; Sun, Sam Zandong; Yu, Hongyu; Yue, Xingtong; Zhang, Dong

    2016-06-01

    Considering the fact that the fluid distribution in carbonate reservoir is very complicated and the existing fluid prediction methods are not able to produce ideal predicted results, this paper proposes a new fluid identification method in carbonate reservoir based on the modified Fuzzy C-Means (FCM) Clustering algorithm. Both initialization and globally optimum cluster center are produced by Chaotic Quantum Particle Swarm Optimization (CQPSO) algorithm, which can effectively avoid the disadvantage of sensitivity to initial values and easily falling into local convergence in the traditional FCM Clustering algorithm. Then, the modified algorithm is applied to fluid identification in the carbonate X area in Tarim Basin of China, and a mapping relation between fluid properties and pre-stack elastic parameters will be built in multi-dimensional space. It has been proven that this modified algorithm has a good ability of fuzzy cluster and its total coincidence rate of fluid prediction reaches 97.10%. Besides, the membership of different fluids can be accumulated to obtain respective probability, which can evaluate the uncertainty in fluid identification result.

  5. Analyses on the formation of atmospheric particles and stabilized sulphuric acid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Paasonen, P.

    2012-11-01

    Aerosol particles have various effects on our life. They affect the visibility and have diverse health effects, but are also applied in various applications, from drug inhalators to pesticides. Additionally, aerosol particles have manifold effects on the Earths' radiation budget and thus on the climate. The strength of the aerosol climate effect is one of the factors causing major uncertainties in the global climate models predicting the future climate change. Aerosol particles are emitted to atmosphere from various anthropogenic and biogenic sources, but they are also formed from precursor vapours in many parts of the world in a process called atmospheric new particle formation (NPF). The uncertainties in aerosol climate effect are partly due to the current lack of knowledge of the mechanisms governing the atmospheric NPF. It is known that gas phase sulphuric acid most certainly plays an important role in atmospheric NPF. However, also other vapours are needed in NPF, but the exact roles or even identities of these vapours are currently not exactly known. In this thesis I present some of the recent advancements in understanding of the atmospheric NPF in terms of the roles of the participating vapours and the meteorological conditions. Since direct measurements of new particle formation rate in the initial size scale of the formed particles (below 2 nm) are so far infrequent in both spatial and temporal scales, indirect methods are needed. The work presented on the following pages approaches the NPF from two directions: by analysing the observed formation rates of particles after they have grown to sizes measurable with widely applied instruments (2 nm or larger), and by measuring and modelling the initial sulphuric acid cluster formation. The obtained results can be summarized as follows. (1) The observed atmospheric new particle formation rates are typically connected with sulphuric acid concentration to the power close to two. (2) Also other compounds, most

  6. Dissociation of H2 on carbon doped aluminum cluster Al6C

    International Nuclear Information System (INIS)

    The dissociation of H2 molecule is the first step for chemical storage of hydrogen, and the energy barrier of the dissociation is the key factor to decide the kinetics of the regeneration of the storage material. As a light element, aluminum is an important candidate component for storage materials with high gravimetric density. This paper investigates the adsorption and dissociation of H2 on carbon doping aluminum cluster Al6C. The study shows that doping carbon into aluminum cluster can significantly change the electronic structure and increase the stability. Al6C has a few stable isomers with close energies and their structures are quite flexible. The molecular adsorption of H2 on Al6C is very weak, but the H2 molecule can be dissociated easily on this cluster. The stable product of the dissociated adsorption is searched and the different paths for the dissociation are investigated. During the dissociation of H2, the structure of the cluster adjusts accordingly, and strong orbital interaction between the hydrogen and the cluster occurs. The calculated energy barrier for the dissociation is only 0.30 eV, which means the dissociation can take place at moderate temperatures

  7. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    International Nuclear Information System (INIS)

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024 cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on AgeJX estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  8. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    Science.gov (United States)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  9. Characterization and prevention of formation damage for fractured carbonate reservoir formations with low permeability

    Institute of Scientific and Technical Information of China (English)

    Shu Yong; Yan Jienian

    2008-01-01

    Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure,lithology, porosity, permeability and mineral components all affect the potential for formation damage.The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity,and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed,which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid.Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology.

  10. Interpreting Dual Laterolog Fracture Data in Fractured Carbonate Formation

    Institute of Scientific and Technical Information of China (English)

    Deng Shaogui; Wang Xiaochang; Zou Dejiang; Fan Yiren; Yang Zhen

    2006-01-01

    The estimation of fractures is key to evaluating fractured carbonate reservoirs. It is difficult to evaluate this kind of reservoir because of its heterogeneously distributed fractures and anisotropy.A three-dimensional numerical model was used to simulate the responses of the dual laterolog (DLL) in a fractured formation based on a macro-isotropic anisotropic model. Accordingly, a fast fracturecomputing method was developed. First, the apparent conductivity of the DLL is linearly related to the porosity of the fracture and the conductivity of pore fluid. Second, the amplitude difference of the deep and shallow apparent resistivity logs is mainly dependenton the dip angle of the fracture. Then the response of the DLL to a formation with dip angle fracturesis approximately depicted as a function of the bulk resistivity of the rock, the porosity of the fractures and the conductivity of fracture fluid. This function can be used to compute the porosity of fracture quickly. The actual data show that the fracture parameters determined by the DLL closely coincide with the formation micro imager log.

  11. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation.

    Science.gov (United States)

    Schaffer, Jessica N; Norsworthy, Allison N; Sun, Tung-Tien; Pearson, Melanie M

    2016-04-19

    The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder. PMID:27044107

  12. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.

    Science.gov (United States)

    Vo, Tracy; Purohit, Krutarth; Nguyen, Christopher; Biggs, Brenna; Mayoral, Salvador; Haan, John L

    2015-11-01

    We demonstrate the first device to our knowledge that uses a solar panel to power the electrochemical reduction of dissolved carbon dioxide (carbonate) into formate that is then used in the same device to operate a direct formate fuel cell (DFFC). The electrochemical reduction of carbonate is carried out on a Sn electrode in a reservoir that maintains a constant carbon balance between carbonate and formate. The electron-rich formate species is converted by the DFFC into electrical energy through electron release. The product of DFFC operation is the electron-deficient carbonate species that diffuses back to the reservoir bulk. It is possible to continuously charge the device using alternative energy (e.g., solar) to convert carbonate to formate for on-demand use in the DFFC; the intermittent nature of alternative energy makes this an attractive design. In this work, we demonstrate a proof-of-concept device that performs reduction of carbonate, storage of formate, and operation of a DFFC. PMID:26510492

  13. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  14. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon

    International Nuclear Information System (INIS)

    This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban centre of Newcastle upon Tyne, U.K. Subsequent analysis yielded average carbonate contents of 21.8 ± 4.7% wt CaCO3. Isotopic analysis demonstrated δ18O values between − 9.4‰ and − 13.3‰ and δ13C values between − 7.4‰ and − 13.6‰ (relative to Pee Dee Belemnite), suggesting that up to 39.4 ± 8.8% of the carbonate C has been captured from the atmosphere through hydroxylation of dissolved CO2 in high pH solutions. The remaining carbonate C is derived from lithogenic sources. 37.4 kg of atmospheric CO2 has already been captured and stored as carbonate per Mg of soil across the site, representing a carbon dioxide (CO2) removal rate of 12.5 kgCO2 Mg−1 yr−1. There is the potential for capture and storage of a further 27.3 kgCO2 Mg−1 in residual reactive materials, which may be exploited through increased residence time (additional in situ weathering). Overall, the Science Central site has the potential to capture and store a total of 64,800 Mg CO2 as carbonate minerals. This study illustrates the potential for managing urban soils as tools of C capture and storage, an important ecosystem service, and demonstrates the importance of studying C storage in engineering urban anthropogenic soils. Highlights: ► Urban soils potentially capture 12.5 kgCO2 Mg−1 yr−1 (value £51,843–£77,765 ha−1). ► Formation of carbonate may be significant and exploitable storage

  15. Slow cluster formation of purified human or rhesus T cells requires protein kinase C and LFA-1.

    Science.gov (United States)

    Eylar, E H; Molina, C; Báez, I; Kessler, M

    1996-03-01

    Homotropic T cell adhesion, as generally studied, consists of a rapid, transient binding process that is measured over a 15-120 min. period. Here we report a slow type of adhesion process occurring with human or rhesus T cells, purified from peripheral blood, that manifests itself by the formation of rounded, multi-layer clusters which may contain hundreds of cells. The maximal number and size of the clusters peak 1-2 days after the addition of phorbol ester, an absolute requirement. The number of clusters formed is proportional to phorbol ester concentration up to 1.25 ng/mL. Phorbol esters such as phorbol myristate acetate (PMA), phorbol dibutyrate (PDB), and 7-octylindolactam (OIL) induced optimal cluster formation at 1-13 ng/mL, levels slightly higher than that required to induce mitogenesis of purified T cells. Phorbol itself and the alpha-form of the ester were inactive. Both cluster formation and mitogenesis (stimulated by Con A or anti-CD3) are completely inhibited by staurosporin at 12.5 ng/mL. Even at 2.5 ng/mL, 74% of cluster formation was inhibited, which strongly implies a crucial role for protein kinase C. In the presence of accessory cells, T cell clusters were suppressed. Monoclonal Ab such as anti-CD3, mouse anti-CD3 followed by anti-mouse IgG, anti-CD4, anti-CD4A, anti-CD2, anti-CD8, and anti-CD45 did not induce cluster formation. None were inhibitory or stimulatory in the presence of PMA, except for anti-CD3 which enhanced cluster formation by 26%. However, anti-LFA-1 beta-chain (mouse monoclonal) completely blocked cluster formation over the range studied (63-1000 ng/mL) for both human and rhesus cells; rat anti-LFA-1 only blocked human cell adhesion. Anti LFA-1 only partially inhibited T cell mitogenesis. These results show that slow cluster formation shares the LFA-1 and phorbol ester requirements of the rapid adhesion of T cells requiring LFA-1 and ICAM-1. However, cluster occurs at a very low phorbol ester concentration, appears more

  16. A Multi-Wavelength Photometric Census of AGN and Star Formation Activity in the Brightest Cluster Galaxies of X-ray Selected Clusters

    Science.gov (United States)

    Green, T. S.; Edge, A. C.; Stott, J. P.; Ebeling, H.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Metcalfe, N.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-06-01

    Despite their reputation as being "red and dead", the unique environment inhabited by Brightest Cluster Galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and AGN activity in the BCG. However the prevalence of "active" BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and Mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 medium.

  17. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    CERN Document Server

    Knierman, K; Charlton, J; Hunsberger, S D; Whitmore, B C; Kundu, A; Hibbard, J E; Zaritsky, D; Knierman, Karen; Gallagher, Sarah; Charlton, Jane; Hunsberger, Sally; Whitmore, Bradley; Kundu, Arunav; Zaritsky, Dennis

    2003-01-01

    Using V and I images obtained with WFPC2/HST, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre Sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends upon the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2 < V-I < 0.9), particularly in its Western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous p...

  18. On the Formation of Cool, Non-Flowing Cores in Galaxy Clusters via Hierarchical Mergers

    CERN Document Server

    Burns, J O; Norman, M L; Bryan, G L

    2003-01-01

    We present a new model for the creation of cool cores in rich galaxy clusters within a LambdaCDM cosmological framework using the results from high spatial dynamic range, adaptive mesh hydro/N-body simulations. It is proposed that cores of cool gas first form in subclusters and these subclusters merge to create rich clusters with cool, central X-Ray excesses. The rich cool clusters do not possess ``cooling flows'' due to the presence of bulk velocities in the intracluster medium in excess of 1000 km/sec produced by on-going accretion of gas from supercluster filaments. This new model has several attractive features including the presence of substantial core substructure within the cool cores, and it predicts the appearance of cool bullets, cool fronts, and cool filaments all of which have been recently observed with X-Ray satellites. This hierarchical formation model is also consistent with the observation that cool cores in Abell clusters occur preferentially in dense supercluster environments. On the other ...

  19. Globular clusters as the relics of regular star formation in 'normal' high-redshift galaxies

    CERN Document Server

    Kruijssen, J M Diederik

    2015-01-01

    We present an end-to-end, two-phase model for the origin of globular clusters (GCs). In the model, populations of stellar clusters form in the high-pressure discs of high-redshift ($z>2$) galaxies (a rapid-disruption phase due to tidal perturbations from the dense interstellar medium), after which the galaxy mergers associated with hierarchical galaxy formation redistribute the surviving, massive clusters into the galaxy haloes, where they remain until the present day (a slow-disruption phase due to tidal evaporation). The high galaxy merger rates of $z>2$ galaxies allow these clusters to be `liberated' into the galaxy haloes before they are disrupted within the high-density discs. This physically-motivated toy model is the first to include the rapid-disruption phase, which is shown to be essential for simultaneously reproducing the wide variety of properties of observed GC systems, such as their universal characteristic mass-scale, the dependence of the specific frequency on metallicity and galaxy mass, the ...

  20. Analysis of the static properties of cluster formations in symmetric linear multiblock copolymers

    International Nuclear Information System (INIS)

    We use molecular dynamics simulations to study the static properties of a single linear multiblock copolymer chain under poor solvent conditions varying the block length N, the number of blocks n, and the solvent quality by variation of the temperature T. We study the most symmetrical case, where the number of blocks of monomers of type A, nA, equals that of monomers B, nB (nA = nB = n/2), the length of all blocks is the same irrespective of their type, and the potential parameters are also chosen symmetrically, as for a standard Lennard-Jones fluid. Under poor solvent conditions the chains collapse and blocks with monomers of the same type form clusters, which are phase separated from the clusters with monomers of the other type. We study the dependence of the size of the clusters formed on n, N and T. Furthermore, we discuss our results with respect to recent simulation data on the phase behaviour of such macromolecules, providing a complete picture for the cluster formations in single multiblock copolymer chains under poor solvent conditions.

  1. Stellar dynamics in young clusters: the formation of massive runaways and very massive runaway mergers

    CERN Document Server

    Vanbeveren, D; Van Bever, J; Mennekens, N

    2007-01-01

    In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics: 1. The formation and the evolution of very massive stars (with a mass >120 Mo) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collison of 10-20 most massive stars of the cluster (the process is known as runaway merging). The further evolution is governed by stellar wind mass loss during core hydrogen burning and during core helium burning (the WR phase of very massive stars). Our simulations reveal that as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed but with a maximum mass of 70 Mo. In small metallicity clusters however, it cannot be excluded that the runaway merging process is responsible for pair instability supernovae or fo...

  2. THE STATE POLICY OF OF CLUSTER FORMS IN ORGANIZATION OF INTERACTION IN AGRARIAN FORMATION

    Directory of Open Access Journals (Sweden)

    Govdya V. V.

    2015-10-01

    Full Text Available The optimization issues of governance and the development of agriculture sector are particularly relevant in times of financial sanctions, implementation of the strategy of import substitution. Integration is the one of these mechanisms. In the article, we have discussed in detail the historical aspect of the appearance agroindustrial integration in Russia. The authors highlighted the negative aspects constraining the development of integration processes in the industry. The agro-industrial complex is considered as a set of regional and microcomplexes. The article identified three main areas of the industry. Its balance is able to provide dynamic and sustainable development of agriculture. Dynamics of the share of industry in the formation of the key indicators of the Russian economy are presented. It demonstrates the need to solve issues of increasing the efficiency of all agrarian formations. The authors proposed industrial and economic way out of the current crisis on the results of the research. The Government support of agriculture is the main instrument of agrarian policy, especially in times of economic crisis. The authors proposed a cluster approach to economic development as a priority. It allows reaching high competitiveness and stability of economic systems of cluster. In the article the advantages of creating clusters in the regional economic system are presented. We have summed up the implementation of the previously developed innovative, systemic management model

  3. Ultraviolet Morphologies and Star-Formation Rates of CLASH Brightest Cluster Galaxies

    CERN Document Server

    Donahue, Megan; Fogarty, Kevin; Li, Yuan; Voit, G Mark; Postman, Marc; Koekemoer, Anton; Moustakas, John; Bradley, Larry; Ford, Holland

    2015-01-01

    Brightest cluster galaxies (BCGs) are usually quiescent, but many exhibit star formation. Here we exploit the opportunity provided by rest-frame UV imaging of galaxy clusters in the CLASH (Cluster Lensing and Supernovae with Hubble) Multi-Cycle Treasury Project to reveal the diversity of UV morphologies in BCGs and to compare them with recent simulations of the cool, star-forming gas structures produced by precipitation-driven feedback. All of the CLASH BCGs are detected in the rest-frame UV (280 nm), regardless of their star-formation activity, because evolved stellar populations produce a modest amount of UV light that traces the relatively smooth, symmetric, and centrally peaked stellar distribution seen in the near infrared. Ultraviolet morphologies among the BCGs with strong UV excesses exhibit distinctive knots, multiple elongated clumps, and extended filaments of emission that distinctly differ from the smooth profiles of the UV-quiet BCGs. These structures, which are similar to those seen in the few s...

  4. TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS

    International Nuclear Information System (INIS)

    Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud on parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.

  5. TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Nicole D.; Basu, Shantanu, E-mail: nwityk@uwo.ca, E-mail: basu@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7 (Canada)

    2012-12-10

    Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud on parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.

  6. Non-aqueous formation of the calcium carbonate polymorph vaterite: astrophysical implications

    CERN Document Server

    Day, Sarah J; Parker, Julia E; Evans, Aneurin

    2013-01-01

    We study the formation of calcium carbonate, through the solid-gas interaction of amorphous Ca-silicate with gaseous CO2, at elevated pressures, and link this to the possible presence of calcium carbonate in a number of circumstellar and planetary environments. We use in-situ synchrotron X-Ray powder diffraction to obtain detailed structural data pertaining to the formation of the crystalline calcium carbonate phase vaterite and its evolution with temperature. We found that the metastable calcium carbonate phase vaterite was formed alongside calcite, at elevated CO2 pressure, at room temperature and subsequently remained stable over a large range of temperature and pressure. We report the formation of the calcium carbonate mineral vaterite whilst attempting to simulate carbonate dust grain formation in astrophysical environments. This suggests that vaterite could be a mineral component of carbonate dust and also presents a possible method of formation for vaterite and its polymorphs on planetary surfaces.

  7. Carbide formation in tungsten coatings on carbon-fibre reinforced carbon substrates

    International Nuclear Information System (INIS)

    Tungsten coatings with molybdenum interlayer deposited on carbon-fibre reinforced carbon (CFC) substrates were selected as the first wall material for the divertor in the Wall Project at Joint European Torus (similar to the International Thermonuclear Experimental Reactor). For such a layered structure, diffusion of carbon from the CFC substrate towards the Mo and W deposits is expected during the operation of the reactor. As both molybdenum and tungsten form stable carbides, brittle compounds may form at the interface, thus strongly affecting the thermomechanical performance of the coated tiles. For the purpose of prediction of the operation time of such coated tiles, carbon diffusion and carbide formation kinetics need to be determined. In the present study, W/Mo/CFC samples were subjected to heat treatment at 1470 K for various annealing times. The Focused Ion Beam technique was used for sample preparation for electron microscopy examinations. Transmission electron microscopy observations supported with diffraction pattern analyses revealed the both W2C and WC carbides in the W coating, as well as that of Mo2C carbide in the Mo layer. The results were used to estimate the kinetics of coatings degradation. - Highlights: ► Thin Mo/W layers system on carbon-fibre reinforced carbon divertor tile ► Heat treatment at 1470 K results in two tungsten carbide creation — W2C and WC ► The total tungsten carbide creation is limited by carbon diffusion ► WC carbide creation is limited by W2C–WC reaction rate

  8. The effect of carbon monoxide on planetary haze formation

    International Nuclear Information System (INIS)

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N2/CH4 to a variety of energy sources. However, many N2/CH4 atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  9. The effect of carbon monoxide on planetary haze formation

    Energy Technology Data Exchange (ETDEWEB)

    Hörst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  10. The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    Science.gov (United States)

    Vollmer, B.; Wong, O. I.; Braine, J.; Chung, A.; Kenney, J. D. P.

    2012-07-01

    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data based on the 8, 24, 70, and 160 μm data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies (NGC 4430, NGC 4501, and NGC 4522), possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies (NGC 4330, NGC 4438, and NGC 4522) shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. We found two such regions of low star formation efficiency in the more face-on galaxies NGC 4501 and NGC 4654 which are both undergoing ram pressure stripping. These regions show low radio continuum emission or unusually steep radio spectral index. However, the stripped extraplanar gas in one highly inclined

  11. Outflow Feedback Regulated Massive Star Formation in Parsec-Scale Cluster Forming Clumps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; /KIPAC, Menlo Park /Stanford U., Phys.Dept.; Li, Zhi-Yun; /Virginia U., Astron. Dept.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys.Dept.; Nakamura, Fumitaka; /Niigata U.

    2010-02-15

    We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using three dimensional numerical simulations of effective resolution 2048{sup 3}. The calculations are carried out using a block structured adaptive mesh refinement code that solves the ideal MHD equations including self-gravity and implements accreting sink particles. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of {approx} 1,600 M{sub {circle_dot}} (containing {approx} 10{sup 2} initial Jeans masses), along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive star's mass is supplied from outside a 0.1 pc-sized 'core' that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range (corresponding to a dimensionless clump mass-to-flux ratio {lambda} {approx} a few); the field allows the outflow momenta to be deposited more efficiently inside the clump. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication

  12. Monte Carlo simulation of local correlation and cluster formation in model fcc binary alloys

    International Nuclear Information System (INIS)

    Through the simulation with the Monte Carlo method is carried out the atomistic description of structure in a model fcc binary alloys A - B, which present at low-temperature trends to ordering. We use the ABV model of the alloy within the pair interaction approach with nearest neighbors and constant ordering energy. The dynamic was introduced through a vacancy which exchanges places with the atoms of nearest neighbors. The simulation was made on a fcc lattice with 256, 2048, 16,384 and 62,500 sites, using periodic boundary conditions to avoid edge effects. It was determined the probability of formation of different atomic clusters A13 - mBm (m = 0, 1, 2, ...13) consisting of 13 atoms as a function of the concentration and temperature, as well as the first short-range order parameters of Warren-Cowley. We found that in some regions of temperature and concentration is observed compositional and thermal polymorphism of clusters. (author)

  13. Molecular dynamics simulation of an argon cluster filled inside carbon nanotubes

    International Nuclear Information System (INIS)

    The effects of the diameters of single-walled carbon nanotubes (SWCNTs) (7.83 Å to 27.40 Å) and temperature (20 K–45 K) on the equilibrium structure of an argon cluster are systematically studied by molecular dynamics simulation with consideration of the SWCNTs to be fixed. Since the diameters of SWCNTs with different chiralities increase when temperature is fixed at 20 K, the equilibrium structures of the argon cluster transform from monoatomic chains to helical and then to multishell coaxial cylinders. Chirality has almost no noticeable influence on these cylindrosymmetric structures. The effects of temperature and a non-equilibrium sudden heating process on the structures of argon clusters in SWCNTs are also studied by molecular dynamics simulation. (condensed matter: structural, mechanical, and thermal properties)

  14. Environmental effects on star formation in dwarf galaxies and star clusters

    CERN Document Server

    Pasetto, S; Fujita, Y; Chiosi, C; Grebel, E K

    2014-01-01

    In this paper we develop a simple analytical criterion to investigate the role of the environment on the onset of star formation. We will consider the main external agents that influence the star formation (i.e. ram pressure, tidal interaction, Rayleigh-Taylor and Kelvin-Helmholtz instabilities) in a spherical galaxy moving through an external environment. The theoretical framework developed here has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy. We develop an analytic formalism to solve the fluid dynamics equations in a non-inertial reference frame mapped with spherical coordinates. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. The solution presented here is quite general, allowing us to investi...

  15. Cluster formation in water-in-oil microemulsions at percolation: evaluation of the electrical properties

    Science.gov (United States)

    Bordi, F.; Cametti, C.; Rouch, J.; Sciortino, F.; Tartaglia, P.

    1996-06-01

    We study water-in-oil microemulsion systems in the droplet phase and in the vicinity of a percolation transition in the non-percolating region. We focus on the electrical conductivity and permittivity, quantities that show large variations when approaching the percolation threshold. The accepted model for the interpretation of the increasing conductivity - very large compared to that of the bathing oil phase - is related to clustering of the microemulsion droplets and migration of charges within the aggregates. Power laws have been used to interpret the behaviour of the static dielectric properties and scaling functions proposed for the frequency-dependent conductivity and permittivity. We review some relevant experiments in this field and the proposed interpretations, and formulate a phenomenological model of conduction. It is based on the physical picture of cluster formation due to attractive interactions among the constituent water droplets, anomalous diffusion in the bulk of fractal aggregates and polydispersity of the clusters. The model gives quantitative expressions for both conductivity and permittivity over the entire frequency range of the percolative relaxation phenomena, including the static behaviour. A closed expression is derived for the scaling function of a scaling variable which involves frequency, the cut-off cluster size and the parameters of the bulk components. The results are also expressed in the time domain in terms of the polarization time correlation function. The latter exhibits a rather interesting behaviour, since it gradually evolves from an exponential decay to a power-law decay and to a stretched exponential as time increases. The time-scales of the different stages are obtained from the typical decay times of the single droplet and the largest cluster. We have analysed many different sets of data obtained for different microemulsion systems as functions of the composition of the dispersed phase, the temperature and the frequency

  16. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide

    Science.gov (United States)

    Scott, Carl D.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  17. A carbon cluster ion source for mass calibration at TRIGA-TRAP

    International Nuclear Information System (INIS)

    TRIGA-TRAP is a high-precision penning trap mass spectrometer installed at the research reactor TRIGA Mainz in order to determine the masses of short-lived fission products and - in addition to that - also the masses of actinide elements ranging from uranium up to californium. In order to determine precisely the masses of the nuclides of interest, the superconducting magnet providing the strong magnetic field for the Penning trap has to be calibrated by measuring the cyclotron frequency of an ion with well-known mass, which is, if possible, an isobaric nuclide of the ion of interest. Therefore, the best possible choice for mass calibration is to use carbon clusters as mass references, as demonstrated at the ISOLTRAP facility at ISOLDE/CERN. A laser ablation ion source for the production of carbon clusters has been developed using a frequency-doubled Nd:YAG laser. The design, current status, and results of the production of carbon cluster ions, using C60 and Sigradure registered samples, as well as other ions are presented

  18. The formation of multiple populations in the globular cluster 47 Tuc

    OpenAIRE

    Ventura, P; Di~Criscienzo, M.; D'Antona, F.; Vesperini, E.; Tailo, M.; Dell'Agli, F.; D'Ercole, A.

    2013-01-01

    We use the combination of photometric and spectroscopic data of 47 Tuc stars to reconstruct the possible formation of a second generation of stars in the central regions of the cluster, from matter ejected from massive Asymptotic Giant Branch stars, diluted with pristine gas. The yields from massive AGB stars with the appropriate metallicity (Z=0.004, i.e. [Fe/H]=-0.75) are compatible with the observations, in terms of extension and slope of the patterns observed, involving oxygen, nitrogen, ...

  19. Formation of fragments in heavy-ion collisions using modified clusterization method

    CERN Document Server

    Goyal, Supriya

    2011-01-01

    We study the formation of fragments by extending the minimum spanning tree method (MST) for clusterization. In this extension, each fragment is subjected to a binding-energy check calculated using the modified Bethe-Weizsacker formula. Earlier, a constant binding-energy cut of 4 MeV/nucleon was imposed. Our results for 197Au +197 Au collisions are compared with ALADiN data and also with the calculations based on the simulated annealing technique. We shall show that the present modified version improves the agreement compared to the MST method.

  20. Optically-passive spirals: The missing link in gradual star formation suppression upon cluster infall

    CERN Document Server

    Wolf, Christian; Balogh, Michael; Barden, Marco; Bell, Eric F; Gray, Meghan E; Peng, Chien Y; Bacon, David; Barazza, Fabio D; Böhm, Asmus; Caldwell, John A R; Gallazzi, Anna; ler, Boris Häu\\ss; Heymans, Catherine; Jahnke, Knud; Jogee, Shardha; van Kampen, Eelco; Lane, Kyle; McIntosh, Daniel H; Meisenheimer, Klaus; Papovich, Casey; Sánchez, Sebastian F; Taylor, Andy; Wisotzki, Lutz; Zheng, Xianzhong

    2009-01-01

    Galaxies migrate from the blue cloud to the red sequence when their star formation is quenched. Here, we report on galaxies quenched by environmental effects and not by mergers or strong AGN as often invoked: They form stars at a reduced rate which is optically even less conspicuous, and manifest a transition population of blue spirals evolving into S0 galaxies. These 'optically passive' or 'red spirals' are found in large numbers in the STAGES project (and by Galaxy Zoo) in the infall region of clusters and groups.

  1. Cluster formation of antigen antibody reaction studied by laser light scattering

    Science.gov (United States)

    David, P. J.; Tripathi, Deep N.

    1995-12-01

    Antigoat IgG raised in rabbit has been used to study its aggregation with goat antigen and the cluster formation is studied using laser light scattering. A (chi) 2 fitting method is used to fit the experimentally determined scattered intensity with the theoretically calculated scattered intensity. Scattered intensity is theoretically computed using a radial distribution function of the rD-3 form. The static structure factor S(q,Rg), the radius of gyration (Rg), and the correlation function ((xi) ) are determined.

  2. Experimental search of discrete symmetry violations when atomic cluster formation in thin radioactive films

    International Nuclear Information System (INIS)

    The ways of transformation (self-organization) of nano-clusters into nano-structures depend not only on properties insulated nano-clusters and inter-cluster interplays, but also from methods of nano-cluster making. Our outcomes of searches of influencing of clustering on nuclear decay electron spectra in thin radioactive films are also endorsement to this. Radioactive sources can be produced by different methods: by the evaporation of radioactive solution drop on a platinum support, wetted insulin; by irradiation of mono-isotope vapor-deposited film in vacuo on aluminium support with neutrons; by vapor-deposition of certain radioactive isotope on aluminium support. Most neatly displays of atomic clusters (in the nanometre range) formation in a radioactive source solid-state matrix and nanostructures with a closed magnetic flux, i.e. in the form of toroids, were watched in the Lu→Yb and Lu→Hf decays. The radioactivity represented the Lu isotope fraction, isolated from the tantalum target, irradiated with protons with energy 660 MeV, and deposited by an electrolysis on platinum support (thickness 10 μm). Briefly our experimental data, their dynamic features are reduced to the following The internal conversion electron lines have composite structure varying with time. The M4- and M5-Auger-electron quantity exceeds (in tens of times) that, which one is conditioned by nuclear decay. This ratio shows time function. The auto emission spectrum electron line scission shows composite time function also. In the electron spectrum the display of the certain interference figure and asymmetrical satellite lines (having multipole dependence and varying with time) is watched. It testifies to the formation of toroids with inversely directional toroidal moments and interplay of angular momentums of ordered electrons with an external electromagnetic field. The experimental outcomes indicate the very significant role (during the cluster formation) of multipole electron radiation

  3. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  4. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†

    Science.gov (United States)

    Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten

    2011-01-01

    During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241

  5. Arcus: Exploring the Formation and Evolution of Clusters, Galaxies, and Stars

    Science.gov (United States)

    Smith, Randall K.

    2016-04-01

    We present the scientific motivation and performance for Arcus, an X-ray grating spectrometer mission to be proposed to NASA as a MIDEX in 2016. This mission will observe structure formation at and beyond the edges of clusters and galaxies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars. Key mission design parameters are R = 3000 with >500 cm2 of effective area at the crucial O VII and O VIII lines, with the full bandpass going from ~10-50 Angstroms. Arcus will use the silicon pore optics developed for ESA’s Athena mission, paired with off-plane gratings being developed at the University of Iowa and combined with MIT/Lincoln Labs CCDs. With essentially no consumables, Arcus should achieve its mission goals in under 2 years, after which we anticipate a substantial period of operation as a general observatory.

  6. Effect of Mn cluster on the formation of superoxide radicals in photoinhibition of photosystem Ⅱ

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To further realize the action of superoxide radicals (O-2) in photoinhibition of photosystem Ⅱ (PS Ⅱ),we employed 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap, associated with EPR spectroscopy, to study the effect of illumination time on O-*2 formation during high light photoinhibition in PS Ⅱ membranes and Mn-depleted PS Ⅱ membranes. Results indicated that the removal of Mn cluster from PSⅡmembranes has a strong influence on the dynamnics of superoxide formation.The relative mechanism was also discussed.These novel findings may further promote the studies of the structure and function of PSⅡand the mechanism of photoinhibition.

  7. Ongoing star formation in the proto-cluster IRAS 22134+5834

    CERN Document Server

    Wang, Yuan; Fontani, Francesco; Sánchez-Monge, Álvaro; Busquet, Gemma; Palau, Aina; Beuther, Henrik; Tan, Jonathan C; Estalella, Robert; Isella, Andrea; Gueth, Frederic; Jiménez-Serra, Izaskun

    2015-01-01

    IRAS 22134+5834 was observed in the centimeter with (E)VLA, 3~mm with CARMA, 2~mm with PdBI, and 1.3~mm with SMA, to study the continuum emission as well as the molecular lines, that trace different physical conditions of the gas to study the influence of massive YSOs on nearby starless cores, and the possible implications in the clustered star formation process. The multi-wavelength centimeter continuum observations revealed two radio sources within the cluster, VLA1 and VLA2. VLA1 is considered to be an optically thin UCHII region with a size of 0.01~pc and sits at the edge of the near-infrared (NIR) cluster. The flux of ionizing photons of the VLA1 corresponds to a B1 ZAMS star. VLA2 is associated with an infrared point source and has a negative spectral index. We resolved six millimeter continuum cores at 2~mm, MM2 is associated with the UCHII region VLA1, and other dense cores are distributed around the UCH{\\sc ii} region. Two high-mass starless clumps (HMSC), HMSC-E (east) and HMSC-W (west), are detecte...

  8. Formation Mechanism and Binding Energy for Equilateral Triangle Structure of Li3 Cluster

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The formation mechanism for the equilateral triangle structure of Li3 cluster is proposed. The curve of the total energy versus the interatomic distance for this structure has been calculated by using the method of Gou's Modified Arrangement Channel Quantum Mechanics. The result shows that the curve has a minimal energy of-22.338 60 a.u at R = 5.82 a0. The total energy of Li3 when R approaches ∞ has the value of-22.284 09 a.u. This is also the total energy of three lithium atoms dissociated from Li3. The difference value of 0.0545 08 a.u. for the above two energy values is the dissociation energy of Li3 cluster, which is also its binding energy. Therefore the binding energy per lithium atom for Li3 is 0.018 169 a.u. = 0.494 eV, which is greater than the binding energy of 0.453 eV per atom for Li2 calculated in a previous work. This means that the Li3 cluster may be formed in the equilateral triangle structure of side length R = 5.82a0 stably with a stronger binding from the symmetrical interaction among the three lithium atoms.

  9. Formation of Innovation Clusters of Economics of Knowledge in Kharkiv Region

    OpenAIRE

    Kizim Nikolay A.; Cherednik Vitaliy I.; Dorovskoy V. A.

    2009-01-01

    In article the problem of formation of the regional economic policy, based on cluster approach is considered. Are considered regional cluster structures in mechanical engineering and pharmaceutical industry of the Kharkov area, as the most priority for region development. The actions, called to provide development of these clusters are offered.В статье рассматривается проблема формирования региональной экономической политики, основанной на кластерном подходе. Рассматриваются региональные клас...

  10. The Lost Dwarfs of Centaurus A and the Formation of its Dark Globular Clusters

    CERN Document Server

    Bovill, Mia Sauda; Ricotti, Massimo; Taylor, Matthew A

    2016-01-01

    We present theoretical constraints for the formation of the newly discovered dark star clusters (DSCs) with high mass-to-light (M/L) ratios, from Taylor et al (2015). These compact stellar systems photometrically resemble globular clusters (GCs) but have dynamical M/L ratios of ~ 10 - 100, closer to the expectations for dwarf galaxies. The baryonic properties of the dark star clusters (DSCs) suggest their host dark matter halos likely virialized at high redshift with M > 10^8 M_sun. We use a new set of high-resolution N-body simulations of Centaurus A to determine if there is a set of z=0 subhalos whose properties are in line with these observations. While we find such a set of subhalos, when we extrapolate the dark matter density profiles into the inner 20 pc, no dark matter halo associated with Centaurus A in our simulations, at any redshift, can replicate the extremely high central mass densities of the DSCs. Among the most likely options for explaining 10^5 - 10^7 M_sun within 10 pc diameter subhalos is t...

  11. Slow formation of [3Fe-4S](1+) clusters in mutant forms of Desulfovibrio africanus ferredoxin III.

    Science.gov (United States)

    Hannan, J P; Busch, J L; James, R; Thomson, A J; Moore, G R; Davy, S L

    2000-02-25

    Desulfovibrio africanus ferredoxin III (Da FdIII) readily interconverts between a 7Fe and an 8Fe form with Asp-14 believed to provide a cluster ligand in the latter form. To investigate the factors important for cluster interconversion in Fe/S cluster-containing proteins we have studied two variants of Da FdIII produced by site-directed mutagenesis, Asp14Glu and Asp14His, with cluster incorporation performed in vitro. Characterisation of these proteins by UV/visible, EPR and (1)H NMR spectroscopies revealed that the formation of the stable 7Fe form of these proteins takes some time to occur. Evidence is presented which indicates the [4Fe-4S](2+) cluster is incorporated prior to the [3Fe-4S](1+) cluster. PMID:10692579

  12. FORMATION OF THE FIRST NUCLEAR CLUSTERS AND MASSIVE BLACK HOLES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    We present a model for the formation of massive black holes (∼1000 M sun) due to stellar-dynamical processes in the first stellar clusters formed at early cosmic times (z ∼ 10-20). These black holes are likely candidates as seeds for the supermassive black holes detected in quasars and nearby quiescent galaxies. The high redshift black hole seeds form as a result of multiple successive instabilities that occur in low metallicity (Z ∼ 10-5 Z sun) protogalaxies. We focus on relatively massive halos at high redshift (T vir > 104 K, z ∼> 10) after the very first stars in the universe have completed their evolution. This set of assumptions ensures that (1) atomic hydrogen cooling can contribute to the gas cooling process, (2) a UV field has been created by the first stars, and (3) the gas inside the halo has been mildly polluted by the first metals. The second condition implies that at low density H 2 is dissociated and does not contribute to cooling. The third condition sets a minimum threshold density for fragmentation, so that stars form efficiently only in the very inner core of the protogalaxy. Within this core, very compact stellar clusters form. The typical star cluster masses are of order 105 M sun and the typical half mass radii ∼1 pc. A large fraction of these very dense clusters undergoes core collapse before stars are able to complete stellar evolution. Runaway star-star collisions eventually lead to the formation of a very massive star, leaving behind a massive black hole remnant. Clusters unstable to runaway collisions are always the first, less massive ones that form. As the metallicity of the universe increases, the critical density for fragmentation decreases and stars start to form in the entire protogalactic disk so that (1) accretion of gas in the center is no longer efficient and (2) the core collapse timescale increases. Typically, a fraction ∼0.05 of protogalaxies at z ∼ 10-20 form black hole seeds, with masses ∼1000-2000 M sun

  13. Medium polarization dynamics with atomic cluster formation in radioactive lutetium oxide

    International Nuclear Information System (INIS)

    Full text: The study of processes in a material of a radioactive sources was begun by us in connection with our work directed to the accuracy increase of electron-spectroscopy researches of nucleus decays. It was necessary to draw large attention to the form of electronic spectra and separate conversion lines, their dynamics and to research explanations of their anomalies with use for this purpose not only nuclear-spectroscopy methods, but also opportunities of auto-emission and Auger-spectroscopy. The analysis of all experimental results of our long-time research (∼ 13 years) of the radioactive lutetium oxide, deposited on a platinum support, as a radioactive source, has resulted us in the following assumptions of processes occurring in the source material. The lutetium oxide is a dielectric, having spontaneous polarization varying in the radiation field of the radioactive decay. The polarization is determined by domains - areas with various directions of polarization. Under action of an electrical field the volumes of the polarized along the field domains are increased at the expense of the ones, polarized against the field. The domain borders fixed on inhomogeneities move, for example, under action of internal conversion electrons accompanying the decay of radioactive nuclei. The experimentally observable energy losses of such electrons achieve 500 eV. In the cluster formation process the multipole character of nucleus decay electron radiation causing transfer of the angular moment by the electrons to atoms with collision with them plays a significant role. The auto-emission and Auger-spectra specify a determining role of the M4- and M5-subshells of ytterbium atoms in the cluster formation. It is possible to assume, that in the lutetium oxide electrical dipole medium at first the metal ytterbium clusters are formed. Their valent electrons are not located in space and are conducting electrons, for example, the electrons of the destroyed N-shell. It is possible

  14. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Gouliermis, Dimitrios A.; Gennaro, Mario [Max Planck Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany); Schmeja, Stefan [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Dolphin, Andrew E. [Raytheon Company, P.O. Box 11337, Tucson, AZ 85734 (United States); Tognelli, Emanuele; Prada Moroni, Pier Giorgio [Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, largo Pontecorvo 3, Pisa I-56127 (Italy)

    2012-03-20

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction ({approx}60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of {approx}2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last {approx}5 Myr. The central cluster NGC 602 was

  15. Morphological Dependence of Star Formation Properties for the Galaxies in the Merging Galaxy Cluster A2255

    CERN Document Server

    Yuan, Q; Yang, Y; Wen, Z; Zhou, X; Yuan, Qirong; Zhao, Lifang; Yang, Yanbin; Wen, Zhonglue; Zhou, Xu

    2005-01-01

    The merging cluster of galaxies A2255 is covered by the Sloan Digital Sky Survey (SDSS) survey. In this paper we perform a morphological classification on the basis of the SDSS imaging and spectral data, and investigate the morphological dependence of the star formation rates (SFRs) for these member galaxies. As we expect, a tight correlation between the normalized SFR by stellar mass (SFR/M$_*$) and the H$\\alpha$ equivalent width is found for the late-type galaxies in A2255. The correlation of SFR/M$_*$ with the continuum break strength at 4000 \\AA is also confirmed. The SFR/M$_*$ - M$_*$ correlation is found for both the early- and late-type galaxies, indicating that the star formation activity tends to be suppressed when the assembled stellar mass M$_*$) increases, and this correlation is tighter and steeper for the late-type cluster galaxies. Compared with the mass range of field spiral galaxies, only two massive late-type galaxies with M$_*>10^{11}$ M$_{\\odot}$ are survived in A2255, suggesting that the ...

  16. Binary interactions as a possible scenario for the formation of multiple stellar populations in globular clusters

    International Nuclear Information System (INIS)

    Observations have revealed the presence of multiple stellar populations in globular clusters (GCs) that exhibit wide abundance variations and multiple sequences in the Hertzsprung-Russell (HR) diagram. We present a scenario for the formation of multiple stellar populations in GCs. In this scenario, initial GCs are single-generation clusters, and our model predicts that the stars with anomalous abundances observed in GCs are merged stars and accretor stars produced by binary interactions—rapidly rotating stars at the moment of their formation—and that these stars are more massive than normal single stars in the same evolutionary stage. We find that, due to their own evolution, these rapidly rotating stars have surface abundances, effective temperatures, and luminosities that are different from normal single stars in the same evolutionary stage. This stellar population of binaries reproduces two important points of observational evidence of multiple stellar populations: a Na-O anticorrelation and multiple sequences in the HR diagram. This evidence suggests that binary interactions may be a possible scenario for the formation of multiple stellar populations in GCs.

  17. Cluster-formation in the Rosette molecular cloud at the junctions of filaments

    CERN Document Server

    Schneider, N; Hennemann, M; Motte, F; Didelon, P; Federrath, C; Bontemps, S; Di Francesco, J; Arzoumanian, D; Minier, V; André, Ph; Hill, T; Zavagno, A; Nguyen-Luong, Q; Attard, M; Bernard, J -Ph; Elia, D; Fallscheer, C; Griffin, M; Kirk, J; Klessen, R; Könyves, V; Martin, P; Men'shchikov, A; Palmeirim, P; Peretto, N; Pestalozzi, M; Russeil, D; Sadavoy, S; Sousbie, T; Testi, L; Tremblin, P; Ward-Thompson, D; White, G

    2012-01-01

    For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. The Rosette molecular cloud, irradiated by the NGC2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peak...

  18. Globular clusters as the relics of regular star formation in `normal' high-redshift galaxies

    Science.gov (United States)

    Kruijssen, J. M. Diederik

    2015-12-01

    We present an end-to-end, two-phase model for the origin of globular clusters (GCs). In the model, populations of stellar clusters form in the high-pressure discs of high-redshift (z > 2) galaxies (a rapid-disruption phase due to tidal perturbations from the dense interstellar medium), after which the galaxy mergers associated with hierarchical galaxy formation redistribute the surviving, massive clusters into the galaxy haloes, where they remain until the present day (a slow-disruption phase due to tidal evaporation). The high galaxy merger rates of z > 2 galaxies allow these clusters to be `liberated' into the galaxy haloes before they are disrupted within the high-density discs. This physically motivated toy model is the first to include the rapid-disruption phase, which is shown to be essential for simultaneously reproducing the wide variety of properties of observed GC systems, such as their universal characteristic mass-scale, the dependence of the specific frequency on metallicity and galaxy mass, the GC system mass-halo mass relation, the constant number of GCs per unit supermassive black hole mass, and the colour bimodality of GC systems. The model predicts that most of these observables were already in place at z = 1-2, although under rare circumstances GCs may still form in present-day galaxies. In addition, the model provides important constraints on models for multiple stellar populations in GCs by putting limits on initial GC masses and the amount of pristine gas accretion. The paper is concluded with a discussion of these and several other predictions and implications, as well as the main open questions in the field.

  19. Formation of clustered DNA damage after high-LET irradiation: a review.

    Science.gov (United States)

    Hada, Megumi; Georgakilas, Alexandros G

    2008-05-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki.(1)) These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to alpha-particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises of closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest an increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data. PMID:18413977

  20. Formation of Clustered DNA Damage after High-LET Irradiation: A Review

    Science.gov (United States)

    Hada, Megumi; Georgakilas, Alexandros G.

    2008-01-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.

  1. Formation of clustered DNA damage after high-LET irradiation. A review

    International Nuclear Information System (INIS)

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or γ-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to α-particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises of closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest an increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data. (author)

  2. Using young massive star clusters to understand star formation and feedback in high-redshift-like environments

    OpenAIRE

    Longmore, Steven; Barnes, Ashley; Battersby, Cara; Bally, John; Kruijssen, J. M. Diederik; Dale, James; Henshaw, Jonathan; Walker, Daniel; Rathborne, Jill; Testi, Leonardo; Ott, Juergen; Ginsburg, Adam

    2016-01-01

    The formation environment of stars in massive stellar clusters is similar to the environment of stars forming in galaxies at a redshift of 1 - 3, at the peak star formation rate density of the Universe. As massive clusters are still forming at the present day at a fraction of the distance to high-redshift galaxies they offer an opportunity to understand the processes controlling star formation and feedback in conditions similar to those in which most stars in the Universe formed. Here we desc...

  3. Star formation history of the Milky Way halo traced by the Oosterhoff dichotomy among globular clusters

    CERN Document Server

    Jang, Sohee

    2015-01-01

    In our recent investigation of the Oosterhoff dichotomy in the multiple population paradigm (Jang et al. 2014), we have suggested that the RR Lyrae variables in the Oosterhoff groups I, II, and III globular clusters (GCs) are produced mostly by the first, second, and third generation stars (G1, G2, and G3), respectively. Here we show, for the first time, that the observed dichotomies in the inner and outer halo GCs can be naturally reproduced when these models are extended to all metallicity regimes, while maintaining reasonable agreements in the horizontal-branch type versus [Fe/H] correlations. In order to achieve this, however, specific star formation histories are required for the inner and outer halos. In the inner halo GCs, the star formation commenced and ceased earlier with relatively short formation timescale between the subpopulations (~0.5 Gyr), while in the outer halo, the formation of G1 was delayed by ~0.8 Gyr with more extended timescale between G1 and G2 (~1.4 Gyr). This is consistent with the...

  4. Dynamic core hole screening in small-diameter conducting carbon nanotubes: A cluster density functional study

    International Nuclear Information System (INIS)

    The many-electron response of a small-diameter conducting carbon nanotube, to the sudden creation of a 1s core state, is studied using density functional theory with different Gaussian basis sets and the generalized gradient approximation for exchange and correlation. Cluster computations are performed on carbon atoms located at a finite-size cylindrical network that is terminated by hydrogen atoms. Core-hole creation is simulated by replacing the 1s electron pair, localized at a central site of the structure, with effective pseudo-potentials for both neutral and ionized atomic carbon. The same approach is used to describe a neutral and core-ionized C60 fullerene molecule. The overlaps between the excited states of the ionized systems and the ground states of the neutral systems are combined in a Fermi's golden rule treatment yielding the shake-up spectra from the two clusters. The numerical response for the fullerene molecule is found in good agreement with the measured X-ray photoelectron spectrum from thick C60 films, including the low energy satellites at excitation energies below 4 eV, within a peak position error of 0.3 eV. The nanotube spectrum reveals features in common with X-ray photoelectron data from Bucky balls and Bucky papers. - Highlights: • Many body effects induced in carbon nanotubes by core level ionization are studied. • Cluster density functional theory, with effective core pseudo-potentials, is used. • Low lying excited states of the ionized system are calculated. • Numerical photoelectron spectra are derived with a modified Fermi's golden rule. • Numerical calculations are compared with X-ray data from Bucky balls and papers

  5. Discovery of multi-seeded multi-mode formation of embedded clusters in the Rosette Molecular Complex

    CERN Document Server

    Smith, J Z L M D

    2005-01-01

    An investigation based on data from the spatially complete 2MASS Survey reveals that a remarkable burst of clustered star formation is taking place throughout the south-east quadrant of the Rosette Molecular Cloud. Compact clusters are forming in a multi-seeded mode, in parallel and at various places. In addition, sparse aggregates of embedded young stars are extensively distributed. In this study, we report the primary results and implications for high-mass and clustered star formation in giant molecular clouds. In particular, we incorporate for the first time the birth of medium to low-mass stars into the scenario of sequential formation of OB clusters. Following the emergence of the young OB cluster NGC 2244, a variety of manifestations of forming clusters of medium to high mass appear in the vicinity of the swept-up layer of the H{\\small II} region as well as further into the molecular cloud. The embedded clusters appear to form in a structured manner, which suggests they follow tracks laid out by the dec...

  6. Practical carbon-carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation.

    Science.gov (United States)

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon-carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  7. Dynamics of formation of particles of the condensed carbon phase at shock compression of organic materials

    CERN Document Server

    Fedotov, M G; Luckjanchikov, L A; Lyakhov, N Z; Sharafutdinov, M R; Sheromov, M A; Ten, K A; Titov, V M; Tolochko, B P; Zubkov, P I

    2001-01-01

    Results of the SR study of the density behavior and dynamics of formation of condensed carbon particles at expansion of shock waves in organic materials and some low-sensitive explosives as well as at shock loading of ultra-dispersed diamonds are presented. Appearance of particles of the condensed carbon phase was observed in carbon-rich organic materials.

  8. Galaxy Pairs in the 2dFGRS II. Effects of interactions on star formation in groups and clusters

    OpenAIRE

    Alonso, M. Sol; Tissera, Patricia B.; Coldwell, Georgina; Lambas, Diego G.

    2004-01-01

    We analyse the effects of galaxy interactions on star formation in groups and clusters of galaxies with virial masses in the range $10^{13} - 10 ^{15} M_{\\odot}$. We find a trend for galaxy-galaxy interactions to be less efficient in triggering star formation in high density regions in comparison with galaxies with no close companion. However, we obtain the same relative projected distance and relative radial velocity thresholds for the triggering of significant star formation activity ($r_p ...

  9. Einstein observations of the Hydra A cluster and the efficiency of galaxy formation in groups and clusters

    Science.gov (United States)

    David, L. P.; Arnaud, K. A.; Forman, W.; Jones, C.

    1990-01-01

    The Einstein imaging proportional counter observations of the poor cluster of galaxies centered on the radio galaxy Hydra A are examined. From the surface brightness profile, it is found that the X-ray-emitting gas in the Hydra A cluster must be condensing out of the intracluster medium at a rate of 600 solar masses/yr. This is one of the largest mass deposition rates observed in a cluster of galaxies. The ratio of gas mass to stellar mass is compared for a variety of systems, showing that this ratio correlates with the gas temperature.

  10. Einstein observations of the Hydra A cluster and the efficiency of galaxy formation in groups and clusters

    International Nuclear Information System (INIS)

    The Einstein imaging proportional counter observations of the poor cluster of galaxies centered on the radio galaxy Hydra A are examined. From the surface brightness profile, it is found that the X-ray-emitting gas in the Hydra A cluster must be condensing out of the intracluster medium at a rate of 600 solar masses/yr. This is one of the largest mass deposition rates observed in a cluster of galaxies. The ratio of gas mass to stellar mass is compared for a variety of systems, showing that this ratio correlates with the gas temperature. 55 refs

  11. Einstein observations of the Hydra A cluster and the efficiency of galaxy formation in groups and clusters

    Energy Technology Data Exchange (ETDEWEB)

    David, L.P.; Arnaud, K.A.; Forman, W.; Jones, C. (Smithsonian Astrophysical Observatory, Cambridge, MA (USA))

    1990-06-01

    The Einstein imaging proportional counter observations of the poor cluster of galaxies centered on the radio galaxy Hydra A are examined. From the surface brightness profile, it is found that the X-ray-emitting gas in the Hydra A cluster must be condensing out of the intracluster medium at a rate of 600 solar masses/yr. This is one of the largest mass deposition rates observed in a cluster of galaxies. The ratio of gas mass to stellar mass is compared for a variety of systems, showing that this ratio correlates with the gas temperature. 55 refs.

  12. Interconversion between formate and hydrogen carbonate by tungsten-containing formate dehydrogenase-catalyzed mediated bioelectrocatalysis

    Directory of Open Access Journals (Sweden)

    Kento Sakai

    2015-09-01

    Full Text Available We have focused on the catalytic properties of tungsten-containing formate dehydrogenase (FoDH1 from Methylobacterium extorquens AM1 to construct a bioelectrochemical interconversion system between formate (HCOO− and hydrogen carbonate (HCO3−. FoDH1 catalyzes both of the HCOO oxidation and the HCO3− reduction with several artificial dyes. The bi-molecular reaction rate constants between FoDH1 and the artificial electron acceptors and NAD+ (as the natural electron acceptor show the property called a linear free energy relationship (LFER, indicating that FoDH1 would have no specificity to NAD+. Similar LFER is also observed for the catalytic reduction of HCO3−. The reversible reaction between HCOO− and HCO3− through FoDH1 has been realized on cyclic voltammetry by using methyl viologen (MV as a mediator and by adjusting pH from the thermodynamic viewpoint. Potentiometric measurements have revealed that the three redox couples, MV2+/MV·−+, HCOO−/HCO3−, FoDH1 (ox/red, reach an equilibrium in the bulk solution when the two-way bioelectrocatalysis proceeds in the presence of FoDH1 and MV. The steady-state voltammograms with two-way bioelectrocatalytic properties are interpreted on a simple model by considering the solution equilibrium.

  13. Optical detection of CO and CO2 temperature dependent desorption from carbon nanotube clusters

    International Nuclear Information System (INIS)

    The development of new materials relies on high precision methods to quantify adsorption/desorption of gases from surfaces. One commonly used approach is temperature programmed desorption spectroscopy. While this approach is very accurate, it requires complex instrumentation, and it is limited to performing experiments under high vacuum, thus restricting experimental scope. An alternative approach is to integrate the surface of interest directly onto a detector face, creating an active substrate. One surface that has applications in numerous areas is the carbon nanotube (CNT). As such, an active substrate that integrates a CNT surface on a sensor and is able to perform measurements in ambient environments will have significant impact. In the present work, we have developed an active substrate that combines an optical sensor with a CNT cluster substrate. The optical sensor is able to accurately probe the temperature dependent desorption of carbon monoxide and carbon dioxide gases from the CNT cluster surface. This active substrate will enable a wide range of temperature dependent desorption measurements to be performed from a scientifically interesting material system. (paper)

  14. THE ROLE OF DRY MERGERS FOR THE FORMATION AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Using a resimulation technique, we perform high-resolution cosmological simulations of dry mergers in a massive (1015 M sun) galaxy cluster identified in the Millennium Run. Our initial conditions include well resolved compound galaxy models consisting of dark matter halos and stellar bulges that are used to replace the most massive cluster progenitor halos at redshift z = 3, allowing us to follow the subsequent dry merger processes that build up the cluster galaxies in a self-consistent cosmological setting. By construction, our galaxy models obey the stellar mass-size relation initially. Also, we study both galaxy models with adiabatically contracted and uncompressed halos. We demonstrate that the brightest cluster galaxy (BCG) evolves away from the Kormendy relation as defined by the smaller mass galaxies (i.e., the relation bends). This is accompanied by a significantly faster dark matter mass growth within the half-light radius of the BCG compared to the increase in the stellar mass inside the same radius. As a result of the comparatively large number of mergers the BCG experiences, its total mass-to-light ratio becomes significantly higher than in typical elliptical galaxies. We also show that the mixing processes between dark matter and stars lead to a small but numerically robust tilt in the fundamental plane and that the BCG lies on the tilted plane. Our model is consistent with the observed steepening of the logarithmic mass-to-light gradient as a function of the stellar mass. As we have not included effects from gas dynamics or star formation, these trends are exclusively due to N-body and stellar dynamical effects. Surprisingly, we find only tentative weak distortion in the Faber-Jackson relation that depends on the aperture size, unlike expected based on studies of isolated merger simulations. This may be due to differences in the distribution of galaxy orbits, which is given in our approach directly by the cosmological context while it has to be

  15. Theoretical studies of zirconium and carbon clusters with molecular dynamics simulations

    International Nuclear Information System (INIS)

    In this dissertation, we will present a systematic study of structures of fullerenes ranging from C20 to C100 by introducing a novel scheme. Using our new scheme, we not only reproduce all known fullerene structures but also successfully predicted several other fullerene structures which were confirmed by experiments. By utilizing the tight-binding molecular-dynamic (TBMD) simulation, we also studied the dynamical behavior of fullerenes: Vibrations, thermal disintegration of individual clusters as well as collisions between fullerenes. If the beauty of carbon fullerene is not enough, people found that carbon can also form tubules and even speculated that they can form three-dimensional graphite-like networks. By extending our fullerene structure searching scheme, we performed a search for the ground-state structure of three dimensional carbon network. We found the most stable structure people ever proposed for simple cubic based networks. From the difference of this new form of carbon and graphite in the electronic and vibrational properties, we propose an experimental probe to identify these novel three-dimensional carbon networks

  16. Formation and evolution of heavy sub-structures in the centre of galaxy clusters: the local effect of dark energy

    CERN Document Server

    Sedda, Manuel Arca; Merafina, Marco

    2016-01-01

    We discuss how the centres of galaxy clusters evolve in time, showing the results of a series of direct N-body simulations. In particular, we followed the evolution of a galaxy cluster with a mass $M_{clus} \\simeq 10^{14} $M$_{\\odot}$ in different configurations. The dynamical evolution of the system leads in all the cases to the formation of dense and massive sub-structures in the cluster centre, that form in consequence of a series of collisions and merging among galaxies travelling in the cluster core. We investigate how the structural properties of the main merging product depends on the characteristics of those galaxies that contributed to its formation.

  17. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Kirby, Evan N.; Guo, Michelle; Zhang, Andrew J.; Deng, Michelle; Cohen, Judith G.; Guhathakurta, Puragra; Shetrone, Matthew D.; Lee, Young Sun; Rizzi, Luca

    2015-03-01

    We present carbon abundances of red giants in Milky Way (MW) globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log (L/{{L}})≃ 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of SNe Ia at higher metallicities. We also identified 11 very carbon-rich giants (eight previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the MW stellar halo. Nonetheless, the stars with [C/Fe]\\lt +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] “knee” adds to the evidence from [α/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  18. Evolution of shocks and turbulence in the formation of galaxy clusters embedded in Megaparsec-scale filaments

    OpenAIRE

    Paul, S.; Iapichino, L.; Miniati, F.; Bagchi, J.; Mannheim, K.

    2011-01-01

    Massive structures like cluster of galaxies, embedded in cosmic filaments, release enormous amount of energy through their interactions. These events are associated with production of Mpc-scale shocks and injection of considerable amount of turbulence, affecting the non-thermal energy budget of the ICM. In order to study this thoroughly, we performed a set of cosmological simulations using the hydrodynamical code Enzo. We studied the formation of clusters undergoing major mergers, the propaga...

  19. Tools for the selection of the transmission probability in the cluster formation phase for Event-Driven Wireless Sensor Networks

    OpenAIRE

    Mario Eduardo Rivero-Angeles; Izlian Yolanda Orea-Flores

    2014-01-01

    In the literature, it is common to find studies on Wireless Sensor Networks (WSNs) that consider the Carrier Sense Multiple Access (CSMA) protocol with a fixed transmission probability for means of the random access strategy. This is especially true for event-driven applications for clustered- based architectures. However, due to the highly variable environment in these networks in terms of the number of nodes attempting a transmission (at the beginning of the cluster formation all nodes in t...

  20. Blister formation on tungsten surface by irradiating hydrogen and carbon mixed ion beam

    International Nuclear Information System (INIS)

    A mixed carbon and hydrogen beam was irradiated on to tungsten materials. In the case in which the carbon concentration and sample temperature were 0.95% and 653 K, respectively, large numbers and blisters of various sizes were formed. But in a low carbon concentration or high temperature case, no significant blisters were formed. It was found that carbon impurities in the beam play an important role in blister formation. (author)

  1. Investigation of Clusters in Medium Carbon Secondary Hardening Ultra-high-strength Steel After Hardening and Aging Treatments

    Science.gov (United States)

    Veerababu, R.; Balamuralikrishnan, R.; Muraleedharan, K.; Srinivas, M.

    2015-06-01

    Clusters, containing between 10 and 1000 atoms, have been investigated in a martensitic secondary hardening ultra-high-strength steel austenitized at 1173 K (900 °C) for 1 hour and tempered at either 768 K or 783 K (495 °C or 510 °C) for 4 or 8 hours using 3D atom probe. The presence of clusters was unambiguously established by comparing the observed spatial distribution of the different alloying elements against the corresponding distribution expected for a random solid solution. Maximum separation envelope method has been used for delineating the clusters from the surrounding "matrix." Statistical analysis was used extensively for size and composition analyses of the clusters. The clusters were found to constitute a significant fraction accounting for between 1.14 and 2.53 vol pct of the microstructure. On the average, the clusters in the 783 K (510 °C) tempered sample were coarser by ~65 pct, with an average diameter of 2.26 nm, relative to the other samples. In all samples, about 85 to 90 pct of the clusters have size less than 2 nm. The percentage frequency histograms for carbon content of the clusters in 768 K and 783 K (495 °C and 510 °C) tempered samples revealed that the distribution shifts toward higher carbon content when the tempering temperature is higher. It is likely that the presence of these clusters exerts considerable influence on the strength and fracture toughness of the steel.

  2. Spontaneous formation of stringlike clusters and smectic sheets for colloidal rods confined in thin wedgelike gaps.

    Science.gov (United States)

    Maeda, Hideatsu; Maeda, Yoshiko

    2013-08-20

    Monodispersed colloidal rods of β-FeOOH with sizes ranging from 270 to 580 nm in length and 50 to 80 nm in width were synthesized. Narrow wedgelike gaps (0 to 700 nm in height) were formed around the inner bottom edge of the suspension glass cells. Optical microscopic observations revealed the formation of stringlike clusters of the rods and smectic sheets (by spontaneous side-by-side clustering of the strings) in the isotropic phase of the rod suspensions confined in narrow gaps; the electrolyte (HCl) concentrations of the suspensions are 5-40 mM, at which inter-rod interactions are attractive. The strings exhibit different colors that were used to investigate the structures of the strings with the help of interference color theory for thin films. The results are as follows. (1) The rods, lying flat on the gap bottom, are connected side-by-side and stacked upward to form stringlike clusters with different thicknesses depending on the gap height. (2) The stacking numbers (N(sr)) of the rods are estimated to be 1-5. With N(sr) increasing from 2 to 5, the volume fractions (ϕ) of the rods in the strings increased typically from 0.25-0.3 to 0.35-0.42 to reach limiting values (close to the ϕ values of the rods in the bulk smectic phase). (3) Unexpected low-ϕ strings are found in regions with an intermediate height in the gaps. These behaviors of ϕ may be caused by thermal fluctuations of the strings. PMID:23876087

  3. Development of a piston utilizing carbon-cluster as a pressure transmission medium at low temperature

    International Nuclear Information System (INIS)

    It is necessary to require pressure transmission mechanism in the vacuum and low temperature environment such mechanically RF tuning operation for superconducting RF cavities. As a medium of pressure transmission, water, oil and air can not use such environment. Nano-cluster particles and carbon seems to have possibility of pressure transmission medium. Because their characteristics of chemical and physical reaction at low temperature environment is very stable. Also they have small number of the friction coefficient. We have been studying possibility of their characteristics as pressure transmission medium. (author)

  4. Neutral hydrogen gas, past and future star formation in galaxies in and around the `Sausage' merging galaxy cluster

    Science.gov (United States)

    Stroe, Andra; Oosterloo, Tom; Röttgering, Huub J. A.; Sobral, David; van Weeren, Reinout; Dawson, William

    2015-09-01

    CIZA J2242.8+5301 (z = 0.188, nicknamed `Sausage') is an extremely massive (M200 ˜ 2.0 × 1015 M⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H I observations of the `Sausage' cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the `Sausage' cluster have, on average, as much H I gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H I reservoirs are expected to be consumed within ˜0.75-1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. This fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.

  5. Ab initio study of Kr in hcp Ti: Diffusion, formation and stability of small Kr-vacancy clusters

    International Nuclear Information System (INIS)

    Ab initio electronic structure calculations have been performed to study the formation and migration of Kr impurities, and the stability of small Kr-vacancy clusters for clusters with up to four vacancies and four Kr atoms, in hcp Ti. Both the substitutional and the interstitial configurations of Kr are found to be stable. The octahedral configuration is however found to be more stable than the tetrahedral. Interstitial Kr atoms are shown to have attractive interactions and a low migration barrier, suggesting that, at low temperature, Kr bubble formation is possible, even in the absence of vacancies. We also find vacancy clusters to be stable. The binding energies of an interstitial Kr atom and a vacancy to a Kr-vacancy cluster are obtained from the calculated formation energies of the clusters. The stability of small-vacancy clusters is found to be dependent on Kr-vacancy ratio. The trends of the calculated binding energies are discussed in terms of providing further insights on the behaviour of Kr in implanted Ti.

  6. A low global star formation rate in the rich galaxy cluster AC114 at z=0.32

    CERN Document Server

    Couch, W J; Bower, R G; Smail, I; Taylor, K G M; Couch, Warrick J.; Balogh, Michael L.; Bower, Richard G.; Smail, Ian; Taylor, Karl Glazebrook & Melinda

    2001-01-01

    We present the results of a wide-field survey for H-alpha emitting galaxies in the cluster AC114 at z=0.32. Spectra centred on H-alpha at the cluster redshift have been obtained for 586 galaxies to I~22 out to a radius around 2Mpc. At most, only ~10% of these were found to be H-alpha-emitting cluster members. These objects are predominantly blue and of late-type spiral morphology, consistent with them hosting star formation. However, ~65% of the cluster members classified morphologically as spirals (with HST), have no detectable H-alpha emission; star-formation and morphological evolution in cluster galaxies appear to be largely decoupled. Changes in the H-alpha detection rate and the strength of H-alpha emission with environment are found to be weak within the region studied. Star formation within the cluster members is also found to be strongly and uniformly suppressed, with the rates inferred from the H-alpha emission not exceeding 4Mo/yr, and AC114's H-alpha luminosity function being an order of magnitude...

  7. LoCuSS: The slow quenching of star formation in cluster galaxies and the need for pre-processing

    CERN Document Server

    Haines, C P; Smith, G P; Egami, E; Babul, A; Finoguenov, A; Ziparo, F; McGee, S L; Rawle, T D; Okabe, N; Moran, S M

    2015-01-01

    We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15cluster members. The fraction (f_SF) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r200, but remains well below field values even at 3r200. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r200 of the cluster, but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f_SF-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ~15x from the core to 2r200. This requires star-formation to survive within recently accreted spirals for 2--3Gyr to build up the apparent over-density of star-forming galaxies within clusters...

  8. Formation Mechanism and Binding Energy for Body-Centred Regular Octahedral Structure of Li7 Cluster

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The formation mechanism for the body-centred regular octahedral structure of Lh cluster is proposed. The curve of the total energy versus the separation R between the nucleus at tie centre and nuclei at the apexes for this structure of Lh has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-52.169 73 a.u. at R= 5.06a0. When R approaches infinity, the totai energy of seven lithium atoms has the value of -51.996 21 a.u. So the binding energy of Lh with respect to seven lithium atoms is 0.173 52 a.u. Therefore the binding energy per atom for hit is 0.024 79 a.u. or 0.674 eV, which is greater than the binding energy per atom of 0.453 eV for Lii, the binding energy per atom of 0.494 eV for Liz and the binding energy per atom of 0.632 eV for Li& calculated previously by us. This means that the Lh cluster may be formed stably in a body-centred regular octahedral structure with a greater binding energy.

  9. Formation Mechanism and Binding Energy for Body-Centred Regular Icosahedral Structure of Li13 Cluster

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-Na; LI Ping; GOU Qing-Quan; ZHAO Yan-Ping

    2008-01-01

    The formation mechanism for the body-centred regular icosahedral structure of Li13 cluster is proposed. The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li13 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-96.951 39 a.u. at R = 5.46a0. When R approaches to infinity, the total energy of thirteen lithium atoms has the value of-96.564 38 a.u. So the binding energy of Li13 with respect to thirteen lithium atoms is 0.387 01 a.u. Therefore the binding energy per atom for Li13 is 0.029 77 a.u. or 0.810 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, 0.494 eV for Lia, 0.7878 eV for Li4, 0.632 eV for Lis, and 0.674 eV for Lit calculated by us previously. This means that the Li13 cluster may be formed stably in a body-centred regular icosahedral structure with a greater binding energy.

  10. Formation Mechanism and Binding Energy for Regular Octahedral Structure of Li6 Cluster

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-Ping; LI Ping; GOU Qing-Quan; LIU Wei-Na

    2008-01-01

    The formation mechanism for the regular octahedral structure of Li6cluster is proposed. The curve of the total energy versus the separation R between any two neighboring nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-44.736 89 a.u. At R=5.07α0. When R approaches infinity, the total energy of six lithium atoms has the value of-44.568 17 a.u. So the binding energy of Li6 with respect to six lithium atoms is 0.1687 a.u. Therefore, the binding energy per atom for Li6 is 0.028 12 a.u., or 0.7637 eV, which is greater than the binding energy per atom of 0.453 eV for Li2 arid the binding energy per atom of 0.494 eV for Li3 calculated in our previous work. This means that the Li6 cluster may be formed in a regular octahedral structure with a greater binding energy.

  11. Star Cluster Formation and Destruction in the Merging Galaxy NGC 3256

    Science.gov (United States)

    Mulia, A. J.; Chandar, R.; Whitmore, B. C.

    2016-07-01

    We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (ΣSFR). These clusters have luminosity and mass functions that follow power laws, dN/dL ∝ L α with α = ‑2.23 ± 0.07, and dN/dM ∝ M β with β = ‑1.86 ± 0.34 for τ function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with ΣSFR and SFRs that are lower by 1–3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.

  12. Magic number effect on cluster formation of polyhydroxylated fullerenes in water-alcohol binary solution

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yuji; Ueno, Hiroshi; Kokubo, Ken, E-mail: kokubo@chem.eng.osaka-u.ac.jp; Ikuma, Naohiko; Oshima, Takumi [Osaka University, Division of Applied Chemistry, Graduate School of Engineering (Japan)

    2013-06-15

    Due to the spherical shape with a diameter of ca. 1 nm, the aggregation behaviour of fullerene C{sub 60} is very interesting in view of the possible formation of magic number particle in a similar manner as metal cluster in gas phase. Herein, we report for the first time the magic number aggregation behaviours of polyhydroxylated fullerenol C{sub 60}(OH){sub 36} in water-alcohol (methanol, ethanol and 1-propanol) binary solution with increasing alcohol component. The diameters of particle were ca. 6-8 nm depending on the alcohol used. The particle sizes were precisely measured by the novel-induced grating method which is superior for the particle-size measurement in single-nano region (1-10 nm). The magic number cluster was also detected by scanning probe microscopy observation. However, such aggregation behaviours were not found in DMSO-alcohol system or for the use of less hydroxylated C{sub 60}(OH){sub 10}.

  13. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    Science.gov (United States)

    Gresswell, Carolyn Gayle

    Understanding how organisms are capable of forming (synthesize, crystallize, and organize) solid minerals into complex architectures has been a fundamental question of biomimetic materials chemistry and biomineralization for decades. This study utilizes short peptides selected using a cell surface display library for the specific polymorphs of calcium carbonate, i.e., aragonite and calcite, to identify two sets of sequences which can then be used to examine their effects in the formation, crystal structure, morphology of the CaCO3 minerals. A procedure of counter selection, along with fluorescence microscopy (FM) characterization, was adapted to insure that the sequences on the cells were specific to their respective substrate, i.e., aragonite or calcite. From the resulting two sets of sequences selected, five distinct strong binders were identified with a variety of biochemical characteristics and synthesized for further study. Protein derived peptides, using the known sequences of the proteins that are associated with calcite or aragonite, were also designed using a bioinformatics-based similarity analysis of the two sets of binders. In particular, an aragonite binding protein segment, AP7, a protein found in nacre, was chosen for this design and the resulting effects of the designed peptides and the AP7 were examined. Specifically, the binding affinities of the selected and the protein derived peptides off the cells were then tested using FM; these studies resulted in different binding characteristics of the synthesized and cellular bound peptides. Two of the peptides that displayed strong binding on the cells bound to neither of the CaCO 3 substrates and both the high and low similarity protein-derived peptides bound to both polymorphs. However, two of the peptides were found to only bind to their respective polymorph showing; these results are significant in that with this study it is demonstrated that the designed peptides based on experimental library

  14. Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon-Carbon Bond Formation upon Dimethyl Ether Activation on Alumina.

    Science.gov (United States)

    Comas-Vives, Aleix; Valla, Maxence; Copéret, Christophe; Sautet, Philippe

    2015-09-23

    The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon-carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH4, alkenes, and surface formate species according to spectroscopic studies combined with a computational approach. The carbon-carbon forming step as well as the formation of methane and surface formate involves a transient oxonium ion intermediate, generated by a hydrogen transfer between surface methoxy species and coordinated methanol on adjacent Al sites. These results indicate that extra framework Al centers in acidic zeolites, which are associated with alumina, can play a key role in the formation of the first carbon-carbon bond, the initiation step of the industrial MTO process. PMID:27162986

  15. Molecular gas and star formation in HI-deficient Virgo cluster galaxies

    Science.gov (United States)

    Kenney, Jeffrey D.; Young, Judith S.

    1987-01-01

    Mapping of the CO emission line in 42 Virgo cluster galaxies reveals that the molecular gas contents and distributions are roughly normal in severaly HI-deficient Virgo spirals. The survival of the molecular component mitigates the impact of the HI-stripping on star formation and subsequent galactic evolution. For spirals which are deficient in HI by a factor of 10, far-infrared, H alpha line, and nonthermal radio continuum luminosities are lower by no more than a factor of 2. The fact that the inner galactic disks are stripped of HI, while CO is normal, suggests that the lifetime of the molecular phase is approximately one billion years in the inner regions of luminous spirals.

  16. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. V. Constraints on Formation Scenarios

    CERN Document Server

    Renzini, A; Cassisi, S; King, I R; Milone, A P; Ventura, P; Anderson, J; Bedin, L R; Bellini, A; Brown, T M; Piotto, G; van der Marel, R P; Barbuy, B; Dalessandro, E; Hidalgo, S; Marino, A F; Ortolani, S; Salaris, M; Sarajedini, A

    2015-01-01

    We build on the evidence provided by our Legacy Survey of Galactic globular clusters (GC) to submit to a crucial test four scenarios currently entertained for the formation of multiple stellar generations in GCs. The observational constraints on multiple generations to be fulfilled are manifold, including GC specificity, ubiquity, variety, predominance, discreteness, supernova avoidance, p-capture processing, helium enrichment and mass budget. We argue that scenarios appealing to supermassive stars, fast rotating massive stars and massive interactive binaries violate in an irreparable fashion two or more among such constraints. Also the scenario appealing to AGB stars as producers of the material for next generation stars encounters severe difficulties, specifically concerning the mass budget problem and the detailed chemical composition of second generation stars. We qualitatively explore ways possibly allowing one to save the AGB scenario, specifically appealing to a possible revision of the cross section o...

  17. Asymmetric distribution of gas in the large magellanic cloud and dynamical condition for globular cluster formation

    International Nuclear Information System (INIS)

    Highly asymmetric distributions of HI and CO gases in LMC (Large Magellanic Cloud) are reproduced by taking into account hydrodynamical collision between LMC and SMC (Small Magellanic cloud) 0.15 to 0.2 Gyr ago. Two-valued rotation curves in HI gas are due, respectively, to gas clouds accelerated by collision and to those escaped therefrom. It is also concluded that a large-scale noncircular motion of >50 to 100 km s-1 and a resultant compression of >104 (solar mass) in mass-scale are necessary conditions for globular cluster formation from interstellar gas. This process seems to be independent of the chemical abundance of heavy elements in the range -2.0<[Fe/H]<0. (author)

  18. Gas Giants in Hot Water: Inhibiting Giant Planet Formation and Planet Habitability in Dense Star Clusters Through Cosmic Time

    CERN Document Server

    Thompson, Todd A

    2012-01-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies, and some globular clusters of the Galaxy likely exceeded the ice line temperature (T_Ice ~ 150-170 K) during formation for a time comparable to the planet formation timescale. The protoplanetary disks within these systems will thus not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive disks. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441, and 6388 should be devoid of giant planets. The characteris...

  19. The formation of carbon nanostructures by in situ TEM mechanical nanoscale fatigue and fracture of carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J J; Lockwood, A J; Peng, Y; Xu, X; Inkson, B J [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom); Bobji, M S, E-mail: beverley.inkson@sheffield.ac.u [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2009-07-29

    A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of <10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.

  20. Fusion process of Lennard-Jones clusters: global minima and magic numbers formation

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2004-01-01

    We present a new theoretical framework for modeling the fusion process of Lennard–Jones (LJ) clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing paths up to the cluster size of 150 atoms...

  1. Formation of global energy minimim structures in the growth process of Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Koshelev, Andrey; Shutovich, Andrey; Solov'yov, Andrey V.; Greiner, Walter

    2003-01-01

    We present a new theoretical framework for modelling the cluster growing process. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing paths up to the cluster sizes of 150 atoms. We demonstrate...... that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic numbers sequence for the clusters of noble gases atoms and compare...

  2. Four and one more: The formation history and total mass of globular clusters in the Fornax dSph

    Science.gov (United States)

    de Boer, T. J. L.; Fraser, M.

    2016-05-01

    We have determined the detailed star formation history and total mass of the globular clusters in the Fornax dwarf spheroidal using archival HST WFPC2 data. Colour-magnitude diagrams were constructed in the F555W and F814W bands and corrected for the effect of Fornax field star contamination, after which we used the routine Talos to derive the quantitative star formation history as a function of age and metallicity. The star formation history of the Fornax globular clusters shows that Fornax 1, 2, 3, and 5 are all dominated by ancient (>10 Gyr) populations. Clusters Fornax 1, 2, and 3 display metallicities as low as [Fe/H] = -2.5, while Fornax 5 is slightly more metal-rich at [Fe/H] = -1.8, consistent with resolved and unresolved metallicity tracers. Conversely, Fornax 4 is dominated by a more metal-rich ([Fe/H] = -1.2) and younger population at 10 Gyr, inconsistent with the other clusters. A lack of stellar populations overlapping with the main body of Fornax argues against the nucleus cluster scenario for Fornax 4. The combined stellar mass in globular clusters as derived from the SFH is (9.57 ± 0.93) × 105 M⊙, which corresponds to 2.5 ± 0.2 percent of the total stellar mass in Fornax. The mass of the four most metal-poor clusters can also be compared to the metal-poor Fornax field to yield a mass fraction of 19.6 ± 3.1 percent. Therefore, the SFH results provide separate supporting evidence for the unusually high mass fraction of the globular clusters compared to the Fornax field population.

  3. Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium

    Science.gov (United States)

    Alexander, R.; Marinica, M.-C.; Proville, L.; Willaime, F.; Arakawa, K.; Gilbert, M. R.; Dudarev, S. L.

    2016-07-01

    The size limitation of ab initio calculations impedes first-principles simulations of crystal defects at nanometer sizes. Considering clusters of self-interstitial atoms as a paradigm for such crystal defects, we have developed an ab initio-accuracy model to predict formation energies of defect clusters with various geometries and sizes. Our discrete-continuum model combines the discrete nature of energetics of interstitial clusters and continuum elasticity for a crystalline solid matrix. The model is then applied to interstitial dislocation loops with and 1 /2 Burgers vectors, and to C15 clusters in body-centered-cubic crystals Fe, W, and V, to determine their relative stabilities as a function of size. We find that in Fe the C15 clusters were more stable than dislocation loops if the number of self-interstitial atoms involved was fewer than 51, which corresponds to a C15 cluster with a diameter of 1.5 nm. In V and W, the 1 /2 loops represent the most stable configurations for all defect sizes, which is at odds with predictions derived from simulations performed using some empirical interatomic potentials. Further, the formation energies predicted by the discrete-continuum model are reparametrized by a simple analytical expression giving the formation energy of self-interstitial clusters as a function of their size. The analytical scaling laws are valid over a very broad range of defect sizes, and they can be used in multiscale techniques including kinetic Monte Carlo simulations and cluster dynamics or dislocation dynamics studies.

  4. Nonadditivity of convoy- and secondary-electron yields in the forward-electron emission from thin carbon foils under irradiation of fast carbon-cluster ions

    Science.gov (United States)

    Tomita, S.; Yoda, S.; Uchiyama, R.; Ishii, S.; Sasa, K.; Kaneko, T.; Kudo, H.

    2006-06-01

    We have measured energy spectra of secondary electrons produced by fast-carbon-cluster Cn+ (n=1-4) bombardment of thin carbon foils (3.2, 7.3, 11.9, and 20.3μg/cm2 ). For clusters of identical velocity, the convoy-electron yield is enhanced with increasing cluster size n , while the yield of secondary electrons is reduced. The yield of convoy electrons normalized to the number of injected atoms increases proportionally with cluster size n . This proportionality suggests that there is only a weak vicinage effect on the number of primary electrons scattered by the projectile. The vicinage effect observed in low-energy secondary electrons must therefore arise from either transport or transmission through the surface.

  5. Molecular dynamics simulation of low energy cluster impacts on carbon nanotubes

    International Nuclear Information System (INIS)

    The controlled doping of carbon nanotubes is of much interest in the production of potential new nanometer scale devices. Selective doping has been achieved for many years in the silicon microelectronics industry using ion implantation as it is highly controllable. However, with nanostructures and in particular the use of carbon nanotubes the impact energy delivered with the dopant ion in conventional ion implantation is distributed to the target material in such a way that substantial damage of the structure ensues. Recently Yamada et al. have been employing large gas cluster beams at relatively low energy per atomic particle so that the target material does not undergo such direct kinetic energy transfer. This relatively new technique - known as infusion doping in silicon technology - suggests a new, less damaging, technique for introducing dopants into nanostructured materials. Here we make an initial simulation study of the impact of a large gas cluster, containing a fraction of dopant ions, onto a single wall nanotube to investigate the possible doping and survival rate of this mechanism over the more conventional single atomic ion implantation technology

  6. Numerical approaches to star formation and SuperNovae energy feedback in simulations of galaxy clusters

    CERN Document Server

    Giovalli, Martina

    2009-01-01

    The goal of this work is to to investigate different numerical approaches and to introduce a new, physically-based sub-grid model for the ISM physics, including a treatment of star formation and Type II supernovae energy feedback (MUPPI, MUlti-Phase Particle Integrator). Our model follows the ISM physics using a system of ordinary differential equations, describing mass and energy flows among the different gas phases in the ISM inside each gas particle. The model also includes the treatment of SNe energy transfer from star-forming particles to their neighbours. We will show in this Thesis how this model is able to reproduce observed ISM properties, while also providing an effective thermal energy feedback and responding to variations in the local hydrodynamical properties of the gas, e.g. crossing of a spiral density wave in a galaxy disk. We believe the model we presented here will be particularly useful in cosmological simulations of formation and evolution of isolated galaxies and galaxy clusters. For this...

  7. Stem Cell-Soluble Signals Enhance Multilumen Formation in SMG Cell Clusters.

    Science.gov (United States)

    Maruyama, C L M; Leigh, N J; Nelson, J W; McCall, A D; Mellas, R E; Lei, P; Andreadis, S T; Baker, O J

    2015-11-01

    Saliva plays a major role in maintaining oral health. Patients with salivary hypofunction exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease, and microbial infections. At this time, treatments for hyposalivation are limited to medications (e.g., muscarinic receptor agonists: pilocarpine and cevimeline) that induce saliva secretion from residual acinar cells as well as artificial salivary substitutes. Therefore, advancement of restorative treatments is necessary to improve the quality of life in these patients. Our previous studies indicated that salivary cells are able to form polarized 3-dimensional structures when grown on growth factor-reduced Matrigel. This basement membrane is rich in laminin-III (L1), which plays a critical role in salivary gland formation. Mitotically inactive feeder layers have been used previously to support the growth of many different cell types, as they provide factors necessary for cell growth and organization. The goal of this study was to improve salivary gland cell differentiation in primary cultures by using a combination of L1 and a feeder layer of human hair follicle-derived mesenchymal stem cells (hHF-MSCs). Our results indicated that the direct contact of mouse submandibular (mSMG) cell clusters and hHF-MSCs was not required for mSMG cells to form acinar and ductal structures. However, the hHF-MSC conditioned medium enhanced cell organization and multilumen formation, indicating that soluble signals secreted by hHF-MSCs play a role in promoting these features. PMID:26285810

  8. A possible formation channel for blue hook stars in globular cluster

    CERN Document Server

    Lei, Zhenxin; Zhang, Fenghui; Han, Zhanwen

    2015-01-01

    The formation mechanism for blue hook (BHk) stars in globular clusters (GCs) is still unclear. Following one of the possible scenario, named late hot flash scenario, we proposed that tidally enhanced stellar wind in binary evolution may provide the huge mass loss on the red giant branch (RGB) and produce BHk stars. Employing the detailed stellar evolution code, Modules for Experiments in Stellar Astrophysics (MESA), we investigated the contributions of tidally enhanced stellar wind as a possible formation channel for BHk stars in GCs. We evolved the primary stars with different initial orbital periods using the binary module in MESA (version 6208) from zero age main-sequence (ZAMS) to post horizontal branch (HB) stage, and obtained their evolution parameters which are compared with the observation. The results are consistent with observation in the color-magnitude diagram (CMD) and the logg-Teff plane for NGC 2808, which is an example GC hosting BHk stars. However, the helium abundance in the surface for our ...

  9. High-dispersion spectroscopy of luminous, young star clusters evidence for present-day formation of globular clusters

    CERN Document Server

    Ho, L C; Ho, Luis C; Filippenko, Alexei V

    1996-01-01

    We present evidence that some of the compact, luminous, young star clusters recently discovered through images taken with the Hubble Space Telescope (HST) have masses comparable to those of old Galactic globular clusters. The "super star cluster" in the center of the nearby amorphous galaxy NGC 1705 has been observed with high dispersion at optical wavelengths using the HIRES echelle spectrograph on the Keck 10 m telescope. Numerous weak metal lines arising from the atmospheres of cool supergiants have been detected in the integrated spectrum, permitting a direct measurement of the line-of-sight stellar velocity dispersion through cross-correlation with a template star; the result is \\sigma_* = 11.4\\pm1.5 \\kms. Assuming that the system is gravitationally bound and using a cluster size measured from HST images, we apply the virial theorem to obtain the dynamical mass. Its derived mass [(8.2\\pm2.1) x 10^4 M_{\\odot}], mass density (2.7 x 10^4 M_{\\odot} pc^{-3}), and predicted mass-to-light ratio after aging by 1...

  10. Analytic and computational micromechanics of clustering and interphase effects in carbon nanotube composites.

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Gary D.; Hammerand, Daniel Carl; Lagoudas, Dimitris C. (Texas A& M University, College Station, TX)

    2006-01-01

    Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. Using the in-plane elastic properties of graphene, the effective properties of carbon nanotubes are calculated utilizing a composite cylinders micromechanics technique as a first step in a two-step process. These effective properties are then used in the self-consistent and Mori-Tanaka methods to obtain effective elastic properties of composites consisting of aligned single or multi-walled carbon nanotubes embedded in a polymer matrix. Effective composite properties from these averaging methods are compared to a direct composite cylinders approach extended from the work of Hashin and Rosen (1964) and Christensen and Lo (1979). Comparisons with finite element simulations are also performed. The effects of an interphase layer between the nanotubes and the polymer matrix as result of functionalization is also investigated using a multi-layer composite cylinders approach. Finally, the modeling of the clustering of nanotubes into bundles due to interatomic forces is accomplished herein using a tessellation method in conjunction with a multi-phase Mori-Tanaka technique. In addition to aligned nanotube composites, modeling of the effective elastic properties of randomly dispersed nanotubes into a matrix is performed using the Mori-Tanaka method, and comparisons with experimental data are made. Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is performed using the finite element method. The high-stiffness hollow fibers are modeled either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid cylinders with properties computed using a micromechanics based composite cylinders method. Using a representative volume element for clustered high-stiffness hollow fibers embedded in a compliant matrix with the appropriate periodic boundary conditions, the effective elastic properties

  11. HERSCHEL OBSERVATIONS OF THE W3 GMC: CLUES TO THE FORMATION OF CLUSTERS OF HIGH-MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Ingraham, A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Martin, P. G.; Luong, Q. Nguyen; Roy, A. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Polychroni, D. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, Panepistimiopolis, 15784 Zografos, Athens (Greece); Motte, F.; Schneider, N.; Hennemann, M.; Men' shchikov, A.; Andre, Ph.; Arzoumanian, D.; Hill, T.; Minier, V. [Laboratoire AIM, CEA/IRFU-CNRS/INSU-Universite Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Bontemps, S. [Universite Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Bernard, J.-Ph. [CNRS, IRAP, 9 Avenue colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Di Francesco, J.; Fallscheer, C. [National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Elia, D.; Pezzuto, S. [INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Rome (Italy); Li, J. Z. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China); and others

    2013-04-01

    The W3 GMC is a prime target for the study of the early stages of high-mass star formation. We have used Herschel data from the HOBYS key program to produce and analyze column density and temperature maps. Two preliminary catalogs were produced by extracting sources from the column density map and from Herschel maps convolved to 500 {mu}m resolution. Herschel reveals that among the compact sources (FWHM < 0.45 pc), W3 East, W3 West, and W3 (OH) are the most massive and luminous and have the highest column density. Considering the unique properties of W3 East and W3 West, the only clumps with ongoing high-mass star formation, we suggest a 'convergent constructive feedback' scenario to account for the formation of a cluster with decreasing age and increasing system/source mass toward the innermost regions. This process, which relies on feedback by high-mass stars to ensure the availability of material during cluster formation, could also lead to the creation of an environment suitable for the formation of Trapezium-like systems. In common with other scenarios proposed in other HOBYS studies, our results indicate that an active/dynamic process aiding in the accumulation, compression, and confinement of material is a critical feature of the high-mass star/cluster formation, distinguishing it from classical low-mass star formation. The environmental conditions and availability of triggers determine the form in which this process occurs, implying that high-mass star/cluster formation could arise from a range of scenarios: from large-scale convergence of turbulent flows to convergent constructive feedback or mergers of filaments.

  12. HERSCHEL OBSERVATIONS OF THE W3 GMC: CLUES TO THE FORMATION OF CLUSTERS OF HIGH-MASS STARS

    International Nuclear Information System (INIS)

    The W3 GMC is a prime target for the study of the early stages of high-mass star formation. We have used Herschel data from the HOBYS key program to produce and analyze column density and temperature maps. Two preliminary catalogs were produced by extracting sources from the column density map and from Herschel maps convolved to 500 μm resolution. Herschel reveals that among the compact sources (FWHM < 0.45 pc), W3 East, W3 West, and W3 (OH) are the most massive and luminous and have the highest column density. Considering the unique properties of W3 East and W3 West, the only clumps with ongoing high-mass star formation, we suggest a 'convergent constructive feedback' scenario to account for the formation of a cluster with decreasing age and increasing system/source mass toward the innermost regions. This process, which relies on feedback by high-mass stars to ensure the availability of material during cluster formation, could also lead to the creation of an environment suitable for the formation of Trapezium-like systems. In common with other scenarios proposed in other HOBYS studies, our results indicate that an active/dynamic process aiding in the accumulation, compression, and confinement of material is a critical feature of the high-mass star/cluster formation, distinguishing it from classical low-mass star formation. The environmental conditions and availability of triggers determine the form in which this process occurs, implying that high-mass star/cluster formation could arise from a range of scenarios: from large-scale convergence of turbulent flows to convergent constructive feedback or mergers of filaments.

  13. Low-Dimensional Network Formation in Molten Sodium Carbonate

    Science.gov (United States)

    Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.; Benmore, Chris; Weber, J. K. R.; Parise, John B.; Tamalonis, Anthony; Skinner, Lawrie

    2016-04-01

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (Fx(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions.

  14. LoCuSS: The Slow Quenching of Star Formation in Cluster Galaxies and the Need for Pre-processing

    Science.gov (United States)

    Haines, C. P.; Pereira, M. J.; Smith, G. P.; Egami, E.; Babul, A.; Finoguenov, A.; Ziparo, F.; McGee, S. L.; Rawle, T. D.; Okabe, N.; Moran, S. M.

    2015-06-01

    We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15 < z < 0.30, combining wide-field Spitzer 24 μm and GALEX near-ultraviolet imaging with highly complete spectroscopy of cluster members. The fraction (fSF) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r200, but remains well below field values even at 3r200. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r200 of the cluster, but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing fSF-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ˜15× from the core to 2r200. This requires star formation to survive within recently accreted spirals for 2-3 Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44 σν at 0.3r500, and is 10%-35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r500. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ˜0.5-2 Gyr beyond passing within r200. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which star formation rates decline exponentially on quenching timescales of 1.73 ± 0.25 Gyr upon accretion into the cluster.

  15. The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials

    Science.gov (United States)

    Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.

    2012-03-01

    A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.

  16. Organic Carbon Isotope Geochemistry of the Neoproterozoic Doushantuo Formation, South China

    Institute of Scientific and Technical Information of China (English)

    GUO Qingjun; LIU Congqiang; Harald STRAUSS; Tatiana GOLDBERG; ZHU Maoyan; PI Daohui; WANG Jian

    2006-01-01

    The Neoproterozoic Doushantuo Formation on the Yangtze Platform, South China,documents a sedimentary succession with different sedimentary facies from carbonate platform to slope and to deep sea basin, and hosts one of the world-class phosphorite deposits. In these strata,exquisitely preserved fossils have been discovered: the Weng'an biota. This study presents carbon isotope geochemistry which is associated paired carbonate and organic matter from the Weng'an section of a carbonate platform (shelf of the Yangtze Platform, Guizhou Province) from the Songtao section and Nanming section of a transition belt (slope of the Yangtze Platform, Guizhou Province) and from the Yanwutan section (basin area of the Yangtze Platform, Hunan Province). Environmental variations and bio-events on the Yangtze Platform during the Late Neoproterozoic and their causal relationship are discussed. Negative carbon isotope values for carbonate and organic carbon (mean δ13Corg = -35.0%) from the uppermost Nantuo Formation are followed by an overall increase in δ13C up-section. Carbon isotope values vary between -9.9% and 3.6% for carbonate and between -35.6% and -21.5% for organic carbon, respectively. Heavier δ13Ccarb values suggest an increase in organic carbon burial, possibly related to increasing productivity (such as the Weng'an biota). The δ13C values of the sediments from the Doushantuo Formation decreased from the platform via the slope to basin,reflecting a reduced environment with minor dissolved inorganic carbon possibly due to a lower primary productivity. It is deduced that the classical upwelling process, the stratification structure and the hydrothermal eruption are principally important mechanisms to interpret the carbon isotopic compositions of the sediments from the Doushantuo Formation.

  17. Tracing the star formation history of three Blue Compact galaxies through the analysis of their star clusters

    CERN Document Server

    Adamo, Angela; Zackrisson, Erik; Hayes, Matthew

    2009-01-01

    We present preliminary results from a study of the compact star cluster populations in three local luminous blue compact galaxies: ESO 185-IG 013, ESO 350-IG 038 (a.k.a. Haro 11), and MRK 930. These systems show peculiar morphologies and the presence of hundreds of SCs that have been produced by the past, recent, and/or current starburst phases. We use a complete set of HST images ranging from the UV to IR for each galaxy. Deep images in V (WFPC2/f606w) and I (WFPC2/f814w) are used to capture most of the star cluster candidates up to the old ones (fainter) which have had, in the past, less possibility to be detected. The other bands are used in the SED fitting technique for constraining ages and masses. Our goals are to investigate the evolution of these three blue compact galaxies and the star cluster formation impact on their star formation history.

  18. Constraining ultracompact dwarf galaxy formation with galaxy clusters in the local universe

    Science.gov (United States)

    Pfeffer, J.; Hilker, M.; Baumgardt, H.; Griffen, B. F.

    2016-05-01

    We compare the predictions of a semi-analytic model for ultracompact dwarf galaxy (UCD) formation by tidal stripping to the observed properties of globular clusters (GCs) and UCDs in the Fornax and Virgo clusters. For Fornax we find the predicted number of stripped nuclei agrees very well with the excess number of GCs+UCDs above the GC luminosity function. GCs+UCDs with masses >107.3 M⊙ are consistent with being entirely formed by tidal stripping. Stripped nuclei can also account for Virgo UCDs with masses >107.3 M⊙ where numbers are complete by mass. For both Fornax and Virgo, the predicted velocity dispersions and radial distributions of stripped nuclei are consistent with that of UCDs within ˜50-100 kpc but disagree at larger distances where dispersions are too high and radial distributions too extended. Stripped nuclei are predicted to have radially biased anisotropies at all radii, agreeing with Virgo UCDs at clustercentric distances larger than 50 kpc. However, ongoing disruption is not included in our model which would cause orbits to become tangentially biased at small radii. We find the predicted metallicities and central black hole masses of stripped nuclei agree well with the metallicities and implied black hole masses of UCDs for masses >106.5 M⊙. The predicted black hole masses also agree well with that of M60-UCD1, the first UCD with a confirmed central black hole. These results suggest that observed GC+UCD populations are a combination of genuine GCs and stripped nuclei, with the contribution of stripped nuclei increasing towards the high-mass end.

  19. Neutral hydrogen gas, past and future star-formation in galaxies in and around the 'Sausage' merging galaxy cluster

    CERN Document Server

    Stroe, Andra; Rottgering, Huub J A; Sobral, David; van Weeren, Reinout; Dawson, William

    2015-01-01

    CIZA J2242.8+5301 ($z = 0.188$, nicknamed 'Sausage') is an extremely massive ($M_{200}\\sim 2.0 \\times 10^{15}M_\\odot$ ), merging cluster with shock waves towards its outskirts, which was found to host numerous emission-line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope HI observations of the 'Sausage' cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission-line galaxies in the 'Sausage' cluster have, on average, as much HI gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large HI reservoirs are expected to be consumed within $\\sim0.75-1.0$ Gyr by the vigorous SF and AGN activity and/or driven out by t...

  20. Four and one more: The formation history and total mass of globular clusters in the Fornax dSph

    CERN Document Server

    de Boer, T J L

    2015-01-01

    We have determined the detailed star formation history and total mass of the globular clusters in the Fornax dwarf spheroidal using archival HST WFPC2 data. Colour magnitude diagrams are constructed in the F555W and F814W bands and corrected for the effect of Fornax field star contamination, after which we use the routine Talos to derive the quantitative star formation history as a function of age and metallicity. The star formation history of the Fornax globular clusters shows that Fornax 1, 2, 3 and 5 are all dominated by ancient~(>10 Gyr) populations. Cluster Fornax 1 and 3 display metallicities as low as [Fe/H]=-2.5 while Fornax 2 and 5 are slightly more metal-rich at [Fe/H]=-2.0, consistent with resolved and unresolved metallicity tracers. Conversely, Fornax 4 displays a more extended star formation history dominated by metal-rich~([Fe/H]=-1.4 dex) stars, with an age of ~10 Gyr, inconsistent with the other clusters. Its central location and complex population mix favours the proposed model that it might ...