WorldWideScience

Sample records for carbon cluster beams

  1. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  2. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  3. Cluster ion beam evaporation

    International Nuclear Information System (INIS)

    Cluster ions can be made by the supercooling due to adiabatic expansion of substances to be vaporized which are ejected from a nozzle. This paper is described on the recent progress of studies concerning the cluster beam. The technique of cluster ion beam has been applied for the studies of thermonuclear plasma, the fabrication of thin films, crystal growth and electronic devices. The density of cluster ion beam is larger than that of atomic ion beam, and the formation of thin films can be easily done in high vacuum. This method is also useful for epitaxial growth. Metallic vapour cluster beam was made by the help of jetting rare gas beam. Various beam sources were developed. The characteristics of these sources were measured and analyzed. (Kato, T.)

  4. Cluster beam sources. Part 1. Methods of cluster beams generation

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-10-01

    Full Text Available The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  5. Cluster beam sources. Part 1. Methods of cluster beams generation

    OpenAIRE

    A.Ju. Karpenko; V.A. Baturin

    2012-01-01

    The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  6. Two Types of Mass Abundance Distributions for Anionic Carbon Clusters Investigated by Laser Vaporization and Pulsed Molecular Beam Techniques

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hua-Jin; LIU Bing-Chen; NI Guo-Quan; XUZhi-Zhan

    2000-01-01

    Two types of mass spectra for anionic carbon clusters Cn- have been revealed using laser vaporization and pulsed molecular beam techniques. The less structured mass spectrum characteristic of the magic-numbers at n = 5, 8,11, 15, and 17 is established at the early stage of the cluster formation process, namely, in the laser vaporization process. The more structured one is featured for a regular odd-even alternation and the magic numbers at n =10, 12, 16, 18, 22, and 28, and has been developed only after extensive clustering and qnenching processes, where low-energy electron attachment plays a vital role. Transition between these two types of mass spectra can be realized by controlling either the strength of the pulsed gas flow or the synchronism between the gas flow and the laser vaporization.

  7. Development of long-lived cluster and hybrid carbon stripper foils for high energy, high intensity ion beams

    International Nuclear Information System (INIS)

    We have developed thin and thick long-lived carbon stripper foils for high energy, high intensity ion beams. The foil thicknesses are about 10 μg/cm2 (cluster foil) and 200 μg/cm2 (hybrid foil) for thin and thick, respectively. The thin foil is made by a controlled DC-arc discharge (CDAD) method, by using the size effect of the carbon particles. The size effect was the difference between the carbon particle sizes emitted from the cathode and the anode electrodes in the DC arc discharge, in which the particle size from the cathode is large (0.3 μmφ) and the other is small (0.003 μmφ). The thin foils composed of large particle size are not mechanically strong, but long-lived under low energy ion bombardment with a 3.2 MeV, 2-3 μA Ne+ beam. The mean lifetime is 900 mC/cm2 in average which corresponds to 25 times longer than that of commercially available standard foils. In this method, the key point in producing long-lived foils is to control the amount of carbon particles ablated from the cathode by adjusting temperature at the cathode emission spot. The thick hybrid carbon foils (multi-layer thickness about 200 μg/cm2) have been developed for use in 800 MeV, H+ ion beam at the Proton Storage Ring (PSR) of Los Alamos National Laboratory. The thick foils are prepared by means of the controlled ACDC arc discharge (CADAD) method, and are mechanically strong. The lifetime measurements of thick foils made by various methods were carried out using 800 MeV, 85-100 μA proton beams in the PSR. The foils made by the CADAD method showed very long lifetime, compared to other foils tested. (author)

  8. Cluster beam investigation with MCPs

    International Nuclear Information System (INIS)

    High intensity cluster-jet beams produced in Laval nozzles represent a very attractive and extremely interesting tool for studies at storage ring experiments, such as PANDA, or for laser-induced particle acceleration. Since the cluster properties vary with increasing number of constituents, it is essential to perform systematic measurements on the target thickness and especially on the cluster masses. For this purpose a monitoring system based on Micro Channel Plates (MCPs) combined with a phosphor screen has been developed and installed at the beam dump of the PANDA prototype cluster-jet target in Muenster. It could be shown that this MCP system allows for a direct observation of an ionised cluster beam. In addition, with this setup the possibility to visualise the vertex zone at the ANKE cluster-jet target at COSY was succesfully demonstrated, where a proton beam with a momentum of 2.09 GeV/c interacted with a hydrogen cluster-jet beam. Furthermore, cluster mass investigations can be performed in conjunction with a retardation field. In this presentation an overview of the MCP detection system, images of the cluster-jet beam and the vertex zone as well as the results of the current cluster mass measurements are presented and discussed.

  9. Cluster Beams Sources. Part 2. The Formation of Cluster Beams in Nozzle Sources

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-12-01

    Full Text Available The article briefly examines the processes occurring during the formation of cluster beams in sources of clusters, using the expansion of the gas mixture through a nozzle. The basic parameters of the gas cluster flow at the outlet nozzle, leading to the formation of clusters are analyzed. Some aspects of the formation of cluster beams from aerodynamic flows are discussed.

  10. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) film deposited using C60 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C60 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  11. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    CERN Document Server

    Kitagawa, T; Kanda, K; Shimizugawa, Y; Toyoda, N; Matsui, S; Yamada, I; Tsubakino, H; Matsuo, J

    2003-01-01

    Diamond-like carbon (DLC) film deposited using C sub 6 sub 0 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp sup 2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C sub 6 sub 0 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp sup 2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  12. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  13. Development of MeV cluster ion beams and irradiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hirata, Kouichi; Kobayashi, Yoshinori [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)

    2001-02-01

    The production and acceleration of cluster ion beams were developed by using a sputtering ion source and a tandem accelerator. Molecular beams of iron oxides were produced from Fe{sub 2}O{sub 3} powder prepared as the specimen of the ion source and accelerated to energy of MeV range. Defect densities in silicon and polycarbonate targets by irradiation were compared between monoatomic carbon ions and carbon cluster beams (C{sub 2}-C{sub 4}). Beam currents by injection of carbon cluster beams (C{sub 8}) were measured for various targets such as Si, Al, Al{sub 2}O{sub 3} and polycarbonate. The target and time dependence of the beam currents were originated from sputtered ions due to water molecules and oxides adhered at the surface of the targets. (Y. Kazumata)

  14. Surface modification with ionised cluster beams: Modelling

    International Nuclear Information System (INIS)

    Impacts of accelerated cluster ions which consist of hundreds of atoms on a solid surface have shown new surface smoothing and roughening effects. Hybrid Molecular Dynamics (MD) and a two-dimensional MD method were used to simulate rapid collision processes at the target impact zone and the subsequent thermalization. Gas clusters impacting on metal and semiconductor target surfaces have been considered to study the ripple formation under irradiation with oblique cluster beams. The dynamics of surface modification is simulated by using a discrete model which contains crater formation and surface relaxation. The continuum description of a surface relaxation is based on a dynamics equation for surface heights containing viscous flow, surface tension, surface diffusion, and crater formation terms. Comparison of the results of the simulation with experimental data shows qualitative agreement

  15. Historical milestones and future prospects of cluster ion beam technology

    International Nuclear Information System (INIS)

    Development of technology for processing of surfaces by means of gas cluster ion beams began only about a quarter century ago even though fundamental research related to generation of gas clusters began much earlier. Industrial applications of cluster ion beams did not start to be explored until commercial equipment was first introduced to the ion beam community in around 2000. The technology is now evolving rapidly with industrial equipment being engineered for many diverse surface processing applications which are made possible by the unique characteristics of cluster-ion/solid-surface interactions. In this paper, important historical milestones in cluster ion beam development are described. Present activities related to a wide range of industrial applications in semiconductors, magnetic and optical devices, and bio-medical devices are reviewed. Several emerging new advances in cluster beam applications for the future are also discussed

  16. Historical milestones and future prospects of cluster ion beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Isao, E-mail: i-yamada@kuee.kyoto-u.ac.jp

    2014-08-15

    Development of technology for processing of surfaces by means of gas cluster ion beams began only about a quarter century ago even though fundamental research related to generation of gas clusters began much earlier. Industrial applications of cluster ion beams did not start to be explored until commercial equipment was first introduced to the ion beam community in around 2000. The technology is now evolving rapidly with industrial equipment being engineered for many diverse surface processing applications which are made possible by the unique characteristics of cluster-ion/solid-surface interactions. In this paper, important historical milestones in cluster ion beam development are described. Present activities related to a wide range of industrial applications in semiconductors, magnetic and optical devices, and bio-medical devices are reviewed. Several emerging new advances in cluster beam applications for the future are also discussed.

  17. Two-dimensional visualization of cluster beams by microchannel plates

    CERN Document Server

    Khoukaz, Alfons; Grieser, Silke; Hergemöller, Ann-Katrin; Köhler, Esperanza; Täschner, Alexander

    2013-01-01

    An advanced technique for a two-dimensional real time visualization of cluster beams in vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCP) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This inf...

  18. Biological effects of clustered DNA damage produced by heavy ion beams with its complexity

    International Nuclear Information System (INIS)

    Heavy ion beams produce denser ionized region around their track, and cause accumulated damage cluster in the target DNA molecule, termed ''clustered DNA damage.'' Although any ionizing radiations can generate clustered DNA damage with respective degree, heavy ion beam might very effectively produce clustered DNA damage for a reason as mentioned thereinbefore. However, we have less knowledge about molecular mechanism how clustered DNA damage is involved in the degree of biological consequence, and relationship between the species of ionizing radiation and the result. Our previous in vitro study showed that the yields of clustered DNA damage in the target DNA was in inverse proportion to the linear energy transfer (LET) of irradiated radiation (J. Radiat. Res., 49; 133-146, 2008). This result suggests that the yield is not simply responsible to the biological consequence. Therefore, we focused on the structure of clustered DNA damage induced by heavy ion beams in this study. We evaluated the number of damaged site in the designed target oligonucleotides irradiated by gamma-rays, carbon ions and iron ions beams. Also, we estimated the intracellular yields of clustered DNA damage consisted of oxidative base lesions (clustered base damage), because we investigated only DSB not clustered base damage in the previous study. (author)

  19. Carbon-cluster mass calibration at SHIPTRAP

    International Nuclear Information System (INIS)

    A carbon-cluster ion source has been installed and tested at SHIPTRAP, the Penning-trap mass spectrometer for precision mass measurements of heavy elements at GSI (Darmstadt, Germany). Carbon-cluster ions 12Cn+, 5 ≤ n ≤ 23, were produced by laser-induced desorption and ionization from a carbon sample. They were tested for the first time as reference ions in an on-line mass measurement of the radionuclides 144Dy, 146Dy and 147Ho. In addition, carbon clusters of various sizes were used for an investigation of the systematic uncertainty of SHIPTRAP covering a mass range from 84 u to 240 u. The mass-dependent uncertainty was found to be negligible for the case of (m - m(ref)) -8 was revealed. (authors)

  20. Cobalt cluster-assembled thin films deposited by low energy cluster beam deposition: Structural and magnetic investigations of deposited layers

    International Nuclear Information System (INIS)

    Cobalt cluster-assembled thin films were deposited on amorphous-carbon-coated copper grids and on silicon substrates at room temperature by low energy cluster beam deposition. Characterizations using high-resolution transmission electronic microscopy and atomic force microscopy reveal randomly stacked agglomerates of 9-11 nm diameter, which are themselves composed of small 3.6 nm diameter fcc cobalt clusters. The films are ferromagnetic up to room temperature and above, which implies that the clusters are exchange coupled. The approach to saturation is analyzed within the random anisotropy model. The values of the exchange coefficient A and the anisotropy constant K then derived are discussed. The temperature dependence of the coercivity below 100 K is discussed in terms of thermal activation effects. All results indicate that the fundamental entity governing the magnetic behaviors is constituted by the 9-11 nm diameter agglomerates rather than by the clusters themselves

  1. The cluster beam route to model catalysts and beyond.

    Science.gov (United States)

    Ellis, Peter R; Brown, Christopher M; Bishop, Peter T; Yin, Jinlong; Cooke, Kevin; Terry, William D; Liu, Jian; Yin, Feng; Palmer, Richard E

    2016-07-01

    The generation of beams of atomic clusters in the gas phase and their subsequent deposition (in vacuum) onto suitable catalyst supports, possibly after an intermediate mass filtering step, represents a new and attractive approach for the preparation of model catalyst particles. Compared with the colloidal route to the production of pre-formed catalytic nanoparticles, the nanocluster beam approach offers several advantages: the clusters produced in the beam have no ligands, their size can be selected to arbitrarily high precision by the mass filter, and metal particles containing challenging combinations of metals can be readily produced. However, until now the cluster approach has been held back by the extremely low rates of metal particle production, of the order of 1 microgram per hour. This is more than sufficient for surface science studies but several orders of magnitude below what is desirable even for research-level reaction studies under realistic conditions. In this paper we describe solutions to this scaling problem, specifically, the development of two new generations of cluster beam sources, which suggest that cluster beam yields of grams per hour may ultimately be feasible. Moreover, we illustrate the effectiveness of model catalysts prepared by cluster beam deposition onto agitated powders in the selective hydrogenation of 1-pentyne (a gas phase reaction) and 3-hexyn-1-ol (a liquid phase reaction). Our results for elemental Pd and binary PdSn and PdTi cluster catalysts demonstrate favourable combinations of yield and selectivity compared with reference materials synthesised by conventional methods. PMID:27152749

  2. Beams of mass-selected clusters: realization and first experiments

    International Nuclear Information System (INIS)

    The main objective of this work concerns the production of beams of mass-selected clusters of metallic and semiconductor materials. Clusters are produced in magnetron sputtering source combined with a gas aggregation chamber, cooled by liquid nitrogen circulation. Downstream of the cluster source, a Wiley-McLaren time-of-flight setup allows to select a given cluster size or a narrow size range. The pulsed mass-selected cluster ion beam is separated from the continuous neutral one by an electrostatic 90-quadrupole deflector. After the deflector, the density of the pulsed beam amounts to about 103 particles/cm3. Preliminary deposition experiments of mass-selected copper clusters with a deposition energy of about 0.5 eV/atom have ben performed on highly oriented pyrolytic graphite (HOPG) substrates, indicating that copper clusters are evidently mobile on the HOPG-surface until they reach cleavage steps, dislocation lines or other surface defects. In order to lower the cluster mobility on the HOPG-surface, we have first irradiated HOPG samples with slow highly charged ions (high dose) in order to create superficial defects. In a second step we have deposited mass-selected copper clusters on these pre-irradiated samples. The first analysis by AFM (Atomic Force Microscopy) techniques showed that the copper clusters are trapped on the defects produced by the highly charged ions. (author)

  3. The Turn Over of the Odd-even Pattern in Mass Spectra of Carbon Cluster Anions

    Institute of Scientific and Technical Information of China (English)

    NI Guoquan; LIU Bingchen; ZHAI Huajin

    2000-01-01

    @@ Although investigations by many authorsd on the properties of carbon cluster anions by mass spectrometry and photoelectron spectroscopy last more than a decade[1~3], a general conclusion concerning the various features of the carbon clusters generated most commonly in laser vaporization/molecular beam sources has not yet been reached. In this Letter we report that the turn-over of the odd-even patter in relative abundance in the mass spectra of carbon clusters and the "manipulation" of the pattern can be realized in a controlled way by altering the vaporizing laser intensity, the backing pressure and the conductance of carries gas.

  4. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  5. Carbon-cluster mass calibration at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Ankur

    2007-12-10

    A carbon-cluster ion source has been installed and tested at SHIPTRAP, the Penning-trap mass spectrometer for mass measurements of heavy elements at GSI/Darmstadt, Germany. A precision mass determination is carried out by measuring the ion cyclotron frequency {omega}{sub c}=qB=m, where q/m is the charge-to-mass ratio of the ion and B is the magnetic field. The mass of the ion of interest is obtained from the comparison of its cyclotron frequency {omega}{sub c} with that of a well-known reference ion. Carbon clusters are the mass reference of choice since the unified atomic mass unit is defined as 1/12 of the mass of the {sup 12}C atom. Thus the masses of carbon clusters {sup 12}C{sub n}, n=1,2,3,.. are multiples of the unified atomic mass unit. Carbon-cluster ions {sup 12}C{sub n}{sup +}, 5{<=}n{<=}23, were produced by laser-induced desorption and ionization from a carbon sample. Carbon clusters of various sizes ({sup 12}C{sub 7}{sup +}, {sup 12}C{sub 9}{sup +}, {sup 12}C{sub 10}{sup +}, {sup 12}C{sub 11}{sup +}, {sup 12}C{sub 12}{sup +}, {sup 12}C{sub 15}{sup +}, {sup 12}C{sub 18}{sup +}, {sup 12}C{sub 19}{sup +}, {sup 12}C{sub 20}{sup +}) were used for an investigation of the accuracy of SHIPTRAP covering a mass range from 84 u to 240 u. To this end the clusters were used both as ions of interest and reference ions. Hence the true values of the frequency ratios are exactly known. The mass-dependent uncertainty was found to be negligible for the case of (m-m{sub ref})<100 u. However, a systematic uncertainty of 4.5 x 10{sup -8} was revealed. In addition, carbon clusters were employed for the first time as reference ions in an on-line studies of short-lived nuclei. Absolute mass measurements of the radionuclides {sup 144}Dy, {sup 146}Dy and {sup 147}Ho were performed using {sup 12}C{sub 11}{sup +} as reference ion. The results agree with measurements during the same run using {sup 85}Rb{sup +} as reference ion. The investigated radionuclides were produced in the

  6. Carbon beams, production and acceleration

    International Nuclear Information System (INIS)

    Installation, test and working conditions of a new negative-ion facility of the Salazar EN tandem are briefly described. Carbon is the material used for the test and the heavy ion stripping phenomenon is reviewed. (author)

  7. Precise Fabrication of Silicon Wafers Using Gas Cluster Ion Beams

    International Nuclear Information System (INIS)

    Precise surface processing of a silicon wafer was studied by using a gas cluster ion beam (GCIB). The damage caused to the silicon surface was strongly dependent on irradiation parameters. The extent of damage varied with the species of source gas and the acceleration voltage (Va) of cluster ions. It also varied with the cluster size and residual gas pressure. The influence of electron acceleration voltage (Ve) used for ionization of a neutral cluster was also investigated. The irradiation damage, such as an amorphous silicon (a-Si) layer, a mixed layer of a-Si and c-Si (transition layer), and surface roughness, was increased with Ve. It is suggested that the increase in the amount of energy per atom was induced by high Ve, because of variation of the cluster size and/or cluster charge. An undamaged smooth surface can be produced by Ar-GCIB irradiation at low Ve and Va.

  8. Plasma beam discharge in carbon dioxide

    International Nuclear Information System (INIS)

    The paper deals with the dissociation of carbon dioxide in nonequilibrium plasma of a stationary plasma-beam discharge. Experimental results of spectroscopic and probe measurements of plasma parameters are given. Moreover, a mass-spectrometric analysis of gaseous products of the chemical reactions is presented. In addition the measurement of the deposition rate of solid products by means of a quartz oscillator is described. The results show that plasma beam discharge is an effective tool for inducing plasma-chemical reactions. (author)

  9. Carbon Fiber Damage in Particle Beam

    CERN Document Server

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  10. Reactions of carbon cluster ions stored in an RF trap

    International Nuclear Information System (INIS)

    Reactions of carbon cluster ions with O2 were studied by using an RF ion trap in which cluster ions of specific size produced by laser ablation could be stored selectively. Reaction rate constants for positive and negative carbon cluster ions were estimated. In the case of the positive cluster ions, these were consistent with the previous experimental results using FTMS. Negative carbon cluster ions C-n (n=4-8) were much less reactive than positive cluster ions. The CnO- products were seen only in n=4 and 6. (orig.)

  11. Experimental and numerical study of high intensity argon cluster beams

    International Nuclear Information System (INIS)

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data

  12. The application of Guided Ion Beam Tandem Mass Spectrometer; Bond dissociation energies of bare and ligated copper group cluster anions

    International Nuclear Information System (INIS)

    Threshold energies, fragmentation patterns, and integral cross sections for the reactions of collision induced dissociations of bare and ligated copper group cluster anions are determined using a Guided Ion Beam Tandem Mass Spectrometer (GIB-MS). The bond breaking patterns for the copper cluster anions show dramatic even/odd tendencies, e.g., all copper group anions generate as the predominant reaction product, Carbon monoxide is weakly bound to copper group cluster anions. Cohesive energies of the bare copper and silver cluster anions are determined and exhibit a good correspondence with estimate cohesive energies by the model of Miedema.

  13. A computer gas cluster ion beam source at QSEC

    International Nuclear Information System (INIS)

    Description is given for a compact ion source developed in our laboratory which can serve not only as an accelerator in a range of a few tens of kV but also as a Wiley-McLaren Time-of-Flight (TOF) mass spectrometer. Using this new type ion source we can select a variety of desired cluster size and obtain a well collimated beam with the aide of Grid Lenses. We describe two technical details that play a key role in cluster size measurements; electrostatic lenses in a TOF system and the use of a mesh in an electrostatic optical system. (author)

  14. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Miley, George H.

    2012-10-24

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn

  15. An Effective Method of Producing Small Neutral Carbon Clusters

    Institute of Scientific and Technical Information of China (English)

    XIA Zhu-Hong; CHEN Cheng-Chu; HSU Yen-Chu

    2007-01-01

    An effective method of producing small neutral carbon clusters Cn (n = 1-6) is described. The small carbon clusters (positive or negative charge or neutral) are formed by plasma which are produced by a high power 532nm pulse laser ablating the surface of the metal Mn rod to react with small hydrocarbons supplied by a pulse valve, then the neutral carbon clusters are extracted and photo-ionized by another laser (266nm or 355nm) in the ionization region of a linear time-of-flight mass spectrometer. The distributions of the initial neutral carbon clusters are analysed with the ionic species appeared in mass spectra. It is observed that the yield of small carbon clusters with the present method is about 10 times than that of the traditional widely used technology of laser vaporization of graphite.

  16. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  17. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  18. Clusters in strong laser fields: Comparison between carbon, platinum, and lead clusters

    Science.gov (United States)

    Schumacher, M.; Teuber, S.; Köller, L.; Köhn, J.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    Carbon and metal clusters are excited by strong femtosecond laser pulses with up to 1016 W/cm2, yielding ionized clusters and highly charged atomic ions. For small carbon clusters and fullerenes the abundance of charged species correlates with the laser power, while for metal clusters the ionization efficiency is additionally strongly affected by the chosen laser pulse width which may result in an enhanced up-charging of the metal particle. In the case of platinum atomic charge states up to z=20 are detected at a pulse duration of about 600 fs. This observation is in accordance with a model based on a multi-plasmon excitation process.

  19. Observations on small anionic clusters in an electrostatic ion beam trap

    International Nuclear Information System (INIS)

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (Cn- n=2-12), aluminium (Aln- n=2-7) and silver clusters (Agn- n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon emission. The thermionic evaporative decay of anionic aluminium and silver

  20. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  1. Intensive irradiation of carbon nanotubes by Si ion beam

    Institute of Scientific and Technical Information of China (English)

    NI Zhichun; LI Qintao; YAN Long; GONG Jinlong; ZHU Dezhang; ZHU Zhiyuan

    2007-01-01

    Multi-walled carbon nanotubes were irradiated with 40 keV Si ion beam to a dose of 1×1017 cm-2. The multiple-way carbon nanowire junctions and the Si doping in carbon nanowires were realized. Moreover, the formation processes of carbon nanowire junctions and the corresponding mechanism were studied.

  2. Simulation of swift boron clusters traversing amorphous carbon foils

    OpenAIRE

    Heredia Ávalos, Santiago; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; García Molina, Rafael

    2007-01-01

    We use a simulation code to study the interaction of swift boron clusters (Bn+, n=2–6, 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interacti...

  3. Cluster ion beam polishing for inertial confinement fusion target capsules

    International Nuclear Information System (INIS)

    Targets for Inertial Confinement Fusion (ICF) typically consist of a hollow, spherical capsule filled with a mixture of hydrogen isotopes. Typically, these capsules are irradiated by short, intense pulses of either laser light (''direct drive'') or laser-generated. x-rays (''indirect drive''), causing them to implode This compresses and heats the fuel, leading to thermonuclear fusion. This process is highly sensitive to hydrodynamic (e.g., Rayleigh-Taylor) instabilities, which can be initiated by imperfections in the target. Thus, target capsules must be spherical and smooth One of the lead capsule designs for the National Ignition Facility, a 1.8 MJ laser being built at Livermore, calls for a 2-mm- diam capsule with a 150-microm-thick copper-doped beryllium wall. These capsules can be fabricated by sputter depositing the metal onto a spherical plastic mandrel. This results in surfaces with measured Rq's of 50 to 150 nm, as measured with an atomic force microscope For optimal performance the roughness should be below 10 nm rms We have begun studying the use of ion cluster beam polishing as a means of improving the surface finish of as-deposited capsules In this approach, a batch of capsules would be agitated in a bounce pan inside a vacuum chamber during exposure to the cluster beam. This would ensure a uniform beam dose around the capsule. We have performed preliminary experiments on both Be flats and on a stationary Be capsule On the capsule, the measured Rq went from 64 nm before polishing to 15 nm after This result was obtained without any effort at process optimization. Similar smoothing was observed on the planar samples

  4. More Magic Numbers in Anionic Titanium-carbon Mixed Clusters

    Institute of Scientific and Technical Information of China (English)

    ZHAU Huajin; LIU Bingchen; ZHOU Rufang; NI Guoquan

    2000-01-01

    @@ Met-Cars[1] and related transition metal-carbon clusters represent a latest breakthrough in gas phase cluster research following the discovery and macroscopic synthesis of fullerenes. Different kinds of structural growth patterns (SGPs) have been proposed to analyze the observed magic numbers of these transition metal-carbon mixed clusters, including the multicage SGP[2], the nanocrystal SGP[3], and the recent layered SGP[4]. Recording larger magic numbers will be of great help to test and distinguish between the various SGPs.

  5. Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Highlights: • We exploited Supersonic Cluster Beam Deposition for the fabrication of a flexible, planar micro-supercapacitor featuring nanostructured carbon electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N1113TFSI) ionic liquid electrolyte. • The micro-supercapacitor operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm−3 and delivering maximum specific energy and power densities of 10 mWh cm−3 and 8-10 W cm−3. • The micro-supercapacitor features long cycling stability over 2x104cycle on flat and bent configuration. -- Graphical abstract: Display Omitted -- Abstract: Power generation and storage in electronics require flexible, thin micro-electrochemical energy storage/conversion systems. Micro-supercapacitors (μSCs) with double-layer capacitance carbon electrodes are attracting much attention for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. Supersonic Cluster Beam Deposition (SCBD) is an effective strategy for the development of nanostructured, binder-free porous carbon electrodes on temperature sensitive substrates including polymers. We exploited SCBD for the development of a flexible, planar μSC featuring nanostructured carbon (ns-C) electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N1113TFSI) ionic liquid electrolyte. The electrochemical performance at different temperatures of the μSC which operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm−3 and delivering maximum specific energy and power densities of 10 mWh cm−3 and 8-10 W cm−3 with long cycling stability over 2 × 104 cycles is here reported and discussed

  6. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  7. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  8. Cluster-impact fusion, or beam-contaminant fusion? (abstract)

    International Nuclear Information System (INIS)

    Beuhler, Friedlander, and Friedman (BFF) reported anomalously huge D-D fusion rates while bombarding deuterated targets with (D2O)N+ clusters (N∼25--1000) accelerated to ∼325 keV [R. J. Beuhler et al., Phys. Rev. Lett. 63, 1292 (1989); R. J. Beuhler et al., J. Phys. Chem. 94, 7665 (1990)] [i.e., ∼0.3 keV lab energy for D in (D2O)100+]. However, from our analysis of BFF's fusion product spectra, we conclude that their D lab energy was ∼50 keV. Therefore, no gross anomalies exist. Also, from our analysis of the BFF beam-ranging experiments through 500 μg/cm2 of Au, we conclude that light-ion-beam contaminants (e.g., D+ of order 100 keV) have not been ruled out, and are the probable cause of their fusion reactions. This work was supported by LLNL Subcontract B116798, Department of Energy (DOE) Grant No. DE-FG02-91ER54109, DOE Magnetic Fusion Energy Technology Fellowship Program (D. H. Lo), and DOE Fusion Energy Postdoctoral Research Program (Kevin W. Wenzel)

  9. Description of a laser vaporization source and a supersonic cluster beam apparatus

    International Nuclear Information System (INIS)

    Laser vaporization of an appropriate target and recent developments in molecular beam technology have now made it possible to produce supersonic cluster beams of virtually any element in the periodic table. This paper describes the design and principles of a cluster source combined with a time of flight mass spectrometer built for reaction experiments and spectroscopic investigations at Stockholm University

  10. Carbon and nitrogen abundance variations in globular cluster red giants

    Science.gov (United States)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  11. On the Motion of Carbon Nanotube Clusters near Optical Fiber Tips: Thermophoresis, Radiative Pressure, and Convection Effects.

    Science.gov (United States)

    Vélez-Cordero, J Rodrigo; Hernández-Cordero, J

    2015-09-15

    We analyze the motion of multiwalled carbon nanotubes clusters in water or ethanol upon irradiation with a 975 and 1550 nm laser beam guided by an optical fiber. Upon measuring the velocities of the nanotube clusters in and out of the laser beam cone, we were able to identify thermophoresis, convection and radiation pressure as the main driving forces that determine the equilibrium position of the dispersion at low optical powers: while thermophoresis and convection pull the clusters toward the laser beam axis (negative Soret coefficient), radiation pressure pushes the clusters away from the fiber tip. A theoretical solution for the thermophoretic velocity, which considers interfacial motion and a repulsive potential interaction between the nanotubes and the solvent (hydrophobic interaction), shows that the main mechanism implicated in this type of thermophoresis is the thermal expansion of the fluid, and that the clusters migrate to hotter regions with a characteristic thermal diffusion coefficient D(T) of 9 × 10(-7) cm(2) K(-1) s(-1). We further show that the characteristic length associated with thermophoresis is not that of the nanotube clusters size, O(1) μm, but that corresponding to the microstructure of the clusters, O(1) nm. We finally discuss the role of the formation of gas-liquid interfaces (microbubbles) at high optical powers on the deposition of carbon nanotubes on the optical fiber end faces. PMID:26309145

  12. Functionalization of carbon nanotubes with silver clusters

    Science.gov (United States)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-09-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  13. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  14. Carbon beam dosimetry using VIP polymer gel and MRI

    DEFF Research Database (Denmark)

    Kantemiris, I; Petrokokkinos, L; Angelopoulos, A;

    2009-01-01

    VIP polymer gel dosimeter was used for Carbon ion beam dosimetry using a 150 MeV/n beam with 10 Gy plateau dose and a SOBP irradiation scheme with 5 Gy Bragg peak dose. The results show a decrease by 8 mm in the expected from Monte Carlo simulation range in water, suggesting that the dosimeter is...

  15. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  16. Diffusion and Interface Reaction of Cu/Si(100) Films Prepared by Cluster Beam Deposition

    Institute of Scientific and Technical Information of China (English)

    GAO Xing-Xin; JIA Yan-Hui; LI Gong-Ping; CHO Seong-Jin; KIM Hee

    2011-01-01

    Cu thin films are deposited on Si(100) substrates by neutral cluster beams and ionized cluster beams. The atomic diffusion and interface reaction between the Cu films and the Si substrates of as-deposited and annealed at different temperatures(230℃, 450℃, 500℃and 600℃) are investigated by Rutherford backscatteringspectrometry(RBS)and x-ray diffraction(XRD). Some significant results are obtained on the following aspects:(1) For the Cu/Si(100)samples prepared by neutral cluster beams and ionized cluster beams at Va=0 kV, atomic diffusion phenomena are observed clearly in the as-deposited samples. With the increase of annealing temperature, the interdiffusion becomes more apparent. However, the diffusion intensities of the RBS spectra of the Cu/Si(100) films using neutral cluster beams are always higher than that of the Cu/Si(100) films using ionized cluster beams at Va=OkV in the as-deposited and samples annealed at the same temperature. The compound of Cu3Si is observed in the as-deposited samples.(2) For the Cu/Si(100) samples prepared by ionized cluster beams at Va=1, 3, 5 kV,atomic diffusion phenomena are observed in the as-deposited samples at Va=1, 5 kV. For the samples prepared at Va=3 kV, the interdiffusion phenomenon is observed until 500℃ annealing temperature. The reason for the difference is discussed.

  17. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  18. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-06-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  19. Structural and bonding trends in platinum-carbon clusters

    OpenAIRE

    Miller, Thomas F., III; Hall, Michael B.

    1999-01-01

    Density functional calculations with the B3-LYP functional were used to optimize the platinum−carbon cationic clusters, PtC_x^+, 1 ≤ x ≤ 16, in both the doublet and quartet states of the linear, fan, open-ring, closed-ring, and one-carbon-ring geometries. Trends in stability, Pt^+−C_x binding energy, doublet-quartet excitation energy, and Pt−C bond lengths were investigated. Explanations for these patterns are provided in terms of orbital interactions and changes imposed on the carbon chain b...

  20. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    International Nuclear Information System (INIS)

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition

  1. Improvement of carbon fiber surface properties using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for struetural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface.

  2. Investigation of the clustering condition for various gasses ejected from a fast solenoid valve for supersonic cluster beam injection

    International Nuclear Information System (INIS)

    The supersonic cluster beam (SSCB) injection method is being developed as a new fueling method for the Large Helical Device (LHD) experiment. As a first step, cluster formation at a room temperature has been investigated for various gasses using a fast solenoid valve for SSCB. Rayleigh scattering of laser light by the cluster is measured by a fast charge coupled device camera. In the case of methane, nitrogen, and argon, clear scattering signals are observed at high valve backing pressure of more than 3-4 MPa. In the case of hydrogen, helium, and neon, on the other hand, no scattering signal is detected at 7 MPa. (author)

  3. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    International Nuclear Information System (INIS)

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R and D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R and D's will be presented together with clinical results and basic research activities at HIMAC

  4. Hydrophilic carbon clusters as therapeutic, high capacity antioxidants

    OpenAIRE

    Samuel, Errol L. G.; Duong, MyLinh T.; Bitner, Brittany R.; Marcano, Daniela C.; James M. Tour; Kent, Thomas A

    2014-01-01

    Oxidative stress reflects an excessive accumulation of reactive oxygen species (ROS) and is a hallmark of several acute and chronic human pathologies. While many antioxidants have been investigated, the majority have demonstrated poor efficacy in clinical trials. Here, we discuss limitations of current antioxidants and describe a new class of nanoparticle antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs). PEG-HCCs show high capacity to annihilate ROS su...

  5. Surface Smoothing of Compound Semiconductor Substrates with Gas Cluster Ion Beams

    International Nuclear Information System (INIS)

    Surface smoothing by gas cluster ion beams (GCIB) was studied for compound semiconductor such as GaN and SiC. Average cluster size of Ar cluster ions was 2000atoms/cluster measured by time of flight (TOF). Since the total acceleration energy was 20keV, the energy per atom was 10eV/atom. This low-energy characteristic of gas cluster ion beams is desirable for compound semiconductors. GCIB irradiation was employed to remove the scratches of the mechanically polished SiC surface. After irradiation at acceleration energy of 15keV, the scratches was completry removed. The GaN film with initial average roughness of 4nm was also smoothed to that of 1.4nm by Ar cluster ion beams. Furthermore SiC substrates were irradiated with SF6 cluster ions. The sputtering yield of SiC with SF6 cluster ions was enhanced almost 3 times than that with Ar cluster ions

  6. Structures and energetics of carbon bridged C60 clusters

    International Nuclear Information System (INIS)

    The structures and energetics of carbon bridged C60 clusters (C 60)nCm have been studied by simulated annealing technique within the tight-binding molecular-dynamics. The ''sp2 addition'' ball-and-chain dimers exhibit odd-even alternations over the number of chain atoms, with the dimers containing even chain atoms more stable against dissociation than their immediate neighbors containing odd chain atoms. In addition to the usual ''sp2 addition'' dimers, a pentagon-linked C121 isomer and a hexagon-linked C122 isomer are also found to be stable. Based on our tight-binding calculations, trimers and larger clusters can be simply regarded as being made up of independent or weakly interacting dimers, if the C-C60 joints on a single cage are not too close to each other. Large C60 clusters connected by chains each containing only one or two carbon atoms have similar stability to that of constituent dimers, indicating the possibility to form stable C60-carbon polymers. (orig.)

  7. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    EijiIwamura; MasanoriYamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process, graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  8. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    Eiji Iwamura; Masanori Yamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process,graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  9. FIDDLING CARBON STRINGS WITH POLARIZED PROTON BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, H.; KURITA, K.

    2006-05-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region was first tested in the Brookhaven AGS successfully. CNI Polarimeters were then installed in the AGS and both RHIC rings. The polarimeter consists of ultra-thin carbon targets and silicon strip detectors. The waveform digitizers are used for signal readout, which allows deadtime-less data processing on the fly. Polarimeters are crucial instrumentation for the RHIC spin physics program. This paper summarizes the polarimeter design issues and operation results.

  10. Cluster beam steering onto silicon surfaces studied by molecular dynamics

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the effects of the impact conditions on cluster deposition in silicon and is motivated by recent results obtained using a variable incidence angle during deposition of metallic clusters and atoms. Therefore deposition of silicon clusters with a kinetic energy in the range from 0.5 to 10 eV/atom directed at normal and grazing incidence onto crystalline silicon has been studied using a molecular dynamics simulation method. The influence of other relevant parameters, such as the interatomic forces and the cluster size and shape, has also been investigated. This study shows that the physics of deposition is almost entirely dictated by the nature of the interatomic forces. When using potentials with the four-fold coordination typical of bulk a clear dependence on the size N is observed and the spreading index η decreases with the increase of N for all incidence conditions. The cluster binding strength is perceptibly increased when using a potential accounting for the coordination typical of clusters. In this case η is reduced of almost one order of magnitude with respect to the values calculated with the bulk potentials and its value is independent of N. Also compact clusters, obtained from a quantum mechanical minimization of the total energy, show an enhanced resilience against fragmentation

  11. Diffusion and Interface Reaction of Cu/Si (100) Films Prepared by Cluster Beam Deposition

    International Nuclear Information System (INIS)

    Cu thin films are deposited on Si (100) substrates by neutral cluster beams and ionized cluster beams. The atomic diffusion and interface reaction between the Cu films and the Si substrates of as-deposited and annealed at different temperatures (230°C, 450°C, 500°C and 600°C) are investigated by Rutherford backscattering spectrometry (RBS) and x-ray diffraction (XRD). Some significant results are obtained on the following aspects: (1) For the Cu/Si(100) samples prepared by neutral cluster beams and ionized cluster beams at Va = 0kV, atomic diffusion phenomena are observed clearly in the as-deposited samples. With the increase of annealing temperature, the interdiffusion becomes more apparent. However, the diffusion intensities of the RBS spectra of the Cu/Si(100) films using neutral cluster beams are always higher than that of the Cu/Si(100) films using ionized cluster beams at Va=0kV in the as-deposited and samples annealed at the same temperature. The compound of Cu3Si is observed in the as-deposited samples. (2) For the Cu/Si(100) samples prepared by ionized cluster beams at Va=1, 3, 5kV, atomic diffusion phenomena are observed in the as-deposited samples at Va=1, 5kV. For the samples prepared at Va = 3kV, the interdiffusion phenomenon is observed until 500°C annealing temperature. The reason for the difference is discussed. (atomic and molecular physics)

  12. Fe-inserted and shell-shaped carbon nanoparticles by cluster-mediated laser pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fleaca, C.T., E-mail: claudiufleaca@yahoo.com [Laser Photochemistry Laboratory, National Institute for Lasers, Plasma and Radiation Physics (NILPRP), P.O. Box MG 36, R-077125 Bucharest-Magurele (Romania); Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Sandu, I.; Luculescu, C.; Birjega, S. [Laser Photochemistry Laboratory, National Institute for Lasers, Plasma and Radiation Physics (NILPRP), P.O. Box MG 36, R-077125 Bucharest-Magurele (Romania); Prodan, G. [Ovidius University of Constanta, 124 Mamaia Bd., Constanta (Romania); Stamatin, I. [3 Nano-SAE Research Center, University of Bucharest, P.O. Box MG-38, R-077125 Bucharest-Magurele (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Iron-inserted carbon nanoparticles were obtained by laser pyrolysis technique. Black-Right-Pointing-Pointer Two different structures (shell-shape and turbostratic) were found in the same experiment. Black-Right-Pointing-Pointer Increasing the pressure causes the increasing in carbon crystallinity/decreasing the Fe content. Black-Right-Pointing-Pointer Iron nanoinclusions are protected from oxidation by the carbon matrix. Black-Right-Pointing-Pointer Magnetism-related applications of these nanoparticles in life sciences are proposed. - Abstract: We report here the high-yield continuous synthesis of carbon nanoparticles with and without Fe content by laser pyrolysis technique. The laser beam decomposes (via C{sub 2}H{sub 4} sensitizer) the Fe(CO){sub 5} as Fe clusters which absorb themselves the laser radiation. They trigger the fast carbon particles formation by exothermic dehydrogenation/polymerization of the surrounded C{sub 2}H{sub 2} molecules. This combination between Fe clusters and C{sub 2}H{sub 2} generates nanoparticles with unusual structure. Depending on the gas pressure in the reaction chamber, two kinds of nanoparticles were obtained: at lower pressure, 30-40 nm diameter particles with a defective structure, part of them crowded with Fe clusters (3-6 nm) and two types of nanoparticles (around 50-60 nm) at the highest pressure. Some of them have a shell-shape structure, presenting a distinct envelope, other with a turbostratic arrangement, and few containing one or several smaller (3-20 nm) Fe nanoparticles trapped inside. We consider that these particular structures of our nanoparticles may be useful in applications such as MRI applications, drug delivery or catalysts.

  13. Biological effect of carbon beams on cultured human cells

    International Nuclear Information System (INIS)

    This study was performed to determine the biological effect of carbon beams on 13 human tumor cells, in comparison with 200 KVp X-rays. Carbon beams were generated by the Riken Ring Cyclotron. The RBE (relative biological effectiveness) values were distributed from 1.46 to 2.20 for LET of 20 keV/μm, and 2.29-3.54 for 80 keV/μm. The RBEs were increased in all cell lines as the LET of carbon beams was increased from 20 to 80 keV/μm. There was no significant difference in radiosensitivity between cells from adenocarcinoma and those from squamous cell carcinoma. The relationship between the radiosensitivity of cells to X-rays and RBE was analyzed, but no significant correlation was suggested. Several survival curves of 20-40 keV/μm carbon beam irradiation showed the initial shoulders and the recovery ratios between two split doses were determined. Recovery was observed for LET of 2O keV/μm but not for that of 40 keV/μm. Furthermore, recovery ratios were 1.0-1.8, smaller than those for X-rays (1.5-2.4). (author)

  14. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions....... Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine...... response model developed by J. Hansen and K. Olsen has been implemented in the Monte Carlo code FLUKA, and calculations were compared with experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for mono energetic beams. Measured depth...

  15. Design Study of a Superconducting Gantry for Carbon Beam Therapy

    CERN Document Server

    Kim, J

    2016-01-01

    This paper describes the design study of a gantry for a carbon beam. The designed gantry is compact such that its size is comparable to the size of the proton gantry. This is possible by introducing superconducting double helical coils for dipole magnets. The gantry optics is designed in such a way that it provides rotation-invariant optics and variable beam size as well as point-to-parallel scanning of a beam. For large-aperture magnet, three-dimensional magnetic field distribution is obtained by invoking a computer code, and a number of particles are tracked by integrating equations of motion numerically together with three-dimensional interpolation. The beam-shape distortion due to the fringe field is reduced to an acceptable level by optimizing the coil windings with the help of genetic algorithm. Higher-order transfer coefficients are calculated and shown to be reduced greatly with appropriate optimization of the coil windings.

  16. Deep Mixing and Metallicity: Carbon Depletion in Globular Cluster Giants

    CERN Document Server

    Martell, Sarah L; Briley, Michael M

    2008-01-01

    We present the results of an observational study of the efficiency of deep mixing in globular cluster red giants as a function of stellar metallicity. We determine [C/Fe] abundances based on low-resolution spectra taken with the Kast spectrograph on the 3m Shane telescope at Lick Observatory. Spectra centered on the 4300 Angstrom CH absorption band were taken for 42 bright red giants in 11 Galactic globular clusters ranging in metallicity from M92 ([Fe/H]=-2.29) to NGC 6712 ([Fe/H]=-1.01). Carbon abundances were derived by comparing values of the CH bandstrength index S2(CH) measured from the data with values measured from a large grid of SSG synthetic spectra. Present-day abundances are combined with theoretical calculations of the time since the onset of mixing, which is also a function of stellar metallicity, to calculate the carbon depletion rate across our metallicity range. We find that the carbon depletion rate is twice as high at a metallicity of [Fe/H]=-2.3 than at [Fe/H]=-1.3, which is a result qual...

  17. An indigenous cluster beam apparatus with a reflectron time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    G Raina; G U Kulkarni; R T Yadav; V S Ramamurthy; C N R Rao

    2000-04-01

    The design and fabrication of a Smalley-type cluster source in combination with a reflectron based time-of-flight (TOF) mass spectrometer are reported. The generation of clusters is based on supersonic jet expansion of the sampling plume. Sample cells for both liquid and solid targets developed for this purpose are described. Two pulsed Nd-YAG lasers are used in tandem, one (532 nm) for target vapourization and the other (355 nm) for cluster ionization. Methanol clusters of nuclearity up to 14 (mass 500 amu) were produced from liquid methanol as the test sample. The clusters were detected with a mass resolution of ~ 2500 in the R-TOF geometry. Carbon clusters up to a nuclearity of 28 were obtained using a polyimide target. The utility of the instrument is demonstrated by carrying out experiments to generate mixed clusters from alcohol mixtures.

  18. Tailoring of specific sizes of cluster ions for producing intense negative ion beams

    International Nuclear Information System (INIS)

    For the purpose of producing an intense beam of monoatomic negative hydrogen ions from a beam of accelerated positive hydrogen cluster ions, the mean specific size of the cluster ions of 103 atoms/charge for an accelerating voltage of 1 MV is necessary for efficient formation of the negative ions. A fundamental investigation on the tailoring of specific sizes has been carried out by using nitrogen cluster ions with a mean specific size of 105 atoms/charge. The nitrogen cluster ions were accelerated at a voltage of up to 20 kV before entering the divider which reduced their specific sizes by multiple ionization. The order of magnitude of the mean reduced specific size is 103 - 104 atoms/charge for the ionizing electron current up to 140 mA. These values were crosschecked by different experimental methods, examined theoretically and concluded to be reasonable. (author)

  19. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    Science.gov (United States)

    Tang, H. P.; Feng, J. Y.; Fan, Y. D.; Li, H. D.

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480°C, while CdTe growth inboth (100) and (111) orientations occured when the substrate preheating temperature was above 550°C. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec.

  20. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P.; Feng, J.Y.; Fan, Y.D.; Li, H.D. (Dept. of Materials Science and Engineering, Tsinghua Univ., Beijing (China))

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480degC, while CdTe growth in both (100) and (111) orientations occurred when the substrate preheating temperature was above 550degC. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec. (orig.).

  1. Hydrogen cluster-like behaviour during supersonic molecular beam injection on the HL-1M tokamak

    International Nuclear Information System (INIS)

    Pulsed supersonic molecular beam injection (SMBI) has been developed successfully and used in the HL-1M tokamak. It is an attempt to enhance the penetration depth and fuelling efficiency. With a penetration depth of hydrogen particles beyond 8 cm, the rising rate of electron density, dn-bare/dt, was up to 7.6x1020m-3·s-1 without disruption, and reached the highest plasma density n-bare=8.2x1019m-3 on HL-1M. With SMBI the plasma energy confinement time, τE, measured by diamagnetism is 10-30 % longer than that with gas puffing when other discharge conditions are kept the same. The fuelling method of SMBI has recently been improved to make a survey of the cluster effects within the beam. A series of new phenomena show the interaction of the beam (including clusters) with the toroidal plasma. Hydrogen clusters may be produced in the beam according to the Hagena empirical scaling law of clustering onset, Γ*=(kd0.85P0)/T02.29). If Γ*>100, clusters will form. In the present experiment Γ* is about 127. (author)

  2. Semiconductor cluster beams: One and two color ionization studies of Six and Gex

    OpenAIRE

    Heath, J. R.; Liu, Yuan; O'Brien, S. C.; Zhang, Qing-Ling; Curl, R. F.; Tittel, F. K.; Smalley, R. E.

    1985-01-01

    Supersonic beams of clusters of Si and Ge atoms have been produced by laser vaporization followed by supersonic expansion in a helium carrier. The cluster beams were characterized by F2(7.9 eV) and ArF(6.4 eV) excimer laser ionization accompanied by time-of-flight mass analysis. In addition, the feasibility of a resonant two-photon ionization (R2PI) spectroscopic study was explored by two-color experiments involving initial excitation with the second (2.36 eV) and third (3.54 eV) harmonics of...

  3. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation

    International Nuclear Information System (INIS)

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm-1, respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. (author)

  4. Dielectric properties of isolated clusters beam deflection studies

    CERN Document Server

    Heiles, Sven

    2013-01-01

    A broad range of state-of-the-art methods to determine properties of clusters are presented. The experimental setup and underlying physical concepts of these experiments are described. Furthermore, existing theoretical models to explain the experimental observations are introduced and the possibility to deduce structural information from measurements of dielectric properties is discussed. Additional case studies are presented in the book to emphasize the possibilities but also drawbacks of the methods.

  5. Matrix effects in biological SIMS using cluster ion beams of different chemical composition.

    Science.gov (United States)

    Alnajeebi, Afnan M; Vickerman, John C; Lockyer, Nicholas P

    2016-06-01

    The influence of the matrix effect on secondary ion yield presents a very significant challenge in quantitative secondary ion mass spectrometry (SIMS) analysis, for example, in determining the relative concentrations of metabolites that characterize normal biological activities or disease progression. Not only the sample itself but also the choice of primary ion beam may influence the extent of ionization suppression/enhancement due to the local chemical environment. In this study, an assessment of ionization matrix effects was carried out on model systems using C60 (+), Arn (+), and (H2O)n (+) cluster ion beams. The analytes are pure and binary mixtures of amino acids arginine and histidine biological standards. Ion beams of 20 keV were compared with a range of cluster sizes n = 1000-10 000. The component secondary ion yields were assessed for matrix effects using different primary ion beams and sample composition. The presence of water in the cluster beam is associated with a reduction in the observed matrix effects, suggesting that chemically reactive ion beams may provide a route to more quantitative SIMS analysis of complex biological systems. PMID:26825287

  6. Cluster fragmentation and cluster beam steering studied by dynamic reaction coordinate and molecular dynamics calculations

    International Nuclear Information System (INIS)

    In this study either cluster fragmentation, using a time-dependent Hartree-Fock formulation, or cluster deposition, based on classical molecular dynamics, have been studied. An exhaustive analysis has been performed on the many parameters acting on the two processes. Fragmentation calculations show a primary dependence on the input energy whereas the interatomic forces play a primary role in deposition. However the central result of this study is the essential agreement between the classical and quantum mechanical calculation

  7. What is the ground-state structure of intermediate-sized carbon clusters?

    OpenAIRE

    Yu, Ming; Chaudhuri, Indira; Leahy, C.; Jayanthi, C. S.; Wu, S Y

    2008-01-01

    A comprehensive study on the relative structural stability of various nanostructures of carbon clusters (including fullerenes, cages, onions, icosahedral clusters, bucky-diamond clusters, spherically bulk terminated clusters, and clusters with faceted termination) in the range of d < 5 nm has been carried out using a semi-empirical method based on a self-consistent and environment-dependent/linear combination of atomic orbital (SCED-LCAO) Hamiltonian. It was found that among these nanostructu...

  8. Practical biological spread-out Bragg peak design of carbon beam

    OpenAIRE

    Kim, Chang Hyeuk; Lee, Hwa-Ryun; Chang, Seduk; Jang, Hong Suk; Kim, Jeong Hwan; Park, Dong Wook; Hwang, Won Taek; Yang, Tea-Keun

    2015-01-01

    The carbon beams show more advantages on the biological properties compared with proton beams in radiation therapy. The carbon beam shows high linear energy transfer (LET) to medium and it increases the relative biological effectiveness (RBE). To design spread-out Bragg peak (SOBP) of biological dose using carbon beam, a practical method was purposed by using the linear-quadratic (LQ) model and Geant4 based Monte Carlo simulation code. The various Bragg peak profiles and LET was calculated fo...

  9. Intensities and cross-sections of Ar clusters in a molecular beam, ch. 3

    International Nuclear Information System (INIS)

    Ar-cluster beams were produced by supersonic expansion under various source conditions. The experimental intensities have been scaled such that universal curves are obtained, up to moderate source pressures. The ratio of dimer/monomer cross-sections has been determined. (Auth.)

  10. Electron propagator calculations on linear and branched carbon cluster dianions

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, V.G.; Ortiz, J.V. [Univ. of New Mexico, Albuquerque, NM (United States)

    1994-12-31

    Electron propagator calculations have been performed on linear carbon cluster dianions from C{sub 7}{sup 2-} to C{sub 10}{sup 2-} and on branched C{sub 7}{sup 2-}, C{sub 9}{sup 2-} and C{sub 11}{sup 2-} structures which have a central, tricoordinate carbon bound to three branches with alternating long and short bonds. The more stable, branched isomer of C{sub 7}{sup 2-} has a positive vertical ionization energy, but the linear form does not. While linear C{sub 10}{sup 2-} is stable with respect to electron loss, it is not possible to decide from these calculations whether linear C{sub 8}{sup 2-} and C{sub 9}{sup 2-} have the same property. There is evidence that better calculations would obtain bound C{sub 8}{sup 2-} and C{sub 9}{sup 2-} species. All branched dianions have positive, vertical ionization energies. Feynman-Dyson amplitudes for dianion ionization energies display delocalized {pi} bonding, with the two terminal carbons of the longest branches making the largest contributions.

  11. Response of SOI image sensor to therapeutic carbon ion beam

    CERN Document Server

    Matsumura, Akihiko

    2015-01-01

    Carbon ion radiotherapy is known as a less invasive cancer treatment. The radiation quality is an important parameter to evaluate the biological effect and the clinical dose from the measured physical dose. The performance of SOPHIAS detector, which is the SOI image sensor having a wide dynamic range and large active area, was tested by using therapeutic carbon ion beam at Gunma University Heavy Ion Medical Center (GHMC). It was shown that the primary carbon and secondary particles can be distinguishable by SOPHIAS detector. On the other hand, a LET dependence was observed especially at the high LET region. This phenomenon will be studied by using the device simulator together with Monte Carlo simulation.

  12. Molecular dynamics simulation of low energy cluster impacts on carbon nanotubes

    International Nuclear Information System (INIS)

    The controlled doping of carbon nanotubes is of much interest in the production of potential new nanometer scale devices. Selective doping has been achieved for many years in the silicon microelectronics industry using ion implantation as it is highly controllable. However, with nanostructures and in particular the use of carbon nanotubes the impact energy delivered with the dopant ion in conventional ion implantation is distributed to the target material in such a way that substantial damage of the structure ensues. Recently Yamada et al. have been employing large gas cluster beams at relatively low energy per atomic particle so that the target material does not undergo such direct kinetic energy transfer. This relatively new technique - known as infusion doping in silicon technology - suggests a new, less damaging, technique for introducing dopants into nanostructured materials. Here we make an initial simulation study of the impact of a large gas cluster, containing a fraction of dopant ions, onto a single wall nanotube to investigate the possible doping and survival rate of this mechanism over the more conventional single atomic ion implantation technology

  13. Carbon-cluster formation from polymers caused by MeV-ion impacts and keV-cluster-ion impacts

    Science.gov (United States)

    Diehnelt, C. W.; van Stipdonk, M. J.; Schweikert, E. A.

    1999-06-01

    It has been observed that under MeV-ion bombardment of a polymer, such as polycarbonate (PC) or polyvinylidene fluoride (PVDF), large quantities of carbon clusters (C-n and CnH-) are generated. However, when PC or PVDF is bombarded with keV atomic ions, very few carbon-cluster ions are produced. This different behavior was attributed to the different sputtering/desorption mechanisms for keV- and MeV-ion impacts. Low-energy keV ions deposit their energy into a solid through nuclear stopping, while MeV ions deposit their energy mainly through electronic stopping. The formation of carbon clusters is thought to be facilitated by the high-temperatures and high-energy densities produced in the region nearest the point of MeV-ion impact, the infratrack region. We have observed extensive carbon-cluster formation from PC and PVDF under keV-cluster-ion bombardment. Despite the vastly different velocities of the high- and low-energy projectiles, identical carbon-cluster trends are produced from MeV 252Cf fission fragments and 20-keV C+60 projectile impacts on the same target. This leads us to the conclusion that a polyatomic ion impact, which deposits its kinetic energy near the surface, may create a region of high-temperature and high-energy density that is similar to the infratrack of a MeV-ion impact.

  14. Formation of metal and nonmetal clusters by laser and electron beam methods

    International Nuclear Information System (INIS)

    This paper reports on the information of clusters, which was studied experimentally for the materials of metal and nonmetal elements selected in order to the periodic table. These materials were vaporized from the solid state by the irradiation of laser and electron beams. And, in relation with the clustering behavior, the deposition rate at the vapors onto their condensates was studied by measuring the film thickness. Evaporated vapors having clusters of large size are to be favorable for sticking or condensation onto their condensates. The elements giving small values of the cohesive energy such as the 1b group form clusters of sizes distributed widely, were as the elements of large cohesive energy such as the 1a(V,Nb) and 8(Fe, Co) are hardly evaporated and clustered into large sizes. The deposition rate of the evaporated vapors can be largely related with the formation of both monomer and clusters, although due to the energy difference of the beams the relationships are not always comprehensively understood. The 2b group has larger deposition rates and the 5a has smaller rates, although much larger and smaller values are observed for [Mn(7a), Cr(6a)] and [Cu(lb), Ag(1b), Ar(4a)], respectively

  15. Light scattering by a cluster consisting of homogeneous axisymmetric particles illuminated with an arbitrarily focused electromagnetic Gaussian beam

    Science.gov (United States)

    Ibrahim, Hany L. S.; Wriedt, Thomas; Khaled, Elsayed Esam M.

    2016-04-01

    Scattering of an arbitrarily focused electromagnetic Gaussian beam by a chain cluster consisting of axisymmetric particles is presented. The illustrated technique in this paper combines the plane-waves spectrum method and the cluster T-matrix calculation technique. This combination provides a powerful mathematical and numerical tool to solve such types of scattering problems. Computed results are shown for different particles shapes in the cluster and for different beam focusing.

  16. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    Directory of Open Access Journals (Sweden)

    I. Dandouras

    2011-05-01

    Full Text Available Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007.

    Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere.

    We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component.

    The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the

  17. Isolated crater formation by gas cluster ion impact and their use as templates for carbon nanotube growth

    Science.gov (United States)

    Toyoda, Noriaki; Kimura, Asahi; Yamada, Isao

    2016-03-01

    Crater-like defects formations with gas cluster ion beams (GCIB) were used as templates for carbon nanotube (CNT) growth. Upon a gas cluster ion impact, dense energy is deposited on a target surface while energy/atom of gas cluster ion is low, which creates crater-like defects. Si and SiO2 were irradiated with Ar-GCIB, subsequently CNTs were grown with an alcohol catalytic CVD using Co and ethanol as catalyst and precursor, respectively. From SEM, AFM and Raman spectroscopy, it was shown that growth of CNT with small diameter was observed on SiO2 with Ar-GCIB irradiation. On Si targets, formation of craters with bottom oxide prevented Co diffusion during CNT growth, as a result, CNT growth was observed only on Si irradiated with high-energy Ar-GCIB. These results showed that isolated defects created by GCIB can be used as templates for nanotube growth.

  18. Tin-carbon clusters and the onset of microscopic level immiscibility: Experimental and computational study

    Science.gov (United States)

    Bernstein, J.; Landau, A.; Zemel, E.; Kolodney, E.

    2015-09-01

    We report the experimental observation and computational analysis of the binary tin-carbon gas phase species. These novel ionic compounds are generated by impact of C60 - anions on a clean tin target at some kiloelectronvolts kinetic energies. Positive SnmCn+ (m = 1-12, 1 ≤ n ≤ 8) ions were detected mass spectrometrically following ejection from the surface. Impact induced shattering of the C60 - ion followed by sub-surface penetration of the resulting atomic carbon flux forces efficient mixing between target and projectile atoms even though the two elements (Sn/C) are completely immiscible in the bulk. This approach of C60 - ion beam induced synthesis can be considered as an effective way for producing novel metal-carbon species of the so-called non-carbide forming elements, thus exploring the possible onset of molecular level miscibility in these systems. Sn2C2+ was found to be the most abundant carbide cluster ion. Its instantaneous formation kinetics and its measured kinetic energy distribution while exiting the surface demonstrate a single impact formation/emission event (on the sub-ps time scale). Optimal geometries were calculated for both neutral and positively charged species using Born-Oppenheimer molecular dynamics for identifying global minima, followed by density functional theory (DFT) structure optimization and energy calculations at the coupled cluster singles, doubles and perturbative triples [CCSD(T)] level. The calculated structures reflect two distinct binding tendencies. The carbon rich species exhibit polyynic/cummulenic nature (tin end capped carbon chains) while the more stoichiometrically balanced species have larger contributions of metal-metal bonding, sometimes resulting in distinct tin and carbon moieties attached to each other (segregated structures). The Sn2Cn (n = 3-8) and Sn2Cn+ (n = 2-8) are polyynic/cummulenic while all neutral SnmCn structures (m = 3-4) could be described as small tin clusters (dimer, trimer, and tetramer

  19. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it [Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (C.I.Ma.I.Na.), Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  20. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility

  1. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R and D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  2. Biological effects of clustered DNA damage produced by heavy ion beams with its complexity

    International Nuclear Information System (INIS)

    Heavy ion beams produce denser ionized region around their track, and generate cluster of damage accumulated in certain region of target DNA molecule. The damage aggregate is termed as clustered DNA damage (CDD), that is thought to be one of major drivers causes specific radiation effect for any organisms. Among any ionizing radiations generating CDD with respective degree, heavy ion beams more effectively produce CDD than low-linear energy transfer (LET) radiations such as gamma-rays and X-rays. In the present study, we evaluated how CDD is involved in the degree of radiobiological effect. Our present study had two parts; one was to analyze the structure of CDD induced by heavy ion beams used with oligodeoxyribonucleotide targets. In this part, we studied analysis procedure of number and species of respective damage in the cluster. Another part was for estimating total DNA damage in the cells irradiated with heavy ion beams, because we had no investigation for whole damage in our previous report. (author)

  3. Sputtering and Chemical Modification of Solid Surfaces by Water Cluster Ion Beams

    International Nuclear Information System (INIS)

    Water was introduced into a cluster source, and heated up to 150 deg. C by a wire heater attached around the source. When the vapor pressure was larger than 1 atm, the vaporized water clusters were produced by an adiabatic expansion. The irradiation effects of water cluster ions on solid surfaces such as Si(100) and Ti substrates were investigated. The sputtered depth increased with increase of ion dose and acceleration voltage. The sputtering yield of the Si and Ti surfaces by the water cluster ion beams was approximately 10 times larger than that by Ar monomer ion beams at the same acceleration voltage. In addition, the XPS measurement showed that the sputtered surface had an oxide layer such as SiOx and TiOx. It was found from the depth profile of O1s peak that the oxide layer thickness increased with increase of acceleration voltage, and it was about 10 nm at an acceleration voltage of 6 kV. Furthermore, the contact angles for the sputtered surfaces were measured, and they were about 80 degrees for the Ti surfaces and about 5 degrees for the Si surfaces, respectively. The contact angle for the unirradiated surface was about 45 degrees for Si surface and about 30 degrees for Ti surface, and the change of the contact angles was due to the oxide layer formation by the water cluster ion irradiation

  4. Factorial analysis of cluster-SIMS depth profiling using metal-cluster-complex ion beams

    International Nuclear Information System (INIS)

    A Ir4(CO)7+ primary ion beam, at energies from 2.5 keV to 10 keV, was used to profile boron-delta layers in Si to investigate the influences of atomic mixing and surface roughness on the degradation of depth resolution. Factorial analyses using the mixing-roughness-information (MRI) model indicated that the influence of the mixing increased as beam energy was reduced below 5 keV in the case of oxygen flooding. It was confirmed that the magnitude of the MRI surface roughness was different from that of the AFM surface roughness. The discrepancy in the magnitude of roughness was examined by considering the difference in sputtering depth as well as the definition of the MRI surface roughness

  5. Electron beam processing of carbon fibre reinforced braided composites

    International Nuclear Information System (INIS)

    The possibility of producing a new type carbon fibre reinforced composite profile has been examined by applying braiding, a well-known process of textile technology. Pipe and hollow profile composite products can be manufactured this way by applying Electron Beam curing. The fabric-like braided reinforcing structure was manufactured out of Hungarian-made carbon fibre roving of 48,000 elementary fibres. The mutual irradiation of the system impregnated with epoxy-acrylate oligomer by 8 MeV EB resulted in better mechanical properties then conventional chemical curing. Owing to its low density and high specific strength this new composite product can possibly be applied in dynamically loaded structures e.g. in the automotive industry

  6. Summary of recent research on gas cluster ion beam process technology

    International Nuclear Information System (INIS)

    Gas cluster ion beam (GCIB) process has been studied for more than 15 years. But the interest in GCIB process has increased only recently, driven by the nano-technology program. Gas cluster ion bombardment have been applied to offer potential for various industrial applications due to its unique characteristics, i.e. the low energy bombardment, lateral sputtering, surface cleaning and smoothing, and low temperature thin film formation. This paper reviews the current fundamental research related to the GCIB-solid interactions as well as their applications in modern magnetic, optical and semiconductor device fabrications

  7. The reactivity of stoichiometric tungsten oxide clusters towards carbon monoxide: the effects of cluster sizes and charge states.

    Science.gov (United States)

    Lin, Shu-Juan; Cheng, Jing; Zhang, Chang-Fu; Wang, Bin; Zhang, Yong-Fan; Huang, Xin

    2015-05-01

    Density functional theory (DFT) calculations are employed to investigate the reactivity of tungsten oxide clusters towards carbon monoxide. Extensive structural searches show that all the ground-state structures of (WO3)n(+) (n = 1-4) contain an oxygen radical center with a lengthened W-O bond which is highly active in the oxidation of carbon monoxide. Energy profiles are calculated to determine the reaction mechanisms and evaluate the effect of cluster sizes. The monomer WO3(+) has the highest reactivity among the stoichiometric clusters of different sizes (WO3)n(+) (n = 1-4). The reaction mechanisms for CO with mono-nuclear stoichiometric tungsten oxide clusters with different charges (WO3(-/0/+)) are also studied to clarify the influence of charge states. Our calculated results show that the ability to oxidize CO gets weaker from WO3(+) to WO3(-) as the negative charge accumulates progressively. PMID:25854200

  8. Cluster effects during high pressure supersonic molecular beam injection into plasma

    International Nuclear Information System (INIS)

    The development of SMBI has experienced for two phases, the first is with low gas pressure source (p0≤0.6 MPa) and the second is with high gas pressure source (p0≥1.0 MPa). In the first phase of SMBI experiment, it is found that SMBI may be a best way for refuelling the HL-1M plasma. In the second phase, the futures of the beam are more evident, especially in the clustering onset, the particles of the beam can penetrate into the center of plasma. The density increase rate of HP-SMB is comparable with small ice PI in the HL-1M tokamak

  9. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A., E-mail: stanciu@physics.pub.ro

    2015-08-15

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.

  10. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  11. Reconstructing comptonization parameters using simulations of single frequency, dual-beam observations of galaxy clusters

    CERN Document Server

    Lew, Bartosz

    2016-01-01

    Systematical effects in dual-beam, differential, radio observations of extended objects are discussed in the context of the One Centimeter Receiver Array (OCRA). We use simulated samples of Sunyaev--Zel'dovich (SZ) galaxy clusters at low ($z<0.4$) and intermediate ($0.4cluster mass, redshift, observation strategy, and telescope pointing accuracy. Using $Planck$ data to make primary cosmic microwave background (CMB) templates, we test the feasibility of mitigating CMB confusion effects in observations of SZ profiles at angular scales larger than the separation of the receiver beams.

  12. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions.

    Science.gov (United States)

    Aviv, O; Toker, Y; Errit, M; Bhushan, K G; Pedersen, H B; Rappaport, M L; Heber, O; Schwalm, D; Zajfman, D

    2008-08-01

    We describe a bent electrostatic ion beam trap in which cluster ions of several keV kinetic energy can be stored on a V-shaped trajectory by means of an electrostatic deflector placed between two electrostatic mirrors. While maintaining all the advantages of its linear counterpart [Zajfman et al., Phys. Rev. A 55, R1577 (1997); Dahan et al., Rev. Sci. Instrum. 69, 76 (1998)], such as long storage times, straight segments, and a field-free region for merged or crossed beam experiments, the bent trap allows for simultaneous measurement of charged and neutral fragments and determination of the average kinetic energy released in the fragmentation. These unique properties of the bent trap are illustrated by first results concerning the competition between delayed fragmentation and ionization of Al(n) (-) clusters after irradiation by a short laser pulse. PMID:19044339

  13. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions

    International Nuclear Information System (INIS)

    We describe a bent electrostatic ion beam trap in which cluster ions of several keV kinetic energy can be stored on a V-shaped trajectory by means of an electrostatic deflector placed between two electrostatic mirrors. While maintaining all the advantages of its linear counterpart [Zajfman et al., Phys. Rev. A 55, R1577 (1997); Dahan et al., Rev. Sci. Instrum. 69, 76 (1998)], such as long storage times, straight segments, and a field-free region for merged or crossed beam experiments, the bent trap allows for simultaneous measurement of charged and neutral fragments and determination of the average kinetic energy released in the fragmentation. These unique properties of the bent trap are illustrated by first results concerning the competition between delayed fragmentation and ionization of Aln- clusters after irradiation by a short laser pulse

  14. Dual ion beam deposition of carbon films with diamondlike properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  15. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    Science.gov (United States)

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-01

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration. PMID:26861497

  16. CLUSTER observations of electron outflowing beams carrying downward currents above the polar cap by northward IMF

    Directory of Open Access Journals (Sweden)

    A. Teste

    2007-05-01

    Full Text Available Above the polar cap, at about 5–9 Earth radii (RE altitude, the PEACE experiment onboard CLUSTER detected, for the first time, electron beams outflowing from the ionosphere with large and variable energy fluxes, well collimated along the magnetic field lines. All these events occurred during periods of northward or weak interplanetary magnetic field (IMF.

    These outflowing beams were generally detected below 100 eV and typically between 40 and 70 eV, just above the photoelectron level. Their energy gain can be explained by the presence of a field-aligned potential drop below the spacecraft, as in the auroral zone. The careful analysis of the beams distribution function indicates that they were not only accelerated but also heated. The parallel heating is estimated to about 2 to 20 eV and it globally tends to increase with the acceleration energy. Moreover, WHISPER observed broadband electrostatic emissions around a few kHz correlated with the outflowing electron beams, which suggests beam-plasma interactions capable of triggering plasma instabilities.

    In presence of simultaneous very weak ion fluxes, the outflowing electron beams are the main carriers of downward field-aligned currents estimated to about 10 nA/m2. These electron beams are actually not isolated but surrounded by wider structures of ion outflows. All along its polar cap crossings, Cluster observed successive electron and ion outflows. This implies that the polar ionosphere represents a significant source of cold plasma for the magnetosphere during northward or weak IMF conditions. The successive ion and electron outflows finally result in a filamented current system of opposite polarities which connects the polar ionosphere to distant regions of the magnetosphere.

  17. Formation of metallic clusters in oxide insulators by means of ion beam mixing

    International Nuclear Information System (INIS)

    The intermixing and near-interface cluster formation of Pt and FePt thin films deposited on different oxide surfaces by means of Pt+ ion irradiation and subsequent annealing was investigated. Irradiated as well as postannealed samples were investigated using high resolution transmission electron microscopy. In MgO and Y:ZrO2 covered with Pt, crystalline clusters with mean sizes of 2 and 3.5 nm were found after the Pt+ irradiations with 8x1015 and 2x1016 cm-2 and subsequent annealing, respectively. In MgO samples covered with FePt, clusters with mean sizes of 1 and 2 nm were found after the Pt+ irradiations with 8x1015 and 2x1016 cm-2 and subsequent annealing, respectively. In Y:ZrO2 samples covered with FePt, clusters up to 5 nm in size were found after the Pt+ irradiation with 2x1016 cm-2 and subsequent annealing. In LaAlO3 the irradiation was accompanied by a full amorphization of the host matrix and appearance of embedded clusters of different sizes. The determination of the lattice constant and thus the kind of the clusters in samples covered by FePt was hindered due to strong deviation of the electron beam by the ferromagnetic FePt

  18. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    Directory of Open Access Journals (Sweden)

    J. C. Corbin

    2013-10-01

    Full Text Available We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS. The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (xxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1. In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1x+ intensity. Furthermore, the ratio of these major ions C1+/C3+ could be used to predict whether significant Cxn+ signals with x>5 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  19. Poly(methyl methacrylate) Composites with Size-selected Silver Nanoparticles Fabricated Using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Juluri, Raghavendra R.; Chirumamilla, Manohar;

    2016-01-01

    based on cluster beam technique allowing the formation of monocrystalline size-selected silver nanoparticles with a +/- 5-7% precision of diameter and controllable embedment into poly (methyl methacrylate). It is shown that the soft-landed silver clusters preserve almost spherical shape with a slight......An embedment of metal nanoparticles of well-defined sizes in thin polymer films is of significant interest for a number of practical applications, in particular, for preparing materials with tunable plasmonic properties. In this article, we present a fabrication route for metal-polymer composites...... tendency to flattening upon impact. By controlling the polymer hardness (from viscous to soft state) prior the cluster deposition and annealing conditions after the deposition the degree of immersion of the nanoparticles into polymer can be tuned, thus, making it possible to create composites with either...

  20. THE ATACAMA COSMOLOGY TELESCOPE (ACT): BEAM PROFILES AND FIRST SZ CLUSTER MAPS

    International Nuclear Information System (INIS)

    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.

  1. The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps

    Science.gov (United States)

    Hincks, A. D.; Acquaviva, V.; Ade, P. A.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dunkley, J.; Duenner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hajian, A.; Halpern, M.; Hasselfield, M.; Wollack, Ed

    2010-01-01

    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz, In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions, This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Ze1'dovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations, We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.

  2. A Comparative High-Resolution Electron Microscope Study of Ag Clusters Produced by a Sputter-Gas Aggregation and Ion Cluster Beam Technique

    Science.gov (United States)

    Hohl, Georg-Friedrich; Hihara, Takehiko; Sakurai, Masaki; Oishi, Takashi; Wakoh, Kimio; Sumiyama, Kenji; Suzuki, Kenji

    1994-03-01

    Ag clusters were formed by a sputter-gas-aggregation process [H. Haberland et al..: J. Vac. Sci. Technol. A 10 (1992) 3266] and the ionized cluster beam (ICB) [T. Takagi: Ionized-Cluster Beam Deposition and Epitaxy (Noyes, Park Ridge, 1988)] technique. The Ag clusters deposited on collodion-coated microgrids were investigated by high-resolution transmission electron microscopy. The diameter of those clusters, d, ranges from 1 nm up to about 10 nm for specimens produced by the sputter-gas aggregation technique, depending on the sputter condition and the deposition time. Comparable times of the ICB deposition lead to a broader distribution up to d≈20 nm, suggesting the formation of islands with extremely flat shapes. High percentages of crystalline particles obtained by both techniques are either single crystals or multiple twins with clear lattice images.

  3. Blister formation on tungsten surface by irradiating hydrogen and carbon mixed ion beam

    International Nuclear Information System (INIS)

    A mixed carbon and hydrogen beam was irradiated on to tungsten materials. In the case in which the carbon concentration and sample temperature were 0.95% and 653 K, respectively, large numbers and blisters of various sizes were formed. But in a low carbon concentration or high temperature case, no significant blisters were formed. It was found that carbon impurities in the beam play an important role in blister formation. (author)

  4. Development of a supersonic beam machine and spectroscopic investigations on small rare gas clusters

    International Nuclear Information System (INIS)

    The authors have constructed and tested a supersonic beam machine. The vacuum system of this machine consists of three vacuum chambers, three diffusion pumps, three mechanical pumps and one turbo molecular pump. The detecting system of the machine includes a time-of-flight mass spectrometer, a high-speed lens system with a monochromator and a quadrupole mass spectrometer. The machine is equipped with a two-stage Haensch dye laser pumped by an excimer pulsed laser and controlled by a PDP 11/73 computer through CAMAC. Nozzles and skimmers are the crucial elements of the beam machine. The authors have tested different types of pulsed nozzles and skimmers. Both theory and experimental results are presented. By modifying a General Valve solenoid pulsed nozzle, Xe clusters with size up to n = 15 have been detected. Some problems of pulsed nozzles are discussed. The development of the time-of-flight mass spectrometer was a major part of the experiment, and is discussed in detail from simplest design to double-field with an ion reflector. Xenon cluster ions up to n = 15 can be clearly distinguished with a very short drift tube (about 20cm). The authors also suggest a new design-a double-reflector time-of-flight mass spectrometer. With the beam machine, the authors have measured the excitation spectra of Xe dimers formed in the supersonic beams by two-photon resonant, three-photon photoionization in the vicinity of Xe* 6p[1/2]0, 6p[3/2]2, and 6p[5/2]2, similar to the work by Dehmer et al., and Lipson et al. [Dehmer et al., J. Chem, Phys. 85, 13 (1986); Lipson et al., J. Chem. Phys. 90, 9 (1989)]. Simultaneously, fluorescence was measured in the infrared. Similar techniques are applied to small Xe clusters (n = 3, 4, 5). Some preliminary spectra are reported

  5. Kinetics of ion beam deposition of carbon at room temperature

    International Nuclear Information System (INIS)

    Growth rates of carbon films grown by ion beam deposition using methane gas were measured in situ as a function of deposition conditions. The methane pressure dependence of the growth rate was used to measure the cross-section for charge exchange. Variations in deposition rate per incident energetic particle found for each ion energy were related to ion current density. It was found that rates of growth per incident energetic specie were (i) largest for the smallest current densities, (ii) decreased monotonically with increasing current density, and (iii) were consistently larger than can be explained by deposition directly from the energetic flux alone. These observations were interpreted in terms of irradiation-induced surface interactions which promote chemisorption of methane physisorbed from the ambient atmosphere. (orig.)

  6. Deflection of carbon dioxide laser and helium-neon laser beams in a long-pulse relativistic electron beam diode

    International Nuclear Information System (INIS)

    Deflection of carbon dioxide and helium-neon laser beams has been used to measure plasma and neutral density gradients during the operating mode and after the shorting time of a long-pulse field-emission electron beam diode. Plasma density gradients of (1014--1015) cm-4 were observed throughout the diode during the final microsecond of the 2--3 μs electron beam pulse. The neutral density gradient was less than 1x1018 cm-4 during the electron beam pulse. Upon diode shorting, neutral density gradients increased to (1018--1019) cm-4 over ∼1 μs, and decayed over many microseconds. Plasma density gradients of ∼1015 cm-4 were also observed after shorting. These experiments demonstrate the value of carbon-dioxide laser and helium-neon laser deflection for diagnosing plasma and neutral particles in long-pulse electron beam diodes

  7. The proliferative response of mouse intestinal crypts during fractionated irradiation of carbon beams

    International Nuclear Information System (INIS)

    Clonogenic assay of jejunal crypt during carbon beam and X-ray irradiations was performed. Fractionation with top-up dose assay revealed carbon beam irradiations caused more damage than X-ray did. To clarify this problem is urgent. (author)

  8. Enhancement of neutral beam deposition in hydrogen discharge using carbon pellet injection in LHD

    International Nuclear Information System (INIS)

    The central ion temperature in the large helical device (LHD), as measured by charge-exchange recombination spectroscopy, has been improved to a record 5.6 keV by combining 21 MW of neutral beam heating with the injection of a carbon pellet. The intensity of the neutral beam emission of the hydrogen Balmer line (Hα: n=3 → 2) was observed to weaken along the beam injection axis following the carbon pellet injection due to the increased beam attenuation. The beam-emission intensity was reconstructed by calculating the density distribution, and the beam-stopping coefficients, along a beam injection axis and was found to fit well to the measured beam-emission for a mixed hydrogen and carbon target plasma. The dynamics of the neutral beam deposition power and the carbon fraction were estimated from the beam-emission measurements using data from ADAS. We conclude that the beam deposition power in a carbon pellet discharge is enhanced over that of a pure hydrogen discharge. (author)

  9. Carbon monoxide adsorption on neutral and cationic vanadium doped gold clusters

    OpenAIRE

    Le, Hai Thuy; Lang, Sandra M; de Haeck, Jorg; Lievens, Peter; Janssens, Ewald

    2012-01-01

    The effect of a single vanadium dopant atom on the reactivity of small gold clusters is studied in the gas phase. In particular we investigated carbon monoxide adsorption on vanadium doped gold clusters using a low-pressure collision cell. Employing this technique the reactivity of both neutral and cationic clusters was studied under the same experimental conditions. Analysis of the kinetic data as a function of the pressure in the reaction cell shows that the reaction mechanism is composed o...

  10. Pseudopotential Density-Functional Calculations for Structures of Small Carbon Clusters CN (N = 2~8)

    Institute of Scientific and Technical Information of China (English)

    BAI Yu-Lin; CHEN Xiang-Rong; YANG Xiang-Dong; LU Peng-Fei

    2004-01-01

    We introduce a first-principles density-functional theory, i.e. the finite-difference pseudopotential densityfunctional theory in real space and the Langevin molecular dynamics annealing technique, to the descriptions of structures and some properties of small carbon clusters (CN, N = 2 ~ 8). It is shown that the odd-numbered clusters have linear structures and most of the even-numbered clusters prefer cyclic structures.

  11. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters.

    Science.gov (United States)

    Sun, Shengtong; Gebauer, Denis; Cölfen, Helmut

    2016-05-19

    A solvothermal method was developed for synthesizing organic monolayer protected amorphous calcium carbonate clusters using 10,12-pentacosadiynoic acid as ligand, ethanol as solvent and NaHCO3 decomposition as CO2 source, which can be extended to synthesize other monolayer protected mineral clusters. PMID:27161807

  12. Fragmentation of neutral carbon clusters formed by high velocity atomic collision

    International Nuclear Information System (INIS)

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  13. Structure and stability of a silicon cluster on sequential doping with carbon atoms

    Science.gov (United States)

    AzeezullaNazrulla, Mohammed; Joshi, Krati; Israel, S.; Krishnamurty, Sailaja

    2016-02-01

    SiC is a highly stable material in bulk. On the other hand, alloys of silicon and carbon at nanoscale length are interesting from both technological as well fundamental view point and are being currently synthesized by various experimental groups (Truong et. al., 2015 [26]). In the present work, we identify a well-known silicon cluster viz., Si10 and dope it sequentially with carbon atoms. The evolution of electronic structure (spin state and the structural properties) on doping, the charge redistribution and structural properties are analyzed. It is interesting to note that the ground state SiC clusters prefer to be in the lowest spin state. Further, it is seen that carbon atoms are the electron rich centres while silicon atoms are electron deficient in every SiC alloy cluster. The carbon-carbon bond lengths in alloy clusters are equivalent to those seen in fullerene molecules. Interestingly, the carbon atoms tend to aggregate together with silicon atoms surrounding them by donating the charge. As a consequence, very few Si-Si bonds are noted with increasing concentrations of C atoms in a SiC alloy. Physical and chemical stability of doped clusters is studied by carrying out finite temperature behaviour and adsorbing O2 molecule on Si9C and Si8C2 clusters, respectively.

  14. Position resolution of the prototype AGATA triple-cluster detector from an in-beam experiment

    Energy Technology Data Exchange (ETDEWEB)

    Recchia, F. [Dipartimento di Fisica dell' Universita di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy)], E-mail: francesco.recchia@pd.infn.it; Bazzacco, D.; Farnea, E. [INFN Sezione di Padova, Padova (Italy); Gadea, A. [INFN Laboratori Nazionali di Legnaro, Legnaro (Italy); IFIC, CSIC - University of Valencia, Valencia (Spain); Venturelli, R. [INFN Sezione di Padova, Padova (Italy); Beck, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Bednarczyk, P. [IFJ PAN, PL-31-342 Krakow (Poland); Buerger, A. [CEA Saclay, DAPNIA/SPhN, F-91191 Gif-sur-Yvette Cedex (France); Dewald, A. [Institut fuer Kernphysik, Universitaet zu Koeln, Koeln (Germany); Dimmock, M. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Duchene, G. [Laboratoire Pluridisciplinaire Hubert Curien, CNRS-IN2P3/ULP Strasbourg, Strasbourg (France); Eberth, J. [Institut fuer Kernphysik, Universitaet zu Koeln, Koeln (Germany); Faul, T. [Laboratoire Pluridisciplinaire Hubert Curien, CNRS-IN2P3/ULP Strasbourg, Strasbourg (France); Gerl, J. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Gernhaeuser, R. [INFN Laboratori Nazionali di Legnaro, Legnaro (Italy); Hauschild, K. [CSNSM, IN2P3-CNRS, Orsay Campus (France); Holler, A. [Institut fuer Kernphysik, Universitaet zu Koeln, Koeln (Germany); Jones, P. [Department of Physics, University of Jyvaeskylae, Jyvaeskylae (Finland); Korten, W. [CEA Saclay, DAPNIA/SPhN, F-91191 Gif-sur-Yvette Cedex (France); Kroell, Th. [Technische Universitaet Muenchen, Garching (Germany)] (and others)

    2009-06-11

    AGATA belongs to a new generation of {gamma}-ray detector arrays for nuclear spectroscopy at present in its final stage of development. The detectors of these new arrays will be based on 36-fold electronically segmented coaxial germanium diodes operated in position sensitive mode. An in-beam test of the AGATA prototype triple cluster detector was carried out with the purpose of demonstrating the feasibility of such detectors and in order to measure the most sensitive parameters for their overall performance. An inverse kinematics reaction was performed, using a {sup 48}Ti beam at an energy of 100 MeV, impinging on a deuterated titanium target. The results from the analysis of the experimental data, compared with the predictions of Monte Carlo simulations, give an estimation of the position sensitivity of these detectors of about 5 mm FWHM, consistent with the specifications required.

  15. Measuring the density of a molecular cluster injector via visible emission from an electron beam

    International Nuclear Information System (INIS)

    A method to measure the density distribution of a dense hydrogen gas jet is presented. A Mach 5.5 nozzle is cooled to 80 K to form a flow capable of molecular cluster formation. A 250 V, 10 mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016 cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  16. Electronic properties of ion implanted crystalline polymer thin film deposited by ionized cluster beam

    International Nuclear Information System (INIS)

    Polyethylene thin film deposited by the ionized cluster beam deposition technique shows preferential crystal orientation at optimum deposit condition, and the lattice parameters of the crystalline PE film are in good agreement with those of the single crystal PE. The crystalline PE film reveals that the number of side chains is reduced. The conductivity of Li+, Na+ and K+ implanted crystalline PE films has a close correlation with defects generated by ion irradiation, and the conduction mechanism turns out to be the one-dimensional hopping conduction. (orig.)

  17. Stable Carbon Isotope Ratios for Giant Stars in the Globular Cluster M13

    Science.gov (United States)

    Rhee, Jaehyon; Pilachowski, C. A.

    2013-01-01

    Recently, our paradigm for the formation and evolution of globular clusters has shifted. We now understand that the majority of present-day stars in globular clusters formed as second-generation stars, primarily from the ejecta of first-generation AGB stars, while the majority of first generation, less centrally concentrated stars, have been dynamically lost to the cluster (D'Ercole et al. 2011). This paradigm explains the observed star-to-star variations in the abundances of light element observed in globular clusters, and suggests that the carbon isotope ratio should be similarly differentiated between first and second generation stars. In an effort to verify this scenario, we have recently utilized the Gemini/NIFS to determine carbon isotope abundances (12C and 13C) for 18 giant stars in the globular clusters M13 through medium-resolution (R ˜ 5300) infrared spectroscopy of the first-overtone CO bands near 2.3 μm. Our program stars are distributed from the tip of the RGB to the BLF (the bump in the luminosity function) of M13, and their Na, Mg, and Al abundances are already known from homogeneous data set analysis. Therefore, adding reliable abundances of the stable carbon isotopes to this homogeneous spectroscopic sample permits systematic tests of cluster chemical evolution models. We report preliminary results of the carbon abundance analysis for our NIFS K-band spectra and present an overview of our ongoing effort with other globular clusters.

  18. Atomic-scale study of the role of carbon on boron clustering

    International Nuclear Information System (INIS)

    Boron (BF2, 20 keV, 3.14/cm2) and carbon (13 keV, 1015/cm2) implanted silicon annealed at 800 oC during 30 min or at 1000 oC during 10 s has been investigated using a laser-assisted wide-angle tomographic atom probe (LaWaTAP) instrument. Boron-silicon clusters containing ∼ 1.3 at.% of boron atoms have been observed in boron implanted silicon with a concentration exceeding the solubility limit. Often identified as BICs, they are interpreted as a metastable phase. Furthermore, addition of carbon clearly reduced the clustering of boron. This was interpreted as a diminution of boron diffusion or as an increase of the solubility limit of boron. Carbon-silicon clusters containing ∼ 1.5 at.% of carbon atoms were observed, maybe the precursors of the SiC phase.

  19. Theoretical study of the nucleation/growth process of carbon clusters under pressure.

    Science.gov (United States)

    Pineau, N; Soulard, L; Los, J H; Fasolino, A

    2008-07-14

    We used molecular dynamics and the empirical potential for carbon LCBOPII to simulate the nucleation/growth process of carbon clusters both in vacuum and under pressure. In vacuum, our results show that the growth process is homogeneous and yields mainly sp(2) structures such as fullerenes. We used an argon gas and Lennard-Jones potentials to mimic the high pressures and temperatures reached during the detonation of carbon-rich explosives. We found that these extreme thermodynamic conditions do not affect substantially the topologies of the clusters formed in the process. However, our estimation of the growth rates under pressure are in much better agreement with the values estimated experimentally than our vacuum simulations. The formation of sp(3) carbon was negligible both in vacuum and under pressure which suggests that larger simulation times and cluster sizes are needed to allow the nucleation of nanodiamonds. PMID:18624553

  20. Primary result of application of carbon ion beam and gamma ray for rice breeding improvement

    International Nuclear Information System (INIS)

    Recently, Carbon ion beam have been recently attracted as mutagens. A characteristic feature of ion beams is their ability to deposit high energy on a target, densely and locally, as opposed to low linear energy transfer radiation such as gamma rays and X rays. In Vietnam, application of carbon ion beam just starting through cooperation FNCA between Japan and ASEAN countries from 2009. In this report, we want to report primary result of application carbon ion beam and gamma ray for rice breeding improvement of Khang dan 18. Through primary experimental for optimum dose for carbon ion beam we found that the dose of 40 and 60 Gy was suitable for Khang dan variety treatment. Based on optimum dose 40 and 60 Gy of carbon ion beam and 150 and 200 Gy of gamma ray we irradiated for Khang dan variety. The higher dose, the lower seed set ratio were determined both ion beam and gamma ray. Especial in carbon ion beam experiment at the dose of 60 Gy was 39.18% in small experiment and more than 20% seed set ratio at the real experiment. At M4 generation, in the experiment with carbon ion beam at the dose of 60 Gy we received mutant which increase the weight of 1000 seeds (23.0 g) compare to the control 19.7 g meanwhile experiment with gamma ray at the dose of 200 Gy we received some mutant not much change in the seed weight. This may show that carbon ion beam more effective than gamma ray in term of change some characteristics of rice. (author)

  1. Analysis of mutagenic effects induced by carbon beams at different LET in a red yeast strain

    International Nuclear Information System (INIS)

    To evaluate inactive and mutagenic effects of carbon beam at different LET, the inactivation cross section and mutation cross section induced by carbon beams of different LET values were investigated in a red yeast strain Rhodotorula glutinis AY 91015. It was found that the maximum inactivation cross section of 4.37μm2, which was very close to the average nucleus cross section, was at LET of 120.0 keV/μm. The maximum mutation cross section was at LET of 96.0 keV/μm. Meanwhile, the highest mutagenicity of carbon ion was found around 58.2 keV/μm. It implied that the most efficient LET to induce mutation in survival yeasts was 58.2 keV/μm, which corresponded to energy of 35 MeV/u carbon beam. The most effective carbon beam to induce inactivation and mutation located at different energy region. (authors)

  2. A multi-beam HI survey of the Virgo Cluster - two isolated HI clouds ?

    CERN Document Server

    Davies, J; Sabatini, S; Van Driel, W; Baes, M; Boyce, P; De Blok, W J G; Disney, M; Evans, R; Kilborn, V; Lang, R; Linder, S; Roberts, S; Smith, R; Evans, Rh.

    2004-01-01

    We have carried out a fully sampled large area ($4^{\\circ} \\times 8^{\\circ}$) 21cm \\HI line survey of part of the Virgo cluster using the Jodrell Bank multi-beam instrument. The survey has a sensitivity some 3 times better than the standard HIJASS and HIPASS surveys. We detect 31 galaxies, 27 of which are well known cluster members. The four new detections have been confirmed in the HIPASS data and by follow up Jodrell Bank pointed observations. One object lies behind M86, but the other 3 have no obvious optical counter parts upon inspection of the digital sky survey fields. These 3 objects were mapped at Arecibo with a smaller \\am{3}{6} HPBW and a 4 times better sensitivity than the Jodrell Bank data, which allow an improved determination of the dimensions and location of two of the objects, but surprisingly failed to detect the third. The two objects are resolved by the Arecibo beam giving them a size far larger than any optical images in the nearby field. To our mass limit of $5 \\times 10^{7}$ $\\frac{\\Delt...

  3. First experiments with cooled clusters at the Cryogenic Trap for fast ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Christian; Blaum, Klaus; George, Sebastian; Lange, Michael; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Breitenfeldt, Christian; Schweikhard, Lutz [Institut fuer Physik, Ernst-Moritz-Arndt Universitaet, 17487 Greifswald (Germany)

    2014-07-01

    The Cryogenic Trap for Fast ion beams (CTF) is an electrostatic ion beam trap for the investigation of charged particles in the gas phase located at the ''Max-Planck-Institut fuer Kernphysik'' in Heidelberg. It is suited to study thermionic and laser-induced electron emission of anions with complex multi-body structure such as clusters and molecules. They can be stored up to several minutes due to the low pressure of 10{sup -14} mbar in an ambient temperature down to 15 K. The experiments were so far hampered by the ion production in a sputter source leading to excited particles with high rovibrational states. In order to be able to investigate the ground state properties of such systems a new supersonic expansion source has been implemented. A laser-induced plasma is expanded into vacuum by short pulses (50 μs) of a helium carrier gas and thereby rovibrationally cooled. First test with metal cluster are presented and discussed.

  4. Ion beam deposition of amorphous carbon films with diamond like properties

    Science.gov (United States)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  5. Deep Mixing and Metallicity: Carbon Depletion in Globular Cluster Giants

    OpenAIRE

    Martell, Sarah L.; Smith, Graeme H.; Briley, Michael M.

    2008-01-01

    We present the results of an observational study of the efficiency of deep mixing in globular cluster red giants as a function of stellar metallicity. We determine [C/Fe] abundances based on low-resolution spectra taken with the Kast spectrograph on the 3m Shane telescope at Lick Observatory. Spectra centered on the 4300 Angstrom CH absorption band were taken for 42 bright red giants in 11 Galactic globular clusters ranging in metallicity from M92 ([Fe/H]=-2.29) to NGC 6712 ([Fe/H]=-1.01). Ca...

  6. A secondary emission type beam profile monitor with carbon graphite ribbons

    International Nuclear Information System (INIS)

    We developed a secondary emission type beam profile monitor with carbon graphite ribbons as a beam target. The carbon graphite is excellent in endurance against heat load, and that they are thin as 1.6-3.0 micron and low z (=6) are advantage for reducing beam loss. Furthermore, since ribbons emits larger amount of electrons than ordinal metal wires because of larger surface, the monitor has higher sensitivity. The monitors were installed in the end of 3-50 BT and injection point of MR in J-PARC, in order to measure injection beam profiles by single passing. Normal size target has 32ch ribbons with 2 or 3 mm in width and their length is 200 mm each. In this paper, basic characteristics of the carbon graphite target and results of beam measurement are reported. (author)

  7. Ultra-fast oscillation of cobalt clusters encapsulated inside carbon nanotubes

    International Nuclear Information System (INIS)

    Using molecular dynamics (MD) simulations, the authors have studied the oscillatory characteristics of the 2Co - CNT oscillator systems. Each of these oscillator systems consists of a hosting carbon nanotube (CNT) and two encapsulated cobalt (Co) clusters, and oscillations are initiated by prescribing an initial kinetic energy to each of the two cobalt clusters. The non-symmetric oscillation mode, in which the two cobalt clusters always move towards the same direction, was found to be stable over a wide range of initial energy. However, the symmetric oscillation mode, in which the two cobalt clusters move towards or away from each other, bouncing off each other in each oscillation, is stable only when the initial kinetic energies are lower than a threshold value. Above this threshold, the oscillation becomes increasingly unstable with the increasing initial kinetic energy. The instability is found to take place through transferring energy from the translational motion to the rotational motion of the cobalt clusters, due to the fact that the impact of the cluster-cluster collisions can be slightly off-center, causing the clusters to roll and rock. The rocking motion of the cobalt clusters serves as the channel for the energy transfer. The rocking motion can be retarded and may even be eliminated by reducing the hosting CNT diameter. But a smaller hosting CNT does not always lead to more stable translational oscillation. There apparently exists an optimal CNT for a given size of clusters for stabilizing the translational oscillation. A hosting CNT that is too much smaller than optimum causes severe cobalt-carbon atomic interactions, which lead to losses of energy from the ordered translational motion of clusters to disordered thermal motions of the atoms

  8. Ultra-fast oscillation of cobalt clusters encapsulated inside carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaohong [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xin Hao [Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721 (United States); Leonard, Jon N [Advanced Programs, Raytheon Missile Systems, Tucson, AZ 85734 (United States); Chen Guanhua [Department of Chemistry, University of Hong Kong, Hong Kong (China); Jiang Qing [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)

    2007-11-07

    Using molecular dynamics (MD) simulations, the authors have studied the oscillatory characteristics of the 2Co - CNT oscillator systems. Each of these oscillator systems consists of a hosting carbon nanotube (CNT) and two encapsulated cobalt (Co) clusters, and oscillations are initiated by prescribing an initial kinetic energy to each of the two cobalt clusters. The non-symmetric oscillation mode, in which the two cobalt clusters always move towards the same direction, was found to be stable over a wide range of initial energy. However, the symmetric oscillation mode, in which the two cobalt clusters move towards or away from each other, bouncing off each other in each oscillation, is stable only when the initial kinetic energies are lower than a threshold value. Above this threshold, the oscillation becomes increasingly unstable with the increasing initial kinetic energy. The instability is found to take place through transferring energy from the translational motion to the rotational motion of the cobalt clusters, due to the fact that the impact of the cluster-cluster collisions can be slightly off-center, causing the clusters to roll and rock. The rocking motion of the cobalt clusters serves as the channel for the energy transfer. The rocking motion can be retarded and may even be eliminated by reducing the hosting CNT diameter. But a smaller hosting CNT does not always lead to more stable translational oscillation. There apparently exists an optimal CNT for a given size of clusters for stabilizing the translational oscillation. A hosting CNT that is too much smaller than optimum causes severe cobalt-carbon atomic interactions, which lead to losses of energy from the ordered translational motion of clusters to disordered thermal motions of the atoms.

  9. Electrically Percolating Clusters in Sheared Carbon Nanotube Composites

    Science.gov (United States)

    Migler, Kalman; Moon, Doyoung; Obrzut, Jan; Douglas, Jack; Lam, Thomas; Sharma, Renu; Liddle, Alex James

    2013-03-01

    The electrical conductivity of polymer nanotube composites can be dramatically modified by processing flows and subsequent annealing. The mechanism is widely believed to be nanotube structural rearrangements that occur during flow and alter the percolating pathways. We seek to directly visualize these flow-induced three-dimensional percolating clusters through three-dimensional confocal microscopy and image analysis.

  10. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  11. Influence of Carbon Nanotube Clustering on Mechanical and Electrical Properties of Cement Pastes

    OpenAIRE

    Sung-Hwan Jang; Shiho Kawashima; Huiming Yin

    2016-01-01

    Given the continued challenge of dispersion, for practical purposes, it is of interest to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) at different states of clustering on the eventual performance properties of cement paste. This study evaluated the clustering of MWCNTs and the resultant effect on the mechanical and electrical properties when incorporated into cement paste. Cement pastes containing different concentrations of MWCNTs (up to 0.5% by mass of cement) with/without...

  12. Carbon antisite clusters in SiC: a possible pathway to the D_{II} center

    OpenAIRE

    Mattausch, Alexander; Bockstedte, Michel; Pankratov, Oleg

    2003-01-01

    The photoluminescence center D_{II} is a persistent intrinsic defect which is common in all SiC polytypes. Its fingerprints are the characteristic phonon replicas in luminescence spectra. We perform ab-initio calculations of vibrational spectra for various defect complexes and find that carbon antisite clusters exhibit vibrational modes in the frequency range of the D_{II} spectrum. The clusters possess very high binding energies which guarantee their thermal stability--a known feature of the...

  13. Emulsion Cloud Chamber technique to measure the fragmentation of a high-energy carbon beam

    OpenAIRE

    De Lellis, G.; Buontempo., S; Di Capua, F.; Marotta, A; Migliozzi, P.; Petukhov, Y.; Pistillo, C; Russo, A; Lavina, L. Scotto; Strolin, P.(Dipartimento di Fisica dell’Università Federico II di Napoli, 80125 , Naples, Italy); Tioukov, V.; Ariga, A.(Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, CH-3012, Bern, Switzerland); Naganawa, N.; Toshito, T.; Furusawa, Y.

    2007-01-01

    Beams of Carbon nuclei are used or planned to be used in various centers for cancer treatment around the world because of their therapeutic advantages over proton beams. The knowledge of the fragmentation of Carbon nuclei when they interact with the human body is important to evaluate the spatial profile of their energy deposition in the tissues, hence the damage to the tissues neighboring the tumor. In this respect, the identification of the fragmentation products is a key element. We presen...

  14. Relationship among Photosys- tem Ⅱ carbonic anhydrase, extrinsic polypeptides and manganese cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of Photosystem Ⅱ (PS Ⅱ) extrinsic poly- peptides of oxygen-evolving complex and manganese clusters on PSⅡ carbonic anhydrase (CA) were studied with spinach PSⅡ membranes. The result supported that membrane-bound CA is located in the donor side of PSⅡ. The extrinsic polypeptides played an important role of maintaining CA activity. After removing manganese clusters, oxygen evolution activity was inhibited, but PSⅡ-CA activity was unchanged. It was concluded that CA activity is independent of the presence of manganese clusters, and was not directly correlated with oxygen evolution activity.

  15. Growth of Functional FeTi Clusters Covered with Carbon Layer

    International Nuclear Information System (INIS)

    FeTi clusters with a diameter of less than 10 nm and covered with a graphitic layer have been preferentially produced in an H2 gas atmosphere at pressures of 10 and 26.6 kPa by the simultaneous evaporation of Fe and Ti wires from a concave carbon boat. To compare this result with cluster formation in an inert gas atmosphere, the result for an Ar gas pressure of 10 kPa is also discussed. The formation of disordered FeNi clusters predominately took place in an H2 gas atmosphere.

  16. Entrance channel effect with stable and radioactive beams using dynamical cluster decay model

    International Nuclear Information System (INIS)

    The decay of hot and rotating 172Yb*, formed in two entrance channels 124Sn + 48Ca and 132Sn + 40Ca, is studied using the dynamical cluster-decay model. The effect of entrance channel, deformations (up to β2), barrier modification and fusion enhancement are addressed. The decay pattern of compound system, formed in different channels at comparable energy around the barrier, shows change in magnitude with structure remains almost same. There is an increase in the fusion probability with decrease in barrier modification, which leads to fusion enhancement at low energies. The higher ℓ values are contributing for 132Sn + 40Ca channel at lower energies as compare to 124Sn + 48Ca. It is inferred that with the use of stable and radioactive beam, forming same compound nucleus, the entrance channel dependence changes with the excitation energy

  17. Study of Si wafer surfaces irradiated by gas cluster ion beams

    International Nuclear Information System (INIS)

    The surface structures of Si (1 0 0) wafers subjected to gas cluster ion beam (GCIB) irradiation have been analyzed by cross-sectional transmission electron microscopy (XTEM) and atomic force microscopy (AFM). GCIB irradiation is a promising technique for both precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. An Ar-GCIB used for the physically sputtering of Si atoms and a SF6-GCIB used for the chemical etching of the Si surface are also analyzed. The GCIB irradiation increases the surface roughness of the wafers, and amorphous Si layers are formed on the wafer surface. However, when the Si wafers are annealed in hydrogen at a high temperature after the GCIB irradiation, the surface roughness decreases to the same level as that before the irradiation. Moreover, the amorphous Si layers disappear completely

  18. Application of ionized cluster beam to anti-reflection coating of transmission windows

    International Nuclear Information System (INIS)

    High transmission films with high adhesive strength have been developed by using the ionized cluster beam (ICB) method. It was demonstrated that the acceleration voltage plays a very important role in controlling the optical quality of films. The transmission windows obtained are as follows. (1) The germanium (Ge) window coated with a zinc sulfide (ZnS) film obtained at 3 kV acceleration voltage had a transmittance of 96% at 10 μm wavelength and the adhesive strength of the film obtained was over 430 kg cm-2, which endured even after thermal treatment at 4600C. (2) The zinc sulfide (ZnS) window coated with lead fluoride (PbF2) film obtained by controlling the acceleration voltage within the range from 0.5 kV to zero had a transmittance of 95% at 10 μm wavelength and the adhesive strength of the film was 240 kg cm-2. (author)

  19. Entrance channel effect with stable and radioactive beams using dynamical cluster decay model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Raj, E-mail: rajkumarfzr@gmail.com [Dipartimento di Fisica “Galileo Galilei” and INFN, University of Padova, Padova-35131 (Italy); Jain, Deepika [School of Physics and Material Science, Thapar University, Patiala-147004 (India)

    2014-09-15

    The decay of hot and rotating {sup 172}Yb*, formed in two entrance channels {sup 124}Sn + {sup 48}Ca and {sup 132}Sn + {sup 40}Ca, is studied using the dynamical cluster-decay model. The effect of entrance channel, deformations (up to β{sub 2}), barrier modification and fusion enhancement are addressed. The decay pattern of compound system, formed in different channels at comparable energy around the barrier, shows change in magnitude with structure remains almost same. There is an increase in the fusion probability with decrease in barrier modification, which leads to fusion enhancement at low energies. The higher ℓ values are contributing for {sup 132}Sn + {sup 40}Ca channel at lower energies as compare to {sup 124}Sn + {sup 48}Ca. It is inferred that with the use of stable and radioactive beam, forming same compound nucleus, the entrance channel dependence changes with the excitation energy.

  20. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  1. Behavior of high-pressure gasses injected to vacuum through a fast solenoid valve for supersonic cluster beam injection

    International Nuclear Information System (INIS)

    The supersonic cluster beam (SSCB) injection method is being developed as a new fueling method for the Large Helical Devise (LHD) experiment. As a first step, cluster formation at a room temperature has been investigated for various gasses using a fast solenoid valve for SSCB. Rayleigh scattering of laser light by the cluster is measured by a fast charge coupled device (CCD) camera. In the case of methane, nitrogen, and argon, clear scattering signals are observed at the high backing pressure of more than 3 - 4 MPa. In the case of hydrogen, helium, and neon, on the other hand, no scattering signal is detected at 7 MPa. (author)

  2. Inhibition of nitrobenzene adsorption by water cluster formation at acidic oxygen functional groups on activated carbon.

    Science.gov (United States)

    Kato, Yuichi; Machida, Motoi; Tatsumoto, Hideki

    2008-06-15

    The inhibition effect of nitrobenzene adsorption by water clusters formed at the acidic groups on activated carbon was examined in aqueous and n-hexane solution. The activated carbon was oxidized with nitric acid to introduce CO complexes and then outgassed in helium flow at 1273 K to remove them completely without changing the structural properties of the carbon as a reference adsorbent. The amounts of acidic functional groups were determined by applying Boehm titration. A relative humidity of 95% was used to adsorb water onto the carbon surface. Strong adsorption of water onto the oxidized carbon can be observed by thermogravimetric analysis. The adsorption kinetic rate was estimated to be controlled by diffusion from the kinetic analysis. Significant decline in both capacity and kinetic rate for nitrobenzene adsorption onto the oxidized carbon was also observed in n-hexane solution by preadsorption of water to the carbon surface, whereas it was not detected for the outgassed carbons. These results might reveal that water molecules forming clusters at the CO complexes inhibited the entrance of nitrobenzene into the interparticles of the carbon. PMID:18440013

  3. Fractal topography of surfaces exposed to gas-cluster ion beams and modeling simulations

    International Nuclear Information System (INIS)

    Surface topography measured by atomic force microscope is reported before and after various gas-cluster ion beam (GCIB) treatments along with modeling simulations of topography changes. Height correlation and spectral distributions of these surfaces show characteristics of random fractals with Hurst exponent H typically 0.5-3 to 5x10-1 nm-1. Data from several example surfaces are given. Roughening is shown to be a statistical accumulation of individual cluster impacts and the process is modeled by Monte Carlo simulations resulting in fractal surfaces. A continuum model that incorporates surface mobility is used to simulate the smoothing, and methods to combine this with the Monte Carlo model are presented. The behavior of surfaces under exposure to GCIB is satisfactorily simulated by this combined model. Accurate simulation of the surface smoothing requires that the surface-mobility model be independent of the spatial frequency over the bandwidth of observation, unlike Fick's law of diffusion. The nonphysical prediction of previous simulations that the topography trends toward the complete absence of roughness is also corrected

  4. O2 activation on the outer surface of carbon nanotubes modified by encapsulated iron clusters

    International Nuclear Information System (INIS)

    Graphical abstract: Based on first-principle calculations, this study shows that the confined small Fe cluster inside the SWCNT can significantly modify the electronic structure of the carbon surface. This drastically facilitates the activation of the adsorbed O2 molecule. The calculated energy barrier (less than 0.8 eV) of the rate-determining step for the O2 dissociation indicates that the process can proceed readily at room temperature. - Highlights: • The confined Fe cluster inside the carbon nanotube can significantly modify the electronic structure of the carbon surface. • The confined Fe cluster makes the adsorption of the O2 molecule much more energetically favorable. • The calculated energies suggest that the dissociation of the O2 on the modified carbon surface can proceed readily at room temperature. - Abstract: Using first-principles calculations, the structural, magnetic, and electronic properties of the (6, 6) single-walled carbon nanotubes (SWCNT) with the confined small Fe cluster are systematically studied. We find that Fe–C interactions can induce the transfer of the electrons from the confined Fe to the carbon surface of the SWCNT considerably, and consequently the reduction of the local work function of the region in contact with the Fe. The charging of the carbon surface and the reduction of the work function make the adsorption of the O2 molecule much more energetically favorable on the outer surface of the SWCNT. Furthermore, the energy barrier of the rate-determining step, i.e., the approaching of the O2 towards the modified carbon surface, for the O2 dissociation is less than 0.8 eV, indicating that the process can proceed readily at room temperature

  5. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters

    OpenAIRE

    Samuel, Errol L. G.; Marcano, Daniela C.; Berka, Vladimir; Bitner, Brittany R.; Wu, Gang; Potter, Austin; Fabian, Roderic H.; Pautler, Robia G; Kent, Thomas A; Tsai, Ah-Lim; James M. Tour

    2015-01-01

    Mechanistic studies of nontoxic hydrophilic carbon cluster nanoparticles show that they are able to accomplish the direct conversion of superoxide to dioxygen and hydrogen peroxide. This is accomplished faster than in most single-active-site enzymes, and it is precisely what dioxygen-deficient tissue needs in the face of injury where reactive oxygen species, particularly superoxide, overwhelm the natural enzymes required to remove superoxide. We confirm here that the hydrophilic carbon cluste...

  6. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    Science.gov (United States)

    Xia, Lian-Sheng; Yang, An-Min; Chen, Yi; Zhang, Huang; Liu, Xing-Guang; Li, Jin; Jiang, Xiao-Guo; Zhang, Kai-Zhi; Shi, Jin-Shui; Deng, Jian-Jun; Zhang, Lin-Wen

    2010-11-01

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process.

  7. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    International Nuclear Information System (INIS)

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process. (authors)

  8. Numerical simulation of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays

    Science.gov (United States)

    Wu, Xingxing; Yun, Maojin; Wang, Mei; Liu, Chao; Li, Kai; Qin, Xiheng; Kong, Weijin; Dong, Lifeng

    2015-12-01

    A kind of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays is designed and simulated. In the employed structure transverse-electric (TE) light is confined in the line defect with photonic band gap effect, while transverse-magnetic (TM) light is guided through it with extremely low diffraction. The performance of the designed polarization beam splitter is evaluated by utilizing optical properties of multi-walled carbon nanotubes, finite element modeling of wave propagation and transmission through periodic arrays. Simulation results indicate that the designed polarization beam splitter has low loss and less cross talk, and thereby may have practical applications in the integrated optical field.

  9. Bending of metal-filled carbon nanotube under electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Abha Misra

    2012-03-01

    Full Text Available Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM. In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures.

  10. Numerical Investigation Of The Bombardment Of A Graphene Sheet By A Beam Of Carbon Atoms

    Directory of Open Access Journals (Sweden)

    O.V. Khomenko

    2009-01-01

    Full Text Available Classical molecular dynamics simulations of the bombardment of a graphene sheet by a beam of carbon atoms are carried out. Covalent bonds in the irradiated sample are described by the Brenner potential. The approximation of elastic balls interacting with graphene via the Lennard-Jones potential is used for particles in a beam. The influence of the energy and density of irradiating carbon atoms and of the presence of a thermostat on physical processes occurring during the collisions with the sample is investigated. Energy values of the particles in a beam, which are enough for the sample destruction, are defined.

  11. Using Pyrolysis Molecular Beam Mass Spectrometry to Characterize Soil Organic Carbon in Native Prairie Soils

    Science.gov (United States)

    The objective of this study was to characterize soil organic carbon (SOC) with pyrolysis molecular beam mass spectrometry (py-MBMS) and then to determine correlations between the mass spectra and associated soil characterization data. Both soil carbon chemistry and the organic forms in which SOC is...

  12. Enhancement of Charpy impact value by electron beam irradiation of carbon fiber reinforced polymer

    International Nuclear Information System (INIS)

    Influences of electron beam irradiation on Charpy impact value of carbon fiber reinforced polymer (CFRP) have been investigated. The irradiation, which is one of short-time treatments, enhanced the Charpy impact value of CFRP. Furthermore, strengthening of carbon fiber, ductility enhancement of polymer and interface effects on impact test explains the impact value enhancement of CFRP. (author)

  13. Shear strengthening of pre-damaged reinforced concrete beams with carbon fiber reinforced polymer sheet strips

    Institute of Scientific and Technical Information of China (English)

    Feras ALZOUBI; ZHANG Qi; LI Zheng-liang

    2007-01-01

    This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with side-bonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in ACI-440 and fib European code were compared with the experimental results.

  14. Ultraviolet and infrared laser-induced fragmentation of free (CF3I)n clusters in a molecular beam and (CF3I)n clusters inside or on the surface of large (Xe)m clusters

    International Nuclear Information System (INIS)

    The fragmentation of free homogeneous (CF3I)n clusters in a molecular beam (n ≤ 45 is the average number of molecules in the cluster) and (CF3I)n clusters inside or on the surface of large (Xe)m clusters (m ≥ 100 is the average number of atoms in the cluster) by ultraviolet and infrared laser radiations has been studied. These three types of (CF3I)n clusters are shown to have different stabilities with respect to fragmentation by both ultraviolet and infrared radiations and completely different dependences of the fragmentation probability on the energy of ultraviolet and infrared radiations. When exposed to ultraviolet radiation, the free (CF3I)n clusters fragment at comparatively low fluences (ΦUV ≤ 0.15 J cm−2) and the weakest energy dependence of the fragmentation probability is observed for them. A stronger energy dependence of the fragmentation probability is observed for the (CF3I)n clusters localized inside (Xe)m clusters, and the strongest dependence is observed for the (CF3I)n clusters located on the surface of (Xe)m clusters. When the clusters are exposed to infrared radiation, the homogeneous (CF3I)n clusters efficiently fragment at low fluences (ΦIR ≤ 25 mJ cm−2), higher fluences (ΦIR ≈ 75 mJ cm−2) are needed for the fragmentation of the (CF3I)n localized inside (Xe)m clusters, and even higher fluences (ΦIR ≈ 150 mJ cm−2) are needed for the fragmentation of the (CF3I)n clusters located on the surface of (Xe)m clusters. It has been established that small (CF3I)n clusters located on the surface of (Xe)m clusters do not fragment up to fluences ΦIR ≈ 250 mJ cm−2. The fragmentation efficiency of (CF3I)n clusters is shown to be the same (at the same fluence) when they are excited by both pulsed (τp ≈ 150 ns) and continuous-wave infrared laser radiations. Possible causes of such a pattern of ultraviolet and infrared laser-induced fragmentation of these clusters are discussed

  15. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm2 for parent plate without a weld, 400 N/mm2 for specimens with welds on one side only and 600 N/mm2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  16. Effect of electron beam irradiation on the properties of carbon fiber

    International Nuclear Information System (INIS)

    Carbon fibers are used as a reinforcement material in an epoxy matrix in advanced composites due to their high mechanical strength, rigidity and low specific density. An important aspect of the mechanical properties of composites is associated to the adhesion between the surface of the carbon fiber and the epoxy matrix. This paper aimed to evaluate the effects of electron beam irradiation on the physicochemical properties of carbon fibers to obtain better adhesion properties in resultant composite. Chemical structure and surface of carbon fiber were determined by FT-IR, elemental analysis and X-ray photoelectron spectroscopy, which indicated that the oxygen content increased significantly with increasing the radiation dose. Thermal stability of the carbon fibers was studied via the thermal gravimetric analysis. Surface morphology of carbon fiber was analyzed by scanning electron microscope. It was found that the degree of surface roughness was increased by electron beam irradiation

  17. Modeling the Biophysical Effects in a Carbon Beam Delivery Line using Monte Carlo Simulation

    CERN Document Server

    Cho, Ilsung; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-01-01

    Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion beam therapy. In this study the biological effectiveness of a carbon ion beam delivery system was investigated using Monte Carlo simulation. A carbon ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon beam transporting into media. An incident energy carbon ion beam in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model is applied to describe the RBE of 10% survival in human salivary gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetrating depth of the water phantom along the incident beam direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the water phantom depth.

  18. Practical biological spread-out Bragg peak design of carbon beam

    CERN Document Server

    Kim, Chang Hyeuk; Chang, Seduk; Jang, Hong Suk; Kim, Jeong Hwan; Park, Dong Wook; Hwang, Won Taek; Yang, Tea-Keun

    2015-01-01

    The carbon beams show more advantages on the biological properties compared with proton beams in radiation therapy. The carbon beam shows high linear energy transfer (LET) to medium and it increases the relative biological effectiveness (RBE). To design spread-out Bragg peak (SOBP) of biological dose using carbon beam, a practical method was purposed by using the linear-quadratic (LQ) model and Geant4 based Monte Carlo simulation code. The various Bragg peak profiles and LET was calculated for each slice at the target region. To generate appropriate biological SOBP, a set of weighting factor, which is a power function in terms of energy step, was applied to the obtained each physical dose. The designed biological SOBP showed 1.34 % of uniformity.

  19. Synthesis of MoSi2 by energetic molybdenum cluster beam deposited on monocrystalline silicon at room temperature

    International Nuclear Information System (INIS)

    Mon- cluster beam was produced by a new type magnetron sputter gas aggregation cluster source. The beam was accelerated by the voltage of 0, 1, 3, 5, 10 kV and deposited onto polished p-type Si(111) substrate surface at room temperature, respectively, and then the thin film samples of Mo/Si(111) were prepared. X-ray diffraction analysis showed that there was no MoSi2 thin film formation in the area interface of Mo/Si(111) samples deposited by using both regular magnetron sputter and new type cluster source when the accelerated voltage was no more than 5 kV, whereas at the voltage of about 10 kV, there was MoSi2 thin film formed in the area interface of Mo/Si(111) samples deposited by using the new type cluster source. Only for the accelerated voltage higher than a threshold voltage (≥3 kV in this experiment), can the (110) oriented Mo thin film by the cluster beam deposition grow up. (authors)

  20. First study of α cluster structure in the mirror light nuclei using radioactive beams of 14C and 14O

    International Nuclear Information System (INIS)

    Full text: Alpha clustering is a remarkable phenomenon, which plays a very important role in our understanding of nuclear forces [1]. Classical examples of alpha cluster nuclei are 12C, 16O and 20Ne. These nuclei are very well studied and the striking features of the observed alpha cluster rotational bands inspired the development of theoretical models, capable of treating clustering phenomena in nuclei. Much less is known about the alpha cluster states in nuclei with N≠Z T=1. Recent studies [2,3] indicate the richness of the alpha clustering phenomena in these nuclei, providing evidence for unusual features, such as doubling of alpha cluster rotational bands. The alpha cluster states also play a crucial role in stellar helium burning where the formation of heavier elements through fusion process is driven through alpha cluster configurations in Tz=0 and Tz=1 nuclei. This also applies to explosive alpha-induced processes such as the alpha-p-process in the thermonuclear runaway on the accreting neutron stars which is driven through alpha-cluster formation in Tz=-1 nuclei [4]. The alpha cluster structure of T=1 18O and 18Ne nuclei will be the focus of the discussion. The alpha cluster states in these nuclei were populated in an elastic scattering of radioactive beam 14C (delivered by Florida State Tandem-LINAC facility) or 14O (delivered by MARS facility of TAMU) on helium. The Thick Target Inverse Kinematics technique [5] was used. The features of molecular rotational bands will be considered together with the isotopic shifts, which is dependent upon the hidden single particle structure. (author)

  1. Allotropic conversion of carbon-related films by using energy beams

    International Nuclear Information System (INIS)

    Energy beams such as ion and laser beams are employed to convert of C60 molecules into another carbon allotropes. The ion beam deposition (IBD) technique is effective to study the nucleation process by changing several growth parameters (beam energy, substrate temperature and ion species). The 12CHx+ (x = 0-4) ions with different energies (50-200 eV) are incident on two kinds of substrates (Si(111) and Ir(100)/MgO(100)) at room temperature and 700 deg C. Immersed nanosize diamonds are found in amorphous films in all cases. The topological features obtained in IBD are compared with laser processing experiments

  2. A nine-atom rhodium–aluminum oxide cluster oxidizes five carbon monoxide molecules

    Science.gov (United States)

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium–aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  3. A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules.

    Science.gov (United States)

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  4. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    International Nuclear Information System (INIS)

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. (paper)

  5. Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam

    OpenAIRE

    Yining Ding; Zhipei Chen; Zhibo Han; Yulin Zhang; Torgal, Fernando Pacheco

    2013-01-01

    The nano-carbon black (NCB) and carbon fiber (CF) as electric conductive materials were added into the concrete. The effect of the NCB and CF on the mechanical properties and on the fractional change in resistance (FCR) of concrete was investigated. The relationships among the FCR, the strain of initial geometrical neutral axis (IGNA) and the beam damage degree were developed. The results showed that the relationship between the FCR and IGNA strain can be described by the First Or...

  6. Plasma behavior with hydrogen supersonic molecular beam and cluster jet injection in the HL-2A tokamak

    International Nuclear Information System (INIS)

    The experimental results of low pressure supersonic molecular beam injection (SMBI) into the HL-2A plasma indicated that during the period of SMB pulse injection the power density convected at the divertor target plate surfaces was 0.4 times of that before or after the beam injection. The clusters are produced at nitrogen temperature in a supersonic adiabatic expansion of moderate pressure hydrogen gases into vacuum through a Laval nozzle. The averaged cluster size was measured by Rayleigh scattering as large as hundreds atoms. Multifold diagnostics for the cluster jet injection (CJI) experiments have given a coincident evidence that there was a terminal area where a great deal particles from the clusters deposited at, rather than the clusters uniformly ablating along the injection path. A SMB with large clusters, which are like micro-pellets, was of benefit for deeper fuelling and the fuelling efficiency is distinctly better than that of the room temperature SMBI. Another important effect of the CJI or the high pressure SMBI was that the runaway electrons were cooled down to thermal velocity due to a combination of collision and radiative stopping in such a massive fuelling. So the new fuelling technique may become a good treatment to mitigate fast plasma shutdowns and disruptions. (author)

  7. Study of small carbon and semiconductor clusters using negative ion threshold photodetachment spectroscopy

    International Nuclear Information System (INIS)

    The bonding and electronics of several small carbon and semiconductor clusters containing less than ten atoms are probed using negative ion threshold photodetachment (zero electron kinetic energy, or ZEKE) spectroscopy. ZEKE spectroscopy is a particularly advantageous technique for small cluster study, as it combines mass selection with good spectroscopic resolution. The ground and low-lying electronic states of small clusters in general can be accessed by detaching an electron from the ground anion state. The clusters studied using this technique and described in this work are C6-/C6, Sin-/Sin (n = 2, 3, 4), Ge2-/Ge2, In2P-/In2P,InP2-/InP2, and Ga2As-. The total photodetachment cross sections of several other small carbon clusters and the ZEKE spectrum of the I-·CH3I SN2 reaction complex are also presented to illustrate the versatility of the experimental apparatus. Clusters with so few atoms do not exhibit bulk properties. However, each specie exhibits bonding properties that relate to the type of bonding found in the bulk. C6, as has been predicted, exhibits a linear cumulenic structure, where double bonds connect all six carbon atoms. This double bonding reflects how important π bonding is in certain phases of pure carbon (graphite and fullerenes). The symmetric stretch frequencies observed in the C6- spectra, however, are in poor agreement with the calculated values. Also observed as sharp structure in total photodetachment cross section scans was an excited anion state bound by only ∼40 cm-1 relative to the detachment continuum. This excited anion state appears to be a valence bound state, possible because of the high electron affinity of C6, and the open shell of the anion

  8. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  9. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    CERN Document Server

    Kirby, Evan N; Zhang, Andrew J; Deng, Michelle; Cohen, Judith G; Guhathakurta, Puragra; Shetrone, Matthew D; Lee, Young Sun; Rizzi, Luca

    2015-01-01

    We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in...

  10. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    International Nuclear Information System (INIS)

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys295 and His261. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His261, which coordinates one of the Fe atoms with Cys295, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys295, we constructed CODH-II variants. Ala substitution for the Cys295 substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys295 indirectly and His261 together affect Ni-coordination in the C-cluster

  11. Calculation of Lifetime of Charge-Exchanging Carbon Targets in Intense Heavy Ion Beams

    CERN Document Server

    Gikal, B N; Kazacha, V I; Kamanin, D V

    2005-01-01

    Influence of the radiation damage and sublimation effects on the lifetime of carbon targets used for the accelerated ion beam extraction from cyclotrons by the charge-exchanging method is considered. The theoretical models permitting evaluation of the carbon target lifetime depending on their and ion beam parameters are presented both for the radiation damage and sublimation effects. It is shown that for the U-400 cyclotron carbon targets 50 $\\mu$g/cm$^{2}$ thick and for the ion beam flux density up to 100 p$\\mu$A/cm$^{2}$ the main effect defining the carbon target lifetime is the radiation damage. If the carbon target thickness and the ion beam flux density are greater, the target lifetime is defined already by the sublimation effect. In this connection "casting pipes" can be formed in the target, affecting on the mean energy and the energy distribution dispersion of the ion beam flied through the target. Comparison of measured and calculated target lifetimes is carried out

  12. Geant4 Simulation Study of Dose Distribution and Energy Straggling for Proton and Carbon Ion Beams in Water

    OpenAIRE

    Zhao Qiang; Zhang Zheng; Li Yang

    2016-01-01

    Dose distribution and energy straggling for proton and carbon ion beams in water are investigated by using a hadrontherapy model based on the Geant4 toolkit. By gridding water phantom in N×N×N voxels along X, Y and Z axes, irradiation dose distribution in all the voxels is calculated. Results indicate that carbon ion beams have more advantages than proton beams. Proton beams have bigger width of the Bragg peak and broader lateral dose distribution than carbon ion beams for the same position o...

  13. A modified Fuzzy C-Means (FCM) Clustering algorithm and its application on carbonate fluid identification

    Science.gov (United States)

    Liu, Lifeng; Sun, Sam Zandong; Yu, Hongyu; Yue, Xingtong; Zhang, Dong

    2016-06-01

    Considering the fact that the fluid distribution in carbonate reservoir is very complicated and the existing fluid prediction methods are not able to produce ideal predicted results, this paper proposes a new fluid identification method in carbonate reservoir based on the modified Fuzzy C-Means (FCM) Clustering algorithm. Both initialization and globally optimum cluster center are produced by Chaotic Quantum Particle Swarm Optimization (CQPSO) algorithm, which can effectively avoid the disadvantage of sensitivity to initial values and easily falling into local convergence in the traditional FCM Clustering algorithm. Then, the modified algorithm is applied to fluid identification in the carbonate X area in Tarim Basin of China, and a mapping relation between fluid properties and pre-stack elastic parameters will be built in multi-dimensional space. It has been proven that this modified algorithm has a good ability of fuzzy cluster and its total coincidence rate of fluid prediction reaches 97.10%. Besides, the membership of different fluids can be accumulated to obtain respective probability, which can evaluate the uncertainty in fluid identification result.

  14. Dissociation of H2 on carbon doped aluminum cluster Al6C

    International Nuclear Information System (INIS)

    The dissociation of H2 molecule is the first step for chemical storage of hydrogen, and the energy barrier of the dissociation is the key factor to decide the kinetics of the regeneration of the storage material. As a light element, aluminum is an important candidate component for storage materials with high gravimetric density. This paper investigates the adsorption and dissociation of H2 on carbon doping aluminum cluster Al6C. The study shows that doping carbon into aluminum cluster can significantly change the electronic structure and increase the stability. Al6C has a few stable isomers with close energies and their structures are quite flexible. The molecular adsorption of H2 on Al6C is very weak, but the H2 molecule can be dissociated easily on this cluster. The stable product of the dissociated adsorption is searched and the different paths for the dissociation are investigated. During the dissociation of H2, the structure of the cluster adjusts accordingly, and strong orbital interaction between the hydrogen and the cluster occurs. The calculated energy barrier for the dissociation is only 0.30 eV, which means the dissociation can take place at moderate temperatures

  15. Fabrication of carbon nanorod from the irradiation of proton beam on carbon nanotube and characterization of its resistance variation

    International Nuclear Information System (INIS)

    Fabrication method of the transparent carbon nanotubes film on the glass with the transparency of 50 ∼ 80 % and the sheet resistance of 500 ∼ 2000 Ω/sq is developed based on the established study of the enhancement of the conductivity. Deformation of the bundle-type single-walled carbon nanotubes are analyzed with the variation of the energy transfer in the carbon nanotubes by the variation of the dose of the 10 MeV proton beam. Construction of the variation of the conductivity of the carbon nanotube network and the variation of the transparency of the glass are used for the feasibility of the fabrication of the transparent electrode using carbon nanotubes network. Transparent carbon nanotubes film are fabricated using spray method and the sheet resistance and transparency are controlled by the control of the quantity of the dispersion. Accumulated energy on the carbon nanotubes are controlled by the dose of the 10 MeV proton. Proton irradiation creates defects on the carbon nanotubes by particle collision and the recombination of the defects generates the decrease of the diameter of the carbon nanotubes. Ejection of the carbon from the carbon nanotubes generates not only the formation of the connection between carbon nanotubes but also between carbon nanotube bundles. These connections decrease the resistance between carbon nanotube networks and 2.5 times increase is measured. Although the electrical conductivity is increased by the proton irradiation, sulfuration of the glass is increased. Variation of the transparency is caused by the positive ion irradiation and the transparency is decreased with the dose due to the increase of the energy transfer on the glass

  16. Strong Metal-Support Interaction: Growth of Individual Carbon Nanofibers from Amorphous Carbon Interacting with an Electron Beam

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil

    2013-01-01

    The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO/Ni nanopar......The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO....../Ni nanoparticles, devoid of any gaseous carbon source and external heating and stimulated by an electron beam in a 300 kilo volt transmission electron microscope....

  17. Cluster Effects during High Pressure Supersonic Molecular Beam Injection into Plasma

    Institute of Scientific and Technical Information of China (English)

    YAOLianghua; FENGBeibin; DONGJiafu; LIWenzhong; FENGZhen; HONGWenyu; LIBo

    2001-01-01

    When we speak of clusters, we have in mind entities which have neither the well-defined compositions, geometries, and strong bonds of conventional molecules northe boundary-independent properties of bulk matter. For example, an aggregate of a few atoms held together by Van der Waals forces constitutes a cluster. But clusters need not be weakly bound, several metal atoms bound together also constitute a cluster. Clusters need not be composed of a single kind of chemical entity, either atomic or molecular,

  18. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  19. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    International Nuclear Information System (INIS)

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications. (paper)

  20. Cross-sectional TEM Observations of Si Wafers Irradiated With Gas Cluster Ion Beams

    International Nuclear Information System (INIS)

    Irradiation by a Gas Cluster Ion Beam (GCIB) is a promising technique for precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. In this study, the near surface structure of a Si (100) wafer was analyzed after GCIB irradiation, using a cross-sectional transmission electron microscope (XTEM). Ar-GCIB, that physically sputters Si atoms, and SF6-GCIB, that chemically etches the Si surface, were both used. After GCIB irradiation, high temperature annealing was performed in a hydrogen atmosphere. From XTEM observations, the surface of a virgin Si wafer exhibited completely crystalline structures, but the existence of an amorphous Si and a transition layer was confirmed after GCIB irradiation. The thickness of amorphous layer was about 30 nm after Ar-GCIB irradiation at 30 keV. However, a very thin (< 5 nm) layer was observed when 30 keV SF6-GCIB was used. The thickness of the transition layer was the same both Ar and SF6-GCIB irradiation. After annealing, the amorphous Si and transition layers had disappeared, and a complete crystalline structure with an atomically smooth surface was observed

  1. Low-damage surface smoothing of laser crystallized polycrystalline silicon using gas cluster ion beam

    International Nuclear Information System (INIS)

    Surface smoothing of laser crystallized polycrystalline silicon (poly-Si) films using gas cluster ion beam (GCIB) technology has been studied. It is found that both SF6-GCIB and O2-GCIB decrease the height of hillocks and reduce the surface roughness of the irradiated films. The mean surface roughness value of poly-Si films was reduced from 10.8 nm to 2.8 nm by SF6-GCIB irradiation at 80o. Ultraviolet reflectance measurement reveals that GCIB irradiation causes damage near-surface of the poly-Si films. Formation of the damage, however, can be suppressed by using GCIB irradiation at high incident angle. Effect of GCIB irradiation in a metal-insulator-semiconductor (MIS) capacitor has also been investigated. The capacitance-voltage curves of MIS capacitor with SF6-GCIB irradiation are distorted. On the contrary, the distortion is reduced by O2-GCIB irradiation at 80, which suggests that electrical-activated damage of the films can be decreased by using O2-GCIB irradiation

  2. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    Science.gov (United States)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  3. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Monica de, E-mail: desimone@tasc.infm.it [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Snidero, Elena [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Coreno, Marcello [CNR-IMIP, c/o Laboratorio TASC Area Science Park Basovizza, 34149 Trieste (Italy); Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Bongiorno, Gero [Fondazione Filarete, v.le Ortles 22/4, 20139 Milano (Italy); Giorgetti, Luca [Istituto Europeo di Oncologia, Dip. di Oncologia Sperimentale, Via Adamello 16, 20139, Milano (Italy); Amati, Matteo [Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Cepek, Cinzia [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy)

    2012-05-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti{sup 3+} is the first oxidation state observed, followed by Ti{sup 4+}, whereas Ti{sup 2+} is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  4. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    International Nuclear Information System (INIS)

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti3+ is the first oxidation state observed, followed by Ti4+, whereas Ti2+ is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  5. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    OpenAIRE

    Juliano Fiorelli; Antonio Alves Dias

    2003-01-01

    An experimental analysis of pinewood beams (Pinus caribea var hondurensis) reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results,...

  6. Geant4 Simulation Study of Dose Distribution and Energy Straggling for Proton and Carbon Ion Beams in Water

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2016-01-01

    Full Text Available Dose distribution and energy straggling for proton and carbon ion beams in water are investigated by using a hadrontherapy model based on the Geant4 toolkit. By gridding water phantom in N×N×N voxels along X, Y and Z axes, irradiation dose distribution in all the voxels is calculated. Results indicate that carbon ion beams have more advantages than proton beams. Proton beams have bigger width of the Bragg peak and broader lateral dose distribution than carbon ion beams for the same position of Bragg peaks. Carbon ion has a higher local ionization density and produces more secondary electrons than proton, so carbon ion beams can achieve a higher value of relative biological effectiveness.

  7. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review).

    Science.gov (United States)

    Baek, Sung-Jae; Ishii, Hideshi; Tamari, Keisuke; Hayashi, Kazuhiko; Nishida, Naohiro; Konno, Masamitsu; Kawamoto, Koichi; Koseki, Jun; Fukusumi, Takahito; Hasegawa, Shinichiro; Ogawa, Hisataka; Hamabe, Atsushi; Miyo, Masaaki; Noguchi, Kozo; Seo, Yuji; Doki, Yuichiro; Mori, Masaki; Ogawa, Kazuhiko

    2015-11-01

    Cancer stem cells (CSCs) are a small population of cells in cancer with stem-like properties such as cell proliferation, multiple differentiation and tumor initiation capacities. CSCs are therapy-resistant and cause cancer metastasis and recurrence. One key issue in cancer therapy is how to target and eliminate CSCs, in order to cure cancer completely without relapse and metastasis. To target CSCs, many cell surface markers, DNAs and microRNAs are considered as CSC markers. To date, the majority of the reported markers are not very specific to CSCs and are also present in non-CSCs. However, the combination of several markers is quite valuable for identifying and targeting CSCs, although more specific identification methods are needed. While CSCs are considered as critical therapeutic targets, useful treatment methods remain to be established. Epigenetic gene regulators, microRNAs, are associated with tumor initiation and progression. MicroRNAs have been recently considered as promising therapeutic targets, which can alter the therapeutic resistance of CSCs through epigenetic modification. Moreover, carbon ion beam radiotherapy is a promising treatment for CSCs. Evidence indicates that the carbon ion beam is more effective against CSCs than the conventional X-ray beam. Combination therapies of radiosensitizing microRNAs and carbon ion beam radiotherapy may be a promising cancer strategy. This review focuses on the identification and treatment resistance of CSCs and the potential of microRNAs as new radiosensitizers and carbon ion beam radiotherapy as a promising therapeutic strategy against CSCs. PMID:26330103

  8. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    International Nuclear Information System (INIS)

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development

  9. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    Science.gov (United States)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  10. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2003-06-01

    Full Text Available An experimental analysis of pinewood beams (Pinus caribea var hondurensis reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results, while the efficiency of the fiber reinforcement is corroborated by the increased strength and stiffness of the reinforced timber beams.

  11. Beam asymmetry Σ in π0 photoproduction off protons bound in carbon nuclei

    International Nuclear Information System (INIS)

    In order to study the dynamics of the inner components of the nucleon, its excitation spectrum is investigated through meson-photoproduction. Due to the strong overlap of the nucleon's excited states, it is insufficient to determine the cross section only. To identify all resonance contributions unambiguously, single and double polarization observables have to be measured. At the Crystal Barrel experiment at ELSA in Bonn, this is achieved utilizing linearly or circularly polarized photons and longitudinally or transversely polarized nucleons. Polarized protons are realized in a butanol target, which consists of hydrogen, oxygen and carbon. A pure carbon target was used to perform a background measurement. The results for the beam asymmetry Σ in π0 photoproduction, obtained with a carbon target and a linearly polarized photon beam, are presented. Furthermore, the influence of carbon background on the measured polarization observables is discussed.

  12. Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons

    DEFF Research Database (Denmark)

    Bennitz, Anders; Nilimaa, Jonny; Ravn, Dorthe Lund; Schmidt, Jacob W.; Täljsten, Björn; Goltermann, Per

    2012-01-01

    This study describes a series of experiments examining the behavior of seven beams prestressed with unbonded external carbon fiberreinforced polymer (CFRP) tendons anchored using a newly developed anchorage and post-tensioning system. The effects of varying the initial tendon depth, prestressing...... force, and the presence of a deviator were investigated. The results were compared to those observed with analogous beams prestressed with steel tendons, common beam theory, and predictions made using an analytical model adapted from the literature. It was found that steel and CFRP tendons had very...... similar effects on the structural behavior of the strengthened beams; the minor differences that were observed are attributed to the difference between the modulus of elasticity of the CFRP and the steel used in the tests. The models predicted the beams' load-bearing behavior accurately but were less...

  13. Average Frequency – RA Value for Reinforced Concrete Beam Strengthened with Carbon Fibre Sheet

    Directory of Open Access Journals (Sweden)

    Mohamad M. Z.

    2016-01-01

    Full Text Available Acoustic Emission (AE is one of the tools that can be used to detect the crack and to classify the type of the crack of reinforced concrete (RC structure. Dislocation or movement of the material inside the RC may release the transient elastic wave. In this situation, AE plays important role whereby it can be used to capture the transient elastic wave and convert it into AE parameters such as amplitude, count, rise time and duration. Certain parameter can be used directly to evaluate the crack behavior. But in certain cases, the AE parameter needs to add and calculate by using related formula in order to observe the behavior of the crack. Using analysis of average frequency and RA value, the crack can be classified into tensile or shear cracks. In this study, seven phases of increasing static load were used to observe the crack behavior. The beams were tested in two conditions. For the first condition, the beams were tested in original stated without strengthened with carbon fibre sheet (CFS at the bottom of the beam or called as tension part of the beam. For the second condition, the beams were strengthened with CFS at the tension part of the beam. It was found that, beam wrapped with CFS enhanced the strength of the beams in term of maximum ultimate load. Based on the relationship between average frequency (AF and RA value, the cracks of the beams can be classified.

  14. Beam test of compact ECR ion source for carbon therapy

    International Nuclear Information System (INIS)

    Ion source for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). Based on the proto type compact source, a 10 GHz compact ECR ion source with all permanent magnets has been developed. Peaks of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests shows that a C4+ intensity of 530 μA was obtained under an extraction voltage of 45 kV. This paper describes the design detail and the experimental results for the new source. (author)

  15. Quasi-steady carbon plasma source for neutral beam injector

    International Nuclear Information System (INIS)

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration

  16. Experiments with the newly available carbon beams at ISOLDE

    CERN Multimedia

    Garcia borge, M J; Koester, U H; Koldste, G T

    2002-01-01

    Recent target-ions-source developments at ISOLDE providing significantly increased yields for carbon isotopes, open up for new and intriguing experiments. We propose to exploit this in two different ways. In particular we wish to do an elastic resonance scattering experiment of $^{9}$C on a proton target to gain information on the particle unbound system $^{10}$N. Furthermore we wish to perform decay experiments of the neutron-rich carbon isotopes, with special focus on $^{17-19}$C but also including a test to see whether the even more neutron-rich isotopes $^{20,22}$C are accessible at ISOLDE.

  17. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration. PMID:24593646

  18. Molecular dynamics simulation of an argon cluster filled inside carbon nanotubes

    International Nuclear Information System (INIS)

    The effects of the diameters of single-walled carbon nanotubes (SWCNTs) (7.83 Å to 27.40 Å) and temperature (20 K–45 K) on the equilibrium structure of an argon cluster are systematically studied by molecular dynamics simulation with consideration of the SWCNTs to be fixed. Since the diameters of SWCNTs with different chiralities increase when temperature is fixed at 20 K, the equilibrium structures of the argon cluster transform from monoatomic chains to helical and then to multishell coaxial cylinders. Chirality has almost no noticeable influence on these cylindrosymmetric structures. The effects of temperature and a non-equilibrium sudden heating process on the structures of argon clusters in SWCNTs are also studied by molecular dynamics simulation. (condensed matter: structural, mechanical, and thermal properties)

  19. ELECTRO-THERMAL EFFECTS AND DEFORMATION RESPONSE OF CARBON FIBER MAT CEMENT BEAMS

    Institute of Scientific and Technical Information of China (English)

    ZhuSirong; LiZhuoqiu; SongXianhui

    2003-01-01

    A carbon fiber mat is a sheet composed of intercrossing short carbon fibers, which has more stable and lower electrical resistivity compared with dispersed short carbon fiber mixed in cement. Thereby carbon fiber mat cement could exhibit obvious electro-thermal effect. When electrified, the temperature of composite structures made up of cement mortar and carbon fiber mat will rise rapidly. If the temperature field is not uniform, temperature difference will cause structures to deform, which can be used to adjust the deformation of structures. The temperature field and deformation response driven by the electro-thermal effects of a type of carbon fiber mat cement beams are studied. Firstly, the temperature and deformation responses are studied using theories of thermal conduction and elasticity. Secondly, experimental results are given to verify the theoretical solution. These two parts lay the foundation for temperature and deformation adjustment.

  20. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    International Nuclear Information System (INIS)

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  1. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  2. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Marco; Prestopino, G., E-mail: giuseppe.prestopino@uniroma2.it; Verona, C.; Verona-Rinati, G. [INFN—Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata,” Via del Politecnico 1, Roma 00133 (Italy); Ciocca, M.; Mirandola, A.; Mairani, A. [Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Raffaele, L. [INFN—Laboratori Nazionali del Sud, Via S. Sofia 62, Catania 95123, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Magro, G. [INFN—Dipartimento di Fisica, Università degli Studi di Pavia, Via U. Bassi 6, Pavia 27100, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy)

    2015-04-15

    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30–250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm{sup 2} were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm{sup 2} area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam

  3. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    International Nuclear Information System (INIS)

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well

  4. Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation

    International Nuclear Information System (INIS)

    Blister formation in tungsten has been studied by mixed carbon and hydrogen ion beam irradiation. The beam ion energies were 1.0 keV and 300 eV, and the fluence was in the range of 1024-1025 ions m-2. It was found that a little amount of carbon impurity in the beam affected blister formation. A large number of blisters with various sizes were observed on the surface of tungsten at 653 K when the carbon concentration was more than 0.35%. When the carbon concentration was 0.11%, no blisters larger than 1.0 μm were observed. When the carbon concentration was 2.35%, a carbon layer developed on the tungsten surface, and again, no blisters were observed. The effect of target temperature on blister formation was also investigated: the sizes and numbers of the blisters were the largest when the tungsten was irradiated at 653 K; when the sample was irradiated at 388 or 873 K, no blisters larger than 1.0 μm were observed

  5. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  6. Characterization of laser beam interaction with carbon materials

    International Nuclear Information System (INIS)

    This paper presents simulation and experimental results for the exposure of some carbon-based materials to alexandrite and Nd3+:YAG (yttrium aluminum garnet) laser radiation. Simulation of the heating effects was carried out using the COMSOL Multiphysics 3.5 package for samples of carbon-based P7295-2 fiber irradiated using an alexandrite laser and carbon-based P4396-2 fiber irradiated using an Nd3+:YAG laser, as well as by applying finite element modeling for P7295-2 samples irradiated using an Nd3+:YAG laser. In the experimental part, P7295-2 samples were exposed to alexandrite laser radiation while samples of carbon-based composite 3D C/C were exposed to Nd3+:YAG laser radiation. Micrographs of the laser induced craters were obtained by light and scanning electron microscopy, and the images analyzed using the ImageJ software. The results obtained enable identification of the laser–material interaction spots, and characterization of the laser induced changes in the materials investigated. (paper)

  7. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Somnath [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Narang, Himanshi, E-mail: himinarang@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sarma, Asitikantha [Radiation Biology Laboratory, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, Malini [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-11-01

    Carbon beams (5.16 MeV/u, LET = 290 keV/{mu}m) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between {gamma}-rays and carbon ion-irradiation. A549 cells were irradiated with 1 Gy carbon or {gamma}-rays. Carbon beam was found to be three times more cytotoxic than {gamma}-rays despite the fact that the numbers of {gamma}-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with {gamma}-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike {gamma}-rays irradiated cells and prosurvival ERK pathway was activated after {gamma}-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.

  8. A carbon cluster ion source for mass calibration at TRIGA-TRAP

    International Nuclear Information System (INIS)

    TRIGA-TRAP is a high-precision penning trap mass spectrometer installed at the research reactor TRIGA Mainz in order to determine the masses of short-lived fission products and - in addition to that - also the masses of actinide elements ranging from uranium up to californium. In order to determine precisely the masses of the nuclides of interest, the superconducting magnet providing the strong magnetic field for the Penning trap has to be calibrated by measuring the cyclotron frequency of an ion with well-known mass, which is, if possible, an isobaric nuclide of the ion of interest. Therefore, the best possible choice for mass calibration is to use carbon clusters as mass references, as demonstrated at the ISOLTRAP facility at ISOLDE/CERN. A laser ablation ion source for the production of carbon clusters has been developed using a frequency-doubled Nd:YAG laser. The design, current status, and results of the production of carbon cluster ions, using C60 and Sigradure registered samples, as well as other ions are presented

  9. Direct Cluster observation of foreshock electron beams and their correlation with Langmuir waves

    Czech Academy of Sciences Publication Activity Database

    Souček, Jan; Tomori, Alexander; Basovník, Marek; Sauer, K.; Sydora, R.; Santolík, Ondřej; Fazakerley, A.

    2013. [Cluster Workshop /23./. 16.09.2013-20.09.2013, Tromso] Institutional support: RVO:68378289 Subject RIV: BL - Plasma and Gas Discharge Physics http://caa.estec.esa.int/images/cluster_workshops/23/Cluster23_abstract_book_v2.1.pdf

  10. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  11. Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy

    Science.gov (United States)

    Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.

    2014-05-01

    PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.

  12. Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy

    International Nuclear Information System (INIS)

    PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image

  13. Optical transition radiation from a thin carbon foil: a beam profile monitor for the SLC

    International Nuclear Information System (INIS)

    This memo considers placement of an ultra thin carbon foil into the SLC beam. Transition radiation light would be emitted from the surface of the foil. The optical spot from the foil could be viewed with a microscope objective lens and registered with an image detector. Multiple scattering for the foil thicknesses necessary will not affect the beam emittance. Calculations show that a thin carbon foil can withstand the electron beam if the electron beam is larger than 10 μm in size. There are many possible radiation mechanisms from a foil - bremsstrahlung, black body temperature radiation, Cerenkov light, scintillation light, and transition radiation. Transition radiation is apparently dominant. It is proposed to use thin carbon foils, 75 to 150 A thick. Calculations indicate that 5 x 1010 beam electrons will radiate a useable number of optical photons. Specifically with 150 A foils the fractional yield of useful optical photons is 10-3 photons per incident electron 5 x 10+7 optical photons imaged upon an image plane. Spread these photons over a 32 x 32 pixel CCD and one has the readout system of a monitor

  14. Interfacial electrical properties of ion-beam sputter deposited amorphous carbon on silicon

    Science.gov (United States)

    Khan, A. A.; Woollam, J. A.; Chung, Y.; Banks, B.

    1983-01-01

    Amorphous, 'diamond-like' carbon films have been deposited on Si substrates, using ion-beam sputtering. The interfacial properties are studied using capacitance and conductance measurements. Data are analyzed using existing theories for interfacial electrical properties. The density of electronic states at the interface, along with corresponding time constants are determined.

  15. Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons

    DEFF Research Database (Denmark)

    Bennitz, Anders; Nilimaa, Jonny; Ravn, Dorthe Lund;

    2012-01-01

    This study describes a series of experiments examining the behavior of seven beams prestressed with unbonded external carbon fiberreinforced polymer (CFRP) tendons anchored using a newly developed anchorage and post-tensioning system. The effects of varying the initial tendon depth, prestressing ...

  16. Influence of electron beam irradiation on physicochemical properties of poly(trimethylene carbonate)

    NARCIS (Netherlands)

    Jozwiakowska, Joanna; Wach, Radoslaw A.; Rokita, Bozena; Ulanski, Piotr; Nalawade, Sameer P.; Grijpma, Dirk W.; Feijen, Jan; Rosiak, Janusz M.

    2011-01-01

    Electron beam (EB) irradiation of poly(trimethylene carbonate) (PTMC), an amorphous, biodegradable polymer used in the field of biomaterials, results in predominant cross-linking and finally in the formation of gel fraction, thus enabling modification of physicochemical properties of this material w

  17. Measurement of fragment production DDX of 72 and 144 MeV 12C beam induced reaction on carbon using Bragg Curve Counter

    International Nuclear Information System (INIS)

    Double differential cross section (DDX) data of fragment production for 72 (6 MeV/nucleon) and 144 MeV (12 MeV/nucleon) 12C beam induced reaction on carbon were measured using a Bragg Curve Counter (BCC). The DDX data were obtained for fragments of He, Li, Be, B, C, N and O at 30 degree emission angle. Theoretical calculation using PHITS code with QMD+GEM model represents the DDX well except for components from reactions of direct process and α particle clustering process. (author)

  18. Analysis of carbon in SrTiO3 grown by hybrid molecular beam epitaxy

    International Nuclear Information System (INIS)

    Secondary ion mass spectroscopy (SIMS) was used to investigate carbon impurity concentrations in stoichiometric SrTiO3 films grown by a hybrid molecular beam epitaxy approach that uses an effusion cell to supply strontium, a rf plasma source for oxygen and a metal organic titanium source (titanium tetra isopropoxide). The carbon concentration in the films was measured as a function of growth parameters. At sufficiently high growth temperatures (>800 degree sign C), the films contain a few ppm of carbon. The challenges in accurately quantifying low carbon concentrations are discussed. A carbon-containing contamination layer is detected on the surfaces of SrTiO3 substrates and air-exposed films by SIMS and in scanning transmission electron microscopy. The contamination layer could be removed by high-temperature predeposition oxygen plasma cleaning.

  19. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  20. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

        Radiotherapy with particles is getting more attention in Europe. New facilities for protons and heavier ions are finished, or near to the final status, some more are planed. Particle therapy with heavy ions is a challenge to dosimetry, since mixed particle fields occur in the peak region...... of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...

  1. The RHIC p-Carbon CNI Polarimeter Upgrade For The Beam Polarization And Intensity Measurements

    International Nuclear Information System (INIS)

    Proton polarization measurements in the AGS and RHIC (Relativistic Heavy Ion Collider at the beam energies 24-250 GeV) are based on proton-carbon and proton-proton elastic scattering in the Coulomb Nuclear Interference (CNI) region. Polarimeter operation in the scanning mode also gives polarization profile and beam intensity profile (beam emittance) measurements. Bunch by bunch emittance measurement is a very powerful tool for machine setup. Presently, the polarization and beam intensity profile measurements (in both vertical and horizontal planes) are restricted by the long target switching time and possible target destruction during this complicated motion. The RHIC polarimeters were operated near the limit of the counting rate for present silicon strip detectors. The ongoing polarimeter upgrade for the 2009 run will address all these problems. The upgrade should allow significant reduction of the polarization measurement errors by making feasible the complete polarization measurements, which includes polarization profiles in both the horizontal and vertical planes.

  2. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    Science.gov (United States)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  3. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    Science.gov (United States)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  4. Dynamic core hole screening in small-diameter conducting carbon nanotubes: A cluster density functional study

    International Nuclear Information System (INIS)

    The many-electron response of a small-diameter conducting carbon nanotube, to the sudden creation of a 1s core state, is studied using density functional theory with different Gaussian basis sets and the generalized gradient approximation for exchange and correlation. Cluster computations are performed on carbon atoms located at a finite-size cylindrical network that is terminated by hydrogen atoms. Core-hole creation is simulated by replacing the 1s electron pair, localized at a central site of the structure, with effective pseudo-potentials for both neutral and ionized atomic carbon. The same approach is used to describe a neutral and core-ionized C60 fullerene molecule. The overlaps between the excited states of the ionized systems and the ground states of the neutral systems are combined in a Fermi's golden rule treatment yielding the shake-up spectra from the two clusters. The numerical response for the fullerene molecule is found in good agreement with the measured X-ray photoelectron spectrum from thick C60 films, including the low energy satellites at excitation energies below 4 eV, within a peak position error of 0.3 eV. The nanotube spectrum reveals features in common with X-ray photoelectron data from Bucky balls and Bucky papers. - Highlights: • Many body effects induced in carbon nanotubes by core level ionization are studied. • Cluster density functional theory, with effective core pseudo-potentials, is used. • Low lying excited states of the ionized system are calculated. • Numerical photoelectron spectra are derived with a modified Fermi's golden rule. • Numerical calculations are compared with X-ray data from Bucky balls and papers

  5. Formation and atomic structure of tetrahedral carbon onion produced by electron-beam irradiation

    International Nuclear Information System (INIS)

    Full text: Various fullerene structures has been designed and produced after the discovery of C60. These fullerene materials are good candidates as nanoscale devises such as single-electron devices, nano-diode, nano-transistor, nano-ball bearing and insulator lubricant. The onion structures, which generally consist of some quasi-spherical fullerene group, are also discovered and studied in detail. The tetrahedral carbon onions had been calculated to be unstable compared to the spherical onions due to the rigidity. The purpose of the present work is to produce new carbon onion by high-energy electron-irradiation on amorphous carbon at 1250 kV, and to investigate atomic structures and stability of the new carbon onion cluster by high-resolution electron microscopy (HREM) and molecular orbital/mechanics calculations. To confirm the structure model from HREM data, HREM image simulation were carried out. The tetrahedral carbon onion was successfully produced by high-energy electron-irradiation. A HREM image of tetrahedral carbon onion would consist of pentagonal and hexagonal rings. The HREM result indicates that new fullerene structures formed into the carbon onion. Molecular mechanics calculations (MM2), semi-empirical molecular orbital calculations (PM3), and density functional theory (DFT) were used to get structure optimization about first and second internal shell. The energy levels and density of states were also calculated by the first principles method (DV-Xα). The smallest tetrahedral onion in the HREM image agreed well with the proposed structure model of C84atC276. Each vertex consists of a hexagonal ring, and three pentagonal rings exist around the vertex along the edge. In summary, the tetrahedral carbon cluster was produced by energy transfer of electron-irradiation, and the new atomic structure model of tetrahedral carbon onion was proposed. The electronic structures were also calculated theoretically. Copyright (2002) Australian Society for Electron

  6. The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory

    International Nuclear Information System (INIS)

    This paper is concerned with the use of the nonlocal Timoshenko beam model for free vibration analysis of single-walled carbon nanotubes (CNTs) including the thermal effect. Unlike the Euler beam model, the Timoshenko beam model allows for the effects of transverse shear deformation and rotary inertia. These effects become significant for CNTs with small length-to-diameter ratios that are normally encountered in applications such as nanoprobes. The elastic Timoshenko beam model is reformulated using the nonlocal differential constitutive relations of Eringen (1972 Int. J. Eng. Sci. 10 1-16). The study focuses on the wave dispersion caused not only by the rotary inertia and the shear deformation in the traditional Timoshenko beam model but also by the nonlocal elasticity characterizing the microstructure of CNTs in a wide frequency range up to terahertz. Numerical results are presented using the nonlocal beam theory to bring out the effect of both the nonlocal parameter and the temperature change on the properties of transverse vibrations of CNTs. The exact nonlocal Timoshenko beam solution presented here should be useful to engineers who are designing microelectromechanical and nanoelectromechanical devices.

  7. The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory

    Energy Technology Data Exchange (ETDEWEB)

    Benzair, A; Tounsi, A; Besseghier, A [Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes, BP 89 Cite Ben M' hidi, 22000 Sidi Bel Abbes (Algeria); Heireche, H; Moulay, N; Boumia, L [Universite de Sidi Bel Abbes, Departement de Physique, BP 89 Cite Ben M ' hidi, 22000 Sidi Bel Abbes (Algeria)], E-mail: tou_abdel@yahoo.com

    2008-11-21

    This paper is concerned with the use of the nonlocal Timoshenko beam model for free vibration analysis of single-walled carbon nanotubes (CNTs) including the thermal effect. Unlike the Euler beam model, the Timoshenko beam model allows for the effects of transverse shear deformation and rotary inertia. These effects become significant for CNTs with small length-to-diameter ratios that are normally encountered in applications such as nanoprobes. The elastic Timoshenko beam model is reformulated using the nonlocal differential constitutive relations of Eringen (1972 Int. J. Eng. Sci. 10 1-16). The study focuses on the wave dispersion caused not only by the rotary inertia and the shear deformation in the traditional Timoshenko beam model but also by the nonlocal elasticity characterizing the microstructure of CNTs in a wide frequency range up to terahertz. Numerical results are presented using the nonlocal beam theory to bring out the effect of both the nonlocal parameter and the temperature change on the properties of transverse vibrations of CNTs. The exact nonlocal Timoshenko beam solution presented here should be useful to engineers who are designing microelectromechanical and nanoelectromechanical devices.

  8. Clinical output factors for carbon-ion beams passing through polyethylene

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa; Himukai, Takeshi

    2013-01-01

    Purpose: A recent study suggested that polyethylene (PE) range compensators would cause extra carbon-ion attenuation by 0.45%/cm due to limitations in water equivalence. The present study aims to assess its influence on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles. For these components, tumor dose fraction and relative biological effectiveness (RBE) were estimated at a reference depth in the middle of spread-out Bragg peak. The PE effect was estimated for clinical carbon-ion beams and was partially tested by experiment. The two-component model was integrated into a treatment-planning system, with which the PE effect on tumor dose was investigated in two clinical cases. Results: The fluence and clinical attenuation coefficients for dose decrease per polyethylene thickness were estimated to be 0.1%-0.3%/cm and 0.2%-0.4%/cm, depending on energy and modulation of clinical carbon-ion beams. In the treatment-planning s...

  9. Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation

    International Nuclear Information System (INIS)

    We study the radiological characteristics of VIP polymer gel dosimeters under carbon beam irradiation with energy of 135 and 290 AMeV. To evaluate dose response of VIP polymer gels, the transverse (or spin–spin) relaxation rate R2 of the dosimeters measured by magnetic resonance imaging (MRI) as a function of linear energy transfer (LET), rather than penetration depth, as is usually done in previous reports. LET is evaluated by use of the particle transport simulation code PHITS. Our results reveal that the dose response decreases with increasing dose-averaged LET and that the dose response–LET relation also varies with incident carbon beam energy. The latter can be explained by taking into account the contribution from fragmentation products. - Highlights: • We study the radiological characteristics of VIP gel dosimeters under carbon beam irradiation. • Linear energy transfer dependence was evaluated and discussed with simulation code PHITS. • Contribution from secondly ion can explain results with different incident beam energy

  10. Establishment of the method for profile evaluation in matter using the therapeutic carbon pencil beam

    International Nuclear Information System (INIS)

    The scanning irradiation of the pencil beam is superior in comparison to the conventional extended-field irradiation in dose concentration. The carbon pencil beam spreads its profile in matter. The factors that cause the profile change are the nuclear fragmentation reactions and the multiple Coulomb scatterings. The fragmentation reaction is a type of nuclear reactions, where the high-energy incident particles interact with target nuclei and fragment the incident particles themselves or the target nucleus. In order to improve the accuracy of the treatment planning for the carbon beam, it is necessary to evaluate quantitatively the effect of the nuclear fragmentation reactions. The objective of this study is to establish the evaluation method for the carbon pencil beam profile in matter by selectively acquiring the nuclear fragmentation reactions and the multiple Coulomb scattering. This experiment was proposed to carry out in three years. Events with the nuclear fragmentation reactions and the multiple Coulomb scatterings were separately identified by a dedicated detector devised by our group. Profiles of these events were successfully measured. (author)

  11. High-throughput shadow mask printing of passive electrical components on paper by supersonic cluster beam deposition

    Science.gov (United States)

    Caruso, Francesco; Bellacicca, Andrea; Milani, Paolo

    2016-04-01

    We report the rapid prototyping of passive electrical components (resistors and capacitors) on plain paper by an additive and parallel technology consisting of supersonic cluster beam deposition (SCBD) coupled with shadow mask printing. Cluster-assembled films have a growth mechanism substantially different from that of atom-assembled ones providing the possibility of a fine tuning of their electrical conduction properties around the percolative conduction threshold. Exploiting the precise control on cluster beam intensity and shape typical of SCBD, we produced, in a one-step process, batches of resistors with resistance values spanning a range of two orders of magnitude. Parallel plate capacitors with paper as the dielectric medium were also produced with capacitance in the range of tens of picofarads. Compared to standard deposition technologies, SCBD allows for a very efficient use of raw materials and the rapid production of components with different shape and dimensions while controlling independently the electrical characteristics. Discrete electrical components produced by SCBD are very robust against deformation and bending, and they can be easily assembled to build circuits with desired characteristics. The availability of large batches of these components enables the rapid and cheap prototyping and integration of electrical components on paper as building blocks of more complex systems.

  12. Distribution of hydrogen peroxide-dependent reaction in a gelatin sample irradiated by carbon ion beam

    International Nuclear Information System (INIS)

    We investigated the amount and distribution of hydrogen peroxide (H2O2) generated in a solid gelatin sample irradiated by heavy ion (carbon) beam. We irradiated the gelatin sample, which contained a nitroxyl radical (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, TEMPOL), with a 290-MeV/nucleon carbon beam (-128 Gy). To verify the distribution of H2O2 generation in the irradiated sample, we employed both electron paramagnetic resonance (EPR) spectroscopic and magnetic resonance (MR) imaging methods based on H2O2-dependent paramagnetic loss of TEMPOL. We obtained a distribution profile of the H2O2-dependent reaction in the gelatin sample when we irradiated gelatin samples with carbon beams with several different linear energy transfer (LET) values. Because the profiles of oxygen consumption in the gelatin sample measured by L-band EPR oxymetry and of the H2O2-dependent reaction have almost the same shape, the profile of the H2O2-dependent reaction can be used as an estimation of the profile of the generation of H2O2. The H2O2 profile in one intact gelatin sample scanned by 7-tesla MR imaging showed a similar shape as a result of the EPR experiment. We obtained several hundreds of micromolars of H2O2 generated in a gelatin sample irradiated by carbon beam when 200 Gy was given at the surface of the sample. H2O2 distribution was almost flat, with only a slight peak just before the end of the beam. (author)

  13. Optical detection of CO and CO2 temperature dependent desorption from carbon nanotube clusters

    International Nuclear Information System (INIS)

    The development of new materials relies on high precision methods to quantify adsorption/desorption of gases from surfaces. One commonly used approach is temperature programmed desorption spectroscopy. While this approach is very accurate, it requires complex instrumentation, and it is limited to performing experiments under high vacuum, thus restricting experimental scope. An alternative approach is to integrate the surface of interest directly onto a detector face, creating an active substrate. One surface that has applications in numerous areas is the carbon nanotube (CNT). As such, an active substrate that integrates a CNT surface on a sensor and is able to perform measurements in ambient environments will have significant impact. In the present work, we have developed an active substrate that combines an optical sensor with a CNT cluster substrate. The optical sensor is able to accurately probe the temperature dependent desorption of carbon monoxide and carbon dioxide gases from the CNT cluster surface. This active substrate will enable a wide range of temperature dependent desorption measurements to be performed from a scientifically interesting material system. (paper)

  14. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, Dustin T [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  15. Theoretical studies of zirconium and carbon clusters with molecular dynamics simulations

    International Nuclear Information System (INIS)

    In this dissertation, we will present a systematic study of structures of fullerenes ranging from C20 to C100 by introducing a novel scheme. Using our new scheme, we not only reproduce all known fullerene structures but also successfully predicted several other fullerene structures which were confirmed by experiments. By utilizing the tight-binding molecular-dynamic (TBMD) simulation, we also studied the dynamical behavior of fullerenes: Vibrations, thermal disintegration of individual clusters as well as collisions between fullerenes. If the beauty of carbon fullerene is not enough, people found that carbon can also form tubules and even speculated that they can form three-dimensional graphite-like networks. By extending our fullerene structure searching scheme, we performed a search for the ground-state structure of three dimensional carbon network. We found the most stable structure people ever proposed for simple cubic based networks. From the difference of this new form of carbon and graphite in the electronic and vibrational properties, we propose an experimental probe to identify these novel three-dimensional carbon networks

  16. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  17. Raman shift on n-doped amorphous carbon thin films grown by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P., B. [Departamento de Fisica, Pontificia Universidad Catolica de Rio de Janeiro (Brazil); Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla (Mexico); Freire L., F. Jr. [Departamento de Fisica, Pontificia Universidad Catolica de Rio de Janeiro (Brazil); Lozada M., R.; Palomino M., R. [Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla (Mexico); Jimenez S., S. [Centro de Investigacion y de Estudios Avanzados del IPN, Laboratorio de Investigacion en Materiales, Queretaro (Mexico); Zelaya A., O. [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, CINVESTAV-IPN, P.O. Box 14-740, Mexico 07360 D.F. (Mexico)

    2007-04-15

    The structural properties of carbon thin films synthesized under an atmosphere of nitrogen by means of electron beam evaporation were studied by Raman scattering spectroscopy. The electron beam evaporation technique is an important alternative to grown layers of this material with interesting structural properties. The observed shift of the Raman G band shows that the structure of the films tends to become more graphitic upon the increase of the deposition time. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Optical and Scratch Resistant Properties of Diamondlike Carbon Films Deposited with Single and Dual Ion Beams

    Science.gov (United States)

    Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.

    1993-01-01

    Amorphous diamond-like carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance, frictional, and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.

  19. Electron-beam heat treatment of thin band of low-carbon steel

    International Nuclear Information System (INIS)

    Using the methods of raster electron microscopy, X-ray structural and chemical analysis and also X-ray microanalysis, the change was studied in the mechanical properies of a band made of low-carbon steel 08 kp that takes place after electron-beam heat treatment. It has been shown that the above change is due to a specific character of the α reversible γ phase transition. After electron-beam treatment under optimum conditions, the properties of the band made of steel 08 kp and 0.15 mm thick (plasticity, ultimate strength, etc.) are similar to those obtained using the conventional procedures (annealing and skin pass rolling)

  20. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Kirby, Evan N.; Guo, Michelle; Zhang, Andrew J.; Deng, Michelle; Cohen, Judith G.; Guhathakurta, Puragra; Shetrone, Matthew D.; Lee, Young Sun; Rizzi, Luca

    2015-03-01

    We present carbon abundances of red giants in Milky Way (MW) globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log (L/{{L}})≃ 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of SNe Ia at higher metallicities. We also identified 11 very carbon-rich giants (eight previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the MW stellar halo. Nonetheless, the stars with [C/Fe]\\lt +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] “knee” adds to the evidence from [α/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study

    CERN Document Server

    Parodi, K; Kraemer, M; Sommerer, F; Naumann, J; Mairani, A; Brons, S

    2010-01-01

    Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been an...

  2. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina; Bøggild, Peter; Rasmussen, A.M.; Appel, C.C.; Brorson, M; Jacobsen, C.J.H.

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... embedded in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have......-SEM) in the presence of a source of gold-organic precursor gas. Bridges deposited between suspended microelectrodes show resistivities down to 10-4 Ωcm and Transmission Electron Microscopy (TEM) of the deposits reveals a dense core of gold particles surrounded by a crust of small gold nanoparticles...

  3. Investigation of Clusters in Medium Carbon Secondary Hardening Ultra-high-strength Steel After Hardening and Aging Treatments

    Science.gov (United States)

    Veerababu, R.; Balamuralikrishnan, R.; Muraleedharan, K.; Srinivas, M.

    2015-06-01

    Clusters, containing between 10 and 1000 atoms, have been investigated in a martensitic secondary hardening ultra-high-strength steel austenitized at 1173 K (900 °C) for 1 hour and tempered at either 768 K or 783 K (495 °C or 510 °C) for 4 or 8 hours using 3D atom probe. The presence of clusters was unambiguously established by comparing the observed spatial distribution of the different alloying elements against the corresponding distribution expected for a random solid solution. Maximum separation envelope method has been used for delineating the clusters from the surrounding "matrix." Statistical analysis was used extensively for size and composition analyses of the clusters. The clusters were found to constitute a significant fraction accounting for between 1.14 and 2.53 vol pct of the microstructure. On the average, the clusters in the 783 K (510 °C) tempered sample were coarser by ~65 pct, with an average diameter of 2.26 nm, relative to the other samples. In all samples, about 85 to 90 pct of the clusters have size less than 2 nm. The percentage frequency histograms for carbon content of the clusters in 768 K and 783 K (495 °C and 510 °C) tempered samples revealed that the distribution shifts toward higher carbon content when the tempering temperature is higher. It is likely that the presence of these clusters exerts considerable influence on the strength and fracture toughness of the steel.

  4. Development of a piston utilizing carbon-cluster as a pressure transmission medium at low temperature

    International Nuclear Information System (INIS)

    It is necessary to require pressure transmission mechanism in the vacuum and low temperature environment such mechanically RF tuning operation for superconducting RF cavities. As a medium of pressure transmission, water, oil and air can not use such environment. Nano-cluster particles and carbon seems to have possibility of pressure transmission medium. Because their characteristics of chemical and physical reaction at low temperature environment is very stable. Also they have small number of the friction coefficient. We have been studying possibility of their characteristics as pressure transmission medium. (author)

  5. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm-2 and 2 GeV xenon ion with a dose of 1E12 ions.cm-2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C3N4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C3N4 matrix was predominantly sp2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  6. Plasma behaviour with hydrogen supersonic molecular beam and cluster jet injection in the HL-2A tokamak

    International Nuclear Information System (INIS)

    The experimental results of low pressure supersonic molecular beam injection (SMBI) fuelling on the HL-2A closed divertor indicate that during the period of pulsed SMBI the power density convected at the target plate surfaces was 0.4 times of that before or after the beam injection. An empirical scaling law used for the SMBI penetration depth for the HL-2A plasma was obtained. The cluster jet injection (CJI) is a new fuelling method which is based on and developed from the experiments of SMBI in the HL-1M tokamak. The hydrogen clusters are produced at liquid nitrogen temperature in a supersonic adiabatic expansion of moderate backing pressure gases into vacuum through a Laval nozzle and are measured by Rayleigh scattering. The measurement results have shown that the averaged cluster size of as large as hundreds of atoms was found at the backing pressures of more than 0.1 MPa. Multifold diagnostics gave coincidental evidence that when there was hydrogen CJI in the HL-2A plasma, a great deal of particles from the jet were deposited at a terminal area rather than uniformly ablated along the injecting path. SMB with clusters, which are like micro-pellets, will be of benefit for deeper fuelling, and its injection behaviour was somewhat similar to that of pellet injection. Both the particle penetration depth and the fuelling efficiency of the CJI were distinctly better than that of the normal SMBI under similar discharge operation. During hydrogen CJI or high-pressure SMBI, a combination of collision and radiative stopping forced the runaway electrons to cool down to thermal velocity due to such a massive fuelling

  7. Surface morphology and sputtering yield of SiO2 with oblique-incidence gas cluster ion beam

    International Nuclear Information System (INIS)

    The dependence of surface morphology and sputtering yield of SiO2 thin films on the incident angle of gas cluster ion beams (GCIBs) was studied. When the incident angles (θ) were either 0° or 30° ripples did not form on the surface of SiO2, and the sputtering depth increased linearly with increasing ion fluence. When θ = 45°, ripples formed in the direction perpendicular to that of the incident beam. The ripple pattern became shaper and wider with increasing θ–60°. When θ = 60°, the ripple wavelength and amplitude increased linearly with increasing ion fluence. However when θ = 80°, ripples formed in the direction parallel to that of the GCIB. When θ = 60°, the etching depth decreased with increasing ion fluence. This change in the sputtering rate can be associated with the change in the structure of the ripples

  8. Direct infrared absorption of clusters in pulsed molecular beams: First progress report, May 1, 1986 to July 31, 1987

    International Nuclear Information System (INIS)

    This report describes accomplishments over the past year in research supported by this grant, and also outlines plans for the next year. The principal goal for future work is the continued development of a new molecular beam infrared absorption spectrometer, and the application of this instrument to the study of cluster molecules of atmospheric importance. Current results presented here document the present capabilities of this program. This report also describes the completion of previous work on excited vibrational states of stable molecules. Several reprints of journal articles are enclosed

  9. Charge equilibrium of a laser-generated carbon-ion beam in warm dense matter

    International Nuclear Information System (INIS)

    Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter. (authors)

  10. Tribological properties of ion beam deposited diamond-like carbon film on silicon nitride

    International Nuclear Information System (INIS)

    The present article reports on the physical characterization and tribological properties of diamond-like carbon (DLC) films deposited on structural Si3N4 substrates. The films were deposited by the direct ion beam deposition technique. The ion beam was produced by plasma discharge of pre-mixed methane and hydrogen gas in a Kaufman-type ion source. The deposited films were found to be amorphous and contained about 70% carbon and 30% hydrogen. The friction coefficient of an uncoated Si3N4 ball on a DLC coated Si3N4 disc starts at about 0.2, then decreases rapidly to 0.1-0.15 with increasing sliding distance. Increasing humidity results in a slight increase in friction coefficient, but a significant decrease in wear factor. The wear factor for the tests at ≅60% rh (relative humidity) are about an order of magnitude smaller than the tests at 3% rh. (orig.)

  11. Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation

    Science.gov (United States)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2015-02-01

    We study the radiological characteristics of VIP polymer gel dosimeters under carbon beam irradiation with energy of 135 and 290 AMeV. To evaluate dose response of VIP polymer gels, the transverse (or spin-spin) relaxation rate R2 of the dosimeters measured by magnetic resonance imaging (MRI) as a function of linear energy transfer (LET), rather than penetration depth, as is usually done in previous reports. LET is evaluated by use of the particle transport simulation code PHITS. Our results reveal that the dose response decreases with increasing dose-averaged LET and that the dose response-LET relation also varies with incident carbon beam energy. The latter can be explained by taking into account the contribution from fragmentation products.

  12. Consumption of carbon fiber plates in the reinforced concrete beams strengthened with CFPs

    Institute of Scientific and Technical Information of China (English)

    BU Liangtao; SONG Li; SHI Chuxian

    2007-01-01

    Four-point bending flexural tests were conducted to one full-size reinforced concrete (RC) beam and three full-size RC beams strengthened with carbon fiber plates (CFPs).The experimental results showed that the consumption of CFP had significant effects on failure modes and the flexural capacity.An analytical procedure,based on the limit failure ode and ductility,was presented to predict the applied area of CFP.An analytical program,based on Smith-Teng model and Cheng-Teng model,was provided to calculate the bonding length of CFP.The test results are used to validate the proposed procedure.The results are also applied to the design and construction of RC beam strengthened with CFP.

  13. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    Science.gov (United States)

    Luo, Shanwei; Zhou, Libin; Li, Wenjian; Du, Yan; Yu, Lixia; Feng, Hui; Mu, Jinhu; Chen, Yuze

    2016-09-01

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M1 populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD50) for a large-scale mutant screening. Among 2472 M2 plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M2 populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  14. Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Matthias [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Technische Universitaet Dresden, D-01062 Dresden (Germany); Muecklich, Arndt; Zschornak, Matthias; Wintz, Sebastian; Gemming, Sibylle; Abrasonis, Gintautas [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Oates, Thomas W. H. [Leibniz-Institut fuer Analytische Wissenschaft, ISAS e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); Luis Endrino, Jose [Surfaces and Coatings Department, Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Baehtz, Carsten; Shalimov, Artem [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2012-07-30

    The influence of assisting low-energy ({approx}50-100 eV) ion irradiation effects on the morphology of C:Ni ({approx}15 at. %) nanocomposite films during ion beam assisted deposition (IBAD) is investigated. It is shown that IBAD promotes the columnar growth of carbon encapsulated metallic nanoparticles. The momentum transfer from assisting ions results in tilting of the columns in relation to the growing film surface. Complex secondary structures are obtained, in which a significant part of the columns grows under local epitaxy via the junction of sequentially deposited thin film fractions. The influence of such anisotropic film morphology on the optical properties is highlighted.

  15. Nonadditivity of convoy- and secondary-electron yields in the forward-electron emission from thin carbon foils under irradiation of fast carbon-cluster ions

    Science.gov (United States)

    Tomita, S.; Yoda, S.; Uchiyama, R.; Ishii, S.; Sasa, K.; Kaneko, T.; Kudo, H.

    2006-06-01

    We have measured energy spectra of secondary electrons produced by fast-carbon-cluster Cn+ (n=1-4) bombardment of thin carbon foils (3.2, 7.3, 11.9, and 20.3μg/cm2 ). For clusters of identical velocity, the convoy-electron yield is enhanced with increasing cluster size n , while the yield of secondary electrons is reduced. The yield of convoy electrons normalized to the number of injected atoms increases proportionally with cluster size n . This proportionality suggests that there is only a weak vicinage effect on the number of primary electrons scattered by the projectile. The vicinage effect observed in low-energy secondary electrons must therefore arise from either transport or transmission through the surface.

  16. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    International Nuclear Information System (INIS)

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for ''direct-write'' processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple ''beams'' of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials. (orig.)

  17. Polymer modification via. cluster formation

    International Nuclear Information System (INIS)

    Ion beam treatment studies have been carried out to investigate the potential for improvements in conductivity properties of the polymers. Change in polymer stoichiometry were characterised by investigating into the carbon clusters formed along the latent tracks of energetic ions in polymers. Here we present some new results which have been derived from UV-Vis spectroscopic examinations. (author)

  18. Mechanical and tribological properties of carbon thin film with tungsten interlayer prepared by Ion beam assisted deposition

    Czech Academy of Sciences Publication Activity Database

    Vlčák, P.; Černý, F.; Tolde, Z.; Sepitka, J.; Gregora, Ivan; Daniš, S.

    2013-01-01

    Roč. 2013, FEB (2013). ISSN 2314-4874 Institutional support: RVO:68378271 Keywords : carbon coatings * ion beam deposition * XRD * nanoindentation Subject RIV: BM - Solid Matter Physics ; Magnetism http://dx.doi.org/10.1155/2013/630156

  19. Development of gas cluster ion beam surface treatments for reducing field emission and breakdown in RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, D R; Degenkolb, E; Wu, A T; Insepov, Z

    2006-11-01

    Sub-micron-scale surface roughness and contamination cause field emission that can lead to high voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high voltage electrodes. For this paper, we have processed Nb, Stainless Steel, and Ti electrode materials using beams of Ar, O2, or NF3 +O2 clusters with accelerating potentials up to 35 kV. Using a Scanning Field Emission Microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on Stainless steel and Ti substrates have been evaluated using AFM imaging and show that 200-nm wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB treated stainless steel electrode has now shown virtually no DC field emission current at gradients over 20 MV/m.

  20. Analytic and computational micromechanics of clustering and interphase effects in carbon nanotube composites.

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Gary D.; Hammerand, Daniel Carl; Lagoudas, Dimitris C. (Texas A& M University, College Station, TX)

    2006-01-01

    Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. Using the in-plane elastic properties of graphene, the effective properties of carbon nanotubes are calculated utilizing a composite cylinders micromechanics technique as a first step in a two-step process. These effective properties are then used in the self-consistent and Mori-Tanaka methods to obtain effective elastic properties of composites consisting of aligned single or multi-walled carbon nanotubes embedded in a polymer matrix. Effective composite properties from these averaging methods are compared to a direct composite cylinders approach extended from the work of Hashin and Rosen (1964) and Christensen and Lo (1979). Comparisons with finite element simulations are also performed. The effects of an interphase layer between the nanotubes and the polymer matrix as result of functionalization is also investigated using a multi-layer composite cylinders approach. Finally, the modeling of the clustering of nanotubes into bundles due to interatomic forces is accomplished herein using a tessellation method in conjunction with a multi-phase Mori-Tanaka technique. In addition to aligned nanotube composites, modeling of the effective elastic properties of randomly dispersed nanotubes into a matrix is performed using the Mori-Tanaka method, and comparisons with experimental data are made. Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is performed using the finite element method. The high-stiffness hollow fibers are modeled either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid cylinders with properties computed using a micromechanics based composite cylinders method. Using a representative volume element for clustered high-stiffness hollow fibers embedded in a compliant matrix with the appropriate periodic boundary conditions, the effective elastic properties

  1. Reinforced concrete beams strengthened with carbon fiber reinforced polymer by friction hybrid bond technique: Experimental investigation

    International Nuclear Information System (INIS)

    Highlights: • Friction Hybrid Bonded FRP Technique is conducted to strengthen RC beams. • Six specimens with different reinforced methods were tested. • The strengthened effects of different strengthening methods were discussed. • The results obtained from the FEA and experiments are agreed very well. - Abstract: Carbon fiber reinforced polymer (CFRP) can be used to strengthen the reinforced concrete (RC) beams. But premature debonding is the main failure model in ordinary bond technique, and the strengthening effect is limited. In order to improve bonding and restricting sliding displacement, Friction Hybrid Bonded FRP Technique (FHB-FRP) is developed. Six simple-span RC specimen beams with different strengthened methods were tested in four-point bending. The experiment results indicate that FRP debonding can be effectively prevented by the FHB-FRP strengthened beam. The ultimate load-carrying capacity of the specimen strengthened by FHB-FRP technique is able to increase by a factor of 2.13 times compared with the beam strengthened with ordinary bond technique (U-jacketing technique). In addition, the cracking and yielding loads are improved more significantly by FHB-FRP technique than U-jacketing technique. Specimens strengthened with FHB-FRP technique have cracks with a more limited distribution and width. Finally, the finite element method (FEM) is conducted to simulate the behavior of the test specimens. The results obtained from the finite element method are compared with experiment. Excellent agreements have been achieved in the comparison of results

  2. Secondary ion emission from insulin film bombarded with methane and noble gas cluster ion beams

    International Nuclear Information System (INIS)

    Recent advances in large cluster projectiles for secondary ion mass spectrometry (SIMS) allow the intact ions of some protein molecules to be detected without a matrix. However, detailed mechanisms of soft-sputtering and ionization of biomolecules remain unknown. Herein we investigate the secondary ion emission from insulin films under argon, krypton, and methane cluster ion bombardment. The intact insulin ion intensity significantly decreases for (CH4)1500+ ion bombardment compared with Ar1500+ ion bombardment at the same energy range of 3.3 eV/atom (or molecule), even though collisions with energetic methane clusters should generate numerous protons on the surface, which would enhance the ionization probability through proton attachment. In contrast, the intact ion intensity is almost the same for Ar2500+ and Kr2500+ cluster ion bombardment at the same energy range of 2 eV/atom. These observations suggest that detailed mechanisms for the ionization and sputtering by gas cluster ions should be investigated to enhance the intact ion intensity

  3. The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials

    Science.gov (United States)

    Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.

    2012-03-01

    A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.

  4. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    Science.gov (United States)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  5. Ion beam induced percolation clustering in Al-Fe-Cu films

    International Nuclear Information System (INIS)

    The concept of percolation can be applied to describe many phase transition problems and various disordered systems. An infinite percolation cluster at percolation threshold (Pc) is one of the most prominent fractal system. The fractal structure of the percolation clusters makes it possible to connect the universal exponents in percolation transition and the geometrical scaling quantities, like fractal dimensions Df. Increasing interest has recently been attractive to produce and study the ideal two-dimensional (2D) percolation films, which usually composed of a random mixture of crystalline and amorphous phases. In this paper, the authors report the direct observation of a percolation cluster consisting of two amorphous phases induced in thin solid films during crystalline-to-amorphous phase transformation by ion irradiation

  6. Finite Element Modeling and Free Vibration Analysis of Functionally Graded Nanocomposite Beams Reinforced by Randomly Oriented Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Benedict Thomas

    2013-12-01

    Full Text Available This article deals with the finite element modeling and free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs. Nanostructural materials can be used to alter mechanical, thermal and electrical properties of polymer-based composite materials, because of their superior properties and perfect atom arrangement. Timoshenko beam theory is used to evaluate dynamic characteristics of the beam. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. The equations of motion are derived by using Hamilton’s principle. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. Different SWCNTs distributions in the thickness direction are introduced to improve fundamental natural frequency and dynamic behavior of uniform functionally graded nanocomposite beam. Results are presented in tabular and graphical forms to show the effects of various material distributions, carbon nanotube orientations, shear deformation, slenderness ratios and boundary conditions on the dynamic behavior of the beam. The first five normalized mode shapes for functionally graded carbon nanotube reinforced composite (FG-CNTRC beams with different boundary conditions and different carbon nanotubes (CNTs orientation are presented. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam.

  7. Formation and properties of astrophysical carbonaceous dust. I: ab-initio calculations of the configuration and binding energies of small carbon clusters

    CERN Document Server

    Mauney, Christopher; Lazzati, Davide

    2014-01-01

    The binding energies of n < 100 carbon clusters are calculated using the ab-initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen poor environments, such as the inner layers of c...

  8. Guided ion beam studies of the reactions of Nin+ (n=2-18) with O2: Nickel cluster oxide and dioxide bond energies

    International Nuclear Information System (INIS)

    The kinetic energy dependences of the reactions of Nin+ (n=2-18) with O2 are studied in a guided ion beam tandem mass spectrometer. A variety of NimO2+, NimO+, and Nim+ product ions, where m≤n, are observed, with the dioxide cluster ions dominating the products for all larger reactant cluster ions. Reaction efficiencies are near unity for all but the smallest clusters. The energy dependences of the product cross sections are analyzed in several different ways to determine thermochemistry for both the first and second oxygen atom binding to nickel cluster ions. These values show little dependence on cluster size for clusters larger than three atoms. The trends in this thermochemistry are discussed and compared to bulk phase oxidation values

  9. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  10. Biological intercomparison using gut crypt survivals for proton and carbon-ion beams

    International Nuclear Information System (INIS)

    Charged particle therapy depends on biological information for the dose prescription. Relative biological effectiveness or RBE for this requirement could basically be provided by experimental data. As RBE values of protons and carbon ions depend on several factors such as cell/tissue type, biological endpoint, dose and fractionation schedule, a single RBE value could not deal with all different radiosensitivities. However, any biological model with accurate reproducibility is useful for comparing biological effectiveness between different facilities. We used mouse gut crypt survivals as endpoint, and compared the cell killing efficiency of proton beams at three Japanese facilities. Three Linac X-ray machines with 4 and 6 MeV were used as reference beams, and there was only a small variation (coefficient of variance<2%) in biological effectiveness among them. The RBE values of protons relative to Linac X-rays ranged from 1.0 to 1.11 at the middle of a 6-cm SOBP (spread-out Bragg peak) and from 0.96 to 1.01 at the entrance plateau. The coefficient of variance for protons ranged between 4.0 and 5.1%. The biological comparison of carbon ions showed fairly good agreement in that the difference in biological effectiveness between National Institute of Radiological Sciences (NIRS)/ Heavy Ion Medical Accelerator in Chiba (HIMAC) and Gesellschaft fur Schwerionenforschung (GSI)/Heavy Ion Synchrotron (SIS) was 1% for three positions within the 6-cm SOBP. The coefficient of variance was <1.7, <0.6 and <1.6% for proximal, middle and distal SOBP, respectively. We conclude that the inter-institutional variation of biological effectiveness is smaller for carbon ions than protons, and that beam-spreading methods of carbon ions do not critically influence gut crypt survival. (author)

  11. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  12. Ion-beam induced defects and nanoscale amorphous clusters in silicon carbide

    International Nuclear Information System (INIS)

    Atomic-level simulations have been employed to study the defects and nanoscale disordering induced in 3C-SiC by C, Si and Au ions with energies up to 50 keV. Energetic C and Si ions primarily produce interstitials, vacancies, antisite defects and small defect clusters directly in collision cascades. The overlap of Si cascades produces nanoscale defect clusters. In the case of energetic Au ions, nanoscale amorphous domains are produced directly within the Au cascades along with point defects and smaller clusters. In about 25% of the Au cascades, one or more subcascades contain nanoscale clusters that exhibit a structure that is consistent with an amorphous state. Structural image simulations of the subcascade structures produced by energetic Si and Au recoils are consistent with experimental high-resolution transmission electron microscopy images. Simulations of close-pair production and recombination in SiC indicate that the activation energies for recombination of most close pairs range from 0.24 to 0.38 eV

  13. Ion-Beam Induced Defects and Nanoscale Amorphous Clusters in Silicon Carbide

    International Nuclear Information System (INIS)

    Atomic-level simulations have been employed to study the defects and nanoscale disordering induced in 3C-SiC by C, Si, and Au ions with energies up to 50 keV. Energetic C and Si ions primarily produce interstitials, vacancies, antisite defects, and small defect clusters directly during the collision cascade. The overlap of Si cascades produces nanoscale defect clusters. In the case of energetic Au ions, nanoscale amorphous domains are produced directly within the Au cascade along with point defects and smaller clusters. In about 25% of the 50 keV Au cascades, one or more of the subcascades contain nanoscale clusters that exhibit a structure that is consistent with an amorphous state. Structural image simulations of the subcascade structures produced by energetic Si and Au recoils are consistent with experimental high-resolution transmission electron microscopy images. Simulations on close-pair production and recombination in SiC indicate that the activation energies for recombination of most close pairs range from 0.24 to 0.38 eV

  14. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    CERN Document Server

    Agodi, C; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-01-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$\\degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight in...

  15. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry for carbon-ion beams

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa

    2012-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. Ideally, such material should be water equivalent as well as that for dosimetry. In this study, we evaluated dosimetric water equivalency of four common plastics, HDPE, PMMA, PET, and POM, by uniformity of effective densities for carbon-ion-beam interactions. Methods: Using the Bethe formula for stopping, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, we calculated the effective densities of the plastics for these interactions. We tested HDPE, PMMA, and POM in carbon-ion-beam experiment and measured attenuations of carbon ions, which were compared with empirical linear-attenuation-model calculations. Results: The theoretical calculations resulted in reduced multiple scattering and increased nuclear interactions for HDPE compared to water, which ...

  16. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  17. A new experimental setup designed for the investigation of irradiation of nanosystems in the gas phase: A high intensity mass-and-energy selected cluster beam

    Energy Technology Data Exchange (ETDEWEB)

    Bruny, G.; Feil, S.; Fillol, R.; El Farkh, K.; Harb, M. M.; Teyssier, C.; Abdoul-Carime, H.; Farizon, B.; Farizon, M. [Institut de Physique Nucleaire de Lyon, UMR5822, Universite Lyon 1, F-69622, Villeurbanne (France); Universite de Lyon, F-69003, Lyon (France) and CNRS/IN2P3, F-69622, Villeurbanne (France); Eden, S. [Department of Physical Sciences, Open University (OU), Walton hall, Milton Keynes, MK76AA (United Kingdom); Ouaskit, S. [Laboratoire de physique de la matiere condensee, Faculte des sciences Ben M' sik, Unite associee au CNRST (URAC 10), B.P.7955, Casablanca (Morocco); Maerk, T. D. [Institut fuer Ionenphysik und Angewandte Physik, Leopold Franzens Universitaet, Technikerstrasse 25, A-6020 Innsbruck (Austria)

    2012-01-15

    DIAM (Dispositif d'Irradiation d'Agregats Moleculaires) is a new experimental setup devoted to investigate processes induced by irradiation at the nanoscale. The DIAM apparatus is based on a combination of techniques including a particle beam from high-energy physics, a cluster source from molecular and cluster physics, and mass spectrometry form analytical sciences. In this paper, we will describe the first part of the DIAM apparatus that consists of an ExB double spectrometer connected to a cluster ion source based on a continuous supersonic expansion in the presence of ionizing electrons. This setup produces high intensities of energy-and-mass selected molecular cluster ion beams (1000 s of counts s{sup -1}). The performance of the instrument will be shown through measurements of 6-8 keV beams of protonated water clusters, (H{sub 2}O){sub n}H{sup +} (n = 0-21) and mixed protonated (or deprotonated) water-pyridine cluster ions: PyrH{sup +}(H{sub 2}O){sub n} (n = 0-15), Pyr{sub 2}H{sup +} (H{sub 2}O){sub n} (n = 0-9), and (Pyr-H){sup +} (H{sub 2}O).

  18. A new experimental setup designed for the investigation of irradiation of nanosystems in the gas phase: a high intensity mass-and-energy selected cluster beam.

    Science.gov (United States)

    Bruny, G; Eden, S; Feil, S; Fillol, R; El Farkh, K; Harb, M M; Teyssier, C; Ouaskit, S; Abdoul-Carime, H; Farizon, B; Farizon, M; Märk, T D

    2012-01-01

    DIAM (Dispositif d'Irradiation d'Agrégats Moléculaires) is a new experimental setup devoted to investigate processes induced by irradiation at the nanoscale. The DIAM apparatus is based on a combination of techniques including a particle beam from high-energy physics, a cluster source from molecular and cluster physics, and mass spectrometry form analytical sciences. In this paper, we will describe the first part of the DIAM apparatus that consists of an ExB double spectrometer connected to a cluster ion source based on a continuous supersonic expansion in the presence of ionizing electrons. This setup produces high intensities of energy-and-mass selected molecular cluster ion beams (1000 s of counts s(-1)). The performance of the instrument will be shown through measurements of 6-8 keV beams of protonated water clusters, (H(2)O)(n)H(+) (n = 0-21) and mixed protonated (or deprotonated) water-pyridine cluster ions: PyrH(+)(H(2)O)(n) (n = 0-15), Pyr(2)H(+) (H(2)O)(n) (n = 0-9), and (Pyr-H)(+) (H(2)O). PMID:22299943

  19. Accuracy studies with carbon clusters at the Penning trap mass spectrometer TRIGA-TRAP

    Science.gov (United States)

    Ketelaer, J.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Eibach, M.; Herfurth, F.; Smorra, C.; Nagy, Sz.

    2010-05-01

    Extensive cross-reference measurements of well-known frequency ratios using various sizes of carbon cluster ions 12Cn + (10≤n≤23) were performed to determine the effects limiting the accuracy of mass measurements at the Penning-trap facility TRIGA-TRAP. Two major contributions to the uncertainty of a mass measurement have been identified. Fluctuations of the magnetic field cause an uncertainty in the frequency ratio due to the required calibration by a reference ion of uf(νref)/νref = 6(2) × 10-11/min × Δt. A mass-dependent systematic shift of the frequency ratio of epsilonm(r)/r = -2.2(2) × 10-9 × (m-mref)/u has been found as well. Finally, the nuclide 197Au was used as a cross-check since its mass is already known with an uncertainty of 0.6 keV.

  20. Laser transformation hardening on rod-shaped carbon steel byGaussian beam

    Institute of Scientific and Technical Information of China (English)

    Jong-Do KIM; Myeong-Hoon LEE; Su-Jin LEE; Woon-Ju KANG

    2009-01-01

    Laser transformation hardening(LTH) is one of the laser surface modification processes. The surface hardening of rod-shaped carbon steel (SM45C) was performed by lathe-based laser composite processor with Gaussian-beam optical head. The LTH characteristics by dominant processes, longitudinal and depth directional hardness distributions and behaviors of phase transformation in hardened zones were examined. Especially, two concepts of circumferential speed and theoretical overlap rate were applied. When laser power increased or circumferential speed decreased, the surface hardening depth gradually increases due to the increased heat input. Moreover, the longitudinal hardness distribution particularly shows periodicity of repetitive increase and decrease, which results from tempering effect by overlap. Finally, the feasibility of laser transformation hardening is verified by using the beam with Gaussian intensity distribution.

  1. Carbon doping of GaN with CBr4 in radio-frequency plasma-assisted molecular beam epitaxy

    OpenAIRE

    Green, D S; Mishra, U. K.; Speck, J.S.

    2004-01-01

    Carbon tetrabromide (CBr4) was studied as an intentional dopant during rf plasma molecular beam epitaxy of GaN. Secondary ion mass spectroscopy was used to quantify incorporation behavior. Carbon was found to readily incorporate under Ga-rich and N-rich growth conditions with no detectable bromine incorporation. The carbon incorporation [C] was found to be linearly related to the incident CBr4 flux. Reflection high-energy electron diffraction, atomic force microscopy and x-ray diffraction wer...

  2. Relative biological effects of carbon ion beams on mouse intestinal crypts

    Energy Technology Data Exchange (ETDEWEB)

    Basaki, Kiyoshi; Abe, Yoshinao [Hirosaki Univ., Aomori (Japan). School of Medicine; Tatsuzaki, Hideo; Akaizawa, Takashi; Ando, Soichiro; Ando, Koichi

    1998-03-01

    The relative biological effect (RBE) of carbon ion beams on mouse intestinal crypt cells were studied. Survival fractions of apoptotic sensitive cells, mitotic delay and colony assay were used for endpoints. Female C3H mice were total body irradiated using a carbon ion beam (290 MeV/u, 6 cm SOBP) at the National Institute of Radiological Science. For counting apoptosis and mitosis, the animals were irradiated either at LET of 70 keV/mm or 40 keV/mm. Fifteen minutes after irradiation, the mice received vincristine sulfate (0.8 mg/kg) and were sacrificed 2 hours and 45 minutes later. For colony assay, the animals were irradiated at an LET of 70 keV/mm and were sacrificed 3.5 days later. Jejunum were excised, fixed and cut into slices. The slides were stained with Hematoxylin and Eosin. Apoptosis-pyknotic cell- and mitosis were counted and survival fractions of apoptotic sensitive cells and mitotic delay time were obtained. The number of colonies were counted and survival fractions per circumference were obtained. Using these endpoints, RBEs were obtained. For survival fractions of apoptotic sensitive cells, no LET difference was observed and RBE was 1.7. For mitotic delay time, RBE was 2.3 and 1.7 at an LET of 70 keV/mm and 40 keV/mm, respectively. For colony assay, the RBE was 2.0-2.1. The different RBEs from three endpoints of the jejunal crypt may reflect each nature of the radiosensitivity to the carbon ion beam. In summary that mitotic delay time exhibited the same RBE as colony assay and RBE regarding apoptosis was less than those RBEs. (author)

  3. Characteristics of ZnS and PbF2 thin films deposited by ionized cluster beam

    International Nuclear Information System (INIS)

    By using the Ion Cluster Beam method high transmission property films with high adhesive strength have been developed for use as anti-reflection coatings for optical transmission windows. It has been demonstrated that the acceleration voltage plays a very important role in producing high quality optical films. The transmission windows details are as follows; (1) the Ge coated with ZnS film obtained at 3 kV acceleration voltage had a transmittance of 96% and the adhesive strength of the film obtained was over 430 kg/cm2. (2) the ZnS coated with PbF2 film obtained by the control of acceleration voltages above 0.5 kV had transmittance of 95% and the adhesive strength of the film was 240 kg/cm2. (author)

  4. Super-distant molecular hybridization of plant seeds by ion beam-mediated gene cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The N beam-mediated distant molecular hybridization between Ginkgo biloba I and watermelon was studied. The results showed that the ester gene of Ginkgo biloba L was successfully expressed in two varieties of watermelon. 3-16 and SR2-14-2, in both of which the ester quantities were measured as 17.0756 μg/g and 45.9998 μg/g respectively. Meanwhile, superoxide dismutase (SOD) activity in leaves of the watennelon expressing ester gene was increased twofold as compared to that of the control, showing that ion beam could mediate distant and/or super-distant donor gene expression in the cells of a receptor. Furthermore, the molecular nechanism of distant hybridization was analyzed.

  5. Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer

    Institute of Scientific and Technical Information of China (English)

    HU Kexu; HE Guisheng; LU Fan

    2007-01-01

    In this paper,two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP)and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures.The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h.It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing.

  6. Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings

    OpenAIRE

    Yoshihara, Ryouhei; Nozawa, Shigeki; Hase, Yoshihiro; Narumi, Issay; Hidema, Jun; Sakamoto, Ayako N

    2013-01-01

    To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV 12C6+), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV 12C6+. Mutation spectra showed that both radiatio...

  7. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    International Nuclear Information System (INIS)

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  8. Low carbon content NiTi shape memory alloy produced by electron beam melting

    Directory of Open Access Journals (Sweden)

    Otubo Jorge

    2004-01-01

    Full Text Available Earlier works showed that the use of electron beam melting is a viable process to produce NiTi shape memory alloy. In those works a static and a semi-dynamic processes were used producing small shell-shaped and cylindrical ingots respectively. The main characteristics of those samples were low carbon concentration and good composition homogeneity throughout the samples. This paper presents the results of scaling up the ingot size and processing procedure using continuous charge feeding and continuous casting. The composition homogeneity was very good demonstrated by small variation in martensitic transformation temperatures with carbon content around 0.013wt% compared to 0.04 to 0.06wt% of commercial products.

  9. Transplantation of ES cells to Parkinson model rat irradiated with carbon ion beam

    International Nuclear Information System (INIS)

    The present study was designed to make a new Parkinson disease model using carbon ion beam. We irradiated right medial forebrain bundle of adult SD rats with charged carbon particles (290 MeV/nucleon, Mono peak, 150 Gy) and damaged right dopaminergic neurons pathway. To irradiate precisely, rats were set in the stereotactic frame with ear bars. Four weeks after the irradiation, behavioral test and in vitro autoradiography showed hemi-Parkinson model as well as 6-OHDA lesioned rats. Pathological examinations showed cell death, gliosis and inflammations at the irradiated area. However, no obvious alteration was observed at the surrounding normal tissue. These results indicated utility and validity of this method. (author)

  10. 电子束再生粉状活性炭的研究%Study on Regeneration of Powdered Activated Carbon by Electron Beam

    Institute of Scientific and Technical Information of China (English)

    吴明红; 包伯荣; 陈捷; 陆丽蓉

    2000-01-01

    The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectively. The effects of radiation dose and beam current on regeneration of activated carbon in different atmosphere were studied. Differential scanning calorimetry (DSC) and the iodine number of activated carbon were used to monitor the change of carbon adsorption. The results show that the powder activated carbon polluted with phenlglycine could be regenerated effectively by irradiation of high energy electron beams in nitrogen stream. The generation did not need high temperature, and the weight loss of carbon and energy consumption were minimum.

  11. Study on Regeneration of Powdered Activated Carbon by Electron Beam%电子束再生粉状活性炭的研究

    Institute of Scientific and Technical Information of China (English)

    吴明红; 包伯荣; 陈捷; 陆丽蓉

    2001-01-01

    The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectively. The effects of radiation dose and beam current on regeneration of activated carbon in different atmosphere were studied. Differential scanning calorimetry (DSC) and the iodine number of activated carbon were used to monitor the change of carbon adsorption. The results show that the powder activated carbon polluted with phenlglycine could be regenerated effectively by irradiation of high energy electron beams in nitrogen stream. The generation did not need high temperature, and the weight loss of carbon and energy consumption were minimum.

  12. Manufacturing composite beams reinforced with three-dimensionally patterned-oriented carbon nanotubes through microfluidic infiltration

    International Nuclear Information System (INIS)

    Highlights: ► Composite beams reinforced with 3D patterned-oriented nanotubes are manufactured. ► Process-induced orientation of nanotubes in 3D microfluidic networks is studied. ► The stiffness is compared with the values obtained from a micromechanical model. ► The model predictions give a close estimation at different processing conditions. ► The present manufacturing method opens new prospects for the design of composites. -- Abstract: Functionalized single-walled carbon nanotubes (SWCNTs)/epoxy nanocomposite suspensions were prepared and injected into three-dimensional (3D) interconnected microfluidic networks in order to fabricate composite beams reinforced with patterned-oriented nanotubes. The microfluidic networks were fabricated by the robotized direct deposition of fugitive ink filaments in a layer-by-layer sequence onto substrates, followed by their epoxy encapsulation and the ink removal. Then, the nanocomposite suspensions prepared by ultrasonication and three-roll mill mixing methods were injected into the empty networks under two different controlled and constant pressures in order to subject the suspensions to different shear conditions in the microchannels. Morphological studies revealed that the SWCNTs were preferentially aligned in the microchannels along the flow direction at the higher injection pressure. The improvement of Young’s modulus of the manufactured 3D-reinforced rectangular beams prepared at the high injection pressure was almost doubled when compared to that of beams prepared at the low injection pressure. Finally, the stiffness of the 3D-reinforced beams was compared with the theoretically predicted values obtained from a micromechanical model. The analytical predictions give a close estimation of the stiffness at different micro-injection conditions. Based on the experimental and theoretical results, the present manufacturing technique enables the spatial orientation of nanotube in the final product by taking

  13. Guided ion-beam studies of the reactions of Con+ (n=2-20) with O2: Cobalt cluster-oxide and -dioxide bond energies

    International Nuclear Information System (INIS)

    The kinetic-energy dependence for the reactions of Con+ (n=2-20) with O2 is measured as a function of kinetic energy over a range of 0 to 10 eV in a guided ion-beam tandem mass spectrometer. A variety of Com+, ComO+, and ComO2+ (m≤n) product ions is observed, with the dioxide cluster ions dominating the products for all larger clusters. Reaction efficiencies of Con+ cations with O2 are near unity for all but the dimer. Bond dissociation energies for both cobalt cluster oxides and dioxides are derived from threshold analysis of the energy dependence of the endothermic reactions using several different methods. These values show little dependence on cluster size for clusters larger than three atoms. The trends in this thermochemistry and the stabilities of oxygenated cobalt clusters are discussed. The bond energies of Con+-O for larger clusters are found to be very close to the value for desorption of atomic oxygen from bulk-phase cobalt. Rate constants for O2 chemisorption on the cationic clusters are compared with results from previous work on cationic, anionic, and neutral cobalt clusters

  14. Effects of functional group modification on the thermal properties of nano-carbon clusters

    International Nuclear Information System (INIS)

    In this paper, the thermal properties including thermal stability, thermal decomposition activation energy and the thermal enthalpy of nano-carbon clusters (NCCs, including fullerene[60](C60, with a diameter of 0.71 nm), multi-walled carbon nanotubes(MWCNTs, with a diameter of 10–30 nm and a length of 1–2 µm), single-walled carbon nanotubes (SWCNTs, with a diameter of ∼2 nm and a length of 5–15 µm), ligands of NCC-based terpyridine (NCC-tpy), and NCC-based ruthenium complexes (NCC-tpyRuCl3) were systematically studied by method of simultaneous thermogravimetric and differential thermal analysis. The results show that the modification of NCCs with terpyridine leads to a decrease in the thermal stability and in the thermal decomposition activation energy (the thermal decomposition activation energy decreased from 174.4 for C60, 144.9 for MWCNTs and 161.2 kJ/mol for SWCNTs to 166.2 for C60-tpy, 119.7 for MWCNT-tpy and 85.0 kJ/mol for SWCNT-tpy). But the modification of NCCs with terpyridine results in an increase in the enthalpy change of NCC thermal decomposition reaction. The introduction of the metal ions through complexation further decreases the thermal stability and the thermal decomposition activation energy of NCC-tpyRuCl3 due to the catalytic oxidation of Ru(III) ions (the activation energy decreases to 124.1 for C60-tpyRuCl3, 106.4 for MWCNT-tpyRuCl3 and 41.2 kJ/mol for SWCNT-tpyRuCl3). The introduction of the metal ions also leads to a decrease in the enthalpy change of the thermal decomposition reaction

  15. Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition

    International Nuclear Information System (INIS)

    An approach to determine carbon emission reduction target allocation based on the particle swarm optimization (PSO) algorithm, fuzzy c-means (FCM) clustering algorithm, and Shapley decomposition (PSO–FCM–Shapley) is proposed in this study. The method decomposes total carbon emissions into an interaction result of four components (i.e., emissions from primary, secondary, and tertiary industries, and from residential areas) which composed totally by 13 macro influential factors according to the KAYA identity. Then, 30 provinces in China are clustered into four classes according to the influential factors via the PSO–FCM clustering method. The key factors that determine emission growth in the provinces representing each cluster are investigated by applying Shapley value decomposition. Finally, based on guaranteed survival emissions, the reduction burden is allocated by controlling the key factors that decelerate CO2 emission growth rate according to the present economic development level, energy endowments, living standards, and the emission intensity of each province. A case study of the allocation of CO2 intensity reduction targets in China by 2020 is then conducted via the proposed method. The per capita added value of the secondary industry is the primary factor for the increasing carbon emissions in provinces. Therefore, China should limit the growth rate of its secondary industry to mitigate emission growth. Provinces with high cardinality of emissions have to shoulder the largest reduction, whereas provinces with low emission intensity met the minimum requirements for emission in 2010. Fifteen provinces are expected to exceed the national average decrease rates from 2011 to 2020. - Highlights: • A PSO–FCM–Shapley approach for carbon emission reduction target allocation is proposed. • Provinces of China are clustered into four classes based on factors influencing carbon emissions. • Provinces with large total emissions and high emission intensity

  16. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    International Nuclear Information System (INIS)

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10C, 11C, and 15O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  17. The CBS-The Most Cost Effective and High Performance Carbon Beam Source Dedicated for a New Generation Cancer Therapy

    CERN Document Server

    Kumada, Masayuki; Leivichev, E B; Parkhomchuk, Vasily; Podgorny, Fedor; Rastigeev, Sergey; Reva, Vladimir B; Skrinsky, Aleksander Nikolayevich; Vostrikov, Vladimir

    2005-01-01

    A Carbon ion beam is a superior tool to x-rays or a proton beam in both physical and biological doses in treating a cancer. A Carbon beam has an advantage in treating radiation resistant and deep-seated tumors. Its radiological effect is of a mitotic independent nature. These features improve hypofractionation, typically reducing the number of irradiations per patient from 35 to a few. It has been shown that a superior QOL(Quality Of Life) therapy is possible by a carbon beam.The only drawback is its high cost. Nevertheless, tens of Prefectures and organizations are eagerly considering the possibility of having a carbon ion therapy facility in Japan. Germany, Austria, Italy, China, Taiwan and Korea also desire to have one.A carbon beam accelerator of moderate cost is about 100 Million USD. With the "CBS" design philosophy, which will be described in this paper, the cost could be factor of 2 or 3 less, while improving its performance more than standard designs. Novel extraction techniques, a new approach to a ...

  18. Dual-ion-beam deposition of carbon films with diamond-like properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  19. Effects of evolving surface morphology on yield during focused ion beam milling of carbon

    International Nuclear Information System (INIS)

    We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (1017-1019 ions/cm2) and incidence angles (Θ = 0-80o). Carbon bombarded by 20 keV Ga+ either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large Θ, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at Θ = 75o. Similar trends of decreasing yield are found for H2O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

  20. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    Science.gov (United States)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  1. Flexural rigidity evolvement laws of reinforced concrete beams strengthened with carbon fiber laminates

    Institute of Scientific and Technical Information of China (English)

    NIU Peng-zhi; HUANG Pei-yan; DENG Jun; HAN Qiang

    2007-01-01

    Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper presents the research on flexural rigidity evolvement laws by testing 14 simple-supported RC beams strengthened with carbon fiber laminates (CFL) under cyclic load, and 2 under monotone load as a reference. The cyclic load tests revealed the peak load applied onto the surface of a supported RC beam strengthened with CFL is linear to the logarithm of its fatigue life, and the flexural rigidity evolvement undergoes three distinct phases: a rapid decrease from the start to about 5% of the fatigue life; an even development from 5% to about 99% of the fatigue life; and a succedent rapid decrease to failure. When the ratio of fatigue cycles to the fatigue life is within 0.05 to 0.99, the flexural rigidity varies linearly with the ratio. The peak load does not affect the flexural rigidity evolvement if it is not high enough to make the main reinforcements yield. The dependences of the flexural rigidity of specimens formed in the same group upon their fatigue cycles normalized by fatigue life are almost coincident. This implies the flexural rigidity may be a material parameter independent of the stress level. These relationships of flexural rigidity to fatigue cycles, and fatigue life may be able to provide some hints for fatigue design and fatigue life evaluation of RC member strengthened with CFL; nevertheless the findings still need verifying by more experiments.

  2. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    International Nuclear Information System (INIS)

    We have determined ''effective'' Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  3. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    Science.gov (United States)

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-01

    We have determined "effective" Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  4. Charge exchange recombination spectroscopy measurements in the extreme ultraviolet region of central carbon concentrations during high power neutral beam heating in TFTR [Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The carbon concentration in the central region of TFTR discharges with high power neutral beam heating has been measured by charge-extracted recombination spectroscopy (CXRS) of the C+5 n = 3--4 transition in the extreme ultraviolet region. The carbon concentrations were deduced from absolute measurements of the line brightness using a calculation of the beam attenuation and the appropriate cascade-corrected line excitation rates. As a result of the high ion temperatures in most of the discharges, the contribution of beam halo neutrals to the line brightness was significant and therefore had to be included in the modeling of the data. Carbon concentrations have been measured in discharges with Ip = 1.0-1.6 MA and beam power in the range of 2.6-30 MW, including a number of supershots. The results are in good agreement with carbon concentrations deduced from the visible bremsstrahlung Zeff and metallic impurity concentrations measured by x-ray pulse-height analysis, demonstrating the reliability of the atomic rates used in the beam attenuation and line excitation calculations. Carbon is the dominant impurity species in these discharges; the oxygen concentration measured via CXRS in a high beam power case was 0.0006 of ne, compard to 0.04 for carbon. Trends with Ip and beam power in the carbon concentration and the inferred deuteron concentration are presented. The carbon concentration is independent of Ip and decreases from 0.13 at 2.6 MW beam power to 0.04 at 30 MW, while the deuteron concentration increases from 0.25 to 0.75 over the same range of beam power. These changes are primarily the result of beam particle fueling, as the carbon density did not vary significantly with beam power. The time evolutions of the carbon and deuteron concentrations during two high power beam pulses, one which exhibited a carbon bloom and one which did not, are compared. 30 refs., 12 figs., 2 tabs

  5. Radiation biophysical studies with mammalian cells and a modulated carbon ion beam

    International Nuclear Information System (INIS)

    Chinese hamster (V-79) and human kidney (T-1) cells were irradiated in stirred suspensions placed at various positions in the plateau and extended Bragg peak of a 400-MeV/amu carbon ion beam. The range of the ions was modulated by a lead (translational) ridge filter and a brass (spiral) ridge filter designed to produce extended peaks of approximately 4 and 10 cm, respectively. Stationary-phase and G1-phase populations of Chinese hamster cells were found to have different absolute radiosensitivities which, in turn, were different from that of asynchronous human kidney cells. The increase in relative biological effectiveness (RBE) observed as carbon ions were slowed down and stopped in water was similar for the three cell populations at doses greater than 400 rad. At lower doses the RBE was greater for the hamster cell populations than for the human kidney cells. The gain in RBE (at the 50% survival level) between the plateaus and the middle region of the extended peaks was approximately 2.0 and 1.7 for the 4- and 10-cm extended peaks, respectively. Oxygen enhancement ratios (OER) were determined at the 10% survival levels with stationary-phase populations of hamster cells. Values of 2.8, 2.65, and 1.65 were obtained for the OER of 220-kV x rays, plateau carbon, and the middle region of the 4-cm carbon peak, respectively. Across the 10-cm carbon peak the OER was found to vary between values of 2.4 to 1.55 from the proximal to distal positions

  6. Assessment of adhesive setting time in reinforced concrete beams strengthened with carbon fibre reinforced polymer laminates

    International Nuclear Information System (INIS)

    Highlights: ► This study investigated the effect of adhesive setting time on the modal parameters. ► Modal parameters recommend the 18th day as the maturity age of the adhesive. ► Static data recommend 7th day as the maturity age of the adhesive. ► Setting time affects the modal parameters as tool for assessment repaired structures. ► Carrying the modal parameters after 1st day results in 55% loss of the actual improvement. -- Abstract: The strengthened effectiveness and the performance capacity of repaired Reinforced Concrete (RC) structures with Carbon Fibre Reinforced Polymer (CFRP) sheets is dependent on the properties of the adhesive interface layer. Adhesive material requires a specific setting time to achieve the maximum design capacity. Adhesive producer provides technical data which demonstrates the increase with time of the capacity, up to the maximum. The aim of this study is to investigate the effect of the adhesive setting time on the modal parameters as an indication of the effectiveness of CFRP on repaired RC beams. Firstly, datum modal parameters were determined on the undamaged beam and subsequently the parameters were obtained when damaged was induced on the RC beam by application of load until the appearance of the first crack. Finally, the RC beam is repaired with externally bonded CFRP sheets, and modal parameters are once again applied after 0.5, 1, 2, 3, 5, 8, 11, 15 and 18 days. The comparison is made with the data based on half day results in order to monitor the change in the modal parameters corresponding to the adhesive setting time. The modal parameters where used as indicators for the effectiveness of CFRP are affected by the adhesive time as shown in this study. Results are compared with the adhesive technical data provided by the adhesive producer.

  7. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  8. Time course of reoxygenation in experimental murine tumors after carbon-beam and X-ray irradiation

    International Nuclear Information System (INIS)

    We compared the tumor reoxygenation patterns in three different murine tumor cell lines after X-irradiation with those after carbon-beam irradiation using a heavy-ion medical accelerator (HIMAC) system. The tumors of the cell lines SCCVII, SCCVII-variant-1 and EMT6 on the hind legs of mice received local priming irradiation with a carbon-beam (8 Gy, 73 keV/μm in LET, 290 MeV/u, 6 cm SOBP) or X-rays (13 Gy, 250 kVp). After various intervals, the mice were given whole-body test irradiation (16 Gy, 250 kVp X-ray) either in air or after they were killed. The hypoxic fractions were estimated as the proportions of the surviving fractions of the tumors in killed mice to those in air-breathing mice. In the SCCVII tumors, the hypoxic fractions at 0.5 h were 50% and 21% (p<0.05) after the priming x-irradiation and carbon-beam irradiation, respectively. In the SCCVII-variant-1 tumors, the hypoxic fractions were 85% and 82% at 0.5 h, 84% and 20% at 12 h (p<0.01), and 21% and 31% at 24 h after X-ray and after carbon-beam irradiation, respectively. In the EMT6 tumors, the reoxygenation patterns after X-irradiation and carbon-beam irradiation were quite similar. We concluded that the reoxygenation pattern differed among the three tumor cell lines, and that reoxygenation tended to occur more rapidly after carbon-beam irradiation than after X-irradiation for SCCVII and SCCVII-variant-1 tumors. (author)

  9. Characterization of carbon-doped InSb diode grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Carbon-doped p-type InSb layers grown by solid source molecular beam epitaxy are characterized using a p+-n diode structure. Based on the combination of current-voltage, secondary ion mass spectroscopy and x-ray diffraction measurements, carbon is proven to be an effective p-type dopant for InSb with hole concentration reaching the range of 1019 cm-3. It is also proven that the use of the Hall effect to determine the hole concentration in the p-type InSb layer may be unreliable in cases where the leakage current in the p+-n junction is high. A thermal trap-assisted tunnelling model with two trap levels successfully explains the origin of leakage current mechanisms in the carbon-doped InSb samples. Good agreement between measured and calculated dc characteristics of the diodes at reverse bias up to -3 V from 30 to 120 K supports the validity of the current transport model

  10. Emulsion Cloud Chamber technique to measure the fragmentation of a high-energy carbon beam

    CERN Document Server

    De Lellis, G; Buontempo, S; Capua, F D; Furusawa, Y; Lavina, L S; Marotta, A; Migliozzi, P; Naganawa, N; Petukhov, Yu P; Pistillo, C; Russo, A; Strolin, P; Tioukov, V; Toshito, T; Yasuda, N

    2007-01-01

    Beams of Carbon nuclei are now in use or planned to be used in various centers for cancer treatment around the world. The knowledge of the fragmentation of Carbon nuclei when they interact with the human body is important for evaluating of the spatial profile of their energy deposition in the tissues, hence the damage to tissues neighbouring the tumor. To this purpose, the identification of the fragmentation products is a key element. We present in this paper the charge measurement of about 3000 fragments produced by the interaction of $^{12}$C nuclei with an energy of 400 MeV/nucleon in a detector simulating the density of the human body. The nuclear emulsion technique is used, by means of the so-called Emulsion Cloud Chamber. The nuclear emulsions are inspected using fast automated microscopes recently developed. A charge assignment efficiency of more than 99% is achieved. The separation of Hydrogen, Helium, Lithium, Berillium, Boron and Carbon can be achieved at two standard deviations or considerably more...

  11. Quantitative Analysis of Clustered DNA Damages Induced by Silicon Beams of Different Kinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Keszenman D. J.; Keszenman, D.J.; Bennett, P.V.; Sutherland, B.M.; Wilson, P.F.

    2013-05-14

    Humans may b exposed to highly energetic charged particle radiation as a result of medical treatments, occupational activitie or accidental events. In recent years, our increasing presence and burgeoning interest in space exploration beyond low Earth orbit has led to a large increase in the research of the biological effects ofcharged particle radiation typical of that encountered in the space radiation environment. The study of the effects of these types of radiation qualities in terms ofDNA damage induction and repair is fundamental to understand mechanisms both underlying their greater biological effectiveness as we)) as the short and long term risks of health effects such as carcinogenesis, degen rative diseases and premature aging. Charged particle radiation induces a variety of DNA alterations, notably bistranded clustered damages, defined as two or more closely-opposed strand break , oxidized bases or abasic sites within a few helical turns. The induction of such highly complex DNA damage enhances the probability of incorrect or incomplete repair and thus constitutes greater potential for genomic instability, cell death and transformation.

  12. Deflection analysis of reinforced concrete beams strengthened with carbon fibre reinforced polymer under long-term load action

    Institute of Scientific and Technical Information of China (English)

    Mykolas DAUGEVI(C)IUS; Juozas VALIVONIS; Gediminas MAR(C)IUKAITIS

    2012-01-01

    This paper presents the results of an experimental research on reinforced concrete beams strengthened with an external carbon fibre reinforced polymer (CFRP) layer under long-term load action that lasted for 330 d.We describe the characteristics of deflection development of the beams strengthened with different additional anchorages of the external carbon fibre composite layer during the period of interest.The conducted experiments showed that the additional anchorage influences the slip of the extemal layer with respect to the strengthened element.Thus,concrete and carbon fibre composite interface stiffness decreases with a long-term load action.Therefore,the proposed method of analysis based on the built-up-bars theory can be used to estimate concrete and carbon fibre composite interface stiffness in the case of long-term load.

  13. Electrostatic solitary waves in current layers: from Cluster observations during a super-substorm to beam experiments at the LAPD

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2009-06-01

    Full Text Available Electrostatic Solitary Waves (ESWs have been observed by several spacecraft in the current layers of Earth's magnetosphere since 1982. ESWs are manifested as isolated pulses (one wave period in the high time resolution waveform data obtained on these spacecraft. They are thus nonlinear structures generated out of nonlinear instabilities and processes. We report the first observations of ESWs associated with the onset of a super-substorm that occurred on 24 August 2005 while the Cluster spacecraft were located in the magnetotail at around 18–19 RE and moving northward from the plasma sheet to the lobes. These ESWs were detected in the waveform data of the WBD plasma wave receiver on three of the Cluster spacecraft. The majority of the ESWs were detected about 5 min after the super-substorm onset during which time 1 the PEACE electron instrument detected significant field-aligned electron fluxes from a few 100 eV to 3.5 keV, 2 the EDI instrument detected bursts of field-aligned electron currents, 3 the FGM instrument detected substantial magnetic fluctuations and the presence of Alfvén waves, 4 the STAFF experiment detected broadband electric and magnetic waves, ion cyclotron waves and whistler mode waves, and 5 CIS detected nearly comparable densities of H+ and O+ ions and a large tailward H+ velocity. We compare the characteristics of the ESWs observed during this event to those created in the laboratory at the University of California-Los Angeles Plasma Device (LAPD with an electron beam. We find that the time durations of both space and LAPD ESWs are only slightly larger than the respective local electron plasma periods, indicating that electron, and not ion, dynamics are responsible for generation of the ESWs. We have discussed possible mechanisms for generating the ESWs in space, including the beam and kinetic Buneman type instabilities and the acoustic instabilities. Future studies will examine these mechanisms in

  14. Electron-beam assisted selective growth of graphenic carbon thin films on SiO2/Si and quartz substrates

    OpenAIRE

    Knyazev, Maxim; Sedlovets, Daria; Trofimov, Oleg; Redkin, Arkady

    2015-01-01

    The first selective growth of graphenic carbon thin films on silicon dioxide is reported. A preliminary e-beam exposure of the substrate is found to strongly affect the process of such films growth. The emphasis is placed on the influence of substrate exposure on the rate of carbon deposition. The explanation of this effect is proposed. The data of electrical and optical measurements and the results of atomic force and scanning electron microscopy and Raman spectroscopy studies are reported. ...

  15. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy

    International Nuclear Information System (INIS)

    Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in

  16. Effects of functional group modification on the thermal properties of nano-carbon clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhenyi, E-mail: zywu@xmu.edu.cn [Xiamen University, Department of Chemistry and College of Chemistry and Chemical Engineering (China); Cai, Xueying [Xiamen University, Xiamen Zhongshan Hospital (China); Yang, Zhiquan [South China University of Technology, School of Environment and Energy, Guangzhou Higher Education Mega Centre (China)

    2015-08-15

    In this paper, the thermal properties including thermal stability, thermal decomposition activation energy and the thermal enthalpy of nano-carbon clusters (NCCs, including fullerene[60](C{sub 60}, with a diameter of 0.71 nm), multi-walled carbon nanotubes(MWCNTs, with a diameter of 10–30 nm and a length of 1–2 µm), single-walled carbon nanotubes (SWCNTs, with a diameter of ∼2 nm and a length of 5–15 µm), ligands of NCC-based terpyridine (NCC-tpy), and NCC-based ruthenium complexes (NCC-tpyRuCl{sub 3}) were systematically studied by method of simultaneous thermogravimetric and differential thermal analysis. The results show that the modification of NCCs with terpyridine leads to a decrease in the thermal stability and in the thermal decomposition activation energy (the thermal decomposition activation energy decreased from 174.4 for C{sub 60}, 144.9 for MWCNTs and 161.2 kJ/mol for SWCNTs to 166.2 for C{sub 60}-tpy, 119.7 for MWCNT-tpy and 85.0 kJ/mol for SWCNT-tpy). But the modification of NCCs with terpyridine results in an increase in the enthalpy change of NCC thermal decomposition reaction. The introduction of the metal ions through complexation further decreases the thermal stability and the thermal decomposition activation energy of NCC-tpyRuCl{sub 3} due to the catalytic oxidation of Ru(III) ions (the activation energy decreases to 124.1 for C{sub 60}-tpyRuCl{sub 3}, 106.4 for MWCNT-tpyRuCl{sub 3} and 41.2 kJ/mol for SWCNT-tpyRuCl{sub 3}). The introduction of the metal ions also leads to a decrease in the enthalpy change of the thermal decomposition reaction.

  17. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  18. Influence of carbon on the kinetics of He migration and clustering in α-Fe from first principles

    International Nuclear Information System (INIS)

    Density functional theory (DFT) calculations have been performed to study the interaction of carbon with He-vacancy complexes in α-Fe. Using the DFT predictions, a rate theory model that accounts for the evolution of carbon, helium, and defects created during irradiation has been developed to explore the influence of carbon on the kinetics of He diffusion and clustering after implantation in α-Fe. This DFT-based rate theory model predicts that carbon not only influences vacancy (V) migration but also He desorption, enhancing He mobility in particular for low V/C ratios. The reason for this behavior is mainly the formation of VC and VC2 complexes, which significantly reduces the mobility of vacancies with respect to pure Fe, inhibiting the formation of higher order clusters, i.e., HenVm, and increasing thus the number of He at substitutional positions at room temperature. Assuming reasonable values of carbon concentration, we successfully reproduce and interpret existing desorption experimental results, where all the energetic parameters for the relevant reactions were obtained from first-principles calculations. In addition, our study provides a detailed explanation of the various He migration mechanisms that prevail under the considered experimental conditions.

  19. Irradiation of 135 MeV/u carbon and neon beams for studies of radiation biology

    International Nuclear Information System (INIS)

    A heavy ion irradiation system was designed and constructed at RIKEN ring cyclotron facility for studies of radiation physics and radiation biology. Carbon and neon beams of 135 MeV/u were firstly used for the experiments. A pair of wobbler magnets and a scatterer were used for obtaining the uniform radiation field of about 10 cm in diameter. A parallel plate ionization chamber was used for dose monitoring. A range shifter was used for degrading the initial energy of the heavy ions. Precise depth dose distributions were measured by a small parallel plate ionization chamber and a variable length water column. LET (linear energy transfer) of the heavy ion radiation fields were measured by a parallel plate proportional chamber. From these basic measurements, biological experiments using these heavy ions are now carried out at this facility. (author)

  20. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels;

    be seriously hampered by variations in detector efficiency (light output per energy imparted) due to high-LET effects and gradients along the physical size (~mm) of the detector crystals. Amorphous track models (ATMs) such as the Ion-Gamma-Kill (IGK) approach by Katz and co-workers or the ECLaT code by Geiß et...... assumptions in a variety of detectors. The library also includes simple particle transportation or can be interfaced to external transport codes. We applied our code to RL and OSL data from fiber-coupled Al2O3:C-detectors in a proton (nominal energies 10 MeV to 60 MeV) and a carbon beam (270 MeV/u). Results...

  1. Precise measurement of single carbon nanocoils using focused ion beam technique

    Science.gov (United States)

    Nakamura, Yasushi; Suda, Yoshiyuki; Kunimoto, Ryuji; Iida, Tamio; Takikawa, Hirofumi; Ue, Hitoshi; Shima, Hiroyuki

    2016-04-01

    We have developed a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam. The system enables the resistivity of carbon nanocoils (CNCs) to be measured and its dependence on coil geometry to be elucidated. At room temperature, the resistivity of CNCs tended to increase with coil diameter, while that of artificially graphitized CNCs remained constant. These contrasting behaviors indicate coil-diameter-induced enhancement in structural disorder internal to CNCs. Low-temperature resistivity measurements performed on the CNCs revealed that electron transport through the helical axis is governed by the variable range hopping mechanism. The characteristic temperature in variable range hopping theory was found to systematically increase with coil diameter, which supports our theory that the population of sp2-domains in CNCs decreases considerably with coil diameter.

  2. Surface treatment of 0.20% C carbon steel by high-current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    XU Guo-cheng; FU Shi-you; GUAN Qing-feng

    2006-01-01

    A high-current pulsed electron beam(HCPEB) generated on the system of Nadezhda-2 was applied to improve the microstructure and performance of 0.20% C low carbon steel. Surface layers of the samples bombarded by explosive electron beam at different pulses was observed by using electron microscopy. The physical model of the thermal-stress process and related modification mechanism as a result of HCPEB irradiation was also investigated. After HCPEB post treatments, obvious changes in microstructure and significant hardening occur in the depth of 200-250 μm from the surface after HCPEB irradiation. Rapid heating and subsequent rapid solidification induce heavy plastic deformation, which results in that the laminated structure of pearlite is substituted by dispersive rounded-like cementites in the near-surface. The effect of HCPEB treatment can reach more than 500 m depth from the surface. The original crystalline structure is changed to a different degree that grows with the numbers of bombardment, and in the surface layer amorphous states and nanocrystaline structures consisting of grains of γ-phase and cementite are found. The violent stress induced by HCPEB irradiation is the origin of the nanostructured and amorphous structure formation.

  3. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  4. Friction measurements of nanometer-thick lubricant films using ultra-smooth sliding pins treated with gas cluster ion beam

    International Nuclear Information System (INIS)

    Friction properties of nanometer-thick lubricant films confined between two ultra-smooth solid surfaces are crucial to the practical performance of technologically advanced mechanical devices such as micro-electro-mechanical systems and hard disk drives. In this work, we applied argon gas cluster ion beam (Ar-GCIB) treatments to obtain ultra-smooth sliding pins for pin-on-disk tests of nanometer-thick perfluoropolyether (PFPE) lubricant films coated on magnetic disk surfaces. The GCIB treatments effectively smoothed the pin surfaces, and increases in the Ar dose decreased surface roughness. An ultra-smooth surface with a maximum peak height (Rp) less the monolayer lubricant film thickness was achieved when the Ar dose was increased to 8 × 1016 ions/cm2. We observed that both surface roughness and film thickness affected the friction coefficients of the PFPE films. To quantitatively describe the interplay of surface roughness and film thickness, we introduced two roughness characteristics: the ratio of film thickness to the surface’s root-mean-square roughness (h/σ), and a surface-pattern parameter (γ), defined as the ratio of correlation lengths in two orthogonal directions. We infer that a fixed γ and higher h/σlead to lower friction coefficients, while a fixed h/σand higher γ induce higher friction coefficients.

  5. Friction measurements of nanometer-thick lubricant films using ultra-smooth sliding pins treated with gas cluster ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Renguo [Graduate School of Information Science, Nagoya University, Nagoya 464-8601 (Japan); Zhang, Hedong, E-mail: zhang@is.nagoya-u.ac.jp [Graduate School of Information Science, Nagoya University, Nagoya 464-8601 (Japan); Mitsuya, Yasunaga [Nagoya Industrial Science Research Institute, Nagoya 464-0035 (Japan); Fukuzawa, Kenji; Itoh, Shintaro [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2013-09-01

    Friction properties of nanometer-thick lubricant films confined between two ultra-smooth solid surfaces are crucial to the practical performance of technologically advanced mechanical devices such as micro-electro-mechanical systems and hard disk drives. In this work, we applied argon gas cluster ion beam (Ar-GCIB) treatments to obtain ultra-smooth sliding pins for pin-on-disk tests of nanometer-thick perfluoropolyether (PFPE) lubricant films coated on magnetic disk surfaces. The GCIB treatments effectively smoothed the pin surfaces, and increases in the Ar dose decreased surface roughness. An ultra-smooth surface with a maximum peak height (R{sub p}) less the monolayer lubricant film thickness was achieved when the Ar dose was increased to 8 × 10{sup 16} ions/cm{sup 2}. We observed that both surface roughness and film thickness affected the friction coefficients of the PFPE films. To quantitatively describe the interplay of surface roughness and film thickness, we introduced two roughness characteristics: the ratio of film thickness to the surface’s root-mean-square roughness (h/σ), and a surface-pattern parameter (γ), defined as the ratio of correlation lengths in two orthogonal directions. We infer that a fixed γ and higher h/σlead to lower friction coefficients, while a fixed h/σand higher γ induce higher friction coefficients.

  6. Friction measurements of nanometer-thick lubricant films using ultra-smooth sliding pins treated with gas cluster ion beam

    Science.gov (United States)

    Lu, Renguo; Zhang, Hedong; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2013-09-01

    Friction properties of nanometer-thick lubricant films confined between two ultra-smooth solid surfaces are crucial to the practical performance of technologically advanced mechanical devices such as micro-electro-mechanical systems and hard disk drives. In this work, we applied argon gas cluster ion beam (Ar-GCIB) treatments to obtain ultra-smooth sliding pins for pin-on-disk tests of nanometer-thick perfluoropolyether (PFPE) lubricant films coated on magnetic disk surfaces. The GCIB treatments effectively smoothed the pin surfaces, and increases in the Ar dose decreased surface roughness. An ultra-smooth surface with a maximum peak height (Rp) less the monolayer lubricant film thickness was achieved when the Ar dose was increased to 8 × 1016 ions/cm2. We observed that both surface roughness and film thickness affected the friction coefficients of the PFPE films. To quantitatively describe the interplay of surface roughness and film thickness, we introduced two roughness characteristics: the ratio of film thickness to the surface’s root-mean-square roughness (h/σ), and a surface-pattern parameter (γ), defined as the ratio of correlation lengths in two orthogonal directions. We infer that a fixed γ and higher h/σlead to lower friction coefficients, while a fixed h/σand higher γ induce higher friction coefficients.

  7. Structural analysis of the outermost hair surface using TOF-SIMS with gas cluster ion beam sputtering.

    Science.gov (United States)

    Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka

    2016-06-01

    A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure. PMID:26822506

  8. Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by III–V molecular beam epitaxy

    DEFF Research Database (Denmark)

    Stobbe, Søren; Lindelof, P. E.; Nygård, J.

    2006-01-01

    incorporation of singlewall nanotubes in III–V semiconductor heterostructures grown by molecular beam epitaxy (MBE). We demonstrate that singlewall carbon nanotubes can be overgrown using MBE; electrical contacts to the nanotubes are obtained by GaMnAs grown at 250 °C. The resulting devices can exhibit field...

  9. Investigations on the quality of treatment plans for carbon ion radiotherapy. Beam delivery systems and radiobiological models

    Energy Technology Data Exchange (ETDEWEB)

    Gillmann, Clarissa

    2014-07-01

    In a worldwide effort in research and development, radiation therapy with carbon ions has evolved to a technologically challenging but clinically very promising treatment option for cancer patients. To further improve patient benefit, optimal use of the physical and biological characteristics of carbon ions as well as of the available technologies should be made. The present thesis investigates the impact of different beam delivery systems and radiobiological models on the quality of treatment plans in carbon ion radiotherapy. The results of the study may provide pointers as to the role and the possible future implementation of the different techniques and radiobiological models in existing and upcoming particle therapy centers.

  10. Measurement of contact resistance of multiwall carbon nanotubes by electrical contact using a focused ion beam

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) have found many potential applications but using CNTs as building blocks for nanoelectronics is still challenging. Various micro- and nanofabrication techniques including focused ion beam (FIB) are therefore being developed for combining CNTs into a nanodevice or to help assess the electrical properties of integrated CNTs. In this paper, multiwall carbon nanotubes (MWNTs) are assembled between a pair of gold (Au) electrodes by dielectrophoresis (DEP). Contact resistances of MWNT-Au and, in particular, MWNT-MWNT are measured with the help of making electrical connections between a MWNT and electrodes by FIB induced tungsten deposition. A method for resistance calculation is presented which considers the contact length of MWNTs. Under the conditions of this research, measured conducting resistances of MWNTs were from 1–10 kΩ/μm and the contact resistance of MWNTs with Au was around 100 kΩ μm. The contact resistance between MWNTs varied depending on contact configurations and could be as low as 50 KΩ. The effect of FIB parameters on the measurement results is discussed.

  11. Measurement of contact resistance of multiwall carbon nanotubes by electrical contact using a focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    An Libao, E-mail: lan@heut.edu.cn [College of Mechanical Engineering, Hebei United University, Tangshan, Hebei, 063009 (China); Friedrich, Craig R. [Department of Mechanical Engineering - Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States)

    2012-02-01

    Carbon nanotubes (CNTs) have found many potential applications but using CNTs as building blocks for nanoelectronics is still challenging. Various micro- and nanofabrication techniques including focused ion beam (FIB) are therefore being developed for combining CNTs into a nanodevice or to help assess the electrical properties of integrated CNTs. In this paper, multiwall carbon nanotubes (MWNTs) are assembled between a pair of gold (Au) electrodes by dielectrophoresis (DEP). Contact resistances of MWNT-Au and, in particular, MWNT-MWNT are measured with the help of making electrical connections between a MWNT and electrodes by FIB induced tungsten deposition. A method for resistance calculation is presented which considers the contact length of MWNTs. Under the conditions of this research, measured conducting resistances of MWNTs were from 1-10 k{Omega}/{mu}m and the contact resistance of MWNTs with Au was around 100 k{Omega} {mu}m. The contact resistance between MWNTs varied depending on contact configurations and could be as low as 50 K{Omega}. The effect of FIB parameters on the measurement results is discussed.

  12. One-dimensional carbon nanostructures for terahertz electron-beam radiation

    Science.gov (United States)

    Tantiwanichapan, Khwanchai; Swan, Anna K.; Paiella, Roberto

    2016-06-01

    One-dimensional carbon nanostructures such as nanotubes and nanoribbons can feature near-ballistic electronic transport over micron-scale distances even at room temperature. As a result, these materials provide a uniquely suited solid-state platform for radiation mechanisms that so far have been the exclusive domain of electron beams in vacuum. Here we consider the generation of terahertz light based on two such mechanisms, namely, the emission of cyclotronlike radiation in a sinusoidally corrugated nanowire (where periodic angular motion is produced by the mechanical corrugation rather than an externally applied magnetic field), and the Smith-Purcell effect in a rectilinear nanowire over a dielectric grating. In both cases, the radiation properties of the individual charge carriers are investigated via full-wave electrodynamic simulations, including dephasing effects caused by carrier collisions. The overall light output is then computed with a standard model of charge transport for two particularly suitable types of carbon nanostructures, i.e., zigzag graphene nanoribbons and armchair single-wall nanotubes. Relatively sharp emission peaks at geometrically tunable terahertz frequencies are obtained in each case. The corresponding output powers are experimentally accessible even with individual nanowires, and can be scaled to technologically significant levels using array configurations. These radiation mechanisms therefore represent a promising paradigm for light emission in condensed matter, which may find important applications in nanoelectronics and terahertz photonics.

  13. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    Science.gov (United States)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  14. Monte Carlo Calculations of Dose to Medium and Dose to Water for Carbon Ion Beams in Various Media

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Petersen, Jørgen B.B.; Jäkel, Oliver;

    materials exposed to carbon ion beams. The scored track-length fluence spectrum Φi for a given particle i at the energy E, is multiplied with the mass stopping power for target material for calculating Dm . Similarly, Dw is calculated by multiplying the same fluence spectrum with the mass stopping power...... the PSTAR, ASTAR stopping power routines available at NIST1 and MSTAR2 provided by H. Paul et al. 3     Results For a pristine carbon ion beam we encountered a maximum deviation between Dw and Dm up to 8% for bone. In addition we investigate spread out Bragg peak configurations which dilutes the effect......1     Background In clinical practice the quantity dose to water (Dw ) is used as a reference standard for dosimeters and treatment planning systems. Treatment planning systems usually rely on analytical representation of the particle beam, which are normally expressed as dose with respect to water...

  15. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    OpenAIRE

    Masunaga, S; Sakurai, Y.; Tanaka, H.; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M.; Kondo, N; Narabayashi, M.; Maruhashi, A; Ono, K.

    2013-01-01

    [Objectives] To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). [Methods] EL4 tumour-bearing C57BL/J mice received 5-bromo-2′-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of...

  16. Measurement of large angle fragments induced by 400 MeV n-1 carbon ion beams

    Science.gov (United States)

    Aleksandrov, Andrey; Consiglio, Lucia; De Lellis, Giovanni; Di Crescenzo, Antonia; Lauria, Adele; Montesi, Maria Cristina; Patera, Vincenzo; Sirignano, Chiara; Tioukov, Valeri

    2015-09-01

    The use of carbon ion beams in radiotherapy presents significant advantages when compared to traditional x-ray. In fact, carbon ions deposit their energy inside the human body at the end of their range, the Bragg peak. Unlike x-ray beams, where the energy deposition decreases exponentially inside the irradiated volume, the shape of carbon beams is sharp and focused. Advantages are an increased energy released in the cancer volume while minimizing the irradiation to healthy tissues. Currently, the use of carbon beams is limited by the poor knowledge we have about the effects of the secondary fragments on the irradiated tissues. The secondary particles produced and their angular distribution is crucial to determine the global dose deposition. The knowledge of the flux of secondary particles plays a key role in the real time monitoring of the dose profile in hadron therapy. We present a detector based on nuclear emulsions for fragmentation measurements that performs a sub-micrometric tridimensional spatial resolution, excellent multi-particle separation and large angle track recognition. Nuclear emulsions are assembled in order to realize a hybrid detector (emulsion cloud chamber (ECC)) made of 300 μm nuclear emulsion films alternated with lead as passive material. Data reported here have been obtained by exposing two ECC detectors to the fragments produced by a 400 MeV n-1 12C beam on a composite target at the GSI laboratory in Germany. The ECC was exposed inside a more complex detector, named FIRST, in order to collect fragments with a continuous angular distribution in the range 47°-81° with respect to the beam axis. Results on the angular distribution of fragments as well as their momentum estimations are reported here.

  17. Measurement of large angle fragments induced by 400 MeV n−1 carbon ion beams

    International Nuclear Information System (INIS)

    The use of carbon ion beams in radiotherapy presents significant advantages when compared to traditional x-ray. In fact, carbon ions deposit their energy inside the human body at the end of their range, the Bragg peak. Unlike x-ray beams, where the energy deposition decreases exponentially inside the irradiated volume, the shape of carbon beams is sharp and focused. Advantages are an increased energy released in the cancer volume while minimizing the irradiation to healthy tissues. Currently, the use of carbon beams is limited by the poor knowledge we have about the effects of the secondary fragments on the irradiated tissues. The secondary particles produced and their angular distribution is crucial to determine the global dose deposition. The knowledge of the flux of secondary particles plays a key role in the real time monitoring of the dose profile in hadron therapy.We present a detector based on nuclear emulsions for fragmentation measurements that performs a sub-micrometric tridimensional spatial resolution, excellent multi-particle separation and large angle track recognition. Nuclear emulsions are assembled in order to realize a hybrid detector (emulsion cloud chamber (ECC)) made of 300 μm nuclear emulsion films alternated with lead as passive material.Data reported here have been obtained by exposing two ECC detectors to the fragments produced by a 400 MeV n−1 12C beam on a composite target at the GSI laboratory in Germany. The ECC was exposed inside a more complex detector, named FIRST, in order to collect fragments with a continuous angular distribution in the range 47°–81° with respect to the beam axis. Results on the angular distribution of fragments as well as their momentum estimations are reported here. (paper)

  18. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    Science.gov (United States)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  19. Study of MPI based on parallel MOM on PC clusters for EM-beam scattering by 2-D PEC rough surfaces

    Institute of Scientific and Technical Information of China (English)

    Ma Jun; Guo Li-Xin; Wang An-Qi

    2009-01-01

    This paper firstly applies the finite impulse response filter (FIR) theory combined with the fast Fourier transform (FFT) method to generate two-dimeusionai Gaussian rough surface.Using the electric field integral equation (EFIE),it introduces the method of moment (MOM) with RWG vector basis function and Galerkin's method to investigate the electromagnetic beam scattering by a two-dimensional PEC Ganssian rough surface on personal computer (PC) clusters.The details of the parallel conjugate gradient method (CGM) for solving the matrix equation are also presented and the numerical simulations are obtained through the message passing interface (MPI) platform on the PC clusters.It finds significantly that the parallel MOM supplies a novel technique for solving a two-dimensional rough surface electromagnetic-scattering problem.The influences of the root-mean-square height,the correlation length and the polarization on the beam scattering characteristics by two-dimensional PEC Gaussian rough surfaces are finally discussed.

  20. Study of MPI based on parallel MOM on PC clusters for EM-beam scattering by 2-D PEC rough surfaces

    International Nuclear Information System (INIS)

    This paper firstly applies the finite impulse response filter (FIR) theory combined with the fast Fourier transform (FFT) method to generate two-dimensional Gaussian rough surface. Using the electric field integral equation (EFIE), it introduces the method of moment (MOM) with RWG vector basis function and Galerkin's method to investigate the electromagnetic beam scattering by a two-dimensional PEC Gaussian rough surface on personal computer (PC) clusters. The details of the parallel conjugate gradient method (CGM) for solving the matrix equation are also presented and the numerical simulations are obtained through the message passing interface (MPI) platform on the PC clusters. It finds significantly that the parallel MOM supplies a novel technique for solving a two-dimensional rough surface electromagnetic-scattering problem. The influences of the root-mean-square height, the correlation length and the polarization on the beam scattering characteristics by two-dimensional PEC Gaussian rough surfaces are finally discussed. (classical areas of phenomenology)

  1. Investigation of the dosimetric impact of a Ni-Ti fiducial marker in carbon ion and proton beams

    International Nuclear Information System (INIS)

    Introduction. Fiducial markers based on a removable stent are currently used in image guided radiotherapy. Here it is investigated what the possible dosimetric impact of such a marker could be, if used in proton or carbon ion treatment. Material and methods. The simulations have been done using the Monte Carlo particle transport code FLUKA with its default hadron therapy settings. A 3 cm long stent is approximated in FLUKA by stacking hollow tori. To simulate realistic clinical conditions a field 5 x 5 cm has been used, delivering a 5 cm wide spread out Bragg peak located 5 cm deep for protons and carbon ions. For protons fields mimicking active and passive beam delivery have been investigated. The stent has been arranged perpendicular, turned 45 degrees, and parallel to the beam axis. Results. The position of the 95% dose level shifts for carbon ions 7 mm in proximal direction for the marker perpendicular to the beam and 8 mm if the stent is turned 45 degree for a 1 x 1 cm dose binning on the centre beam axis. For the case where the stent was parallel to beam direction the 95% dose level shifts 26 mm. For active delivered protons, the shift of the 95% dose level is less. The shift for a perpendicular arranged marker is 6 mm, for 45 degrees turned it is 7 mm. For the case where the stent was oriented parallel to the beam, the observed shift is 21 mm. Dose inhomogeneities caused by straggling effects occur only near the distal edge of the field. Conclusions. The results of our investigations show that the Ni-Ti marker has a non negligible impact on the dose distributions for the used radiation types. However if the treatment plan rules out narrow angles between symmetry axis of the stent and the beam direction, this may be compensated.

  2. Carbon stars near the open clusters at the galactic lattitudes 4deg,5

    International Nuclear Information System (INIS)

    By visual inspection of spectral photographs of two bands along the Milky Way of a general area more than 1000 sq. degrees 302 carbon stars have been identified, including 142 stars discovered at the Radioastrophysical observatory of the Academy of Sciences of the Latvian SSR and about 50 scattered clusters. Nine of the carbon stars occur less than three radii from seven scattered stars clusters

  3. Chemical effects of 100 keV primary electrons in an e-beam sustained carbon dioxide laser discharge

    International Nuclear Information System (INIS)

    The dissociation of carbon dioxide and the reaction of carbon monoxide with oxygen caused by a high-energy (approx 100 kev) electron beam in a typical carbon dioxide laser gas mixture has been observed. The variation of reaction rates with electron energy and current, interelectrode spacing, and gas composition has been studied. The rates of both processes suggest that the reactions are caused by unthermalized secondary electrons. The conditions were investigated under which the carbon monoxide oxidation reaction could be used to offset dissociation in a laser and thus prolong its sealed life. For a secondary to primary current ratio of one hundred this condition should be satisfied for any practical device. A sealed run was carried out which demonstrated that dissociation by secondary electrons could be offset by the oxidation of carbon monoxide by the primary electrons. (author)

  4. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams

    Science.gov (United States)

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a ˜450 kV, ˜400 ns pulse. It was found that 300-400 MW, ˜250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  5. Dynamic response of RC beams strengthened with near surface mounted Carbon-FRP rods subjected to damage

    Science.gov (United States)

    Capozucca, R.; Blasi, M. G.; Corina, V.

    2015-07-01

    Near surface mounted (NSM) technique with fiber reinforced polymer (FRP) is becoming a common method in the strengthening of concrete beams. The availability of NSM FRP technique depends on many factors linked to materials and geometry - dimensions of the rods used, type of FRP material employed, rods’ surface configuration, groove size - and to adhesion between concrete and FRP rods. In this paper detection of damage is investigated measuring the natural frequency values of beam in the case of free-free ends. Damage was due both to reduction of adhesion between concrete and carbon-FRP rectangular and circular rods and cracking of concrete under static bending tests on beams. Comparison between experimental and theoretical frequency values evaluating frequency changes due to damage permits to monitor actual behaviour of RC beams strengthened by NSM CFRP rods.

  6. Beam pen lithography based on arrayed polydimethylsiloxane (PDMS) micro-pyramids spin-coated with carbon black photo-resist

    International Nuclear Information System (INIS)

    This paper presents a new method for preparing a polydimethylsiloxane (PDMS) mold which can be used in beam pen lithography for patterning a photo-resist (PR) layer in a maskless and direct-write manner. The PDMS mold contains an array of micro-pyramids on its surface and is spin-coated with a layer of carbon black PR which is an opaque material. Because of the arrayed pyramidal surface profile, the spin-coated carbon black PR layer is either thinner at the pyramid tips or does not cover the tips at all, which allows ultraviolet (UV) light to pass through the PDMS mold and forms an array of UV beams. The aperture size of the UV beams can be controlled at a sub-micrometer scale and hence can be used for micro/nano-patterning. Applying this carbon black-PR-coated PDMS mold in beam pen lithography along with a metal lift-off process, various metal dot patterns with a dot-size around 400 to 500 nm are successfully obtained. Both experimental results and theoretical analysis are given along with possible improvements and applications in the future. (paper)

  7. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  8. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    Science.gov (United States)

    Batra, Nitin M.; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L.; Costa, Pedro M. F. J.

    2015-11-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  9. Ge-nanoclusters were formed by electron-beam irradiation in Ge-doped silica-on-silicon thin films. The size and density of the clusters can be controlled by the irradiation intensity and time

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten;

    2006-01-01

    Ge-nanoclusters were formed by electron-beam irradiation in Ge-doped silica-on-silicon thin films. The size and density of the clusters can be controlled by the irradiation intensity and time.......Ge-nanoclusters were formed by electron-beam irradiation in Ge-doped silica-on-silicon thin films. The size and density of the clusters can be controlled by the irradiation intensity and time....

  10. Formation and Properties of Astrophysical Carbonaceous Dust. I. Ab-initio Calculations of the Configuration and Binding Energies of Small Carbon Clusters

    Science.gov (United States)

    Mauney, Christopher; Buongiorno Nardelli, Marco; Lazzati, Davide

    2015-02-01

    The binding energies of n work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen-poor environments, such as the inner layers of core-collapse supernovae and supernova remnants.

  11. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix. PMID:22214656

  12. Novel Silicon-Carbon Nanostructures: Electronic structure study on the stability of Si60C2n Clusters.

    Science.gov (United States)

    Srinivasan, A.

    2005-03-01

    The formalism of generalized gradient approximation to density functional theory has been used to study the electronic and geometric structures of Si60C2n fullerene-like nanostructures. In our previous work, we have shown that the additions of carbon atoms increase the stability of smaller silicon cages [1]. In this talk, we will present our results on the addition of two and four carbon atoms on the surface of the Si60 cages by substitution as also inside the cage at various symmetry orientations. Full geometry optimizations have been performed using the Hay-Wadt basis set without any symmetry constraints using the Gaussian 03 suite of programs [2]. Binding energies, ionization potentials, electron affinities and the ``band'' gaps of the stable silicon-carbon fullerene like nanostructures will be presented and discussed in detail. In general, we find that the optimized silicon-carbon fullerene-like cages have increased stability compared to the bare Si60 cage. Possibilities of adding larger carbon clusters to the Si60 structure will also be discussed. *Work supported, in part, by the Welch Foundation, Houston, Texas (Grant No. Y-1525). [1] M. N. Huda and A. K. Ray, Phys. Rev. A 69, 011201(R) (2004); Eur. Phys. J. D 31, 63 (2004). [2] Gaussian 03, M. J. Frisch et al. Gaussian Inc., Pittsburgh, PA.

  13. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67 MeV/atom

    International Nuclear Information System (INIS)

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67 MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280 emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240 emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples

  14. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67 MeV/atom

    Science.gov (United States)

    Koide, T.; Saitoh, Y.; Sakamaki, M.; Amemiya, K.; Iwase, A.; Matsui, T.

    2014-05-01

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67 MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280 emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240 emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  15. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67 MeV/atom

    Energy Technology Data Exchange (ETDEWEB)

    Koide, T.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University Sakai, Osaka 599-8531 (Japan)

    2014-05-07

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67 MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280 emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240 emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  16. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.;

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under i....... Amorphous track modelling of luminescence detector efficiency in proton and carbon beams. 4.Tsuruoka C, Suzuki M, Kanai T, et al. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 2005;163:494-500.......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion...... factors is the normalization of the energy distribution around the particle tracks to the actual LET value. Later on we check what is the effect of radial dose distribution choice on kappa parameter for different types and energy of ions. Outline References 1.Katz R, Sharma SC.Response of cells to fast...

  17. Optical properties of ion-beam-deposited ion-modified diamondlike (a-C:H) carbon

    International Nuclear Information System (INIS)

    Diamondlike carbon (DLC) is a hard, semitransparent material usually containing varying amounts of hydrogen. These materials have numerous potential applications, including use as coatings for infrared optics, and as such, the effects of damaging irradiation is of practical interest. In this paper we present results of variable angle spectroscopic ellipsometric (VASE) studies of ion-beam-deposited DLC films. These films have been further modified by directing 1-MeV gold ions, as well as 6.4-MeV fluorine ions, through the DLC and into the underlying silicon substrates, and the percentage of hydrogen in the film was measured versus fluence using proton recoil analysis. Optical analysis was performed assuming the Lorentz oscillator model. Three versions were used: one oscillator, two oscillator (with one fixed in energy), and two oscillator with all parameter variable. The latter model fits the VASE data extremely well, and the two oscillators can be interpreted as involving π to π* and σ to σ* band transitions. With ion modification the oscillators shift to lower photon energy, consistent with reduction in hydrogen concentration and possible increased graphitization

  18. Spatial fragment distribution from a therapeutic pencil-like carbon beam in water

    International Nuclear Information System (INIS)

    The latest heavy ion therapy tends to require information about the spatial distribution of the quality of radiation in a patient's body in order to make the best use of any potential advantage of swift heavy ions for the therapeutic treatment of a tumour. The deflection of incident particles is described well by Moliere's multiple-scattering theory of primary particles; however, the deflection of projectile fragments is not yet thoroughly understood. This paper reports on our investigation of the spatial distribution of fragments produced from a therapeutic carbon beam through nuclear reactions in thick water. A ΔE-E counter telescope system, composed of a plastic scintillator, a gas-flow proportional counter and a BGO scintillator, was rotated around a water target in order to measure the spatial distribution of the radiation quality. The results revealed that the observed deflection of fragment particles exceeded the multiple scattering effect estimated by Moliere's theory. However, the difference can be sufficiently accounted for by considering one term involved in the multiple-scattering formula; this term corresponds to a lateral 'kick' at the point of production of the fragment. This kick is successfully explained as a transfer of the intra-nucleus Fermi momentum of a projectile to the fragment; the extent of the kick obeys the expectation derived from the Goldhaber model

  19. Particle beam radiation therapy using carbon ions and protons for oligometastatic lung tumors

    International Nuclear Information System (INIS)

    A study was undertaken to analyze the efficacy and feasibility of particle beam radiation therapy (PBRT) using carbon ions and protons for the treatment of patients with oligometastatic lung tumors. A total of 47 patients with 59 lesions who underwent PBRT for oligometastatic lung tumors between 2003 and 2011 were included in this study. Patient median age was 66 (range, 39–84) years. The primary tumor site was the colorectum in 11 patients (23.4%), lung in 10 patients (21.3%) and a variety of other sites in 26 patients (55.3%). Thirty-one patients (66%) received chemotherapy prior to PBRT. Thirty-three lesions were treated with 320-MeV carbon ions and 26 were treated with 150- or 210-Mev protons in 1–4 portals. A median total dose of 60 (range, 52.8–70.2) GyE was delivered at the isocenter in 8 (range, 4–26) fractions. The median follow-up time was 17 months. The local control, overall survival and progression-free survival rates at 2 years were 79%, 54 and 27% respectively. PBRT-related toxicities were observed; six patients (13%) had grade 2 toxicity (including grade 2 radiation pneumonitis in 2) and six patients (13%) had grade 3 toxicity. Univariate analysis indicated that patients treated with a biologically equivalent dose of 10 (BED10) <110 GyE10, had a significantly higher local recurrence rate. Local control rates were relatively lower in the subsets of patients with the colorectum as the primary tumor site. No local progression was observed in metastases from colorectal cancer irradiated with a BED10 ≥ 110 GyE10. There was no difference in treatment results between proton and carbon ion therapy. PRBT is well tolerated and effective in the treatment of oligometastatic lung tumors. To further improve local control, high-dose PBRT with a BED10 ≥ 110 GyE10 may be promising. Further investigation of PBRT for lung oligometastases is warranted

  20. The effect of Ar neutral beam treatment of screen-printed carbon nanotubes for enhanced field emission

    International Nuclear Information System (INIS)

    This study examined the effectiveness of an Ar neutral beam as a surface treatment for improving the field emission properties of screen-printed carbon nanotubes (CNTs). A short period of the neutral beam treatment on tape-activated CNTs enhanced the emission properties of the CNTs, showing a decrease in the turn-on field and an increase in the number of emission sites. The neutral beam treatment appeared to render the CNT surfaces more actively by exposing more CNTs from the CNT paste without cutting or kinking the already exposed long CNT emitters. The treated CNTs emitted more electrons than the CNTs treated using other methods. When the field emission properties were measured after the neutral beam treatment, the turn-on field decreased from 1.65 to 0.60 V/μm and the emission field at 1 mA/cm2 decreased from 3.10 to 2.41 V/μm. After the neutral beam treatment for 10 s, there was an improvement in the stability of the emission current at a constant electric field. It is expected that the neutral beam treatment introduced in this study will provide an easy way of improving the emission intensity and stability of screen-printed CNT emitters

  1. Synthesis of Co-containing mesoporous carbon foams using a new cobalt-oxo cluster as a precursor

    International Nuclear Information System (INIS)

    A novel trinuclear cobalt-oxo cluster 2[Co3O(Ac)6(H2O)3]·H2O (Co-OXO) has been obtained and characterized by X-ray single-crystal diffraction and elemental analysis. The structure of Co-OXO displays 3D supramolecular networks through hydrogen bonds and generates boron nitride (bnn) topology. Co-OXO was further used as a precursor to synthesize Co-containing mesoporous carbon foams (Co-MCFs), which exhibit highly ordered mesostructure with specific surface area of 614 m2 g−1 and uniform pore size of 2.7 nm. Charge–discharge tests show that the specific discharge capacitance of Co-MCFs is 7% higher than that of the MCFs at the current density of 100 mA g−1, and 26% higher than that of MCFs at the current density of 3 A g−1. The electrochemical behaviors of Co-MCFs are obviously improved due to the improved wettability, increased graphitization degree and the pseudo-capacitance through additional faradic reactions arising from cobalt. - Graphical Abstract: A new trinuclear cobalt-oxo cluster, 2[Co3O(Ac)6(H2O)3]·H2O (1), was obtained and further used as a precursor to synthesize Co-containing mesoporous carbon foams (Co-MCFs) which exhibit improved electrochemical behaviors. Highlights: ► A new trinuclear cobalt-oxo cluster (1) were obtained. ► 1 is joined by hydrogen bonds to construct a 3D structure showing bnn topology. ► 1 was further used to obtain Co-containing mesoporous carbon foams (Co-MCFs). ► Co-MCFs exhibit highly ordered mesostructure and uniform pore sizes. ► Electrochemical behaviors of Co-MCFs are obviously improved compared with pure MCFs.

  2. Properties of fast carbon cluster microbeams produced with a tapered capillary

    International Nuclear Information System (INIS)

    We study the transmission properties of fast cluster ions (Cn+ (n = 2–4) with velocities ranging from 0.89 to 1.79 a.u.) through a single tapered capillary with an outlet diameter of 13.7 μm. We investigate the projectile-velocity dependence of the transmission fraction from the measurements of transmitted particle energy spectra. It is found that the non-fragmentation fraction of C2+ projectiles increases with decreasing velocity, indicating that fragmentation occurs mainly via close collisions with the surfaces of the capillary wall. For Cn+ (n = 2–4) ions with the same incident velocity, the cluster-size dependence of the non-fragmentation fraction shows even–odd alternation, implying that the fraction includes contributions from stable clusters surviving the grazing scattering process at the capillary surface. We also find that the angular distribution of transmitted particles is narrower for cluster projectiles compared with atomic projectiles.

  3. Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems design

    International Nuclear Information System (INIS)

    Highlights: • The mechanical behaviour of partially bonded CFRP strengthened beams was modelled. • Two dimensional non-linear finite element models were developed. • Partially bonded beams can present similar flexural strength to fully bonded ones. • Relations between the bonded length and the strength reduction were proposed. • The proposed relations were used for the design of fire protection systems. - Abstract: Recent fire resistance tests on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymers (CFRP) laminates showed that it is possible to attain considerable fire endurance provided that thermal insulation is applied at the anchorage zones of the strengthening system. With such protection, although the CFRP laminate prematurely debonds in the central part of the beam, it transforms into a cable fixed at the extremities until one of the anchorage zones loses its bond strength. The main objective of this paper is to propose a simplified methodology for the design of fire protection systems for CFRP strengthened-RC beams, which is based on applying thicker insulation at the anchorage zones (promoting the above mentioned “cable behaviour”) and a thinner one at the current zone (avoiding tensile rupture of the carbon fibres). As a first step towards the validation of this methodology, finite element (FE) models were developed to simulate the flexural behaviour at ambient temperature of full-scale RC beams strengthened with CFRP laminates according to the externally bonded reinforcement (EBR) and near surface mounted (NSM) techniques, in both cases fully or partially bonded (the latter simulating the cable). The FE models were calibrated with results of 4-point bending tests on small-scale beams and then extended for different beam geometries, with spans (L) varying from 2 m to 5 m, in which the influence of the CFRP bonded length (lb) and the loading type (point or uniformly distributed) on the strength reduction was

  4. Singly- and doubly-negative carbon clusters in sputtering: Energy spectra, abundance distributions and unimolecular fragmentation

    International Nuclear Information System (INIS)

    The emission of singly- and doubly-charged negative cluster ions in sputtering of graphite by 14.5 keV Cs+ ion bombardment was investigated by mass spectrometry. Specifically, for anionic Cn- (n≤23) and CsCn- (n≤11) and dianionic Cn2- (n≤39) species the emission-energy spectra were recorded and their abundance distributions as a function of cluster size n were determined. The energy spectra provided evidence for cluster decomposition in the ion accelerating region of the spectrometer corresponding to a time scale from some 10-10 s to several 10-8 s. The abundance of these fragment ions are similar to those of the parent ions in terms of the dependence on the size n and their absolute magnitudes converge with increasing cluster size. Due to energetic ejection events, the clusters are sputtered with high internal energies; they cool by unimolecular decomposition. The most probable fragmentation process for Cn- appears to be by evaporation of a neutral C2 molecule. For these decay reactions, the fragmentation-time distributions were derived from the appropriate parts of the energy spectra; they were found to scale exponentially with time. From these data the average lifetimes τ for these unimolecular decompositions were determined. For Cn- the lifetimes slightly increase with n: τ ∼ 8 x 10-9 s at n=6 to τ ∼ 5 x 10-8 s at n=25. Similar values are found for CsCn-, whereas for the dianionic clusters Cn2- they are shorter, τ ∼ (5-7) x 10-9 s for n=12-18. Estimates of internal energies, Eint, of sputtered Cn- clusters were derived from these lifetimes, employing statistical theories of unimolecular decomposition. Values of Eint increase with cluster size n for 5≤n≤25, whereas the average internal energy per constituent atom, Eint/n amounts to ∼1 eV in that range

  5. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    OpenAIRE

    Zhang, Rui; Taddei, Phillip J.; Fitzek, Markus M.; Newhauser, Wayne D.

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several...

  6. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    Science.gov (United States)

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2016-06-01

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei. PMID:26671480

  7. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  8. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute.

    Science.gov (United States)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C(4+) beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C(4+) was almost 14 μA at 15 kV extraction voltage. To get higher current of the C(4+) beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10(-7) mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C(4+) beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed. PMID:24593482

  9. Improvement of the gas cluster ion beam-(GCIB)-based molecular secondary ion mass spectroscopy (SIMS) depth profile with O2(+) cosputtering.

    Science.gov (United States)

    Chu, Yi-Hsuan; Liao, Hua-Yang; Lin, Kang-Yi; Chang, Hsun-Yun; Kao, Wei-Lun; Kuo, Ding-Yuan; You, Yun-Wen; Chu, Kuo-Jui; Wu, Chen-Yi; Shyue, Jing-Jong

    2016-04-21

    Over the last decade, cluster ion beams have displayed their capability to analyze organic materials and biological specimens. Compared with atomic ion beams, cluster ion beams non-linearly enhance the sputter yield, suppress damage accumulation and generate high mass fragments during sputtering. These properties allow successful Secondary Ion Mass Spectroscopy (SIMS) analysis of soft materials beyond the static limit. Because the intensity of high mass molecular ions is intrinsically low, enhancing the intensity of these secondary ions while preserving the sample in its original state is the key to highly sensitive molecular depth profiles. In this work, bulk poly(ethylene terephthalate) (PET) was used as a model material and analyzed using Time-of-Flight SIMS (ToF-SIMS) with a pulsed Bi3(2+) primary ion. The optimized hardware of a 10 kV Ar2500(+) Gas Cluster Ion Beam (GCIB) with a low kinetic energy (200-500 V) oxygen ion (O2(+)) as a cosputter beam was employed for generating depth profiles and for examining the effect of beam parameters. The results were then quantitatively analyzed using an established erosion model. It was found that the ion intensity of the PET monomer ([M + H](+)) and its large molecular fragment ([M - C2H4O + H](+)) steadily declined during single GCIB sputtering, with distortion of the distribution information. However, under an optimized GCIB-O2(+) cosputter, the secondary ion intensity quickly reached a steady state and retained >95% intensity with respect to the pristine surface, although the damage cross-section was larger than that of single GCIB sputtering. This improvement was due to the oxidation of molecules and the formation of -OH groups that serve as proton donors to particles emitted from the surface. As a result, the ionization yield was enhanced and damage to the chemical structure was masked. Although O2(+) is known to alter the chemical structure and cause damage accumulation, the concurrently used GCIB could

  10. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy

    Science.gov (United States)

    Grevillot, L.; Stock, M.; Vatnitsky, S.

    2015-10-01

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.

  11. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy

    International Nuclear Information System (INIS)

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular.A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design.A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients. (paper)

  12. Carbon ion beam treatment in patients with primary and recurrent sacrococcygeal chordoma

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, Matthias; Jensen, Alexandra; Herfarth, Klaus [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); Welzel, Thomas [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Ellerbrock, Malte; Haberer, Thomas [Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); Jaekel, Oliver [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); German Cancer Research Center (dkfz), Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Debus, Juergen [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); German Cancer Research Center (dkfz), Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Deutsches Konsortium fuer Translationale Krebsforschung (DKTK), Heidelberg (Germany)

    2015-07-15

    The purpose of this work was to evaluate the results of high-dose radiation treatment using carbon ion therapy, alone or combined with intensity-modulated radiation treatment (IMRT), in patients with sacral chordoma. Between 2009 and 2012, 56 patients with sacral chordoma were treated in our center. The tumor was located above S3 in 33 patients and in S3 or below in 23 patients. In all, 41 patients received radiation therapy for the primary tumor, while 15 patients were treated for the recurrent tumor. Toxicity was measured using NCI CTCAE v.4.03. Local control (LC) and overall survival (OS) were evaluated with the Kaplan-Meier method. A total of 23 patients were irradiated with carbon ions in combination with photon IMRT, while 33 received carbon ion therapy only. Forty-three patients had a macroscopic tumor at treatment start with a median tumor size (GTV) of 244 ml (range 5-1188 ml). The median total dose was 66 Gy (range 60-74 Gy; RBE). After a median follow-up time of 25 months, the 2- and 3-year local control probability was 76 % and 53 %, respectively. The overall survival rate was 100 %. Treatment for primary tumor and male patients resulted in significant better local control. No higher toxicity occurred within the follow-up time. High-dose photon/carbon ion beam radiation therapy is safe and, especially for primary sacral chordomas, highly effective. A randomized trial is required to evaluate the role of primary definitive hypofractionated particle therapy compared with surgery with or without adjuvant radiotherapy. (orig.) [German] Evaluierung der Ergebnisse nach hochdosierter Kohlenstoffionentherapie, allein oder in Kombination mit einer intensitaetsmodulierten Photonenbestrahlung (IMRT), bei Patienten mit einem sakralen Chordom. Zwischen 2009 und 2012 wurden 56 Patienten mit sakralen Chordomen in unserem Zentrum behandelt. Der Tumor war bei 33 Patienten oberhalb von S3 und bei 23 Patienten auf Hoehe von S3 oder unterhalb davon lokalisiert. Insgesamt

  13. CNO abundances and carbon isotope ratios in evolved stars of the open clusters NGC 2324, NGC 2477, and NGC 3960

    CERN Document Server

    Tautvaisiene, Grazina; Bragaglia, Angela; Randich, Sofia; Zenoviene, Renata

    2016-01-01

    Our main aim is to determine carbon-to-nitrogen and carbon isotope ratios for evolved giants in the open clusters NGC 2324, NGC 2477, and NGC 3960, which have turn-off masses of about 2 Msun, and to compare them with predictions of theoretical models. High-resolution spectra were analysed using a differential synthetic spectrum method. Abundances of carbon were derived using the C2 Swan (0,1) band heads at 5135 and 5635.5 A. The wavelength interval 7940-8130 A with strong CN features was analysed to determine nitrogen abundances and carbon isotope ratios. The oxygen abundances were determined from the [Oi] line at 6300 A. The mean values of the CNO abundances are [C/Fe]=-0.35+-0.06 (s.d.), [N/Fe]=0.28+-0.05, and [O/Fe]=-0.02+-0.10 in seven stars of NGC 2324; [C/Fe]=-0.26+-0.02, [N/Fe]=0.39+-0.04, and [O/Fe]=-0.11+-0.06 in six stars of NGC 2477; and [C/Fe]=-0.39+-0.04, [N/Fe]=0.32+-0.05, and [O/Fe]=-0.19+-0.06 in six stars of NGC 3960. The mean C/N ratio is equal to 0.92+-0.12, 0.91+-0.09, and 0.80+-0.13, resp...

  14. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    Institute of Scientific and Technical Information of China (English)

    Niu Dong-Mei; Li Hai-Yang; Luo Xiao-Lin; Liang Feng; Cheng Shuang; Li An-Lin

    2006-01-01

    The multi-charged sulfur ions of Sq+ (q ≤ 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 1010 ~ 1012W·cm-2. S6+ is the dominant multicharged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  15. Very high temperature chemical vapor deposition of new carbon thin films using organic semiconductor molecular beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Takuya [Department of Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Shimada, Toshihiro, E-mail: shimada@chem.s.u-tokyo.ac.j [Department of Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Hanzawa, Akinori; Hasegawa, Tetsuya [Department of Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2009-11-30

    We carried out the preparation and characterization of new carbon films deposited using an organic molecular beam deposition apparatus with very high substrate temperature (from room temperature to 2670 K), which we newly developed. When we irradiated molecular beam of organic semiconductor perylene tetracarboxylic acid dianhydride (PTCDA) on Y{sub 0.07}Zr{sub 0.93}O{sub 2} (111) at 2170 K, a new carbon material was formed via decomposition and fusing of the molecules. The films were characterized with an atomic force microscope (AFM), Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Zirconium carbide (ZrC) films were identified beneath the topmost carbon layer by XRD and XPS analyses, which results from chemical reactions of the substrate and the molecules. Partially graphitized aromatic rings of PTCDA were observed from Raman spectroscopy. The present technique - very high temperature chemical vapor deposition using organic semiconductor sources - will be useful to study a vast unexplored field of covalent carbon solids.

  16. MODIFICATION OF CARBON STEEL BY LASER SURFACE MELTING: PART I: EFFECT OF LASER BEAM TRAVELLING SPEED ON MICROSTRUCTURAL FEATURES AND SURFACE HARDNESS

    OpenAIRE

    Hashem F. El-Labban; Abdelaziz, M.; Essam R.I. Mahmoud

    2013-01-01

    The present study aims to improve the surface hardness of carbon steel by application of laser surface melting of effective conditions. The travelling speed of laser beam during this treatment is one of the important treatment conditions. This study aims to investigate the effect of laser surface melting with different beam speeds on macro and microstructure as well as the hardness distribution through the thickness of carbon steel. To achieve this target, three different travelling speeds (1...

  17. Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam

    International Nuclear Information System (INIS)

    We report the synthesis of a polyimide matrix with a low dielectric constant for application as an intercalation material between metal interconnections in electronic devices. Porous activated carbon was embedded in the polyimide to reduce the dielectric constant, and a thin film of the complex was obtained using the spin-coating and e-beam irradiation methods. The surface of the thin film was modified with fluorine functional groups to impart water resistance and reduce the dielectric constant further. The water resistance was significantly improved by the modification with hydrophobic fluorine groups. The dielectric constant was effectively decreased by porous activated carbon. The fluorine modification also resulted in a low dielectric constant on the polyimide surface by reducing the polar surface free energy. The dielectric constant of polyimide film decreased from 2.98 to 1.9 by effects of porous activated carbon additive and fluorine surface modification.

  18. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    Science.gov (United States)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  19. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    International Nuclear Information System (INIS)

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C1, C2, and C4 at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  20. Experimental study of the water-to-air stopping power ratio of monoenergetic carbon ion beams for particle therapy

    Science.gov (United States)

    Sánchez-Parcerisa, D.; Gemmel, A.; Jäkel, O.; Parodi, K.; Rietzel, E.

    2012-06-01

    Reference dosimetry with ionization chambers requires a number of chamber-specific and beam-specific calibration factors. For carbon ion beams, IAEA report TRS-398 yields a total uncertainty of 3% in the determination of the absorbed dose to water, for which the biggest contribution arises from the water-to-air stopping power ratio (sw, air), with an uncertainty of 2%. The variation of (sw, air) along the treatment field has been studied in several Monte Carlo works presented over the last few years. Their results were, in all cases, strongly dependent on the choice of mean ionization potentials (I-values) for air and water. A smaller dependence of (sw, air) with penetration depth was observed. Since a consensus on Iw, air and Iair has not yet been reached, the validity of such studies for clinical use cannot be assessed independently. Our approach is based on a direct experimental measurement of water-equivalent thicknesses of different air gaps at different beam energies. A theoretical expression describing the variation of the stopping power ratio with kinetic energy, sw,air(E), was derived from the Bethe-Bloch formula and fit to the measured data, yielding a coherent pair of Iw and Iair values with Iair/Iw = 1.157 ± 0.023. Additionally, the data from five different beam energies were combined in an average value of sw,air = 1.132 ± 0.003 (statistical) ± 0.003 (variation over energy range), valid for monoenergetic carbon ion beams at the plateau area of the depth dose distribution. A detailed uncertainty analysis was performed on the data, in order to assess the limitations of the method, yielding an overall standard uncertainty below 1% in sw,air(E). Therefore, when properly combined with the appropriate models for the fragment spectra, our experimental work can contribute to narrow the uncertainty margins currently in use in absorbed dose to water determination for dosimetry of carbon ion beam radiotherapy.

  1. Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets

    Science.gov (United States)

    Jedari Salami, S.

    2016-02-01

    Bending analysis of a sandwich beam with soft core and carbon nanotube reinforced composite (CNTRC) face sheets in the literature is presented based on Extended High order Sandwich Panel Theory (EHSAPT). Distribution of fibers through the thickness of the face sheets could be uniform or functionally graded (FG). In this theory the face sheets follow the first order shear deformation theory (FSDT). Besides, the two dimensional elasticity is used for the core. The field equations are derived via the Ritz based solution which is suitable for any essential boundary condition. The influences of boundary conditions on bending response of the sandwich panel with soft core and CNTRC face sheet are investigated. In each type of boundary condition the effect of distribution pattern of CNTRCs on many essential involved parameters of the sandwich beam with functionally graded carbon nanotube reinforced composite (FG- CNTRC) face sheets are studied in detail. Finally, experimental result have been compared with those obtained based on developed solution method. It is concluded that, the sandwich beam with X distribution figure of face sheets is the strongest with the smallest transverse displacement, and followed by the UD, O and ∧-ones, respectively.

  2. First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2-10)

    Science.gov (United States)

    Afshar, M.; Hoseini, S. S.; Sargolzaei, M.

    2016-07-01

    In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (C n X; X = Al, Si; n = 2-10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO-LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that C n Si clusters have more stability compared to C n Al clusters. In addition, our magnetic calculations were shown that the C n Al isomers are magnetic objects whereas C n Si clusters are nonmagnetic objects.

  3. Penetration of Hydrogen clusters from 10 to 120 kev/u in carbon foils. Study of their slowing-down and charge distribution of emerging fragments

    International Nuclear Information System (INIS)

    This work is devoted to the experimental study of the interaction between fast (10 to 120 keV/p) hydrogen clusters with thin solid targets. First, we have studied the slowing-down of Hn+(2≤n≤21) clusters through carbon foils. Up to date this had been made only with molecular ions. We obtain evidence for vicinage effects on the energy loss of proton-clusters. We show that for projectile energies larger than 50 keV/p, the energy loss of a proton in a cluster is enhanced when compared to that of an isolated proton of the same velocity. At lower incident energies, it is a decrease of the energy loss which is observed. The same effect is also observed in the energy lost in the entrance window of a surface barrier detector bombarded by clusters. This phenomenon is interpreted in terms of interferences between individual polarisation wakes induced by each proton of the cluster. In the second part, we propose an accurate method to study the charge state of the atomic fragments resulting from the dissociation of fast Hn+ (2≤n≤15) clusters through a carbon foil. This method gives also the distribution of the neutral atoms among the emerging fragments. These distributions are finally compared with binomial laws expected from independent particles

  4. N-O versus N-N bond activation in reaction of N2O with carbon cluster ions: Experimental and ab initio studies of the effects of geometric and electronic structure

    Science.gov (United States)

    Resat, Marianne Sowa; Smolanoff, Jason N.; Goldman, Ilyse B.; Anderson, Scott L.

    1994-06-01

    We report a combined experimental and theoretical study of the reaction of small carbon cluster cations with N2O aimed at understanding the reaction mechanism and how it is affected by the electronic and geometric structure of the C+n reactants. Cross sections for reaction of C+n (n=3-12) with N2O were measured over a collision energy range from 0.1-10 eV, using a guided ion beam tandem mass spectrometer. Ab initio calculations were used to examine the structure and energetics of reactant and product species. Small clusters, which are linear, react with no activation barrier, resulting in either oxide or nitride formation. The branching between oxide and nitride channels shows a strong even-odd alternation, with even clusters preferentially forming nitrides. This appears to be correlated with an even/odd alternation in the ionization potential of the CnN. The larger, monocyclic C+n have activation barriers for reaction, and a completely different product distribution. Secondary reactions of the primary oxide and nitride products were studied at high N2O pressures. Products containing two O or two N atoms are not observed, but it is possible to add one of each. Possible reaction mechanisms are discussed and supported by thermochemistry derived from spin restricted ab initio calculations.

  5. Ion-beam and microwave-stimulated functionalization and derivatization of carbon nanotubes

    Science.gov (United States)

    Makala, Raghuveer S.

    Derivatizing carbon nanotubes (CNTs) with other low-dimensional nanostructures is of widespread interest for creating CNT-based nanocomposites and devices. Conventional routes based on wet-chemical oxidation or hydrophobic adsorption do not allow premeditated control over the location or spatial extent of functionalization. Moreover, aggressive oxidative treatments and agitation in corrosive environments lead to CNT shortening, damage, and incorporation of excess impurity concentrations. Thus, it is imperative to explore and develop alternative functionalization methods to overcome these shortcomings. The work presented in this thesis outlines two such methodologies: one based on focused ion irradiation for siteselective functionalization and the other that employs microwave-stimulation for mild, yet rapid and homogenous CNT functionalization. The utility of 10 and 30 kcV Ga+ focused ion beams (FIB) to thin, slice, weld, and alter the structure and composition at precise locations along the CNT axis is presented. This strategy of harnessing ion-beam-induced defect generation and doping is attractive for modulating chemical and electrical properties along the CNT length, and fabricate CNT-based heterostructures and networks. A novel approach that utilizes focused ion irradiation to site-selectively derivatize preselected segments of CNTs with controlled micro-/nano-scale lateral spatial resolution is demonstrated. Irradiation followed by air-exposure results in functionalized CNT segments ranging from the nanoscopic to the macroscopic scale. The functional moieties are utilized to site-selectively anchor Au nanoparticles, fluorescent nanospheres, an amino acid---lysine, a charge-transfer metalloprotein---azurin, and a photoactive protein---bacteriorhodopsin by means of electrostatic or covalent interactions. This approach is versatile and can be extended to obtaining other molecular moieties and derivatives opening up possibilities for building new types of nano

  6. Irradiation effect of gas-hydrate cluster ions on solid surfaces

    International Nuclear Information System (INIS)

    In our newly developed gas-hydrate cluster ion source, a vapor of water bubbling with carbon dioxide (CO2) gas was ejected through a nozzle into a vacuum region, and mixed beams of water clusters and carbon dioxide-hydrate clusters were produced by adiabatic expansion. According to time-of-flight measurements, the largest water clusters consisted of approximately 2800 molecules at a vapor pressure of 0.3 MPa. Also, the largest mixed clusters contained approximately 2000 molecules. Copper and silicon substrates were irradiated by the water cluster ions as well as carbon dioxide-hydrate cluster ions. X-ray photoelectron spectroscopy measurements showed that carbon was included in the Cu and Si substrates irradiated by the carbon dioxide-hydrate cluster ions, and a chemical shift owing to the formation of carboxyl radicals occurred on the Cu surface. Furthermore, the Cu surface was sputtered, and the sputtering depth was larger than the distance penetrated by the water cluster ion irradiation. Therefore, the formation of carboxyl radicals played an important role in the sputtering of the Cu surface, which occurred effectively in carbon dioxide-hydrate cluster ion irradiation

  7. Proton, Helium and Carbon Radiation Beam Targeting Reactive Oxygen, Nitrogen and Halogenated Species in TRIM-SRIM Model

    International Nuclear Information System (INIS)

    Nowadays proton beam radiation therapy is considered in few centers for management of malignancies. This study is aimed to explore the effect of proton, helium or carbon irradiation on free radicals. This study was conducted in department of Physiology/Medical physics, College of Medicine, Al-Mustansiriya University in Baghdad, Iraq during October 2009. TRIM-SRIM software version 1998 and2003 were used for computed Bragg peak and for calculated the effect of proton, helium and carbon ions against free radicals related to oxygen, nitrogen and halogen species. The lowest stopping power near Bragg's peak of proton targeting free radicals was against superoxide anion and its curve (the stopping power against energy) was shifted down while that of peroxynitrite(ONOO-) was shifted up. The stopping powers of helium targeting all studied free radicals were lower than corresponding proton irradiation but it required higher energy. Lower stopping power of carbon irradiation targeted hydroxyl(OH-) and halogenated radicals than the other reactive species were observed. It concludes that such from of external beam irradiation is associated with direct scavenging effect on free radicals of whatever sources.

  8. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    Science.gov (United States)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  9. Investigations of acetonitrile solvent cluster formation in supercritical carbon dioxide, and its impact on microscale syntheses of carbon-11-labeled radiotracers for PET

    International Nuclear Information System (INIS)

    A new strategy has been developed for synthesizing positron emission tomography (PET) radiotracers using [11C]methyl iodide. This strategy relies on the ability of organic co-solvents to cluster within mixtures of supercritical fluids resulting in localized regions of high density which can serve as microscopic pockets for reaction. We've shown that acetonitrile will cluster about dilute solutes when mixtures of this co-solvent with carbon dioxide are forced to behave as a homogeneous fluid at the critical point. We applied this strategy in a systematic investigation of the conditions for optimized reaction between methyl iodide and L-α-methyl-N-2-propynyl phenethylamine (nordeprenyl) to yield L-deprenyl. Variables such as temperature, ultraviolet light exposure, co-solvent concentration, system pressure, and methyl iodide concentration were explored. The synthesis of radioactive [11C]-L-deprenyl using no-carrier-added concentrations of [11C]methyl iodide was also tested. Results showed that greater than 90% radiochemical yield of the desired product could be attained using 40 times less labeling substrate than in conventional PET tracer syntheses

  10. Generation of intense pulsed ion beam by a Br type magnetically insulated ion diode with carbon plasma gun

    International Nuclear Information System (INIS)

    To apply the pulsed heavy ion beam (PHIB) to an implantation process of semiconductor, purity of the ion beam is very important. To obtain a pure PHIB we have proposed a new type of accelerator using bipolar pulse. To develop the accelerator we are developing a new type of Br ion diode using a carbon plasma gun. By using the plasma gun, ion source plasma of ion current density approx. = 30 A/cm2 was obtained. The Br ion diode was successfully operated with plasma gun at diode voltage approx. = 100 kV, diode current approx. = 1 kA, pulse duration approx. = 200 ns and 3 A/cm2 of ion current density was obtained. (author)

  11. Formation of nanoscale carbon structures in the surface layer of metals under the impact of high intensity ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Remnev, G.E., E-mail: remnev@hvd.tpu.ru [High-Voltage Research Institute at Tomsk Polytechnic University, 2a Lenin Ave., Tomsk 634028 (Russian Federation); Uglov, V.V., E-mail: uglov@bsu.by [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Shymanski, V.I. [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Pavlov, S.K. [High-Voltage Research Institute at Tomsk Polytechnic University, 2a Lenin Ave., Tomsk 634028 (Russian Federation); Kuleshov, A.K. [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus)

    2014-08-15

    Highlights: • Carbide phases in metals were formed by high-intense pulsed ion beam (HPIB) impact. • Tungsten and titanium carbides are characterized by nanoscale dimensions. • Carbides formation in surface layer provides its hardening. - Abstract: This work represents the results of phase composition and the mechanical properties of tungsten and titanium after high-intensity pulsed ion beam (HPIB) treatment. It was shown that nanoscale carbide particles are formed under the HPIB influence in the surface layers of metals. Raising the pulse number results in increase of volume fraction of the carbide phases. The microhardness is 1.5–2 times more than the initial value and wear resistance of the metals improves in response to alloying of tungsten and titanium with carbon atoms accompanied by the formation of carbides.

  12. Measurement of the analyzing power for proton-carbon elastic scattering in the CNI region with a 22 GeV/c polarized proton beam

    International Nuclear Information System (INIS)

    We have carried out the experiment BNL-AGS E950 to measure the analyzing power for proton-carbon elastic scattering in the Coulomb-Nuclear Interference (CNI) region with a 22 GeV/c polarized proton beam. Recoil carbons from 300 keV to a few MeV in the CNI region, were detected inside the AGS ring to identify proton-carbon elastic scattering. The preliminary results of the analyzing power measurement are presented

  13. Atomic Diffusion in Cu/Si (111) and Cu/SiO2/Si (111) Systems by Neutral Cluster Beam Deposition

    Institute of Scientific and Technical Information of China (English)

    CAO Bo; LI Gong-Ping; CHEN Xi-Meng; CHO Seong-Jin; KIM Hee

    2008-01-01

    @@ The Cu films are deposited on two kinds of p-type Si (111) substrates by ionized cluster beam (ICB) technique.The interface reaction and atomic diffusion of Cu/Si (111) and Cu/SiO2/Si (111) systems are studied at different annealing temperatures by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Some significant results are obtained: For the Cu/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs when annealed at 230℃. The diffusion coefficients of the samples annealed at 230℃and 500℃ are 8.5 × 10-15 cm2.s-1 and 3.0 × 10-14 cm2.s-1, respectively. The formation of the copper-silicide phase is observed by XRD, and its intensity becomes stronger with the increase of annealing temperature. For the Cu/SiO2/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs and copper silicides are formed when annealed at 450℃. The diffusion coefficients of Cu in Si are calculated to be 6.0 × 10-16 cm2.s-1 at 450℃, due to the fact that the existence of the SiO2 layer suppresses the interdiffusion of Cu and Si.

  14. Effects of E-Beam Irradiation on the Chemical, Physical, and Electrochemical Properties of Activated Carbons for Electric Double-Layer Capacitors

    OpenAIRE

    Min-Jung Jung; Mi-Seon Park; Young-Seak Lee

    2015-01-01

    Activated carbons (ACs) were modified via e-beam irradiation at various doses for use as an electrode material in electric double-layer capacitors (EDLCs). The chemical compositions of the AC surfaces were largely unchanged by the e-beam irradiation. The ACs treated with the e-beam at radiation doses of 200 kGy exhibited higher nanocrystallinity than the untreated ACs. The specific surface areas and pore volumes of the e-beam irradiated ACs were also higher than those of the untreated ACs. Th...

  15. Generation of oxygen, carbon and metallic ion beams by a compact microwave source

    International Nuclear Information System (INIS)

    A small microwave ion source fabricated from a quartz tube and enclosed externally by a cavity has been operated with different geometries and for various gases in a cw mode. This source has been used to generate oxygen ion beams with energy as low as 5.5 eV. Beam energy spread has been measured to be less than 1 eV. By installing different metal plates on the front extraction electrode, metallic ion beams such as (Be, Cu, Al, etc.) can be produced

  16. Measurement of neutral current coherent neutral pion production on carbon in a few-GeV neutrino beam

    OpenAIRE

    Kurimoto, Y; Alcaraz-Aunion, J. L.; Brice, S J; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; C. Giganti; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.

    2010-01-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current cohere...

  17. Carbon fiber composite targets for nuclear fusion technology: a focused ion beam/scanning electron microscope investigation.

    Science.gov (United States)

    Ghezzi, F; Magni, S; Milani, M; Tatti, F

    2007-01-01

    Carbon fiber composite (CFC) targets are investigated by a focused ion beam/scanning electron microscope (FIB/SEM) in a joint project aiming at the development of robust divertors in the International Thermonuclear Experimental Reactor (ITER). These mockups are exposed to a plasma that simulates the off-normal thermal loads foreseen for ITER and display a rich, puzzling impact scenario. Morphological elements are identified at the exposed surface and beneath it, and are examined in order to point out the relevant processes involved. Each technique adopted is discussed and evaluated. PMID:18200678

  18. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth

    Science.gov (United States)

    Tang, M.; Hong, M. H.; Choo, Y. S.; Tang, Z.; Chua, Daniel H. C.

    2010-11-01

    In this work, super-hydrophobic surfaces were fabricated by femtosecond laser micro-machining and chemical vapor deposition to constitute hybrid scale micro/nano-structures formed by carbon nanotube (CNT) clusters. Nickel thin-film microstructures, functioning as CNT growth catalyst, precisely control the distribution of the CNT clusters. To obtain minimal heat-affected zones, femtosecond laser was used to trim the nickel thin-film coating. Plasma treatment was subsequently carried out to enhance the lotus-leaf effect. The wetting property of the CNT surface is improved from hydrophilicity to super-hydrophobicity at an advancing contact angle of 161 degrees. The dynamic water drop impacting test further confirms its enhanced water-repellent property. Meanwhile, this super-hydrophobic surface exhibits excellent transparency with quartz as the substrate. This hybrid fabrication technique can achieve super-hydrophobic surfaces over a large area, which has potential applications as self-cleaning windows for vehicles, solar cells and high-rise buildings.

  19. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells

    International Nuclear Information System (INIS)

    Purpose: The effects of a carbon ion beam and X-rays on human pancreatic cancer stem-like cells were examined from the point of view of clonogenic survival and DNA repair. Materials and methods: Human pancreatic cancer stem-like cells were treated with and without carbon ion and X-ray irradiation, and then colony, spheroid and tumor formation assays as well as γH2AX foci formation assay were performed. Results: The relative biological effectiveness (RBE) values of a carbon ion beam relative to X-ray for the MIA PaCa-2 and BxPc-3 cells at the D10 values were 1.85–2.10. The ability for colony, spheroid formation, and tumorigenicity from cancer stem-like CD44+/CD24+ cells is significantly higher than that from non-cancer stem-like CD44−/CD24−cells. FACS data showed that CD44+/CD24+ cells were more highly enriched after X-rays compared to carbon ion irradiation at isoeffective doses. The RBE values for the carbon ion beam relative to X-ray at the D10 levels for CD44+/CD24+ cells were 2.0–2.19. The number of γH2AX foci in CD44−/CD24− cells was higher than that of CD44+/CD24+ cells after irradiation with either X-ray or carbon ion beam. The number of γH2AX foci in CD44+/CD24+ cells was almost the same in the early time, but it persists significantly longer in carbon ion beam irradiated cells compared to X-rays. Conclusions: Carbon ion beam has superior potential to kill pancreatic cancer stem cell-like cells, and prolonged induction of DNA damage might be one of the pivotal mechanisms of its high radiobiological effects compared to X-rays.

  20. Negative ion productions in high velocity collision between small carbon clusters and Helium atom target

    International Nuclear Information System (INIS)

    We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn−*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.

  1. Hydrogen reverses the clustering tendency of carbon in amorphous silicon oxycarbide

    OpenAIRE

    Hepeng Ding; Demkowicz, Michael J.

    2015-01-01

    Amorphous silicon oxycarbide (SiOC) is of great technological interest. However, its atomic-level structure is not well understood. Using density functional theory calculations, we show that the clustering tendency of C atoms in SiOC is extremely sensitive to hydrogen (H): without H, the C-C interaction is attractive, leading to enrichment of aggregated SiC[subscript 4] tetrahedral units; with hydrogen, the C-C interaction is repulsive, leading to enrichment of randomly distributed SiCO[subsc...

  2. Isolated and clustered DNA lesions induced by high-energy iron and carbon ions

    Science.gov (United States)

    Ide, H.; Tanaka, R.; Nakaarai, Y.; Terato, H.; Furusawa, Y.

    During space flight astronauts are exposed to various types of radiation from sun and galactic cosmic rays, the latter of which contain high-energy charged particles such as Fe and C ions. The radiation risk to astronauts toward such high-energy charged particles has been assessed by ground-based experiments. When irradiated by ionizing radiation, DNA molecules suffer from oxidation of bases and strand breaks. The distribution of these lesions along the DNA strand may differ significantly between densely ionizing high-energy Fe and C ions and sparsely ionizing radiation like 60Co gamma-rays. Among various types of DNA damage, bistranded clustered lesions comprised of multiple oxidized bases or strand breaks on opposite strands within a few helical turns are of particular interest since they are assumed to be resistant to repair or induce faulty repair, hence resulting in cell killing and mutations. In the present study, we have analyzed isolated and clustered DNA lesions generated by high-energy Fe and C ions to elucidate the nature of DNA lesions. Plasmid DNA (pDEL19) was irradiated in 10 mM Tris buffer (pH 7.5) by Fe (500 MeV/amu) and C (290 MeV/amu) ions and 60Co gamma-rays. Single-strand breaks (SSB) and double-strand breaks (DSB) were quantified by analysis of conformational changes using agarose gel electrophoresis. For quantification of isolated and bistranded clustered base lesions, irradiated plasmid was exhaustively digested prior to agarose gel analysis by Endo III and Fpg that preferentially incise DNA at oxidative pyrimidine and purine lesions, respectively. The yield (site/Gy/nucleotide) of isolated damages (SSB and bases lesions) tended to decrease with increasing LET [gamma (0.2 keV/μ m) 0.77 (C) > 0.69 (Fe)]. This result is in contrast to the higher biological effectiveness (e.g. cell killing) of high-energy Fe and C ions than gamma-rays, suggesting a role of more complex damage clusters that cannot be distinguished by simple analysis of direct

  3. Vacuum Electron-Beam Evaporation of Fe Nanocrystals on Si3N4 Buffer Layer for carbon Nanotube Growth

    Institute of Scientific and Technical Information of China (English)

    万青; 王太宏; 林成鲁

    2003-01-01

    Vacuum electron-beam evaporated iron nanocrystal is used for the growth of carbon nanotubes. Atomic force microscopy and Raman scattering studies reveal the formation of beta-iron silicide islands on bare silicon substrate after annealing at 700°C in N2 ambient. In order to eliminate the influence of iron-silicon interaction, Si3N4 buffer layer with the thickness of 80 nm is used. This technical route prevents effectively the formation of iron silicide and improves the quality of the iron nanocrystals. Using these iron nanocrystals with high density (about 7 × 1010/cm2) as catalyst, high-density multiwall carbon nanotubes are synthesized on Si3N4/Si substrate.

  4. Synthesis of carbon-supported PtRh random alloy nanoparticles using electron beam irradiation reduction method

    Science.gov (United States)

    Matsuura, Yoshiyuki; Seino, Satoshi; Okazaki, Tomohisa; Akita, Tomoki; Nakagawa, Takashi; Yamamoto, Takao A.

    2016-05-01

    Bimetallic nanoparticle catalysts of PtRh supported on carbon were synthesized using an electron beam irradiation reduction method. The PtRh nanoparticle catalysts were composed of particles 2-3 nm in size, which were well dispersed on the surface of the carbon support nanoparticles. Analyses of X-ray diffraction and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy revealed that the PtRh nanoparticles have a randomly alloyed structure. The lattice constant of the PtRh nanoparticles showed good correlation with Vegard's law. These results are explained by the radiochemical formation process of the PtRh nanoparticles. Catalytic activities of PtRh/C nanoparticles for ethanol oxidation reaction were found to be higher than those obtained with Pt/C.

  5. Effect of properties of carbon fiber surface modified by anodic treatment and a coupling agent on electron beam cured epoxy composites

    International Nuclear Information System (INIS)

    A double modification method of carbon fiber surface physical and chemical properties was presented by which the carbon fibers were electrochemically oxidized and subsequently coated with an electron beam compatible coupling agent. The treated and untreated carbon fiber surface chemical properties and morphology were analyzed using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). And the carbon fiber surface energy was calculated through Kaelble method using contract angle measurement. The results show that the roughness and reactive groups of carbon fiber surface increase after anodic oxidization, moreover, polar composition of surface energy increase obviously. During EB curing the nitrogen-containing groups and basic species chemisorbed by carbon fiber surface restrain the initiators in the interface of composites, resulting in the weaker adhesion between the carbon fiber and the matrix. The coupling agent, acting as chemical bridge between the carbon fibers and the matrix, improves the interfacial properties of EB cured composites

  6. Application of Al2O3:C+fibre dosimeters for 290 MeV/n carbon therapeutic beam dosimetry

    International Nuclear Information System (INIS)

    The capability of radioluminescence (RL) dosimeters composed of carbon-doped aluminium oxide (Al2O3:C) detectors+optical fibre has been verified for absorbed dose-rate measurements during carbon radiotherapy. The RL signals from two separate Al2O3:C detectors (single crystal 'CG' and droplet 'P1') have been systematically measured and compared along the Bragg-curve and Spread-Out Bragg-Peak of 290 MeV/n carbon beams in the water. The absorbed dose response was assessed for the range of 0.5–10 Gy. For doses up to 6 Gy, we observed a linear response for both types of detectors, while for higher doses CG presented a more prominent supraliearity than P1. The RL response for low-LET protons in the entrance from the curve was found to closely resemble that observed for a clinical 6 MV X-ray beam, while it was found that P1 has a better agreement with the reference data from standard ionization chamber than CG. We observed a significant decrease in luminescence efficiency with LET in the Bragg peak region. The Al2O3:C RL luminescence efficiency differs from Al2O3:C OSL results, which implies that the signal can be corrected for LET dependency to match the correct SOBP and Bragg Peak. - Highlights: • Radioluminescence (RL) real time signal from Al2O3:C+fibre probes. • Irradiations with 290 MeV/n Carbon. • Two types of detectors were tested: droplet and single crystal. • Luminescence efficiencies for each probe were compared with 6 MV photons. • Bragg Peak and SOBP are obtained. • Luminescence efficiencies for Optically Stimulated Luminescence (OSL) and RL are compared for Al2O3:C

  7. Study on suppression mechanism of electron emission from Mo grid coated with carbon film by dual ion beam deposition

    International Nuclear Information System (INIS)

    It is problematic that electrons are emitted from the Mo grid of pulsed-controlled grid traveling wave tubes, caused by the contamination of cathode evaporation material, i.e. BaO. Some studies show that a Mo grid coated with carbon can greatly suppress grid electron emission. However, the reason for the electron emission suppression is not completely clear. To understand the mechanism of electron emission suppression of a BaO/C/Mo system, carbon films were prepared on Mo substrates at room temperature by means of DIBSD (dual ion beam sputtering deposition), and BaO layers were coated by using a chemical method. Post-annealing was conducted under a flowing nitrogen ambient at 700 .deg. C for 1.5 hours. The structure of the as-deposited carbon films was evaluated by TEM, AES and Raman spectroscopy. The annealed samples, the BaO/ Mo and BaO/C/Mo systems, were analyzed by XPS. The results suggest that the chemical reaction between BaO and C at high temperature eliminates the concentrations of Ba or BaO on the surface of the C/Mo system. It can be believed that the high work function material used as the grid surface coating and elimination of BaO on its surface have a critical effect on grid electron emission suppression. Moreover, the carbon film was characterized by density, homogeneity and high adhesion, owing to the features of DIBSD.

  8. Energy resolution methods efficiency depending on beam source position of potassium clusters in time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    Ş Şentürk; F Demiray; O Özsoy

    2007-09-01

    Energy resolution of the time-of-flight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better resolution for the parallel case while the turnaround time is more convenient for the perpendicular position. Hence the applicability of the methods used for the energy resolution depends on beam source arrangement.

  9. A TPS kernel for calculating survival vs. depth: distributions in a carbon radiotherapy beam, based on Katz's cellular track structure theory

    International Nuclear Information System (INIS)

    An algorithm was developed of a treatment planning system (TPS) kernel for carbon radiotherapy in which Katz's Track Structure Theory of cellular survival (TST) is applied as its radiobiology component. The physical beam model is based on available tabularised data, prepared by Monte Carlo simulations of a set of pristine carbon beams of different input energies. An optimisation tool developed for this purpose is used to find the composition of pristine carbon beams of input energies and fluences which delivers a pre-selected depth-dose distribution profile over the spread-out Bragg peak (SOBP) region. Using an extrapolation algorithm, energy-fluence spectra of the primary carbon ions and of all their secondary fragments are obtained over regular steps of beam depths. To obtain survival vs. depth distributions, the TST calculation is applied to the energy-fluence spectra of the mixed field of primary ions and of their secondary products at the given beam depths. Katz's TST offers a unique analytical and quantitative prediction of cell survival in such mixed ion fields. By optimising the pristine beam composition to a published depth-dose profile over the SOBP region of a carbon beam and using TST model parameters representing the survival of CHO (Chinese Hamster Ovary) cells in vitro, it was possible to satisfactorily reproduce a published data set of CHO cell survival vs. depth measurements after carbon ion irradiation. The authors also show by a TST calculation that 'biological dose' is neither linear nor additive. (authors)

  10. Electron spin resonance investigations on ion beam irradiated single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    ESR investigations on single-wall carbon nanotubes irradiated with accelerated protons, helium ions, and neon ions are reported. All spectra were accurately simulated assuming that the resonance line is a convolution of up to 4 lines originating from catalyst residues, amorphous carbon, and electrons delocalized over the conducting domains of nanotubes. The faint line observed in irradiated nanotubes at g > 2.25 was assigned to magnetic impurities. However, there are no sufficient data to confirm that this line is connected to radiation-induced magnetism in carbon nanotubes. The generation of paramagnetic defects due to the bombardment of single-wall carbon nanotubes by accelerated ions is reported. These data correlate with previous Raman and thermal investigations on the same single-wall carbon nanotubes and reveals their sensitivity to ionizing radiation. The temperature dependence of ESR spectra in the range 25-250 K was used to identify the components of the ESR spectra

  11. Cationic concentration effects on electron beam cured of carbon-epoxy composites

    International Nuclear Information System (INIS)

    Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan δ) of 167 deg. C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a Tg (tan δ) of 136 deg. C. So, the irradiated sample had its Tg increased approximately 20% and the curing process was much less time consuming.

  12. Cationic concentration effects on electron beam cured of carbon-epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Nishitsuji, D.A., E-mail: delmo_amari@yahoo.com.b [Brazilian Navy Technological Center, Sao Paulo (Brazil); Marinucci, G. [Brazilian Navy Technological Center, Sao Paulo (Brazil); Energetic and Nuclear Research Institute-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-000 Sao Paulo/SP (Brazil); Evora, M.C. [Institute of Advanced Studies/CTA, Sao Jose dos Campos/SP (Brazil); Silva, L.G.A. [Energetic and Nuclear Research Institute-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-000 Sao Paulo/SP (Brazil)

    2010-03-15

    Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan delta) of 167 deg. C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a T{sub g} (tan delta) of 136 deg. C. So, the irradiated sample had its T{sub g} increased approximately 20% and the curing process was much less time consuming.

  13. UV spectra of iron-doped carbon clusters FeC_n n = 3-6

    CERN Document Server

    Steglich, Mathias; Johnson, Anatoly; Maier, John P

    2015-01-01

    Electronic transitions of jet-cooled FeC$_n$ clusters ($n = 3 - 6$) were measured between 230 and 300 nm by a mass-resolved 1+1 resonant two-photon ionization technique. Rotational profiles were simulated based on previous calculations of ground state geometries and compared to experimental observations. Reasonable agreement is found for the planar fan-like structure of FeC$_3$. The FeC$_4$ data indicate a shorter distance between the Fe atom and the bent C$_4$ unit of the fan. The transitions are suggested to be $^{3}$A$_{2} \\leftarrow ^{3}$B$_{1}$ for FeC$_3$ and $^{5}$A$_{1} \\leftarrow ^{5}$A$_{1}$ for FeC$_4$. In contrast to the predicted C$_{\\infty \\text{v}}$ geometry, non-linear FeC$_5$ is apparently observed. Line width broadening prevents analysis of the FeC$_6$ spectrum.

  14. Hydrogen reverses the clustering tendency of carbon in amorphous silicon oxycarbide.

    Science.gov (United States)

    Ding, Hepeng; Demkowicz, Michael J

    2015-01-01

    Amorphous silicon oxycarbide (SiOC) is of great technological interest. However, its atomic-level structure is not well understood. Using density functional theory calculations, we show that the clustering tendency of C atoms in SiOC is extremely sensitive to hydrogen (H): without H, the C-C interaction is attractive, leading to enrichment of aggregated SiC4 tetrahedral units; with hydrogen, the C-C interaction is repulsive, leading to enrichment of randomly distributed SiCO3 tetrahedral units. Our results suggest that conflicting experimental characterizations of C distributions may be due to differing amounts of H present in the samples investigated. Our work also opens a path for tailoring the properties of SiOC by using the total H content to control the C distribution. PMID:26269200

  15. Electrostatic solitary waves in current layers: from Cluster observations during a super-substorm to beam experiments at the LAPD

    Czech Academy of Sciences Publication Activity Database

    Pickett, J. S.; Chen, L. J.; Santolík, Ondřej; Grimald, S.; Lavraud, B.; Verkhoglyadova, O. P.; Tsurutani, B. T.; Lefebvre, B.; Fazakerley, A.; Lakhina, G. S.; Ghosh, S. S.; Grison, Benjamin; Décréau, P. M. E.; Gurnett, D. A.; Torbert, R.; Cornilleau-Wehrlin, N.; Dandouras, I.; Lucek, E.

    2009-01-01

    Roč. 16, č. 3 (2009), s. 431-442. ISSN 1023-5809 R&D Projects: GA AV ČR IAA301120601 Grant ostatní: NSF(US) 0307319; GA MŠk(CZ) ME 842 Institutional research plan: CEZ:AV0Z30420517 Keywords : electrostatic solitary wave s * Cluster * LAPD Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.152, year: 2009 http://www.nonlin-processes-geophys.net/16/431/2009/

  16. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  17. Ribbon target assembly using carbon graphite for secondary emission type beam profile monitor

    International Nuclear Information System (INIS)

    We developed a secondary emission type beam profile monitor with graphite ribbons as a beam target. The graphite is excellent in endurance against heat load, and that they are thin as 1.6-2.0 micron and low z (=6) is advantage for reducing beam loss. Furthermore, since ribbons emits larger amount of electrons than ordinal metal wires because of larger surface, the monitor has higher sensitivity. On the other hands, in case of multi-ribbon type, uniformity of secondary electron emission is required for accurate measurement. For the uniform emission, not only surface homogeneity, but also evenness for each ribbon width is needed. A suitable manufacturing method to make ribbon target from graphite-foil, and emission uniformity has been studied. (author)

  18. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    International Nuclear Information System (INIS)

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies

  19. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    Science.gov (United States)

    Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  20. Understanding the growth mechanism of carbon nanotubes via the ``cluster volume to surface area" model

    Science.gov (United States)

    Mandati, Sreekanth; Kunstmann, Jens; Boerrnert, Felix; Schoenfelder, Ronny; Ruemmeli, Mark; Kar, Kamal K.; Cuniberti, Gianaurelio

    2010-03-01

    The influence of mixed catalysts for the high yield production of carbon nanotubes (CNTs) has been studied systematically. Based on extensive experimental data a ``Catalyst Volume to Surface Area'' (CVSA) model was developed to understand the influence of the process parameters on the yield and CNT diameter distribution [1]. In our study, we present a refined version of the CVSA model developed by combining experiments and simulations. We discuss our current understanding of the growth mechanism and how the model might be used to increase CNT yields by using mixed catalysts.[4pt] [1] S. Tetali et al., ACS Nano (2009), DOI: 10.1021/nn9012548.

  1. Auger electron nanoscale mapping and x-ray photoelectron spectroscopy combined with gas cluster ion beam sputtering to study an organic bulk heterojunction

    International Nuclear Information System (INIS)

    The lateral and vertical distributions of organic p/n bulk heterojunctions for an organic solar cell device are, respectively, investigated using nanometer-scale Auger electron mapping and using X-ray photoelectron spectroscopy (XPS) with Ar gas cluster ion beam (GCIB) sputtering. The concentration of sulfur, present only in the p-type material, is traced to verify the distribution of p-type (donor) and n-type (acceptor) materials in the blended structure. In the vertical direction, a considerable change in atomic sulfur concentration is observed using XPS depth profiling with Ar GCIB sputtering. In addition, Auger electron mapping of sulfur reveals the lateral 2-dimensional distribution of p- and n-type materials. The combination of Auger electron mapping with Ar GCIB sputtering should thereby allow the construction of 3-dimensional distributions of p- and n-type materials in organic photovoltaic cells

  2. Geant4 simulation for a study of a possible use of carbon ion pencil beams for the treatment of ocular melanomas with the active scanning system at CNAO

    Science.gov (United States)

    Farina, E.; Piersimoni, P.; Riccardi, C.; Rimoldi, A.; Tamborini, A.; Ciocca, M.

    2015-12-01

    The aim of this work was to study a possible use of carbon ion pencil beams (delivered with active scanning modality) for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO). The promising aspect of carbon ions radiotherapy for the treatment of this disease lies in its superior relative radio-biological effectiveness (RBE). The Monte Carlo (MC) Geant4 10.00 toolkit was used to simulate the complete CNAO extraction beamline, with the active and passive components along it. A human eye modeled detector, including a realistic target tumor volume, was used as target. Cross check with previous studies at CNAO using protons allowed comparisons on possible benefits on using such a technique with respect to proton beams. Experimental data on proton and carbon ion beams transverse distributions were used to validate the simulation.

  3. Ion beam analysis of tungsten layers in EUROFER model systems and carbon plasma facing components

    Science.gov (United States)

    Ström, Petter; Petersson, Per; Rubel, Marek; Primetzhofer, Daniel; Brezinsek, Sebastijan; Kreter, Arkadi; Unterberg, Bernhard; Sergienko, Gennady; Sugiyama, Kazuyoshi

    2016-03-01

    The tungsten enriched surface layers in two fusion-relevant EUROFER steel model samples, consisting of an iron-tungsten mixture exposed to sputtering by deuterium ions, were studied by Rutherford backscattering spectrometry and medium energy ion scattering. Exposure conditions were the same for the two samples and the total amount of tungsten atoms per unit area in the enriched layers were similar (2 · 1015 and 2.4 · 1015 atoms/cm2 respectively), despite slightly different initial atomic compositions. A depth profile featuring exponential decrease in tungsten content towards higher depths with 10-20 at.% of tungsten at the surface and a decay constant between 0.05 and 0.08 Å-1 was indicated in one sample, whereas only the total areal density of tungsten atoms was measured in the other. In addition, two different beams, iodine and chlorine, were employed for elastic recoil detection analysis of the deposited layer on a polished graphite plate from a test limiter in the TEXTOR tokamak following experiments with tungsten hexafluoride injection. The chlorine beam was preferred for tungsten analysis, mainly because it (as opposed to the iodine beam) does not give rise to problems with overlap of forward scattered beam particles and recoiled tungsten in the spectrum.

  4. MODIFICATION OF CARBON STEEL BY LASER SURFACE MELTING: PART II: EFFECT OF LASER BEAM POWER ON MICROSTRUCTURAL FEATURES AND SURFACE HARDNESS

    OpenAIRE

    Hashem F. El-Labban; Abdelaziz, M.; Essam R.I. Mahmoud

    2013-01-01

    The surface hardness has an important effect on the wear resistance of different materials. The present study aims to improve the surface hardness of carbon steel through the application of laser surface melting with suitable conditions. The laser beam power and travelling speed are the main factors that affect the properties of the treated zone. In this study, three different conditions of laser beam power (1800, 1500 and 1200 W) at fixed travelling speed of 1000 mm min-1 were chosen to stud...

  5. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide

    Science.gov (United States)

    Scott, Carl D.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  6. Origin of bulklike structure and bond length disorder of Pt37 and Pt6Ru31 clusters on carbon: comparison of theory and experiment.

    Science.gov (United States)

    Wang, Lin-Lin; Khare, Sanjay V; Chirita, Valeriu; Johnson, D D; Rockett, Angus A; Frenkel, Anatoly I; Mack, Nathan H; Nuzzo, Ralph G

    2006-01-11

    We describe a theoretical analysis of the structures of self-organizing nanoparticles formed by Pt and Ru-Pt on carbon support. The calculations provide insights into the nature of these metal particle systems-ones of current interest for use as the electrocatalytic materials of direct oxidation fuel cells-and clarify complex behaviors noted in earlier experimental studies. With clusters deposited via metallo-organic Pt or PtRu(5) complexes, previous experiments [Nashner et al. J. Am. Chem. Soc. 1997, 119, 7760; Nashner et al. J. Am. Chem. Soc. 1998, 120, 8093; Frenkel et al. J. Phys. Chem. B 2001, 105, 12689] showed that the Pt and Pt-Ru based clusters are formed with fcc(111)-stacked cuboctahedral geometry and essentially bulklike metal-metal bond lengths, even for the smallest (few atom) nanoparticles for which the average coordination number is much smaller than that in the bulk, and that Pt in bimetallic [PtRu(5)] clusters segregates to the ambient surface of the supported nanoparticles. We explain these observations and characterize the cluster structures and bond length distributions using density functional theory calculations with graphite as a model for the support. The present study reveals the origin of the observed metal-metal bond length disorder, distinctively different for each system, and demonstrates the profound consequences that result from the cluster/carbon-support interactions and their key role in the structure and electronic properties of supported metallic nanoparticles. PMID:16390140

  7. Evaluation of biomolecular distributions in rat brain tissues by means of ToF-SIMS using a continuous beam of Ar clusters.

    Science.gov (United States)

    Nakano, Shusuke; Yokoyama, Yuta; Aoyagi, Satoka; Himi, Naoyuki; Fletcher, John S; Lockyer, Nicholas P; Henderson, Alex; Vickerman, John C

    2016-06-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides detailed chemical structure information and high spatial resolution images. Therefore, ToF-SIMS is useful for studying biological phenomena such as ischemia. In this study, in order to evaluate cerebral microinfarction, the distribution of biomolecules generated by ischemia was measured with ToF-SIMS. ToF-SIMS data sets were analyzed by means of multivariate analysis for interpreting complex samples containing unknown information and to obtain biomolecular mapping indicated by fragment ions from the target biomolecules. Using conventional ToF-SIMS (primary ion source: Bi cluster ion), it is difficult to detect secondary ions beyond approximately 1000 u. Moreover, the intensity of secondary ions related to biomolecules is not always high enough for imaging because of low concentration even if the masses are lower than 1000 u. However, for the observation of biomolecular distributions in tissues, it is important to detect low amounts of biological molecules from a particular area of tissue. Rat brain tissue samples were measured with ToF-SIMS (J105, Ionoptika, Ltd., Chandlers Ford, UK), using a continuous beam of Ar clusters as a primary ion source. ToF-SIMS with Ar clusters efficiently detects secondary ions related to biomolecules and larger molecules. Molecules detected by ToF-SIMS were examined by analyzing ToF-SIMS data using multivariate analysis. Microspheres (45 μm diameter) were injected into the rat unilateral internal carotid artery (MS rat) to cause cerebral microinfarction. The rat brain was sliced and then measured with ToF-SIMS. The brain samples of a normal rat and the MS rat were examined to find specific secondary ions related to important biomolecules, and then the difference between them was investigated. Finally, specific secondary ions were found around vessels incorporating microspheres in the MS rat. The results suggest that important biomolecules related to cerebral

  8. Mutation induction by gamma-rays and carbon ion beam irradiation in banana (Musa spp.): a study with an emphasis on the response to Black sigatoka disease

    International Nuclear Information System (INIS)

    Gamma-rays and carbon ion beam irradiation methods were applied to study critical doses, genetic variability and the response to Black sigatoka disease. 'Cavendish Enano', 'Williams', 'Orito' and 'FHIA-01' cultivars of banana were studied. Both gamma-rays and carbon ion beam irradiation methods had different biological effects when banana explants were exposed to them. In both methods, increased dose caused increased mortality. 'FHIA-01' tolerated high doses of gamma-rays but was susceptible to high doses of carbon ion beam irradiation. The results suggest that the response in 'FHIA-01' can be explored using other dose intervals between 150 and 300 Gy. Weight and height were also reduced drastically when high doses of gamma-rays and carbon ion beams were applied. The LD50 of cultivars 'FHIA-01' and 'Orito' revealed high sensitivity to both gamma-rays and carbon ion beams. DNA deletion in 'FHIA-01' occurred by using gamma-rays at doses of 200 and 300 Gy, suggesting that 'FHIA-01' is definitely a promising cultivar with a high sensitivity response to gamma-ray exposure, and that there is a high chance of improving its fruit quality by mutation induction. Sigmoid drooping leaf, a putative mutation of 'FHIA-01', was generated. This mutation is heritable as mother plant and sucker showed the same characteristics. Future research could be conducted on the relationship of leaf shape to fruit quality and production. Hexaploid cells were detected by flow cytometry (five plants in 'Cavendish Enano' and one in 'Williams'), signifying that chromosome duplication can be induced by carbon ion beams. Variation in the leaves such as being abnormal, double, long, rudimentary, spindled and yellow spotted leaf was visible, suggesting that long-term chronic irradiation (gamma-rays) directly affects active cell division at the meristem level, resulting in severe damage or even death of the meristems. During the juglone toxin experiment on gamma-ray-irradiated plants, 20 plants were

  9. Use of density functional theory method to calculate structures of neutral carbon clusters Cn (3 ≤ n ≤ 24) and study their variability of structural forms

    International Nuclear Information System (INIS)

    In this work, we present modifications to the well-known basin hopping (BH) optimization algorithm [D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997)] by incorporating in it the unique and specific nature of interactions among valence electrons and ions in carbon atoms through calculating the cluster’s total energy by the density functional tight-binding (DFTB) theory, using it to find the lowest energy structures of carbon clusters and, from these optimized atomic and electronic structures, studying their varied forms of topological transitions, which include a linear chain, a monocyclic to a polycyclic ring, and a fullerene/cage-like geometry. In this modified BH (MBH) algorithm, we define a spatial volume within which the cluster’s lowest energy structure is to be searched, and introduce in addition a cut-and-splice genetic operator to increase the searching performance of the energy minimum than the original BH technique. The present MBH/DFTB algorithm is, therefore, characteristically distinguishable from the original BH technique commonly applied to nonmetallic and metallic clusters, technically more thorough and natural in describing the intricate couplings between valence electrons and ions in a carbon cluster, and thus theoretically sound in putting these two charged components on an equal footing. The proposed modified minimization algorithm should be more appropriate, accurate, and precise in the description of a carbon cluster. We evaluate the present algorithm, its energy-minimum searching in particular, by its optimization robustness. Specifically, we first check the MBH/DFTB technique for two representative carbon clusters of larger size, i.e., C60 and C72 against the popular cut-and-splice approach [D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995)] that normally is combined with the genetic algorithm method for finding the cluster’s energy minimum, before employing it to investigate carbon clusters in the size range C3-C

  10. Beam induced annealing of damage in carbon implanted silicon, ch. 4

    International Nuclear Information System (INIS)

    The annealing of damage introduced by 70 keV C implantation of Si is studied for impact of H+ and He+ beams in the energy interval 30 - 200 keV. For a good description of the annealing behaviour it is necessary to account for the damage introduction which occurs simultaneously. It turns out that the initial damage annealing rate is proportional to the amount of damage. The proportionality constant is related to the quantity fsub(a)sigmasub(a) introduced in an earlier paper in order to describe saturation effects in the damage production after H+ or He+ impact in unimplanted Si. This indicates that the same mechanism governs both processes: beam induced damage annealing and saturation of the damage introduction. (Auth.)

  11. Efficient volume reconstruction for parallel-beam computed laminography by filtered backprojection on multi-core clusters.

    Science.gov (United States)

    Myagotin, Anton; Voropaev, Alexey; Helfen, Lukas; Hänschke, Daniel; Baumbach, Tilo

    2013-12-01

    Computed laminography (CL) was developed to use X-rays from synchrotron sources for high-resolution imaging of the internal structure of a flat specimen from a series of 2-D projection images. The projections are acquired by irradiation of the sample under different rotation angles where the object rotation axis is inclined with respect to the beam direction. This yields for laterally extended objects a more uniform average transmitted intensity during sample rotation compared with computed tomography (CT). The reconstruction problem of CL cannot be reduced to a data-efficient 2-D case (as for parallel-beam CT) since each single slice perpendicular to the rotation axis requires a 2-D region on the detector as input data for all projection directions. This paper describes a computationally efficient reconstruction procedure based on filtered backprojection (FBP) adapted to the CL acquisition geometry. From the Fourier slice theorem, we derive a framework for analytic image reconstruction and outline implementation details of the generic FBP algorithm. Different approaches reducing the reconstruction time by means of parallel and distributed computations are considered and evaluated. PMID:24228274

  12. Chemical Investigations of ISOL target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive Ion Beams (RIB) are of significant interest in a number of applications. ISOL (Isotope Separation On Line) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to COx and NOx on Al2O3 and SiO2. These materials are potential construction materials for the above mentioned areas. Off-line and on-line tests have been performed using a gas thermo-chromatography set-up with radioactive tracers. The experiments were performed at the PROTRAC facility at Paul Scherrer Institute in Villigen, Switzerland.

  13. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient

    Directory of Open Access Journals (Sweden)

    G. Dall'Olmo

    2011-03-01

    Full Text Available The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (cp measured at multiple wavelengths. The method is based on fitting observations with a size-structured population and optical model to infer the particle size distribution and physiologically relevant parameters of the cells responsible for the measured diel cycle in cp. Results show that the information related to size and contained in the spectral data can be exploited to independently estimate growth and loss rates during the day and night. In addition, the model can characterize the population of particles affecting the cp diel variability. Application of this method to spectral cp measured at a station in the oligotrophic Mediterranean Sea suggests that most of the observed variations in cp can be ascribed to a synchronized population of cells with an equivalent spherical diameter between 1 and 4 μm. The inferred carbon biomass of these cells was about 8–13 mg m−3 and accounted for approximately 20% of the total particulate organic carbon. If successfully validated and implemented on autonomous platforms, this method could improve our understanding of the ocean carbon cycle.

  14. Production of intense beams of mass-selected water cluster ions and theoretical study of atom-water interactions

    CERN Document Server

    Wang, Z P; Reinhard, P -G; Suraud, E; Bruny, G; Montano, C; Feil, S; Eden, S; Abdoul-Carime, H; Farizon, B; Farizon, M; Ouaskit, S; Maerk, T D

    2009-01-01

    The influences of water molecules surrounding biological molecules during irradiation with heavy particles (atoms,ions) are currently a major subject in radiation science on a molecular level. In order to elucidate the underlying complex reaction mechanisms we have initiated a joint experimental and theoretical investigation with the aim to make direct comparisons between experimental and theoretical results. As a first step, studies of collisions of a water molecule with a neutral projectile (C atom) at high velocities (> 0.1 a.u.), and with a charged projectile (proton) at low velocities (< 0.1 a.u.) have been studied within the microscopic framework. In particular, time-dependent density functional theory (TDDFT) was applied to the valence electrons and coupled non-adiabatically to Molecular dynamics (MD) for ionic cores. Complementary experimental developments have been carried out to study projectile interactions with accelerated (< 10 keV) and mass-selected cluster ions. The first size distributio...

  15. Rapid phase-correlated rescanning irradiation improves treatment time in carbon-ion scanning beam treatment under irregular breathing

    Science.gov (United States)

    Mori, Shinichiro; Furukawa, Takuji

    2016-05-01

    To shorten treatment time in pencil beam scanning irradiation, we developed rapid phase-controlled rescanning (rPCR), which irradiates two or more isoenergy layers in a single gating window. Here, we evaluated carbon-ion beam dose distribution with rapid and conventional PCR (cPCR). 4 dimensional computed tomography (4DCT) imaging was performed on 12 subjects with lung or liver tumors. To compensate for intrafractional range variation, the field-specific target volume (FTV) was calculated using 4DCT within the gating window (T20–T80). We applied an amplitude-based gating strategy, in which the beam is on when the tumor is within the gating window defined by treatment planning. Dose distributions were calculated for layered phase-controlled rescanning under an irregular respiratory pattern, although a single 4DCT data set was used. The number of rescannings was eight times. The prescribed doses were 48 Gy(RBE)/1 fr (where RBE is relative biological effectiveness) delivered via four beam ports to the FTV for the lung cases and 45 Gy(RBE)/2 fr delivered via two beam ports to the FTV for the liver cases. In the liver cases, the accumulated dose distributions showed an increased magnitude of hot/cold spots with rPCR compared with cPCR. The results of the dose assessment metrics for the cPCR and rPCR were very similar. The D 95, D max, and D min values (cPCR/rPCR) averaged over all the patients were 96.3  ±  0.9%/96.0  ±  1.2%, 107.3  ±  3.6%/107.1  ±  2.9%, and 88.8  ±  3.2%/88.1  ±  3.1%, respectively. The treatment times in cPCR and rPCR were 110.7 s and 53.5 s, respectively. rPCR preserved dose conformation under irregular respiratory motion and reduced the total treatment time compared with cPCR.

  16. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  17. Improving Osteoblast Response In Vitro by a Nanostructured Thin Film with Titanium Carbide and Titanium Oxides Clustered around Graphitic Carbon

    Science.gov (United States)

    Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d’Abusco, Anna; Superti, Fabiana; Misiano, Carlo; Zanoni, Robertino; Politi, Laura; Mazzola, Luca; Iosi, Francesca; Mura, Francesco; Scandurra, Roberto

    2016-01-01

    Introduction Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts. Results The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration. Conclusion In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone. PMID:27031101

  18. Determination of the size distribution of carbon and trace elements in suspended particulate matter by ion beam analysis

    International Nuclear Information System (INIS)

    The size distribution of carbon and trace elements in suspended particulate matter (SPM) collected by a low pressure impactor has been investigated. Sampling was carried out at Setagaya, a typical residential area located southwest of Tokyo, Japan. The low pressure impactor has a cascade design with 12-stage collection plates, allowing the collection of size-fractionated SPM. It operates at a flow rate of 20 l/min. Elemental composition was determined by ion beam analysis, particle induced X-ray emission (PIXE) and Rutherford backscattering (RBS). PIXE provided data for elements from Al to U while RBS supplied information on elements lighter than Al such as C and O. The analysis is fast, non-destructive and requires no sample preparation. It is very suitable for determination of elements in SPM. In this paper we discuss size distribution and element concentrations in SPM together with their weekly and seasonal variations

  19. Compilation of erosion yields of metal-doped carbon materials by deuterium impact from ion beam and low temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Balden, M., E-mail: Martin.Balden@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Starke, P. [Lehrstuhl fuer Experimentelle Plasmaphysik, Institut fuer Physik, Universitaet Augsburg, D-86135 Augsburg (Germany); Garcia-Rosales, C. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Adelhelm, C.; Sauter, P.A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Lopez-Galilea, I.; Ordas, N. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Fernandez, J.M. Ramos; Escandell, M. Martinez [Departamento de Quimica Inorganica, University of Alicante, E-03690 Alicante (Spain)

    2011-10-01

    The erosion yield by deuterium impact was determined for various doped carbon-based materials. Ion beam bombardment with 30 and 200 eV at elevated temperatures (600-850 K) and low temperature plasma exposure with 30 eV ion energy ({approx}7 x 10{sup 20} ions/m{sup 2}s) and about 170 times higher thermal atomic deuterium flux at 300 K and 630 K were performed. The total yield of fine-grain graphites doped with 4 at.% Ti and Zr is reduced by a factor of 4 for 30 and 200 eV D impact at elevated temperatures at D fluences above 10{sup 24} m{sup -2} compared to undoped graphite. Extensive carbide particle loss can be excluded up to fluences of {approx}10{sup 25} m{sup -2}.

  20. Preparation of diamond-like carbon and boron nitirde films by high-intensity pulsed ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Davis, H.A. [Los Alamos National Lab., NM (United States); Remnev, G.E. [Tomsk Polytechnic Univ., Tomsk (Russian Federation). Nuclear Physics Institute.] [and others

    1995-05-01

    Intense ion beams (300-keV C{sup +}, O{sup +}, and H{sup +}, 20--30 kA, 50 to 400-ns pulsewidth, up to 0.3-Hz repetition rate) were used to prepare diamond-like carbon (DLC) and boron nitride (BN) films. Deposition rates of up to 25{plus_minus}5 nm/pulse were obtained with instantaneous rates exceeding 1 mm/s. Most films were uniform, light brown, translucent, and nonporous with some micron-size particulates. Raman and parallel electron energy loss spectroscopy indicated the presence of DLC. The films possessed favorable electron field-emission characteristics desirable for cold-cathode displays. Transmission electron microscopy (TEM) and transmission electron diffraction (TED) revealed that the C films contained diamond crystals with 25 to 125-nm grain size. BN films were composed of hexagonal, cubic and wurtzite phases.

  1. Radiosensitivity of cancer cells against carbon-ion beams in an aspect of the p53 gene status

    International Nuclear Information System (INIS)

    We can easily understand that radiation sensitivities of cancer cells are dependent on the status of cancer-related genes. It is important to clarify which genes affect radiation sensitivity and reflect the effectiveness of radiation therapy for cancer cells. We have studied about the function of a tumor suppressor gene of p53, because p53 controls apoptosis, cell cycle and DNA repair from an aspect of important roles in cell fate. By analysis of function of p53 gene, therefore, we aim to predict the therapeutic effectiveness and to select the modalities of cancer therapies such as radiotherapy, chemotherapy and hyperthermia. As a final goal, we want to accept the most effective therapy, namely tailor-made cancer therapy, for each patient. Here, we introduce that carbon-beam therapy induced the expression of p53-independent apoptosis-related genes and NO radicals in mutated p53 cancer cells. (author)

  2. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Atanu Ghorai

    2014-01-01

    Full Text Available Cancer treatment with high LET heavy ion beam, especially, carbon ion beam (12C, is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose polymerase (PARP inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET 12C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for 12C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both 12C and gamma induced G2/M arrest although the 12C had greater effect. Unlike the gamma, 12C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET 12C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for 12C than gamma.

  3. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    CERN Document Server

    Watts, David; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistiv...

  4. Fabrication and characterization of tunnel barriers in a multi-walled carbon nanotube formed by argon atom beam irradiation

    International Nuclear Information System (INIS)

    We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots with serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed

  5. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, U.; Rao, B. S.; Arora, V.; Upadhyay, A.; Singhal, H.; Naik, P. A.; Chakera, J. A.; Mukherjee, C.; Gupta, P. D. [Raja Ramanna Centre for Advanced Technology, Indore, 452 013 Madhya Pradesh (India)

    2013-07-29

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  6. Current density profile and electron beam localization measurements using carbon pellets on T-10

    International Nuclear Information System (INIS)

    The letter presents experimental evidence and an analysis of two phenomena arising during carbon pellet ablation - a toroidal trajectory deflection and enhanced localized ablation in the electron cyclotron resonance (ECR) current drive regime. A model developed for describing the toroidal deflection of a carbon pellet in a tokamak shows that the trajectory curvature is sensitive to the current density. Photography of the pellet trajectory is used as a diagnostic for the determination of the local current density in an ohmically heated plasma. Directly measured current profiles using pellets are in reasonable agreement with that obtained using the Spitzer conductivity, and current density fluctuations have been observed that are probably associated with magnetic islands. It is shown that in the ECR current drive regime on T-10, energetic electrons probably stimulated by the microwave power are located in a narrow zone (2 cm thickness in the radial direction) with sharp boundaries. (author). Letter-to-the-editor. 7 refs, 5 figs

  7. LETTER: Current density profile and electron beam localization measurements using carbon pellets on T-10

    Science.gov (United States)

    Egorov, S. M.; Kuteev, B. V.; Miroshnikov, I. V.; Mikhailenko, A. A.; Sergeev, V. Yu.; Ushakov, S. N.; Bagdasarov, A. A.; Chistyakov, V. V.; Elizavetin, D. Yu.; Vasin, N. L.

    1992-11-01

    The authors present experimental evidence and an analysis of two phenomena arising during carbon pellet ablation-a toroidal trajectory deflection and enhanced localized ablation in the electron cyclotron resonance (ECR) current drive regime. A model developed for describing the toroidal deflection of a carbon pellet in a tokamak shows that the trajectory curvature is sensitive to the current density. Photography of the pellet trajectory is used as a diagnostic for the determination of the local current density in an ohmically heated plasma. Directly measured current profiles using pellets are in reasonable agreement with that obtained using the Spitzer conductivity, and current density fluctuations have been observed that are probably associated with magnetic islands. It is shown that in the ECR current drive regime on T-10, energetic electrons probably stimulated by the microwave power are located in a narrow zone (2 cm thickness in the radial direction) with sharp boundaries

  8. Effects of E-Beam Irradiation on the Chemical, Physical, and Electrochemical Properties of Activated Carbons for Electric Double-Layer Capacitors

    Directory of Open Access Journals (Sweden)

    Min-Jung Jung

    2015-01-01

    Full Text Available Activated carbons (ACs were modified via e-beam irradiation at various doses for use as an electrode material in electric double-layer capacitors (EDLCs. The chemical compositions of the AC surfaces were largely unchanged by the e-beam irradiation. The ACs treated with the e-beam at radiation doses of 200 kGy exhibited higher nanocrystallinity than the untreated ACs. The specific surface areas and pore volumes of the e-beam irradiated ACs were also higher than those of the untreated ACs. These results were attributed to the transformation and degradation of the nanocrystallinity of the AC surfaces due to the e-beam irradiation. The specific capacitance of the ACs treated with the e-beam at radiation doses of 200 kGy increased by 24% compared with the untreated ACs, and the charge transfer resistance of the ACs was decreased by the e-beam irradiation. The enhancement of the electrochemical properties of the e-beam irradiated ACs can be attributed to an increase in their specific surface area and surface crystallinity.

  9. Rationale for carbon ion therapy in high-grade glioma based on a review and a meta-analysis of neutron beam trials

    International Nuclear Information System (INIS)

    Purpose: The standard treatment of high-grade glioma is still unsatisfactory: the 2-year survival after radiotherapy being only 10-25%. A high linear energy transfer (Let) ionising radiotherapy has been used to overcome tumour radioresistance. An overview of the field is needed to justify future prospective controlled studies on carbon ion therapy. Materials and methods: A meta-analysis of clinical trials on neutron beam therapy and a literature review of clinical investigations on light ion use in high-grade glioma were carried out. Results: Four randomized controlled trials on neutron beam therapy were retained. The meta-analysis showed a non-significant 6% increase of two-year mortality (Relative risk [R.R.] 1.06 [0.97-1.15]) in comparison with photon therapy. Two phase I/II trials on carbon and neon ion therapy reported for glioblastoma 10% and 31% two-year overall survivals and 13.9 and 19.0 months median survivals, respectively. Conclusion: This meta-analysis suggests that neutron beam therapy does not improve the survival of high-grade glioma patients while there is no definitive conclusion yet regarding carbon therapy. The ballistic accuracy and the improved biological efficacy of carbon ions renew the interest in prospective clinical trials on particle beam radiotherapy of glioma and let us expect favourable effects of dose escalation on patients survival. (author)

  10. Photo-electronic behavior of Cu{sub 2}O- and/or CeO{sub 2}-loaded TiO{sub 2}/carbon cluster nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, H.; Saitou, Y. [Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Karuppuchamy, S., E-mail: chamy@life.kyutech.ac.jp [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Kitakyushu, Fukuoka 808-0196 (Japan); Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hassan, M.A. [Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yoshihara, M. [Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2012-10-15

    Graphical abstract: Nano-sized TiO{sub 2}/carbon clusters composite materials (I{sub c}'s) have been successfully prepared for the first time by the calcination of TiO(OCOCH{sub 3}CHCOCH{sub 3}){sub 2}/starch complexes (I's) in air. The visible light induced photocatalytic activity of nano-sized TiO{sub 2}/carbon clusters composite materials was observed. Highlights: Black-Right-Pointing-Pointer Nano-sized TiO{sub 2}/carbon cluster composite materials have been synthesized. Black-Right-Pointing-Pointer The surface of the composite was modified with Cu{sub 2}O, CeO{sub 2} and Pt particles. Black-Right-Pointing-Pointer The composite shows the photo-catalytic activity under visible light irradiation. - Abstract: Nano-sized TiO{sub 2}/carbon cluster composite materials have been successfully prepared for the first time by calcination of TiO(OCOCH{sub 3}CHCOCH{sub 3}){sub 2}/starch complexes in air. The surface of composite materials was modified with nano-sized Cu{sub 2}O and CeO{sub 2} particles, followed by the subsequent modification of Pt particles. The composition of the synthesized composite materials was determined using inductively coupled plasma spectroscopy, elemental analysis and surface characterization by transmission electron microscopy. The reduction reaction of methylene blue with the calcined materials under the visible light irradiation has also been examined. The composite material reduced the methylene blue under the irradiation of visible light ({lambda} > 460 nm). The metal oxide-loaded composite materials could also decompose an aqueous silver nitrate solution by visible light irradiation and give O{sub 2} and Ag.

  11. Ion bombardment, ultrasonic, and pulsed laser beam effects on small metallic clusters of potassium in MgO

    International Nuclear Information System (INIS)

    Small metallic precipitates of potassium were produced in ion-implanted layers (5x1016 K+ ions cm-2, 150 keV, 300 K) on {100} faces of single crystals of MgO by thermal annealing in air at 1000 K. The resulting potassium aggregates had a mean size of 7 nm as characterized by optical absorption measurements and analytical electron microscopy. The effects of three distinct treatments on these precipitates and the implanted layer as a whole were investigated. Ion bombardment with Ar2+(1x1016 ion cm-2, 300 keV, 300 K) results in a dissolution of the metallic clusters and the production of F+ and V- centers, as evidenced by the relative changes in the corresponding absorption bands. Rutherford backscattering spectroscopy indicates that this dissolution of precipitates does not result in any long-range redistribution of the potassium. Laser irradiation at a frequency near the absorption resonance of the potassium metal (1 μm wavelength) produces an exfoliation of the implanted layer. A similar effect occurs in ultrasonically treated samples where the entire implanted layer is removed after a 12 min exposure to an energy flux of 120 W cm-2. The similarities and differences among these treatments are discussed along with suggestions for further study. (orig.)

  12. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation

    International Nuclear Information System (INIS)

    X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear–quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams. (author)

  13. Design and characterization of a multi-beam micro-CT scanner based on carbon nanotube field emission x-ray technology

    Science.gov (United States)

    Peng, Rui

    In this dissertation, I will present the results for my Ph.D. research for the past five years. My project mainly focuses on advanced imaging applications with a multi-beam x-ray source array based on carbon nanotube field emission technology. In the past few years, research in carbon nanotubes gradually changed from the raw material science to its application. Field emission x-ray application is one of the hottest research areas for carbon nanotube. Compared to traditional thermionic x-ray sources, the carbon nanotube field emission x-ray source has some natural advantages over traditional thermionic x-ray sources such as instantaneous x-ray generation, programmability and miniaturization. For the past few years, the research and development of carbon nanotube field emission x-ray has shifted from single x-ray beam applications to spatially distributed multi-beam x-ray sources. Previously in Zhou group, we have already built a gated micro-CT system with single beam micro-focus x-ray tube for higher spatial and temporal resolution as required in live animal imaging and a multi-beam tomosynthesis system targeting for faster and more stable breast imaging. Now my project mainly focused on the design, characterization and optimization of a multi-beam micro-CT imaging system. With the increase of gantry rotation speed approaching the mechanical limit, it is getting more and more difficult to further speed up the CT scanning. My new system promises a potential solution for the problem, and it serves as a great test platform for truly stationary micro-CT geometry. The potential capabilities it showed during the characterization and imaging measurements was promising. The dissertation is composed of five chapters. In Chapter 1, I will generally review the physics principles of x-ray generation and interaction with matter. Then the discovery of carbon nanotube and its great potential to serve as an excellent field emission electron source will be introduced in the second

  14. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient

    Directory of Open Access Journals (Sweden)

    G. Dall'Olmo

    2011-11-01

    Full Text Available The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (cp measured at multiple wavelengths. The method is based on fitting observations with a size-structured population model coupled to an optical model to infer the particle size distribution and physiologically relevant parameters of the cells responsible for the measured diel cycle in cp. Results show that the information related to size and contained in the spectral data can be exploited to independently estimate growth and loss rates during the day and night. In addition, the model can characterize the population of particles affecting the diel variability in cp. Application of this method to spectral cp measured at a station in the oligotrophic Mediterranean Sea suggests that most of the observed variations in cp can be ascribed to a synchronized population of cells with an equivalent spherical diameter around 4.6±1.5 μm. The inferred carbon biomass of these cells was about 5.2–6.0 mg m−3 and accounted for approximately 10% of the total particulate organic carbon. If successfully validated, this method may improve our in situ estimates of primary productivity.

  15. Melting of graphene clusters

    OpenAIRE

    Singh, Sandeep Kumar; Neek-Amal, M.; Peeters, F. M.

    2013-01-01

    Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nano-clusters $C_{N}$ with N=2-55. The minimum energy configurations for different clusters are used as starting configuration for the study of the temperature effects on the bond breaking/rotation in carbon lines (N$

  16. Single-walled carbon nanotubes and nanocrystalline graphene reduce beam-induced movements in high-resolution electron cryo-microscopy of ice-embedded biological samples

    CERN Document Server

    Rhinow, Daniel; Turchanin, Andrey; Gölzhäuser, Armin; Kühlbrandt, Werner; 10.1063/1.3645010

    2011-01-01

    For single particle electron cryo-microscopy (cryoEM), contrast loss due to beam-induced charging and specimen movement is a serious problem, as the thin films of vitreous ice spanning the holes of a holey carbon film are particularly susceptible to beam-induced movement. We demonstrate that the problem is at least partially solved by carbon nanotechnology. Doping ice-embedded samples with single-walled carbon nanotubes (SWNT) in aqueous suspension or adding nanocrystalline graphene supports, obtained by thermal conversion of cross-linked self-assembled biphenyl precursors, significantly reduces contrast loss in high-resolution cryoEM due to the excellent electrical and mechanical properties of SWNTs and graphene.

  17. Equilibrium thickness of carbon target interacting with nitrogen and neon ion beams

    Science.gov (United States)

    Belkova, Yu. A.; Novikov, N. V.; Teplova, Ya. A.

    2016-04-01

    The method for calculation of the target thickness which is required for the formation of equilibrium charge distribution of ions is proposed. The description of nonequilibrium processes is based on empirical estimations of charge-exchange cross sections, taking the density effect for solids into account. The variation of the average charge and the width of the nonequilibrium charge distribution as a function of the target thickness is analyzed. The results of calculations for nitrogen and neon ions in carbon are compared with experimental data.

  18. Megavoltage photon beam attenuation by carbon fiber couch tops and its prediction using correction factors

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the effect of megavoltage photon beam attenuation (PBA) by couch tops and to propose a method for correction of PBA. Four series of phantom measurements were carried out. First, PBA by the exact couch top (ECT, Varian) and Imaging Couch Top (ICT, BrainLAB) was evaluated using a water-equivalent phantom. Second, PBA by Type-S system (Med-Tec), ECT and ICT was compared with a spherical phantom. Third, percentage depth dose (PDD) after passing through ICT was measured to compare with control data of PDD. Forth, the gantry angle dependency of PBA by ICT was evaluated. Then, an equation for PBA correction was elaborated and correction factors for PBA at isocenter were obtained. Finally, this method was applied to a patient with hepatoma. PBA of perpendicular beams by ICT was 4.7% on average. With the increase in field size, the measured values became higher. PBA by ICT was greater than that by Type-S system and ECT. PBA increased significantly as the angle of incidence increased, ranging from 4.3% at 180 deg to 11.2% at 120 deg. Calculated doses obtained by the equation and correction factors agreed quite well with the measured doses between 120 deg and 180 deg of angles of incidence. Also in the patient, PBA by ICT was corrected quite well by the equation and correction factors. In conclusion, PBA and its gantry angle dependency by ICT were observed. This simple method using the equation and correction factors appeared useful to correct the isocenter dose when the PBA effect cannot be corrected by a treatment planning system. (author)

  19. Induction of apoptosis in murione spleen lymphocytes using carbon ion beam

    International Nuclear Information System (INIS)

    To assess the capacity of heavy ions to induce apoptosis in lymphocytes, mice have been irradiated with accelerated carbon ions (95 MeV/nucleon) at doses ranging from 0.1 to 4 Gy. Their spleens were removed 24 h later and gently dissociated to prepare a single cell suspension. Mononuclear cells were then maintained in culture at 37oC, and the occurrence of apoptosis in these cells was analysed 24 h later. Lymphocytes were also irradiated in vitro, in the presence of Ac-DEVD-CHO, a potent caspase-3 and -7 inhibitor. Results from three experiments performed at the Grand Accelerateur National d'Ions Lourds (GANIL, Caen, France) are reported here. They indicate that carbon ions induce a marked, dose-dependent, reduction of the spleen weight and cellularity. However, in sharp contrast with spleen cells prepared from X-ray irradiated mice, only a slight increase of apoptosis is evidenced in cultured lymphocytes from mice irradiated with heavy ions. The significance of such results is discussed. So far, few data exist concerning the biological effects of heavy ions, in particular their capacity to induce apoptosis in lymphocytes; the present study provides useful clues for further investigations. (author)

  20. Interaction of nanosecond laser pulse with tetramethyl silane (Si(CH34 clusters: Generation of multiply charged silicon and carbon ions

    Directory of Open Access Journals (Sweden)

    Purav M. Badani

    2011-12-01

    Full Text Available Present work reports significantly high levels of ionization, eventually leading to Coulomb explosion of Tetramethyl silane (TMS clusters, on interaction with laser pulses of intensity ∼109 W/cm2. Tetramethyl silane clusters, prepared by supersonic expansion were photoionized at 266, 355 or 532 nm and the resultant ions were detected using time-of-flight mass spectrometer. It is observed that wavelength of irradiation and the size of the cluster are crucial parameters which drastically affect the nature of charge species generated upon photoionization of cluster. The results show that clusters absorb significantly higher energy from the laser field at longer wavelengths (532 nm and generate multiply charged silicon and carbon ions which have large kinetic energies. Further, laser-cluster interaction at different wavelengths has been quantified and charge densities at 266, 355 and 532 nm are found to be 4x 1010, 5x 1010 and 5x 1011 charges/cm3 respectively. These unusual results have been rationalized based on dominance of secondary ionization processes at 532 nm ultimately leading to Coulomb explosion of clusters. In another set of experiments, multiply charged ions of Ar (up to +5 state and Kr (up to +6 state were observed when TMS doped inert gas clusters were photoionized at 532 and 355 nm. The extent of energy absorption at these two wavelengths is clearly manifested from the charge state of the atomic ions generated upon Coulomb disintegration of the doped cluster. These experiments thus demonstrate a novel method for generation of multiply charged atomic ions of inert gases at laser intensity of ∼ 109 W/cm2. The average size of the cluster exhibiting Coulomb explosion phenomena under giga watt intensity conditions has been estimated to be ∼ 6 nm. Experimental results obtained in the present work agree qualitatively with the model proposed earlier [D. Niu, H. Li, F. Liang, L. Wen, X. Luo, B. Wang, and H. Qu, J. Chem. Phys. 122, 151103

  1. Normal, high and ultra-high modulus carbon fiber-reinforced polymer laminates for bonded and un-bonded strengthening of steel beams

    International Nuclear Information System (INIS)

    Highlights: • Normal, high and ultra-high modulus CFRP laminates for strengthening of steel beams. • Bonded and un-bonded reinforcement systems for steel beams. • Comparisons between the static behavior of the bonded and un-bonded systems. - Abstract: This paper studies the elastic behavior of steel beams strengthened with normal, high and ultra-high modulus CFRP laminates using bonded and un-bonded systems. The elastic behavior of retrofitted beams provides useful information for design of fatigue strengthening systems. A total of seven steel beams including one control unstrengthened beam and six strengthened beams were tested statically until failure in a simply supported four-point bending set-up. The steel beams were retrofitted by normal modulus (NM), high modulus (HM) and ultra-high modulus (UHM) carbon fiber-reinforced polymer (CFRP) laminates with nominal Young’s moduli, ranging from 165 to 440 GPa. Each type of laminate was attached to the steel beams using bonded reinforcement (BR) and un-bonded reinforcement (UR) systems. There is no direct comparison between the BR and the UR systems in the literature. The main goal of the paper is to provide a better understating about the stress distribution along the beam bottom flange when the BR and the UR systems are used for strengthening. All specimens failed due to lateral-torsional buckling (LTB). The effect of different strengthening methods on buckling capacity of the retrofitted specimens was also studied. Experimental results have shown that strengthening using bonded UHM laminates could increase the stiffness of the composite section so that the steel profile has yielded prior to buckling and a larger reinforcement efficacy was then achieved

  2. Scanned carbon beam irradiation of moving films: comparison of measured and calculated response

    International Nuclear Information System (INIS)

    Treatment of moving target volumes with scanned particle beams benefits from treatment planning that includes the time domain (4D). Part of 4D treatment planning is calculation of the expected result. These calculation codes should be verified against suitable measurements. We performed simulations and measurements to validate calculation of the film response in the presence of target motion. All calculations were performed with GSI's treatment planning system TRiP. Interplay patterns between scanned particle beams and moving film detectors are very sensitive to slight deviations of the assumed motion parameters and therefore ideally suited to validate 4D calculations. In total, 14 film motion parameter combinations with lateral motion amplitudes of 8, 15, and 20 mm and 4 combinations for lateral motion including range changes were used. Experimental and calculated film responses were compared by relative difference, mean deviation in two regions-of-interest, as well as line profiles. Irradiations of stationary films resulted in a mean relative difference of -1.52% ± 2.06% of measured and calculated responses. In comparison to this reference result, measurements with translational film motion resulted in a mean difference of -0.92% ± 1.30%. In case of irradiations incorporating range changes with a stack of 5 films as detector the deviations increased to -6.4 ± 2.6% (-10.3 ± 9.0% if film in distal fall-off is included) in comparison to -3.6% ± 2.5% (-13.5% ± 19.9% including the distal film) for the stationary irradiation. Furthermore, the comparison of line profiles of 4D calculations and experimental data showed only slight deviations at the borders of the irradiated area. The comparisons of pure lateral motion were used to determine the number of motion states that are required for 4D calculations depending on the motion amplitude. 6 motion states per 10 mm motion amplitude are sufficient to calculate the film response in the presence of motion. By

  3. Formation of multibaryon clusters in collisions of high energy hadrons and nuclei with carbon and neon nuclei

    International Nuclear Information System (INIS)

    Formation of multibaryon clusters in 4He + 12C and 12C + 12C collisions at 4.2A GeV/c, and in π- + 12C and p + 20Ne collisions at 40 and 300 GeV/c, respectively, is studied using universal binary B algorithm of separation of clusters in 4-velocity space. The masses and widths of multibaryon clusters increase linearly with an increase in the number of protons (np) in a cluster. The dependences of width of clusters on np in π- + 12C and p + 20Ne collisions differ noticeably from the corresponding dependences in 4He + 12C and 12C + 12C collisions. In nucleus–nucleus collisions, the widths of clusters are significantly larger and grow more rapidly, as the number of protons in a cluster increases, as compared to hadron–nucleus collisions. This result is in line with the fact that, in case of identical target nuclei, the degree of “destruction” of a target nucleus is greater in case of nucleus–nucleus collisions as compared to hadron–nucleus collisions. The lifetimes of multibaryon clusters are of the same order of magnitude with those of strongly decaying baryon resonances. The lifetime of clusters decreases with an increase in np. (author)

  4. Radiation curing of carbon fibre composites

    International Nuclear Information System (INIS)

    Epoxy/carbon fibre reinforced composites were produced by means of e-beam irradiation through a pulsed 10 MeV electron beam accelerator. The matrix consisted of a difunctional epoxy monomer (DGEBA) and an initiator of cationic polymerisation, while the reinforcement was a unidirectional high modulus carbon fibre fabric. Dynamic mechanical thermal analysis was carried out in order to determine the cross-linking degree. The analysis pointed out a nonuniformity in the cross-linking degree of the e-beam cured panels, with the formation of clusters at low Tg (glass transition temperature) and clusters at high Tg. An out-of-mould post irradiation thermal treatment on e-beam cured samples provides a higher uniformity in the network although some slight degradation effects. Mode I delamination fracture toughness and Interlaminar Shear Strength (ISS) were also investigated by means of Double Cantilever Beam (DCB) and Short Beam Shear tests, respectively. Results from this mechanical characterisation allowed to correlate fracture toughness of the bulk matrix resin, cross-linking density and fibre/matrix interaction to the delamination fracture behaviour of the fibre reinforced material. - Highligths: • Epoxy/carbon fibre composites were produced by means of e-beam irradiation. • DMTA analysis pointed out a nonuniformity in the cross-linking degree of the material. • An out-of-mould post irradiation thermal treatment allows a higher uniformity. • Mechanical tests were interpreted on the basis of the cross-linking density and fibre/matrix interaction

  5. Atomic mobility in energetic cluster deposition

    Institute of Scientific and Technical Information of China (English)

    PAN Zheng-Ying; WANG Yue-Xia; WEI Qi; LI Zhi-Jie; ZHOU Liang; ZHANG Liang-Kun

    2004-01-01

    This paper tries to outline the influence of atomic mobility on the initial fabrication of thin films formed by LECBD. Based on our recent studies on low-energy cluster beam deposition (LECBD) by molecular dynamics simulation, two examples, the deposition of small carbon clusters on Si and diamond surfaces and Al clusters on Ni substrate, were mainly discussed. The impact energy of the cluster ranges from 0.1 eV to 100 eV. In the former case,the mobility and the lateral migration of surface atoms, especially the recoil atoms, are enhanced with increasing the impact energy, which promote the film to be smoother and denser. For the latter case, the transverse kinetic energy of cluster atoms, caused mainly by the collision between moving cluster atoms, dominates the lateral spread of cluster atoms on the surface, which is contributive to layer-by-layer growth of thin films. Our result is consistent with the experimental observations that the film structure is strongly dependent on the impact energy. In addition, it elucidates that the atomic mobility takes a leading role in the structure characteristic of films formed by LECBD.

  6. Effects of a 2-step culture with cytokine combinations on megakaryocytopoiesis and thrombopoiesis from carbon-ion beam-irradiated human hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    To evaluate whether the continuous treatment of two cytokine combinations is effective in megakaryocytopoiesis and thrombopoiesis in hematopoietic stem/progenitor cells exposed to heavy ion beams, the effects of a 2-step culture by a combination of recombinant human interleukin-3 (IL-3)+stem cell factor (SCF)+thrombopoietin (TPO), which just slightly protected against carbon-ion beam-induced damages, and a combination of IL-3+TPO, which selectively stimulated the differentiation of the hematopoietic stem/progenitor cells to megakaryocytes and platelets, were examined. CD34+-hematopoietic stem/progenitor cells isolated from the human placental and umbilical cord blood were exposed to carbon-ion beams (linear energy transfer (LET)=50 keV/μm) at 2 Gy. These cells were cultured under three cytokine conditions. The number of megakaryocytes, platelets and hematopoietic progenitors were assessed using a flow cytometer and a clonogenic assay at 14 and 21 days after irradiation, respectively. However, the efficacy of each 2-step culture was equal or lower than that of using the IL-3+SCF+TPO combination alone and the 2-step culture could not induce megakaryocytes and platelets from hematopoietic stem/progenitor cells exposed to high LET-radiation such as carbon-ion beams. Therefore, additional cytokines and/or hematopoietic promoting compounds might be required to overcome damage to hematopoietic cells by high LET radiation. (author)

  7. Characterization of ion-beam-induced carbon deposition on WC-Co hard metal by microhardness, scratch and abrasive wear tests

    International Nuclear Information System (INIS)

    Diamond-like ion-beam-deposited carbon (i-C) layers were obtained on WC-Co cemented carbide using a mass-separated 12C beam at an energy of 500 eV and a deposition rate of 3 A s-1. The mechanical properties of these layers were probed using microhardness and scratch tests and abrasive wear measurements. All these tests revealed that the depositions possess an extremely high hardness and good adhesion to the substrate. In particular, a hardness of 75 GPa was obtained, which is considerably higher than that found on i-C films involving hydrogen. (orig.)

  8. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule

    International Nuclear Information System (INIS)

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small AlxOy± clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al2O3, as well as smaller Al2O2 and Al2O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged AlxOy± clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO2 in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO2 subunit. The vibrational spectra of AlxOy + CO2 provides well defined finger prints that may allow the identification of specific isomers. The AlxOy+ clusters are more reactive than the anionic species and the final Al2O+ + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on AlxOy+ clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred

  9. Test Measurements of a 20 ms-1 Carbon Wire Beam Scanner

    CERN Document Server

    De Freitas, J; Emery, J; Herranz Alvarez, J F; Koujili, M; Ramos, D; Sapinski, M; Ait-Amira, Y; Djerdir, A

    2011-01-01

    This paper pre­sents the de­sign of the ac­tu­a­tor for the fast and high ac­cu­ra­cy Wire Scan­ner sys­tem. The ac­tu­a­tor con­sists of a ro­tary brushless syn­chronous motor with the per­ma­nent mag­net rotor in­stalled in­side the vac­u­um cham­ber and the sta­tor in­stalled out­side. The fork, per­ma­nent mag­net rotor and two an­gu­lar po­si­tion sen­sors are mount­ed on the same axis and lo­cat­ed in­side the beam vac­u­um cham­ber. The system has to re­sist a bake-out tem­per­a­ture of 200 C and ion­iz­ing radi­a­tion up to tenths of kGy/year. Max­i­mum wire trav­el­ling speed of 20 m/s and a po­si­tion mea­sure­ment ac­cu­ra­cy of 4 um is re­quired. Therefore, the sys­tem must avoid gen­er­at­ing vi­bra­tion and electromagnet­ic in­ter­fer­ence. A dig­i­tal feed­back con­troller will allow max­i­mum flex­i­bil­i­ty for the loop pa­ram­e­ters and feeds the 3-phase lin­ear power driv­er. The per­for­mance of the pr...

  10. First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains

    International Nuclear Information System (INIS)

    Highlights: ► Electronic and magnetic properties of (5, 5)-SWNT doped with Pt clusters and chains. ► Pt-doping can change metallic (5, 5)-SWNT to semiconducting CNT. ► Oxygen adsorption on Pt-doped (5, 5)-SWNT is barrierless process. ► Pt-doping reduces the activation barrier of oxygen dissociation reaction. ► Adsorbed oxygen has 2O2- – character. - Abstract: We report the results of density functional theory calculations on the electronic structures, geometrical parameters, and magnetic properties of a wide variety of Pt clusters/chains adsorbed on metallic (5,5) single-walled carbon nanotube (SWNT). It was found that the electronic band structures of Pt/CNT systems are very sensitive to the small changes in the geometries of Pt clusters and chains. In some cases, metallic (5, 5)-SWNT becomes a small-gap semiconducting nanotube with adsorbed Pt clusters and chains. We also investigated the dissociation of molecular oxygen on the (5, 5)-SWNT doped with a single Pt atom via the nudged elastic band (NEB) method. The NEB results showed that the activation barrier is lowered even with a single Pt atom compared to that of pristine SWNT. It was found that the electronic structure of molecular oxygen adsorbed on Pt-doped CNT resembles that of 2O2-, which should facilitate the dissociation process.

  11. Carbon nanotube growth from catalytic nano-clusters formed by hot-ion-implantation into the SiO{sub 2}/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Arima, Hiroki; Yokoyama, Ai; Saito, Yasunao; Nakata, Jyoji [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2012-07-01

    We have studied growth of chirality-controlled carbon nanotubes (CNTs) from hot-implantation-formed catalytic nano-clusters in a thermally grown SiO{sub 2}/Si substrate. This procedure has the advantage of high controllability of the diameter and the number of clusters by optimizing the conditions of the ion implantation. In the present study, Co{sup +} ions with ion dose of 8 Multiplication-Sign 10{sup 16} cm{sup -2} are implanted in the vicinity of the SiO{sub 2}/Si interface at 300 Degree-Sign C temperature. The implanted Co atoms located in the SiO{sub 2} layer has an amorphous-like structure with a cluster diameter of several nm. In contrast, implanted Co atoms in the Si substrate are found to take a cobalt silicide structure, confirmed by the high-resolution image of transmission electron microscope. CNTs are grown by microwave-plasma-enhanced chemical vapor deposition. We have confirmed a large amount of vertically-aligned multi-walled CNTs from the Co nano-clusters formed by the hot-ion-implantation near the SiO{sub 2}/Si interface.

  12. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  13. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  14. Effects of radioprotectors on mutation in cultured mammalian cells by carbon beam

    International Nuclear Information System (INIS)

    The project goal is understand genotoxic effects of high linear energy transfer (LET) radiations, e.g. carbon, 290 MeV/nucleon: LET=100 KeV/μm [C290], and to identify chemicals that can prevent or decrease such pathologies in cultured cells and in exposed humans. We have now quantified effects of C290-induced genotoxicity of several chemicals including WR-1065, cimetidine, lycopene, RibCys [(R, S)-D-ribo(1', 2', 3', 4'-Tetrahydroxybutyl)-thiazolidine-4(R)-ca riboxylic acid, N-acetyl cysteine (NAC), Dimethyl sulfoxide (DMSO) and vitamin C, and combinations of DMSO plus Vitamin C. In vitro, vitamin C showed the most promise. It significantly reduced mutant induction by C290 and also reduced the yield of mutants displaying the cancer-related property of genomic instability even when added after radiation. Unfortunately vitamin C was less effective at doses below 5 mM, which is too high for use in humans. So we are turning to using non-toxic levels of vitamin C in combination with other chemicals. Our recent preliminary results and those of Dr. J. Kumagai indicate that NAC, at doses well tolerated by humans and which scavenge classical hydroxyl radicals, also effectively scavenge mutagenic, long-lived radicals (LLR). We plan, therefore, to evaluate the combined effect of NAC + vitamin C on X-ray mutagenicity (but not initially at Heavy Ion Medical Accelerator in Chiba (HIMAC)). If these experiments look promising we would like to propose experiments with high LET radiation at HIMAC in collaboration with Dr. Kumagai. (author)

  15. Structural disorder in ion irradiated carbon materials

    International Nuclear Information System (INIS)

    The effects of ion irradiation on carbon based materials are reviewed laying emphasis on the well known ability of carbon to have different kinds of bonding configuration with the surrounding atoms. It was found that two kinds of bonding configuration of the carbon atoms are allowed in solid amorphous carbon phases. These rearrange the four valence electrons of carbon into sp2 (trigonal bond) and sp3 (tetrahedral bond) hybridizations. Driving the trigonal carbon fraction (x), the physical and chemical nature of solid carbon materials can change in a dramatic way ranging from metallic (x∼100%) to insulating (x∼0%) through semiconductor properties. The amount of the tetrahedral (or trigonal) carbon atoms can be controlled by ion beam irradiation, using suitable conditions and/or introducing foreign species such as hydrogen or silicon by the implantation technique. In hydrogenated amorphous carbon (a-C:H) and hydrogenated amorphous silicon-carbon alloys (a-Si1-xCx:H), the ion beam effects are able to produce stable and reproducible compounds, achieved by tuning the hydrogen (silicon) concentration with well defined equilibrium curves between the trigonal carbon fraction and hydrogen (silicon) content. Raman spectroscopy and temperature dependent conductivity experiments performed on these alloys suggest clustering effects in samples with high carbon content (x∼0.5) due to the strong binding energy of the C-C double bond with respect to C-Si and Si-Si. Several models and theoretical studies such as the 'random covalent network' (RCN) and molecular dynamics calculations have been used to fit the experimental results. It is shown that, while RCN models are highly inaccurate because of the clustering effects, molecular dynamics calculation data are very close to the experimental measured physical properties and confirm the ability of the trigonal carbon to cluster in graphite-like aggregate

  16. Understanding resonant tunnel transport in non-identical and non-aligned clusters as applied to disordered carbon systems

    International Nuclear Information System (INIS)

    We study the conductance spectra and the corresponding current-voltage characteristics of a set of three impurity clusters of different sizes arranged in the form of a scalene triangle and compare with the transport of their horizontal and vertical configurations. The tuning capability of resonant tunnelling features in a quantum dot device made of these non-aligned impurity clusters is demonstrated by re-distributing their diameters and inter-cluster distances in a systematic manner. By manipulating the inter-cluster coupling for a scalene triangular configuration, the transition of current-voltage curves from a step-like feature to a negative differential resistance can be produced. This process also yields conductance features for triangular configurations, which can be compared to the quantum dot structures perfectly aligned to the direction of the propagating wavevector. The strength of inter-cluster coupling or order parameter for these configurations is analysed from the relative variation of the width and the energy difference of the sharp and broad peaks observed in the density of states spectra. Based on the relative change of the inter-cluster coupling with the cluster configurations, a transport model applicable to structurally inhomogeneous systems is proposed in order to explain the experimentally observed variation of the energy band gap with the disorder parameters.

  17. Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2016-01-01

    Full Text Available The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2 rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.

  18. Nanodosimetric track structure in homogeneous extended beams

    International Nuclear Information System (INIS)

    Physical aspects of particle track structure are important in determining the induction of clustered damage in relevant subcellular structures like the DNA and higher-order genomic structures. The direct measurement of track-structure properties of ionising radiation is feasible today by counting the number of ionizations produced inside a small gas volume. In particular, the so-called track-nano-dosimeter, installed at the TANDEM-ALPI accelerator complex of LNL, measures ionisation cluster-size distributions in a simulated subcellular structure of dimensions 20 nm, corresponding approximately to the diameter of the chromatin fibre. The target volume is irradiated by pencil beams of primary particles passing at specified impact parameter. To directly relate these measured track-structure data to radiobiological measurements performed in broad homogeneous particle beams, these data can be integrated over the impact parameter. This procedure was successfully applied to 240 MeV carbon ions and compared with Monte Carlo simulations for extended fields. (authors)

  19. Measurement of analyzing powers of π+ and π- produced on a hydrogen and a carbon target with a 22-GeV/c incident polarized proton beam

    International Nuclear Information System (INIS)

    The analyzing powers of π+ and π- were measured using an incident 22-GeV/c transversely polarized proton beam at the Brookhaven Alternating Gradient Synchrotron. A magnetic spectrometer measured π± inclusive asymmetries on a hydrogen and a carbon target. An elastic polarimeter with a CH2 target measured pp elastic-scattering asymmetries to determine the beam polarization using published data for the pp elastic analyzing power. Using the beam polarization determined from the elastic polarimeter and asymmetries from the inclusive spectrometer, analyzing powers AN for π± were determined in the xF and pT ranges (0.45-0.8) and (0.3-1.2 GeV/c), respectively. The analyzing power results are similar in both sign and character to other measurements at 200 and 11.7 GeV/c, confirming the expectation that high-energy pion inclusive analyzing powers remain large and relatively energy independent. This suggests that pion inclusive polarimetry may be a suitable method for measuring future beam polarizations at BNL RHIC or DESY HERA. Analyzing powers of π+ and π- produced on hydrogen and carbon targets are the same. Various models to explain inclusive analyzing powers are also discussed

  20. Carbon-ion beams effectively induce growth inhibition and apoptosis in human neural stem cells compared with glioblastoma A172 cells

    International Nuclear Information System (INIS)

    Carbon-ion radiotherapy (CIRT) holds promise in the treatment of glioblastoma, an aggressive X-ray–resistant brain tumor. However, since glioblastoma cells show a highly invasive nature, carbon-ion (C-ion) irradiation of normal tissues surrounding the tumor is inevitable. Recent studies have revealed the existence of neural stem cells in the adult brain. Therefore, the damaging effect of C-ion beams on the neural stem cells has to be carefully considered in the treatment planning of CIRT. Here, we investigated the growth and death mode of human neural stem cells (hNSCs) and glioblastoma A172 cells after X-ray or C-ion beam irradiation. The X-ray dose resulting in a 50% growth rate (D50) was 0.8 Gy in hNSCs and 3.0 Gy in A172 cells, while the D50 for C-ion beams was 0.4 Gy in hNSCs and 1.6 Gy in A172 cells; the relative biological effectiveness value of C-ion beams was 2.0 in hNSCs and 1.9 in A172 cells. Importantly, both X-rays and C-ion beams preferentially induced apoptosis, not necrosis, in hNSCs; however, radiation-induced apoptosis was less evident in A172 cells. The apoptosis-susceptible nature of the irradiated hNSCs was associated with prolonged upregulation of phosphorylated p53, whereas the apoptosis-resistant nature of A172 cells was associated with a high basal level of nuclear factor kappa B expression. Taken together, these data indicate that apoptosis is the major cell death pathway in hNSCs after irradiation. The high sensitivity of hNSCs to C-ion beams underscores the importance of careful target volume delineation in the treatment planning of CIRT for glioblastoma. (author)