WorldWideScience

Sample records for carbon cluster beams

  1. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  2. Cluster ion beam evaporation

    International Nuclear Information System (INIS)

    Cluster ions can be made by the supercooling due to adiabatic expansion of substances to be vaporized which are ejected from a nozzle. This paper is described on the recent progress of studies concerning the cluster beam. The technique of cluster ion beam has been applied for the studies of thermonuclear plasma, the fabrication of thin films, crystal growth and electronic devices. The density of cluster ion beam is larger than that of atomic ion beam, and the formation of thin films can be easily done in high vacuum. This method is also useful for epitaxial growth. Metallic vapour cluster beam was made by the help of jetting rare gas beam. Various beam sources were developed. The characteristics of these sources were measured and analyzed. (Kato, T.)

  3. Cluster beam sources. Part 1. Methods of cluster beams generation

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-10-01

    Full Text Available The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  4. Two Types of Mass Abundance Distributions for Anionic Carbon Clusters Investigated by Laser Vaporization and Pulsed Molecular Beam Techniques

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hua-Jin; LIU Bing-Chen; NI Guo-Quan; XUZhi-Zhan

    2000-01-01

    Two types of mass spectra for anionic carbon clusters Cn- have been revealed using laser vaporization and pulsed molecular beam techniques. The less structured mass spectrum characteristic of the magic-numbers at n = 5, 8,11, 15, and 17 is established at the early stage of the cluster formation process, namely, in the laser vaporization process. The more structured one is featured for a regular odd-even alternation and the magic numbers at n =10, 12, 16, 18, 22, and 28, and has been developed only after extensive clustering and qnenching processes, where low-energy electron attachment plays a vital role. Transition between these two types of mass spectra can be realized by controlling either the strength of the pulsed gas flow or the synchronism between the gas flow and the laser vaporization.

  5. Cluster Beams Sources. Part 2. The Formation of Cluster Beams in Nozzle Sources

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-12-01

    Full Text Available The article briefly examines the processes occurring during the formation of cluster beams in sources of clusters, using the expansion of the gas mixture through a nozzle. The basic parameters of the gas cluster flow at the outlet nozzle, leading to the formation of clusters are analyzed. Some aspects of the formation of cluster beams from aerodynamic flows are discussed.

  6. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    CERN Document Server

    Kitagawa, T; Kanda, K; Shimizugawa, Y; Toyoda, N; Matsui, S; Yamada, I; Tsubakino, H; Matsuo, J

    2003-01-01

    Diamond-like carbon (DLC) film deposited using C sub 6 sub 0 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp sup 2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C sub 6 sub 0 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp sup 2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  7. Development of MeV cluster ion beams and irradiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hirata, Kouichi; Kobayashi, Yoshinori [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)

    2001-02-01

    The production and acceleration of cluster ion beams were developed by using a sputtering ion source and a tandem accelerator. Molecular beams of iron oxides were produced from Fe{sub 2}O{sub 3} powder prepared as the specimen of the ion source and accelerated to energy of MeV range. Defect densities in silicon and polycarbonate targets by irradiation were compared between monoatomic carbon ions and carbon cluster beams (C{sub 2}-C{sub 4}). Beam currents by injection of carbon cluster beams (C{sub 8}) were measured for various targets such as Si, Al, Al{sub 2}O{sub 3} and polycarbonate. The target and time dependence of the beam currents were originated from sputtered ions due to water molecules and oxides adhered at the surface of the targets. (Y. Kazumata)

  8. Historical milestones and future prospects of cluster ion beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Isao, E-mail: i-yamada@kuee.kyoto-u.ac.jp

    2014-08-15

    Development of technology for processing of surfaces by means of gas cluster ion beams began only about a quarter century ago even though fundamental research related to generation of gas clusters began much earlier. Industrial applications of cluster ion beams did not start to be explored until commercial equipment was first introduced to the ion beam community in around 2000. The technology is now evolving rapidly with industrial equipment being engineered for many diverse surface processing applications which are made possible by the unique characteristics of cluster-ion/solid-surface interactions. In this paper, important historical milestones in cluster ion beam development are described. Present activities related to a wide range of industrial applications in semiconductors, magnetic and optical devices, and bio-medical devices are reviewed. Several emerging new advances in cluster beam applications for the future are also discussed.

  9. Two-dimensional visualization of cluster beams by microchannel plates

    CERN Document Server

    Khoukaz, Alfons; Grieser, Silke; Hergemöller, Ann-Katrin; Köhler, Esperanza; Täschner, Alexander

    2013-01-01

    An advanced technique for a two-dimensional real time visualization of cluster beams in vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCP) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This inf...

  10. The cluster beam route to model catalysts and beyond.

    Science.gov (United States)

    Ellis, Peter R; Brown, Christopher M; Bishop, Peter T; Yin, Jinlong; Cooke, Kevin; Terry, William D; Liu, Jian; Yin, Feng; Palmer, Richard E

    2016-07-01

    The generation of beams of atomic clusters in the gas phase and their subsequent deposition (in vacuum) onto suitable catalyst supports, possibly after an intermediate mass filtering step, represents a new and attractive approach for the preparation of model catalyst particles. Compared with the colloidal route to the production of pre-formed catalytic nanoparticles, the nanocluster beam approach offers several advantages: the clusters produced in the beam have no ligands, their size can be selected to arbitrarily high precision by the mass filter, and metal particles containing challenging combinations of metals can be readily produced. However, until now the cluster approach has been held back by the extremely low rates of metal particle production, of the order of 1 microgram per hour. This is more than sufficient for surface science studies but several orders of magnitude below what is desirable even for research-level reaction studies under realistic conditions. In this paper we describe solutions to this scaling problem, specifically, the development of two new generations of cluster beam sources, which suggest that cluster beam yields of grams per hour may ultimately be feasible. Moreover, we illustrate the effectiveness of model catalysts prepared by cluster beam deposition onto agitated powders in the selective hydrogenation of 1-pentyne (a gas phase reaction) and 3-hexyn-1-ol (a liquid phase reaction). Our results for elemental Pd and binary PdSn and PdTi cluster catalysts demonstrate favourable combinations of yield and selectivity compared with reference materials synthesised by conventional methods.

  11. The cluster beam route to model catalysts and beyond.

    Science.gov (United States)

    Ellis, Peter R; Brown, Christopher M; Bishop, Peter T; Yin, Jinlong; Cooke, Kevin; Terry, William D; Liu, Jian; Yin, Feng; Palmer, Richard E

    2016-07-01

    The generation of beams of atomic clusters in the gas phase and their subsequent deposition (in vacuum) onto suitable catalyst supports, possibly after an intermediate mass filtering step, represents a new and attractive approach for the preparation of model catalyst particles. Compared with the colloidal route to the production of pre-formed catalytic nanoparticles, the nanocluster beam approach offers several advantages: the clusters produced in the beam have no ligands, their size can be selected to arbitrarily high precision by the mass filter, and metal particles containing challenging combinations of metals can be readily produced. However, until now the cluster approach has been held back by the extremely low rates of metal particle production, of the order of 1 microgram per hour. This is more than sufficient for surface science studies but several orders of magnitude below what is desirable even for research-level reaction studies under realistic conditions. In this paper we describe solutions to this scaling problem, specifically, the development of two new generations of cluster beam sources, which suggest that cluster beam yields of grams per hour may ultimately be feasible. Moreover, we illustrate the effectiveness of model catalysts prepared by cluster beam deposition onto agitated powders in the selective hydrogenation of 1-pentyne (a gas phase reaction) and 3-hexyn-1-ol (a liquid phase reaction). Our results for elemental Pd and binary PdSn and PdTi cluster catalysts demonstrate favourable combinations of yield and selectivity compared with reference materials synthesised by conventional methods. PMID:27152749

  12. Cobalt cluster-assembled thin films deposited by low energy cluster beam deposition: Structural and magnetic investigations of deposited layers

    International Nuclear Information System (INIS)

    Cobalt cluster-assembled thin films were deposited on amorphous-carbon-coated copper grids and on silicon substrates at room temperature by low energy cluster beam deposition. Characterizations using high-resolution transmission electronic microscopy and atomic force microscopy reveal randomly stacked agglomerates of 9-11 nm diameter, which are themselves composed of small 3.6 nm diameter fcc cobalt clusters. The films are ferromagnetic up to room temperature and above, which implies that the clusters are exchange coupled. The approach to saturation is analyzed within the random anisotropy model. The values of the exchange coefficient A and the anisotropy constant K then derived are discussed. The temperature dependence of the coercivity below 100 K is discussed in terms of thermal activation effects. All results indicate that the fundamental entity governing the magnetic behaviors is constituted by the 9-11 nm diameter agglomerates rather than by the clusters themselves

  13. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, A., E-mail: akirkpatrick@exogenesis.us [Exogenesis Corporation, 20 Fortune Drive, Billerica, MA 01821 (United States); Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J. [Exogenesis Corporation, 20 Fortune Drive, Billerica, MA 01821 (United States)

    2013-07-15

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  14. Plasma beam discharge in carbon dioxide

    International Nuclear Information System (INIS)

    The paper deals with the dissociation of carbon dioxide in nonequilibrium plasma of a stationary plasma-beam discharge. Experimental results of spectroscopic and probe measurements of plasma parameters are given. Moreover, a mass-spectrometric analysis of gaseous products of the chemical reactions is presented. In addition the measurement of the deposition rate of solid products by means of a quartz oscillator is described. The results show that plasma beam discharge is an effective tool for inducing plasma-chemical reactions. (author)

  15. The Turn Over of the Odd-even Pattern in Mass Spectra of Carbon Cluster Anions

    Institute of Scientific and Technical Information of China (English)

    NI Guoquan; LIU Bingchen; ZHAI Huajin

    2000-01-01

    @@ Although investigations by many authorsd on the properties of carbon cluster anions by mass spectrometry and photoelectron spectroscopy last more than a decade[1~3], a general conclusion concerning the various features of the carbon clusters generated most commonly in laser vaporization/molecular beam sources has not yet been reached. In this Letter we report that the turn-over of the odd-even patter in relative abundance in the mass spectra of carbon clusters and the "manipulation" of the pattern can be realized in a controlled way by altering the vaporizing laser intensity, the backing pressure and the conductance of carries gas.

  16. Carbon beams, production and acceleration

    International Nuclear Information System (INIS)

    Installation, test and working conditions of a new negative-ion facility of the Salazar EN tandem are briefly described. Carbon is the material used for the test and the heavy ion stripping phenomenon is reviewed. (author)

  17. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  18. Carbon-cluster mass calibration at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Ankur

    2007-12-10

    A carbon-cluster ion source has been installed and tested at SHIPTRAP, the Penning-trap mass spectrometer for mass measurements of heavy elements at GSI/Darmstadt, Germany. A precision mass determination is carried out by measuring the ion cyclotron frequency {omega}{sub c}=qB=m, where q/m is the charge-to-mass ratio of the ion and B is the magnetic field. The mass of the ion of interest is obtained from the comparison of its cyclotron frequency {omega}{sub c} with that of a well-known reference ion. Carbon clusters are the mass reference of choice since the unified atomic mass unit is defined as 1/12 of the mass of the {sup 12}C atom. Thus the masses of carbon clusters {sup 12}C{sub n}, n=1,2,3,.. are multiples of the unified atomic mass unit. Carbon-cluster ions {sup 12}C{sub n}{sup +}, 5{<=}n{<=}23, were produced by laser-induced desorption and ionization from a carbon sample. Carbon clusters of various sizes ({sup 12}C{sub 7}{sup +}, {sup 12}C{sub 9}{sup +}, {sup 12}C{sub 10}{sup +}, {sup 12}C{sub 11}{sup +}, {sup 12}C{sub 12}{sup +}, {sup 12}C{sub 15}{sup +}, {sup 12}C{sub 18}{sup +}, {sup 12}C{sub 19}{sup +}, {sup 12}C{sub 20}{sup +}) were used for an investigation of the accuracy of SHIPTRAP covering a mass range from 84 u to 240 u. To this end the clusters were used both as ions of interest and reference ions. Hence the true values of the frequency ratios are exactly known. The mass-dependent uncertainty was found to be negligible for the case of (m-m{sub ref})<100 u. However, a systematic uncertainty of 4.5 x 10{sup -8} was revealed. In addition, carbon clusters were employed for the first time as reference ions in an on-line studies of short-lived nuclei. Absolute mass measurements of the radionuclides {sup 144}Dy, {sup 146}Dy and {sup 147}Ho were performed using {sup 12}C{sub 11}{sup +} as reference ion. The results agree with measurements during the same run using {sup 85}Rb{sup +} as reference ion. The investigated radionuclides were produced in the

  19. Reactions of carbon cluster ions stored in an RF trap

    International Nuclear Information System (INIS)

    Reactions of carbon cluster ions with O2 were studied by using an RF ion trap in which cluster ions of specific size produced by laser ablation could be stored selectively. Reaction rate constants for positive and negative carbon cluster ions were estimated. In the case of the positive cluster ions, these were consistent with the previous experimental results using FTMS. Negative carbon cluster ions C-n (n=4-8) were much less reactive than positive cluster ions. The CnO- products were seen only in n=4 and 6. (orig.)

  20. The application of Guided Ion Beam Tandem Mass Spectrometer; Bond dissociation energies of bare and ligated copper group cluster anions

    International Nuclear Information System (INIS)

    Threshold energies, fragmentation patterns, and integral cross sections for the reactions of collision induced dissociations of bare and ligated copper group cluster anions are determined using a Guided Ion Beam Tandem Mass Spectrometer (GIB-MS). The bond breaking patterns for the copper cluster anions show dramatic even/odd tendencies, e.g., all copper group anions generate as the predominant reaction product, Carbon monoxide is weakly bound to copper group cluster anions. Cohesive energies of the bare copper and silver cluster anions are determined and exhibit a good correspondence with estimate cohesive energies by the model of Miedema.

  1. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Miley, George H.

    2012-10-24

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn

  2. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  3. An Effective Method of Producing Small Neutral Carbon Clusters

    Institute of Scientific and Technical Information of China (English)

    XIA Zhu-Hong; CHEN Cheng-Chu; HSU Yen-Chu

    2007-01-01

    An effective method of producing small neutral carbon clusters Cn (n = 1-6) is described. The small carbon clusters (positive or negative charge or neutral) are formed by plasma which are produced by a high power 532nm pulse laser ablating the surface of the metal Mn rod to react with small hydrocarbons supplied by a pulse valve, then the neutral carbon clusters are extracted and photo-ionized by another laser (266nm or 355nm) in the ionization region of a linear time-of-flight mass spectrometer. The distributions of the initial neutral carbon clusters are analysed with the ionic species appeared in mass spectra. It is observed that the yield of small carbon clusters with the present method is about 10 times than that of the traditional widely used technology of laser vaporization of graphite.

  4. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  5. Intensive irradiation of carbon nanotubes by Si ion beam

    Institute of Scientific and Technical Information of China (English)

    NI Zhichun; LI Qintao; YAN Long; GONG Jinlong; ZHU Dezhang; ZHU Zhiyuan

    2007-01-01

    Multi-walled carbon nanotubes were irradiated with 40 keV Si ion beam to a dose of 1×1017 cm-2. The multiple-way carbon nanowire junctions and the Si doping in carbon nanowires were realized. Moreover, the formation processes of carbon nanowire junctions and the corresponding mechanism were studied.

  6. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  7. Observations on small anionic clusters in an electrostatic ion beam trap

    International Nuclear Information System (INIS)

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (Cn- n=2-12), aluminium (Aln- n=2-7) and silver clusters (Agn- n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon emission. The thermionic evaporative decay of anionic aluminium and silver

  8. Cluster Multi-spacecraft Determination of AKR Angular Beaming

    CERN Document Server

    Mutel, R L; Pickett, J S

    2008-01-01

    Simultaneous observations of AKR emission using the four-spacecraft Cluster array were used to make the first direct measurements of the angular beaming patterns of individual bursts. By comparing the spacecraft locations and AKR burst locations, the angular beaming pattern was found to be narrowly confined to a plane containing the magnetic field vector at the source and tangent to a circle of constant latitude. Most rays paths are confined within 15 deg of this tangent plane, consistent with numerical simulations of AKR k-vector orientation at maximum growth rate. The emission is also strongly directed upward in the tangent plane, which we interpret as refraction of the rays as they leave the auroral cavity. The narrow beaming pattern implies that an observer located above the polar cap can detect AKR emission only from a small fraction of the auroral oval at a given location. This has important consequences for interpreting AKR visibility at a given location. It also helps re-interpret previously published...

  9. Clusters in strong laser fields: Comparison between carbon, platinum, and lead clusters

    Science.gov (United States)

    Schumacher, M.; Teuber, S.; Köller, L.; Köhn, J.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    Carbon and metal clusters are excited by strong femtosecond laser pulses with up to 1016 W/cm2, yielding ionized clusters and highly charged atomic ions. For small carbon clusters and fullerenes the abundance of charged species correlates with the laser power, while for metal clusters the ionization efficiency is additionally strongly affected by the chosen laser pulse width which may result in an enhanced up-charging of the metal particle. In the case of platinum atomic charge states up to z=20 are detected at a pulse duration of about 600 fs. This observation is in accordance with a model based on a multi-plasmon excitation process.

  10. Simulation of swift boron clusters traversing amorphous carbon foils

    OpenAIRE

    Heredia Ávalos, Santiago; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; García Molina, Rafael

    2007-01-01

    We use a simulation code to study the interaction of swift boron clusters (Bn+, n=2–6, 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interacti...

  11. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  12. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  13. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  14. More Magic Numbers in Anionic Titanium-carbon Mixed Clusters

    Institute of Scientific and Technical Information of China (English)

    ZHAU Huajin; LIU Bingchen; ZHOU Rufang; NI Guoquan

    2000-01-01

    @@ Met-Cars[1] and related transition metal-carbon clusters represent a latest breakthrough in gas phase cluster research following the discovery and macroscopic synthesis of fullerenes. Different kinds of structural growth patterns (SGPs) have been proposed to analyze the observed magic numbers of these transition metal-carbon mixed clusters, including the multicage SGP[2], the nanocrystal SGP[3], and the recent layered SGP[4]. Recording larger magic numbers will be of great help to test and distinguish between the various SGPs.

  15. Carbon beam dosimetry using VIP polymer gel and MRI

    DEFF Research Database (Denmark)

    Kantemiris, I; Petrokokkinos, L; Angelopoulos, A;

    2009-01-01

    VIP polymer gel dosimeter was used for Carbon ion beam dosimetry using a 150 MeV/n beam with 10 Gy plateau dose and a SOBP irradiation scheme with 5 Gy Bragg peak dose. The results show a decrease by 8 mm in the expected from Monte Carlo simulation range in water, suggesting that the dosimeter...

  16. Diffusion and Interface Reaction of Cu/Si(100) Films Prepared by Cluster Beam Deposition

    Institute of Scientific and Technical Information of China (English)

    GAO Xing-Xin; JIA Yan-Hui; LI Gong-Ping; CHO Seong-Jin; KIM Hee

    2011-01-01

    Cu thin films are deposited on Si(100) substrates by neutral cluster beams and ionized cluster beams. The atomic diffusion and interface reaction between the Cu films and the Si substrates of as-deposited and annealed at different temperatures(230℃, 450℃, 500℃and 600℃) are investigated by Rutherford backscatteringspectrometry(RBS)and x-ray diffraction(XRD). Some significant results are obtained on the following aspects:(1) For the Cu/Si(100)samples prepared by neutral cluster beams and ionized cluster beams at Va=0 kV, atomic diffusion phenomena are observed clearly in the as-deposited samples. With the increase of annealing temperature, the interdiffusion becomes more apparent. However, the diffusion intensities of the RBS spectra of the Cu/Si(100) films using neutral cluster beams are always higher than that of the Cu/Si(100) films using ionized cluster beams at Va=OkV in the as-deposited and samples annealed at the same temperature. The compound of Cu3Si is observed in the as-deposited samples.(2) For the Cu/Si(100) samples prepared by ionized cluster beams at Va=1, 3, 5 kV,atomic diffusion phenomena are observed in the as-deposited samples at Va=1, 5 kV. For the samples prepared at Va=3 kV, the interdiffusion phenomenon is observed until 500℃ annealing temperature. The reason for the difference is discussed.

  17. Carbon and nitrogen abundance variations in globular cluster red giants

    Science.gov (United States)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  18. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-06-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  19. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  20. On the Motion of Carbon Nanotube Clusters near Optical Fiber Tips: Thermophoresis, Radiative Pressure, and Convection Effects.

    Science.gov (United States)

    Vélez-Cordero, J Rodrigo; Hernández-Cordero, J

    2015-09-15

    We analyze the motion of multiwalled carbon nanotubes clusters in water or ethanol upon irradiation with a 975 and 1550 nm laser beam guided by an optical fiber. Upon measuring the velocities of the nanotube clusters in and out of the laser beam cone, we were able to identify thermophoresis, convection and radiation pressure as the main driving forces that determine the equilibrium position of the dispersion at low optical powers: while thermophoresis and convection pull the clusters toward the laser beam axis (negative Soret coefficient), radiation pressure pushes the clusters away from the fiber tip. A theoretical solution for the thermophoretic velocity, which considers interfacial motion and a repulsive potential interaction between the nanotubes and the solvent (hydrophobic interaction), shows that the main mechanism implicated in this type of thermophoresis is the thermal expansion of the fluid, and that the clusters migrate to hotter regions with a characteristic thermal diffusion coefficient D(T) of 9 × 10(-7) cm(2) K(-1) s(-1). We further show that the characteristic length associated with thermophoresis is not that of the nanotube clusters size, O(1) μm, but that corresponding to the microstructure of the clusters, O(1) nm. We finally discuss the role of the formation of gas-liquid interfaces (microbubbles) at high optical powers on the deposition of carbon nanotubes on the optical fiber end faces. PMID:26309145

  1. Photodissociation and stability of carbon clusters; Photodissociation et stabilite d`agregats de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, R.

    1995-04-01

    This work is devoted to the study of the dissociation of ionised carbon clusters (containing 16 to 36 atoms) after photoexcitation by a UV-visible laser pulse. It contributes to experimental studies on formation mechanisms of carbon clusters, and particularly fullerenes. Its first aim is the knowledge of the internal energy of the clusters before dissociation. In the first part, a general overview summarizes the theoretical and experimental studies devoted to energetics (structure, stability, dissociation) of carbon clusters containing less than 60 atoms. In the second part, two techniques for producing mass-selected carbon clusters are described. The particular characteristics for such a production in a direct vaporization source are compared to those in a collisional-cooled source. The question of stability of intermediate-size clusters is asked. We study the photoabsorption spectroscopy of carbon clusters in the third part. A model for sequential absorption of several photons is developed, and used to analyze cluster dissociation versus the photoexcitation laser fluence. The absolute photoabsorption cross sections, and the number of absorbed photons are deduced. For some cluster sizes, laser wavelength scanning leads to evidence for existence of several clusters structures (or so-called isomers). The last part deals with photo dissociation mechanisms. Dissociation is found to occur after single-photon absorption, or after vibrational heating of the clusters. In that latter case, a statistical model including restricted intramolecular vibrational energy redistribution is used to calculate dissociation energies from measured fragmentation times of well-defined internal energy states. These energies, which are characteristic of cyclic structures, are then used to a better understanding of carbon cluster formation in a direct vaporization source. (Author). 76 refs., 63 figs., 23 tabs.

  2. Carbon clusters for absolute mass measurements at ISOLTRAP

    CERN Document Server

    Blaum, K; Herfurth, F; Kellerbauer, A G; Kluge, H J; Kuckein, M; Sauvan, E; Scheidenberger, C; Schweikhard, L

    2002-01-01

    The cyclotron frequencies of singly charged carbon clusters C/sub n //sup +/ (n >or= 2) were measured with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The present limit of mass accuracy delta m/m = 1.2.10/sup -8/ and the extent of the mass- dependent systematic shift ( delta m/m)/sub sys/ = 1.7(0.6).10/sup -10//u.(m - m/sub ref/) of the setup were investigated for the first time. In addition, absolute mass measurements by use of pure clusters of the most abundant carbon isotope /sup 12/C are now possible at ISOLTRAP. (15 refs).

  3. Improvement of carbon fiber surface properties using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for struetural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface.

  4. Investigation of the clustering condition for various gasses ejected from a fast solenoid valve for supersonic cluster beam injection

    International Nuclear Information System (INIS)

    The supersonic cluster beam (SSCB) injection method is being developed as a new fueling method for the Large Helical Device (LHD) experiment. As a first step, cluster formation at a room temperature has been investigated for various gasses using a fast solenoid valve for SSCB. Rayleigh scattering of laser light by the cluster is measured by a fast charge coupled device camera. In the case of methane, nitrogen, and argon, clear scattering signals are observed at high valve backing pressure of more than 3-4 MPa. In the case of hydrogen, helium, and neon, on the other hand, no scattering signal is detected at 7 MPa. (author)

  5. Surface Smoothing of Compound Semiconductor Substrates with Gas Cluster Ion Beams

    International Nuclear Information System (INIS)

    Surface smoothing by gas cluster ion beams (GCIB) was studied for compound semiconductor such as GaN and SiC. Average cluster size of Ar cluster ions was 2000atoms/cluster measured by time of flight (TOF). Since the total acceleration energy was 20keV, the energy per atom was 10eV/atom. This low-energy characteristic of gas cluster ion beams is desirable for compound semiconductors. GCIB irradiation was employed to remove the scratches of the mechanically polished SiC surface. After irradiation at acceleration energy of 15keV, the scratches was completry removed. The GaN film with initial average roughness of 4nm was also smoothed to that of 1.4nm by Ar cluster ion beams. Furthermore SiC substrates were irradiated with SF6 cluster ions. The sputtering yield of SiC with SF6 cluster ions was enhanced almost 3 times than that with Ar cluster ions

  6. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

    2011-01-01

    . Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine......Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions...... of the detector geometry implemented in the Monte Carlo simulations....

  7. Cluster ion beam assisted fabrication of metallic nanostructures for plasmonic applications

    Science.gov (United States)

    Saleem, Iram; Tilakaratne, Buddhi P.; Li, Yang; Bao, Jiming; Wijesundera, Dharshana N.; Chu, Wei-Kan

    2016-08-01

    We report a high-throughput, single-step method for fabricating rippled plasmonic nanostructure arrays via self-assembly induced by oblique angle cluster ion beam irradiation of metal surfaces. This approach does not require lithographic or chemical processes and has the prominent advantage of possible large surface area coverage and applicability to different starting materials. The polarization dependent plasmonic property of the gold nano-ripple is due to their one dimension structure. The localized plasmon resonance frequency of synthesized nano-ripple arrays is tunable by changing nano-ripple dimensions that can be engineered by changing the cluster ion beam irradiation parameters. In this specific case presented, using 30 keV Ar-gas cluster ion beam, we fabricate gold nano-ripple arrays that show localized plasmon resonance in the visible range through near IR range, tunable by varying cluster ion irradiation fluence.

  8. Diffusion and Interface Reaction of Cu/Si (100) Films Prepared by Cluster Beam Deposition

    International Nuclear Information System (INIS)

    Cu thin films are deposited on Si (100) substrates by neutral cluster beams and ionized cluster beams. The atomic diffusion and interface reaction between the Cu films and the Si substrates of as-deposited and annealed at different temperatures (230°C, 450°C, 500°C and 600°C) are investigated by Rutherford backscattering spectrometry (RBS) and x-ray diffraction (XRD). Some significant results are obtained on the following aspects: (1) For the Cu/Si(100) samples prepared by neutral cluster beams and ionized cluster beams at Va = 0kV, atomic diffusion phenomena are observed clearly in the as-deposited samples. With the increase of annealing temperature, the interdiffusion becomes more apparent. However, the diffusion intensities of the RBS spectra of the Cu/Si(100) films using neutral cluster beams are always higher than that of the Cu/Si(100) films using ionized cluster beams at Va=0kV in the as-deposited and samples annealed at the same temperature. The compound of Cu3Si is observed in the as-deposited samples. (2) For the Cu/Si(100) samples prepared by ionized cluster beams at Va=1, 3, 5kV, atomic diffusion phenomena are observed in the as-deposited samples at Va=1, 5kV. For the samples prepared at Va = 3kV, the interdiffusion phenomenon is observed until 500°C annealing temperature. The reason for the difference is discussed. (atomic and molecular physics)

  9. FIDDLING CARBON STRINGS WITH POLARIZED PROTON BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, H.; KURITA, K.

    2006-05-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region was first tested in the Brookhaven AGS successfully. CNI Polarimeters were then installed in the AGS and both RHIC rings. The polarimeter consists of ultra-thin carbon targets and silicon strip detectors. The waveform digitizers are used for signal readout, which allows deadtime-less data processing on the fly. Polarimeters are crucial instrumentation for the RHIC spin physics program. This paper summarizes the polarimeter design issues and operation results.

  10. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    EijiIwamura; MasanoriYamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process, graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  11. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    Eiji Iwamura; Masanori Yamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process,graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  12. Biological effect of carbon beams on cultured human cells

    International Nuclear Information System (INIS)

    This study was performed to determine the biological effect of carbon beams on 13 human tumor cells, in comparison with 200 KVp X-rays. Carbon beams were generated by the Riken Ring Cyclotron. The RBE (relative biological effectiveness) values were distributed from 1.46 to 2.20 for LET of 20 keV/μm, and 2.29-3.54 for 80 keV/μm. The RBEs were increased in all cell lines as the LET of carbon beams was increased from 20 to 80 keV/μm. There was no significant difference in radiosensitivity between cells from adenocarcinoma and those from squamous cell carcinoma. The relationship between the radiosensitivity of cells to X-rays and RBE was analyzed, but no significant correlation was suggested. Several survival curves of 20-40 keV/μm carbon beam irradiation showed the initial shoulders and the recovery ratios between two split doses were determined. Recovery was observed for LET of 2O keV/μm but not for that of 40 keV/μm. Furthermore, recovery ratios were 1.0-1.8, smaller than those for X-rays (1.5-2.4). (author)

  13. On the electronic structure of small cyclic carbon clusters

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Kazim E. [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom); Taylor, Peter R. [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)], E-mail: p.r.taylor@warwick.ac.uk

    2008-06-16

    We present the results of correlated calculations on a variety of small carbon rings. Equilibrium structures and vibrational frequencies are calculated and transition states connecting symmetry-equivalent minima are considered in detail. We show that neither single-reference coupled-cluster nor multiconfigurational self-consistent field methods (even after perturbational inclusion of dynamical correlation effects) give qualitatively correct potential surfaces in the vicinity of the minima, suggesting that there is little recourse for these systems other than a multireference coupled-cluster treatment. Density-functional theory using the B3LYP functional produces results broadly in agreement with single-reference coupled-cluster methods and is thus no more reliable, but considerably more economical.

  14. Hydrophilic carbon clusters as therapeutic, high capacity antioxidants

    OpenAIRE

    Samuel, Errol L. G.; Duong, MyLinh T.; Bitner, Brittany R.; Marcano, Daniela C.; James M. Tour; Kent, Thomas A

    2014-01-01

    Oxidative stress reflects an excessive accumulation of reactive oxygen species (ROS) and is a hallmark of several acute and chronic human pathologies. While many antioxidants have been investigated, the majority have demonstrated poor efficacy in clinical trials. Here, we discuss limitations of current antioxidants and describe a new class of nanoparticle antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs). PEG-HCCs show high capacity to annihilate ROS su...

  15. Design Study of a Superconducting Gantry for Carbon Beam Therapy

    CERN Document Server

    Kim, J

    2016-01-01

    This paper describes the design study of a gantry for a carbon beam. The designed gantry is compact such that its size is comparable to the size of the proton gantry. This is possible by introducing superconducting double helical coils for dipole magnets. The gantry optics is designed in such a way that it provides rotation-invariant optics and variable beam size as well as point-to-parallel scanning of a beam. For large-aperture magnet, three-dimensional magnetic field distribution is obtained by invoking a computer code, and a number of particles are tracked by integrating equations of motion numerically together with three-dimensional interpolation. The beam-shape distortion due to the fringe field is reduced to an acceptable level by optimizing the coil windings with the help of genetic algorithm. Higher-order transfer coefficients are calculated and shown to be reduced greatly with appropriate optimization of the coil windings.

  16. Track detector based dosimetry for therapeutic carbon beams

    CERN Document Server

    Osinga, J -M; Brabcová, K Pachnerová; Akselrod, M S; Jäkel, O; Davídková, M; Greilich, S

    2013-01-01

    The ability of plastic and fluorescent nuclear track detectors (PNTDs and FNTDs) to measure fluence and the linear energy transfer (LET) of clinical carbon ion beams was investigated. We employed coincident measurements with both systems and registered the results at the level of single tracks. Irradiations were performed in the entrance channel of the monoenergetic carbon ion beam covering the therapeutically useful energy range from 80 to 425 MeV/u. About 99 % of all primary particle tracks detected by both detectors were successfully matched, while 1 % of the particles were only detected by the FNTDs because of their superior spatial resolution. We conclude that both PNTDs and FNTDs are suitable for clinical carbon beam dosimetry with a detection efficiency of at least 98.82 % and 99.83 % respectively, if irradiations are performed with low fluence in the entrance channel of the ion beam. Additionally, a relationship between the mean LET as determined with PNTDs and the mean fluorescence amplitude of the p...

  17. Fe-inserted and shell-shaped carbon nanoparticles by cluster-mediated laser pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fleaca, C.T., E-mail: claudiufleaca@yahoo.com [Laser Photochemistry Laboratory, National Institute for Lasers, Plasma and Radiation Physics (NILPRP), P.O. Box MG 36, R-077125 Bucharest-Magurele (Romania); Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Sandu, I.; Luculescu, C.; Birjega, S. [Laser Photochemistry Laboratory, National Institute for Lasers, Plasma and Radiation Physics (NILPRP), P.O. Box MG 36, R-077125 Bucharest-Magurele (Romania); Prodan, G. [Ovidius University of Constanta, 124 Mamaia Bd., Constanta (Romania); Stamatin, I. [3 Nano-SAE Research Center, University of Bucharest, P.O. Box MG-38, R-077125 Bucharest-Magurele (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Iron-inserted carbon nanoparticles were obtained by laser pyrolysis technique. Black-Right-Pointing-Pointer Two different structures (shell-shape and turbostratic) were found in the same experiment. Black-Right-Pointing-Pointer Increasing the pressure causes the increasing in carbon crystallinity/decreasing the Fe content. Black-Right-Pointing-Pointer Iron nanoinclusions are protected from oxidation by the carbon matrix. Black-Right-Pointing-Pointer Magnetism-related applications of these nanoparticles in life sciences are proposed. - Abstract: We report here the high-yield continuous synthesis of carbon nanoparticles with and without Fe content by laser pyrolysis technique. The laser beam decomposes (via C{sub 2}H{sub 4} sensitizer) the Fe(CO){sub 5} as Fe clusters which absorb themselves the laser radiation. They trigger the fast carbon particles formation by exothermic dehydrogenation/polymerization of the surrounded C{sub 2}H{sub 2} molecules. This combination between Fe clusters and C{sub 2}H{sub 2} generates nanoparticles with unusual structure. Depending on the gas pressure in the reaction chamber, two kinds of nanoparticles were obtained: at lower pressure, 30-40 nm diameter particles with a defective structure, part of them crowded with Fe clusters (3-6 nm) and two types of nanoparticles (around 50-60 nm) at the highest pressure. Some of them have a shell-shape structure, presenting a distinct envelope, other with a turbostratic arrangement, and few containing one or several smaller (3-20 nm) Fe nanoparticles trapped inside. We consider that these particular structures of our nanoparticles may be useful in applications such as MRI applications, drug delivery or catalysts.

  18. An indigenous cluster beam apparatus with a reflectron time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    G Raina; G U Kulkarni; R T Yadav; V S Ramamurthy; C N R Rao

    2000-04-01

    The design and fabrication of a Smalley-type cluster source in combination with a reflectron based time-of-flight (TOF) mass spectrometer are reported. The generation of clusters is based on supersonic jet expansion of the sampling plume. Sample cells for both liquid and solid targets developed for this purpose are described. Two pulsed Nd-YAG lasers are used in tandem, one (532 nm) for target vapourization and the other (355 nm) for cluster ionization. Methanol clusters of nuclearity up to 14 (mass 500 amu) were produced from liquid methanol as the test sample. The clusters were detected with a mass resolution of ~ 2500 in the R-TOF geometry. Carbon clusters up to a nuclearity of 28 were obtained using a polyimide target. The utility of the instrument is demonstrated by carrying out experiments to generate mixed clusters from alcohol mixtures.

  19. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    Science.gov (United States)

    Tang, H. P.; Feng, J. Y.; Fan, Y. D.; Li, H. D.

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480°C, while CdTe growth inboth (100) and (111) orientations occured when the substrate preheating temperature was above 550°C. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec.

  20. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P.; Feng, J.Y.; Fan, Y.D.; Li, H.D. (Dept. of Materials Science and Engineering, Tsinghua Univ., Beijing (China))

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480degC, while CdTe growth in both (100) and (111) orientations occurred when the substrate preheating temperature was above 550degC. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec. (orig.).

  1. Semiconductor cluster beams: One and two color ionization studies of Six and Gex

    OpenAIRE

    Heath, J. R.; Liu, Yuan; O'Brien, S. C.; Zhang, Qing-Ling; Curl, R. F.; Tittel, F. K.; Smalley, R. E.

    1985-01-01

    Supersonic beams of clusters of Si and Ge atoms have been produced by laser vaporization followed by supersonic expansion in a helium carrier. The cluster beams were characterized by F2(7.9 eV) and ArF(6.4 eV) excimer laser ionization accompanied by time-of-flight mass analysis. In addition, the feasibility of a resonant two-photon ionization (R2PI) spectroscopic study was explored by two-color experiments involving initial excitation with the second (2.36 eV) and third (3.54 eV) harmonics of...

  2. Carbon cluster diagnostics-I: Direct Recoil Spectroscopy (DRS) of Ar+ and Kr+ bombarded graphite

    CERN Document Server

    Ahmad, Shoaib; Qayyum, A; Ahmad, B; Bahar, K; Arshed, W

    2016-01-01

    Measurements of the energy spectra of multiply charged positive and negative carbon ions recoiling from graphite surface under 100 and 150 keV argon and krypton ion bombardment are presented. With the energy spectrometer set at recoil angle of 79.5 degrees, direct recoil (DR) peaks have been observed with singly as well as multiply charged carbon ions , where n = 1 to 6. These monatomic and cluster ions have been observed recoiling with the characteristic recoil energy E(DR) . We have observed sharp DR peaks. A collimated projectile beam with small divergence is supplemented with a similar collimation before the energy analyzer to reduce the background of sputtered ions due to scattered projectiles.

  3. Intermediate γ beta beams with a cluster of detectors

    Science.gov (United States)

    Meloni, D.; Mena, O.; Orme, C.; Palomares-Ruiz, S.; Pascoli, S.

    2008-05-01

    The acceleration of radionuclides in a beta beam provides an alternative experimental design to superbeam and neutrino factory long baseline neutrino oscillation experiments. Only single baseline beta beam scenarios have been considered thus far although a storage ring could source at least two baselines. The multitude of possible detector sites in Europe potentially allows for numerous baselines for future long baseline experiments sourced at CERN. Here, we will consider an example taking the CERN-Canfranc and CERN-Boulby baselines. We present results that indicate good sensitivity to the mass hierarchy for values of sin2 2θ13 as small as 10-3 and CP-violation discovery for sin2 2θ13 down to 10-4. These results are achieved with a single helicity since the second baseline provides the synergies usually associated with an anti-neutrino run.

  4. Dielectric properties of isolated clusters beam deflection studies

    CERN Document Server

    Heiles, Sven

    2013-01-01

    A broad range of state-of-the-art methods to determine properties of clusters are presented. The experimental setup and underlying physical concepts of these experiments are described. Furthermore, existing theoretical models to explain the experimental observations are introduced and the possibility to deduce structural information from measurements of dielectric properties is discussed. Additional case studies are presented in the book to emphasize the possibilities but also drawbacks of the methods.

  5. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation

    International Nuclear Information System (INIS)

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm-1, respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. (author)

  6. Electric dipole moments of nitric acid-water complexes measured by cluster beam deflection

    CERN Document Server

    Moro, Ramiro; Kresin, Vitaly V

    2009-01-01

    Water clusters embedding a nitric acid molecule HNO3(H2O)_{n=1-10} are investigated via electrostatic deflection of a molecular beam. We observe large paraelectric susceptibilities that greatly exceed the electronic polarizability, revealing the contribution of permanent dipole moments. The moments derived from the data are also significantly higher than those of pure water clusters. An enhancement in the susceptibility for n=5,6 and a rise in cluster abundances setting in at n=6 suggest that dissociation of the solvated acid molecule into ions takes place in this size range.

  7. Deep Mixing and Metallicity: Carbon Depletion in Globular Cluster Giants

    CERN Document Server

    Martell, Sarah L; Briley, Michael M

    2008-01-01

    We present the results of an observational study of the efficiency of deep mixing in globular cluster red giants as a function of stellar metallicity. We determine [C/Fe] abundances based on low-resolution spectra taken with the Kast spectrograph on the 3m Shane telescope at Lick Observatory. Spectra centered on the 4300 Angstrom CH absorption band were taken for 42 bright red giants in 11 Galactic globular clusters ranging in metallicity from M92 ([Fe/H]=-2.29) to NGC 6712 ([Fe/H]=-1.01). Carbon abundances were derived by comparing values of the CH bandstrength index S2(CH) measured from the data with values measured from a large grid of SSG synthetic spectra. Present-day abundances are combined with theoretical calculations of the time since the onset of mixing, which is also a function of stellar metallicity, to calculate the carbon depletion rate across our metallicity range. We find that the carbon depletion rate is twice as high at a metallicity of [Fe/H]=-2.3 than at [Fe/H]=-1.3, which is a result qual...

  8. Intensities and cross-sections of Ar clusters in a molecular beam, ch. 3

    International Nuclear Information System (INIS)

    Ar-cluster beams were produced by supersonic expansion under various source conditions. The experimental intensities have been scaled such that universal curves are obtained, up to moderate source pressures. The ratio of dimer/monomer cross-sections has been determined. (Auth.)

  9. Practical biological spread-out Bragg peak design of carbon beam

    OpenAIRE

    Kim, Chang Hyeuk; Lee, Hwa-Ryun; Chang, Seduk; Jang, Hong Suk; Kim, Jeong Hwan; Park, Dong Wook; Hwang, Won Taek; Yang, Tea-Keun

    2015-01-01

    The carbon beams show more advantages on the biological properties compared with proton beams in radiation therapy. The carbon beam shows high linear energy transfer (LET) to medium and it increases the relative biological effectiveness (RBE). To design spread-out Bragg peak (SOBP) of biological dose using carbon beam, a practical method was purposed by using the linear-quadratic (LQ) model and Geant4 based Monte Carlo simulation code. The various Bragg peak profiles and LET was calculated fo...

  10. Response of SOI image sensor to therapeutic carbon ion beam

    CERN Document Server

    Matsumura, Akihiko

    2015-01-01

    Carbon ion radiotherapy is known as a less invasive cancer treatment. The radiation quality is an important parameter to evaluate the biological effect and the clinical dose from the measured physical dose. The performance of SOPHIAS detector, which is the SOI image sensor having a wide dynamic range and large active area, was tested by using therapeutic carbon ion beam at Gunma University Heavy Ion Medical Center (GHMC). It was shown that the primary carbon and secondary particles can be distinguishable by SOPHIAS detector. On the other hand, a LET dependence was observed especially at the high LET region. This phenomenon will be studied by using the device simulator together with Monte Carlo simulation.

  11. Formation of metal and nonmetal clusters by laser and electron beam methods

    International Nuclear Information System (INIS)

    This paper reports on the information of clusters, which was studied experimentally for the materials of metal and nonmetal elements selected in order to the periodic table. These materials were vaporized from the solid state by the irradiation of laser and electron beams. And, in relation with the clustering behavior, the deposition rate at the vapors onto their condensates was studied by measuring the film thickness. Evaporated vapors having clusters of large size are to be favorable for sticking or condensation onto their condensates. The elements giving small values of the cohesive energy such as the 1b group form clusters of sizes distributed widely, were as the elements of large cohesive energy such as the 1a(V,Nb) and 8(Fe, Co) are hardly evaporated and clustered into large sizes. The deposition rate of the evaporated vapors can be largely related with the formation of both monomer and clusters, although due to the energy difference of the beams the relationships are not always comprehensively understood. The 2b group has larger deposition rates and the 5a has smaller rates, although much larger and smaller values are observed for [Mn(7a), Cr(6a)] and [Cu(lb), Ag(1b), Ar(4a)], respectively

  12. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it [Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (C.I.Ma.I.Na.), Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  13. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Science.gov (United States)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-12-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  14. Terahertz emission during interaction of ultrashort laser pulses with gas cluster beam

    Science.gov (United States)

    Balakin, A. V.; Borodin, A. V.; Dzhidzhoev, M. S.; Gorgienko, V. M.; Esaulkov, M. N.; Zhvaniya, I. A.; Kuzechkin, N. A.; Ozheredov, I. A.; Sidorov, A. Yu; Solyankin, P. M.; Shkurinov, A. P.

    2016-08-01

    We present the results of experimental study of terahertz (THz) generation in gas cluster beam excited by intense femtosecond laser pulses. Cluster beam was produced by partial condensation of pure Ar and mixtures CF2Cl2+He, Ar+He during their expansion through a conical nozzle into vacuum. There were used two excitation schemes in our experiments: single color and two color (fundamental frequency mixed with its second harmonic). We have studied how THz signal scales with various control parameters such as laser pulse duration, gas backing pressure and laser pulse energy. Simultaneously we measured intensity of X-Ray emission which originates from laser-cluster interaction. We found that in a single color scheme energy of THz pulses from Ar cluster beam strongly decreases in the region of minimum laser pulse duration while X-Ray power is maximal under these conditions. Both in single- and two color excitation regimes THz signal demonstrated growth without saturation with increasing of optical pulse energy up to its peak value of 25 mJ.

  15. Electron propagator calculations on linear and branched carbon cluster dianions

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, V.G.; Ortiz, J.V. [Univ. of New Mexico, Albuquerque, NM (United States)

    1994-12-31

    Electron propagator calculations have been performed on linear carbon cluster dianions from C{sub 7}{sup 2-} to C{sub 10}{sup 2-} and on branched C{sub 7}{sup 2-}, C{sub 9}{sup 2-} and C{sub 11}{sup 2-} structures which have a central, tricoordinate carbon bound to three branches with alternating long and short bonds. The more stable, branched isomer of C{sub 7}{sup 2-} has a positive vertical ionization energy, but the linear form does not. While linear C{sub 10}{sup 2-} is stable with respect to electron loss, it is not possible to decide from these calculations whether linear C{sub 8}{sup 2-} and C{sub 9}{sup 2-} have the same property. There is evidence that better calculations would obtain bound C{sub 8}{sup 2-} and C{sub 9}{sup 2-} species. All branched dianions have positive, vertical ionization energies. Feynman-Dyson amplitudes for dianion ionization energies display delocalized {pi} bonding, with the two terminal carbons of the longest branches making the largest contributions.

  16. The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps

    CERN Document Server

    Hincks, A D; Ade, P; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S; Doriese, W B; Dunkley, J; Dünner, R; Essinger-Hileman, T; Fisher, R P; Fowler, J W; Hajian, A; Halpern, M; Hasselfield, M; Hernández-Monteagudo, C; Hilton, G C; Hilton, M; Hlozek, R; Huffenberger, K; Hughes, D; Hughes, J P; Infante, L; Irwin, K D; Jiménez, R; Juin, J B; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lin, Y -T; Lupton, R H; Marriage, T; Marsden, D; Martocci, K; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Nolta, M R; Page, L A; Parker, L; Partridge, B; Quintana, H; Reid, B; Sehgal, N; Sievers, J; Spergel, D N; Staggs, S T; Stryzak, O; Swetz, D; Switzer, E; Thornton, R; Trac, H; Tucker, C; Verde, L; Warne, R; Wilson, G; Wollack, E; Zhao, Y

    2009-01-01

    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect, and show eight clusters previously detected in the X-ray or SZ and two new cluster candidates. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of Abell 3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a...

  17. Poly (methyl methacrylate) Composites with Size-Selected Silver Nanoparticles Fabricated using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Juluri, Raghavendra Rao; Chirumamilla, Manohar;

    2016-01-01

    An embedment of metal nanoparticles of well-defined sizes in thin polymer films is of significant interest for a number of practical applications, in particular, for preparing materials with tunable plasmonic properties. In this article, we present a fabrication route for metal–polymer composites...... based on cluster beam technique allowing the formation of monocrystalline size-selected silver nanoparticles with a ±5–7% precision of diameter and controllable embedment into poly (methyl methacrylate). It is shown that the soft-landed silver clusters preserve almost spherical shape with a slight...

  18. Carbon dust particles in a beam-plasma discharge

    Science.gov (United States)

    Koval, O. A.; Vizgalov, V.; Shalpegin, A. V.

    2016-09-01

    This paper focuses on dynamics of micro-sized carbon dust grains in beam-plasma discharge (BPD) plasmas. It was demonstrated that injected dust particles can be captured and transported along the discharge. Longitudinal average velocity of the particles in the central area of the plasma column was 17 m/sec, and 2 m/sec in the periphery. Dust injection caused a decrease of emission intensity of metastable nitrogen molecular ion. This effect is suggested for a spectroscopy method for particles’ potential measurements. Five-micron radius carbon dust grains obtained potential above 500 V in the experiments on PR-2 installation, proving the feasibility of BPDs for the charging of fine dust particles up to high potential values, unattainable in similar plasma conditions.

  19. CLUSTER observations of electron outflowing beams carrying downward currents above the polar cap by northward IMF

    Directory of Open Access Journals (Sweden)

    A. Teste

    2007-05-01

    Full Text Available Above the polar cap, at about 5–9 Earth radii (RE altitude, the PEACE experiment onboard CLUSTER detected, for the first time, electron beams outflowing from the ionosphere with large and variable energy fluxes, well collimated along the magnetic field lines. All these events occurred during periods of northward or weak interplanetary magnetic field (IMF.

    These outflowing beams were generally detected below 100 eV and typically between 40 and 70 eV, just above the photoelectron level. Their energy gain can be explained by the presence of a field-aligned potential drop below the spacecraft, as in the auroral zone. The careful analysis of the beams distribution function indicates that they were not only accelerated but also heated. The parallel heating is estimated to about 2 to 20 eV and it globally tends to increase with the acceleration energy. Moreover, WHISPER observed broadband electrostatic emissions around a few kHz correlated with the outflowing electron beams, which suggests beam-plasma interactions capable of triggering plasma instabilities.

    In presence of simultaneous very weak ion fluxes, the outflowing electron beams are the main carriers of downward field-aligned currents estimated to about 10 nA/m2. These electron beams are actually not isolated but surrounded by wider structures of ion outflows. All along its polar cap crossings, Cluster observed successive electron and ion outflows. This implies that the polar ionosphere represents a significant source of cold plasma for the magnetosphere during northward or weak IMF conditions. The successive ion and electron outflows finally result in a filamented current system of opposite polarities which connects the polar ionosphere to distant regions of the magnetosphere.

  20. Reconstructing comptonization parameters using simulations of single frequency, dual-beam observations of galaxy clusters

    CERN Document Server

    Lew, Bartosz

    2016-01-01

    Systematical effects in dual-beam, differential, radio observations of extended objects are discussed in the context of the One Centimeter Receiver Array (OCRA). We use simulated samples of Sunyaev--Zel'dovich (SZ) galaxy clusters at low ($z<0.4$) and intermediate ($0.4cluster mass, redshift, observation strategy, and telescope pointing accuracy. Using $Planck$ data to make primary cosmic microwave background (CMB) templates, we test the feasibility of mitigating CMB confusion effects in observations of SZ profiles at angular scales larger than the separation of the receiver beams.

  1. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions.

    Science.gov (United States)

    Aviv, O; Toker, Y; Errit, M; Bhushan, K G; Pedersen, H B; Rappaport, M L; Heber, O; Schwalm, D; Zajfman, D

    2008-08-01

    We describe a bent electrostatic ion beam trap in which cluster ions of several keV kinetic energy can be stored on a V-shaped trajectory by means of an electrostatic deflector placed between two electrostatic mirrors. While maintaining all the advantages of its linear counterpart [Zajfman et al., Phys. Rev. A 55, R1577 (1997); Dahan et al., Rev. Sci. Instrum. 69, 76 (1998)], such as long storage times, straight segments, and a field-free region for merged or crossed beam experiments, the bent trap allows for simultaneous measurement of charged and neutral fragments and determination of the average kinetic energy released in the fragmentation. These unique properties of the bent trap are illustrated by first results concerning the competition between delayed fragmentation and ionization of Al(n) (-) clusters after irradiation by a short laser pulse. PMID:19044339

  2. Reactions of Laser Ablated Metal Plasma with Molecular Alcohol Beams: Dependence of the Produced Cluster Ion Species on the Beam Condition

    Institute of Scientific and Technical Information of China (English)

    NIU Dong-Mei; LI Hai-Yang; ZHANG Shu-Dong

    2006-01-01

    The gas phase reactions of metal plasma with alcohol clusters were studied by time of flight mass spectrometry(TOFMS) using laser ablation-molecular beam (LAMB) method. The significant dependence of the product cluster ions on the molecular beam conditions was observed. When the plasma acted on the low density parts of the pulsed molecular beam, the metal-alcohol complexes M+An (M=Cu, Al, Mg, Ni and A=C2H5OH, CH3OH) were the dominant products, and the sizes of product ion clusters were smaller. While the plasma acted on the high density part of the beam, however, the main products turned to be protonated alcohol clusters H+An and, as the reactions of plasma with methanol were concerned, the protonated water-methanol complexes H3O+(CH3OH)n with a larger size(n≤ 12 for ethanol and n≤24 for methanol). Similarly, as the pressure of the carrier helium gas was varied from1 × 105 to 5 × 105 Pa, the main products were changed from M+An to H+An and the sizes of the clusters also increased. The changes in the product clusters were attributed to the different formation mechanism of the output ions,that is, the M+An ions came from the reaction of metal ion with alcohol clusters, while H+An mainly from collisional reaction of electron with alcohol clusters.

  3. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  4. The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps

    Science.gov (United States)

    Hincks, A. D.; Acquaviva, V.; Ade, P. A.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dunkley, J.; Duenner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hajian, A.; Halpern, M.; Hasselfield, M.; Wollack, Ed

    2010-01-01

    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz, In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions, This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Ze1'dovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations, We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.

  5. Clustered Natural Frequencies in Multi-Span Beams with Constrained Characteristic Functions

    Directory of Open Access Journals (Sweden)

    Khodabakhsh Saeedi

    2011-01-01

    Full Text Available A study of the natural frequencies and mode shapes of a multi-span beam is carried out by introducing constrained beam characteristic functions. The conventional method used for the dynamic analysis of such a beam is to consider span-wise characteristic function solution and then to solve it by using compatibility conditions such as the continuity in the a slope and bending moment at the intermediate supports and boundary conditions at the ends. In the method proposed here, the matrix size is reduced and, if the support conditions are symmetric about the midpoint, the symmetry and anti-symmetry conditions at the midpoint can be conveniently exploited for computational economy. The natural frequencies occur in clusters, each one containing the number of natural frequencies equal to the number of spans. The results are presented and discussed.

  6. The effects of cluster carbon implantation at low temperature on damage recovery after annealing

    Science.gov (United States)

    Onoda, Hiroshi; Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro

    2012-11-01

    Amorphous Si layer formation with cluster carbon ion implantations at low substrate temperature and its effects on damage recovery and diffusion suppression have been discussed. Cluster carbon molecule species (C3Hx˜C7Hx), implantation temperature (RT ˜ -60°C), implantation dose and energy were used as parameters. Amorphous Si formation by cluster carbon implantation is more effective compared with monomer carbon implantation. Low temperature cluster carbon implantations increase amorphous Si thickness far beyond monomer carbon implantation even at very low temperature. Amorphous-crystal interface smoothness was characterized by Rutherford Backscattering Spectroscopy, and is improved by lower temperature implantations. The smoothness improvement affects the residual damage, End of Range Defects, after annealing. Thicker amorphous Si over 100 nm depth can be formed with light Cn+ molecule implantations. That makes it possible to suppress wide distributed phosphorus diffusion.

  7. Development of a supersonic beam machine and spectroscopic investigations on small rare gas clusters

    International Nuclear Information System (INIS)

    The authors have constructed and tested a supersonic beam machine. The vacuum system of this machine consists of three vacuum chambers, three diffusion pumps, three mechanical pumps and one turbo molecular pump. The detecting system of the machine includes a time-of-flight mass spectrometer, a high-speed lens system with a monochromator and a quadrupole mass spectrometer. The machine is equipped with a two-stage Haensch dye laser pumped by an excimer pulsed laser and controlled by a PDP 11/73 computer through CAMAC. Nozzles and skimmers are the crucial elements of the beam machine. The authors have tested different types of pulsed nozzles and skimmers. Both theory and experimental results are presented. By modifying a General Valve solenoid pulsed nozzle, Xe clusters with size up to n = 15 have been detected. Some problems of pulsed nozzles are discussed. The development of the time-of-flight mass spectrometer was a major part of the experiment, and is discussed in detail from simplest design to double-field with an ion reflector. Xenon cluster ions up to n = 15 can be clearly distinguished with a very short drift tube (about 20cm). The authors also suggest a new design-a double-reflector time-of-flight mass spectrometer. With the beam machine, the authors have measured the excitation spectra of Xe dimers formed in the supersonic beams by two-photon resonant, three-photon photoionization in the vicinity of Xe* 6p[1/2]0, 6p[3/2]2, and 6p[5/2]2, similar to the work by Dehmer et al., and Lipson et al. [Dehmer et al., J. Chem, Phys. 85, 13 (1986); Lipson et al., J. Chem. Phys. 90, 9 (1989)]. Simultaneously, fluorescence was measured in the infrared. Similar techniques are applied to small Xe clusters (n = 3, 4, 5). Some preliminary spectra are reported

  8. Enhancement of neutral beam deposition in hydrogen discharge using carbon pellet injection in LHD

    International Nuclear Information System (INIS)

    The central ion temperature in the large helical device (LHD), as measured by charge-exchange recombination spectroscopy, has been improved to a record 5.6 keV by combining 21 MW of neutral beam heating with the injection of a carbon pellet. The intensity of the neutral beam emission of the hydrogen Balmer line (Hα: n=3 → 2) was observed to weaken along the beam injection axis following the carbon pellet injection due to the increased beam attenuation. The beam-emission intensity was reconstructed by calculating the density distribution, and the beam-stopping coefficients, along a beam injection axis and was found to fit well to the measured beam-emission for a mixed hydrogen and carbon target plasma. The dynamics of the neutral beam deposition power and the carbon fraction were estimated from the beam-emission measurements using data from ADAS. We conclude that the beam deposition power in a carbon pellet discharge is enhanced over that of a pure hydrogen discharge. (author)

  9. Kinetics of ion beam deposition of carbon at room temperature

    International Nuclear Information System (INIS)

    Growth rates of carbon films grown by ion beam deposition using methane gas were measured in situ as a function of deposition conditions. The methane pressure dependence of the growth rate was used to measure the cross-section for charge exchange. Variations in deposition rate per incident energetic particle found for each ion energy were related to ion current density. It was found that rates of growth per incident energetic specie were (i) largest for the smallest current densities, (ii) decreased monotonically with increasing current density, and (iii) were consistently larger than can be explained by deposition directly from the energetic flux alone. These observations were interpreted in terms of irradiation-induced surface interactions which promote chemisorption of methane physisorbed from the ambient atmosphere. (orig.)

  10. Stretchable nanocomposite electrodes with tunable mechanical properties by supersonic cluster beam implantation in elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, F.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Melis, C.; Colombo, L. [Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Ghisleri, C.; Ravagnan, L. [WISE srl, Piazza Duse 2, 20122 Milano (Italy)

    2015-03-23

    We demonstrate the fabrication of gold-polydimethylsiloxane nanocomposite electrodes, by supersonic cluster beam implantation, with tunable Young's modulus depending solely on the amount of metal clusters implanted in the elastomeric matrix. We show both experimentally and by atomistic simulations that the mechanical properties of the nanocomposite can be maintained close to that of the bare elastomer for significant metal volume concentrations. Moreover, the elastic properties of the nanocomposite, as experimentally characterized by nanoindentation and modeled with molecular dynamics simulations, are also well described by the Guth-Gold classical model for nanoparticle-filled rubbers, which depends on the presence, concentration, and aspect ratio of metal nanoparticles, and not on the physical and chemical modification of the polymeric matrix due to the embedding process. The elastic properties of the nanocomposite can therefore be determined and engineered a priori, by controlling only the nanoparticle concentration.

  11. Measuring the density of a molecular cluster injector via visible emission from an electron beam

    International Nuclear Information System (INIS)

    A method to measure the density distribution of a dense hydrogen gas jet is presented. A Mach 5.5 nozzle is cooled to 80 K to form a flow capable of molecular cluster formation. A 250 V, 10 mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016 cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  12. Electronic properties of ion implanted crystalline polymer thin film deposited by ionized cluster beam

    International Nuclear Information System (INIS)

    Polyethylene thin film deposited by the ionized cluster beam deposition technique shows preferential crystal orientation at optimum deposit condition, and the lattice parameters of the crystalline PE film are in good agreement with those of the single crystal PE. The crystalline PE film reveals that the number of side chains is reduced. The conductivity of Li+, Na+ and K+ implanted crystalline PE films has a close correlation with defects generated by ion irradiation, and the conduction mechanism turns out to be the one-dimensional hopping conduction. (orig.)

  13. Carbon monoxide adsorption on neutral and cationic vanadium doped gold clusters

    OpenAIRE

    Le, Hai Thuy; Lang, Sandra M; de Haeck, Jorg; Lievens, Peter; Janssens, Ewald

    2012-01-01

    The effect of a single vanadium dopant atom on the reactivity of small gold clusters is studied in the gas phase. In particular we investigated carbon monoxide adsorption on vanadium doped gold clusters using a low-pressure collision cell. Employing this technique the reactivity of both neutral and cationic clusters was studied under the same experimental conditions. Analysis of the kinetic data as a function of the pressure in the reaction cell shows that the reaction mechanism is composed o...

  14. Pseudopotential Density-Functional Calculations for Structures of Small Carbon Clusters CN (N = 2~8)

    Institute of Scientific and Technical Information of China (English)

    BAI Yu-Lin; CHEN Xiang-Rong; YANG Xiang-Dong; LU Peng-Fei

    2004-01-01

    We introduce a first-principles density-functional theory, i.e. the finite-difference pseudopotential densityfunctional theory in real space and the Langevin molecular dynamics annealing technique, to the descriptions of structures and some properties of small carbon clusters (CN, N = 2 ~ 8). It is shown that the odd-numbered clusters have linear structures and most of the even-numbered clusters prefer cyclic structures.

  15. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters

    OpenAIRE

    Sun, Shengtong; Gebauer, Denis; Cölfen, Helmut

    2016-01-01

    A solvothermal method was developed for synthesizing organic monolayer protected amorphous calcium carbonate clusters using 10,12-pentacosadiynoic acid as ligand, ethanol as solvent and NaHCO3 decomposition as CO2 source, which can be extended to synthesize other monolayer protected mineral clusters. published

  16. Phosphorous transient enhanced diffusion suppression and activation enhancement with cluster carbon co-implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro; Onoda, Hiroshi [Nissin Ion Equipment Co., Ltd., 575 Kuze Tonoshiro-cho, Minami-ku, Kyoto, 601-8205 (Japan)

    2012-11-06

    Carbon co-implantation is well known as an effective method for suppressing boron/phosphorous transient enhanced diffusion (TED). Germanium pre-amorphization implantation (PAI) is usually applied prior to carbon co-implantation for suppressing channeling tail of dopants. In this study, cluster carbon was applied instead of the combination of germanium PAI and monomer carbon co-implantation prior to phosphorous implantation. Dependence of phosphorous activation and TED on amorphous layer thickness, carbon dose, carbon distribution and substrate temperature have been investigated. Cluster carbon implantation enables thick amorphous layer formation and TED suppression at the same time and low temperature implantation enhances the ability of amorphous layer formation so that shallow junction and low Rs can be achieved without Ge implantation.

  17. Interaction of the CERN Large Hadron Collider (LHC) Beam with Carbon Collimators

    CERN Document Server

    Schmidt, R; Hoffmann, Dieter H H; Kadi, Y; Shutov, A; Piriz, AR

    2006-01-01

    The LHC will operate at an energy of 7 TeV with a luminosity of 1034cm-2s-1. This requires two beams, each with 2808 bunches. The energy stored in each beam of 362 MJ. In a previous paper the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected into a copper target [1, 2]. Another failure scenario is the deflection of beam into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC to diffuse or absorb beam losses. Since the collimator jaws are close to the beam, it is very likely that they are hit first when the beam is accidentally deflected. Here we present the results of two-dimensional hydrodynamic simulations of the heating of a solid carbon cylinder irradiated by the LHC beam with nominal parameters, carried out using the BIG-2 computer code [3] while the energy loss of the 7 TeV protons in carbon is calculated using the well known FLUKA code [4]. Our calculation...

  18. Stretching the threshold of reversible dynamics in silicon clusters: A case of carbon alloyed Si6

    Science.gov (United States)

    Nazrulla, Mohammed Azeezulla; Krishnamurty, Sailaja

    2016-09-01

    Silicon clusters with 3-50 atoms undergo isomerization/reversible dynamics or structural deformation at significantly lower temperatures of 350 K-500 K. Through Born Oppenheimer Molecular Dynamical (BOMD) simulations, the current study demonstrates that carbon alloying enhances the thermal stability of a silicon cluster. The study is carried out on a Si6 cluster which has been recently reported to undergo reversible dynamical movements using aberration-corrected transmission electron microscopy. Present BOMD simulations validate the experimentally observed reversible atomic displacements (reversible dynamical movements) at finite temperatures which are seen to persist nearly up to 2000 K. Carbon alloying of Si6 is seen to stretch the threshold of reversible dynamics from 200 K to 600 K depending upon the alloying concentration of carbon in the cluster.

  19. Ion beam deposition of amorphous carbon films with diamond like properties

    Science.gov (United States)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  20. Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth

    Science.gov (United States)

    Ding, Feng; Bolton, Kim; Rosén, Arne

    2004-07-01

    Molecular dynamics simulations have been used to study the thermal behavior of FeN-mCm clusters where N, the total number of atoms, extends up to 2400. Comparison of the computed results with experimental data shows that the simulations yield the correct trends for the liquid-solid region of the iron-carbide phase diagram as well as the correct dependence of cluster melting point as a function of cluster size. The calculation indicates that, when carbon nanotubes (CNTs) are grown on large (>3-4 nm) catalyst particles at low temperatures (melting of the cluster. .

  1. Theoretical study of the nucleation/growth process of carbon clusters under pressure.

    Science.gov (United States)

    Pineau, N; Soulard, L; Los, J H; Fasolino, A

    2008-07-14

    We used molecular dynamics and the empirical potential for carbon LCBOPII to simulate the nucleation/growth process of carbon clusters both in vacuum and under pressure. In vacuum, our results show that the growth process is homogeneous and yields mainly sp(2) structures such as fullerenes. We used an argon gas and Lennard-Jones potentials to mimic the high pressures and temperatures reached during the detonation of carbon-rich explosives. We found that these extreme thermodynamic conditions do not affect substantially the topologies of the clusters formed in the process. However, our estimation of the growth rates under pressure are in much better agreement with the values estimated experimentally than our vacuum simulations. The formation of sp(3) carbon was negligible both in vacuum and under pressure which suggests that larger simulation times and cluster sizes are needed to allow the nucleation of nanodiamonds. PMID:18624553

  2. Emulsion Cloud Chamber technique to measure the fragmentation of a high-energy carbon beam

    OpenAIRE

    De Lellis, G.; Buontempo., S; Di Capua, F.; Marotta, A; Migliozzi, P.; Petukhov, Y.; Pistillo, C; Russo, A; Lavina, L. Scotto; Strolin, P.(Dipartimento di Fisica dell’Università Federico II di Napoli, 80125 , Naples, Italy); Tioukov, V.; Ariga, A.(Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, CH-3012, Bern, Switzerland); Naganawa, N.; Toshito, T.; Furusawa, Y.

    2007-01-01

    Beams of Carbon nuclei are used or planned to be used in various centers for cancer treatment around the world because of their therapeutic advantages over proton beams. The knowledge of the fragmentation of Carbon nuclei when they interact with the human body is important to evaluate the spatial profile of their energy deposition in the tissues, hence the damage to the tissues neighboring the tumor. In this respect, the identification of the fragmentation products is a key element. We presen...

  3. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  4. Entrance channel effect with stable and radioactive beams using dynamical cluster decay model

    International Nuclear Information System (INIS)

    The decay of hot and rotating 172Yb*, formed in two entrance channels 124Sn + 48Ca and 132Sn + 40Ca, is studied using the dynamical cluster-decay model. The effect of entrance channel, deformations (up to β2), barrier modification and fusion enhancement are addressed. The decay pattern of compound system, formed in different channels at comparable energy around the barrier, shows change in magnitude with structure remains almost same. There is an increase in the fusion probability with decrease in barrier modification, which leads to fusion enhancement at low energies. The higher ℓ values are contributing for 132Sn + 40Ca channel at lower energies as compare to 124Sn + 48Ca. It is inferred that with the use of stable and radioactive beam, forming same compound nucleus, the entrance channel dependence changes with the excitation energy

  5. Study of Si wafer surfaces irradiated by gas cluster ion beams

    International Nuclear Information System (INIS)

    The surface structures of Si (1 0 0) wafers subjected to gas cluster ion beam (GCIB) irradiation have been analyzed by cross-sectional transmission electron microscopy (XTEM) and atomic force microscopy (AFM). GCIB irradiation is a promising technique for both precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. An Ar-GCIB used for the physically sputtering of Si atoms and a SF6-GCIB used for the chemical etching of the Si surface are also analyzed. The GCIB irradiation increases the surface roughness of the wafers, and amorphous Si layers are formed on the wafer surface. However, when the Si wafers are annealed in hydrogen at a high temperature after the GCIB irradiation, the surface roughness decreases to the same level as that before the irradiation. Moreover, the amorphous Si layers disappear completely

  6. Entrance channel effect with stable and radioactive beams using dynamical cluster decay model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Raj, E-mail: rajkumarfzr@gmail.com [Dipartimento di Fisica “Galileo Galilei” and INFN, University of Padova, Padova-35131 (Italy); Jain, Deepika [School of Physics and Material Science, Thapar University, Patiala-147004 (India)

    2014-09-15

    The decay of hot and rotating {sup 172}Yb*, formed in two entrance channels {sup 124}Sn + {sup 48}Ca and {sup 132}Sn + {sup 40}Ca, is studied using the dynamical cluster-decay model. The effect of entrance channel, deformations (up to β{sub 2}), barrier modification and fusion enhancement are addressed. The decay pattern of compound system, formed in different channels at comparable energy around the barrier, shows change in magnitude with structure remains almost same. There is an increase in the fusion probability with decrease in barrier modification, which leads to fusion enhancement at low energies. The higher ℓ values are contributing for {sup 132}Sn + {sup 40}Ca channel at lower energies as compare to {sup 124}Sn + {sup 48}Ca. It is inferred that with the use of stable and radioactive beam, forming same compound nucleus, the entrance channel dependence changes with the excitation energy.

  7. Beam commissioning of a superconducting rotating-gantry for carbon-ion radiotherapy

    Science.gov (United States)

    Iwata, Y.; Fujimoto, T.; Matsuba, S.; Fujita, T.; Sato, S.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saraya, Y.; Tansho, R.; Saotome, N.; Shirai, T.; Noda, K.

    2016-10-01

    A superconducting rotating-gantry for carbon-ion radiotherapy was developed. This isocentric gantry can transport carbon ions having kinetic energies of between E=430 and 48 MeV/u to an isocenter over an angle of ±180°, and is further capable of performing three-dimensional raster-scanning irradiation. Construction of the entire rotating-gantry system was completed by the end of September 2015. Prior to beam commissioning, phase-space distributions of extracted carbon beams from the synchrotron were deduced by using an empirical method. In this method, phase-space distributions at the extraction channel of the synchrotron were modeled with 8 parameters, and the best parameters were determined so as to minimize a difference between the calculated and measured beam profiles by using a simplex method. Based on the phase-space distributions, beam optics through the beam-transport lines as well as the rotating gantry were designed. Since horizontal and vertical beam emittances, as extracted slowly from the synchrotron, generally differ with each other, a horizontal-vertical beam coupling would occur when the gantry rotates. Thus, the size and shape of beam spots at the isocenter should vary depending on the gantry angle. To compensate for the difference in the emittances, we employed a method to utilize multiple Coulomb scattering of the beam particles by a thin scatterer. Having compensated for the emittances and designed beam optics through the rotating gantry, beam commissioning over various combinations of gantry angles and beam energies was performed. By finely tuning the superconducting quadrupoles of the rotating gantry, we could successfully obtain the designed beam quality, which satisfies the requirements of scanning irradiation.

  8. Behavior of high-pressure gasses injected to vacuum through a fast solenoid valve for supersonic cluster beam injection

    International Nuclear Information System (INIS)

    The supersonic cluster beam (SSCB) injection method is being developed as a new fueling method for the Large Helical Devise (LHD) experiment. As a first step, cluster formation at a room temperature has been investigated for various gasses using a fast solenoid valve for SSCB. Rayleigh scattering of laser light by the cluster is measured by a fast charge coupled device (CCD) camera. In the case of methane, nitrogen, and argon, clear scattering signals are observed at the high backing pressure of more than 3 - 4 MPa. In the case of hydrogen, helium, and neon, on the other hand, no scattering signal is detected at 7 MPa. (author)

  9. Fractal topography of surfaces exposed to gas-cluster ion beams and modeling simulations

    International Nuclear Information System (INIS)

    Surface topography measured by atomic force microscope is reported before and after various gas-cluster ion beam (GCIB) treatments along with modeling simulations of topography changes. Height correlation and spectral distributions of these surfaces show characteristics of random fractals with Hurst exponent H typically 0.5-3 to 5x10-1 nm-1. Data from several example surfaces are given. Roughening is shown to be a statistical accumulation of individual cluster impacts and the process is modeled by Monte Carlo simulations resulting in fractal surfaces. A continuum model that incorporates surface mobility is used to simulate the smoothing, and methods to combine this with the Monte Carlo model are presented. The behavior of surfaces under exposure to GCIB is satisfactorily simulated by this combined model. Accurate simulation of the surface smoothing requires that the surface-mobility model be independent of the spatial frequency over the bandwidth of observation, unlike Fick's law of diffusion. The nonphysical prediction of previous simulations that the topography trends toward the complete absence of roughness is also corrected

  10. Shear strengthening of pre-damaged reinforced concrete beams with carbon fiber reinforced polymer sheet strips

    Institute of Scientific and Technical Information of China (English)

    Feras ALZOUBI; ZHANG Qi; LI Zheng-liang

    2007-01-01

    This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with side-bonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in ACI-440 and fib European code were compared with the experimental results.

  11. Deep Mixing and Metallicity: Carbon Depletion in Globular Cluster Giants

    OpenAIRE

    Martell, Sarah L.; Smith, Graeme H.; Briley, Michael M.

    2008-01-01

    We present the results of an observational study of the efficiency of deep mixing in globular cluster red giants as a function of stellar metallicity. We determine [C/Fe] abundances based on low-resolution spectra taken with the Kast spectrograph on the 3m Shane telescope at Lick Observatory. Spectra centered on the 4300 Angstrom CH absorption band were taken for 42 bright red giants in 11 Galactic globular clusters ranging in metallicity from M92 ([Fe/H]=-2.29) to NGC 6712 ([Fe/H]=-1.01). Ca...

  12. Bending of metal-filled carbon nanotube under electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Abha Misra

    2012-03-01

    Full Text Available Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM. In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures.

  13. Numerical Investigation Of The Bombardment Of A Graphene Sheet By A Beam Of Carbon Atoms

    Directory of Open Access Journals (Sweden)

    O.V. Khomenko

    2009-01-01

    Full Text Available Classical molecular dynamics simulations of the bombardment of a graphene sheet by a beam of carbon atoms are carried out. Covalent bonds in the irradiated sample are described by the Brenner potential. The approximation of elastic balls interacting with graphene via the Lennard-Jones potential is used for particles in a beam. The influence of the energy and density of irradiating carbon atoms and of the presence of a thermostat on physical processes occurring during the collisions with the sample is investigated. Energy values of the particles in a beam, which are enough for the sample destruction, are defined.

  14. Enhancement of Charpy impact value by electron beam irradiation of carbon fiber reinforced polymer

    International Nuclear Information System (INIS)

    Influences of electron beam irradiation on Charpy impact value of carbon fiber reinforced polymer (CFRP) have been investigated. The irradiation, which is one of short-time treatments, enhanced the Charpy impact value of CFRP. Furthermore, strengthening of carbon fiber, ductility enhancement of polymer and interface effects on impact test explains the impact value enhancement of CFRP. (author)

  15. Using Pyrolysis Molecular Beam Mass Spectrometry to Characterize Soil Organic Carbon in Native Prairie Soils

    Science.gov (United States)

    The objective of this study was to characterize soil organic carbon (SOC) with pyrolysis molecular beam mass spectrometry (py-MBMS) and then to determine correlations between the mass spectra and associated soil characterization data. Both soil carbon chemistry and the organic forms in which SOC is...

  16. Enhanced electromagnetic properties of nickel nanoparticiles dispersed carbon fiber via electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Ju; Kim, Hyun Bin; Lee, Seung Jun; Kang, Phil Hyun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-02-15

    Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

  17. Modeling the Biophysical Effects in a Carbon Beam Delivery Line using Monte Carlo Simulation

    CERN Document Server

    Cho, Ilsung; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-01-01

    Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion beam therapy. In this study the biological effectiveness of a carbon ion beam delivery system was investigated using Monte Carlo simulation. A carbon ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon beam transporting into media. An incident energy carbon ion beam in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model is applied to describe the RBE of 10% survival in human salivary gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetrating depth of the water phantom along the incident beam direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the water phantom depth.

  18. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    Science.gov (United States)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  19. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Sampa, M.H. de E-mail: mhosampa@ipen.br; Rela, Paulo Roberto; Las Casas, Alexandre; Nunes Mori, Manoel; Lopes Duarte, Celina

    2004-10-01

    This paper presents preliminary results of a study that compares the use of electron beam processing and activated carbon adsorption to clean up a standardized organic aqueous solution and a real industrial effluent. The electron beam treatment was performed in a batch system using the IPEN's Electron Beam Accelerators from Radiation Dynamics Inc., Dynamitron 37.5 kW. The granular activated carbon removal treatment was performed using charcoal made from wood 'pinus'. If the adequate irradiation dose is delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is similar to the activated carbon process in organic removal efficiency.

  20. Practical biological spread-out Bragg peak design of carbon beam

    CERN Document Server

    Kim, Chang Hyeuk; Chang, Seduk; Jang, Hong Suk; Kim, Jeong Hwan; Park, Dong Wook; Hwang, Won Taek; Yang, Tea-Keun

    2015-01-01

    The carbon beams show more advantages on the biological properties compared with proton beams in radiation therapy. The carbon beam shows high linear energy transfer (LET) to medium and it increases the relative biological effectiveness (RBE). To design spread-out Bragg peak (SOBP) of biological dose using carbon beam, a practical method was purposed by using the linear-quadratic (LQ) model and Geant4 based Monte Carlo simulation code. The various Bragg peak profiles and LET was calculated for each slice at the target region. To generate appropriate biological SOBP, a set of weighting factor, which is a power function in terms of energy step, was applied to the obtained each physical dose. The designed biological SOBP showed 1.34 % of uniformity.

  1. First-principles study of ZnO cluster-decorated carbon nanotubes.

    Science.gov (United States)

    Chai, Guo-Liang; Lin, Chen-Sheng; Cheng, Wen-Dan

    2011-11-01

    We have investigated the structural, electronic and carbon monoxide (CO) detection properties of the ZnO cluster-decorated single-walled carbon nanotubes (SWCNTs) by using density functional theory (DFT). The stable structures of hybrid ZnO/SWCNT materials are that the ZnO cluster plane is perpendicular to the surface of SWCNTs with the Zn atoms towards the SWCNTs (Zn atom above axial C-C bond or above the C atom). For the ZnO cluster-decorated semiconducting SWCNTs, the SWCNTs present p-type characteristics which may lead to the decrease of conductance upon illumination with ultraviolet (UV) light. The CO can be adsorbed on the hybrid ZnO/SWCNT materials due to the charge transfer between them. Compared with isolated ZnO clusters or bare SWCNTs, the ZnO/SWCNT network would have excellent CO detection ability due to their suitable adsorption energy and conductivity. PMID:21983431

  2. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    CERN Document Server

    Reinhart, Anna Merle; Jakubek, Jan; Martisikova, Maria

    2016-01-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, already small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live monitoring system of the beam delivery within the patient is therefore highly desirable and could improve patient treatment. We present a novel three-dimensional imaging method of the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack, a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximisation. We demonstrate the applicability of the new method in an irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of 226MeV/u. The beam image in the phantom is reconstructed from a set of 9 discrete detector positions between -80 and 50 degrees from the bea...

  3. Ultra-fast oscillation of cobalt clusters encapsulated inside carbon nanotubes

    International Nuclear Information System (INIS)

    Using molecular dynamics (MD) simulations, the authors have studied the oscillatory characteristics of the 2Co - CNT oscillator systems. Each of these oscillator systems consists of a hosting carbon nanotube (CNT) and two encapsulated cobalt (Co) clusters, and oscillations are initiated by prescribing an initial kinetic energy to each of the two cobalt clusters. The non-symmetric oscillation mode, in which the two cobalt clusters always move towards the same direction, was found to be stable over a wide range of initial energy. However, the symmetric oscillation mode, in which the two cobalt clusters move towards or away from each other, bouncing off each other in each oscillation, is stable only when the initial kinetic energies are lower than a threshold value. Above this threshold, the oscillation becomes increasingly unstable with the increasing initial kinetic energy. The instability is found to take place through transferring energy from the translational motion to the rotational motion of the cobalt clusters, due to the fact that the impact of the cluster-cluster collisions can be slightly off-center, causing the clusters to roll and rock. The rocking motion of the cobalt clusters serves as the channel for the energy transfer. The rocking motion can be retarded and may even be eliminated by reducing the hosting CNT diameter. But a smaller hosting CNT does not always lead to more stable translational oscillation. There apparently exists an optimal CNT for a given size of clusters for stabilizing the translational oscillation. A hosting CNT that is too much smaller than optimum causes severe cobalt-carbon atomic interactions, which lead to losses of energy from the ordered translational motion of clusters to disordered thermal motions of the atoms

  4. Ultra-fast oscillation of cobalt clusters encapsulated inside carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaohong [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xin Hao [Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721 (United States); Leonard, Jon N [Advanced Programs, Raytheon Missile Systems, Tucson, AZ 85734 (United States); Chen Guanhua [Department of Chemistry, University of Hong Kong, Hong Kong (China); Jiang Qing [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)

    2007-11-07

    Using molecular dynamics (MD) simulations, the authors have studied the oscillatory characteristics of the 2Co - CNT oscillator systems. Each of these oscillator systems consists of a hosting carbon nanotube (CNT) and two encapsulated cobalt (Co) clusters, and oscillations are initiated by prescribing an initial kinetic energy to each of the two cobalt clusters. The non-symmetric oscillation mode, in which the two cobalt clusters always move towards the same direction, was found to be stable over a wide range of initial energy. However, the symmetric oscillation mode, in which the two cobalt clusters move towards or away from each other, bouncing off each other in each oscillation, is stable only when the initial kinetic energies are lower than a threshold value. Above this threshold, the oscillation becomes increasingly unstable with the increasing initial kinetic energy. The instability is found to take place through transferring energy from the translational motion to the rotational motion of the cobalt clusters, due to the fact that the impact of the cluster-cluster collisions can be slightly off-center, causing the clusters to roll and rock. The rocking motion of the cobalt clusters serves as the channel for the energy transfer. The rocking motion can be retarded and may even be eliminated by reducing the hosting CNT diameter. But a smaller hosting CNT does not always lead to more stable translational oscillation. There apparently exists an optimal CNT for a given size of clusters for stabilizing the translational oscillation. A hosting CNT that is too much smaller than optimum causes severe cobalt-carbon atomic interactions, which lead to losses of energy from the ordered translational motion of clusters to disordered thermal motions of the atoms.

  5. Effect of electron beam irradiation on the properties of carbon fiber

    International Nuclear Information System (INIS)

    Carbon fibers are used as a reinforcement material in an epoxy matrix in advanced composites due to their high mechanical strength, rigidity and low specific density. An important aspect of the mechanical properties of composites is associated to the adhesion between the surface of the carbon fiber and the epoxy matrix. This paper aimed to evaluate the effects of electron beam irradiation on the physicochemical properties of carbon fibers to obtain better adhesion properties in resultant composite. Chemical structure and surface of carbon fiber were determined by FT-IR, elemental analysis and X-ray photoelectron spectroscopy, which indicated that the oxygen content increased significantly with increasing the radiation dose. Thermal stability of the carbon fibers was studied via the thermal gravimetric analysis. Surface morphology of carbon fiber was analyzed by scanning electron microscope. It was found that the degree of surface roughness was increased by electron beam irradiation

  6. Carbon cluster ions for a study of the accuracy of ISOLTRAP

    CERN Document Server

    Kellerbauer, A G; Bollen, G; Herfurth, F; Kluge, H J; Kuckein, M; Sauvan, E; Scheidenberger, C; Schweikhard, L

    2003-01-01

    Cyclotron frequency measurements of singly charged carbon clusters $^{12}$C$_{n}^{+}$ were carried out with the ISOLTRAP apparatus. The carbon cluster ions were produced externally by use of laser- induced desorption, fragmentation, and ionization of C$_{60}$ fullerenes. They were injected into and stored in the Penning trap system. The observation of carbon clusters of different sizes has provided detailed insight into the final mass uncertainty achievable with ISOLTRAP and yielded a value of $u(m)/m = 8 \\times 10^{-9}$. Since the unified atomic mass unit is defined as 1/12 the mass of the $^{12}$C atom, ISOLTRAP can now be used to carry out absolute mass measurements.

  7. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  8. Carbon antisite clusters in SiC: a possible pathway to the D_{II} center

    OpenAIRE

    Mattausch, Alexander; Bockstedte, Michel; Pankratov, Oleg

    2003-01-01

    The photoluminescence center D_{II} is a persistent intrinsic defect which is common in all SiC polytypes. Its fingerprints are the characteristic phonon replicas in luminescence spectra. We perform ab-initio calculations of vibrational spectra for various defect complexes and find that carbon antisite clusters exhibit vibrational modes in the frequency range of the D_{II} spectrum. The clusters possess very high binding energies which guarantee their thermal stability--a known feature of the...

  9. Influence of Carbon Nanotube Clustering on Mechanical and Electrical Properties of Cement Pastes

    OpenAIRE

    Sung-Hwan Jang; Shiho Kawashima; Huiming Yin

    2016-01-01

    Given the continued challenge of dispersion, for practical purposes, it is of interest to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) at different states of clustering on the eventual performance properties of cement paste. This study evaluated the clustering of MWCNTs and the resultant effect on the mechanical and electrical properties when incorporated into cement paste. Cement pastes containing different concentrations of MWCNTs (up to 0.5% by mass of cement) with/without...

  10. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm2 for parent plate without a weld, 400 N/mm2 for specimens with welds on one side only and 600 N/mm2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  11. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  12. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  13. Detection of the linear carbon cluster C10: rotationally resolved diode-laser spectroscopy.

    Science.gov (United States)

    Giesen, T F; Berndt, U; Yamada, K M; Fuchs, G; Schieder, R; Winnewisser, G; Provencal, R A; Keutsch, F N; Van Orden, A; Saykally, R J

    2001-04-17

    Detected in interstellar space and as intermediates in soot formation, molecules of pure carbon in the form of linear chains or ring structures have interested researchers for several decades, who attempt to elucidate their physical properties and the processes govering their formation. A high-resolution infrared spectrometer housing a tunable diode laser and combined with an effective laser ablation source for the cluster production has been used to study the molecular properties of small carbon clusters; reported herein is the first gas-phase spectrum of linear C10.

  14. Relationship among Photosys- tem Ⅱ carbonic anhydrase, extrinsic polypeptides and manganese cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of Photosystem Ⅱ (PS Ⅱ) extrinsic poly- peptides of oxygen-evolving complex and manganese clusters on PSⅡ carbonic anhydrase (CA) were studied with spinach PSⅡ membranes. The result supported that membrane-bound CA is located in the donor side of PSⅡ. The extrinsic polypeptides played an important role of maintaining CA activity. After removing manganese clusters, oxygen evolution activity was inhibited, but PSⅡ-CA activity was unchanged. It was concluded that CA activity is independent of the presence of manganese clusters, and was not directly correlated with oxygen evolution activity.

  15. Inhibition of nitrobenzene adsorption by water cluster formation at acidic oxygen functional groups on activated carbon.

    Science.gov (United States)

    Kato, Yuichi; Machida, Motoi; Tatsumoto, Hideki

    2008-06-15

    The inhibition effect of nitrobenzene adsorption by water clusters formed at the acidic groups on activated carbon was examined in aqueous and n-hexane solution. The activated carbon was oxidized with nitric acid to introduce CO complexes and then outgassed in helium flow at 1273 K to remove them completely without changing the structural properties of the carbon as a reference adsorbent. The amounts of acidic functional groups were determined by applying Boehm titration. A relative humidity of 95% was used to adsorb water onto the carbon surface. Strong adsorption of water onto the oxidized carbon can be observed by thermogravimetric analysis. The adsorption kinetic rate was estimated to be controlled by diffusion from the kinetic analysis. Significant decline in both capacity and kinetic rate for nitrobenzene adsorption onto the oxidized carbon was also observed in n-hexane solution by preadsorption of water to the carbon surface, whereas it was not detected for the outgassed carbons. These results might reveal that water molecules forming clusters at the CO complexes inhibited the entrance of nitrobenzene into the interparticles of the carbon. PMID:18440013

  16. Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam

    OpenAIRE

    Yining Ding; Zhipei Chen; Zhibo Han; Yulin Zhang; Torgal, Fernando Pacheco

    2013-01-01

    The nano-carbon black (NCB) and carbon fiber (CF) as electric conductive materials were added into the concrete. The effect of the NCB and CF on the mechanical properties and on the fractional change in resistance (FCR) of concrete was investigated. The relationships among the FCR, the strain of initial geometrical neutral axis (IGNA) and the beam damage degree were developed. The results showed that the relationship between the FCR and IGNA strain can be described by the First Or...

  17. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters

    OpenAIRE

    Samuel, Errol L. G.; Marcano, Daniela C.; Berka, Vladimir; Bitner, Brittany R.; Wu, Gang; Potter, Austin; Fabian, Roderic H.; Pautler, Robia G; Kent, Thomas A; Tsai, Ah-Lim; James M. Tour

    2015-01-01

    Mechanistic studies of nontoxic hydrophilic carbon cluster nanoparticles show that they are able to accomplish the direct conversion of superoxide to dioxygen and hydrogen peroxide. This is accomplished faster than in most single-active-site enzymes, and it is precisely what dioxygen-deficient tissue needs in the face of injury where reactive oxygen species, particularly superoxide, overwhelm the natural enzymes required to remove superoxide. We confirm here that the hydrophilic carbon cluste...

  18. Geant4 Simulation Study of Dose Distribution and Energy Straggling for Proton and Carbon Ion Beams in Water

    OpenAIRE

    Zhao Qiang; Zhang Zheng; Li Yang

    2016-01-01

    Dose distribution and energy straggling for proton and carbon ion beams in water are investigated by using a hadrontherapy model based on the Geant4 toolkit. By gridding water phantom in N×N×N voxels along X, Y and Z axes, irradiation dose distribution in all the voxels is calculated. Results indicate that carbon ion beams have more advantages than proton beams. Proton beams have bigger width of the Bragg peak and broader lateral dose distribution than carbon ion beams for the same position o...

  19. Asymptotic Analysis of Coagulation–Fragmentation Equations of Carbon Nanotube Clusters

    Directory of Open Access Journals (Sweden)

    Castellano Gloria

    2007-01-01

    Full Text Available AbstractThe possibility of the existence of single-wall carbon nanotubes (SWNTs in organic solvents in the form of clusters is discussed. A theory is developed based on abundletmodel for clusters describing the distribution function of clusters by size. The phenomena have a unified explanation in the framework of the bundlet model of a cluster, in accordance with which the free energy of an SWNT involved in a cluster is combined from two components: a volume one, proportional to the number of moleculesnin a cluster, and a surface one, proportional ton1/2. During the latter stage of the fusion process, the dynamics were governed mainly by the displacement of the volume of liquid around the fusion site between the fused clusters. The same order of magnitude for the average cluster-fusion velocity is deduced if the fusion process starts with several fusion sites. Based on a simple kinetic model and starting from the initial state of pure monomers, micellization of rod-like aggregates at high critical micelle concentration occurs in three separated stages. A convenient relation is obtained for at transient stage. At equilibrium, another relation determines dimensionless binding energy α. A relation with surface dilatational viscosity is obtained.

  20. Cross-sectional TEM Observations of Si Wafers Irradiated With Gas Cluster Ion Beams

    International Nuclear Information System (INIS)

    Irradiation by a Gas Cluster Ion Beam (GCIB) is a promising technique for precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. In this study, the near surface structure of a Si (100) wafer was analyzed after GCIB irradiation, using a cross-sectional transmission electron microscope (XTEM). Ar-GCIB, that physically sputters Si atoms, and SF6-GCIB, that chemically etches the Si surface, were both used. After GCIB irradiation, high temperature annealing was performed in a hydrogen atmosphere. From XTEM observations, the surface of a virgin Si wafer exhibited completely crystalline structures, but the existence of an amorphous Si and a transition layer was confirmed after GCIB irradiation. The thickness of amorphous layer was about 30 nm after Ar-GCIB irradiation at 30 keV. However, a very thin (< 5 nm) layer was observed when 30 keV SF6-GCIB was used. The thickness of the transition layer was the same both Ar and SF6-GCIB irradiation. After annealing, the amorphous Si and transition layers had disappeared, and a complete crystalline structure with an atomically smooth surface was observed

  1. Low-damage surface smoothing of laser crystallized polycrystalline silicon using gas cluster ion beam

    International Nuclear Information System (INIS)

    Surface smoothing of laser crystallized polycrystalline silicon (poly-Si) films using gas cluster ion beam (GCIB) technology has been studied. It is found that both SF6-GCIB and O2-GCIB decrease the height of hillocks and reduce the surface roughness of the irradiated films. The mean surface roughness value of poly-Si films was reduced from 10.8 nm to 2.8 nm by SF6-GCIB irradiation at 80o. Ultraviolet reflectance measurement reveals that GCIB irradiation causes damage near-surface of the poly-Si films. Formation of the damage, however, can be suppressed by using GCIB irradiation at high incident angle. Effect of GCIB irradiation in a metal-insulator-semiconductor (MIS) capacitor has also been investigated. The capacitance-voltage curves of MIS capacitor with SF6-GCIB irradiation are distorted. On the contrary, the distortion is reduced by O2-GCIB irradiation at 80, which suggests that electrical-activated damage of the films can be decreased by using O2-GCIB irradiation

  2. Low-damage surface smoothing of laser crystallized polycrystalline silicon using gas cluster ion beam

    Science.gov (United States)

    Tokioka, H.; Yamarin, H.; Fujino, T.; Inoue, M.; Seki, T.; Matsuo, J.

    2007-04-01

    Surface smoothing of laser crystallized polycrystalline silicon (poly-Si) films using gas cluster ion beam (GCIB) technology has been studied. It is found that both SF6-GCIB and O2-GCIB decrease the height of hillocks and reduce the surface roughness of the irradiated films. The mean surface roughness value of poly-Si films was reduced from 10.8 nm to 2.8 nm by SF6-GCIB irradiation at 80°. Ultraviolet reflectance measurement reveals that GCIB irradiation causes damage near-surface of the poly-Si films. Formation of the damage, however, can be suppressed by using GCIB irradiation at high incident angle. Effect of GCIB irradiation in a metal-insulator-semiconductor (MIS) capacitor has also been investigated. The capacitance-voltage curves of MIS capacitor with SF6-GCIB irradiation are distorted. On the contrary, the distortion is reduced by O2-GCIB irradiation at 80, which suggests that electrical-activated damage of the films can be decreased by using O2-GCIB irradiation.

  3. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    Science.gov (United States)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  4. Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes

    DEFF Research Database (Denmark)

    Wang, J. G.; Lv, Y. A.; Li, X. N.;

    2009-01-01

    ). The stronger orbital hybridization between the Pt atom and the carbon atom shows larger charge transfers on the defective CNTs than on the defect free CNTs, which allows the strong interaction between Pt clusters and CNTs. On the basis of DFT calculations, CNTs with point defect can be used as the catalyst...

  5. Hadron Cancer Therapy - relative merits of X-ray, proton and carbon beams

    Science.gov (United States)

    Jakel, Oliver

    2014-03-01

    -Heidelberg University has a long experience in radiotherapy with carbon ions, starting with a pilot project at GSI in 1997. This project was jointly run by the Dep. for Radiation Oncology of Heidelberg University, GSI and the German Cancer Research Center (DKFZ). A hospital based heavy ion center at Heidelberg University, the Heidelberg Ion Beam Therapy Center (HIT) was proposed by the same group in 1998 and started clinical operation in late 2009. Since then nearly 2000 patients were treated with beams of carbon ions and protons. Just recently the operation of the world's first and only gantry for heavy ions also started at HIT. Patient treatments are performed in three rooms. Besides that, a lot of research projects are run in the field of Medical Physics and Radiobiology using a dedicated experimental area and the possibility to use beams of protons, carbon, helium and oxygen ions being delivered with the raster scanning technique.

  6. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Monica de, E-mail: desimone@tasc.infm.it [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Snidero, Elena [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Coreno, Marcello [CNR-IMIP, c/o Laboratorio TASC Area Science Park Basovizza, 34149 Trieste (Italy); Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Bongiorno, Gero [Fondazione Filarete, v.le Ortles 22/4, 20139 Milano (Italy); Giorgetti, Luca [Istituto Europeo di Oncologia, Dip. di Oncologia Sperimentale, Via Adamello 16, 20139, Milano (Italy); Amati, Matteo [Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Cepek, Cinzia [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy)

    2012-05-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti{sup 3+} is the first oxidation state observed, followed by Ti{sup 4+}, whereas Ti{sup 2+} is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  7. Low-energy RI beam technology and nuclear clusters in the explosive pp-chain breakout process

    Energy Technology Data Exchange (ETDEWEB)

    Kubono, S. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0 (Japan); Yamaguchi, H.; Kahl, D. M.; Ohshiro, Y.; Watanabe, S.; Yamazaki, N. [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-858 (Japan); Yanagisawa, Y.; Wakabayashi, Y.; Kase, M. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hayakawa, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95125 Catania (Italy); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-81 (Korea, Republic of); Hashimoto, T.; Fukuda, Y. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); He, J. J. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); Goto, A. [Faculty of Medcine, Yamagata University, Yamagata 990-2331 (Japan); Muto, H. [Center of General Education, Tokyo University of Science at Suwa, Chino, Nagano 391-0292 (Japan)

    2014-05-09

    The lecture includes two parts: One is a discussion on the technology for developing RIB beam facility based on the in-flight method and relevant experimental technology. The second part is a discussion on experimental efforts for studying the breakout process from the pp-chain region based on recent works with low energy RI beams. The discussion of the second part specifically covers the problem of the vp-process in type II supernovae in terms of alpha cluster nature for the reactions.

  8. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina;

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...

  9. Cluster Effects during High Pressure Supersonic Molecular Beam Injection into Plasma

    Institute of Scientific and Technical Information of China (English)

    YAOLianghua; FENGBeibin; DONGJiafu; LIWenzhong; FENGZhen; HONGWenyu; LIBo

    2001-01-01

    When we speak of clusters, we have in mind entities which have neither the well-defined compositions, geometries, and strong bonds of conventional molecules northe boundary-independent properties of bulk matter. For example, an aggregate of a few atoms held together by Van der Waals forces constitutes a cluster. But clusters need not be weakly bound, several metal atoms bound together also constitute a cluster. Clusters need not be composed of a single kind of chemical entity, either atomic or molecular,

  10. Geant4 Simulation Study of Dose Distribution and Energy Straggling for Proton and Carbon Ion Beams in Water

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2016-01-01

    Full Text Available Dose distribution and energy straggling for proton and carbon ion beams in water are investigated by using a hadrontherapy model based on the Geant4 toolkit. By gridding water phantom in N×N×N voxels along X, Y and Z axes, irradiation dose distribution in all the voxels is calculated. Results indicate that carbon ion beams have more advantages than proton beams. Proton beams have bigger width of the Bragg peak and broader lateral dose distribution than carbon ion beams for the same position of Bragg peaks. Carbon ion has a higher local ionization density and produces more secondary electrons than proton, so carbon ion beams can achieve a higher value of relative biological effectiveness.

  11. Study of small carbon and semiconductor clusters using negative ion threshold photodetachment spectroscopy

    International Nuclear Information System (INIS)

    The bonding and electronics of several small carbon and semiconductor clusters containing less than ten atoms are probed using negative ion threshold photodetachment (zero electron kinetic energy, or ZEKE) spectroscopy. ZEKE spectroscopy is a particularly advantageous technique for small cluster study, as it combines mass selection with good spectroscopic resolution. The ground and low-lying electronic states of small clusters in general can be accessed by detaching an electron from the ground anion state. The clusters studied using this technique and described in this work are C6-/C6, Sin-/Sin (n = 2, 3, 4), Ge2-/Ge2, In2P-/In2P,InP2-/InP2, and Ga2As-. The total photodetachment cross sections of several other small carbon clusters and the ZEKE spectrum of the I-·CH3I SN2 reaction complex are also presented to illustrate the versatility of the experimental apparatus. Clusters with so few atoms do not exhibit bulk properties. However, each specie exhibits bonding properties that relate to the type of bonding found in the bulk. C6, as has been predicted, exhibits a linear cumulenic structure, where double bonds connect all six carbon atoms. This double bonding reflects how important π bonding is in certain phases of pure carbon (graphite and fullerenes). The symmetric stretch frequencies observed in the C6- spectra, however, are in poor agreement with the calculated values. Also observed as sharp structure in total photodetachment cross section scans was an excited anion state bound by only ∼40 cm-1 relative to the detachment continuum. This excited anion state appears to be a valence bound state, possible because of the high electron affinity of C6, and the open shell of the anion

  12. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review).

    Science.gov (United States)

    Baek, Sung-Jae; Ishii, Hideshi; Tamari, Keisuke; Hayashi, Kazuhiko; Nishida, Naohiro; Konno, Masamitsu; Kawamoto, Koichi; Koseki, Jun; Fukusumi, Takahito; Hasegawa, Shinichiro; Ogawa, Hisataka; Hamabe, Atsushi; Miyo, Masaaki; Noguchi, Kozo; Seo, Yuji; Doki, Yuichiro; Mori, Masaki; Ogawa, Kazuhiko

    2015-11-01

    Cancer stem cells (CSCs) are a small population of cells in cancer with stem-like properties such as cell proliferation, multiple differentiation and tumor initiation capacities. CSCs are therapy-resistant and cause cancer metastasis and recurrence. One key issue in cancer therapy is how to target and eliminate CSCs, in order to cure cancer completely without relapse and metastasis. To target CSCs, many cell surface markers, DNAs and microRNAs are considered as CSC markers. To date, the majority of the reported markers are not very specific to CSCs and are also present in non-CSCs. However, the combination of several markers is quite valuable for identifying and targeting CSCs, although more specific identification methods are needed. While CSCs are considered as critical therapeutic targets, useful treatment methods remain to be established. Epigenetic gene regulators, microRNAs, are associated with tumor initiation and progression. MicroRNAs have been recently considered as promising therapeutic targets, which can alter the therapeutic resistance of CSCs through epigenetic modification. Moreover, carbon ion beam radiotherapy is a promising treatment for CSCs. Evidence indicates that the carbon ion beam is more effective against CSCs than the conventional X-ray beam. Combination therapies of radiosensitizing microRNAs and carbon ion beam radiotherapy may be a promising cancer strategy. This review focuses on the identification and treatment resistance of CSCs and the potential of microRNAs as new radiosensitizers and carbon ion beam radiotherapy as a promising therapeutic strategy against CSCs. PMID:26330103

  13. Strong Metal-Support Interaction: Growth of Individual Carbon Nanofibers from Amorphous Carbon Interacting with an Electron Beam

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil

    2013-01-01

    The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO/Ni nanopar......The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO....../Ni nanoparticles, devoid of any gaseous carbon source and external heating and stimulated by an electron beam in a 300 kilo volt transmission electron microscope....

  14. Average Frequency – RA Value for Reinforced Concrete Beam Strengthened with Carbon Fibre Sheet

    Directory of Open Access Journals (Sweden)

    Mohamad M. Z.

    2016-01-01

    Full Text Available Acoustic Emission (AE is one of the tools that can be used to detect the crack and to classify the type of the crack of reinforced concrete (RC structure. Dislocation or movement of the material inside the RC may release the transient elastic wave. In this situation, AE plays important role whereby it can be used to capture the transient elastic wave and convert it into AE parameters such as amplitude, count, rise time and duration. Certain parameter can be used directly to evaluate the crack behavior. But in certain cases, the AE parameter needs to add and calculate by using related formula in order to observe the behavior of the crack. Using analysis of average frequency and RA value, the crack can be classified into tensile or shear cracks. In this study, seven phases of increasing static load were used to observe the crack behavior. The beams were tested in two conditions. For the first condition, the beams were tested in original stated without strengthened with carbon fibre sheet (CFS at the bottom of the beam or called as tension part of the beam. For the second condition, the beams were strengthened with CFS at the tension part of the beam. It was found that, beam wrapped with CFS enhanced the strength of the beams in term of maximum ultimate load. Based on the relationship between average frequency (AF and RA value, the cracks of the beams can be classified.

  15. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    CERN Document Server

    Kirby, Evan N; Zhang, Andrew J; Deng, Michelle; Cohen, Judith G; Guhathakurta, Puragra; Shetrone, Matthew D; Lee, Young Sun; Rizzi, Luca

    2015-01-01

    We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in...

  16. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    International Nuclear Information System (INIS)

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development

  17. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2003-06-01

    Full Text Available An experimental analysis of pinewood beams (Pinus caribea var hondurensis reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results, while the efficiency of the fiber reinforcement is corroborated by the increased strength and stiffness of the reinforced timber beams.

  18. Ab Initio Investigation of the Structures of Fe-Doped Carbon Clusters

    Science.gov (United States)

    Lovato, Christella; Brownrigg, Clifton; Hira, Ajit

    2012-02-01

    We continue our interest in the theoretical study of carbon clusters to examine the effects of the doping of small carbon clusters (Cn, n = 2 - 15) with iron atoms. This work applies the hybrid ab initio methods of quantum chemistry to derive the different FemCn (m = 1-3) geometries. Of particular interest are linear, fan, and cyclic geometries. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Exploration of the singlet, triplet, quintet, and septet potential energy surfaces is performed. The type of bonding in terms of competition between sp^2 and sp^3 hybridization is examined, with a view to addressing the possibility of the stabilization of the doped carbon nano-particles in a diamond type structure. The potential for the existence of new pathways to the fabrication of nanotubes is explored.

  19. Design and analysis of automotive carbon fiber composite bumper beam based on finite element analysis

    Directory of Open Access Journals (Sweden)

    Tie Wang

    2015-06-01

    Full Text Available In this article, the most important part of the automotive front bumper system, namely, the bumper beam, is studied by changing the material and thickness to improve the crashworthiness performance in low-velocity impact. According to the low-speed standard of automotives stated in E.C.E. United Nations Agreement, Regulation no. 42, the low-velocity impact simulation based on finite element analysis is carried out. Lightweight is the main purpose of this article. First, the bumper beam analysis is accomplished for carbon fiber composite and steel material to analyze their deformation, weight, impact force, energy absorption, and the acceleration of the impactor. As a consequence, the bumper beam made by carbon fiber composite achieves better impact behavior. Second, on the purpose of lightweight, the bumper beams of different thickness including 5.4, 6, 6.6, and 7.2 mm are investigated. The results show that the 5.4 mm bumper beam is the best selection without sacrificing the impact performance. Third, according to the stress distribution, the thickness distribution of the bumper beam is changed to get better lightweight results. It is indicated that the weight of the improved bumper beam is further reduced and the impact performance is not weakened.

  20. Beam asymmetry Σ in π0 photoproduction off protons bound in carbon nuclei

    International Nuclear Information System (INIS)

    In order to study the dynamics of the inner components of the nucleon, its excitation spectrum is investigated through meson-photoproduction. Due to the strong overlap of the nucleon's excited states, it is insufficient to determine the cross section only. To identify all resonance contributions unambiguously, single and double polarization observables have to be measured. At the Crystal Barrel experiment at ELSA in Bonn, this is achieved utilizing linearly or circularly polarized photons and longitudinally or transversely polarized nucleons. Polarized protons are realized in a butanol target, which consists of hydrogen, oxygen and carbon. A pure carbon target was used to perform a background measurement. The results for the beam asymmetry Σ in π0 photoproduction, obtained with a carbon target and a linearly polarized photon beam, are presented. Furthermore, the influence of carbon background on the measured polarization observables is discussed.

  1. Reinforcement of timber beams with carbon fibers reinforced plastics

    Science.gov (United States)

    Gugutsidze, G.; Draškovič, F.

    2010-06-01

    Wood is a polymeric material with many valuable features and which also lacks some negative features. In order to keep up with high construction rates and the minimization of negative effects, wood has become one of the most valuable materials in modern engineering. But the use of timber material economically is also an actual problem in order to protect the environment and improve natural surroundings. A panel of scientists is interested in solving these problems and in creating rational structures, where timber can be used efficiently. These constructions are as follows: glue-laminated (gluelam), composed and reinforced wooden constructions. Composed and reinforced wooden constructions are examined less, but according to researches already carried out, it is clear that significant work can be accomplished in creating rational, highly effective and economic timber constructions. The paper deals with research on the formation of composed fiber-reinforced beams (CFRP) made of timber and provide evidence of their effectiveness. The aim of the paper is to investigate cross-bending of CFRP-reinforced gluelaminated timber beams. According to the results we were able to determine the additional effectiveness of reinforcement with CFRP (which depends on the CFRP material's quality, quantity and module of elasticity) on the mechanical features of timber and a whole beam.

  2. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  3. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  4. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Marco; Prestopino, G., E-mail: giuseppe.prestopino@uniroma2.it; Verona, C.; Verona-Rinati, G. [INFN—Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata,” Via del Politecnico 1, Roma 00133 (Italy); Ciocca, M.; Mirandola, A.; Mairani, A. [Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Raffaele, L. [INFN—Laboratori Nazionali del Sud, Via S. Sofia 62, Catania 95123, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Magro, G. [INFN—Dipartimento di Fisica, Università degli Studi di Pavia, Via U. Bassi 6, Pavia 27100, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy)

    2015-04-15

    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30–250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm{sup 2} were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm{sup 2} area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam

  5. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  6. Quasi-steady carbon plasma source for neutral beam injector

    International Nuclear Information System (INIS)

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration

  7. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration. PMID:24593646

  8. Experiments with the newly available carbon beams at ISOLDE

    CERN Multimedia

    Garcia borge, M J; Koester, U H; Koldste, G T

    2002-01-01

    Recent target-ions-source developments at ISOLDE providing significantly increased yields for carbon isotopes, open up for new and intriguing experiments. We propose to exploit this in two different ways. In particular we wish to do an elastic resonance scattering experiment of $^{9}$C on a proton target to gain information on the particle unbound system $^{10}$N. Furthermore we wish to perform decay experiments of the neutron-rich carbon isotopes, with special focus on $^{17-19}$C but also including a test to see whether the even more neutron-rich isotopes $^{20,22}$C are accessible at ISOLDE.

  9. A modified Fuzzy C-Means (FCM) Clustering algorithm and its application on carbonate fluid identification

    Science.gov (United States)

    Liu, Lifeng; Sun, Sam Zandong; Yu, Hongyu; Yue, Xingtong; Zhang, Dong

    2016-06-01

    Considering the fact that the fluid distribution in carbonate reservoir is very complicated and the existing fluid prediction methods are not able to produce ideal predicted results, this paper proposes a new fluid identification method in carbonate reservoir based on the modified Fuzzy C-Means (FCM) Clustering algorithm. Both initialization and globally optimum cluster center are produced by Chaotic Quantum Particle Swarm Optimization (CQPSO) algorithm, which can effectively avoid the disadvantage of sensitivity to initial values and easily falling into local convergence in the traditional FCM Clustering algorithm. Then, the modified algorithm is applied to fluid identification in the carbonate X area in Tarim Basin of China, and a mapping relation between fluid properties and pre-stack elastic parameters will be built in multi-dimensional space. It has been proven that this modified algorithm has a good ability of fuzzy cluster and its total coincidence rate of fluid prediction reaches 97.10%. Besides, the membership of different fluids can be accumulated to obtain respective probability, which can evaluate the uncertainty in fluid identification result.

  10. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Science.gov (United States)

    Araghi, Houshang; Zabihi, Zabiholah; Nayebi, Payman; Ehsani, Mohammad Mahdi

    2016-10-01

    II-VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  11. ELECTRO-THERMAL EFFECTS AND DEFORMATION RESPONSE OF CARBON FIBER MAT CEMENT BEAMS

    Institute of Scientific and Technical Information of China (English)

    ZhuSirong; LiZhuoqiu; SongXianhui

    2003-01-01

    A carbon fiber mat is a sheet composed of intercrossing short carbon fibers, which has more stable and lower electrical resistivity compared with dispersed short carbon fiber mixed in cement. Thereby carbon fiber mat cement could exhibit obvious electro-thermal effect. When electrified, the temperature of composite structures made up of cement mortar and carbon fiber mat will rise rapidly. If the temperature field is not uniform, temperature difference will cause structures to deform, which can be used to adjust the deformation of structures. The temperature field and deformation response driven by the electro-thermal effects of a type of carbon fiber mat cement beams are studied. Firstly, the temperature and deformation responses are studied using theories of thermal conduction and elasticity. Secondly, experimental results are given to verify the theoretical solution. These two parts lay the foundation for temperature and deformation adjustment.

  12. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Somnath [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Narang, Himanshi, E-mail: himinarang@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sarma, Asitikantha [Radiation Biology Laboratory, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, Malini [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-11-01

    Carbon beams (5.16 MeV/u, LET = 290 keV/{mu}m) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between {gamma}-rays and carbon ion-irradiation. A549 cells were irradiated with 1 Gy carbon or {gamma}-rays. Carbon beam was found to be three times more cytotoxic than {gamma}-rays despite the fact that the numbers of {gamma}-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with {gamma}-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike {gamma}-rays irradiated cells and prosurvival ERK pathway was activated after {gamma}-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.

  13. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  14. Interfacial electrical properties of ion-beam sputter deposited amorphous carbon on silicon

    Science.gov (United States)

    Khan, A. A.; Woollam, J. A.; Chung, Y.; Banks, B.

    1983-01-01

    Amorphous, 'diamond-like' carbon films have been deposited on Si substrates, using ion-beam sputtering. The interfacial properties are studied using capacitance and conductance measurements. Data are analyzed using existing theories for interfacial electrical properties. The density of electronic states at the interface, along with corresponding time constants are determined.

  15. Influence of electron beam irradiation on physicochemical properties of poly(trimethylene carbonate)

    NARCIS (Netherlands)

    Jozwiakowska, Joanna; Wach, Radoslaw A.; Rokita, Bozena; Ulanski, Piotr; Nalawade, Sameer P.; Grijpma, Dirk W.; Feijen, Jan; Rosiak, Janusz M.

    2011-01-01

    Electron beam (EB) irradiation of poly(trimethylene carbonate) (PTMC), an amorphous, biodegradable polymer used in the field of biomaterials, results in predominant cross-linking and finally in the formation of gel fraction, thus enabling modification of physicochemical properties of this material w

  16. Morphological and structural modifications of multiwalled carbon nanotubes by electron beam irradiation

    Science.gov (United States)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Motaweh, H. A.

    2016-10-01

    Effects of electron beam irradiation on a morphology and structure of multiwalled carbon nanotubes sample in a normal imaging regime of a scanning electron microscope (SEM) were investigated. Direct SEM observations give evidence that irradiation by electron beam in SEM eliminates morphological unevenness, in the form of round spots of white contrast, on the surface of carbon nanotubes (CNTs) and makes the tubes thinner. Electron dispersive analysis and Raman spectroscopy are used to explore the origin and nature of these spots. From this analysis we found that e-beam irradiation improves the CNTs graphitization. The synergy of thermal heating and ionization produced by the irradiation are discussed as possible mechanisms of the observed effects.

  17. Making junctions between carbon nanotubes using an ion beam

    CERN Document Server

    Krasheninnikov, A V; Keinonen, J; Banhart, F

    2003-01-01

    Making use of empirical potential molecular dynamics, we study ion bombardment of crossed single-walled carbon nanotubes as a tool to join the nanotubes. We demonstrate that ion irradiation should result in welding of crossed nanotubes, both suspended and deposited on substrates. We further predict optimum ion doses and energies for ion-mediated nanotube welding which may potentially be used for developing complicated networks of joined nanotubes.

  18. The RHIC p-Carbon CNI Polarimeter Upgrade For The Beam Polarization And Intensity Measurements

    International Nuclear Information System (INIS)

    Proton polarization measurements in the AGS and RHIC (Relativistic Heavy Ion Collider at the beam energies 24-250 GeV) are based on proton-carbon and proton-proton elastic scattering in the Coulomb Nuclear Interference (CNI) region. Polarimeter operation in the scanning mode also gives polarization profile and beam intensity profile (beam emittance) measurements. Bunch by bunch emittance measurement is a very powerful tool for machine setup. Presently, the polarization and beam intensity profile measurements (in both vertical and horizontal planes) are restricted by the long target switching time and possible target destruction during this complicated motion. The RHIC polarimeters were operated near the limit of the counting rate for present silicon strip detectors. The ongoing polarimeter upgrade for the 2009 run will address all these problems. The upgrade should allow significant reduction of the polarization measurement errors by making feasible the complete polarization measurements, which includes polarization profiles in both the horizontal and vertical planes.

  19. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    Science.gov (United States)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  20. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    Science.gov (United States)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  1. Hardness and stress of amorphous carbon film deposited by glow discharge and ion beam assisting deposition

    CERN Document Server

    Marques, F C

    2000-01-01

    The hardness and stress of amorphous carbon films prepared by glow discharge and by ion beam assisting deposition are investigated. Relatively hard and almost stress free amorphous carbon films were deposited by the glow discharge technique. On the other hand, by using the ion beam assisting deposition, hard films were also obtained with a stress of the same order of those found in tetrahedral amorphous carbon films. A structural analysis indicates that all films are composed of a sp sup 2 -rich network. These results contradict the currently accepted concept that both stress and hardness are only related to the concentration of sp sup 3 sites. Furthermore, the same results also indicate that the sp sup 2 sites may also contribute to the hardness of the films.

  2. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  3. Experimental studies of superhard materials carbon nitride CNx prepared by ion-beam synthesis method

    Institute of Scientific and Technical Information of China (English)

    辛火平; 林成鲁; 许华平; 邹世昌; 石晓红; 吴兴龙; 朱宏; P.L.FHemment

    1996-01-01

    Formation of superhard materials carbon nitride CNt by using ion-beam synthesis method is reported.100-keV high-dose N+ ions were implanted into carbon thin films at different temperatures.The samples were evaluated by X-ray photoelectron spectroscopy (XPS),Fourier transformation-infrared absorption spectroscopy (FTIR),Raman spectroscopy,cross-sectional transmission electron microscopy (XTEM),Rutherford backscattering spectroscopy (RBS).X-ray diffraction analysis (XRD) and Vickers microhardness measurement.The results show that the buried carbon nitride CN> layer has been successfully formed by using 100-keV high-dose N+ ions implantation into carbon thin film.Implantation of reactive ions into silicon (IRIS) computer program has been used to simulate the formation of the buried β-C3N4 layer as N+ ions are implanted into carbon.A good agreement between experimental measurements and IRIS simulation is found.

  4. Measurement of fragment production DDX of 72 and 144 MeV 12C beam induced reaction on carbon using Bragg Curve Counter

    International Nuclear Information System (INIS)

    Double differential cross section (DDX) data of fragment production for 72 (6 MeV/nucleon) and 144 MeV (12 MeV/nucleon) 12C beam induced reaction on carbon were measured using a Bragg Curve Counter (BCC). The DDX data were obtained for fragments of He, Li, Be, B, C, N and O at 30 degree emission angle. Theoretical calculation using PHITS code with QMD+GEM model represents the DDX well except for components from reactions of direct process and α particle clustering process. (author)

  5. A carbon cluster ion source for mass calibration at TRIGA-TRAP

    International Nuclear Information System (INIS)

    TRIGA-TRAP is a high-precision penning trap mass spectrometer installed at the research reactor TRIGA Mainz in order to determine the masses of short-lived fission products and - in addition to that - also the masses of actinide elements ranging from uranium up to californium. In order to determine precisely the masses of the nuclides of interest, the superconducting magnet providing the strong magnetic field for the Penning trap has to be calibrated by measuring the cyclotron frequency of an ion with well-known mass, which is, if possible, an isobaric nuclide of the ion of interest. Therefore, the best possible choice for mass calibration is to use carbon clusters as mass references, as demonstrated at the ISOLTRAP facility at ISOLDE/CERN. A laser ablation ion source for the production of carbon clusters has been developed using a frequency-doubled Nd:YAG laser. The design, current status, and results of the production of carbon cluster ions, using C60 and Sigradure registered samples, as well as other ions are presented

  6. High-throughput shadow mask printing of passive electrical components on paper by supersonic cluster beam deposition

    Science.gov (United States)

    Caruso, Francesco; Bellacicca, Andrea; Milani, Paolo

    2016-04-01

    We report the rapid prototyping of passive electrical components (resistors and capacitors) on plain paper by an additive and parallel technology consisting of supersonic cluster beam deposition (SCBD) coupled with shadow mask printing. Cluster-assembled films have a growth mechanism substantially different from that of atom-assembled ones providing the possibility of a fine tuning of their electrical conduction properties around the percolative conduction threshold. Exploiting the precise control on cluster beam intensity and shape typical of SCBD, we produced, in a one-step process, batches of resistors with resistance values spanning a range of two orders of magnitude. Parallel plate capacitors with paper as the dielectric medium were also produced with capacitance in the range of tens of picofarads. Compared to standard deposition technologies, SCBD allows for a very efficient use of raw materials and the rapid production of components with different shape and dimensions while controlling independently the electrical characteristics. Discrete electrical components produced by SCBD are very robust against deformation and bending, and they can be easily assembled to build circuits with desired characteristics. The availability of large batches of these components enables the rapid and cheap prototyping and integration of electrical components on paper as building blocks of more complex systems.

  7. Cluster analysis of particulate matter (PM10) and black carbon (BC) concentrations

    Science.gov (United States)

    Žibert, Janez; Pražnikar, Jure

    2012-09-01

    The monitoring of air-pollution constituents like particulate matter (PM10) and black carbon (BC) can provide information about air quality and the dynamics of emissions. Air quality depends on natural and anthropogenic sources of emissions as well as the weather conditions. For a one-year period the diurnal concentrations of PM10 and BC in the Port of Koper were analysed by clustering days into similar groups according to the similarity of the BC and PM10 hourly derived day-profiles without any prior assumptions about working and non-working days, weather conditions or hot and cold seasons. The analysis was performed by using k-means clustering with the squared Euclidean distance as the similarity measure. The analysis showed that 10 clusters in the BC case produced 3 clusters with just one member day and 7 clusters that encompasses more than one day with similar BC profiles. Similar results were found in the PM10 case, where one cluster has a single-member day, while 7 clusters contain several member days. The clustering analysis revealed that the clusters with less pronounced bimodal patterns and low hourly and average daily concentrations for both types of measurements include the most days in the one-year analysis. A typical day profile of the BC measurements includes a bimodal pattern with morning and evening peaks, while the PM10 measurements reveal a less pronounced bimodality. There are also clusters with single-peak day-profiles. The BC data in such cases exhibit morning peaks, while the PM10 data consist of noon or afternoon single peaks. Single pronounced peaks can be explained by appropriate cluster wind speed profiles. The analysis also revealed some special day-profiles. The BC cluster with a high midnight peak at 30/04/2010 and the PM10 cluster with the highest observed concentration of PM10 at 01/05/2010 (208.0 μg m-3) coincide with 1 May, which is a national holiday in Slovenia and has very strong tradition of bonfire parties. The clustering of

  8. Establishment of the method for profile evaluation in matter using the therapeutic carbon pencil beam

    International Nuclear Information System (INIS)

    The scanning irradiation of the pencil beam is superior in comparison to the conventional extended-field irradiation in dose concentration. The carbon pencil beam spreads its profile in matter. The factors that cause the profile change are the nuclear fragmentation reactions and the multiple Coulomb scatterings. The fragmentation reaction is a type of nuclear reactions, where the high-energy incident particles interact with target nuclei and fragment the incident particles themselves or the target nucleus. In order to improve the accuracy of the treatment planning for the carbon beam, it is necessary to evaluate quantitatively the effect of the nuclear fragmentation reactions. The objective of this study is to establish the evaluation method for the carbon pencil beam profile in matter by selectively acquiring the nuclear fragmentation reactions and the multiple Coulomb scattering. This experiment was proposed to carry out in three years. Events with the nuclear fragmentation reactions and the multiple Coulomb scatterings were separately identified by a dedicated detector devised by our group. Profiles of these events were successfully measured. (author)

  9. Vacuum performance of a carbon fibre cryosorber for the LHC LSS beam screen

    CERN Document Server

    Anashin, V V; Dostovalov, R V; Korotaeva, Z A; Krasnov, A A; Malyshev, O B; Poluboyarov, V A

    2004-01-01

    A new carbon fibre material was developed at the Institute of Solid State Chemistry and Mechanochemistry at the Siberian Branch of the Russian Academy of Science (SB RAS) to meet the large hadron collider (LHC) vacuum chamber. The material must have a large sorbing capacity, a certain pumping speed, a working temperature range between 5 and 20K, a low activation temperature (below room temperature), a certain size in order to fit into the limited space available and it should be easy to mount. The vacuum parameters of the LHC vacuum chamber prototype with a carbon fibre cryosorber mounted onto the beam screen were studied in the beam screen temperature range from 14 to 25K at the Budker Institute of Nuclear Physics SB RAS. This carbon fibre material has shown sufficient sorption capacity for hydrogen at operational temperatures of the beam screen in the LHC long straight sections. It is also very important that this material does not crumble and makes a convenient fixation onto the beam screen in comparison t...

  10. Clinical output factors for carbon-ion beams passing through polyethylene

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa; Himukai, Takeshi

    2013-01-01

    Purpose: A recent study suggested that polyethylene (PE) range compensators would cause extra carbon-ion attenuation by 0.45%/cm due to limitations in water equivalence. The present study aims to assess its influence on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles. For these components, tumor dose fraction and relative biological effectiveness (RBE) were estimated at a reference depth in the middle of spread-out Bragg peak. The PE effect was estimated for clinical carbon-ion beams and was partially tested by experiment. The two-component model was integrated into a treatment-planning system, with which the PE effect on tumor dose was investigated in two clinical cases. Results: The fluence and clinical attenuation coefficients for dose decrease per polyethylene thickness were estimated to be 0.1%-0.3%/cm and 0.2%-0.4%/cm, depending on energy and modulation of clinical carbon-ion beams. In the treatment-planning s...

  11. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

    proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...... at energies below 20 MeV/u. We implemented this model in the Monte Carlo code FLUKA. At the GSI heavy ion facility in Darmstadt, Germany, alanine has been irradiated with carbon ions at energies between 88 an 400 MeV/u, which is the energy range used for therapy. The irradiation and the detector response have...... been simulated with FLUKA. We found an agreement between measured values of the relative efficiency with values predicted by the Hansen and Olsen model with divergence less than 4%. With the implementation in FLUKA we are able to simulate the detector response in the depth dose curves with precisions...

  12. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study

    CERN Document Server

    Parodi, K; Kraemer, M; Sommerer, F; Naumann, J; Mairani, A; Brons, S

    2010-01-01

    Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been an...

  13. Study of small carbon and semiconductor clusters using negative ion threshold photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, C.C.

    1994-08-01

    The bonding and electronics of several small carbon and semiconductor clusters containing less than ten atoms are probed using negative ion threshold photodetachment (zero electron kinetic energy, or ZEKE) spectroscopy. ZEKE spectroscopy is a particularly advantageous technique for small cluster study, as it combines mass selection with good spectroscopic resolution. The ground and low-lying electronic states of small clusters in general can be accessed by detaching an electron from the ground anion state. The clusters studied using this technique and described in this work are C{sub 6}{sup {minus}}/C{sub 6}, Si{sub n}{sup {minus}}/Si{sub n} (n = 2, 3, 4), Ge{sub 2}{sup {minus}}/Ge{sub 2}, In{sub 2}P{sup {minus}}/In{sub 2}P,InP{sub 2}{sup {minus}}/InP{sup 2}, and Ga{sub 2}As{sup {minus}}. The total photodetachment cross sections of several other small carbon clusters and the ZEKE spectrum of the I{sup {minus}}{center_dot}CH{sub 3}I S{sub N}2 reaction complex are also presented to illustrate the versatility of the experimental apparatus. Clusters with so few atoms do not exhibit bulk properties. However, each specie exhibits bonding properties that relate to the type of bonding found in the bulk. C{sub 6}, as has been predicted, exhibits a linear cumulenic structure, where double bonds connect all six carbon atoms. This double bonding reflects how important {pi} bonding is in certain phases of pure carbon (graphite and fullerenes). The symmetric stretch frequencies observed in the C{sub 6}{sup {minus}} spectra, however, are in poor agreement with the calculated values. Also observed as sharp structure in total photodetachment cross section scans was an excited anion state bound by only {approximately}40 cm{sup {minus}1} relative to the detachment continuum. This excited anion state appears to be a valence bound state, possible because of the high electron affinity of C{sub 6}, and the open shell of the anion.

  14. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  15. Electron-beam heat treatment of thin band of low-carbon steel

    International Nuclear Information System (INIS)

    Using the methods of raster electron microscopy, X-ray structural and chemical analysis and also X-ray microanalysis, the change was studied in the mechanical properies of a band made of low-carbon steel 08 kp that takes place after electron-beam heat treatment. It has been shown that the above change is due to a specific character of the α reversible γ phase transition. After electron-beam treatment under optimum conditions, the properties of the band made of steel 08 kp and 0.15 mm thick (plasticity, ultimate strength, etc.) are similar to those obtained using the conventional procedures (annealing and skin pass rolling)

  16. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  17. Raman shift on n-doped amorphous carbon thin films grown by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P., B. [Departamento de Fisica, Pontificia Universidad Catolica de Rio de Janeiro (Brazil); Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla (Mexico); Freire L., F. Jr. [Departamento de Fisica, Pontificia Universidad Catolica de Rio de Janeiro (Brazil); Lozada M., R.; Palomino M., R. [Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla (Mexico); Jimenez S., S. [Centro de Investigacion y de Estudios Avanzados del IPN, Laboratorio de Investigacion en Materiales, Queretaro (Mexico); Zelaya A., O. [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, CINVESTAV-IPN, P.O. Box 14-740, Mexico 07360 D.F. (Mexico)

    2007-04-15

    The structural properties of carbon thin films synthesized under an atmosphere of nitrogen by means of electron beam evaporation were studied by Raman scattering spectroscopy. The electron beam evaporation technique is an important alternative to grown layers of this material with interesting structural properties. The observed shift of the Raman G band shows that the structure of the films tends to become more graphitic upon the increase of the deposition time. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Establishment of a Cluster Physics Research Device

    Institute of Scientific and Technical Information of China (English)

    GUOJi-yu; ZHAOKui; NIMei-nan; WUXiu-kun; SUILi; KONGFu-quan; BAOYi-wen; SUShengyong

    2003-01-01

    Carbon cluster beam of MeV C2-C4 has been successfully accelerated on HI-13 tandem accelerator,researches of interaction between these particles and plastic track detector CR-39 has been lead out. Since the mass energy product of analysis magnet on HI-13 tandem accelerator is 200 MeV·Amu, only low energy C2-C4 cluster beam could be deflected and analyzed in the experimental hall.

  19. Dynamic core hole screening in small-diameter conducting carbon nanotubes: A cluster density functional study

    International Nuclear Information System (INIS)

    The many-electron response of a small-diameter conducting carbon nanotube, to the sudden creation of a 1s core state, is studied using density functional theory with different Gaussian basis sets and the generalized gradient approximation for exchange and correlation. Cluster computations are performed on carbon atoms located at a finite-size cylindrical network that is terminated by hydrogen atoms. Core-hole creation is simulated by replacing the 1s electron pair, localized at a central site of the structure, with effective pseudo-potentials for both neutral and ionized atomic carbon. The same approach is used to describe a neutral and core-ionized C60 fullerene molecule. The overlaps between the excited states of the ionized systems and the ground states of the neutral systems are combined in a Fermi's golden rule treatment yielding the shake-up spectra from the two clusters. The numerical response for the fullerene molecule is found in good agreement with the measured X-ray photoelectron spectrum from thick C60 films, including the low energy satellites at excitation energies below 4 eV, within a peak position error of 0.3 eV. The nanotube spectrum reveals features in common with X-ray photoelectron data from Bucky balls and Bucky papers. - Highlights: • Many body effects induced in carbon nanotubes by core level ionization are studied. • Cluster density functional theory, with effective core pseudo-potentials, is used. • Low lying excited states of the ionized system are calculated. • Numerical photoelectron spectra are derived with a modified Fermi's golden rule. • Numerical calculations are compared with X-ray data from Bucky balls and papers

  20. Clustered Natural Frequencies in Multi-Span Beams with Constrained Characteristic Functions

    OpenAIRE

    Khodabakhsh Saeedi; Rama B. Bhat

    2011-01-01

    A study of the natural frequencies and mode shapes of a multi-span beam is carried out by introducing constrained beam characteristic functions. The conventional method used for the dynamic analysis of such a beam is to consider span-wise characteristic function solution and then to solve it by using compatibility conditions such as the continuity in the a slope and bending moment at the intermediate supports and boundary conditions at the ends. In the method proposed here, the matrix size is...

  1. Charge equilibrium of a laser-generated carbon-ion beam in warm dense matter

    International Nuclear Information System (INIS)

    Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter. (authors)

  2. Tribological properties of ion beam deposited diamond-like carbon film on silicon nitride

    International Nuclear Information System (INIS)

    The present article reports on the physical characterization and tribological properties of diamond-like carbon (DLC) films deposited on structural Si3N4 substrates. The films were deposited by the direct ion beam deposition technique. The ion beam was produced by plasma discharge of pre-mixed methane and hydrogen gas in a Kaufman-type ion source. The deposited films were found to be amorphous and contained about 70% carbon and 30% hydrogen. The friction coefficient of an uncoated Si3N4 ball on a DLC coated Si3N4 disc starts at about 0.2, then decreases rapidly to 0.1-0.15 with increasing sliding distance. Increasing humidity results in a slight increase in friction coefficient, but a significant decrease in wear factor. The wear factor for the tests at ≅60% rh (relative humidity) are about an order of magnitude smaller than the tests at 3% rh. (orig.)

  3. Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation

    Science.gov (United States)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2015-02-01

    We study the radiological characteristics of VIP polymer gel dosimeters under carbon beam irradiation with energy of 135 and 290 AMeV. To evaluate dose response of VIP polymer gels, the transverse (or spin-spin) relaxation rate R2 of the dosimeters measured by magnetic resonance imaging (MRI) as a function of linear energy transfer (LET), rather than penetration depth, as is usually done in previous reports. LET is evaluated by use of the particle transport simulation code PHITS. Our results reveal that the dose response decreases with increasing dose-averaged LET and that the dose response-LET relation also varies with incident carbon beam energy. The latter can be explained by taking into account the contribution from fragmentation products.

  4. Consumption of carbon fiber plates in the reinforced concrete beams strengthened with CFPs

    Institute of Scientific and Technical Information of China (English)

    BU Liangtao; SONG Li; SHI Chuxian

    2007-01-01

    Four-point bending flexural tests were conducted to one full-size reinforced concrete (RC) beam and three full-size RC beams strengthened with carbon fiber plates (CFPs).The experimental results showed that the consumption of CFP had significant effects on failure modes and the flexural capacity.An analytical procedure,based on the limit failure ode and ductility,was presented to predict the applied area of CFP.An analytical program,based on Smith-Teng model and Cheng-Teng model,was provided to calculate the bonding length of CFP.The test results are used to validate the proposed procedure.The results are also applied to the design and construction of RC beam strengthened with CFP.

  5. Characterization of polyacrylonitrile based carbon nanofiber mats via electron beam processing.

    Science.gov (United States)

    Kim, Du-Yeong; Shin, Hye-Kyoung; Jeun, Joon-Pyo; Kim, Hyun-Bin; Oh, Seung-Hwan; Kang, Phil-Hyun

    2012-07-01

    The aim of this study was to evaluate the ability of electron beam irradiation to drive stabilization reactions within PAN nanofiber mats to obtain carbon nanofiber mats. PAN nanofiber mats with fiber diameters of 300-400 nm were prepared via an electrospinning method. Electrospun PAN nanofiber mats were stabilized by electron beam irradiation with various doses up to 5,000 kGy. Using the irradiation-stabilized PAN nanofiber mats, carbon nanofibers were obtained by pyrolysis in a tube furnace for 1 h at 1,000 degrees C under an N2 atmosphere. FT-IR analysis indicated that the transformation of C[triple bond]N groups to C==N groups was accelerated by electron beam stabilization. The thermal behavior of the PAN nanofiber mats was studied using DSC and TGA. DSC thermograms showed that the peak temperatures of the exothermic reactions were found to decrease with increasing electron beam irradiation doses. Irradiation-stabilized PAN nanofiber mats were not observed to dramatically decrease in weight between 290 degrees C and 320 degrees C, an observation presumed to be related to cyclization. The char yields of PAN were found to increase with increasing irradiation doses. PMID:22966719

  6. Inception of Acetic Acid/Water Cluster Growth in Molecular Beams.

    Science.gov (United States)

    Bende, Attila; Perretta, Giuseppe; Sementa, Paolo; Di Palma, Tonia M

    2015-10-01

    The influence of carboxylic acids on water nucleation in the gas phase has been explored in the supersonic expansion of water vapour mixed with acetic acid (AcA) at various concentrations. The sodium-doping method has been used to detect clusters produced in supersonic expansions by using UV photoionisation. The mass spectra obtained at lower acid concentrations show well-detected Na(+) -AcA(H2O)n and Na(+)-AcA2 (H2O)n clusters up to 200 Da and, in the best cooling expansions, emerging Na(+)-AcAm (H2O)n signals at higher masses and unresolved signals that extend beyond m/e values >1000 Da. These signals, which increase with increasing acid content in water vapour, are an indication that the cluster growth taking place arises from mixed water-acid clusters. Theoretical calculations show that small acid-water clusters are stable and their formation is even thermodynamically favoured with respect to pure water clusters, especially at lower temperatures. These findings suggest that acetic acid may play a significant role as a pre-nucleation embryo in the formation of aerosols in wet environments. PMID:26296812

  7. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    Science.gov (United States)

    Luo, Shanwei; Zhou, Libin; Li, Wenjian; Du, Yan; Yu, Lixia; Feng, Hui; Mu, Jinhu; Chen, Yuze

    2016-09-01

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M1 populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD50) for a large-scale mutant screening. Among 2472 M2 plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M2 populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  8. Development of gas cluster ion beam surface treatments for reducing field emission and breakdown in RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, D R; Degenkolb, E; Wu, A T; Insepov, Z

    2006-11-01

    Sub-micron-scale surface roughness and contamination cause field emission that can lead to high voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high voltage electrodes. For this paper, we have processed Nb, Stainless Steel, and Ti electrode materials using beams of Ar, O2, or NF3 +O2 clusters with accelerating potentials up to 35 kV. Using a Scanning Field Emission Microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on Stainless steel and Ti substrates have been evaluated using AFM imaging and show that 200-nm wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB treated stainless steel electrode has now shown virtually no DC field emission current at gradients over 20 MV/m.

  9. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    International Nuclear Information System (INIS)

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for ''direct-write'' processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple ''beams'' of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials. (orig.)

  10. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    Science.gov (United States)

    Fedorov, Andrei G.; Kim, Songkil; Henry, Mathias; Kulkarni, Dhaval; Tsukruk, Vladimir V.

    2014-12-01

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for "direct-write" processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple "beams" of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials.

  11. Theoretical studies of zirconium and carbon clusters with molecular dynamics simulations

    International Nuclear Information System (INIS)

    In this dissertation, we will present a systematic study of structures of fullerenes ranging from C20 to C100 by introducing a novel scheme. Using our new scheme, we not only reproduce all known fullerene structures but also successfully predicted several other fullerene structures which were confirmed by experiments. By utilizing the tight-binding molecular-dynamic (TBMD) simulation, we also studied the dynamical behavior of fullerenes: Vibrations, thermal disintegration of individual clusters as well as collisions between fullerenes. If the beauty of carbon fullerene is not enough, people found that carbon can also form tubules and even speculated that they can form three-dimensional graphite-like networks. By extending our fullerene structure searching scheme, we performed a search for the ground-state structure of three dimensional carbon network. We found the most stable structure people ever proposed for simple cubic based networks. From the difference of this new form of carbon and graphite in the electronic and vibrational properties, we propose an experimental probe to identify these novel three-dimensional carbon networks

  12. Theoretical studies of zirconium and carbon clusters with molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.

    1993-08-01

    In this dissertation, we will present a systematic study of structures of fullerenes ranging from C{sub 20} to C{sub 100} by introducing a novel scheme. Using our new scheme, we not only reproduce all known fullerene structures but also successfully predicted several other fullerene structures which were confirmed by experiments. By utilizing the tight-binding molecular-dynamic (TBMD) simulation, we also studied the dynamical behavior of fullerenes: Vibrations, thermal disintegration of individual clusters as well as collisions between fullerenes. If the beauty of carbon fullerene is not enough, people found that carbon can also form tubules and even speculated that they can form three-dimensional graphite-like networks. By extending our fullerene structure searching scheme, we performed a search for the ground-state structure of three dimensional carbon network. We found the most stable structure people ever proposed for simple cubic based networks. From the difference of this new form of carbon and graphite in the electronic and vibrational properties, we propose an experimental probe to identify these novel three-dimensional carbon networks.

  13. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Kirby, Evan N.; Guo, Michelle; Zhang, Andrew J.; Deng, Michelle; Cohen, Judith G.; Guhathakurta, Puragra; Shetrone, Matthew D.; Lee, Young Sun; Rizzi, Luca

    2015-03-01

    We present carbon abundances of red giants in Milky Way (MW) globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log (L/{{L}})≃ 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of SNe Ia at higher metallicities. We also identified 11 very carbon-rich giants (eight previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the MW stellar halo. Nonetheless, the stars with [C/Fe]\\lt +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] “knee” adds to the evidence from [α/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Matthias [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Technische Universitaet Dresden, D-01062 Dresden (Germany); Muecklich, Arndt; Zschornak, Matthias; Wintz, Sebastian; Gemming, Sibylle; Abrasonis, Gintautas [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Oates, Thomas W. H. [Leibniz-Institut fuer Analytische Wissenschaft, ISAS e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); Luis Endrino, Jose [Surfaces and Coatings Department, Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Baehtz, Carsten; Shalimov, Artem [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2012-07-30

    The influence of assisting low-energy ({approx}50-100 eV) ion irradiation effects on the morphology of C:Ni ({approx}15 at. %) nanocomposite films during ion beam assisted deposition (IBAD) is investigated. It is shown that IBAD promotes the columnar growth of carbon encapsulated metallic nanoparticles. The momentum transfer from assisting ions results in tilting of the columns in relation to the growing film surface. Complex secondary structures are obtained, in which a significant part of the columns grows under local epitaxy via the junction of sequentially deposited thin film fractions. The influence of such anisotropic film morphology on the optical properties is highlighted.

  15. Reinforced concrete beams strengthened with carbon fiber reinforced polymer by friction hybrid bond technique: Experimental investigation

    International Nuclear Information System (INIS)

    Highlights: • Friction Hybrid Bonded FRP Technique is conducted to strengthen RC beams. • Six specimens with different reinforced methods were tested. • The strengthened effects of different strengthening methods were discussed. • The results obtained from the FEA and experiments are agreed very well. - Abstract: Carbon fiber reinforced polymer (CFRP) can be used to strengthen the reinforced concrete (RC) beams. But premature debonding is the main failure model in ordinary bond technique, and the strengthening effect is limited. In order to improve bonding and restricting sliding displacement, Friction Hybrid Bonded FRP Technique (FHB-FRP) is developed. Six simple-span RC specimen beams with different strengthened methods were tested in four-point bending. The experiment results indicate that FRP debonding can be effectively prevented by the FHB-FRP strengthened beam. The ultimate load-carrying capacity of the specimen strengthened by FHB-FRP technique is able to increase by a factor of 2.13 times compared with the beam strengthened with ordinary bond technique (U-jacketing technique). In addition, the cracking and yielding loads are improved more significantly by FHB-FRP technique than U-jacketing technique. Specimens strengthened with FHB-FRP technique have cracks with a more limited distribution and width. Finally, the finite element method (FEM) is conducted to simulate the behavior of the test specimens. The results obtained from the finite element method are compared with experiment. Excellent agreements have been achieved in the comparison of results

  16. Dosimetric characterization and application of an imaging beam line with a carbon electron target for megavoltage cone beam computed tomography.

    Science.gov (United States)

    Flynn, Ryan T; Hartmann, Julia; Bani-Hashemi, Ali; Nixon, Earl; Alfredo, R; Siochi, C; Pennington, Edward C; Bayouth, John E

    2009-06-01

    Imaging dose from megavoltage cone beam computed tomography (MVCBCT) can be significantly reduced without loss of image quality by using an imaging beam line (IBL), with no flattening filter and a carbon, rather than tungsten, electron target. The IBL produces a greater keV-range x-ray fluence than the treatment beam line (TBL), which results in a more optimal detector response. The IBL imaging dose is not necessarily negligible, however. In this work an IBL was dosimetrically modeled with the Philips Pinnacle3 treatment planning system (TPS), verified experimentally, and applied to clinical cases. The IBL acquisition dose for a 200 degrees gantry rotation was verified in a customized acrylic cylindrical phantom at multiple imaging field sizes with 196 ion chamber measurements. Agreement between the measured and calculated IBL dose was quantified with the 3D gamma index. Representative IBL and TBL imaging dose distributions were calculated for head and neck and prostate patients and included in treatment plans using the imaging dose incorporation (IDI) method. Surface dose was measured for the TBL and IBL for four head and neck cancer patients with MOSFETs. The IBL model, when compared to the percentage depth dose and profile measurements, had 97% passing gamma indices for dosimetric and distance acceptance criteria of 3%, 3 mm, and 100% passed for 5.2%, 5.2 mm. For the ion chamber measurements of phantom image acquisition dose, the IBL model had 93% passing gamma indices for acceptance criteria of 3%, 3 mm, and 100% passed for 4%, 4 mm. Differences between the IBL- and TBL-based IMRT treatment plans created with the IDI method were dosimetrically insignificant for both the prostate and head and neck cases. For IBL and TBL beams with monitor unit values that would result in the delivery of the same dose to the depth of maximum dose under standard calibration conditions, the IBL imaging surface dose was higher than the TBL imaging surface dose by an average of 18

  17. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    OpenAIRE

    Polf, Jerimy C.; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured ...

  18. Finite Element Modeling and Free Vibration Analysis of Functionally Graded Nanocomposite Beams Reinforced by Randomly Oriented Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Benedict Thomas

    2013-12-01

    Full Text Available This article deals with the finite element modeling and free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs. Nanostructural materials can be used to alter mechanical, thermal and electrical properties of polymer-based composite materials, because of their superior properties and perfect atom arrangement. Timoshenko beam theory is used to evaluate dynamic characteristics of the beam. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. The equations of motion are derived by using Hamilton’s principle. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. Different SWCNTs distributions in the thickness direction are introduced to improve fundamental natural frequency and dynamic behavior of uniform functionally graded nanocomposite beam. Results are presented in tabular and graphical forms to show the effects of various material distributions, carbon nanotube orientations, shear deformation, slenderness ratios and boundary conditions on the dynamic behavior of the beam. The first five normalized mode shapes for functionally graded carbon nanotube reinforced composite (FG-CNTRC beams with different boundary conditions and different carbon nanotubes (CNTs orientation are presented. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam.

  19. Development of a piston utilizing carbon-cluster as a pressure transmission medium at low temperature

    International Nuclear Information System (INIS)

    It is necessary to require pressure transmission mechanism in the vacuum and low temperature environment such mechanically RF tuning operation for superconducting RF cavities. As a medium of pressure transmission, water, oil and air can not use such environment. Nano-cluster particles and carbon seems to have possibility of pressure transmission medium. Because their characteristics of chemical and physical reaction at low temperature environment is very stable. Also they have small number of the friction coefficient. We have been studying possibility of their characteristics as pressure transmission medium. (author)

  20. Polymer modification via. cluster formation

    International Nuclear Information System (INIS)

    Ion beam treatment studies have been carried out to investigate the potential for improvements in conductivity properties of the polymers. Change in polymer stoichiometry were characterised by investigating into the carbon clusters formed along the latent tracks of energetic ions in polymers. Here we present some new results which have been derived from UV-Vis spectroscopic examinations. (author)

  1. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    Science.gov (United States)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  2. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  3. Biological intercomparison using gut crypt survivals for proton and carbon-ion beams

    International Nuclear Information System (INIS)

    Charged particle therapy depends on biological information for the dose prescription. Relative biological effectiveness or RBE for this requirement could basically be provided by experimental data. As RBE values of protons and carbon ions depend on several factors such as cell/tissue type, biological endpoint, dose and fractionation schedule, a single RBE value could not deal with all different radiosensitivities. However, any biological model with accurate reproducibility is useful for comparing biological effectiveness between different facilities. We used mouse gut crypt survivals as endpoint, and compared the cell killing efficiency of proton beams at three Japanese facilities. Three Linac X-ray machines with 4 and 6 MeV were used as reference beams, and there was only a small variation (coefficient of variance<2%) in biological effectiveness among them. The RBE values of protons relative to Linac X-rays ranged from 1.0 to 1.11 at the middle of a 6-cm SOBP (spread-out Bragg peak) and from 0.96 to 1.01 at the entrance plateau. The coefficient of variance for protons ranged between 4.0 and 5.1%. The biological comparison of carbon ions showed fairly good agreement in that the difference in biological effectiveness between National Institute of Radiological Sciences (NIRS)/ Heavy Ion Medical Accelerator in Chiba (HIMAC) and Gesellschaft fur Schwerionenforschung (GSI)/Heavy Ion Synchrotron (SIS) was 1% for three positions within the 6-cm SOBP. The coefficient of variance was <1.7, <0.6 and <1.6% for proximal, middle and distal SOBP, respectively. We conclude that the inter-institutional variation of biological effectiveness is smaller for carbon ions than protons, and that beam-spreading methods of carbon ions do not critically influence gut crypt survival. (author)

  4. Pd clusters supported on amorphous, low-porosity carbon spheres for hydrogen production from formic acid.

    Science.gov (United States)

    Bulushev, Dmitri A; Bulusheva, Lyubov G; Beloshapkin, Sergey; O'Connor, Thomas; Okotrub, Alexander V; Ryan, Kevin M

    2015-04-29

    Amorphous, low-porosity carbon spheres on the order of a few micrometers in size were prepared by carbonization of squalane (C30H62) in supercritical CO2 at 823 K. The spheres were characterized and used as catalysts' supports for Pd. Near-edge X-ray absorption fine structure studies of the spheres revealed sp(2) and sp(3) hybridized carbon. To activate carbons for interaction with a metal precursor, often oxidative treatment of a support is needed. We showed that boiling of the obtained spheres in 28 wt % HNO3 did not affect the shape and bulk structure of the spheres, but led to creation of a considerable amount of surface oxygen-containing functional groups and increase of the content of sp(2) hybridized carbon on the surface. This carbon was seen by scanning transmission electron microscopy in the form of waving graphene flakes. The H/C atomic ratio in the spheres was relatively high (0.4) and did not change with the HNO3 treatment. Palladium was deposited by impregnation with Pd acetate followed by reduction in H2. This gave uniform Pd clusters with a size of 2-4 nm. The Pd supported on the original C spheres showed 2-3 times higher catalytic activity in vapor phase formic acid decomposition and higher selectivity for H2 formation (98-99%) than those for the catalyst based on the HNO3 treated spheres. Using of such low-porosity spheres as a catalyst support should prevent mass transfer limitations for fast catalytic reactions.

  5. Photospheric carbon and oxygen abundances of F-G type stars in the Pleiades cluster

    CERN Document Server

    Takeda, Yoichi; Honda, Satoshi

    2016-01-01

    In order to investigate the carbon-to-oxygen ratio of the young open cluster M45 (Pleiades), the C and O abundances of selected 32 F-G type dwarfs (in the effective temperature range of Teff~5800-7600K and projected rotational velocity range of vesini~10-110km/s) belonging to this cluster were determined by applying the synthetic spectrum-fitting technique to C I 5380 and O I 6156-8 lines. The non-LTE corrections for these C I and O I lines were found to be practically negligible (less than a few hundredths dex). The resulting C and O abundances (along with the Fe abundance) turned out nearly uniform without any systematic dependence upon Teff or vesini. We found, however, in spite of almost solar Fe abundance ([Fe/H]~0), carbon turned out to be slightly subsolar ([C/H]~-0.1) while oxygen slightly supersolar ([O/H]~+0.1). This lead to a conclusion that [C/O] ratio was moderately subsolar (~-0.2) in the primordial gas from which these Pleiades stars were formed ~120--130 Myr ago. Interestingly, similarly young...

  6. Nonadditivity of convoy- and secondary-electron yields in the forward-electron emission from thin carbon foils under irradiation of fast carbon-cluster ions

    Science.gov (United States)

    Tomita, S.; Yoda, S.; Uchiyama, R.; Ishii, S.; Sasa, K.; Kaneko, T.; Kudo, H.

    2006-06-01

    We have measured energy spectra of secondary electrons produced by fast-carbon-cluster Cn+ (n=1-4) bombardment of thin carbon foils (3.2, 7.3, 11.9, and 20.3μg/cm2 ). For clusters of identical velocity, the convoy-electron yield is enhanced with increasing cluster size n , while the yield of secondary electrons is reduced. The yield of convoy electrons normalized to the number of injected atoms increases proportionally with cluster size n . This proportionality suggests that there is only a weak vicinage effect on the number of primary electrons scattered by the projectile. The vicinage effect observed in low-energy secondary electrons must therefore arise from either transport or transmission through the surface.

  7. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    CERN Document Server

    Agodi, C; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-01-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$\\degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight in...

  8. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry for carbon-ion beams

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa

    2012-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. Ideally, such material should be water equivalent as well as that for dosimetry. In this study, we evaluated dosimetric water equivalency of four common plastics, HDPE, PMMA, PET, and POM, by uniformity of effective densities for carbon-ion-beam interactions. Methods: Using the Bethe formula for stopping, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, we calculated the effective densities of the plastics for these interactions. We tested HDPE, PMMA, and POM in carbon-ion-beam experiment and measured attenuations of carbon ions, which were compared with empirical linear-attenuation-model calculations. Results: The theoretical calculations resulted in reduced multiple scattering and increased nuclear interactions for HDPE compared to water, which ...

  9. Analytic and computational micromechanics of clustering and interphase effects in carbon nanotube composites.

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Gary D.; Hammerand, Daniel Carl; Lagoudas, Dimitris C. (Texas A& M University, College Station, TX)

    2006-01-01

    Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. Using the in-plane elastic properties of graphene, the effective properties of carbon nanotubes are calculated utilizing a composite cylinders micromechanics technique as a first step in a two-step process. These effective properties are then used in the self-consistent and Mori-Tanaka methods to obtain effective elastic properties of composites consisting of aligned single or multi-walled carbon nanotubes embedded in a polymer matrix. Effective composite properties from these averaging methods are compared to a direct composite cylinders approach extended from the work of Hashin and Rosen (1964) and Christensen and Lo (1979). Comparisons with finite element simulations are also performed. The effects of an interphase layer between the nanotubes and the polymer matrix as result of functionalization is also investigated using a multi-layer composite cylinders approach. Finally, the modeling of the clustering of nanotubes into bundles due to interatomic forces is accomplished herein using a tessellation method in conjunction with a multi-phase Mori-Tanaka technique. In addition to aligned nanotube composites, modeling of the effective elastic properties of randomly dispersed nanotubes into a matrix is performed using the Mori-Tanaka method, and comparisons with experimental data are made. Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is performed using the finite element method. The high-stiffness hollow fibers are modeled either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid cylinders with properties computed using a micromechanics based composite cylinders method. Using a representative volume element for clustered high-stiffness hollow fibers embedded in a compliant matrix with the appropriate periodic boundary conditions, the effective elastic properties

  10. A new experimental setup designed for the investigation of irradiation of nanosystems in the gas phase: a high intensity mass-and-energy selected cluster beam.

    Science.gov (United States)

    Bruny, G; Eden, S; Feil, S; Fillol, R; El Farkh, K; Harb, M M; Teyssier, C; Ouaskit, S; Abdoul-Carime, H; Farizon, B; Farizon, M; Märk, T D

    2012-01-01

    DIAM (Dispositif d'Irradiation d'Agrégats Moléculaires) is a new experimental setup devoted to investigate processes induced by irradiation at the nanoscale. The DIAM apparatus is based on a combination of techniques including a particle beam from high-energy physics, a cluster source from molecular and cluster physics, and mass spectrometry form analytical sciences. In this paper, we will describe the first part of the DIAM apparatus that consists of an ExB double spectrometer connected to a cluster ion source based on a continuous supersonic expansion in the presence of ionizing electrons. This setup produces high intensities of energy-and-mass selected molecular cluster ion beams (1000 s of counts s(-1)). The performance of the instrument will be shown through measurements of 6-8 keV beams of protonated water clusters, (H(2)O)(n)H(+) (n = 0-21) and mixed protonated (or deprotonated) water-pyridine cluster ions: PyrH(+)(H(2)O)(n) (n = 0-15), Pyr(2)H(+) (H(2)O)(n) (n = 0-9), and (Pyr-H)(+) (H(2)O). PMID:22299943

  11. A new experimental setup designed for the investigation of irradiation of nanosystems in the gas phase: A high intensity mass-and-energy selected cluster beam

    Energy Technology Data Exchange (ETDEWEB)

    Bruny, G.; Feil, S.; Fillol, R.; El Farkh, K.; Harb, M. M.; Teyssier, C.; Abdoul-Carime, H.; Farizon, B.; Farizon, M. [Institut de Physique Nucleaire de Lyon, UMR5822, Universite Lyon 1, F-69622, Villeurbanne (France); Universite de Lyon, F-69003, Lyon (France) and CNRS/IN2P3, F-69622, Villeurbanne (France); Eden, S. [Department of Physical Sciences, Open University (OU), Walton hall, Milton Keynes, MK76AA (United Kingdom); Ouaskit, S. [Laboratoire de physique de la matiere condensee, Faculte des sciences Ben M' sik, Unite associee au CNRST (URAC 10), B.P.7955, Casablanca (Morocco); Maerk, T. D. [Institut fuer Ionenphysik und Angewandte Physik, Leopold Franzens Universitaet, Technikerstrasse 25, A-6020 Innsbruck (Austria)

    2012-01-15

    DIAM (Dispositif d'Irradiation d'Agregats Moleculaires) is a new experimental setup devoted to investigate processes induced by irradiation at the nanoscale. The DIAM apparatus is based on a combination of techniques including a particle beam from high-energy physics, a cluster source from molecular and cluster physics, and mass spectrometry form analytical sciences. In this paper, we will describe the first part of the DIAM apparatus that consists of an ExB double spectrometer connected to a cluster ion source based on a continuous supersonic expansion in the presence of ionizing electrons. This setup produces high intensities of energy-and-mass selected molecular cluster ion beams (1000 s of counts s{sup -1}). The performance of the instrument will be shown through measurements of 6-8 keV beams of protonated water clusters, (H{sub 2}O){sub n}H{sup +} (n = 0-21) and mixed protonated (or deprotonated) water-pyridine cluster ions: PyrH{sup +}(H{sub 2}O){sub n} (n = 0-15), Pyr{sub 2}H{sup +} (H{sub 2}O){sub n} (n = 0-9), and (Pyr-H){sup +} (H{sub 2}O).

  12. Super-distant molecular hybridization of plant seeds by ion beam-mediated gene cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The N beam-mediated distant molecular hybridization between Ginkgo biloba I and watermelon was studied. The results showed that the ester gene of Ginkgo biloba L was successfully expressed in two varieties of watermelon. 3-16 and SR2-14-2, in both of which the ester quantities were measured as 17.0756 μg/g and 45.9998 μg/g respectively. Meanwhile, superoxide dismutase (SOD) activity in leaves of the watennelon expressing ester gene was increased twofold as compared to that of the control, showing that ion beam could mediate distant and/or super-distant donor gene expression in the cells of a receptor. Furthermore, the molecular nechanism of distant hybridization was analyzed.

  13. A Satellite Beam Planning Method Based on Clustering%一种基于聚类的卫星波束规划方法

    Institute of Scientific and Technical Information of China (English)

    郝英川

    2014-01-01

    针对卫星通信系统点波束的可移动特点,为了提高卫星资源的利用率,将聚类算法引入到波束规划中。通过对地面节点的业务区域统计,动态调整波束的覆盖规划,保证了卫星资源的利用效率及系统的通信容量和服务质量。对算法进行了典型场景的仿真,验证了算法的可行性和高效性。%Satellite communication systems with mobile spot beams are able to adjust beam direction to cover area on earth according to the distribution of clients and service.To improve the efficiency of beams,clustering theory is introduced to deal with this problem.The area to be covered is first clustered into several candidate clusters according to the statistics of client distribution and their throughput requirement,and then the beam assignment is processed by associating candidate areas with specific beams.The efficiency of satellite resource,as well as throughput and QoS of system,lies directly on the assignment of beams.Its feasibility and efficiency are veri-fied by simulations.

  14. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    Science.gov (United States)

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-01

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in

  15. Laser transformation hardening on rod-shaped carbon steel byGaussian beam

    Institute of Scientific and Technical Information of China (English)

    Jong-Do KIM; Myeong-Hoon LEE; Su-Jin LEE; Woon-Ju KANG

    2009-01-01

    Laser transformation hardening(LTH) is one of the laser surface modification processes. The surface hardening of rod-shaped carbon steel (SM45C) was performed by lathe-based laser composite processor with Gaussian-beam optical head. The LTH characteristics by dominant processes, longitudinal and depth directional hardness distributions and behaviors of phase transformation in hardened zones were examined. Especially, two concepts of circumferential speed and theoretical overlap rate were applied. When laser power increased or circumferential speed decreased, the surface hardening depth gradually increases due to the increased heat input. Moreover, the longitudinal hardness distribution particularly shows periodicity of repetitive increase and decrease, which results from tempering effect by overlap. Finally, the feasibility of laser transformation hardening is verified by using the beam with Gaussian intensity distribution.

  16. The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials

    Science.gov (United States)

    Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.

    2012-03-01

    A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.

  17. Carbon doping of GaN with CBr4 in radio-frequency plasma-assisted molecular beam epitaxy

    OpenAIRE

    Green, D S; Mishra, U. K.; Speck, J.S.

    2004-01-01

    Carbon tetrabromide (CBr4) was studied as an intentional dopant during rf plasma molecular beam epitaxy of GaN. Secondary ion mass spectroscopy was used to quantify incorporation behavior. Carbon was found to readily incorporate under Ga-rich and N-rich growth conditions with no detectable bromine incorporation. The carbon incorporation [C] was found to be linearly related to the incident CBr4 flux. Reflection high-energy electron diffraction, atomic force microscopy and x-ray diffraction wer...

  18. Relative biological effects of carbon ion beams on mouse intestinal crypts

    Energy Technology Data Exchange (ETDEWEB)

    Basaki, Kiyoshi; Abe, Yoshinao [Hirosaki Univ., Aomori (Japan). School of Medicine; Tatsuzaki, Hideo; Akaizawa, Takashi; Ando, Soichiro; Ando, Koichi

    1998-03-01

    The relative biological effect (RBE) of carbon ion beams on mouse intestinal crypt cells were studied. Survival fractions of apoptotic sensitive cells, mitotic delay and colony assay were used for endpoints. Female C3H mice were total body irradiated using a carbon ion beam (290 MeV/u, 6 cm SOBP) at the National Institute of Radiological Science. For counting apoptosis and mitosis, the animals were irradiated either at LET of 70 keV/mm or 40 keV/mm. Fifteen minutes after irradiation, the mice received vincristine sulfate (0.8 mg/kg) and were sacrificed 2 hours and 45 minutes later. For colony assay, the animals were irradiated at an LET of 70 keV/mm and were sacrificed 3.5 days later. Jejunum were excised, fixed and cut into slices. The slides were stained with Hematoxylin and Eosin. Apoptosis-pyknotic cell- and mitosis were counted and survival fractions of apoptotic sensitive cells and mitotic delay time were obtained. The number of colonies were counted and survival fractions per circumference were obtained. Using these endpoints, RBEs were obtained. For survival fractions of apoptotic sensitive cells, no LET difference was observed and RBE was 1.7. For mitotic delay time, RBE was 2.3 and 1.7 at an LET of 70 keV/mm and 40 keV/mm, respectively. For colony assay, the RBE was 2.0-2.1. The different RBEs from three endpoints of the jejunal crypt may reflect each nature of the radiosensitivity to the carbon ion beam. In summary that mitotic delay time exhibited the same RBE as colony assay and RBE regarding apoptosis was less than those RBEs. (author)

  19. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  20. Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer

    Institute of Scientific and Technical Information of China (English)

    HU Kexu; HE Guisheng; LU Fan

    2007-01-01

    In this paper,two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP)and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures.The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h.It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing.

  1. Formation and properties of astrophysical carbonaceous dust. I: ab-initio calculations of the configuration and binding energies of small carbon clusters

    CERN Document Server

    Mauney, Christopher; Lazzati, Davide

    2014-01-01

    The binding energies of n < 100 carbon clusters are calculated using the ab-initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen poor environments, such as the inner layers of c...

  2. Study on Regeneration of Powdered Activated Carbon by Electron Beam%电子束再生粉状活性炭的研究

    Institute of Scientific and Technical Information of China (English)

    吴明红; 包伯荣; 陈捷; 陆丽蓉

    2001-01-01

    The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectively. The effects of radiation dose and beam current on regeneration of activated carbon in different atmosphere were studied. Differential scanning calorimetry (DSC) and the iodine number of activated carbon were used to monitor the change of carbon adsorption. The results show that the powder activated carbon polluted with phenlglycine could be regenerated effectively by irradiation of high energy electron beams in nitrogen stream. The generation did not need high temperature, and the weight loss of carbon and energy consumption were minimum.

  3. 电子束再生粉状活性炭的研究%Study on Regeneration of Powdered Activated Carbon by Electron Beam

    Institute of Scientific and Technical Information of China (English)

    吴明红; 包伯荣; 陈捷; 陆丽蓉

    2000-01-01

    The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectively. The effects of radiation dose and beam current on regeneration of activated carbon in different atmosphere were studied. Differential scanning calorimetry (DSC) and the iodine number of activated carbon were used to monitor the change of carbon adsorption. The results show that the powder activated carbon polluted with phenlglycine could be regenerated effectively by irradiation of high energy electron beams in nitrogen stream. The generation did not need high temperature, and the weight loss of carbon and energy consumption were minimum.

  4. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    International Nuclear Information System (INIS)

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  5. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    CERN Document Server

    jima, Y Naka; Brice, S J; Bugel, L; Catala-Perez, J; Cheng, G; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; Franke, A J; Giganti, C; Gomez-Cadenas, J J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Kurimoto, Y; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Otani, M; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R; Walding, J J; Wascko, M O; White, H B; Yokoyama, M; Zeller, G P; Zimmerman, E D

    2010-01-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8~GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  6. Transplantation of ES cells to Parkinson model rat irradiated with carbon ion beam

    International Nuclear Information System (INIS)

    The present study was designed to make a new Parkinson disease model using carbon ion beam. We irradiated right medial forebrain bundle of adult SD rats with charged carbon particles (290 MeV/nucleon, Mono peak, 150 Gy) and damaged right dopaminergic neurons pathway. To irradiate precisely, rats were set in the stereotactic frame with ear bars. Four weeks after the irradiation, behavioral test and in vitro autoradiography showed hemi-Parkinson model as well as 6-OHDA lesioned rats. Pathological examinations showed cell death, gliosis and inflammations at the irradiated area. However, no obvious alteration was observed at the surrounding normal tissue. These results indicated utility and validity of this method. (author)

  7. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  8. The CBS-The Most Cost Effective and High Performance Carbon Beam Source Dedicated for a New Generation Cancer Therapy

    CERN Document Server

    Kumada, Masayuki; Leivichev, E B; Parkhomchuk, Vasily; Podgorny, Fedor; Rastigeev, Sergey; Reva, Vladimir B; Skrinsky, Aleksander Nikolayevich; Vostrikov, Vladimir

    2005-01-01

    A Carbon ion beam is a superior tool to x-rays or a proton beam in both physical and biological doses in treating a cancer. A Carbon beam has an advantage in treating radiation resistant and deep-seated tumors. Its radiological effect is of a mitotic independent nature. These features improve hypofractionation, typically reducing the number of irradiations per patient from 35 to a few. It has been shown that a superior QOL(Quality Of Life) therapy is possible by a carbon beam.The only drawback is its high cost. Nevertheless, tens of Prefectures and organizations are eagerly considering the possibility of having a carbon ion therapy facility in Japan. Germany, Austria, Italy, China, Taiwan and Korea also desire to have one.A carbon beam accelerator of moderate cost is about 100 Million USD. With the "CBS" design philosophy, which will be described in this paper, the cost could be factor of 2 or 3 less, while improving its performance more than standard designs. Novel extraction techniques, a new approach to a ...

  9. Accuracy studies with carbon clusters at the Penning trap mass spectrometer TRIGA-TRAP

    Science.gov (United States)

    Ketelaer, J.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Eibach, M.; Herfurth, F.; Smorra, C.; Nagy, Sz.

    2010-05-01

    Extensive cross-reference measurements of well-known frequency ratios using various sizes of carbon cluster ions 12Cn + (10≤n≤23) were performed to determine the effects limiting the accuracy of mass measurements at the Penning-trap facility TRIGA-TRAP. Two major contributions to the uncertainty of a mass measurement have been identified. Fluctuations of the magnetic field cause an uncertainty in the frequency ratio due to the required calibration by a reference ion of uf(νref)/νref = 6(2) × 10-11/min × Δt. A mass-dependent systematic shift of the frequency ratio of epsilonm(r)/r = -2.2(2) × 10-9 × (m-mref)/u has been found as well. Finally, the nuclide 197Au was used as a cross-check since its mass is already known with an uncertainty of 0.6 keV.

  10. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Science.gov (United States)

    Evora, M. C.; Araujo, J. R.; Ferreira, E. H. M.; Strohmeier, B. R.; Silva, L. G. A.; Achete, C. A.

    2015-04-01

    Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO4·7H2O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  11. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    Science.gov (United States)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  12. Flexural rigidity evolvement laws of reinforced concrete beams strengthened with carbon fiber laminates

    Institute of Scientific and Technical Information of China (English)

    NIU Peng-zhi; HUANG Pei-yan; DENG Jun; HAN Qiang

    2007-01-01

    Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper presents the research on flexural rigidity evolvement laws by testing 14 simple-supported RC beams strengthened with carbon fiber laminates (CFL) under cyclic load, and 2 under monotone load as a reference. The cyclic load tests revealed the peak load applied onto the surface of a supported RC beam strengthened with CFL is linear to the logarithm of its fatigue life, and the flexural rigidity evolvement undergoes three distinct phases: a rapid decrease from the start to about 5% of the fatigue life; an even development from 5% to about 99% of the fatigue life; and a succedent rapid decrease to failure. When the ratio of fatigue cycles to the fatigue life is within 0.05 to 0.99, the flexural rigidity varies linearly with the ratio. The peak load does not affect the flexural rigidity evolvement if it is not high enough to make the main reinforcements yield. The dependences of the flexural rigidity of specimens formed in the same group upon their fatigue cycles normalized by fatigue life are almost coincident. This implies the flexural rigidity may be a material parameter independent of the stress level. These relationships of flexural rigidity to fatigue cycles, and fatigue life may be able to provide some hints for fatigue design and fatigue life evaluation of RC member strengthened with CFL; nevertheless the findings still need verifying by more experiments.

  13. Charge exchange recombination spectroscopy measurements in the extreme ultraviolet region of central carbon concentrations during high power neutral beam heating in TFTR [Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The carbon concentration in the central region of TFTR discharges with high power neutral beam heating has been measured by charge-extracted recombination spectroscopy (CXRS) of the C+5 n = 3--4 transition in the extreme ultraviolet region. The carbon concentrations were deduced from absolute measurements of the line brightness using a calculation of the beam attenuation and the appropriate cascade-corrected line excitation rates. As a result of the high ion temperatures in most of the discharges, the contribution of beam halo neutrals to the line brightness was significant and therefore had to be included in the modeling of the data. Carbon concentrations have been measured in discharges with Ip = 1.0-1.6 MA and beam power in the range of 2.6-30 MW, including a number of supershots. The results are in good agreement with carbon concentrations deduced from the visible bremsstrahlung Zeff and metallic impurity concentrations measured by x-ray pulse-height analysis, demonstrating the reliability of the atomic rates used in the beam attenuation and line excitation calculations. Carbon is the dominant impurity species in these discharges; the oxygen concentration measured via CXRS in a high beam power case was 0.0006 of ne, compard to 0.04 for carbon. Trends with Ip and beam power in the carbon concentration and the inferred deuteron concentration are presented. The carbon concentration is independent of Ip and decreases from 0.13 at 2.6 MW beam power to 0.04 at 30 MW, while the deuteron concentration increases from 0.25 to 0.75 over the same range of beam power. These changes are primarily the result of beam particle fueling, as the carbon density did not vary significantly with beam power. The time evolutions of the carbon and deuteron concentrations during two high power beam pulses, one which exhibited a carbon bloom and one which did not, are compared. 30 refs., 12 figs., 2 tabs

  14. Assessment of adhesive setting time in reinforced concrete beams strengthened with carbon fibre reinforced polymer laminates

    International Nuclear Information System (INIS)

    Highlights: ► This study investigated the effect of adhesive setting time on the modal parameters. ► Modal parameters recommend the 18th day as the maturity age of the adhesive. ► Static data recommend 7th day as the maturity age of the adhesive. ► Setting time affects the modal parameters as tool for assessment repaired structures. ► Carrying the modal parameters after 1st day results in 55% loss of the actual improvement. -- Abstract: The strengthened effectiveness and the performance capacity of repaired Reinforced Concrete (RC) structures with Carbon Fibre Reinforced Polymer (CFRP) sheets is dependent on the properties of the adhesive interface layer. Adhesive material requires a specific setting time to achieve the maximum design capacity. Adhesive producer provides technical data which demonstrates the increase with time of the capacity, up to the maximum. The aim of this study is to investigate the effect of the adhesive setting time on the modal parameters as an indication of the effectiveness of CFRP on repaired RC beams. Firstly, datum modal parameters were determined on the undamaged beam and subsequently the parameters were obtained when damaged was induced on the RC beam by application of load until the appearance of the first crack. Finally, the RC beam is repaired with externally bonded CFRP sheets, and modal parameters are once again applied after 0.5, 1, 2, 3, 5, 8, 11, 15 and 18 days. The comparison is made with the data based on half day results in order to monitor the change in the modal parameters corresponding to the adhesive setting time. The modal parameters where used as indicators for the effectiveness of CFRP are affected by the adhesive time as shown in this study. Results are compared with the adhesive technical data provided by the adhesive producer.

  15. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    International Nuclear Information System (INIS)

    We have determined ''effective'' Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  16. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    Science.gov (United States)

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-01

    We have determined "effective" Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  17. Radiation biophysical studies with mammalian cells and a modulated carbon ion beam

    International Nuclear Information System (INIS)

    Chinese hamster (V-79) and human kidney (T-1) cells were irradiated in stirred suspensions placed at various positions in the plateau and extended Bragg peak of a 400-MeV/amu carbon ion beam. The range of the ions was modulated by a lead (translational) ridge filter and a brass (spiral) ridge filter designed to produce extended peaks of approximately 4 and 10 cm, respectively. Stationary-phase and G1-phase populations of Chinese hamster cells were found to have different absolute radiosensitivities which, in turn, were different from that of asynchronous human kidney cells. The increase in relative biological effectiveness (RBE) observed as carbon ions were slowed down and stopped in water was similar for the three cell populations at doses greater than 400 rad. At lower doses the RBE was greater for the hamster cell populations than for the human kidney cells. The gain in RBE (at the 50% survival level) between the plateaus and the middle region of the extended peaks was approximately 2.0 and 1.7 for the 4- and 10-cm extended peaks, respectively. Oxygen enhancement ratios (OER) were determined at the 10% survival levels with stationary-phase populations of hamster cells. Values of 2.8, 2.65, and 1.65 were obtained for the OER of 220-kV x rays, plateau carbon, and the middle region of the 4-cm carbon peak, respectively. Across the 10-cm carbon peak the OER was found to vary between values of 2.4 to 1.55 from the proximal to distal positions

  18. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  19. Molecular dynamics simulation of melting and crystallization processes of polyethylene clusters confined in armchair single-walled carbon nanotubes.

    Science.gov (United States)

    Zhou, Zhou; Wang, Jinjian; Zhu, Xiaolei; Lu, Xiaohua; Guan, Wenwen; Yang, Yuchen

    2015-01-01

    The confined interaction is important to understand the melting and crystallization of polymers within single-wall carbon tube (SWNT). However, it is difficult for us to observe this interaction. In the current work, the structures and behaviors of melting and crystallization for polyethylene (PE) clusters confined in armchair single-walled carbon nanotubes ((n,n)-SWNTs) are investigated and examined based on molecular dynamics (MD) simulations. The nonbonded energies, structures, Lindemman indices, radial density distributions, and diffusion coefficients are used to demonstrate the features of melting phase transition for PE clusters confined in (n,n)-SWNTs. The chain end-to-end distance (R(n)) and chain end-to-end distribution are used to examine the flexibility of the PE chain confined in SWNT. The global orientational order parameter (P2) is employed to reveal the order degree of whole PE polymer. The effect of polymerization degree on melting temperature and the influence of SWNT chirality on structure of PE cluster are examined and discussed. Results demonstrate that within the confined environment of SWNT, PE clusters adopt novel co-axial crystalline layer structure, in which parallel chains of each layer are approximately vertical to tube axis. The disordered-ordered transformation of PE chains in each layer is an important structural feature for crystallization of confined PE clusters. SWNTs have a considerable effect on the structures and stabilities of the confined PE clusters.

  20. Quantitative Analysis of Clustered DNA Damages Induced by Silicon Beams of Different Kinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Keszenman D. J.; Keszenman, D.J.; Bennett, P.V.; Sutherland, B.M.; Wilson, P.F.

    2013-05-14

    Humans may b exposed to highly energetic charged particle radiation as a result of medical treatments, occupational activitie or accidental events. In recent years, our increasing presence and burgeoning interest in space exploration beyond low Earth orbit has led to a large increase in the research of the biological effects ofcharged particle radiation typical of that encountered in the space radiation environment. The study of the effects of these types of radiation qualities in terms ofDNA damage induction and repair is fundamental to understand mechanisms both underlying their greater biological effectiveness as we)) as the short and long term risks of health effects such as carcinogenesis, degen rative diseases and premature aging. Charged particle radiation induces a variety of DNA alterations, notably bistranded clustered damages, defined as two or more closely-opposed strand break , oxidized bases or abasic sites within a few helical turns. The induction of such highly complex DNA damage enhances the probability of incorrect or incomplete repair and thus constitutes greater potential for genomic instability, cell death and transformation.

  1. Emulsion Cloud Chamber technique to measure the fragmentation of a high-energy carbon beam

    CERN Document Server

    De Lellis, G; Buontempo, S; Capua, F D; Furusawa, Y; Lavina, L S; Marotta, A; Migliozzi, P; Naganawa, N; Petukhov, Yu P; Pistillo, C; Russo, A; Strolin, P; Tioukov, V; Toshito, T; Yasuda, N

    2007-01-01

    Beams of Carbon nuclei are now in use or planned to be used in various centers for cancer treatment around the world. The knowledge of the fragmentation of Carbon nuclei when they interact with the human body is important for evaluating of the spatial profile of their energy deposition in the tissues, hence the damage to tissues neighbouring the tumor. To this purpose, the identification of the fragmentation products is a key element. We present in this paper the charge measurement of about 3000 fragments produced by the interaction of $^{12}$C nuclei with an energy of 400 MeV/nucleon in a detector simulating the density of the human body. The nuclear emulsion technique is used, by means of the so-called Emulsion Cloud Chamber. The nuclear emulsions are inspected using fast automated microscopes recently developed. A charge assignment efficiency of more than 99% is achieved. The separation of Hydrogen, Helium, Lithium, Berillium, Boron and Carbon can be achieved at two standard deviations or considerably more...

  2. Strain measurements on concrete beam and carbon fiber cable with distributed optical fiber Bragg grating sensors

    Science.gov (United States)

    Nellen, Philipp M.; Bronnimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1996-09-01

    We report on civil engineering applications of wavelength multiplexed optical fiber Bragg grating arrays directly produced on the draw tower for testing and surveying advanced structures and materials such as carbon fiber reinforced concrete elements and prestressing cables. We equipped a 6 by 0.9 by 0.5 m concrete beam, which was reinforced with carbon fiber reinforced epoxy laminates, and a 7-m long prestressing carbon fiber cable made of seven twisted strands, with optical fiber Bragg grating sensors. Static strains up to 8000 micrometers/m and dynamic strains up to 1200 micrometers/m were measured with a Michelson interferometer used as Fourier spectrometer with a resolution of about 10 micrometers/m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optical results. We installed the fiber sensors in two different arrangements: some Bragg grating array elements measured local strain while others were applied in an extensometric configuration to measure moderate strain over a base length of 0.1 to 1 m.

  3. Electrostatic solitary waves in current layers: from Cluster observations during a super-substorm to beam experiments at the LAPD

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2009-06-01

    Full Text Available Electrostatic Solitary Waves (ESWs have been observed by several spacecraft in the current layers of Earth's magnetosphere since 1982. ESWs are manifested as isolated pulses (one wave period in the high time resolution waveform data obtained on these spacecraft. They are thus nonlinear structures generated out of nonlinear instabilities and processes. We report the first observations of ESWs associated with the onset of a super-substorm that occurred on 24 August 2005 while the Cluster spacecraft were located in the magnetotail at around 18–19 RE and moving northward from the plasma sheet to the lobes. These ESWs were detected in the waveform data of the WBD plasma wave receiver on three of the Cluster spacecraft. The majority of the ESWs were detected about 5 min after the super-substorm onset during which time 1 the PEACE electron instrument detected significant field-aligned electron fluxes from a few 100 eV to 3.5 keV, 2 the EDI instrument detected bursts of field-aligned electron currents, 3 the FGM instrument detected substantial magnetic fluctuations and the presence of Alfvén waves, 4 the STAFF experiment detected broadband electric and magnetic waves, ion cyclotron waves and whistler mode waves, and 5 CIS detected nearly comparable densities of H+ and O+ ions and a large tailward H+ velocity. We compare the characteristics of the ESWs observed during this event to those created in the laboratory at the University of California-Los Angeles Plasma Device (LAPD with an electron beam. We find that the time durations of both space and LAPD ESWs are only slightly larger than the respective local electron plasma periods, indicating that electron, and not ion, dynamics are responsible for generation of the ESWs. We have discussed possible mechanisms for generating the ESWs in space, including the beam and kinetic Buneman type instabilities and the acoustic instabilities. Future studies will examine these mechanisms in

  4. Imaging the interphase of carbon fiber composites using transmission electron microscopy:Preparations by focused ion beam, ion beam etching, and ultramicrotomy

    Institute of Scientific and Technical Information of China (English)

    Wu Qing; Li Min; Gu Yizhuo; Wang Shaokai; Zhang Zuoguang

    2015-01-01

    Three sample preparation techniques, focused ion beam (FIB), ion beam (IB) etching, and ultramicrotomy (UM) were used in comparison to analyze the interphase of carbon fiber/epoxy composites using transmission electron microscopy. An intact interphase with a relatively uniform thickness was obtained by FIB, and detailed chemical analysis of the interphase was investigated by electron energy loss spectroscopy. It shows that the interphase region is 200 nm wide with an increasing oxygen-to-carbon ratio from 10% to 19% and an almost constant nitrogen-to-carbon ratio of about 3%. However, gallium implantation of FIB tends to hinder fine structure analysis of the interphase. For IB etching, the interphase region is observed with transition morphology from amorphous resin to nano-crystalline carbon fiber, but the uneven sample thickness brings difficulty for quantitative chemical analysis. Moreover, UM tends to cause damage and/or deformation on the interphase. These results are meaningful for in-depth understanding on the interphase characteristic of carbon fiber composites.

  5. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  6. Deflection analysis of reinforced concrete beams strengthened with carbon fibre reinforced polymer under long-term load action

    Institute of Scientific and Technical Information of China (English)

    Mykolas DAUGEVI(C)IUS; Juozas VALIVONIS; Gediminas MAR(C)IUKAITIS

    2012-01-01

    This paper presents the results of an experimental research on reinforced concrete beams strengthened with an external carbon fibre reinforced polymer (CFRP) layer under long-term load action that lasted for 330 d.We describe the characteristics of deflection development of the beams strengthened with different additional anchorages of the external carbon fibre composite layer during the period of interest.The conducted experiments showed that the additional anchorage influences the slip of the extemal layer with respect to the strengthened element.Thus,concrete and carbon fibre composite interface stiffness decreases with a long-term load action.Therefore,the proposed method of analysis based on the built-up-bars theory can be used to estimate concrete and carbon fibre composite interface stiffness in the case of long-term load.

  7. Electron-beam assisted selective growth of graphenic carbon thin films on SiO2/Si and quartz substrates

    OpenAIRE

    Knyazev, Maxim; Sedlovets, Daria; Trofimov, Oleg; Redkin, Arkady

    2015-01-01

    The first selective growth of graphenic carbon thin films on silicon dioxide is reported. A preliminary e-beam exposure of the substrate is found to strongly affect the process of such films growth. The emphasis is placed on the influence of substrate exposure on the rate of carbon deposition. The explanation of this effect is proposed. The data of electrical and optical measurements and the results of atomic force and scanning electron microscopy and Raman spectroscopy studies are reported. ...

  8. Irradiation of 135 MeV/u carbon and neon beams for studies of radiation biology

    International Nuclear Information System (INIS)

    A heavy ion irradiation system was designed and constructed at RIKEN ring cyclotron facility for studies of radiation physics and radiation biology. Carbon and neon beams of 135 MeV/u were firstly used for the experiments. A pair of wobbler magnets and a scatterer were used for obtaining the uniform radiation field of about 10 cm in diameter. A parallel plate ionization chamber was used for dose monitoring. A range shifter was used for degrading the initial energy of the heavy ions. Precise depth dose distributions were measured by a small parallel plate ionization chamber and a variable length water column. LET (linear energy transfer) of the heavy ion radiation fields were measured by a parallel plate proportional chamber. From these basic measurements, biological experiments using these heavy ions are now carried out at this facility. (author)

  9. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.;

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion...... distribution models, and gamma response models was developed. This software can be used for direct numerical comparison between the models, submodels and their parameters and experimental data. In the present paper, we look at 10%-survival data from cell lines irradiated in vitro with carbon and proton beams...... irradiation. The aim of this paper is to compare the predictions from different amorphous approaches found in the literature - more specifically the phenomenological, analytical model by Katz and co-workers [1] and a Monte-Carlo based full as implemented for example in the local effect model by Scholz et al...

  10. Structural analysis of the outermost hair surface using TOF-SIMS with gas cluster ion beam sputtering.

    Science.gov (United States)

    Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka

    2016-06-28

    A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure.

  11. Structural analysis of the outermost hair surface using TOF-SIMS with gas cluster ion beam sputtering.

    Science.gov (United States)

    Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka

    2016-06-01

    A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure. PMID:26822506

  12. Friction measurements of nanometer-thick lubricant films using ultra-smooth sliding pins treated with gas cluster ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Renguo [Graduate School of Information Science, Nagoya University, Nagoya 464-8601 (Japan); Zhang, Hedong, E-mail: zhang@is.nagoya-u.ac.jp [Graduate School of Information Science, Nagoya University, Nagoya 464-8601 (Japan); Mitsuya, Yasunaga [Nagoya Industrial Science Research Institute, Nagoya 464-0035 (Japan); Fukuzawa, Kenji; Itoh, Shintaro [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2013-09-01

    Friction properties of nanometer-thick lubricant films confined between two ultra-smooth solid surfaces are crucial to the practical performance of technologically advanced mechanical devices such as micro-electro-mechanical systems and hard disk drives. In this work, we applied argon gas cluster ion beam (Ar-GCIB) treatments to obtain ultra-smooth sliding pins for pin-on-disk tests of nanometer-thick perfluoropolyether (PFPE) lubricant films coated on magnetic disk surfaces. The GCIB treatments effectively smoothed the pin surfaces, and increases in the Ar dose decreased surface roughness. An ultra-smooth surface with a maximum peak height (R{sub p}) less the monolayer lubricant film thickness was achieved when the Ar dose was increased to 8 × 10{sup 16} ions/cm{sup 2}. We observed that both surface roughness and film thickness affected the friction coefficients of the PFPE films. To quantitatively describe the interplay of surface roughness and film thickness, we introduced two roughness characteristics: the ratio of film thickness to the surface’s root-mean-square roughness (h/σ), and a surface-pattern parameter (γ), defined as the ratio of correlation lengths in two orthogonal directions. We infer that a fixed γ and higher h/σlead to lower friction coefficients, while a fixed h/σand higher γ induce higher friction coefficients.

  13. Friction measurements of nanometer-thick lubricant films using ultra-smooth sliding pins treated with gas cluster ion beam

    Science.gov (United States)

    Lu, Renguo; Zhang, Hedong; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2013-09-01

    Friction properties of nanometer-thick lubricant films confined between two ultra-smooth solid surfaces are crucial to the practical performance of technologically advanced mechanical devices such as micro-electro-mechanical systems and hard disk drives. In this work, we applied argon gas cluster ion beam (Ar-GCIB) treatments to obtain ultra-smooth sliding pins for pin-on-disk tests of nanometer-thick perfluoropolyether (PFPE) lubricant films coated on magnetic disk surfaces. The GCIB treatments effectively smoothed the pin surfaces, and increases in the Ar dose decreased surface roughness. An ultra-smooth surface with a maximum peak height (Rp) less the monolayer lubricant film thickness was achieved when the Ar dose was increased to 8 × 1016 ions/cm2. We observed that both surface roughness and film thickness affected the friction coefficients of the PFPE films. To quantitatively describe the interplay of surface roughness and film thickness, we introduced two roughness characteristics: the ratio of film thickness to the surface’s root-mean-square roughness (h/σ), and a surface-pattern parameter (γ), defined as the ratio of correlation lengths in two orthogonal directions. We infer that a fixed γ and higher h/σlead to lower friction coefficients, while a fixed h/σand higher γ induce higher friction coefficients.

  14. Surface treatment of 0.20% C carbon steel by high-current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    XU Guo-cheng; FU Shi-you; GUAN Qing-feng

    2006-01-01

    A high-current pulsed electron beam(HCPEB) generated on the system of Nadezhda-2 was applied to improve the microstructure and performance of 0.20% C low carbon steel. Surface layers of the samples bombarded by explosive electron beam at different pulses was observed by using electron microscopy. The physical model of the thermal-stress process and related modification mechanism as a result of HCPEB irradiation was also investigated. After HCPEB post treatments, obvious changes in microstructure and significant hardening occur in the depth of 200-250 μm from the surface after HCPEB irradiation. Rapid heating and subsequent rapid solidification induce heavy plastic deformation, which results in that the laminated structure of pearlite is substituted by dispersive rounded-like cementites in the near-surface. The effect of HCPEB treatment can reach more than 500 m depth from the surface. The original crystalline structure is changed to a different degree that grows with the numbers of bombardment, and in the surface layer amorphous states and nanocrystaline structures consisting of grains of γ-phase and cementite are found. The violent stress induced by HCPEB irradiation is the origin of the nanostructured and amorphous structure formation.

  15. Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by III–V molecular beam epitaxy

    DEFF Research Database (Denmark)

    Stobbe, Søren; Lindelof, P. E.; Nygård, J.

    2006-01-01

    on incorporation of singlewall nanotubes in III–V semiconductor heterostructures grown by molecular beam epitaxy (MBE). We demonstrate that singlewall carbon nanotubes can be overgrown using MBE; electrical contacts to the nanotubes are obtained by GaMnAs grown at 250 °C. The resulting devices can exhibit field...

  16. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    OpenAIRE

    Masunaga, S; Sakurai, Y.; Tanaka, H.; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M.; Kondo, N; Narabayashi, M.; Maruhashi, A; Ono, K.

    2013-01-01

    [Objectives] To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). [Methods] EL4 tumour-bearing C57BL/J mice received 5-bromo-2′-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of...

  17. Study of MPI based on parallel MOM on PC clusters for EM-beam scattering by 2-D PEC rough surfaces

    Institute of Scientific and Technical Information of China (English)

    Ma Jun; Guo Li-Xin; Wang An-Qi

    2009-01-01

    This paper firstly applies the finite impulse response filter (FIR) theory combined with the fast Fourier transform (FFT) method to generate two-dimeusionai Gaussian rough surface.Using the electric field integral equation (EFIE),it introduces the method of moment (MOM) with RWG vector basis function and Galerkin's method to investigate the electromagnetic beam scattering by a two-dimensional PEC Ganssian rough surface on personal computer (PC) clusters.The details of the parallel conjugate gradient method (CGM) for solving the matrix equation are also presented and the numerical simulations are obtained through the message passing interface (MPI) platform on the PC clusters.It finds significantly that the parallel MOM supplies a novel technique for solving a two-dimensional rough surface electromagnetic-scattering problem.The influences of the root-mean-square height,the correlation length and the polarization on the beam scattering characteristics by two-dimensional PEC Gaussian rough surfaces are finally discussed.

  18. Study of MPI based on parallel MOM on PC clusters for EM-beam scattering by 2-D PEC rough surfaces

    International Nuclear Information System (INIS)

    This paper firstly applies the finite impulse response filter (FIR) theory combined with the fast Fourier transform (FFT) method to generate two-dimensional Gaussian rough surface. Using the electric field integral equation (EFIE), it introduces the method of moment (MOM) with RWG vector basis function and Galerkin's method to investigate the electromagnetic beam scattering by a two-dimensional PEC Gaussian rough surface on personal computer (PC) clusters. The details of the parallel conjugate gradient method (CGM) for solving the matrix equation are also presented and the numerical simulations are obtained through the message passing interface (MPI) platform on the PC clusters. It finds significantly that the parallel MOM supplies a novel technique for solving a two-dimensional rough surface electromagnetic-scattering problem. The influences of the root-mean-square height, the correlation length and the polarization on the beam scattering characteristics by two-dimensional PEC Gaussian rough surfaces are finally discussed. (classical areas of phenomenology)

  19. One-dimensional carbon nanostructures for terahertz electron-beam radiation

    Science.gov (United States)

    Tantiwanichapan, Khwanchai; Swan, Anna K.; Paiella, Roberto

    2016-06-01

    One-dimensional carbon nanostructures such as nanotubes and nanoribbons can feature near-ballistic electronic transport over micron-scale distances even at room temperature. As a result, these materials provide a uniquely suited solid-state platform for radiation mechanisms that so far have been the exclusive domain of electron beams in vacuum. Here we consider the generation of terahertz light based on two such mechanisms, namely, the emission of cyclotronlike radiation in a sinusoidally corrugated nanowire (where periodic angular motion is produced by the mechanical corrugation rather than an externally applied magnetic field), and the Smith-Purcell effect in a rectilinear nanowire over a dielectric grating. In both cases, the radiation properties of the individual charge carriers are investigated via full-wave electrodynamic simulations, including dephasing effects caused by carrier collisions. The overall light output is then computed with a standard model of charge transport for two particularly suitable types of carbon nanostructures, i.e., zigzag graphene nanoribbons and armchair single-wall nanotubes. Relatively sharp emission peaks at geometrically tunable terahertz frequencies are obtained in each case. The corresponding output powers are experimentally accessible even with individual nanowires, and can be scaled to technologically significant levels using array configurations. These radiation mechanisms therefore represent a promising paradigm for light emission in condensed matter, which may find important applications in nanoelectronics and terahertz photonics.

  20. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    Science.gov (United States)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  1. Measurement of large angle fragments induced by 400 MeV n-1 carbon ion beams

    Science.gov (United States)

    Aleksandrov, Andrey; Consiglio, Lucia; De Lellis, Giovanni; Di Crescenzo, Antonia; Lauria, Adele; Montesi, Maria Cristina; Patera, Vincenzo; Sirignano, Chiara; Tioukov, Valeri

    2015-09-01

    The use of carbon ion beams in radiotherapy presents significant advantages when compared to traditional x-ray. In fact, carbon ions deposit their energy inside the human body at the end of their range, the Bragg peak. Unlike x-ray beams, where the energy deposition decreases exponentially inside the irradiated volume, the shape of carbon beams is sharp and focused. Advantages are an increased energy released in the cancer volume while minimizing the irradiation to healthy tissues. Currently, the use of carbon beams is limited by the poor knowledge we have about the effects of the secondary fragments on the irradiated tissues. The secondary particles produced and their angular distribution is crucial to determine the global dose deposition. The knowledge of the flux of secondary particles plays a key role in the real time monitoring of the dose profile in hadron therapy. We present a detector based on nuclear emulsions for fragmentation measurements that performs a sub-micrometric tridimensional spatial resolution, excellent multi-particle separation and large angle track recognition. Nuclear emulsions are assembled in order to realize a hybrid detector (emulsion cloud chamber (ECC)) made of 300 μm nuclear emulsion films alternated with lead as passive material. Data reported here have been obtained by exposing two ECC detectors to the fragments produced by a 400 MeV n-1 12C beam on a composite target at the GSI laboratory in Germany. The ECC was exposed inside a more complex detector, named FIRST, in order to collect fragments with a continuous angular distribution in the range 47°-81° with respect to the beam axis. Results on the angular distribution of fragments as well as their momentum estimations are reported here.

  2. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    Science.gov (United States)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  3. Measurement of large angle fragments induced by 400 MeV n−1 carbon ion beams

    International Nuclear Information System (INIS)

    The use of carbon ion beams in radiotherapy presents significant advantages when compared to traditional x-ray. In fact, carbon ions deposit their energy inside the human body at the end of their range, the Bragg peak. Unlike x-ray beams, where the energy deposition decreases exponentially inside the irradiated volume, the shape of carbon beams is sharp and focused. Advantages are an increased energy released in the cancer volume while minimizing the irradiation to healthy tissues. Currently, the use of carbon beams is limited by the poor knowledge we have about the effects of the secondary fragments on the irradiated tissues. The secondary particles produced and their angular distribution is crucial to determine the global dose deposition. The knowledge of the flux of secondary particles plays a key role in the real time monitoring of the dose profile in hadron therapy.We present a detector based on nuclear emulsions for fragmentation measurements that performs a sub-micrometric tridimensional spatial resolution, excellent multi-particle separation and large angle track recognition. Nuclear emulsions are assembled in order to realize a hybrid detector (emulsion cloud chamber (ECC)) made of 300 μm nuclear emulsion films alternated with lead as passive material.Data reported here have been obtained by exposing two ECC detectors to the fragments produced by a 400 MeV n−1 12C beam on a composite target at the GSI laboratory in Germany. The ECC was exposed inside a more complex detector, named FIRST, in order to collect fragments with a continuous angular distribution in the range 47°–81° with respect to the beam axis. Results on the angular distribution of fragments as well as their momentum estimations are reported here. (paper)

  4. Effects of functional group modification on the thermal properties of nano-carbon clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhenyi, E-mail: zywu@xmu.edu.cn [Xiamen University, Department of Chemistry and College of Chemistry and Chemical Engineering (China); Cai, Xueying [Xiamen University, Xiamen Zhongshan Hospital (China); Yang, Zhiquan [South China University of Technology, School of Environment and Energy, Guangzhou Higher Education Mega Centre (China)

    2015-08-15

    In this paper, the thermal properties including thermal stability, thermal decomposition activation energy and the thermal enthalpy of nano-carbon clusters (NCCs, including fullerene[60](C{sub 60}, with a diameter of 0.71 nm), multi-walled carbon nanotubes(MWCNTs, with a diameter of 10–30 nm and a length of 1–2 µm), single-walled carbon nanotubes (SWCNTs, with a diameter of ∼2 nm and a length of 5–15 µm), ligands of NCC-based terpyridine (NCC-tpy), and NCC-based ruthenium complexes (NCC-tpyRuCl{sub 3}) were systematically studied by method of simultaneous thermogravimetric and differential thermal analysis. The results show that the modification of NCCs with terpyridine leads to a decrease in the thermal stability and in the thermal decomposition activation energy (the thermal decomposition activation energy decreased from 174.4 for C{sub 60}, 144.9 for MWCNTs and 161.2 kJ/mol for SWCNTs to 166.2 for C{sub 60}-tpy, 119.7 for MWCNT-tpy and 85.0 kJ/mol for SWCNT-tpy). But the modification of NCCs with terpyridine results in an increase in the enthalpy change of NCC thermal decomposition reaction. The introduction of the metal ions through complexation further decreases the thermal stability and the thermal decomposition activation energy of NCC-tpyRuCl{sub 3} due to the catalytic oxidation of Ru(III) ions (the activation energy decreases to 124.1 for C{sub 60}-tpyRuCl{sub 3}, 106.4 for MWCNT-tpyRuCl{sub 3} and 41.2 kJ/mol for SWCNT-tpyRuCl{sub 3}). The introduction of the metal ions also leads to a decrease in the enthalpy change of the thermal decomposition reaction.

  5. Dynamic response of RC beams strengthened with near surface mounted Carbon-FRP rods subjected to damage

    Science.gov (United States)

    Capozucca, R.; Blasi, M. G.; Corina, V.

    2015-07-01

    Near surface mounted (NSM) technique with fiber reinforced polymer (FRP) is becoming a common method in the strengthening of concrete beams. The availability of NSM FRP technique depends on many factors linked to materials and geometry - dimensions of the rods used, type of FRP material employed, rods’ surface configuration, groove size - and to adhesion between concrete and FRP rods. In this paper detection of damage is investigated measuring the natural frequency values of beam in the case of free-free ends. Damage was due both to reduction of adhesion between concrete and carbon-FRP rectangular and circular rods and cracking of concrete under static bending tests on beams. Comparison between experimental and theoretical frequency values evaluating frequency changes due to damage permits to monitor actual behaviour of RC beams strengthened by NSM CFRP rods.

  6. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams

    Science.gov (United States)

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a ˜450 kV, ˜400 ns pulse. It was found that 300-400 MW, ˜250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  7. Deposition of Diamond-Like carbon Films by High-Intensity Pulsed Ion Beam Ablation at Various Substrate Temperatures

    Institute of Scientific and Technical Information of China (English)

    梅显秀; 刘振民; 马腾才; 董闯

    2003-01-01

    Diamond-like carbon (DLC) films have been deposited on to Si substrates at substrate temperatures from 25℃to 400 ℃ by a high-intensity pulsed-ion-beam (HIPIB) ablation deposition technique. The formation of DLC is confirmed by Raman spectroscopy. According to an x-ray photoelectron spectroscopy analysis, the concentration of spa carbon in the films is about 40% when the substrate temperature is below 300 ℃. With increasing substrate temperature from 25 ℃ to 400 ℃, the concentration of sp3 carbon decreases from 43% to 8%. In other words,sp3 carbon is graphitized into sp2 carbon when the substrate temperature is above 300 ℃. The results of xray diffraction and atomic force microscopy show that, with increasing the substrate temperature, the surface roughness and the friction coefficient increase, and the microhardness and the residual stress of the films decrease.

  8. Chemical effects of 100 keV primary electrons in an e-beam sustained carbon dioxide laser discharge

    International Nuclear Information System (INIS)

    The dissociation of carbon dioxide and the reaction of carbon monoxide with oxygen caused by a high-energy (approx 100 kev) electron beam in a typical carbon dioxide laser gas mixture has been observed. The variation of reaction rates with electron energy and current, interelectrode spacing, and gas composition has been studied. The rates of both processes suggest that the reactions are caused by unthermalized secondary electrons. The conditions were investigated under which the carbon monoxide oxidation reaction could be used to offset dissociation in a laser and thus prolong its sealed life. For a secondary to primary current ratio of one hundred this condition should be satisfied for any practical device. A sealed run was carried out which demonstrated that dissociation by secondary electrons could be offset by the oxidation of carbon monoxide by the primary electrons. (author)

  9. Beam pen lithography based on arrayed polydimethylsiloxane (PDMS) micro-pyramids spin-coated with carbon black photo-resist

    International Nuclear Information System (INIS)

    This paper presents a new method for preparing a polydimethylsiloxane (PDMS) mold which can be used in beam pen lithography for patterning a photo-resist (PR) layer in a maskless and direct-write manner. The PDMS mold contains an array of micro-pyramids on its surface and is spin-coated with a layer of carbon black PR which is an opaque material. Because of the arrayed pyramidal surface profile, the spin-coated carbon black PR layer is either thinner at the pyramid tips or does not cover the tips at all, which allows ultraviolet (UV) light to pass through the PDMS mold and forms an array of UV beams. The aperture size of the UV beams can be controlled at a sub-micrometer scale and hence can be used for micro/nano-patterning. Applying this carbon black-PR-coated PDMS mold in beam pen lithography along with a metal lift-off process, various metal dot patterns with a dot-size around 400 to 500 nm are successfully obtained. Both experimental results and theoretical analysis are given along with possible improvements and applications in the future. (paper)

  10. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  11. Ge-nanoclusters were formed by electron-beam irradiation in Ge-doped silica-on-silicon thin films. The size and density of the clusters can be controlled by the irradiation intensity and time

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten;

    2006-01-01

    Ge-nanoclusters were formed by electron-beam irradiation in Ge-doped silica-on-silicon thin films. The size and density of the clusters can be controlled by the irradiation intensity and time.......Ge-nanoclusters were formed by electron-beam irradiation in Ge-doped silica-on-silicon thin films. The size and density of the clusters can be controlled by the irradiation intensity and time....

  12. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67 MeV/atom

    Science.gov (United States)

    Koide, T.; Saitoh, Y.; Sakamaki, M.; Amemiya, K.; Iwase, A.; Matsui, T.

    2014-05-01

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67 MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280 emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240 emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  13. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67 MeV/atom

    Energy Technology Data Exchange (ETDEWEB)

    Koide, T.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University Sakai, Osaka 599-8531 (Japan)

    2014-05-07

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67 MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280 emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240 emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  14. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  15. Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems design

    International Nuclear Information System (INIS)

    Highlights: • The mechanical behaviour of partially bonded CFRP strengthened beams was modelled. • Two dimensional non-linear finite element models were developed. • Partially bonded beams can present similar flexural strength to fully bonded ones. • Relations between the bonded length and the strength reduction were proposed. • The proposed relations were used for the design of fire protection systems. - Abstract: Recent fire resistance tests on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymers (CFRP) laminates showed that it is possible to attain considerable fire endurance provided that thermal insulation is applied at the anchorage zones of the strengthening system. With such protection, although the CFRP laminate prematurely debonds in the central part of the beam, it transforms into a cable fixed at the extremities until one of the anchorage zones loses its bond strength. The main objective of this paper is to propose a simplified methodology for the design of fire protection systems for CFRP strengthened-RC beams, which is based on applying thicker insulation at the anchorage zones (promoting the above mentioned “cable behaviour”) and a thinner one at the current zone (avoiding tensile rupture of the carbon fibres). As a first step towards the validation of this methodology, finite element (FE) models were developed to simulate the flexural behaviour at ambient temperature of full-scale RC beams strengthened with CFRP laminates according to the externally bonded reinforcement (EBR) and near surface mounted (NSM) techniques, in both cases fully or partially bonded (the latter simulating the cable). The FE models were calibrated with results of 4-point bending tests on small-scale beams and then extended for different beam geometries, with spans (L) varying from 2 m to 5 m, in which the influence of the CFRP bonded length (lb) and the loading type (point or uniformly distributed) on the strength reduction was

  16. Particle beam radiation therapy using carbon ions and protons for oligometastatic lung tumors

    International Nuclear Information System (INIS)

    A study was undertaken to analyze the efficacy and feasibility of particle beam radiation therapy (PBRT) using carbon ions and protons for the treatment of patients with oligometastatic lung tumors. A total of 47 patients with 59 lesions who underwent PBRT for oligometastatic lung tumors between 2003 and 2011 were included in this study. Patient median age was 66 (range, 39–84) years. The primary tumor site was the colorectum in 11 patients (23.4%), lung in 10 patients (21.3%) and a variety of other sites in 26 patients (55.3%). Thirty-one patients (66%) received chemotherapy prior to PBRT. Thirty-three lesions were treated with 320-MeV carbon ions and 26 were treated with 150- or 210-Mev protons in 1–4 portals. A median total dose of 60 (range, 52.8–70.2) GyE was delivered at the isocenter in 8 (range, 4–26) fractions. The median follow-up time was 17 months. The local control, overall survival and progression-free survival rates at 2 years were 79%, 54 and 27% respectively. PBRT-related toxicities were observed; six patients (13%) had grade 2 toxicity (including grade 2 radiation pneumonitis in 2) and six patients (13%) had grade 3 toxicity. Univariate analysis indicated that patients treated with a biologically equivalent dose of 10 (BED10) <110 GyE10, had a significantly higher local recurrence rate. Local control rates were relatively lower in the subsets of patients with the colorectum as the primary tumor site. No local progression was observed in metastases from colorectal cancer irradiated with a BED10 ≥ 110 GyE10. There was no difference in treatment results between proton and carbon ion therapy. PRBT is well tolerated and effective in the treatment of oligometastatic lung tumors. To further improve local control, high-dose PBRT with a BED10 ≥ 110 GyE10 may be promising. Further investigation of PBRT for lung oligometastases is warranted

  17. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    OpenAIRE

    Zhang, Rui; Taddei, Phillip J.; Fitzek, Markus M.; Newhauser, Wayne D.

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several...

  18. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    Science.gov (United States)

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2016-06-01

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei. PMID:26671480

  19. Improvement of the gas cluster ion beam-(GCIB)-based molecular secondary ion mass spectroscopy (SIMS) depth profile with O2(+) cosputtering.

    Science.gov (United States)

    Chu, Yi-Hsuan; Liao, Hua-Yang; Lin, Kang-Yi; Chang, Hsun-Yun; Kao, Wei-Lun; Kuo, Ding-Yuan; You, Yun-Wen; Chu, Kuo-Jui; Wu, Chen-Yi; Shyue, Jing-Jong

    2016-04-21

    Over the last decade, cluster ion beams have displayed their capability to analyze organic materials and biological specimens. Compared with atomic ion beams, cluster ion beams non-linearly enhance the sputter yield, suppress damage accumulation and generate high mass fragments during sputtering. These properties allow successful Secondary Ion Mass Spectroscopy (SIMS) analysis of soft materials beyond the static limit. Because the intensity of high mass molecular ions is intrinsically low, enhancing the intensity of these secondary ions while preserving the sample in its original state is the key to highly sensitive molecular depth profiles. In this work, bulk poly(ethylene terephthalate) (PET) was used as a model material and analyzed using Time-of-Flight SIMS (ToF-SIMS) with a pulsed Bi3(2+) primary ion. The optimized hardware of a 10 kV Ar2500(+) Gas Cluster Ion Beam (GCIB) with a low kinetic energy (200-500 V) oxygen ion (O2(+)) as a cosputter beam was employed for generating depth profiles and for examining the effect of beam parameters. The results were then quantitatively analyzed using an established erosion model. It was found that the ion intensity of the PET monomer ([M + H](+)) and its large molecular fragment ([M - C2H4O + H](+)) steadily declined during single GCIB sputtering, with distortion of the distribution information. However, under an optimized GCIB-O2(+) cosputter, the secondary ion intensity quickly reached a steady state and retained >95% intensity with respect to the pristine surface, although the damage cross-section was larger than that of single GCIB sputtering. This improvement was due to the oxidation of molecules and the formation of -OH groups that serve as proton donors to particles emitted from the surface. As a result, the ionization yield was enhanced and damage to the chemical structure was masked. Although O2(+) is known to alter the chemical structure and cause damage accumulation, the concurrently used GCIB could

  20. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute

    Science.gov (United States)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C4+ beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C4+ was almost 14 μA at 15 kV extraction voltage. To get higher current of the C4+ beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10-7 mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C4+ beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed.

  1. Characterization of adsorption of small molecules over atomic clusters through collisions with helium beam%氦原子碰撞诱导解离表征原子团簇上小分子的吸附

    Institute of Scientific and Technical Information of China (English)

    吴晓楠; 徐波; 马嘉璧; 何圣贵

    2011-01-01

    研究原子团簇上小分子的吸附和反应对认识一些复杂化学过程的微观机理非常重要,为了表征小分子如何吸附在原子团簇上,我们研制了一套氦原子碰撞诱导解离串级飞行时间质谱装置.该装置配有激光溅射团簇源,团簇在快速流动管里与一氧化碳、水等小分子发生反应,产物团簇通过第一级飞行时间质谱“选质”后与一束氦气(He)发生碰撞,使用第二级飞行时间质谱检测碰撞碎片的分布.结果表明:一些过渡金属氧化物团簇上小分子的弱吸附、强吸附以及氧化性吸附能够通过该实验装置进行表征.%Study of adsorption and reaction of small molecules over atomic clusters are very important to understand molecular level mechanisms of complex chemical processes. To characterize how small molecules may be absorbed over atomic clusters, a time-of-flight (TOF)/TOF tandem mass spectrometer (MS) employing collision-induced dissociation (CID) with helium atoms has been built. This apparatus is equipped with a laser ablation cluster source. The generated clusters react in a fast flow tube with small molecules such as carbon monoxide, water and so on. The product clusters are mass-selected by the primary TOF-MS and collided with a crossed helium beam. The secondary TOF-MS is used to detector the fragment ion distribution upon the collision. The results indicate that the apparatus can be used to characterize weak adsorption, strong adsorption, and oxidative adsorption over some transition metal oxide clusters.

  2. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy

    International Nuclear Information System (INIS)

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular.A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design.A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients. (paper)

  3. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy

    Science.gov (United States)

    Grevillot, L.; Stock, M.; Vatnitsky, S.

    2015-10-01

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.

  4. Carbon ion beam treatment in patients with primary and recurrent sacrococcygeal chordoma

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, Matthias; Jensen, Alexandra; Herfarth, Klaus [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); Welzel, Thomas [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Ellerbrock, Malte; Haberer, Thomas [Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); Jaekel, Oliver [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); German Cancer Research Center (dkfz), Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Debus, Juergen [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); German Cancer Research Center (dkfz), Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Deutsches Konsortium fuer Translationale Krebsforschung (DKTK), Heidelberg (Germany)

    2015-07-15

    The purpose of this work was to evaluate the results of high-dose radiation treatment using carbon ion therapy, alone or combined with intensity-modulated radiation treatment (IMRT), in patients with sacral chordoma. Between 2009 and 2012, 56 patients with sacral chordoma were treated in our center. The tumor was located above S3 in 33 patients and in S3 or below in 23 patients. In all, 41 patients received radiation therapy for the primary tumor, while 15 patients were treated for the recurrent tumor. Toxicity was measured using NCI CTCAE v.4.03. Local control (LC) and overall survival (OS) were evaluated with the Kaplan-Meier method. A total of 23 patients were irradiated with carbon ions in combination with photon IMRT, while 33 received carbon ion therapy only. Forty-three patients had a macroscopic tumor at treatment start with a median tumor size (GTV) of 244 ml (range 5-1188 ml). The median total dose was 66 Gy (range 60-74 Gy; RBE). After a median follow-up time of 25 months, the 2- and 3-year local control probability was 76 % and 53 %, respectively. The overall survival rate was 100 %. Treatment for primary tumor and male patients resulted in significant better local control. No higher toxicity occurred within the follow-up time. High-dose photon/carbon ion beam radiation therapy is safe and, especially for primary sacral chordomas, highly effective. A randomized trial is required to evaluate the role of primary definitive hypofractionated particle therapy compared with surgery with or without adjuvant radiotherapy. (orig.) [German] Evaluierung der Ergebnisse nach hochdosierter Kohlenstoffionentherapie, allein oder in Kombination mit einer intensitaetsmodulierten Photonenbestrahlung (IMRT), bei Patienten mit einem sakralen Chordom. Zwischen 2009 und 2012 wurden 56 Patienten mit sakralen Chordomen in unserem Zentrum behandelt. Der Tumor war bei 33 Patienten oberhalb von S3 und bei 23 Patienten auf Hoehe von S3 oder unterhalb davon lokalisiert. Insgesamt

  5. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    Institute of Scientific and Technical Information of China (English)

    Niu Dong-Mei; Li Hai-Yang; Luo Xiao-Lin; Liang Feng; Cheng Shuang; Li An-Lin

    2006-01-01

    The multi-charged sulfur ions of Sq+ (q ≤ 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 1010 ~ 1012W·cm-2. S6+ is the dominant multicharged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  6. MODIFICATION OF CARBON STEEL BY LASER SURFACE MELTING: PART I: EFFECT OF LASER BEAM TRAVELLING SPEED ON MICROSTRUCTURAL FEATURES AND SURFACE HARDNESS

    OpenAIRE

    Hashem F. El-Labban; Abdelaziz, M.; Essam R.I. Mahmoud

    2013-01-01

    The present study aims to improve the surface hardness of carbon steel by application of laser surface melting of effective conditions. The travelling speed of laser beam during this treatment is one of the important treatment conditions. This study aims to investigate the effect of laser surface melting with different beam speeds on macro and microstructure as well as the hardness distribution through the thickness of carbon steel. To achieve this target, three different travelling speeds (1...

  7. Very high temperature chemical vapor deposition of new carbon thin films using organic semiconductor molecular beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Takuya [Department of Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Shimada, Toshihiro, E-mail: shimada@chem.s.u-tokyo.ac.j [Department of Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Hanzawa, Akinori; Hasegawa, Tetsuya [Department of Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2009-11-30

    We carried out the preparation and characterization of new carbon films deposited using an organic molecular beam deposition apparatus with very high substrate temperature (from room temperature to 2670 K), which we newly developed. When we irradiated molecular beam of organic semiconductor perylene tetracarboxylic acid dianhydride (PTCDA) on Y{sub 0.07}Zr{sub 0.93}O{sub 2} (111) at 2170 K, a new carbon material was formed via decomposition and fusing of the molecules. The films were characterized with an atomic force microscope (AFM), Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Zirconium carbide (ZrC) films were identified beneath the topmost carbon layer by XRD and XPS analyses, which results from chemical reactions of the substrate and the molecules. Partially graphitized aromatic rings of PTCDA were observed from Raman spectroscopy. The present technique - very high temperature chemical vapor deposition using organic semiconductor sources - will be useful to study a vast unexplored field of covalent carbon solids.

  8. Properties of fast carbon cluster microbeams produced with a tapered capillary

    International Nuclear Information System (INIS)

    We study the transmission properties of fast cluster ions (Cn+ (n = 2–4) with velocities ranging from 0.89 to 1.79 a.u.) through a single tapered capillary with an outlet diameter of 13.7 μm. We investigate the projectile-velocity dependence of the transmission fraction from the measurements of transmitted particle energy spectra. It is found that the non-fragmentation fraction of C2+ projectiles increases with decreasing velocity, indicating that fragmentation occurs mainly via close collisions with the surfaces of the capillary wall. For Cn+ (n = 2–4) ions with the same incident velocity, the cluster-size dependence of the non-fragmentation fraction shows even–odd alternation, implying that the fraction includes contributions from stable clusters surviving the grazing scattering process at the capillary surface. We also find that the angular distribution of transmitted particles is narrower for cluster projectiles compared with atomic projectiles.

  9. Singly- and doubly-negative carbon clusters in sputtering: Energy spectra, abundance distributions and unimolecular fragmentation

    International Nuclear Information System (INIS)

    The emission of singly- and doubly-charged negative cluster ions in sputtering of graphite by 14.5 keV Cs+ ion bombardment was investigated by mass spectrometry. Specifically, for anionic Cn- (n≤23) and CsCn- (n≤11) and dianionic Cn2- (n≤39) species the emission-energy spectra were recorded and their abundance distributions as a function of cluster size n were determined. The energy spectra provided evidence for cluster decomposition in the ion accelerating region of the spectrometer corresponding to a time scale from some 10-10 s to several 10-8 s. The abundance of these fragment ions are similar to those of the parent ions in terms of the dependence on the size n and their absolute magnitudes converge with increasing cluster size. Due to energetic ejection events, the clusters are sputtered with high internal energies; they cool by unimolecular decomposition. The most probable fragmentation process for Cn- appears to be by evaporation of a neutral C2 molecule. For these decay reactions, the fragmentation-time distributions were derived from the appropriate parts of the energy spectra; they were found to scale exponentially with time. From these data the average lifetimes τ for these unimolecular decompositions were determined. For Cn- the lifetimes slightly increase with n: τ ∼ 8 x 10-9 s at n=6 to τ ∼ 5 x 10-8 s at n=25. Similar values are found for CsCn-, whereas for the dianionic clusters Cn2- they are shorter, τ ∼ (5-7) x 10-9 s for n=12-18. Estimates of internal energies, Eint, of sputtered Cn- clusters were derived from these lifetimes, employing statistical theories of unimolecular decomposition. Values of Eint increase with cluster size n for 5≤n≤25, whereas the average internal energy per constituent atom, Eint/n amounts to ∼1 eV in that range

  10. Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam

    International Nuclear Information System (INIS)

    We report the synthesis of a polyimide matrix with a low dielectric constant for application as an intercalation material between metal interconnections in electronic devices. Porous activated carbon was embedded in the polyimide to reduce the dielectric constant, and a thin film of the complex was obtained using the spin-coating and e-beam irradiation methods. The surface of the thin film was modified with fluorine functional groups to impart water resistance and reduce the dielectric constant further. The water resistance was significantly improved by the modification with hydrophobic fluorine groups. The dielectric constant was effectively decreased by porous activated carbon. The fluorine modification also resulted in a low dielectric constant on the polyimide surface by reducing the polar surface free energy. The dielectric constant of polyimide film decreased from 2.98 to 1.9 by effects of porous activated carbon additive and fluorine surface modification.

  11. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    Science.gov (United States)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  12. Experimental study of the water-to-air stopping power ratio of monoenergetic carbon ion beams for particle therapy

    Science.gov (United States)

    Sánchez-Parcerisa, D.; Gemmel, A.; Jäkel, O.; Parodi, K.; Rietzel, E.

    2012-06-01

    Reference dosimetry with ionization chambers requires a number of chamber-specific and beam-specific calibration factors. For carbon ion beams, IAEA report TRS-398 yields a total uncertainty of 3% in the determination of the absorbed dose to water, for which the biggest contribution arises from the water-to-air stopping power ratio (sw, air), with an uncertainty of 2%. The variation of (sw, air) along the treatment field has been studied in several Monte Carlo works presented over the last few years. Their results were, in all cases, strongly dependent on the choice of mean ionization potentials (I-values) for air and water. A smaller dependence of (sw, air) with penetration depth was observed. Since a consensus on Iw, air and Iair has not yet been reached, the validity of such studies for clinical use cannot be assessed independently. Our approach is based on a direct experimental measurement of water-equivalent thicknesses of different air gaps at different beam energies. A theoretical expression describing the variation of the stopping power ratio with kinetic energy, sw,air(E), was derived from the Bethe-Bloch formula and fit to the measured data, yielding a coherent pair of Iw and Iair values with Iair/Iw = 1.157 ± 0.023. Additionally, the data from five different beam energies were combined in an average value of sw,air = 1.132 ± 0.003 (statistical) ± 0.003 (variation over energy range), valid for monoenergetic carbon ion beams at the plateau area of the depth dose distribution. A detailed uncertainty analysis was performed on the data, in order to assess the limitations of the method, yielding an overall standard uncertainty below 1% in sw,air(E). Therefore, when properly combined with the appropriate models for the fragment spectra, our experimental work can contribute to narrow the uncertainty margins currently in use in absorbed dose to water determination for dosimetry of carbon ion beam radiotherapy.

  13. Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets

    Science.gov (United States)

    Jedari Salami, S.

    2016-02-01

    Bending analysis of a sandwich beam with soft core and carbon nanotube reinforced composite (CNTRC) face sheets in the literature is presented based on Extended High order Sandwich Panel Theory (EHSAPT). Distribution of fibers through the thickness of the face sheets could be uniform or functionally graded (FG). In this theory the face sheets follow the first order shear deformation theory (FSDT). Besides, the two dimensional elasticity is used for the core. The field equations are derived via the Ritz based solution which is suitable for any essential boundary condition. The influences of boundary conditions on bending response of the sandwich panel with soft core and CNTRC face sheet are investigated. In each type of boundary condition the effect of distribution pattern of CNTRCs on many essential involved parameters of the sandwich beam with functionally graded carbon nanotube reinforced composite (FG- CNTRC) face sheets are studied in detail. Finally, experimental result have been compared with those obtained based on developed solution method. It is concluded that, the sandwich beam with X distribution figure of face sheets is the strongest with the smallest transverse displacement, and followed by the UD, O and ∧-ones, respectively.

  14. Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons

    DEFF Research Database (Denmark)

    Bennitz, Anders; Nilimaa, Jonny; Ravn, Dorthe Lund;

    2012-01-01

    force, and the presence of a deviator were investigated. The results were compared to those observed with analogous beams prestressed with steel tendons, common beam theory, and predictions made using an analytical model adapted from the literature. It was found that steel and CFRP tendons had very...

  15. CNO abundances and carbon isotope ratios in evolved stars of the open clusters NGC 2324, NGC 2477, and NGC 3960

    CERN Document Server

    Tautvaisiene, Grazina; Bragaglia, Angela; Randich, Sofia; Zenoviene, Renata

    2016-01-01

    Our main aim is to determine carbon-to-nitrogen and carbon isotope ratios for evolved giants in the open clusters NGC 2324, NGC 2477, and NGC 3960, which have turn-off masses of about 2 Msun, and to compare them with predictions of theoretical models. High-resolution spectra were analysed using a differential synthetic spectrum method. Abundances of carbon were derived using the C2 Swan (0,1) band heads at 5135 and 5635.5 A. The wavelength interval 7940-8130 A with strong CN features was analysed to determine nitrogen abundances and carbon isotope ratios. The oxygen abundances were determined from the [Oi] line at 6300 A. The mean values of the CNO abundances are [C/Fe]=-0.35+-0.06 (s.d.), [N/Fe]=0.28+-0.05, and [O/Fe]=-0.02+-0.10 in seven stars of NGC 2324; [C/Fe]=-0.26+-0.02, [N/Fe]=0.39+-0.04, and [O/Fe]=-0.11+-0.06 in six stars of NGC 2477; and [C/Fe]=-0.39+-0.04, [N/Fe]=0.32+-0.05, and [O/Fe]=-0.19+-0.06 in six stars of NGC 3960. The mean C/N ratio is equal to 0.92+-0.12, 0.91+-0.09, and 0.80+-0.13, resp...

  16. Ion-beam and microwave-stimulated functionalization and derivatization of carbon nanotubes

    Science.gov (United States)

    Makala, Raghuveer S.

    Derivatizing carbon nanotubes (CNTs) with other low-dimensional nanostructures is of widespread interest for creating CNT-based nanocomposites and devices. Conventional routes based on wet-chemical oxidation or hydrophobic adsorption do not allow premeditated control over the location or spatial extent of functionalization. Moreover, aggressive oxidative treatments and agitation in corrosive environments lead to CNT shortening, damage, and incorporation of excess impurity concentrations. Thus, it is imperative to explore and develop alternative functionalization methods to overcome these shortcomings. The work presented in this thesis outlines two such methodologies: one based on focused ion irradiation for siteselective functionalization and the other that employs microwave-stimulation for mild, yet rapid and homogenous CNT functionalization. The utility of 10 and 30 kcV Ga+ focused ion beams (FIB) to thin, slice, weld, and alter the structure and composition at precise locations along the CNT axis is presented. This strategy of harnessing ion-beam-induced defect generation and doping is attractive for modulating chemical and electrical properties along the CNT length, and fabricate CNT-based heterostructures and networks. A novel approach that utilizes focused ion irradiation to site-selectively derivatize preselected segments of CNTs with controlled micro-/nano-scale lateral spatial resolution is demonstrated. Irradiation followed by air-exposure results in functionalized CNT segments ranging from the nanoscopic to the macroscopic scale. The functional moieties are utilized to site-selectively anchor Au nanoparticles, fluorescent nanospheres, an amino acid---lysine, a charge-transfer metalloprotein---azurin, and a photoactive protein---bacteriorhodopsin by means of electrostatic or covalent interactions. This approach is versatile and can be extended to obtaining other molecular moieties and derivatives opening up possibilities for building new types of nano

  17. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    Science.gov (United States)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  18. Proton, Helium and Carbon Radiation Beam Targeting Reactive Oxygen, Nitrogen and Halogenated Species in TRIM-SRIM Model

    International Nuclear Information System (INIS)

    Nowadays proton beam radiation therapy is considered in few centers for management of malignancies. This study is aimed to explore the effect of proton, helium or carbon irradiation on free radicals. This study was conducted in department of Physiology/Medical physics, College of Medicine, Al-Mustansiriya University in Baghdad, Iraq during October 2009. TRIM-SRIM software version 1998 and2003 were used for computed Bragg peak and for calculated the effect of proton, helium and carbon ions against free radicals related to oxygen, nitrogen and halogen species. The lowest stopping power near Bragg's peak of proton targeting free radicals was against superoxide anion and its curve (the stopping power against energy) was shifted down while that of peroxynitrite(ONOO-) was shifted up. The stopping powers of helium targeting all studied free radicals were lower than corresponding proton irradiation but it required higher energy. Lower stopping power of carbon irradiation targeted hydroxyl(OH-) and halogenated radicals than the other reactive species were observed. It concludes that such from of external beam irradiation is associated with direct scavenging effect on free radicals of whatever sources.

  19. Effects of E-Beam Irradiation on the Chemical, Physical, and Electrochemical Properties of Activated Carbons for Electric Double-Layer Capacitors

    OpenAIRE

    Min-Jung Jung; Mi-Seon Park; Young-Seak Lee

    2015-01-01

    Activated carbons (ACs) were modified via e-beam irradiation at various doses for use as an electrode material in electric double-layer capacitors (EDLCs). The chemical compositions of the AC surfaces were largely unchanged by the e-beam irradiation. The ACs treated with the e-beam at radiation doses of 200 kGy exhibited higher nanocrystallinity than the untreated ACs. The specific surface areas and pore volumes of the e-beam irradiated ACs were also higher than those of the untreated ACs. Th...

  20. Formation of nanoscale carbon structures in the surface layer of metals under the impact of high intensity ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Remnev, G.E., E-mail: remnev@hvd.tpu.ru [High-Voltage Research Institute at Tomsk Polytechnic University, 2a Lenin Ave., Tomsk 634028 (Russian Federation); Uglov, V.V., E-mail: uglov@bsu.by [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Shymanski, V.I. [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Pavlov, S.K. [High-Voltage Research Institute at Tomsk Polytechnic University, 2a Lenin Ave., Tomsk 634028 (Russian Federation); Kuleshov, A.K. [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus)

    2014-08-15

    Highlights: • Carbide phases in metals were formed by high-intense pulsed ion beam (HPIB) impact. • Tungsten and titanium carbides are characterized by nanoscale dimensions. • Carbides formation in surface layer provides its hardening. - Abstract: This work represents the results of phase composition and the mechanical properties of tungsten and titanium after high-intensity pulsed ion beam (HPIB) treatment. It was shown that nanoscale carbide particles are formed under the HPIB influence in the surface layers of metals. Raising the pulse number results in increase of volume fraction of the carbide phases. The microhardness is 1.5–2 times more than the initial value and wear resistance of the metals improves in response to alloying of tungsten and titanium with carbon atoms accompanied by the formation of carbides.

  1. Atomic Diffusion in Cu/Si (111) and Cu/SiO2/Si (111) Systems by Neutral Cluster Beam Deposition

    Institute of Scientific and Technical Information of China (English)

    CAO Bo; LI Gong-Ping; CHEN Xi-Meng; CHO Seong-Jin; KIM Hee

    2008-01-01

    @@ The Cu films are deposited on two kinds of p-type Si (111) substrates by ionized cluster beam (ICB) technique.The interface reaction and atomic diffusion of Cu/Si (111) and Cu/SiO2/Si (111) systems are studied at different annealing temperatures by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Some significant results are obtained: For the Cu/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs when annealed at 230℃. The diffusion coefficients of the samples annealed at 230℃and 500℃ are 8.5 × 10-15 cm2.s-1 and 3.0 × 10-14 cm2.s-1, respectively. The formation of the copper-silicide phase is observed by XRD, and its intensity becomes stronger with the increase of annealing temperature. For the Cu/SiO2/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs and copper silicides are formed when annealed at 450℃. The diffusion coefficients of Cu in Si are calculated to be 6.0 × 10-16 cm2.s-1 at 450℃, due to the fact that the existence of the SiO2 layer suppresses the interdiffusion of Cu and Si.

  2. Generation of oxygen, carbon and metallic ion beams by a compact microwave source

    International Nuclear Information System (INIS)

    A small microwave ion source fabricated from a quartz tube and enclosed externally by a cavity has been operated with different geometries and for various gases in a cw mode. This source has been used to generate oxygen ion beams with energy as low as 5.5 eV. Beam energy spread has been measured to be less than 1 eV. By installing different metal plates on the front extraction electrode, metallic ion beams such as (Be, Cu, Al, etc.) can be produced

  3. Phase space generation for proton and carbon ion beams for external users’ applications at the Heidelberg Ion Therapy Center

    Directory of Open Access Journals (Sweden)

    Thomas eTessonnier

    2016-01-01

    Full Text Available In the field of radiation therapy, accurate and robust dose calculation is required. For this purpose, precise modeling of the irradiation system and reliable computational platforms are needed. At the Heidelberg Ion Therapy Center (HIT, the beamline has been already modeled in the FLUKA Monte Carlo code. However, this model was kept confidential for disclosure reasons and was not available for any external team. The main goal of this study was to create efficiently phase space (PS files for proton and carbon ion beams, for all energies and foci available at HIT. PS are representing the characteristics of each particle recorded (charge, mass, energy, coordinates, direction cosines, generation at a certain position along the beam path. In order to achieve this goal, keeping a reasonable data size but maintaining the requested accuracy for the calculation, we developed a new approach of beam PS generation with the Monte-Carlo code FLUKA. The generated PS were obtained using an infinitely narrow beam and recording the desired quantities after the last element of the beamline, with a discrimination of primaries or secondaries. In this way, a unique PS can be used for each energy to accommodate the different foci by combining the narrow-beam scenario with a random sampling of its theoretical Gaussian beam in vacuum. PS can also reproduce the different patterns from the delivery system, when properly combined with the beam scanning information. MC simulations using PS have been compared to simulations including the full beamline geometry and have been found in very good agreement for several cases (depth dose distributions, lateral dose profiles, with relative dose differences below 0.5%. This approach has also been compared with measured data of ion beams with different energies and foci, resulting in a very satisfactory agreement. Hence, the proposed approach was able to fulfill the different requirements and has demonstrated its capability for

  4. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    International Nuclear Information System (INIS)

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C1, C2, and C4 at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  5. Measurement of the analyzing power for proton-carbon elastic scattering in the CNI region with a 22 GeV/c polarized proton beam

    International Nuclear Information System (INIS)

    We have carried out the experiment BNL-AGS E950 to measure the analyzing power for proton-carbon elastic scattering in the Coulomb-Nuclear Interference (CNI) region with a 22 GeV/c polarized proton beam. Recoil carbons from 300 keV to a few MeV in the CNI region, were detected inside the AGS ring to identify proton-carbon elastic scattering. The preliminary results of the analyzing power measurement are presented

  6. Ion beam induced charge collection (IBICC) from integrated circuit test structures using a 10 MeV carbon microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.N.; Bouanani, M.E.; Duggan, J.L.; McDaniel, F.D. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Doyle, B.L.; Walsh, D.S. [Ion Beam Materials Research Laboratory, Sandia National Laboratories, MS 1056, PO Box 5800, Albuquerque, New Mexico 87185 (United States)] Aton, T.J. [Silicon Technology Development, Texas Instruments Inc., PO Box 650311, MS 3704, Dallas, Texas 75265 (United States)

    1999-06-01

    As feature sizes of Integrated Circuits (ICs) continue to shrink, the sensitivity of these devices, particularly SRAMs and DRAMs, to natural radiation is increasing. In this paper, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate neutron-induced Si recoil effects in ICs. The IBICC measurements, conducted at the Sandia National Laboratories, employed a 10 MeV carbon microbeam with 1{mu}m diameter spot to scan test structures on specifically designed ICs. With the aid of IC layout information, an analysis of the charge collection efficiency from different test areas is presented. {copyright} {ital 1999 American Institute of Physics.}

  7. Measurement of neutral current coherent neutral pion production on carbon in a few-GeV neutrino beam

    OpenAIRE

    Kurimoto, Y; Alcaraz-Aunion, J. L.; Brice, S J; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; C. Giganti; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.

    2010-01-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current cohere...

  8. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells

    International Nuclear Information System (INIS)

    Purpose: The effects of a carbon ion beam and X-rays on human pancreatic cancer stem-like cells were examined from the point of view of clonogenic survival and DNA repair. Materials and methods: Human pancreatic cancer stem-like cells were treated with and without carbon ion and X-ray irradiation, and then colony, spheroid and tumor formation assays as well as γH2AX foci formation assay were performed. Results: The relative biological effectiveness (RBE) values of a carbon ion beam relative to X-ray for the MIA PaCa-2 and BxPc-3 cells at the D10 values were 1.85–2.10. The ability for colony, spheroid formation, and tumorigenicity from cancer stem-like CD44+/CD24+ cells is significantly higher than that from non-cancer stem-like CD44−/CD24−cells. FACS data showed that CD44+/CD24+ cells were more highly enriched after X-rays compared to carbon ion irradiation at isoeffective doses. The RBE values for the carbon ion beam relative to X-ray at the D10 levels for CD44+/CD24+ cells were 2.0–2.19. The number of γH2AX foci in CD44−/CD24− cells was higher than that of CD44+/CD24+ cells after irradiation with either X-ray or carbon ion beam. The number of γH2AX foci in CD44+/CD24+ cells was almost the same in the early time, but it persists significantly longer in carbon ion beam irradiated cells compared to X-rays. Conclusions: Carbon ion beam has superior potential to kill pancreatic cancer stem cell-like cells, and prolonged induction of DNA damage might be one of the pivotal mechanisms of its high radiobiological effects compared to X-rays.

  9. Energy resolution methods efficiency depending on beam source position of potassium clusters in time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    Ş Şentürk; F Demiray; O Özsoy

    2007-09-01

    Energy resolution of the time-of-flight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better resolution for the parallel case while the turnaround time is more convenient for the perpendicular position. Hence the applicability of the methods used for the energy resolution depends on beam source arrangement.

  10. Vacuum Electron-Beam Evaporation of Fe Nanocrystals on Si3N4 Buffer Layer for carbon Nanotube Growth

    Institute of Scientific and Technical Information of China (English)

    万青; 王太宏; 林成鲁

    2003-01-01

    Vacuum electron-beam evaporated iron nanocrystal is used for the growth of carbon nanotubes. Atomic force microscopy and Raman scattering studies reveal the formation of beta-iron silicide islands on bare silicon substrate after annealing at 700°C in N2 ambient. In order to eliminate the influence of iron-silicon interaction, Si3N4 buffer layer with the thickness of 80 nm is used. This technical route prevents effectively the formation of iron silicide and improves the quality of the iron nanocrystals. Using these iron nanocrystals with high density (about 7 × 1010/cm2) as catalyst, high-density multiwall carbon nanotubes are synthesized on Si3N4/Si substrate.

  11. Formation of Carbonized Polystyrene Sphere/hemisphere Shell Arrays by Ion Beam Irradiation and Subsequent Annealing or Chloroform Treatment

    Science.gov (United States)

    Song, Xianyin; Dai, Zhigao; Xiao, Xiangheng; Li, Wenqing; Zheng, Xudong; Shang, Xunzhong; Zhang, Xiaolei; Cai, Guangxu; Wu, Wei; Meng, Fanli; Jiang, Changzhong

    2015-01-01

    Heat-resistant two-dimensional (2D) sphere/hemisphere shell array is significant for the fabrication of novel nanostructures. Here large-area, well-ordered arrays of carbonized polystyrene (PS) hollow sphere/hemisphere with controlled size and morphology are prepared by combining the nanosphere self-assembly, kV Ag ion beam modification, and subsequent annealing or chloroform treatment. Potential mechanisms for the formation and evolution of the heat-resistant carbonized PS spherical shell with increasing ion fluence and energy are discussed. Combined with noble metal or semiconductor, these modified PS sphere arrays should open up new possibilities for high-performance nanoscale optical sensors or photoelectric devices. PMID:26640125

  12. CNO abundances and carbon isotope ratios in evolved stars of the open clusters NGC 2324, NGC 2477, and NGC 3960

    Science.gov (United States)

    Tautvaišienė, Gražina; Drazdauskas, Arnas; Bragaglia, Angela; Randich, Sofia; Ženovienė, Renata

    2016-10-01

    Aims: Our main aim is to determine carbon-to-nitrogen and carbon isotope ratios for evolved giants in the open clusters NGC 2324, NGC 2477, and NGC 3960, which have turn-off masses of about 2 M⊙, and to compare them with predictions of theoretical models. Methods: High-resolution spectra were analysed using a differential synthetic spectrum method. Abundances of carbon were derived using the C2 Swan (0, 1) band heads at 5135 and 5635.5 Å. The wavelength interval 7940-8130 Å with strong CN features was analysed to determine nitrogen abundances and carbon isotope ratios. The oxygen abundances were determined from the [O i] line at 6300 Å. Results: The mean values of the CNO abundances are [C/Fe] = -0.35 ± 0.06 (s.d.), [N/Fe] = 0.28 ± 0.05, and [O/Fe] = -0.02 ± 0.10 in seven stars of NGC 2324; [C/Fe] = -0.26 ± 0.02, [N/Fe] = 0.39 ± 0.04, and [O/Fe] = -0.11 ± 0.06 in six stars of NGC 2477; and [C/Fe] = -0.39 ± 0.04, [N/Fe] = 0.32 ± 0.05, and [O/Fe] = -0.19 ± 0.06 in six stars of NGC 3960. The mean C/N ratio is equal to 0.92 ± 0.12, 0.91 ± 0.09, and 0.80 ± 0.13, respectively. The mean 12C /13C ratio is equal to 21 ± 1, 20 ± 1, and 16 ± 4, respectively. The 12C /13C and C/N ratios of stars in the investigated open clusters were compared with the ratios predicted by stellar evolution models. Conclusions: The mean values of the 12C /13C and C/N ratios in NGC 2324 and NGC 2477 agree well with the first dredge-up and thermohaline-induced extra-mixing models, which are similar for intermediate turn-off mass stars. The 12C /13C ratios in the investigated clump stars of NGC 3960 span from 10 to 20. The mean carbon isotope and C/N ratios in NGC 3960 are close to predictions of the model in which the thermohaline- and rotation-induced (if rotation velocity at the zero-age main sequence was 30% of the critical velocity) extra-mixing act together. Based on observations collected at ESO telescopes under programmes 072.D-0550 and 074.D-0571.

  13. Energetics, relative stabilities, and size-dependent properties of nanosized carbon clusters of different families: fullerenes, bucky-diamond, icosahedral, and bulk-truncated structures.

    Science.gov (United States)

    Yu, M; Chaudhuri, I; Leahy, C; Wu, S Y; Jayanthi, C S

    2009-05-14

    Structures and relative stabilities of carbon clusters belonging to different families have been investigated for diameters d simulation. Carbon clusters studied include fullerenes and fullerene-derived structures (e.g., cages and onions), icosahedral structures, bucky-diamond structures, and clusters cut from the bulk diamond with spherical and facetted truncations. The reason for using a semiempirical MD is partly due to the large number of different cases (or carbon allotropes) investigated and partly due to the size of the clusters investigated in this work. The particular flavor of the semiempirical MD scheme is based on a self-consistent and environment-dependent Hamiltonian developed in the framework of linear combination of atomic orbitals. We find that (i) among the families of carbon clusters investigated, fullerene structures have the lowest energy with the relative energy ordering being E(fullerene) structures is likely at d approximately 8 nm, (iii) the highest occupied molecular orbital-lowest unoccupied molecular orbital gap as a function of the diameter for the case of fullerenes shows an oscillatory behavior with the gap ranging from 2 eV to 6 meV, and the gap approaching that of gapless graphite for d > 3.5 nm, and (iv) there can be three types of phase transformations depending on the manner of heating and cooling in our simulated annealing studies: (a) a bucky-diamond structure --> an onionlike structure, (b) an onionlike --> a cage structure, and (c) a bucky-diamond --> a cage structure.

  14. Bicontinuous Structure of Li₃V₂(PO₄)₃ Clustered via Carbon Nanofiber as High-Performance Cathode Material of Li-Ion Batteries.

    Science.gov (United States)

    Chen, Lin; Yan, Bo; Xu, Jing; Wang, Chunguang; Chao, Yimin; Jiang, Xuefan; Yang, Gang

    2015-07-01

    In this work, the composite structure of Li3V2(PO4)3 (LVP) nanoparticles with carbon nanofibers (CNF) is designed. The size and location of LVP particles, and the degree of graphitization and diameter of carbon nanofibers, are optimized by electrospinning and heat treatment. The bicontinuous morphologies of LVP/CNF are dependent on the carbonization of PVP and simultaneous growing of LVP, with the fibers shrunk and the LVP crystals grown toward the outside. LVP nanocystals clustered via carbon nanofibers guarantee improving the diffusion ability of Li(+), and the carbon fiber simultaneously guarantees the effective electron conductivity. Compared with the simple carbon-coated LVP and pure LVP, the particle-clustered structure guarantees high rate capability and long-life cycling stability of NF-LVP as cathode for LIBs. At 20 C rate in the range 3.0-4.3 V, NF-LVP delivers the initial capacity of 122.6 mAh g(-1) close to the theoretical value of 133 mAh g(-1), and maintains 97% of the initial capacity at the 1000th cycle. The bead-like structure of cathode material clustered via carbon nanofibers via electrospinning will be further applied to high-performance LIBs.

  15. First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2-10)

    Science.gov (United States)

    Afshar, M.; Hoseini, S. S.; Sargolzaei, M.

    2016-07-01

    In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (C n X; X = Al, Si; n = 2-10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO-LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that C n Si clusters have more stability compared to C n Al clusters. In addition, our magnetic calculations were shown that the C n Al isomers are magnetic objects whereas C n Si clusters are nonmagnetic objects.

  16. Cationic concentration effects on electron beam cured of carbon-epoxy composites

    International Nuclear Information System (INIS)

    Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan δ) of 167 deg. C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a Tg (tan δ) of 136 deg. C. So, the irradiated sample had its Tg increased approximately 20% and the curing process was much less time consuming.

  17. Cationic concentration effects on electron beam cured of carbon-epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Nishitsuji, D.A., E-mail: delmo_amari@yahoo.com.b [Brazilian Navy Technological Center, Sao Paulo (Brazil); Marinucci, G. [Brazilian Navy Technological Center, Sao Paulo (Brazil); Energetic and Nuclear Research Institute-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-000 Sao Paulo/SP (Brazil); Evora, M.C. [Institute of Advanced Studies/CTA, Sao Jose dos Campos/SP (Brazil); Silva, L.G.A. [Energetic and Nuclear Research Institute-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-000 Sao Paulo/SP (Brazil)

    2010-03-15

    Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan delta) of 167 deg. C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a T{sub g} (tan delta) of 136 deg. C. So, the irradiated sample had its T{sub g} increased approximately 20% and the curing process was much less time consuming.

  18. Investigations of acetonitrile solvent cluster formation in supercritical carbon dioxide, and its impact on microscale syntheses of carbon-11-labeled radiotracers for PET

    International Nuclear Information System (INIS)

    A new strategy has been developed for synthesizing positron emission tomography (PET) radiotracers using [11C]methyl iodide. This strategy relies on the ability of organic co-solvents to cluster within mixtures of supercritical fluids resulting in localized regions of high density which can serve as microscopic pockets for reaction. We've shown that acetonitrile will cluster about dilute solutes when mixtures of this co-solvent with carbon dioxide are forced to behave as a homogeneous fluid at the critical point. We applied this strategy in a systematic investigation of the conditions for optimized reaction between methyl iodide and L-α-methyl-N-2-propynyl phenethylamine (nordeprenyl) to yield L-deprenyl. Variables such as temperature, ultraviolet light exposure, co-solvent concentration, system pressure, and methyl iodide concentration were explored. The synthesis of radioactive [11C]-L-deprenyl using no-carrier-added concentrations of [11C]methyl iodide was also tested. Results showed that greater than 90% radiochemical yield of the desired product could be attained using 40 times less labeling substrate than in conventional PET tracer syntheses

  19. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  20. Work function estimate for electrons emitted from nanotube carbon cluster films

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Y.V.; Sinitsyn, N.I.; Torgashov, G.V.; Mevlyut, S.T.; Zhbanov, A.I.; Zakharchenko, Y.F.; Kosakovskaya, Z.Y.; Chernozatonskii, L.A.; Glukhova, O.E.; Torgashov, I.G. [IRE of the Russian Acadam of Sciences, Saratov, Zelyonaya 38, Saratov 410019, (Russia), CIS

    1997-03-01

    Relying on the obtained theoretical and experimental results the electronic work function from a nanotube carbon film was estimated. It was shown that these structures have an electronic work function that is substantially lower than that for graphite. The influence of the film surface relief on its emission was regarded. {copyright} {ital 1997 American Vacuum Society.}

  1. Isolated and clustered DNA lesions induced by high-energy iron and carbon ions

    Science.gov (United States)

    Ide, H.; Tanaka, R.; Nakaarai, Y.; Terato, H.; Furusawa, Y.

    During space flight astronauts are exposed to various types of radiation from sun and galactic cosmic rays, the latter of which contain high-energy charged particles such as Fe and C ions. The radiation risk to astronauts toward such high-energy charged particles has been assessed by ground-based experiments. When irradiated by ionizing radiation, DNA molecules suffer from oxidation of bases and strand breaks. The distribution of these lesions along the DNA strand may differ significantly between densely ionizing high-energy Fe and C ions and sparsely ionizing radiation like 60Co gamma-rays. Among various types of DNA damage, bistranded clustered lesions comprised of multiple oxidized bases or strand breaks on opposite strands within a few helical turns are of particular interest since they are assumed to be resistant to repair or induce faulty repair, hence resulting in cell killing and mutations. In the present study, we have analyzed isolated and clustered DNA lesions generated by high-energy Fe and C ions to elucidate the nature of DNA lesions. Plasmid DNA (pDEL19) was irradiated in 10 mM Tris buffer (pH 7.5) by Fe (500 MeV/amu) and C (290 MeV/amu) ions and 60Co gamma-rays. Single-strand breaks (SSB) and double-strand breaks (DSB) were quantified by analysis of conformational changes using agarose gel electrophoresis. For quantification of isolated and bistranded clustered base lesions, irradiated plasmid was exhaustively digested prior to agarose gel analysis by Endo III and Fpg that preferentially incise DNA at oxidative pyrimidine and purine lesions, respectively. The yield (site/Gy/nucleotide) of isolated damages (SSB and bases lesions) tended to decrease with increasing LET [gamma (0.2 keV/μ m) 0.77 (C) > 0.69 (Fe)]. This result is in contrast to the higher biological effectiveness (e.g. cell killing) of high-energy Fe and C ions than gamma-rays, suggesting a role of more complex damage clusters that cannot be distinguished by simple analysis of direct

  2. Hydrogen reverses the clustering tendency of carbon in amorphous silicon oxycarbide

    OpenAIRE

    Hepeng Ding; Demkowicz, Michael J.

    2015-01-01

    Amorphous silicon oxycarbide (SiOC) is of great technological interest. However, its atomic-level structure is not well understood. Using density functional theory calculations, we show that the clustering tendency of C atoms in SiOC is extremely sensitive to hydrogen (H): without H, the C-C interaction is attractive, leading to enrichment of aggregated SiC[subscript 4] tetrahedral units; with hydrogen, the C-C interaction is repulsive, leading to enrichment of randomly distributed SiCO[subsc...

  3. Negative ion productions in high velocity collision between small carbon clusters and Helium atom target

    International Nuclear Information System (INIS)

    We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn−*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.

  4. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth

    Science.gov (United States)

    Tang, M.; Hong, M. H.; Choo, Y. S.; Tang, Z.; Chua, Daniel H. C.

    2010-11-01

    In this work, super-hydrophobic surfaces were fabricated by femtosecond laser micro-machining and chemical vapor deposition to constitute hybrid scale micro/nano-structures formed by carbon nanotube (CNT) clusters. Nickel thin-film microstructures, functioning as CNT growth catalyst, precisely control the distribution of the CNT clusters. To obtain minimal heat-affected zones, femtosecond laser was used to trim the nickel thin-film coating. Plasma treatment was subsequently carried out to enhance the lotus-leaf effect. The wetting property of the CNT surface is improved from hydrophilicity to super-hydrophobicity at an advancing contact angle of 161 degrees. The dynamic water drop impacting test further confirms its enhanced water-repellent property. Meanwhile, this super-hydrophobic surface exhibits excellent transparency with quartz as the substrate. This hybrid fabrication technique can achieve super-hydrophobic surfaces over a large area, which has potential applications as self-cleaning windows for vehicles, solar cells and high-rise buildings.

  5. Geant4 simulation for a study of a possible use of carbon ion pencil beams for the treatment of ocular melanomas with the active scanning system at CNAO

    Science.gov (United States)

    Farina, E.; Piersimoni, P.; Riccardi, C.; Rimoldi, A.; Tamborini, A.; Ciocca, M.

    2015-12-01

    The aim of this work was to study a possible use of carbon ion pencil beams (delivered with active scanning modality) for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO). The promising aspect of carbon ions radiotherapy for the treatment of this disease lies in its superior relative radio-biological effectiveness (RBE). The Monte Carlo (MC) Geant4 10.00 toolkit was used to simulate the complete CNAO extraction beamline, with the active and passive components along it. A human eye modeled detector, including a realistic target tumor volume, was used as target. Cross check with previous studies at CNAO using protons allowed comparisons on possible benefits on using such a technique with respect to proton beams. Experimental data on proton and carbon ion beams transverse distributions were used to validate the simulation.

  6. Interaction of carbon with vacancy and self-interstitial atom clusters in {alpha}-iron studied using metallic-covalent interatomic potential

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, Dmitry, E-mail: dterenty@sckcen.b [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Anento, Napoleon; Serra, Anna [Department Matematica Aplicada III, E.T.S. Enginyeria de Camins, Universitat Politecnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona (Spain); Jansson, Ville [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Department of Physics, University of Helsinki, P.O. Box 43, FI-00014, Helsinki 00014 (Finland); Khater, Hassan [Department Matematica Aplicada III, E.T.S. Enginyeria de Camins, Universitat Politecnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona (Spain); Bonny, Giovanni [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2011-01-31

    The presence of even small amount of carbon interstitial impurity affects properties of Fe and Fe-based ferritic alloys. From earlier experiments it follows that carbon exhibits considerably strong interaction with lattice defects and therefore influences their mobility, hence affecting the evolution of the microstructure under irradiation. This work is dedicated to understanding the interaction of carbon-vacancy complexes with glissile dislocation loops, which form in Fe, Fe-based alloys and ferritic steels under irradiation. We apply large scale atomistic simulations coupled with the so-called 'metallic-covalent bonding' interatomic model for the Fe-C system, known to be the most consistent interatomic model available today. With these techniques we have studied (i) the stability of vacancy-carbon clusters; (ii) the interaction of octahedral carbon with 1/2<1 1 1> loops; (iii) possibility of the dynamic drag of carbon by 1/2<1 1 1> loops and (iv) the interaction of 1/2<1 1 1> loops with the most stable vacancy-carbon clusters expected to occur under irradiation. Finally, we have shown that carbon-vacancy complexes act as strong traps for 1/2<1 1 1> loops.

  7. MODIFICATION OF CARBON STEEL BY LASER SURFACE MELTING: PART II: EFFECT OF LASER BEAM POWER ON MICROSTRUCTURAL FEATURES AND SURFACE HARDNESS

    OpenAIRE

    Hashem F. El-Labban; Abdelaziz, M.; Essam R.I. Mahmoud

    2013-01-01

    The surface hardness has an important effect on the wear resistance of different materials. The present study aims to improve the surface hardness of carbon steel through the application of laser surface melting with suitable conditions. The laser beam power and travelling speed are the main factors that affect the properties of the treated zone. In this study, three different conditions of laser beam power (1800, 1500 and 1200 W) at fixed travelling speed of 1000 mm min-1 were chosen to stud...

  8. Carbon and nitrogen abundances of stellar populations in the globular cluster M 2

    CERN Document Server

    Lardo, C; Mucciarelli, A; Milone, A P

    2012-01-01

    We present CH and CN index analysis and C and N abundance calculations based on the low-resolution blue spectra of red giant branch (RGB) stars in the Galactic globular cluster NGC 7089 (M 2). Our main goal is to investigate the C-N anticorrelation for this intermediate metallicity cluster. The data were collected with DOLORES, the multiobject, low-resolution facility at the Telescopio Nazionale Galileo. Spectroscopic data were coupled with UV photometry obtained during the spectroscopic run. We found a considerable star-to-star variation in both A(C) and A(N) at all luminosities for our sample of 35 targets. These abundances appear to be anticorrelated, with a hint of bimodality in the C content for stars with luminosities below the RBG bump (V~15.7), while the range of variations in N abundances is very large and spans almost ~ 2 dex. We find additional C depletion as the stars evolve off the RGB bump, in fairly good agreement with theoretical predictions for metal-poor stars in the course of normal stellar...

  9. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels;

    Introduction: The radioluminescence (RL) and optically stimulated luminescence (OSL) response of Al2O3:C crystals attached to optical fibres can be used for active and passive in-vivo dosimetry in radiotherapy treatments and clinical imaging techniques. Their use in particle beams, however, can b...

  10. Production of clinically useful positron emitter beams during carbon ion deceleration

    Science.gov (United States)

    Lazzeroni, M.; Brahme, A.

    2011-03-01

    In external beam radiation therapy, radioactive beams offer the best clinical solution to simultaneously treat and in vivo monitor the dose delivery and tumor response using PET or PET-CT imaging. However, difficulties mainly linked to the low production efficiency have so far limited their use. This study is devoted to the analysis of the production of high energy 11C fragments, preferably by projectile fragmentation of a stable monodirectional and monoenergetic primary 12C beam in different absorbing materials (decelerators) in order to identify the optimal elemental composition. The study was performed using the Monte Carlo code SHIELD-HIT07. The track length and fluence of generated secondary particles were scored in a uniform absorber of 300 cm length and 10 cm radius, divided into slices of 1 cm thickness. The 11C fluence build-up and mean energy variation with increasing decelerator depth are presented. Furthermore, the fluence of the secondary 11C beam was studied as a function of its mean energy and the corresponding remaining range in water. It is shown that the maximum 11C fluence build-up is high in compounds where the fraction by weight of hydrogen is high, being the highest in liquid hydrogen. Furthermore, a cost effective alternative solution to the single medium initially envisaged is presented: a two-media decelerator that comprises a first liquid hydrogen section followed by a second decelerating section made of a hydrogen-rich material, such as polyethylene (C2H4). The purpose of the first section is to achieve a fast initial 11C fluence build-up, while the second section is primarily designed to modulate the mean energy of the generated 11C beam in order to reach the tumor depth. Finally, it was demonstrated that, if the intensity of the primary 12C beam can be increased by an order of magnitude, a sufficient intensity of the secondary 11C beam is achieved for therapy and subsequent therapeutic PET imaging sessions. Such an increase in the

  11. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes.

    Science.gov (United States)

    Susi, Toma; Kotakoski, Jani; Arenal, Raul; Kurasch, Simon; Jiang, Hua; Skakalova, Viera; Stephan, Odile; Krasheninnikov, Arkady V; Kauppinen, Esko I; Kaiser, Ute; Meyer, Jannik C

    2012-10-23

    By combining ab initio simulations with state-of-the-art electron microscopy and electron energy loss spectroscopy, we study the mechanism of electron beam damage in nitrogen-doped graphene and carbon nanotubes. Our results show that the incorporation of nitrogen atoms results in noticeable knock-on damage in these structures already at an acceleration voltage of 80 kV, at which essentially no damage is created in pristine structures at corresponding doses. Contrary to an early estimate predicting rapid destruction via sputtering of the nitrogen atoms, in the case of substitutional doping, damage is initiated by displacement of carbon atoms neighboring the nitrogen dopant, leading to the conversion of substitutional dopant sites into pyridinic ones. Although such events are relatively rare at 80 kV, they become significant at higher voltages typically used in electron energy loss spectroscopy studies. Correspondingly, we measured an energy loss spectrum time series at 100 kV that provides direct evidence for such conversions in nitrogen-doped single-walled carbon nanotubes, in excellent agreement with our theoretical prediction. Besides providing an improved understanding of the irradiation stability of these structures, we show that structural changes cannot be neglected in their characterization employing high-energy electrons.

  12. Hydrogen reverses the clustering tendency of carbon in amorphous silicon oxycarbide.

    Science.gov (United States)

    Ding, Hepeng; Demkowicz, Michael J

    2015-01-01

    Amorphous silicon oxycarbide (SiOC) is of great technological interest. However, its atomic-level structure is not well understood. Using density functional theory calculations, we show that the clustering tendency of C atoms in SiOC is extremely sensitive to hydrogen (H): without H, the C-C interaction is attractive, leading to enrichment of aggregated SiC4 tetrahedral units; with hydrogen, the C-C interaction is repulsive, leading to enrichment of randomly distributed SiCO3 tetrahedral units. Our results suggest that conflicting experimental characterizations of C distributions may be due to differing amounts of H present in the samples investigated. Our work also opens a path for tailoring the properties of SiOC by using the total H content to control the C distribution. PMID:26269200

  13. UV spectra of iron-doped carbon clusters FeC_n n = 3-6

    CERN Document Server

    Steglich, Mathias; Johnson, Anatoly; Maier, John P

    2015-01-01

    Electronic transitions of jet-cooled FeC$_n$ clusters ($n = 3 - 6$) were measured between 230 and 300 nm by a mass-resolved 1+1 resonant two-photon ionization technique. Rotational profiles were simulated based on previous calculations of ground state geometries and compared to experimental observations. Reasonable agreement is found for the planar fan-like structure of FeC$_3$. The FeC$_4$ data indicate a shorter distance between the Fe atom and the bent C$_4$ unit of the fan. The transitions are suggested to be $^{3}$A$_{2} \\leftarrow ^{3}$B$_{1}$ for FeC$_3$ and $^{5}$A$_{1} \\leftarrow ^{5}$A$_{1}$ for FeC$_4$. In contrast to the predicted C$_{\\infty \\text{v}}$ geometry, non-linear FeC$_5$ is apparently observed. Line width broadening prevents analysis of the FeC$_6$ spectrum.

  14. Using a carbon beam as a probe to extract the sensitive volume thickness; Utilisation d'un faisceau de carbon pour extraire le volume sensible

    Energy Technology Data Exchange (ETDEWEB)

    Inguimbert, C.; Duzellier, S. [Office National d' Etudes et de Recherches Aerospatiales (ONERA/DESP), 31 - Toulouse (France); Ecoffet, R. [Centre National d' Etudes Spatiales (CNES), 31 - Toulouse (France)

    1999-07-01

    Most of the models of proton SEUs predictions use the sensitive volume concept. The sensitive region is modeled by a parallelepiped with length l, width w and thickness d, buried at depth h. We propose a new method to extract the sensitive thickness d. The idea is to use low energy, low range ion in order to probe the component to measure the sensitive volume. The thickness d is obtained by de-convoluting the heavy ion upset cross-section curve with the LET (linear energy transfer) curve, both curves being considered as functions of the range of the incident ion. This method has been tested using a beam of carbon ions and the calculated thickness is closed to the theoretical expected value. The deconvolution method which couples together a sensitive thickness d and a charge collection efficiency {alpha} improves the sensitive volume concept.

  15. Understanding the growth mechanism of carbon nanotubes via the ``cluster volume to surface area" model

    Science.gov (United States)

    Mandati, Sreekanth; Kunstmann, Jens; Boerrnert, Felix; Schoenfelder, Ronny; Ruemmeli, Mark; Kar, Kamal K.; Cuniberti, Gianaurelio

    2010-03-01

    The influence of mixed catalysts for the high yield production of carbon nanotubes (CNTs) has been studied systematically. Based on extensive experimental data a ``Catalyst Volume to Surface Area'' (CVSA) model was developed to understand the influence of the process parameters on the yield and CNT diameter distribution [1]. In our study, we present a refined version of the CVSA model developed by combining experiments and simulations. We discuss our current understanding of the growth mechanism and how the model might be used to increase CNT yields by using mixed catalysts.[4pt] [1] S. Tetali et al., ACS Nano (2009), DOI: 10.1021/nn9012548.

  16. Chemical Investigations of ISOL target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive Ion Beams (RIB) are of significant interest in a number of applications. ISOL (Isotope Separation On Line) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to COx and NOx on Al2O3 and SiO2. These materials are potential construction materials for the above mentioned areas. Off-line and on-line tests have been performed using a gas thermo-chromatography set-up with radioactive tracers. The experiments were performed at the PROTRAC facility at Paul Scherrer Institute in Villigen, Switzerland.

  17. Production of intense beams of mass-selected water cluster ions and theoretical study of atom-water interactions

    CERN Document Server

    Wang, Z P; Reinhard, P -G; Suraud, E; Bruny, G; Montano, C; Feil, S; Eden, S; Abdoul-Carime, H; Farizon, B; Farizon, M; Ouaskit, S; Maerk, T D

    2009-01-01

    The influences of water molecules surrounding biological molecules during irradiation with heavy particles (atoms,ions) are currently a major subject in radiation science on a molecular level. In order to elucidate the underlying complex reaction mechanisms we have initiated a joint experimental and theoretical investigation with the aim to make direct comparisons between experimental and theoretical results. As a first step, studies of collisions of a water molecule with a neutral projectile (C atom) at high velocities (> 0.1 a.u.), and with a charged projectile (proton) at low velocities (< 0.1 a.u.) have been studied within the microscopic framework. In particular, time-dependent density functional theory (TDDFT) was applied to the valence electrons and coupled non-adiabatically to Molecular dynamics (MD) for ionic cores. Complementary experimental developments have been carried out to study projectile interactions with accelerated (< 10 keV) and mass-selected cluster ions. The first size distributio...

  18. Rapid phase-correlated rescanning irradiation improves treatment time in carbon-ion scanning beam treatment under irregular breathing

    Science.gov (United States)

    Mori, Shinichiro; Furukawa, Takuji

    2016-05-01

    To shorten treatment time in pencil beam scanning irradiation, we developed rapid phase-controlled rescanning (rPCR), which irradiates two or more isoenergy layers in a single gating window. Here, we evaluated carbon-ion beam dose distribution with rapid and conventional PCR (cPCR). 4 dimensional computed tomography (4DCT) imaging was performed on 12 subjects with lung or liver tumors. To compensate for intrafractional range variation, the field-specific target volume (FTV) was calculated using 4DCT within the gating window (T20–T80). We applied an amplitude-based gating strategy, in which the beam is on when the tumor is within the gating window defined by treatment planning. Dose distributions were calculated for layered phase-controlled rescanning under an irregular respiratory pattern, although a single 4DCT data set was used. The number of rescannings was eight times. The prescribed doses were 48 Gy(RBE)/1 fr (where RBE is relative biological effectiveness) delivered via four beam ports to the FTV for the lung cases and 45 Gy(RBE)/2 fr delivered via two beam ports to the FTV for the liver cases. In the liver cases, the accumulated dose distributions showed an increased magnitude of hot/cold spots with rPCR compared with cPCR. The results of the dose assessment metrics for the cPCR and rPCR were very similar. The D 95, D max, and D min values (cPCR/rPCR) averaged over all the patients were 96.3  ±  0.9%/96.0  ±  1.2%, 107.3  ±  3.6%/107.1  ±  2.9%, and 88.8  ±  3.2%/88.1  ±  3.1%, respectively. The treatment times in cPCR and rPCR were 110.7 s and 53.5 s, respectively. rPCR preserved dose conformation under irregular respiratory motion and reduced the total treatment time compared with cPCR.

  19. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient

    Directory of Open Access Journals (Sweden)

    G. Dall'Olmo

    2011-03-01

    Full Text Available The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (cp measured at multiple wavelengths. The method is based on fitting observations with a size-structured population and optical model to infer the particle size distribution and physiologically relevant parameters of the cells responsible for the measured diel cycle in cp. Results show that the information related to size and contained in the spectral data can be exploited to independently estimate growth and loss rates during the day and night. In addition, the model can characterize the population of particles affecting the cp diel variability. Application of this method to spectral cp measured at a station in the oligotrophic Mediterranean Sea suggests that most of the observed variations in cp can be ascribed to a synchronized population of cells with an equivalent spherical diameter between 1 and 4 μm. The inferred carbon biomass of these cells was about 8–13 mg m−3 and accounted for approximately 20% of the total particulate organic carbon. If successfully validated and implemented on autonomous platforms, this method could improve our understanding of the ocean carbon cycle.

  20. Carbon Dioxide Clusters: (CO_2)_6 to (CO_2)13

    Science.gov (United States)

    McKellar, A. R. W.; Oliaee, J. Norooz; Dehghany, M.; Moazzen-Ahmadi, N.

    2011-06-01

    We recenty reported assignments of specific infrared bands in the CO_2 νb{3} region (˜2350 wn) to (CO_2)_6, (CO_2)_7, (CO_2)_9, (CO_2)10, (CO_2)11, (CO_2)12, and (CO_2)13. Spectra are obtained by direct absorption using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion and assignments are facilitated by recent calculations of Takeuchi based on the Murthy potential. (CO_2)_6 is a symmetric top with S_6 point group symmetry which can be thought of as a stack of two planar cyclic trimers. (CO_2)13 is also an S_6 symmetric top, and consists of a single CO_2 monomer surrounded by an slightly distorted icosahedral cage. The remaining clusters are asymmetric tops without symmetry. Here we report additional CO_2 cluster results. Calculations based on the SAPT-s potential indicate that the structure of (CO_2)10 may be slightly different from that given by Takeuchi/Murthy. An additional band is observed for each of (CO_2)13 and (CO_2)10. A feature observed at 2378.2 wn is assigned as a (CO_2)_6 parallel combination band involving the sum of a fundamental and a low-lying intermolecular vibration. Most significantly, two bands are assigned to a second isomer of (CO_2)_6. This is also a symmetric top, but now with S_4 symmetry. The two symmetric hexamer isomers observed spectroscopically correspond well with the lowest energy structures given by both the SAPT-s and Murthy intermolecular potentials. [1] J. Norooz Oliaee, M. Dehgany, N. Moazzen-Ahmadi, and A.R.W. McKellar, Phys. Chem. Chem. Phys. 13, 1297 (2011). [2] H. Takeuchi, J. Phys. Chem. A 107, 5703 (2008); C.S. Murthy, S.F. O'Shea, and I.R. McDonald, Mol. Phys. 50, 531 (1983). [3] R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S.A. Kucharski, H.L. Williams, and B.M. Rice, J. Chem. Phys. 110, 3785 (1999)

  1. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Iman Eshraghi

    2016-09-01

    Full Text Available Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs.

  2. Compilation of erosion yields of metal-doped carbon materials by deuterium impact from ion beam and low temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Balden, M., E-mail: Martin.Balden@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Starke, P. [Lehrstuhl fuer Experimentelle Plasmaphysik, Institut fuer Physik, Universitaet Augsburg, D-86135 Augsburg (Germany); Garcia-Rosales, C. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Adelhelm, C.; Sauter, P.A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Lopez-Galilea, I.; Ordas, N. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Fernandez, J.M. Ramos; Escandell, M. Martinez [Departamento de Quimica Inorganica, University of Alicante, E-03690 Alicante (Spain)

    2011-10-01

    The erosion yield by deuterium impact was determined for various doped carbon-based materials. Ion beam bombardment with 30 and 200 eV at elevated temperatures (600-850 K) and low temperature plasma exposure with 30 eV ion energy ({approx}7 x 10{sup 20} ions/m{sup 2}s) and about 170 times higher thermal atomic deuterium flux at 300 K and 630 K were performed. The total yield of fine-grain graphites doped with 4 at.% Ti and Zr is reduced by a factor of 4 for 30 and 200 eV D impact at elevated temperatures at D fluences above 10{sup 24} m{sup -2} compared to undoped graphite. Extensive carbide particle loss can be excluded up to fluences of {approx}10{sup 25} m{sup -2}.

  3. Preparation of diamond-like carbon and boron nitirde films by high-intensity pulsed ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Davis, H.A. [Los Alamos National Lab., NM (United States); Remnev, G.E. [Tomsk Polytechnic Univ., Tomsk (Russian Federation). Nuclear Physics Institute.] [and others

    1995-05-01

    Intense ion beams (300-keV C{sup +}, O{sup +}, and H{sup +}, 20--30 kA, 50 to 400-ns pulsewidth, up to 0.3-Hz repetition rate) were used to prepare diamond-like carbon (DLC) and boron nitride (BN) films. Deposition rates of up to 25{plus_minus}5 nm/pulse were obtained with instantaneous rates exceeding 1 mm/s. Most films were uniform, light brown, translucent, and nonporous with some micron-size particulates. Raman and parallel electron energy loss spectroscopy indicated the presence of DLC. The films possessed favorable electron field-emission characteristics desirable for cold-cathode displays. Transmission electron microscopy (TEM) and transmission electron diffraction (TED) revealed that the C films contained diamond crystals with 25 to 125-nm grain size. BN films were composed of hexagonal, cubic and wurtzite phases.

  4. Radiosensitivity of cancer cells against carbon-ion beams in an aspect of the p53 gene status

    International Nuclear Information System (INIS)

    We can easily understand that radiation sensitivities of cancer cells are dependent on the status of cancer-related genes. It is important to clarify which genes affect radiation sensitivity and reflect the effectiveness of radiation therapy for cancer cells. We have studied about the function of a tumor suppressor gene of p53, because p53 controls apoptosis, cell cycle and DNA repair from an aspect of important roles in cell fate. By analysis of function of p53 gene, therefore, we aim to predict the therapeutic effectiveness and to select the modalities of cancer therapies such as radiotherapy, chemotherapy and hyperthermia. As a final goal, we want to accept the most effective therapy, namely tailor-made cancer therapy, for each patient. Here, we introduce that carbon-beam therapy induced the expression of p53-independent apoptosis-related genes and NO radicals in mutated p53 cancer cells. (author)

  5. Measurement of neutral current coherent neutral pion production on carbon in a few-GeV neutrino beam

    CERN Document Server

    Kurimoto, Y; Brice, S J; Bugel, L; Catala-Perez, J; Cheng, G; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; Franke, A J; Giganti, C; Gomez-Cadenas, J J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Nakajima, Y; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Otani, M; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R; Walding, J J; Wascko, M O; White, H B; Wilking, M J; Yokoyama, M; Zeller, G P; Zimmerman, E D

    2010-01-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.

  6. Sizeable magnetic circular dichroism of artificially precipitated Co clusters in amorphous carbon

    Directory of Open Access Journals (Sweden)

    H. S. Hsu

    2012-09-01

    Full Text Available This study examines sizeable magnetic circular dichroism (MCD in Co(20%-doped amorphous carbon (a-C films. While as-grown films exhibit a non-detectable MCD signal, films that undergo rapid thermal annealing (RTA at 600°C in a vacuum yield broad MCD spectra with a large amplitude of ∼3.9 × 104 deg/cm in saturation field 0.78 T at the σ-σ* gap transition (∼5.5 eV. In such films after RTA, the metastable Co-C bonding is decomposed and suitable Co nanoparticles/a-C interfaces are thus formed. Our results indicate that the large change in MCD is contributed from Co nanoparticles and associated with the spin-dependent electronic structure at the Co/a-C interfaces.

  7. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    CERN Document Server

    Watts, David; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistiv...

  8. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Atanu Ghorai

    2014-01-01

    Full Text Available Cancer treatment with high LET heavy ion beam, especially, carbon ion beam (12C, is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose polymerase (PARP inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET 12C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for 12C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both 12C and gamma induced G2/M arrest although the 12C had greater effect. Unlike the gamma, 12C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET 12C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for 12C than gamma.

  9. Effects of E-Beam Irradiation on the Chemical, Physical, and Electrochemical Properties of Activated Carbons for Electric Double-Layer Capacitors

    Directory of Open Access Journals (Sweden)

    Min-Jung Jung

    2015-01-01

    Full Text Available Activated carbons (ACs were modified via e-beam irradiation at various doses for use as an electrode material in electric double-layer capacitors (EDLCs. The chemical compositions of the AC surfaces were largely unchanged by the e-beam irradiation. The ACs treated with the e-beam at radiation doses of 200 kGy exhibited higher nanocrystallinity than the untreated ACs. The specific surface areas and pore volumes of the e-beam irradiated ACs were also higher than those of the untreated ACs. These results were attributed to the transformation and degradation of the nanocrystallinity of the AC surfaces due to the e-beam irradiation. The specific capacitance of the ACs treated with the e-beam at radiation doses of 200 kGy increased by 24% compared with the untreated ACs, and the charge transfer resistance of the ACs was decreased by the e-beam irradiation. The enhancement of the electrochemical properties of the e-beam irradiated ACs can be attributed to an increase in their specific surface area and surface crystallinity.

  10. Design and characterization of a multi-beam micro-CT scanner based on carbon nanotube field emission x-ray technology

    Science.gov (United States)

    Peng, Rui

    In this dissertation, I will present the results for my Ph.D. research for the past five years. My project mainly focuses on advanced imaging applications with a multi-beam x-ray source array based on carbon nanotube field emission technology. In the past few years, research in carbon nanotubes gradually changed from the raw material science to its application. Field emission x-ray application is one of the hottest research areas for carbon nanotube. Compared to traditional thermionic x-ray sources, the carbon nanotube field emission x-ray source has some natural advantages over traditional thermionic x-ray sources such as instantaneous x-ray generation, programmability and miniaturization. For the past few years, the research and development of carbon nanotube field emission x-ray has shifted from single x-ray beam applications to spatially distributed multi-beam x-ray sources. Previously in Zhou group, we have already built a gated micro-CT system with single beam micro-focus x-ray tube for higher spatial and temporal resolution as required in live animal imaging and a multi-beam tomosynthesis system targeting for faster and more stable breast imaging. Now my project mainly focused on the design, characterization and optimization of a multi-beam micro-CT imaging system. With the increase of gantry rotation speed approaching the mechanical limit, it is getting more and more difficult to further speed up the CT scanning. My new system promises a potential solution for the problem, and it serves as a great test platform for truly stationary micro-CT geometry. The potential capabilities it showed during the characterization and imaging measurements was promising. The dissertation is composed of five chapters. In Chapter 1, I will generally review the physics principles of x-ray generation and interaction with matter. Then the discovery of carbon nanotube and its great potential to serve as an excellent field emission electron source will be introduced in the second

  11. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation

    International Nuclear Information System (INIS)

    X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear–quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams. (author)

  12. Ion Beam Induced Charge Collection (IBICC) from Integrated Circuit Test Structures Using a 10 MeV Carbon Microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Aton, T.J.; Doyle, B.L.; Duggan, J.L.; El Bouanani, M.; Guo, B.N.; McDaniel, F.D.; Renfrow, S.N.; Walsh, D.S.

    1998-11-18

    As future sizes of Integrated Circuits (ICs) continue to shrink the sensitivity of these devices, particularly SRAMs and DRAMs, to natural radiation is increasing. In this paper, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate neutron-induced Si recoil effects in ICS. The IBICC measurements, conducted at the Sandia National Laboratories employed a 10 MeV carbon microbeam with 1pm diameter spot to scan test structures on specifically designed ICS. With the aid of layout information, an analysis of the charge collection efficiency from different test areas is presented. In the present work a 10 MeV Carbon high-resolution microbeam was used to demonstrate the differential charge collection efficiency in ICS with the aid of the IC design Information. When ions strike outside the FET, the charge was only measured on the outer ring, and decreased with strike distance from this diode. When ions directly strike the inner and ring diodes, the collected charge was localized to these diodes. The charge for ions striking the gate region was shared between the inner and ring diodes. I The IBICC measurements directly confirmed the interpretations made in the earlier work.

  13. Use of density functional theory method to calculate structures of neutral carbon clusters Cn (3 ≤ n ≤ 24) and study their variability of structural forms

    International Nuclear Information System (INIS)

    In this work, we present modifications to the well-known basin hopping (BH) optimization algorithm [D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997)] by incorporating in it the unique and specific nature of interactions among valence electrons and ions in carbon atoms through calculating the cluster’s total energy by the density functional tight-binding (DFTB) theory, using it to find the lowest energy structures of carbon clusters and, from these optimized atomic and electronic structures, studying their varied forms of topological transitions, which include a linear chain, a monocyclic to a polycyclic ring, and a fullerene/cage-like geometry. In this modified BH (MBH) algorithm, we define a spatial volume within which the cluster’s lowest energy structure is to be searched, and introduce in addition a cut-and-splice genetic operator to increase the searching performance of the energy minimum than the original BH technique. The present MBH/DFTB algorithm is, therefore, characteristically distinguishable from the original BH technique commonly applied to nonmetallic and metallic clusters, technically more thorough and natural in describing the intricate couplings between valence electrons and ions in a carbon cluster, and thus theoretically sound in putting these two charged components on an equal footing. The proposed modified minimization algorithm should be more appropriate, accurate, and precise in the description of a carbon cluster. We evaluate the present algorithm, its energy-minimum searching in particular, by its optimization robustness. Specifically, we first check the MBH/DFTB technique for two representative carbon clusters of larger size, i.e., C60 and C72 against the popular cut-and-splice approach [D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995)] that normally is combined with the genetic algorithm method for finding the cluster’s energy minimum, before employing it to investigate carbon clusters in the size range C3-C

  14. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient

    Directory of Open Access Journals (Sweden)

    G. Dall'Olmo

    2011-11-01

    Full Text Available The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (cp measured at multiple wavelengths. The method is based on fitting observations with a size-structured population model coupled to an optical model to infer the particle size distribution and physiologically relevant parameters of the cells responsible for the measured diel cycle in cp. Results show that the information related to size and contained in the spectral data can be exploited to independently estimate growth and loss rates during the day and night. In addition, the model can characterize the population of particles affecting the diel variability in cp. Application of this method to spectral cp measured at a station in the oligotrophic Mediterranean Sea suggests that most of the observed variations in cp can be ascribed to a synchronized population of cells with an equivalent spherical diameter around 4.6±1.5 μm. The inferred carbon biomass of these cells was about 5.2–6.0 mg m−3 and accounted for approximately 10% of the total particulate organic carbon. If successfully validated, this method may improve our in situ estimates of primary productivity.

  15. Single-walled carbon nanotubes and nanocrystalline graphene reduce beam-induced movements in high-resolution electron cryo-microscopy of ice-embedded biological samples

    CERN Document Server

    Rhinow, Daniel; Turchanin, Andrey; Gölzhäuser, Armin; Kühlbrandt, Werner; 10.1063/1.3645010

    2011-01-01

    For single particle electron cryo-microscopy (cryoEM), contrast loss due to beam-induced charging and specimen movement is a serious problem, as the thin films of vitreous ice spanning the holes of a holey carbon film are particularly susceptible to beam-induced movement. We demonstrate that the problem is at least partially solved by carbon nanotechnology. Doping ice-embedded samples with single-walled carbon nanotubes (SWNT) in aqueous suspension or adding nanocrystalline graphene supports, obtained by thermal conversion of cross-linked self-assembled biphenyl precursors, significantly reduces contrast loss in high-resolution cryoEM due to the excellent electrical and mechanical properties of SWNTs and graphene.

  16. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  17. Induction of apoptosis in murione spleen lymphocytes using carbon ion beam

    International Nuclear Information System (INIS)

    To assess the capacity of heavy ions to induce apoptosis in lymphocytes, mice have been irradiated with accelerated carbon ions (95 MeV/nucleon) at doses ranging from 0.1 to 4 Gy. Their spleens were removed 24 h later and gently dissociated to prepare a single cell suspension. Mononuclear cells were then maintained in culture at 37oC, and the occurrence of apoptosis in these cells was analysed 24 h later. Lymphocytes were also irradiated in vitro, in the presence of Ac-DEVD-CHO, a potent caspase-3 and -7 inhibitor. Results from three experiments performed at the Grand Accelerateur National d'Ions Lourds (GANIL, Caen, France) are reported here. They indicate that carbon ions induce a marked, dose-dependent, reduction of the spleen weight and cellularity. However, in sharp contrast with spleen cells prepared from X-ray irradiated mice, only a slight increase of apoptosis is evidenced in cultured lymphocytes from mice irradiated with heavy ions. The significance of such results is discussed. So far, few data exist concerning the biological effects of heavy ions, in particular their capacity to induce apoptosis in lymphocytes; the present study provides useful clues for further investigations. (author)

  18. Effects of a 2-step culture with cytokine combinations on megakaryocytopoiesis and thrombopoiesis from carbon-ion beam-irradiated human hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    To evaluate whether the continuous treatment of two cytokine combinations is effective in megakaryocytopoiesis and thrombopoiesis in hematopoietic stem/progenitor cells exposed to heavy ion beams, the effects of a 2-step culture by a combination of recombinant human interleukin-3 (IL-3)+stem cell factor (SCF)+thrombopoietin (TPO), which just slightly protected against carbon-ion beam-induced damages, and a combination of IL-3+TPO, which selectively stimulated the differentiation of the hematopoietic stem/progenitor cells to megakaryocytes and platelets, were examined. CD34+-hematopoietic stem/progenitor cells isolated from the human placental and umbilical cord blood were exposed to carbon-ion beams (linear energy transfer (LET)=50 keV/μm) at 2 Gy. These cells were cultured under three cytokine conditions. The number of megakaryocytes, platelets and hematopoietic progenitors were assessed using a flow cytometer and a clonogenic assay at 14 and 21 days after irradiation, respectively. However, the efficacy of each 2-step culture was equal or lower than that of using the IL-3+SCF+TPO combination alone and the 2-step culture could not induce megakaryocytes and platelets from hematopoietic stem/progenitor cells exposed to high LET-radiation such as carbon-ion beams. Therefore, additional cytokines and/or hematopoietic promoting compounds might be required to overcome damage to hematopoietic cells by high LET radiation. (author)

  19. Photo-electronic behavior of Cu{sub 2}O- and/or CeO{sub 2}-loaded TiO{sub 2}/carbon cluster nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, H.; Saitou, Y. [Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Karuppuchamy, S., E-mail: chamy@life.kyutech.ac.jp [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Kitakyushu, Fukuoka 808-0196 (Japan); Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hassan, M.A. [Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yoshihara, M. [Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2012-10-15

    Graphical abstract: Nano-sized TiO{sub 2}/carbon clusters composite materials (I{sub c}'s) have been successfully prepared for the first time by the calcination of TiO(OCOCH{sub 3}CHCOCH{sub 3}){sub 2}/starch complexes (I's) in air. The visible light induced photocatalytic activity of nano-sized TiO{sub 2}/carbon clusters composite materials was observed. Highlights: Black-Right-Pointing-Pointer Nano-sized TiO{sub 2}/carbon cluster composite materials have been synthesized. Black-Right-Pointing-Pointer The surface of the composite was modified with Cu{sub 2}O, CeO{sub 2} and Pt particles. Black-Right-Pointing-Pointer The composite shows the photo-catalytic activity under visible light irradiation. - Abstract: Nano-sized TiO{sub 2}/carbon cluster composite materials have been successfully prepared for the first time by calcination of TiO(OCOCH{sub 3}CHCOCH{sub 3}){sub 2}/starch complexes in air. The surface of composite materials was modified with nano-sized Cu{sub 2}O and CeO{sub 2} particles, followed by the subsequent modification of Pt particles. The composition of the synthesized composite materials was determined using inductively coupled plasma spectroscopy, elemental analysis and surface characterization by transmission electron microscopy. The reduction reaction of methylene blue with the calcined materials under the visible light irradiation has also been examined. The composite material reduced the methylene blue under the irradiation of visible light ({lambda} > 460 nm). The metal oxide-loaded composite materials could also decompose an aqueous silver nitrate solution by visible light irradiation and give O{sub 2} and Ag.

  20. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    Science.gov (United States)

    Watts, David; Borghi, Giacomo; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistive plate chambers (RPC) for an ibPET application because of their excellent timing properties and low cost. In this paper we present a novel compact multi-gap RPC (MRPC) module design and construction method, which considering the large number of modules that would be needed to practically implement a high-sensitivity RPC-PET scanner, could be advantageous. Moreover, we give an overview of the efficiency and timing measurements that have been obtained in the laboratory using such single-gap and multi-gap RPC modules. PMID:23824118

  1. Electron-beam induced diamond-like-carbon passivation of plasmonic devices

    Science.gov (United States)

    Balaur, Eugeniu; Sadatnajafi, Catherine; Langley, Daniel; Lin, Jiao; Kou, Shan Shan; Abbey, Brian

    2015-12-01

    Engineered materials with feature sizes on the order of a few nanometres offer the potential for producing metamaterials with properties which may differ significantly from their bulk counterpart. Here we describe the production of plasmonic colour filters using periodic arrays of nanoscale cross shaped apertures fabricated in optically opaque silver films. Due to its relatively low loss in the visible and near infrared range, silver is a popular choice for plasmonic devices, however it is also unstable in wet or even ambient conditions. Here we show that ultra-thin layers of Diamond-Like Carbon (DLC) can be used to prevent degradation due to oxidative stress, ageing and corrosion. We demonstrate that DLC effectively protects the sub-micron features which make up the plasmonic colour filter under both atmospheric conditions and accelerated aging using iodine gas. Through a systematic study we confirm that the nanometre thick DLC layers have no effect on the device functionality or performance.

  2. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells.

    Science.gov (United States)

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-06-11

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC.

  3. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  4. Recent advances in electron-beam curing of carbon fiber-reinforced composites

    Science.gov (United States)

    Coqueret, Xavier; Krzeminski, Mickael; Ponsaud, Philippe; Defoort, Brigitte

    2009-07-01

    Cross-linking polymerization initiated by high-energy radiation is a very attractive technique for the fabrication of high-performance composite materials. The method offers many advantages compared to conventional energy- and time-consuming thermal curing processes. Free radical and cationic poly-addition chemistries have been investigated in some details by various research groups along the previous years. A high degree of control over curing kinetics and material properties can be exerted by adjusting the composition of matrix precursors as well as by acting on process parameters. However, the comparison with state-of-the-art thermally cured composites revealed the lower transverse mechanical properties of radiation-cured composites and the higher brittleness of the radiation-cured matrix. Improving fiber-matrix adhesion and upgrading polymer network toughness are thus two major challenges in this area. We have investigated several points related to these issues, and particularly the reduction of the matrix shrinkage on curing, the wettability of carbon fibers, the design of fiber-matrix interface and the use of thermoplastic toughening agents. Significant improvements were achieved on transverse strain at break by applying original surface treatments on the fibers so as to induce covalent coupling with the matrix. A drastic enhancement of the K IC value exceeding 2 MPa m 1/2 was also obtained for acrylate-based matrices toughened with high T g thermoplastics.

  5. Test Measurements of a 20 ms-1 Carbon Wire Beam Scanner

    CERN Document Server

    De Freitas, J; Emery, J; Herranz Alvarez, J F; Koujili, M; Ramos, D; Sapinski, M; Ait-Amira, Y; Djerdir, A

    2011-01-01

    This paper pre­sents the de­sign of the ac­tu­a­tor for the fast and high ac­cu­ra­cy Wire Scan­ner sys­tem. The ac­tu­a­tor con­sists of a ro­tary brushless syn­chronous motor with the per­ma­nent mag­net rotor in­stalled in­side the vac­u­um cham­ber and the sta­tor in­stalled out­side. The fork, per­ma­nent mag­net rotor and two an­gu­lar po­si­tion sen­sors are mount­ed on the same axis and lo­cat­ed in­side the beam vac­u­um cham­ber. The system has to re­sist a bake-out tem­per­a­ture of 200 C and ion­iz­ing radi­a­tion up to tenths of kGy/year. Max­i­mum wire trav­el­ling speed of 20 m/s and a po­si­tion mea­sure­ment ac­cu­ra­cy of 4 um is re­quired. Therefore, the sys­tem must avoid gen­er­at­ing vi­bra­tion and electromagnet­ic in­ter­fer­ence. A dig­i­tal feed­back con­troller will allow max­i­mum flex­i­bil­i­ty for the loop pa­ram­e­ters and feeds the 3-phase lin­ear power driv­er. The per­for­mance of the pr...

  6. Atomic mobility in energetic cluster deposition

    Institute of Scientific and Technical Information of China (English)

    PAN Zheng-Ying; WANG Yue-Xia; WEI Qi; LI Zhi-Jie; ZHOU Liang; ZHANG Liang-Kun

    2004-01-01

    This paper tries to outline the influence of atomic mobility on the initial fabrication of thin films formed by LECBD. Based on our recent studies on low-energy cluster beam deposition (LECBD) by molecular dynamics simulation, two examples, the deposition of small carbon clusters on Si and diamond surfaces and Al clusters on Ni substrate, were mainly discussed. The impact energy of the cluster ranges from 0.1 eV to 100 eV. In the former case,the mobility and the lateral migration of surface atoms, especially the recoil atoms, are enhanced with increasing the impact energy, which promote the film to be smoother and denser. For the latter case, the transverse kinetic energy of cluster atoms, caused mainly by the collision between moving cluster atoms, dominates the lateral spread of cluster atoms on the surface, which is contributive to layer-by-layer growth of thin films. Our result is consistent with the experimental observations that the film structure is strongly dependent on the impact energy. In addition, it elucidates that the atomic mobility takes a leading role in the structure characteristic of films formed by LECBD.

  7. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    Science.gov (United States)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  8. Interaction of nanosecond laser pulse with tetramethyl silane (Si(CH34 clusters: Generation of multiply charged silicon and carbon ions

    Directory of Open Access Journals (Sweden)

    Purav M. Badani

    2011-12-01

    Full Text Available Present work reports significantly high levels of ionization, eventually leading to Coulomb explosion of Tetramethyl silane (TMS clusters, on interaction with laser pulses of intensity ∼109 W/cm2. Tetramethyl silane clusters, prepared by supersonic expansion were photoionized at 266, 355 or 532 nm and the resultant ions were detected using time-of-flight mass spectrometer. It is observed that wavelength of irradiation and the size of the cluster are crucial parameters which drastically affect the nature of charge species generated upon photoionization of cluster. The results show that clusters absorb significantly higher energy from the laser field at longer wavelengths (532 nm and generate multiply charged silicon and carbon ions which have large kinetic energies. Further, laser-cluster interaction at different wavelengths has been quantified and charge densities at 266, 355 and 532 nm are found to be 4x 1010, 5x 1010 and 5x 1011 charges/cm3 respectively. These unusual results have been rationalized based on dominance of secondary ionization processes at 532 nm ultimately leading to Coulomb explosion of clusters. In another set of experiments, multiply charged ions of Ar (up to +5 state and Kr (up to +6 state were observed when TMS doped inert gas clusters were photoionized at 532 and 355 nm. The extent of energy absorption at these two wavelengths is clearly manifested from the charge state of the atomic ions generated upon Coulomb disintegration of the doped cluster. These experiments thus demonstrate a novel method for generation of multiply charged atomic ions of inert gases at laser intensity of ∼ 109 W/cm2. The average size of the cluster exhibiting Coulomb explosion phenomena under giga watt intensity conditions has been estimated to be ∼ 6 nm. Experimental results obtained in the present work agree qualitatively with the model proposed earlier [D. Niu, H. Li, F. Liang, L. Wen, X. Luo, B. Wang, and H. Qu, J. Chem. Phys. 122, 151103

  9. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  10. Carbon-ion beams effectively induce growth inhibition and apoptosis in human neural stem cells compared with glioblastoma A172 cells

    International Nuclear Information System (INIS)

    Carbon-ion radiotherapy (CIRT) holds promise in the treatment of glioblastoma, an aggressive X-ray–resistant brain tumor. However, since glioblastoma cells show a highly invasive nature, carbon-ion (C-ion) irradiation of normal tissues surrounding the tumor is inevitable. Recent studies have revealed the existence of neural stem cells in the adult brain. Therefore, the damaging effect of C-ion beams on the neural stem cells has to be carefully considered in the treatment planning of CIRT. Here, we investigated the growth and death mode of human neural stem cells (hNSCs) and glioblastoma A172 cells after X-ray or C-ion beam irradiation. The X-ray dose resulting in a 50% growth rate (D50) was 0.8 Gy in hNSCs and 3.0 Gy in A172 cells, while the D50 for C-ion beams was 0.4 Gy in hNSCs and 1.6 Gy in A172 cells; the relative biological effectiveness value of C-ion beams was 2.0 in hNSCs and 1.9 in A172 cells. Importantly, both X-rays and C-ion beams preferentially induced apoptosis, not necrosis, in hNSCs; however, radiation-induced apoptosis was less evident in A172 cells. The apoptosis-susceptible nature of the irradiated hNSCs was associated with prolonged upregulation of phosphorylated p53, whereas the apoptosis-resistant nature of A172 cells was associated with a high basal level of nuclear factor kappa B expression. Taken together, these data indicate that apoptosis is the major cell death pathway in hNSCs after irradiation. The high sensitivity of hNSCs to C-ion beams underscores the importance of careful target volume delineation in the treatment planning of CIRT for glioblastoma. (author)

  11. Measurement of analyzing powers of π+ and π- produced on a hydrogen and a carbon target with a 22-GeV/c incident polarized proton beam

    International Nuclear Information System (INIS)

    The analyzing powers of π+ and π- were measured using an incident 22-GeV/c transversely polarized proton beam at the Brookhaven Alternating Gradient Synchrotron. A magnetic spectrometer measured π± inclusive asymmetries on a hydrogen and a carbon target. An elastic polarimeter with a CH2 target measured pp elastic-scattering asymmetries to determine the beam polarization using published data for the pp elastic analyzing power. Using the beam polarization determined from the elastic polarimeter and asymmetries from the inclusive spectrometer, analyzing powers AN for π± were determined in the xF and pT ranges (0.45-0.8) and (0.3-1.2 GeV/c), respectively. The analyzing power results are similar in both sign and character to other measurements at 200 and 11.7 GeV/c, confirming the expectation that high-energy pion inclusive analyzing powers remain large and relatively energy independent. This suggests that pion inclusive polarimetry may be a suitable method for measuring future beam polarizations at BNL RHIC or DESY HERA. Analyzing powers of π+ and π- produced on hydrogen and carbon targets are the same. Various models to explain inclusive analyzing powers are also discussed

  12. Improvement of spread-out Bragg peak flatness for a carbon-ion beam by the use of a ridge filter with a ripple filter.

    Science.gov (United States)

    Hara, Yousuke; Takada, Yoshihisa; Hotta, Kenji; Tansho, Ryohei; Nihei, Tetsuya; Suzuki, Yojiro; Nagafuchi, Kosuke; Kawai, Ryuichi; Tanabe, Masaki; Mizutani, Shohei; Himukai, Takeshi; Matsufuji, Naruhiro

    2012-03-21

    We have developed a novel design method of ridge filters for carbon-ion therapy using a broad-beam delivery system to improve the flatness of a biologically effective dose in the spread-out Bragg peak (SOBP). So far, the flatness of the SOBP is limited to about ±5% for carbon beams since the weight control of component Bragg curves composing the SOBP is difficult. This difficulty arises from using a large number of ridge-bar steps (e.g. about 100 for a SOBP width of 60 mm) required to form the SOBP for the pristine Bragg curve with an extremely sharp distal falloff. Instead of using a single ridge filter, we introduce a ripple filter to broaden the Bragg peak so that the number of ridge-bar steps can be reduced to about 30 for SOBP with of 60 mm for the ridge filter designed for the broadened Bragg peak. Thus we can manufacture the ridge filter more accurately and then attain a better flatness of the SOBP due to well-controlled weights of the component Bragg curves. We placed the ripple filter on the same frame of the ridge filter and arranged the direction of the ripple-filter-bar array perpendicular to that of the ridge-filter-bar array. We applied this method to a 290 MeV u(-1) carbon-ion beam in Heavy Ion Medical Accelerator in Chiba and verified the effectiveness by measurements.

  13. Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2016-01-01

    Full Text Available The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2 rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.

  14. Carbon nanotube growth from catalytic nano-clusters formed by hot-ion-implantation into the SiO{sub 2}/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Arima, Hiroki; Yokoyama, Ai; Saito, Yasunao; Nakata, Jyoji [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2012-07-01

    We have studied growth of chirality-controlled carbon nanotubes (CNTs) from hot-implantation-formed catalytic nano-clusters in a thermally grown SiO{sub 2}/Si substrate. This procedure has the advantage of high controllability of the diameter and the number of clusters by optimizing the conditions of the ion implantation. In the present study, Co{sup +} ions with ion dose of 8 Multiplication-Sign 10{sup 16} cm{sup -2} are implanted in the vicinity of the SiO{sub 2}/Si interface at 300 Degree-Sign C temperature. The implanted Co atoms located in the SiO{sub 2} layer has an amorphous-like structure with a cluster diameter of several nm. In contrast, implanted Co atoms in the Si substrate are found to take a cobalt silicide structure, confirmed by the high-resolution image of transmission electron microscope. CNTs are grown by microwave-plasma-enhanced chemical vapor deposition. We have confirmed a large amount of vertically-aligned multi-walled CNTs from the Co nano-clusters formed by the hot-ion-implantation near the SiO{sub 2}/Si interface.

  15. Four-dimensional layer-stacking carbon-ion beam dose distribution by use of a lung numeric phantom.

    Science.gov (United States)

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro

    2015-07-01

    To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.

  16. The effects of carbon foil on beams in stripping-accumulation of a heavy-ion synchrotron

    International Nuclear Information System (INIS)

    Stripping-injection scheme is adopted in the synchrotron of an accelerator complex named as HITFiL. HITFIL is dedicated to cancer therapy. High intensity can be reached by using the stripping-injection as the limit of Liouville's theorem is broken due to charge-exchange. But unavoidable traversals of the circulating beams through the foil may cause beam-losses and deteriorations of beam quality, including: 1) beam-losses caused by an alteration of the particles' charge state; 2) emittance growth caused by Multiple Coulomb Scattering; and 3) decrease of mean-momentum and growth of momentum spread induced by energy loss and energy loss straggling. In this paper, the model of particle-foil interaction is established by Monte Carlo processes. The effects of the stripping foil on beams are studied based on an improvement of the ACCSIM code. (authors)

  17. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.

    Science.gov (United States)

    Rossomme, S; Palmans, H; Shipley, D; Thomas, R; Lee, N; Romano, F; Cirrone, P; Cuttone, G; Bertrand, D; Vynckier, S

    2013-08-21

    Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite

  18. ANSYS simulation study on displacement of carbon fiber reinforced concrete beam%碳纤维加固混凝土梁位移ANSYS模拟研究

    Institute of Scientific and Technical Information of China (English)

    王良超; 杨治华; 刘敏

    2012-01-01

    For beam mid-span displacement, theoretical calculation and ANSYS modeling computational analysis have been done to quantitative analysis of the effect of carbon fiber reinforcement beam, and improve the further relevant reinforcement theory, to provide a theoretical and com- putational support for real-strengthening works. The analysis shows that the values and trends of finite element analysis and theoretical calculations are very similar, which indicates that the finite element analysis is capable to simulate the beam actual stress state, the displacement of FRP rein- forced beam decreases 14.08%.%针对梁体跨中位移,通过理论计算以及ANSYS建模分析计算分析比较,定量分析碳纤维加固梁体的效果,进一步完善相关加固理论,为现实加固工程提供理论和计算支持,分析表明,有限元分析计算值和理论计算值在数值和发展趋势上都有很大的相似性,说明有限元分析能较好的模拟梁体实际受力状态,FRP加固后梁体位移减小14.08%。

  19. Study of the time and space distribution of $\\beta^+$ emitters from $80\\ \\mega\\electronvolt/$u carbon ion beam irradiation on PMMA

    CERN Document Server

    Agodi, C; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Voena, C

    2012-01-01

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear $511\\ \\kilo\\electronvolt$ photons produced by positrons annihilation from $\\beta^+$ emitters created by the beam. This paper reports rate measurements of the $511\\ \\kilo\\electronvolt$ photons emitted after the interactions of a $80\\ \\mega\\electronvolt / u$ fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a Poly-methyl methacrylate target. The time evolution of the $\\beta^+$ rate was parametrized and the dominance of $^{11}C$ emitters over the other species ($^{13}N$, $^{15}O$, $^{14}O$) was observed, measuring the fraction of carbon ions activating $\\beta^+$ emitters $A_0=(10.3\\pm0.7)\\cdot10^{-3}$. The average depth in the PMMA of the positron annihilation from $\\beta^+$ emitters was also meas...

  20. Study of the time and space distribution of {beta}{sup +} emitters from 80MeV/u carbon ion beam irradiation on PMMA

    Energy Technology Data Exchange (ETDEWEB)

    Agodi, C. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Cirrone, G.A.P. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Collamati, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Cuttone, G. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Napoli, M. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Di Domenico, A.; Faccini, R.; Ferroni, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Fiore, S. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); Gauzzi, P. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Iarocci, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Scienze di Base e Applicate per l' Ingegneria, Sapienza Universita di Roma, Roma (Italy); Marafini, M., E-mail: michela.marafini@roma1.infn.it [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Roma (Italy); Mattei, I. [Dipartimento di Fisica, Roma Tre Universita di Roma, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Paoloni, A. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); and others

    2012-07-15

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear 511keV photons produced by positrons annihilation from {beta}{sup +} emitters created by the beam. This paper reports rate measurements of the 511keV photons emitted after the interactions of a 80MeV/u fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a poly-methyl methacrylate target. The time evolution of the {beta}{sup +} rate was parametrized and the dominance of {sup 11}C emitters over the other species ({sup 13}N, {sup 15}O, {sup 14}O) was observed, measuring the fraction of carbon ions activating {beta}{sup +} emitters to be (10.3{+-}0.7) Multiplication-Sign 10{sup -3}. The average depth in the PMMA of the positron annihilation from {beta}{sup +} emitters was also measured, D{sub {beta}{sup +}}=5.3{+-}1.1mm, to be compared to the expected Bragg peak depth D{sub Bragg}=11.0{+-}0.5mm obtained from simulations.

  1. Effect of particle size on the chemisorption and decomposition of carbon monoxide by palladium and nickel clusters

    Science.gov (United States)

    Doering, D. L.; Poppa, H.; Dickinson, J. T.

    1981-01-01

    The chemisorption of gases on well-defined, supported metal particles is a model for basic processes in heterogeneous catalysis. In this study, the chemisorption and decomposition of carbon monoxide on palladium and nickel particles was examined as a function of particle size. Particulate films with average particle sizes ranging from 1 to 10 nm were grown by vapor deposition on UHV-cleaved mica. Successive CO adsorption-desorption cycles resulted in the accumulation of carbon on the particles, which suppressed CO adsorption. The rate of carbon accumulation was strongly dependent on particle size and was higher for Ni than for Pd over the same size range. Carbon was removed from both metals by oxygen treatments at elevated temperatures. However, a mixture of CO and O2 was effective for monitoring the removal of carbon from palladium.

  2. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    Directory of Open Access Journals (Sweden)

    Xiaoxing Ke

    2013-02-01

    Full Text Available Focused-electron-beam-induced deposition (FEBID is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.

  3. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if

  4. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer

    Science.gov (United States)

    Inaniwa, T.; Kanematsu, N.; Suzuki, M.; Hawkins, R. B.

    2015-05-01

    Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if the

  5. Properties of carbon beams for radiotherapy with three different energies: 135 MeV/u, 290 MeV/u and 400 MeV/u

    International Nuclear Information System (INIS)

    Sets of plastic nuclear track detectors, used as spectrometers of linear energy transfer (LET), were exposed to carbon beams at 3 different initial energy levels (135, 290, and 400 MeV/u) obtained from the HIMAC accelerator (NIRS, Chiba, Japan). The detectors were positioned behind PMMA filters of different thickness chosen so as to cover whole area of the Bragg curve. The LET spectra were measured and the dependences of the absorbed dose and other biological weighted factors on the depth were estimated. (orig.)

  6. Measurement of analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region with a 22-GeV/c polarized proton beam.

    Science.gov (United States)

    Tojo, J; Alekseev, I; Bai, M; Bassalleck, B; Bunce, G; Deshpande, A; Doskow, J; Eilerts, S; Fields, D E; Goto, Y; Huang, H; Hughes, V; Imai, K; Ishihara, M; Kanavets, V; Kurita, K; Kwiatkowski, K; Lewis, B; Lozowski, W; Makdisi, Y; Meyer, H-O; Morozov, B V; Nakamura, M; Przewoski, B; Rinckel, T; Roser, T; Rusek, A; Saito, N; Smith, B; Svirida, D; Syphers, M; Taketani, A; Thomas, T L; Underwood, D; Wolfe, D; Yamamoto, K; Zhu, L

    2002-07-29

    The analyzing power for proton-carbon elastic scattering in the Coulomb-nuclear interference region of momentum transfer, 9.0x10(-3)<-t<4.1x10(-2) (GeV/c)(2), was measured with a 21.7 GeV/c polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to nonflip amplitude, r(5), was obtained from the analyzing power to be Rer(5)=0.088+/-0.058 and Imr(5)=-0.161+/-0.226. PMID:12144435

  7. Measurement of analyzing power for proton-carbon elastic scattering in the Coulomb-nuclear interference region with a 22-GeV/c polarized proton beam

    International Nuclear Information System (INIS)

    The analyzing power for proton-carbon elastic scattering in the Coulomb-nuclear interference region of momentum transfer, 9.0x10-3-2 (GeV/c)2, was measured with a 21.7 GeV/c polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to nonflip amplitude, r5, was obtained from the analyzing power to be Rer5=0.088±0.058 and Imr5=-0.161±0.226

  8. Atomic scale modelling of nanosize Ni sub 3 Al cluster beam deposition on Al, Ni and Ni sub 3 Al (1 1 1) surfaces

    CERN Document Server

    Kharlamov, V S; Hou, M

    2002-01-01

    The slowing down of Ni sub 3 Al clusters on a Al, Ni and Ni sub 3 Al (1 1 1) surfaces is studied by atomic scale modelling. The semi-grand canonical metropolis Monte Carlo is used for the preparation of isolated clusters at thermodynamic equilibrium. The cluster deposition on the surface is studied in detail by classical Molecular Dynamics simulations that include a model to account for electron-phonon coupling. Long- and short-range orders in the cluster are evaluated as functions of temperature in an impact energy range between 0 and 1.5 eV/atom. The interaction between the Ni sub 3 Al cluster and an Al surface is characterised low short range (chemical) disorder. No sizeable epitaxy is found, subsequent to the impact. In contrast, in the case of Ni and Ni sub 3 Al substrates, which are harder materials than aluminium, the chemical disorder is higher and epitaxial accommodation is possible. With these substrates, chemical disorder in the cluster is an increasing function of the impact energy, as well as of ...

  9. 基于动态聚类的单声脉冲多波束测深数据滤波%Single ping filtering of multi-beam echo sounder data based on dynamic clustering

    Institute of Scientific and Technical Information of China (English)

    陈小龙; 庞永杰; 李晔

    2013-01-01

    For the data characteristics of interferometric multi-beam echo sounder (MBES), a single ping filtering method of MBES based on dynamic clustering is proposed. Considering the continuity of real terrain, the problem of outlier detection is transformed into clustering of real terrain data. Through continuous clustering of real terrain data, the outliers in data are eliminated. For the large data size in the process of clustering, dynamic clustering is adopted after partitioning clustering sets. Simultaneously, a trend adjusted factor is introduced for the feature domain selection, which is helpful for the decision of clustering direction. At last, the improved k-means method is utilized for output of clustering object. The results from processing sea test data of GeoSwath MBES show that the algorithm has good adaptability for different terrain characteristics, and is simple for implementation, which can be used for real-time filtering and post-processing of MBES data.%针对相干型多波束测深数据的特点,提出了一种基于动态聚类的单声脉冲多波束测深数据实时滤波算法。利用地形的连续性特性,将测深数据的异常值检测问题转化为真实地形的聚类问题,通过不断地聚类提取真实的地形数据,对异常值进行剔除。在聚类过程中,由于数据量很大,对聚类集合进行划分后采用动态聚类的方式,同时引入地形趋势变化调节因子,选定地形特征域,对聚类的方向进行判断,最后利用改进后的 k 均值法进行聚类目标输出。对 GeoSwath 多波束测深系统的真实海上试验数据的处理结果表明,该算法对地形特征具有较强的适应能力,且实现简单,可用于多波束的在线滤波以及测深数据的后处理。

  10. Radiation curing of carbon fibre composites

    Science.gov (United States)

    Spadaro, G.; Alessi, S.; Dispenza, C.; Sabatino, M. A.; Pitarresi, G.; Tumino, D.; Przbytniak, G.

    2014-01-01

    Epoxy/carbon fibre reinforced composites were produced by means of e-beam irradiation through a pulsed 10 MeV electron beam accelerator. The matrix consisted of a difunctional epoxy monomer (DGEBA) and an initiator of cationic polymerisation, while the reinforcement was a unidirectional high modulus carbon fibre fabric. Dynamic mechanical thermal analysis was carried out in order to determine the cross-linking degree. The analysis pointed out a nonuniformity in the cross-linking degree of the e-beam cured panels, with the formation of clusters at low Tg (glass transition temperature) and clusters at high Tg. An out-of-mould post irradiation thermal treatment on e-beam cured samples provides a higher uniformity in the network although some slight degradation effects. Mode I delamination fracture toughness and Interlaminar Shear Strength (ISS) were also investigated by means of Double Cantilever Beam (DCB) and Short Beam Shear tests, respectively. Results from this mechanical characterisation allowed to correlate fracture toughness of the bulk matrix resin, cross-linking density and fibre/matrix interaction to the delamination fracture behaviour of the fibre reinforced material.

  11. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  12. A comparison study between atomic and ionic nitrogen doped carbon films prepared by ion beam assisted cathode arc deposition at various pulse frequencies

    International Nuclear Information System (INIS)

    A comparison study of microstructure and bonds composition of carbon nitride (CNx) films fabricated at atomic and ionic nitrogen source by pulse cathode arc method was presented. The relative fractions of CN/CC bonds, N-sp3C/N-sp2C and graphite-like/pyridine-like N bonding configurations in the CN films were evaluated by combining C1s and N1s X-ray photoelectron spectroscopy with the hardness and optical band gap measurement. The dependence of microstructure (quantity, size and disordering degree of Csp2 clusters) of CNx films on the nitrogen source and pulse frequency was determined by Raman spectroscopy. Films with high atomic ratio of nitrogen/carbon (0.17) and high hardness were produced at ionic nitrogen source and low pulse frequency. The results showed that ionic nitrogen source facilitated the formation of CN bonds and N-sp2C bonding configurations (mainly in graphite-like N form). Moreover presenting an optimum pulse frequency (∼10 Hz) leaded to the most nitrogen coordinated with sp3-C and the highest ratio of CN/CC bonds in the CNx films. An equilibrium action mechanism might exist between the quantity and energy of carbon and nitrogen ions/atoms, giving more nitrogen-incorporated carbon materials. These allow us to obtain the high content of N-Csp3 bonding and expected bonding structure by optimizing pulse frequency and nitrogen source.

  13. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki; /Kyoto U.

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for {nu}{sub {mu}} {yields} {nu}{sub x} oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance ({nu}{sub {mu}}N {yields} {mu}{sup -} N{pi}{sup +}) and coherent pion production interacting with the entire nucleus ({nu}{sub {mu}}A {yields} {mu}{sup -} A{pi}{sup +}), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, {nu}{sub {mu}} {sup 12}C {yields} {mu}{sup -12}C{pi}{sup +}, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 10{sup 20} protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 10{sup 20} protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged

  14. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki [Kyoto Univ. (Japan)

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio

  15. Diallyl disulfide enhances carbon ion beams-induced apoptotic cell death in cervical cancer cells through regulating Tap73 /ΔNp73.

    Science.gov (United States)

    Di, Cuixia; Sun, Chao; Li, Hongyan; Si, Jing; Zhang, Hong; Han, Lu; Zhao, Qiuyue; Liu, Yang; Liu, Bin; Miao, Guoying; Gan, Lu; Liu, Yuanyuan

    2015-01-01

    Diallyl disulfide (DADS), extracted from crushed garlic by steam-distillation, has been reported to provide the anticancer activity in several cancer types. However, the effect of DADS on high-LET carbon beams - induced cell death remains unknown. Therefore, we used human cervical cancer cells to elucidate the molecular effects of this diallyl sulfide. Radiotherapy remains the mainstay of treatment, especially in advanced cervical cancer and there is still space to improve the radiosensitivity to reduce radiation dosage. In this study, we found that radiation effects evoked by high-LET carbon beam was marked by inhibition of cell viability, cell cycle arrest, significant rise of apoptotic cells, regulation of transcription factor, such as p73, as well as alterations of crucial mediator of the apoptosis pathway. We further demonstrated that pretreatment of 10 µM DADS in HeLa cells exposed to radiation resulted in decrease in cell viability and increased radiosensitivity. Additionally, cells pretreated with DADS obviously inhibited the radiation-induced G2/M phase arrest, but promoted radiation-induced apoptosis. Moreover, combination DADS and the radiation exacerbated the activation of apoptosis pathways through up-regulated ration of pro-apoptotic Tap73 to anti-apoptotic ΔNp73, and its downstream proteins, such as FASLG, and APAF1. Taken together, these results suggest that DADS is a potential candidate as radio sensitive agent for cervical cancer. PMID:26505313

  16. Effect of electron beam irradiation on multi-walled carbon nanotubes%电子束辐照对多壁碳纳米管的影响

    Institute of Scientific and Technical Information of China (English)

    李斌; 凤仪; 丁克望; 钱刚; 张学斌; 刘衍芳

    2014-01-01

    在室温下采用透射电子显微镜中汇聚的电子束辐照多壁碳纳米管。结果表明,在能量为100 keV的电子束辐照下除了碳纳米管管壁有一些弯曲外没有其他结构被破坏;当电子能量增加到200 keV时,纳米管有明显的损伤,可以观察到纳米管的无定型化、纳米管外壁的凹坑和缺口。200 keV的电子束辐照还能形成碳洋葱和2根多壁纳米管的焊接。多壁碳纳米管的离位阀能为83~110 keV。能量超过阀能的电子束可以很轻易地损伤纳米管而低于阀能的电子束则很难损坏纳米管,其损伤机理为溅射和原子离位。%Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.

  17. Investigation of the microstructure, mechanical properties and tribological behaviors of Ti-containing diamond-like carbon films fabricated by a hybrid ion beam method

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Ke, Peiling [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Moon, Myoung-Woon; Lee, Kwang-Ryeol [Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-07-31

    Diamond-like carbon (DLC) films with various titanium contents were investigated using a hybrid ion beam system comprising an anode-layer linear ion beam source and a DC magnetron sputtering unit. The film composition and microstructure were characterized carefully by X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy, revealing that the doped Ti atoms had high solubility in the DLC films. The maximum solubility was found to lie between about 7 and 13 at.%. When the Ti content was lower than this solubility, the doped Ti atoms dissolved in the DLC matrix and the films exhibited the typical features of the amorphous DLC structure and displayed low compressive stresses, friction coefficients and wear rates. However, as the doped content exceeded the solubility, Ti atoms bonded with C atoms, resulting in the formation of carbide nano-particles embedded in the DLC matrix. Although the emergence of the carbide nano-particles promoted graphitizing due to a catalysis effect, the film hardness was enhanced to a great extent. On the other hand, the hard carbides particles caused abrasive wear behavior, inducing a high friction coefficient and wear rate. - Highlights: Black-Right-Pointing-Pointer Ti doped DLC films (Ti {approx} 24 at.% )were deposited by a hybrid ion beam system. Black-Right-Pointing-Pointer Solubility of the Ti atoms in the DLC films was found around 7 {approx} 13 at .%. Black-Right-Pointing-Pointer Microstructure evolution from DLC to nanocomposite played key role in film behaviors.

  18. Three-dimensional thermal simulations of thin solid carbon foils for charge stripping of high current uranium ion beams at a proposed new heavy-ion linac at GSI

    Science.gov (United States)

    Tahir, N. A.; Kim, V.; Schlitt, B.; Barth, W.; Groening, L.; Lomonosov, I. V.; Piriz, A. R.; Stöhlker, Th.; Vormann, H.

    2014-04-01

    This paper presents an extensive numerical study of heating of thin solid carbon foils by 1.4 MeV/u uranium ion beams to explore the possibility of using such a target as a charge stripper at the proposed new Gesellschaft für Schwerionenforschung high energy heavy-ion linac. These simulations have been carried out using a sophisticated 3D computer code that accounts for physical phenomena that are important in this problem. A variety of beam and target parameters have been considered. The results suggest that within the considered parameter range, the target will be severely damaged by the beam. Thus, a carbon foil stripper does not seem to be a reliable option for the future Gesellschaft für Schwerionenforschung high energy heavy-ion linac, in particular, at FAIR design beam intensities.

  19. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    Science.gov (United States)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  20. MODIFICATION OF CARBON STEEL BY LASER SURFACE MELTING: PART II: EFFECT OF LASER BEAM POWER ON MICROSTRUCTURAL FEATURES AND SURFACE HARDNESS

    Directory of Open Access Journals (Sweden)

    Hashem F. El-Labban

    2013-01-01

    Full Text Available The surface hardness has an important effect on the wear resistance of different materials. The present study aims to improve the surface hardness of carbon steel through the application of laser surface melting with suitable conditions. The laser beam power and travelling speed are the main factors that affect the properties of the treated zone. In this study, three different conditions of laser beam power (1800, 1500 and 1200 W at fixed travelling speed of 1000 mm min-1 were chosen to study the effect of laser beam power. The resulted laser treated specimens were investigated in macro and microscopically scale using optical and scanning electron microscope. Hardness measurements were also carried out through the thickness of the laser treated zones. The laser treated areas with all used powers results in melted and solidified zone on the surface of the steel. The laser power of 1800 W results in the deepest value of the laser treated zone (about 1.7 mm. Moreover, by increasing the laser power, the width of the treated zone was slightly increases. At areas near the free surface, large martensite plates were observed in higher laser power (1800 W, while longer acicular martensite was observed in lower laser power (1200 W. For laser power of 1800 W, the bainite structures in ferrite grains were more pronounced in larger areas and in closer areas to the free surface. On the other hand, the lower laser power shows higher hardness on the free surface than that of higher power. The sizes of Heat Affect Zone (HAZ areas were increased by increasing the laser beam power. In all conditions, the heat affected zone areas were composed of partially decomposed pearlite in ferrite grains.

  1. σ-Aromatic cyclic M3(+) (M = Cu, Ag, Au) clusters and their complexation with dimethyl imidazol-2-ylidene, pyridine, isoxazole, furan, noble gases and carbon monoxide.

    Science.gov (United States)

    Pan, Sudip; Saha, Ranajit; Mandal, Subhajit; Chattaraj, Pratim K

    2016-04-28

    The σ-aromaticity of M3(+) (M = Cu, Ag, Au) is analyzed and compared with that of Li3(+) and a prototype σ-aromatic system, H3(+). Ligands (L) like dimethyl imidazol-2-ylidene, pyridine, isoxazole and furan are employed to stabilize these monocationic M3(+) clusters. They all bind M3(+) with favorable interaction energy. Dimethyl imidazol-2-ylidene forms the strongest bond with M3(+) followed by pyridine, isoxazole and furan. Electrostatic contribution is considerably more than that of orbital contribution in these M-L bonds. The orbital interaction arises from both L → M σ donation and L ← M back donation. M3(+) clusters also bind noble gas atoms and carbon monoxide effectively. In general, among the studied systems Au3(+) binds a given L most strongly followed by Cu3(+) and Ag3(+). Computation of the nucleus-independent chemical shift (NICS) and its different extensions like the NICS-rate and NICS in-plane component vs. NICS out-of-plane component shows that the σ-aromaticity in L bound M3(+) increases compared to that of bare clusters. The aromaticity in pyridine, isoxazole and furan bound Au3(+) complexes is quite comparable with that in the recently synthesized Zn3(C5(CH3)5)3(+). The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital also increases upon binding with L. The blue-shift and red-shift in the C-O stretching frequency of M3(CO)3(+) and M3(OC)3(+), respectively, are analyzed through reverse polarization of the σ- and π-orbitals of CO as well as the relative amount of OC → M σ donation and M → CO π back donation. The electron density analysis is also performed to gain further insight into the nature of interaction. PMID:26624276

  2. Rhodium based clusters for oxygen reduction and hydrogen oxidation in 0.5 M H2SO4, tolerant to methanol and carbon monoxide, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Uribe-Godinez, J.; Jimenez-Sandoval, O.; Borja-Arco, E.; Altamirano-Gutierrez, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Queritaro (Mexico); Castellanos, R.H. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Queretaro, Queretaro (Mexico)

    2008-07-01

    Rhodium (Rh6(CO)16) and novel Rh-based clusters were prepared using thermolysis techniques under different conditions in N2 and H2 reaction media, as well as in n-nonane, o-xylene, 1,2-dichlorobenzene and dimethylsulfoxide. The clusters were used as novel electrocatalysts for oxygen reduction reaction (ORR) in the absence and presence of 1.0 and 2.0 M methanol solutions. The catalysts were also used for hydrogen oxidation reaction (HOR) with pure hydrogen (H2) and in the presence of carbon monoxide (CO). Rotating disk electrode measurements were used to analyze the materials. The study showed that the electrocatalyst support ratio plays a significant role in the electrochemical behaviour of the materials. Rh6(CO)16 and Rh2(1,2-DCB) presented the best electrocatalytic behaviour for ORR and HOR in the absence and presence of methanol and CO. The study demonstrated that the rhodium-based materials are capable of performing ORR and HOR while being tolerant of both methanol and CO. 3 refs., 3 figs.

  3. 14th international symposium on molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

  4. 14th international symposium on molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

  5. 14th international symposium on molecular beams

    International Nuclear Information System (INIS)

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation ampersand dynamics; and surfaces

  6. Design and Analysis Methodologies for Inflated Beams

    NARCIS (Netherlands)

    Veldman, S.L.

    2005-01-01

    The central theme of the thesis is bending behaviour of inflated beams. Three different types of beams have been analysed for the bending load case: a straight cylindrical beam made of anisotropic foil material, a conical beam made of an isotropic foil material, and a carbon fibre braided beam. The

  7. Dispersive oxidation of rhodium clusters in Na-Y by the combined action of zeolite protons and carbon monoxide

    International Nuclear Information System (INIS)

    This paper uses x-ray photoelectron spectroscopy, fourier transform infrared spectroscopy and temperature programmed mass-spectrometric analysis to study the interaction of Na-Y supported rhodium with hydrogen, carbon monoxide, and zeolite protons. This report attempts to clarify the mechanism of dispersive oxidation of reduced Rh particles in the presence of CO, leading to the formation of Rh+(CO)2 cations

  8. Synergistic effect of heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin and X-rays, but not carbon-ion beams, on lethality in human oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    The purpose of this study is to clarify the effect of a heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in combination with X-rays or carbon-ion beams on cell killing in human oral squamous cell carcinoma LMF4 cells. Cell survival was measured by colony formation assay. Cell-cycle distribution was analyzed by flow cytometry. Expression of DNA repair-related proteins was investigated by western blotting. The results showed 17-AAG to have synergistic effects on cell lethality with X-rays, but not with carbon-ion beams. The 17-AAG decreased G2/M arrest induced by X-rays, but not by carbon-ion beams. Both X-ray and carbon-ion irradiation up-regulated expression of non-homologous end-joining-associated proteins, Ku70 and Ku80, but 17-AAG inhibited only X-ray-induced up-regulation of these proteins. These results show that 17-AAG with X-rays releases G2/M phase arrest; cells carrying misrepaired DNA damage then move on to the G1 phase. We demonstrate, for the first time, that the radiosensitization effect of 17-AAG is not seen with carbon-ion beams because 17-AAG does not affect these changes. (author)

  9. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA.

  10. A study of V79 cell survival after for proton and carbon ion beams as represented by the parameters of Katz' track structure model

    DEFF Research Database (Denmark)

    Grzanka, Leszek; Waligórski, M. P. R.; Bassler, Niels

    Katz’s theory of cellular track structure (1) is an amorphous analytical model which applies a set of four cellular parameters representing survival of a given cell line after ion irradiation. Usually the values of these parameters are best fitted to a full set of experimentally measured survival...... curves available for a variety of ions. Once fitted, using these parameter values and the analytical formulae of the model calculations, cellular survival curves and RBE may be predicted for that cell line after irradiation by any ion, including mixed ion fields. While it is known that the Katz model...... carbon irradiation. 1. Katz, R., Track structure in radiobiology and in radiation detection. Nuclear Track Detection 2: 1-28 (1978). 2. Furusawa Y. et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne beams. Radiat Res. 2012 Jan; 177...

  11. Monte Carlo simulations of the relative biological effectiveness for DNA double strand breaks from 300 MeV u−1 carbon-ion beams

    International Nuclear Information System (INIS)

    Monte Carlo simulations are used to calculate the relative biological effectiveness (RBE) of 300 MeV u−1 carbon-ion beams at different depths in a cylindrical water phantom of 10 cm radius and 30 cm long. RBE values for the induction of DNA double strand breaks (DSB), a biological endpoint closely related to cell inactivation, are estimated for monoenergetic and energy-modulated carbon ion beams. Individual contributions to the RBE from primary ions and secondary nuclear fragments are simulated separately. These simulations are based on a multi-scale modelling approach by first applying the FLUKA (version 2011.2.17) transport code to estimate the absorbed doses and fluence energy spectra, then using the MCDS (version 3.10A) damage code for DSB yields. The approach is efficient since it separates the non-stochastic dosimetry problem from the stochastic DNA damage problem. The MCDS code predicts the major trends of the DSB yields from detailed track structure simulations. It is found that, as depth is increasing, RBE values increase slowly from the entrance depth to the plateau region and change substantially in the Bragg peak region. RBE values reach their maxima at the distal edge of the Bragg peak. Beyond this edge, contributions to RBE are entirely from nuclear fragments. Maximum RBE values at the distal edges of the Bragg peak and the spread-out Bragg peak are, respectively, 3.0 and 2.8. The present approach has the flexibility to weight RBE contributions from different DSB classes, i.e. DSB0, DSB+ and DSB++. (paper)

  12. Under-response of a PTW-60019 microDiamond detector in the Bragg peak of a 62 MeV/n carbon ion beam

    Science.gov (United States)

    Rossomme, S.; Hopfgartner, J.; Vynckier, S.; Palmans, H.

    2016-06-01

    To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination.

  13. Under-response of a PTW-60019 microDiamond detector in the Bragg peak of a 62 MeV/n carbon ion beam.

    Science.gov (United States)

    Rossomme, S; Hopfgartner, J; Vynckier, S; Palmans, H

    2016-06-21

    To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination. PMID:27224547

  14. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  15. Hypofractionated carbon ion therapy delivered with scanned ion beams for patients with hepatocellular carcinoma – feasibility and clinical response

    International Nuclear Information System (INIS)

    Photon-based radiation therapy does currently not play a major role as local ablative treatment for hepatocellular carcinoma (HCC). Carbon ions offer distinct physical and biological advantages. Due to their inverted dose profile and the high local dose deposition within the Bragg peak, precise dose application and sparing of normal tissue is possible. Furthermore, carbon ions have an increased relative biological effectiveness (RBE) compared to photons. A total of six patients with one or more HCC-lesions were treated with carbon ions delivered by the raster-scanning technique according to our clinical trial protocol. Diagnosis of HCC was confirmed by histology or two different imaging modalities (CT and MRI) according to the AASLD-guidelines. Applied fractionation scheme was 4 × 10 Gy(RBE). Correct dose application was controlled by in-vivo PET measurement of β + −activity in the irradiated tissue shortly after treatment. Patients were observed for a median time period of 11.0 months (range, 3.4 – 12.7 months). Imaging studies showed a partial response in 4/7 lesions and a stable disease in 3/7 lesions in follow-up CT- and MRI scans. Local control was 100%. One patient with multifocal intrahepatic disease underwent liver transplantation 3 months after carbon ion therapy. During radiotherapy and the follow-up period no severe adverse events have occurred. We report the first clinical results of patients with HCC undergoing carbon ion therapy using the rasterscanning technique at our institution. All patients are locally controlled and experienced no higher toxicities in a short follow-up period. Further patients will be included in our prospective Phase-I clinical trial PROMETHEUS-01 (NCT01167374)

  16. Measurement of neutral current neutral pion production on Carbon in a Few-GeV Neutrino Beam

    OpenAIRE

    Kurimoto, Y

    2009-01-01

    The SciBooNE Collaboration has measured neutral current neutral pion production by the muon neutrino beam at a polystyrene target (C8H8). We obtained (7.7+- 0.5(stat.)+0.4-0.5 (sys.)) x 10^-2 as cross section ratio of the neutral current neutral pion production to total charged current cross section at the mean neutrino energy of 1.16 GeV. This result is consistent with the Monte Carlo prediction based on the Rein-Sehgal model

  17. MODIFICATION OF CARBON STEEL BY LASER SURFACE MELTING: PART I: EFFECT OF LASER BEAM TRAVELLING SPEED ON MICROSTRUCTURAL FEATURES AND SURFACE HARDNESS

    Directory of Open Access Journals (Sweden)

    Hashem F. El-Labban

    2013-01-01

    Full Text Available The present study aims to improve the surface hardness of carbon steel by application of laser surface melting of effective conditions. The travelling speed of laser beam during this treatment is one of the important treatment conditions. This study aims to investigate the effect of laser surface melting with different beam speeds on macro and microstructure as well as the hardness distribution through the thickness of carbon steel. To achieve this target, three different travelling speeds (1500, 1000 and 500 mm min-1 at a constant beam power of 800 W were chosen in this study. The resulted laser treated specimens were investigated in macro and microscopically scale using optical and scanning electron microscope. Hardness measurements were also carried out through the thickness of the laser treated specimens. The laser treated areas with all used travelling speeds results in melted and solidified zone on the surface of the steel. In the same time, Plates of acicular martensite structure were observed within the upper part of the melted and solidified zone in almost all experimental conditions, while some bainite structure in ferrite grains are detected in its lower part. By increasing the travelling speed, the depth of the laser treated zone was decreases, while travelling speed has much less significant effect on the laser treated zone width. The size of the formed martensite plates was increased by decreasing the travelling speed from 1500 to 500 mm min-1. On the other hand, the travelling speed has a straight effect on the length of the acicular martensite; as the travelling speed increases, the acicular martensite became longer, while it shows fine acicular martensite at lower travelling speeds. The depth that full martensite structure can be reached is increased by increasing travelling speed. At lower travelling speed (500 mm min-1, large amount of bainite structure is observed at the center of the treated zone up to its lower end. The

  18. Risk of simulated microgravity on testicular injury induced by high-LET carbon-ion beams in mice

    International Nuclear Information System (INIS)

    This study investigated the impact of simulated microgravity on acute injury induced by low doses of carbon ions in male reproductive organs of mice, and determined alterations in spermatogenic function and expression levels of apoptotic factors in mice following exposure to acute irradiation after 7 days of simulated microgravity. The results demonstrated that significant reductions in spermatozoa, primary spermatocytes and spermatogonia, and increased globular cells in seminiferous tubule and pro-apoptotic proteins were observed in the group exposed to over 0.4 Gy irradiation. Collectively, the data suggest that lesions inflicted by simulated microgravity are not markedly modified by lower doses of irradiation (0.2 Gy) in mouse testis compared to the control group. However, testicular impairments were markedly evident in the group exposed to higher doses of carbon ions plus simulated microgravity, which may be due at least in part to elevated apoptosis initiated by the mitochondrial apoptosis pathway in germ cells. (authors)

  19. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  20. Estudio Experimental de Piezas Lineales de Hormigón Reforzadas con Fibras de Carbono Experimental Study of Reinforced Concrete Beams Strengthened with Carbon Fibers

    Directory of Open Access Journals (Sweden)

    M. Valcuende

    2004-01-01

    Full Text Available Se ha estudiado el comportamiento de seis vigas reforzadas simultáneamente con láminas y tejidos de fibra de carbono. Se analiza, para este tipo de refuerzos, la validez de dos de los métodos de cálculo posiblemente más utilizados. En ambos métodos se plantean las ecuaciones de equilibrio de fuerzas y momentos, pero se introducen suposiciones diferentes: i el acero tiene suficiente capacidad plástica para no romperse y ii el agotamiento se produce siempre por rotura de la lámina. Los resultados obtenidos ponen de manifiesto que refuerzos de láminas y tejidos de fibra de carbono influyen notablemente sobre las piezas, mejorando su capacidad portante y modificando su comportamiento estructural en cuanto a rigidez y ductilidadA study on the behaviour of six beams reinforced with carbon fiber laminates and fabrics was done. The validity of the two most commonly used methods of evaluating the effects of these reinforcements was analyzed. Both methods propose equilibrium equations based on forces and moments, although introducing two different suppositions: i that the steel posesses enough elasticity to avoid breakage, and ii failure is always produced by the breakage of the laminate. The results obtained demonstrate that carbon fiber laminates and fabric reinforcements have notable influence on the pieces, improving their loading capacities and modifying their structural behavior regarding stiffness and ductility

  1. Foil dissociation of 40-120 keV/p hydrogen clusters

    International Nuclear Information System (INIS)

    We report on measurements of angular and charge state distributions of hydrogen fragments resulting from the dissociation of fast Hn+ clusters (n ≤ 13) in a carbon foil. The proximity effects on the fragment neutralization has been investigated for beam velocities above and around the Bohr velocity. At a given velocity the angular width and the yield of neutral atoms are observed to saturate at n ≥ 5 and n ≥ 7, respectively. The interpretation of these behaviours provides some insight on the collective aspects of the collisions and on the structure of hydrogen clusters

  2. Theoretical Insight into Sc2O@C84: Interplay between Small Cluster and Large Carbon Cage.

    Science.gov (United States)

    Guo, Yi-Jun; Zhao, Xiang; Zhao, Pei; Yang, Tao

    2015-10-15

    Very recently, a series of endohedral fullerenes Sc2O@C2n (n = 35-47) were facilely produced. However, only two of them have been further characterized so far. Theoretically, we studied another discandium oxide endohedral fullerene without any characterizations, Sc2O@C84, which is the second most-abundant species in terms of relative heights of all mass spectrum peaks. Two thermodynamically stable isomers with isolated pentagon rule-obeying cages were found, namely, Sc2O@C2v(51575)-C84 and Sc2O@C1(51580)-C84. This is the first case that an endohedral fullerene containing the C2v(51575)-C84 cage acts as the lowest-energy isomer, and it is the first report of a clusterfullerene containing the C1(51580)-C84 cage. The endohedral Sc2O cluster can keep its ideal structure after encapsulation, while both C84 cages have deformed dramatically. Orbital analysis suggests that nucleophilic and oxidization reactions of both isomers should take place on the cage, while regioselectivity of Sc2O@C2v(51575)-C84 and Sc2O@C1(51580)-C84 is different due to their different characteristics of the highest occupied orbital distribution. Two-dimensional electron localization function and Laplacian of electron density maps unambiguously indicate strong electrostatic interactions exist between one scandium atom and the oxygen one. Meanwhile, overlaps of occupied metal atom orbitals and the cage ones along with Mayer bond order analysis identify that covalent interactions between a scandium atom and each C84 cage cannot be neglected. At last, (13)C NMR, UV-vis-NIR, and IR spectra of both Sc2O@C84 isomers were simulated theoretically. Because of their structural difference, all spectra between two isomers are significantly divergent. Consequently, these spectra are helpful to distinguish Sc2O@C2v(51575)-C84 and Sc2O@C1(51580)-C84 in further experimental characterizations. PMID:26390279

  3. Monte Carlo Calculations of Dose to Medium and Dose to Water for Carbon Ion Beams in Various Media

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Petersen, Jørgen B.B.; Jäkel, Oliver;

    treatment plans. Here, we quantisize the effect of dose to water vs. dose to medium for a series of typical target materials found in medical physics. 2     Material and Methods The Monte Carlo code FLUKA [Battistioni et al. 2007] is used to simulate the particle fluence spectrum in a series of target......1     Background In clinical practice the quantity dose to water (Dw ) is used as a reference standard for dosimeters and treatment planning systems. Treatment planning systems usually rely on analytical representation of the particle beam, which are normally expressed as dose with respect to water...... for water. This represents the case that our “detector” is an infinitesimal small non-perturbing entity made of water, where charged particle equilibrium can be assumed following the Bragg-Gray cavity theory. Dw and Dm are calculated for typical materials such as bone, brain, lung and soft-tissues using...

  4. Use of density functional theory method to calculate structures of neutral carbon clusters C{sub n} (3 ≤ n ≤ 24) and study their variability of structural forms

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. W.; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw [Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320, Taiwan (China)

    2015-02-28

    In this work, we present modifications to the well-known basin hopping (BH) optimization algorithm [D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997)] by incorporating in it the unique and specific nature of interactions among valence electrons and ions in carbon atoms through calculating the cluster’s total energy by the density functional tight-binding (DFTB) theory, using it to find the lowest energy structures of carbon clusters and, from these optimized atomic and electronic structures, studying their varied forms of topological transitions, which include a linear chain, a monocyclic to a polycyclic ring, and a fullerene/cage-like geometry. In this modified BH (MBH) algorithm, we define a spatial volume within which the cluster’s lowest energy structure is to be searched, and introduce in addition a cut-and-splice genetic operator to increase the searching performance of the energy minimum than the original BH technique. The present MBH/DFTB algorithm is, therefore, characteristically distinguishable from the original BH technique commonly applied to nonmetallic and metallic clusters, technically more thorough and natural in describing the intricate couplings between valence electrons and ions in a carbon cluster, and thus theoretically sound in putting these two charged components on an equal footing. The proposed modified minimization algorithm should be more appropriate, accurate, and precise in the description of a carbon cluster. We evaluate the present algorithm, its energy-minimum searching in particular, by its optimization robustness. Specifically, we first check the MBH/DFTB technique for two representative carbon clusters of larger size, i.e., C{sub 60} and C{sub 72} against the popular cut-and-splice approach [D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995)] that normally is combined with the genetic algorithm method for finding the cluster’s energy minimum, before employing it to investigate carbon clusters in the size

  5. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    Science.gov (United States)

    Niu, Dong-Mei; Li, Hai-Yang; Luo, Xiao-Lin; Liang, Feng; Cheng, Shuang; Li, An-Lin

    2006-07-01

    The multi-charged sulfur ions of Sq+ (qlaser of 1064 and 532 nm with an intensity of 1010~ 1012W.cm-2. S6+ is the dominant multi-charged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  6. Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, K.; /Kyoto U.; Alcaraz-Aunion, J.L.; /Barcelona, IFAE; Brice, S.J.; /Fermilab; Bugel, Leonard G.; /MIT; Catala-Perez, J.; /Valencia U.; Cheng, G.; /Columbia U.; Conrad, J.M.; /MIT; Djurcic, Zelimir; /Columbia U.; Dore, U.; /Banca di Roma /Frascati; Finley, David A.; /Fermilab; Franke, A.J.; /Columbia U. /Banca di Roma /Frascati

    2008-11-01

    The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, nu{sub {mu}}{sup 12}C- {yields} {mu}{sup 12}Cpi{sup +}, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67 x 10{sup -2} at mean neutrino energy 1.1 GeV and 1.36 x 10{sup -2} at mean neutrino energy 2.2 GeV.

  7. Comparison between computed and measured response of silicon strip detectors exposed to carbon, calcium and ruthenium ion beams

    International Nuclear Information System (INIS)

    The response of silicon strip detectors exposed to energetic heavy ions in the energy interval from 0.3 up to 1.4 GeV/u has been measured at the SIS accelerator at GSI. The energy deposit spectra are characterized by their mean values and widths. The carbon data, at various energies, agree within the accuracy of the measurements with the computed response of the detector. The measured widths of the energy deposit spectra for ruthenium are narrower than those calculated by the appropriate Vavilov distributions. Energetic δ-rays overflowing from the silicon detector is considered as a possible explanation for the disagreement between computed and measured widths

  8. Comparison between computed and measured response of silicon strip detectors exposed to carbon, calcium and ruthenium ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Codino, A. E-mail: antonio.codino@codino-pc.pg.infn.it; Plouin, F.; Bellachioma, C.; Brunetti, M.T.; Checcucci, B.; Federico, C.; Lanfranchi, M.; Maffei, P.; Miozza, M.; Vocca, H

    2003-09-01

    The response of silicon strip detectors exposed to energetic heavy ions in the energy interval from 0.3 up to 1.4 GeV/u has been measured at the SIS accelerator at GSI. The energy deposit spectra are characterized by their mean values and widths. The carbon data, at various energies, agree within the accuracy of the measurements with the computed response of the detector. The measured widths of the energy deposit spectra for ruthenium are narrower than those calculated by the appropriate Vavilov distributions. Energetic {delta}-rays overflowing from the silicon detector is considered as a possible explanation for the disagreement between computed and measured widths.

  9. Radioactive beams and their applications

    International Nuclear Information System (INIS)

    The proceedings contain lectures and contributed papers submitted to the second INR (Kiev's) International School on Nuclear Physics (Kiev, June 25 -July 2, 1991). The following sections were included in the Proceedings: Radioactive Beam Facilities, Application of Radioactive Beams in the Investigations of Nuclear Reactions, Exotic Nuclei and Clusters, Polarization Phenomena, Astrophysics and Others

  10. Standardized beam bouquets for lung IMRT planning

    Science.gov (United States)

    Yuan, Lulin; Wu, Q. Jackie; Yin, Fangfang; Li, Ying; Sheng, Yang; Kelsey, Christopher R.; Ge, Yaorong

    2015-02-01

    The selection of the incident angles of the treatment beams is a critical component of intensity modulated radiation therapy (IMRT) planning for lung cancer due to significant variations in tumor location, tumor size and patient anatomy. We investigate the feasibility of establishing a small set of standardized beam bouquets for planning. The set of beam bouquets were determined by learning the beam configuration features from 60 clinical lung IMRT plans designed by experienced planners. A k-medoids cluster analysis method was used to classify the beam configurations in the dataset. The appropriate number of clusters was determined by maximizing the value of average silhouette width of the classification. Once the number of clusters had been determined, the beam arrangements in each medoid of the clusters were designated as the standardized beam bouquet for the cluster. This standardized bouquet set was used to re-plan 20 cases randomly selected from the clinical database. The dosimetric quality of the plans using the beam bouquets was evaluated against the corresponding clinical plans by a paired t-test. The classification with six clusters has the largest average silhouette width value and hence would best represent the beam bouquet patterns in the dataset. The results shows that plans generated with a small number of standardized bouquets (e.g. 6) have comparable quality to that of clinical plans. These standardized beam configuration bouquets will potentially help improve plan efficiency and facilitate automated planning.

  11. Standardized beam bouquets for lung IMRT planning

    International Nuclear Information System (INIS)

    The selection of the incident angles of the treatment beams is a critical component of intensity modulated radiation therapy (IMRT) planning for lung cancer due to significant variations in tumor location, tumor size and patient anatomy. We investigate the feasibility of establishing a small set of standardized beam bouquets for planning. The set of beam bouquets were determined by learning the beam configuration features from 60 clinical lung IMRT plans designed by experienced planners. A k-medoids cluster analysis method was used to classify the beam configurations in the dataset. The appropriate number of clusters was determined by maximizing the value of average silhouette width of the classification. Once the number of clusters had been determined, the beam arrangements in each medoid of the clusters were designated as the standardized beam bouquet for the cluster. This standardized bouquet set was used to re-plan 20 cases randomly selected from the clinical database. The dosimetric quality of the plans using the beam bouquets was evaluated against the corresponding clinical plans by a paired t-test. The classification with six clusters has the largest average silhouette width value and hence would best represent the beam bouquet patterns in the dataset. The results shows that plans generated with a small number of standardized bouquets (e.g. 6) have comparable quality to that of clinical plans. These standardized beam configuration bouquets will potentially help improve plan efficiency and facilitate automated planning. (paper)

  12. Fragmentation of 200 and 244 MeV/u carbon beams in thick tissue-like absorbers

    International Nuclear Information System (INIS)

    Stacks consisting of thin CR-39 sheets sandwiched between thick lucite and water absorbers were perpendicularly bombarded by 12C ions at 200 and 244 MeV/u. Track radius distributions representing the charge composition of the fragmented beams were automatically measured by a particle track analysis system. After analysis of the nuclear charge distributions, the total charge removal cross-sections and elemental production cross-sections of fragments with atomic numbers from 5 to 3, were obtained down to the lower energies (∼50 and 100 MeV/u, respectively). It has been found that the measured total charge removal cross-section agrees with theoretical predictions within ∼10% and very well with previous experiments in corresponding energy regions. Two model calculations for production of B fragment are in good agreement with our measured data while a third model overestimates it by ∼12%. Theoretical cross-sections for Be and Li fragments differ strongly among the different models and from measured values

  13. Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth

    International Nuclear Information System (INIS)

    In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu−1 as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam. (paper)

  14. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina;

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both the...... partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  15. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Daniel Habermehl

    Full Text Available BACKGROUND: Aim of this study was to evaluate the relative biological effectiveness (RBE of carbon (12C and oxygen ion (16O-irradiation applied in the raster-scanning technique at the Heidelberg Ion beam Therapy center (HIT based on clonogenic survival in hepatocellular carcinoma cell lines compared to photon irradiation. METHODS: Four human HCC lines Hep3B, PLC, HepG2 and HUH7 were irradiated with photons, 12C and 16O using a customized experimental setting at HIT for in-vitro trials. Cells were irradiated with increasing physical photon single doses of 0, 2, 4 and 6 Gy and heavy ion-single doses of 0, 0.125, 0.5, 1, 2, 3 Gy (12C and 16O. SOBP-penetration depth and extension was 35 mm +/-4 mm and 36 mm +/-5 mm for carbon ions and oxygen ions respectively. Mean energy level and mean linear energy transfer (LET were 130 MeV/u and 112 keV/um for 12C, and 154 MeV/u and 146 keV/um for 16O. Clonogenic survival was computated and relative biological effectiveness (RBE values were defined. RESULTS: For all cell lines and both particle modalities α- and β-values were determined. As expected, α-values were significantly higher for 12C and 16O than for photons, reflecting a steeper decline of the initial slope of the survival curves for high-LET beams. RBE-values were in the range of 2.1-3.3 and 1.9-3.1 for 12C and 16O, respectively. CONCLUSION: Both irradiation with 12C and 16O using the raster-scanning technique leads to an enhanced RBE in HCC cell lines. No relevant differences between achieved RBE-values for 12C and 16O were found. Results of this work will further influence biological-adapted treatment planning for HCC patients that will undergo particle therapy with 12C or 16O.

  16. Measurement of Neutral Current Neutral Pion Production on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kurimoto, Yoshinori [Kyoto Univ. (Japan)

    2010-01-01

    Understanding of the π0 production via neutrino-nucleus neutral current interaction in the neutrino energy region of a few GeV is essential for the neutrino oscillation experiments. In this thesis, we present a study of neutral current π0 production from muon neutrinos scattering on a polystyrene (C8H8) target in the SciBooNE experiment. All neutrino beam data corresponding to 0.99 × 1020 protons on target have been analyzed. We have measured the cross section ratio of the neutral current π0 production to the total charge current interaction and the π0 kinematic distribution such as momentum and direction. We obtain [7.7 ± 0.5(stat.) ± 0.5(sys.)] × 10-2 as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein- Sehgal model, which is generally used for the Monte Carlo simulation by many neutrino oscillation experiments. We achieve less than 10 % uncertainty which is required for the next generation search for νµ → νe oscillation. The spectrum shape of the π0 momentum and the distribution of the π0 emitted angle agree with the prediction, which means that not only the Rein-Sehgal model but also the intra-nuclear interaction models describe our data well. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (1.17 ± 0.23 ) × 10-2 based on the Rein and Sehgal model. The result gives the evidence for non-zero coherent pion production via neutral current interaction at the mean neutrino energy of 1.0 GeV.

  17. An overview of nuclear micro-beam analysis of surface and bulk fuel retention in carbon-fibre composites from Tore Supra

    International Nuclear Information System (INIS)

    Surface and bulk retention of deuterium in tiles of the pump limiter from Tore Supra was examined with nuclear reaction analysis using both standard and micro-beam techniques. The aim was to determine the variations in the content and distribution of fuel species in carbon-fibre composites. On plasma-facing surfaces from the deposition zone, the D content reaches 2.5 x 1019 cm-2 in about 8 μm thick top layer, but lateral differences reach even more than one order of magnitude. This is also measured in the erosion zone: 6.6 x 1017 cm-2 to 7.7 x 1018 cm-2 D atoms. Bulk content was examined on cross-sections opened by fracturing the tiles. Fuel is detected up to the depth of 1-1.5 mm beneath the plasma-facing surface in tiles from both the erosion and deposition zones. It occurs in bands, about 100 μm wide and several mm long, roughly parallel to the original plasma-facing surface.

  18. Rabi Wave Packets and Peculiarities of Raman Scattering in Carbon Nanotubes, Produced by High Energy Ion Beam Modification of Diamond Single Crystals

    CERN Document Server

    Yearchuck, Dmitry

    2011-01-01

    QED-model for multichain coupled qubit system, proposed in \\cite{Part1}, was confirmed by Raman scattering studies of quasi-1D carbon zigzag-shaped nanotubes (CZSNTs), produced by high energy ion beam modification of natural diamond single crystals. Multichain coupled qubit system represents itself Su-Schriffer-Heeger $\\sigma$-polaron lattice, formed in CZSNTs plus quantized external electromagnetic (EM) field. New quantum optics phenomenon - Rabi waves, predicted in \\cite{Slepyan_Yerchak} has experimentally been identified for the first time. It is shown, that Raman spectra in quasi-1D CZSNTs are quite different in comparison with well known Raman spectra in 2D those ones. They characterized by semiclassical consideration by the only one vibronic mode of Su-Schriffer-Heeger $\\sigma$-polaron lattice instead of longitudinal and transverse optical phonon $G^+$ and $G^-$modes and the out-of-plane radial breathing mode, which are observed in Raman spectra of 2D single wall nanotubes. It is consequence of 2D - 1D ...

  19. Simple model of bulk and surface excitation effects to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris [Medical Physics Lab, University of Ioannina Medical School, 451 10 Ioannina (Greece); Garcia-Molina, Rafael [Departamento de Fisica - CIOyN, Universidad de Murcia, E-30100 Murcia (Spain); Abril, Isabel [Departament de Fisica Aplicada, Universitat d' Alacant, Apartat 99, E-03080 Alacant (Spain); Kostarelos, Kostas [Nanomedicine Lab, Centre for Drug Delivery Research, The School of Pharmacy, University of London, London WC1N 1AX (United Kingdom)

    2011-09-01

    The effect of bulk and surface excitations to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes (MWNTs) is studied using the dielectric formalism. Calculations are based on a semiempirical dielectric response function for MWCNTs determined by means of a many-pole plasmon model with parameters adjusted to available experimental spectroscopic data under theoretical sum-rule constrains. Finite-size effects are considered in the context of electron gas theory via a boundary correction term in the plasmon dispersion relations, thus, allowing a more realistic extrapolation of the electronic excitation spectrum over the whole energy-momentum plane. Energy-loss differential and total inelastic scattering cross sections as a function of electron energy and distance from the surface, valid over the energy range {approx}50-30,000 eV, are calculated with the individual contribution of bulk and surface excitations separated and analyzed for the case of normally incident and escaping electrons. The sensitivity of the results to the various approximations for the spatial dispersion of the electronic excitations is quantified. Surface excitations are shown to have a strong influence upon the shape and intensity of the energy-loss differential cross section in the near surface region whereas the general notion of a spatially invariant inelastic mean free path inside the material is found to be of good approximation.

  20. Cross-sections of large-angle hadron production in proton- and pion-nucleus interactions VI: carbon nuclei and beam momenta from ±3 GeV/c to ±15 GeV/c

    CERN Document Server

    Bolshakova, A; Chelkov, G; Dedovitch, D; Elagin, A; Emelyanov, D; Gostkin, M; Guskov, A; Kroumchtein, Z; Nefedov, Yu; Nikolaev, K; Zhemchugov, A; Dydak, F; Wotschack, J; De Min, A; Ammosov, V; Gapienko, V; Koreshev, V; Semak, A; Sviridov, Yu; Usenko, E; Zaets, V

    2010-01-01

    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary carbon target, of proton and pion beams with momentum from ±3 GeV/c to ±15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on carbon nuclei are compared with cross-sections on beryllium, copper, tantalum and lead nuclei.

  1. Carbon supported nanoparticles Pt Ru (Pt Ru/C electrocatalysts) prepared using electron beam irradiation; Preparacao de nanoparticulas de PtRu suportadas em carbono (eletrocatalisadores PtRu/C) utilizando feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F. da; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Programa de Celulas a Combustivel], e-mail: espinace@ipen.br, e-mail: dfsilva@ipen.br

    2006-07-01

    Carbon-supported Pt Ru (electrocatalysts PtRu/C nanoparticles) were prepared submitting a water/ethylene glycol mixture containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The PtRu/C electrocatalysts were characterized by EDX, XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts were more active for methanol electro-oxidation than the commercial PtRu/C ETEK electrocatalyst at ambient temperature. (author)

  2. Experimental Research on Reinforcing Damaged Reinforced Concrete Beams with Carbon Fiber Reinforced Plastics%碳纤维加固二次受力梁斜截面抗剪的试验研究

    Institute of Scientific and Technical Information of China (English)

    张国栋; 朱暾; 丁红瑞

    2001-01-01

    通过4根损伤的钢筋混凝土矩形简支梁的抗剪试验,对用CFRP(CarbonFiberReinforcedPlastics)补强二次受力钢筋混凝土梁斜截面强度的力学性能进行了试验研究.研究表明,用CFRP补强钢筋混凝土梁斜截面强度效果良好.%Through shear tests of four damaged rectangular cross-sectionbeams with simple supports,the strength of the inclined section of the beams reinforced with carbon fiber reinforced plastics(CFRP)is studied experimentally.The experimental results show that the effect of CFRP on beams' strengths is farourable.

  3. 碳纤维布加固锈蚀钢筋混凝土梁的疲劳性能试验%FATIGUE PERFORMANCE OF CORRODED RC BEAMS STRENGTHENED WITH CARBON FIBER COMPOSITE SHEETS

    Institute of Scientific and Technical Information of China (English)

    宋力; 张伟平

    2009-01-01

    完成了粘贴碳纤维布加固锈蚀钢筋混凝土梁的疲劳试验.试验结果表明,碳纤维布加固可以明显提高梁的疲劳寿命,减小梁的变形,提高梁的疲劳抗裂性能.因此,粘贴碳纤维布可以较大提高锈蚀钢筋混凝土梁的疲劳性能,延长锈蚀钢筋混凝土结构的使用寿命,为碳纤维布加固锈蚀钢筋混凝土结构的长期疲劳性能研究提供了试验依据.%Tests,including two corroded reinforced concrete(RC)beams strengthened with carbon fiber composite sheets and one corroded RC beams,were carried out under fatigue loadings.It is found that the fa-tigue life of beams strengthened with csrbon fiber composite sheets is greatly improved,and fatigue delforma-tion is decreased,and performance of anti-crack is obviously improved.Thus,after stuengthening with exter-ally bonded carbon fiber composite sheets,the flexural fatigue behavior of a corroded RC beam may be con-siderably improveded,the fatigue life of corrosion RC structures may be obviously increased.It sets up the test-base for the study of long-term performance of corroded RC beam reinforced with carbon fiber composite she-ets.

  4. Isotopic clusters

    International Nuclear Information System (INIS)

    Spectra of isotopically mixed clusters (dimers of SF6) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  5. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  6. Fragmentation of cluster ions produced by electron impact ionization

    International Nuclear Information System (INIS)

    By studying fragmentation of dimer and cluster ions produced by electron impact ionization of a neutral cluster beam, it is possible to elucidate structure, stability and energetics of these species and the dynamics of the corresponding decay reactions. Fragmentation of carbon cluster ions formed from C60 fullerenes, rare gas cluster ions and dimer ions and simple molecular cluster ions (oxygen and nitrogen) and dimer ions have been studied in this thesis using a high resolution two sector field mass spectrometer of reversed geometry and a NIER type electron impact ion source. Spontaneous decay reactions of triply and quadruply charged C40z+ and C41z+ cluster ions which are formed from C60 fullerenes by electron impact ionization have been analyzed. A new but very weak decay reaction for the even-sized carbon clusters ions is observed, namely loss of C3. The odd-sized clusters ions preferentially decay by loss of carbon atoms and, to a lesser degree, trimers. A weak signal due to C2 loss is observed for C413+ ion. These decay channels are discussed in terms of the geometric structure of these metastable, relatively cold cluster ions. Measurements on metastable fragmentation of mass selected rare gas cluster ions (Ne, Ar, Kr) which are produced by electron impact ionization of a neutral rare gas cluster beam have been carried out. From the shape of the fragment ion peaks (MIKE scan technique) information about the distribution of kinetic energy that is released in the decay reaction can be deduced. In this study, the peak shape observed for cluster ions with sizes larger than five is Gaussian and thus from the peak width the mean kinetic energy release of the corresponding decay reactions can be calculated. Using finite heat bath theory, the binding energies of the decaying cluster ions are calculated from these data and have been compared to data in the literature where available. In addition to the decay reactions of cluster ions the metastable dissociation of

  7. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. V. Chemical dynamics of n-C4H3 formation from reaction of C(3Pj) with allene, H2CCCH2(X 1A1)

    Science.gov (United States)

    Kaiser, R. I.; Mebel, A. M.; Chang, A. H. H.; Lin, S. H.; Lee, Y. T.

    1999-06-01

    The crossed molecular beams technique was employed to investigate the reaction between ground state carbon atoms, C(3Pj), and allene, H2CCCH2(X 1A1), at two averaged collision energies of 19.6 and 38.8 kJ mol-1. Product angular distributions and time-of-flight spectra of C4H3 were recorded. Forward-convolution fitting of the data yields weakly polarized center-of-mass angular flux distributions isotropic at lower, but forward scattered with respect to the carbon beam at a higher collision energy. The maximum translational energy release and the angular distributions combined with ab initio and RRKM calculations are consistent with the formation of the n-C4H3 radical in its electronic ground state. The channel to the i-C4H3 isomer contributes less than 1.5%. Reaction dynamics inferred from the experimental data indicate that the carbon atom attacks the π-orbitals of the allenic carbon-carbon double bond barrierless via a loose, reactant-like transition state located at the centrifugal barrier. The initially formed cyclopropylidene derivative rotates in a plane almost perpendicular to the total angular momentum vector around its C-axis and undergoes ring opening to triplet butatriene. At higher collision energy, the butatriene complex decomposes within 0.6 ps via hydrogen emission to form the n-C4H3 isomer and atomic hydrogen through an exit transition state located 9.2 kJ mol-1 above the products. The explicit identification of the n-C4H3 radical under single collision represents a further example of a carbon-hydrogen exchange in reactions of ground state carbon atoms with unsaturated hydrocarbons. This channel opens a barrierless route to synthesize extremely reactive hydrocarbon radicals in combustion processes, interstellar chemistry, and hydrocarbon-rich atmospheres of Jupiter, Saturn, Titan, as well as Triton.

  8. Standardized beam bouquets for lung IMRT planning

    OpenAIRE

    Yuan, Lulin; Wu, Q. Jackie; Yin, Fangfang; LI, YING; Sheng, Yang; Kelsey, Christopher R.; Ge, Yaorong

    2015-01-01

    The selection of the incident angles of the treatment beams is a critical component of IMRT planning for lung cancer due to significant variations in tumor location, tumor size and patient anatomy. We investigate the feasibility of establishing a small set of standardized beam bouquets for planning. The set of beam bouquets were determined by learning the beam configuration features from 60 clinical lung IMRT plans designed by experienced planners. A k-medoids cluster analysis method was used...

  9. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  10. Evaluation of nuclear reaction cross-sections and fragment yields in carbon beams using the SHIELD-HIT Monte Carlo code. Comparison with experiments

    International Nuclear Information System (INIS)

    In light ion therapy, the knowledge of the spectra of both primary and secondary particles in the target volume is needed in order to accurately describe the treatment. The transport of ions in matter is complex and comprises both atomic and nuclear processes involving primary and secondary ions produced in the cascade of events. One of the critical issues in the simulation of ion transport is the modeling of inelastic nuclear reaction processes, in which projectile nuclei interact with target nuclei and give rise to nuclear fragments. In the Monte Carlo code SHIELD-HIT, inelastic nuclear reactions are described by the Many Stage Dynamical Model (MSDM), which includes models for the different stages of the interaction process. In this work, the capability of SHIELD-HIT to simulate the nuclear fragmentation of carbon ions in tissue-like materials was studied. The value of the parameter κ, which determines the so-called freeze-out volume in the Fermi break-up stage of the nuclear interaction process, was adjusted in order to achieve better agreement with experimental data. In this paper, results are shown both with the default value κ = 1 and the modified value κ = 10 which resulted in the best overall agreement. Comparisons with published experimental data were made in terms of total and partial charge-changing cross-sections generated by the MSDM, as well as integral and differential fragment yields simulated by SHIELD-HIT in intermediate and thick water targets irradiated with a beam of 400 MeV u−112C ions. Better agreement with the experimental data was in general obtained with the modified parameter value (κ = 10), both on the level of partial charge-changing cross-sections and fragment yields. (paper)

  11. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    Science.gov (United States)

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  12. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  13. Direct comparative study on the energy level alignments in unoccupied/occupied states of organic semiconductor/electrode interface by constructing in-situ photoemission spectroscopy and Ar gas cluster ion beam sputtering integrated analysis system

    International Nuclear Information System (INIS)

    Through the installation of electron gun and photon detector, an in-situ photoemission and damage-free sputtering integrated analysis system is completely constructed. Therefore, this system enables to accurately characterize the energy level alignments including unoccupied/occupied molecular orbital (LUMO/HOMO) levels at interface region of organic semiconductor/electrode according to depth position. Based on Ultraviolet Photoemission Spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), and reflective electron energy loss spectroscopy, the occupied/unoccupied state of in-situ deposited Tris[4-(carbazol-9-yl)phenyl]amine (TCTA) organic semiconductors on Au (ELUMO: 2.51 eV and EHOMO: 1.35 eV) and Ti (ELUMO: 2.19 eV and EHOMO: 1.69 eV) electrodes are investigated, and the variation of energy level alignments according to work function of electrode (Au: 4.81 eV and Ti: 4.19 eV) is clearly verified. Subsequently, under the same analysis condition, the unoccupied/occupied states at bulk region of TCTA/Au structures are characterized using different Ar gas cluster ion beam (Ar GCIB) and Ar ion sputtering processes, respectively. While the Ar ion sputtering process critically distorts both occupied and unoccupied states in UPS/IPES spectra, the Ar GCIB sputtering process does not give rise to damage on them. Therefore, we clearly confirm that the in-situ photoemission spectroscopy in combination with Ar GCIB sputtering allows of investigating accurate energy level alignments at bulk/interface region as well as surface region of organic semiconductor/electrode structure.

  14. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  15. "Tomography" of the cluster structure of light nuclei via relativistic dissociation

    CERN Document Server

    Zarubin, P I

    2013-01-01

    These lecture notes present the capabilities of relativistic nuclear physics for the development of the physics of nuclear clusters. Nuclear track emulsion continues to be an effective technique for pilot studies that allows one, in particular, to study the cluster dissociation of a wide variety of light relativistic nuclei within a common approach. Despite the fact that the capabilities of the relativistic fragmentation for the study of nuclear clustering were recognized quite a long time ago, electronic experiments have not been able to come closer to an integrated analysis of ensembles of relativistic fragments. The continued pause in the investigation of the "fine" structure of relativistic fragmentation has led to resumption of regular exposures of nuclear emulsions in beams of light nuclei produced for the first time at the Nuclotron of the Joint Institute for Nuclear Research (JINR, Dubna). To date, an analysis of the peripheral interactions of relativistic isotopes of beryllium, boron, carbon and nitr...

  16. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  17. 预拉碳纤维布加固持荷混凝土梁受力性能分析%Mechanical Behavior of Pre-loaded Reinforced Concrete Beams Strengthened by Pre-tensioned Carbon Fiber Composite Sheets

    Institute of Scientific and Technical Information of China (English)

    高鹏; 顾祥林

    2009-01-01

    According to the characteristic of pre-loaded reinforced concrete beams strengthened by pre-tensioned carbon fiber composite sheets, a suitable finite element model and corresponding calculation steps were proposed. The method was verified by the testing results of two groups of strengthened beam specimens. Comparison between simulation and testing results shows that the proposed method is a precise numerical tool. Further parameter analysis using the proposed method shows that the bearing capacity of a strengthened beam might be notably reduced if the pre-load applied on the beam is larger than 40% of the initial bearing capacity of the beam, the strength of carbon fiber composite sheets can be fully used by using pre-tensioning technique,and the negative influence of the pre-load on the bending behavior of a strengthened beam can be made up when the pre-strain of carbon fiber composite sheets is between 0.003~0.004.%根据预张拉碳纤维布加固持荷钢筋混凝土梁受力特点,采用商业软件建立有限元模型对梁加固和受荷全过程进行模拟和分析.对两组试验梁的模拟计算结果显示,有限元方法有较好的精度.试验和进一步的有限元数值模拟分析结果表明,当构件上的持荷水平超过未加固构件承载力的40%时,持荷会降低加固构件的承载力;采用预张拉加固方法可充分发挥碳纤维布的强度,当碳纤维布中的有效预拉应变达0.003~0.004时,可消除持荷对加固梁受力性能的影响.

  18. Nickel nanoparticles effect on the electrochemical energy storage properties of carbon nanocomposite films.

    Science.gov (United States)

    Bettini, Luca Giacomo; Divitini, Giorgio; Ducati, Caterina; Milani, Paolo; Piseri, Paolo

    2014-10-31

    The growth of nanostructured nickel : carbon (Ni : C) nanocomposite thin films by the supersonic cluster beam deposition of nickel and carbon clusters co-deposited from two separate beam sources has been demonstrated. Ni : C films retain the typical highly disordered structure with predominant sp(2) hybridization, low density, high surface roughness and granular nanoscale morphology of cluster assembled nanostructured carbon, but display enhanced electric conductivity. The electric double layer (EDL) capacitance of Ni : C films featuring the same thickness (200 nm) and different nickel volumetric concentrations (0-35%) has been investigated by electrochemical impedance spectroscopy employing an aqueous solution of potassium hydroxide (KOH 1 M) as electrolyte solution. Evidence of increased electric conductivity, facilitated EDL formation and negligible porous structure modification was found as consequence of Ni embedding. This results in the ability to synthesize electrodes with tailored specific power and energy density by the accurate control of the amount of deposited Ni and C clusters. Moreover, nickel nanoparticles were shown to catalyze the formation of tubular onion-like carbon structures upon mild thermal treatment in inert atmosphere. Electrochemical characterization of the heated nanocomposite electrodes revealed that the presence of long range ordered sp(2) structures further improves the power density and energy storage properties.

  19. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan;

    2000-01-01

    -mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  20. Water cluster fragmentation probed by pickup experiments

    Science.gov (United States)

    Huang, Chuanfu; Kresin, Vitaly V.; Pysanenko, Andriy; Fárník, Michal

    2016-09-01

    Electron ionization is a common tool for the mass spectrometry of atomic and molecular clusters. Any cluster can be ionized efficiently by sufficiently energetic electrons, but concomitant fragmentation can seriously obstruct the goal of size-resolved detection. We present a new general method to assess the original neutral population of the cluster beam. Clusters undergo a sticking collision with a molecule from a crossed beam, and the velocities of neat and doped cluster ion peaks are measured and compared. By making use of longitudinal momentum conservation, one can reconstruct the sizes of the neutral precursors. Here this method is applied to H2O and D2O clusters in the detected ion size range of 3-10. It is found that water clusters do fragment significantly upon electron impact: the deduced neutral precursor size is ˜3-5 times larger than the observed cluster ions. This conclusion agrees with beam size characterization by another experimental technique: photoionization after Na-doping. Abundant post-ionization fragmentation of water clusters must therefore be an important factor in the interpretation of experimental data; interestingly, there is at present no detailed microscopic understanding of the underlying fragmentation dynamics.

  1. Coadsorption of nitric oxide and carbon monoxide on the nickel clusters deposited onto MgO(111) film formed on Mo(110)

    Science.gov (United States)

    Magkoev, Tamerlan T.

    2004-10-01

    Coadsorption of NO and CO molecules on the Ni clusters deposited on MgO(111) film formed on a Mo(110) crystal has been studied by reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). It is found that adsorption of NO molecules strongly affects the state of CO molecules, which were initially adsorbed on the Ni clusters. The observed features in RAIRS and TPD spectra are attributed to the change of the CO adsorption site and geometry, which is induced by NO adsorption.

  2. Spatial separation of molecular conformers and clusters.

    Science.gov (United States)

    Horke, Daniel; Trippel, Sebastian; Chang, Yuan-Pin; Stern, Stephan; Mullins, Terry; Kierspel, Thomas; Küpper, Jochen

    2014-01-09

    Gas-phase molecular physics and physical chemistry experiments commonly use supersonic expansions through pulsed valves for the production of cold molecular beams. However, these beams often contain multiple conformers and clusters, even at low rotational temperatures. We present an experimental methodology that allows the spatial separation of these constituent parts of a molecular beam expansion. Using an electric deflector the beam is separated by its mass-to-dipole moment ratio, analogous to a bender or an electric sector mass spectrometer spatially dispersing charged molecules on the basis of their mass-to-charge ratio. This deflector exploits the Stark effect in an inhomogeneous electric field and allows the separation of individual species of polar neutral molecules and clusters. It furthermore allows the selection of the coldest part of a molecular beam, as low-energy rotational quantum states generally experience the largest deflection. Different structural isomers (conformers) of a species can be separated due to the different arrangement of functional groups, which leads to distinct dipole moments. These are exploited by the electrostatic deflector for the production of a conformationally pure sample from a molecular beam. Similarly, specific cluster stoichiometries can be selected, as the mass and dipole moment of a given cluster depends on the degree of solvation around the parent molecule. This allows experiments on specific cluster sizes and structures, enabling the systematic study of solvation of neutral molecules.

  3. Weighted Clustering

    CERN Document Server

    Ackerman, Margareta; Branzei, Simina; Loker, David

    2011-01-01

    In this paper we investigate clustering in the weighted setting, in which every data point is assigned a real valued weight. We conduct a theoretical analysis on the influence of weighted data on standard clustering algorithms in each of the partitional and hierarchical settings, characterising the precise conditions under which such algorithms react to weights, and classifying clustering methods into three broad categories: weight-responsive, weight-considering, and weight-robust. Our analysis raises several interesting questions and can be directly mapped to the classical unweighted setting.

  4. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  5. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side. The...... algorithms for biological problems. © 2013 Springer-Verlag....... problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications of these...

  6. Carbon Fiber Laminate Strengthened RC Beams Subjected to Fatigue Loading at Elevated Temperature%温度升高对碳纤维薄板增强RC梁疲劳性能的影响

    Institute of Scientific and Technical Information of China (English)

    周芝林; 黄培彦; 郭馨艳

    2008-01-01

    The static and fatigue tests under cyclic bending loads at different ambient temperatures of 20 ℃ and 80℃ are carried out to investigate the fatigue behavior of the reinforced concrete(RC) beams strengthened with'carbon fi-ber laminates(CFLs). The failure modes of the strengthened beams include CFLs debonded near the mid-span and steel rebar yielded or broken. S-N curves of strengthened beams are developed according to the test results. The fa-tigue limit, load versus deflection curves and strain response of strengthened beams are obtained as well. The results show that the fatigue behaviors of the strengthened beams are not significantly influenced by the ambient tempera-tures (lower than 80℃) when the fatigue load levels equal 25.0 kN, 27.5 kN and 30.0 kN.%为了研究碳纤维薄板增强钢筋混凝土梁在不同温度下的疲劳性能,分别在20℃和80℃的温度条件下对26根增强梁进行了三点弯曲静载和疲劳试验.结果表明:当疲劳载荷水平为25.0 kN,27.5 kN和30.0 kN时,试件的S-N曲线、疲劳极限、破坏模式、挠度曲线和应变反映受环境温度的影响较小.

  7. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study; Tratamento de efluentes industriais utilizando a radiacao ionizante de acelerador industrial de eletrons e por adsorcao com carvao ativado. Estudo comparativo

    Energy Technology Data Exchange (ETDEWEB)

    Las Casas, Alexandre

    2004-07-01

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  8. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  9. Kevlar and Carbon Fiber Sheet Reinforced Soil Reinforced Concrete Beam Flexural Performance Test Inquiry%碳纤维布及芳纶布加固钢筋混土梁受弯性能试验探究

    Institute of Scientific and Technical Information of China (English)

    邝美玲

    2016-01-01

    在土木工程建设中,碳纤维布及芳纶布为钢筋混土构件带来了新的加固机遇,已成为工程施工中的实质性保障,占据着综合比例的重要地位。基于此,从钢筋混土梁入手,结合相关试验案例,重点分析碳纤维布及芳纶布加固钢筋混土梁受弯性能的优化举措,以供相关研究参考。%In the civil engineering construction,carbon fiber and Kevlar fiber cloth cloth reinforced concrete soil reinforcement member has brought new opportunities,construction has become a substantive guarantee,occupies an important position integrated scale.Based on this,the soil from reinforced concrete beams,combining relevant test case focuses on Kevlar Reinforced with carbon fiber sheet reinforced concrete and soil beam flexural performance optimization initiatives for research reference.

  10. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  11. THE MECHANICAL BEHAVIOR EXPERIMENT AND ANALYSIS OF CONTINUOUS BEAMS STRENGTHENED WITH CARBON FIBER REINFORCED POLYMER SHEETS%碳纤维布加固连续梁力学性能试验及分析

    Institute of Scientific and Technical Information of China (English)

    程东辉; 王天峰; 易亚敏

    2011-01-01

    为了开展碳纤维布加固钢筋混凝土连续梁受力性能的研究工作,对3根两跨采用碳纤维布加固的钢筋混凝土连续梁进行三分点加载的受力性能试验研究,获得加固状态下钢筋混凝土连续梁正截面承载力、裂缝分布及开展、中支座塑性铰区分布长度等试验实测值和荷载-挠度曲线及内力重分布关系曲线。试验研究表明:钢筋混凝土连续梁在加固状态下的破坏呈现中支座纵向受力钢筋先屈服,跨中纵向受力钢筋后屈服,碳纤维布被拉断的形式;试验梁加载过程中有明显的内力重分布,承载力极限状态下内力重分布幅度超过50%;由于跨中碳纤维布的存在约束了连续梁的变形,从而导致中支座控制截面附近塑性区域分布长度比普通钢筋混凝土连续梁有所减小。%In order to study the mechanical behavior of concrete continuous beams strengthened with CFRP sheets, 3 two-span continuous beams were fabricated, and strengthened with CFRP sheets at each span. The test of loading on two-point was completed, from which the bearing capacity, cracks distribution, the test value of the length of plastic hinge region, curves of load-deformation and curves of internal force redistribution were obtained. The test results showed that the failure of concrete continuous beams strengthened with CFRP sheets was characterized by longtitudinal reinforcement yielded in intermediate support sections, then the longtitudinal reinforcement yielded in the middle span sections, at last carbon fiber polymer sheets were pulled off. The internal force redistribution appeared apparently in beams during loading process and the redistribution rate was over 50% in the state of ultimate bearing capacity. As CFRP confined the deflection of beams,the length of the plastic hinge region near the sections of intermediate support was reduced as compared to ordinary continuous reinforced beams.

  12. Using a Regional Cluster of AmeriFlux Sites in Central California to Advance Our Knowledge on Decadal-Scale Ecosystem-Atmosphere Carbon Dioxide Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Baldocchi, Dennis [Univ. of California, Berkeley, CA (United States)

    2015-03-24

    Continuous eddy convariance measurements of carbon dioxide, water vapor and heat were measured continuously between an oak savanna and an annual grassland in California over a 4 year period. These systems serve as representative sites for biomes in Mediterranean climates and experience much seasonal and inter-annual variability in temperature and precipitation. These sites hence serve as natural laboratories for how whole ecosystem will respond to warmer and drier conditions. The savanna proved to be a moderate sink of carbon, taking up about 150 gC m-2y-1 compared to the annual grassland, which tended to be carbon neutral and often a source during drier years. But this carbon sink by the savanna came at a cost. This ecosystem used about 100 mm more water per year than the grassland. And because the savanna was darker and rougher its air temperature was about 0.5 C warmer. In addition to our flux measurements, we collected vast amounts of ancillary data to interpret the site and fluxes, making this site a key site for model validation and parameterization. Datasets consist of terrestrial and airborne lidar for determining canopy structure, ground penetrating radar data on root distribution, phenology cameras monitoring leaf area index and its seasonality, predawn water potential, soil moisture, stem diameter and physiological capacity of photosynthesis.

  13. 碳纤维加固钢-混凝土组合梁承载力极限状态计算%Analysis of Ultimate Load-carrying Capacity of Strengthening Steel-concrete Composite Beam Using Carbon Fiber

    Institute of Scientific and Technical Information of China (English)

    荣学亮; 黄侨

    2011-01-01

    Carbon fiber is a kind of optimal materials for bridge maintenance and reinforcement. Design method of strengthening steel-concrete composite bridges using carbon fiber was studied. Characteristic of bridge reinforce-ment under load and phasing of stress features were considered, and calculation method of ultimate limit state was suitable for existing bridge design code . Ultimate strain of carbon fiber in ultimate limit state is firstly established based on plane-section assumption and strain-lag of carbon fiber. Then computational scheme and calculation meth-od of flexural capacity in positive moment area and negative moment area for strengthening steel-concrete composite beam using carbon fiber are established respectively, which is reference for design of bridge strengthening.%碳纤维复合材料是进行桥梁维修和加固的理想材料.对采用碳纤维复合材料加固钢-混凝土组合梁桥的设计方法进行了分析.考虑桥梁结构带载加固分阶段受力的特点,与现行桥梁设计规范中承载能力极限状态计算方法相适应.首先基于平截面假设和碳纤维应变滞后的特点,确定承载能力极限状态下碳纤维片材的极限应变值.然后分别建立了碳纤维片材加固钢-混凝土组合梁在正弯矩区和负弯矩区抗弯承载力的计算图式和计算方法,可供桥梁加固工程设计参考.

  14. Experimental study of proton beam halo in mismatched beams

    International Nuclear Information System (INIS)

    We report measurements of transverse beam-halo formation in mismatched proton beams in a 52-quadrupole FODO-transport channel following the 6.7 MeV RFQ at the Low-Energy Demonstration Accelerator (LEDA) at Los Alamos. Beam profiles in both transverse planes were measured using a new diagnostic device that consists of a movable carbon filament for measurement of the beam core, and scraper plates for measurement of the outer part of the distributions. The initial results indicate a surprisingly strong growth rate of the rms emittance even for the modest space-charge tune depressions of the experiment. Our results are consistent with the complete transfer of free energy of the mismatched beams into emittance growth within 10 envelope oscillations for both the breathing and the quadrupole modes.

  15. Cluster-surface interaction: from soft landing to implantation

    DEFF Research Database (Denmark)

    Popok, Vladimir; Barke, Ingo; Campbell, Eleanor E.B.;

    2011-01-01

    and implantation, i.e. slight cluster embedding into the surface – otherwise known as cluster pinning. At higher impact energies, cluster structure is lost and the impact results in local damage of the surface and often in crater and hillock formation. We consider both experimental data and theoretical simulations...... instance, graphite-to-diamond) are also discussed. The review is finalized by an outlook on the future development of cluster beam research....

  16. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  17. Cluster headache

    Science.gov (United States)

    Doctors do not know exactly what causes cluster headaches. They seem to be related to the body's sudden release of histamine (chemical in the body released during an allergic response) or serotonin (chemical made by nerve cells). A problem in a small area at ...

  18. Structural evolution and metallicity of lead clusters

    Science.gov (United States)

    Götz, Daniel A.; Shayeghi, Armin; Johnston, Roy L.; Schwerdtfeger, Peter; Schäfer, Rolf

    2016-05-01

    The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps are calculated using time-dependent density functional theory. They are compared to Kubo gaps, which are an indicator of the metallicity in finite particles. Both, experimental and theoretical data suggest that lead clusters are not metallic up to at least 36 atoms.The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps

  19. The direct imaging and observed packing behaviour of othro-carborane molecules within single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Ortho-carborane molecules have been inserted into single walled carbon nanotubes (SWNTs) and imaged directly by high resolution transmission electron microscopy (HRTEM). Direct imaging revealed that both discrete molecules and zig-zag 1D chains of o-carborane molecules were observed to pack into SWNT capillaries. Upon further e-beam irradiation, partial decomposition and rearrangement of clusters of o-carborane molecules was observed

  20. Study of electrocatalytic properties of iridium carbonyl cluster and rhodium carbonyl cluster compounds for the oxygen reduction and hydrogen oxidation reactions in 0.5 MH{sub 2}SO{sub 4} in presence and absence of methanol and carbon monoxide, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Uribe-Godinez, J.; Borja-Arco, E.; Castellanos, R.H. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Escobedo (Mexico); Jimenez-Sandoval, O. [Centro de Investigacion y de Estudios Avanzados del Inst. Politecnico Nacional, Querataro (Mexico)

    2006-07-01

    The suitability of carbonyl cluster compounds as a substitute to platinum (Pt) in fuel cell catalysts was investigated. Iridium (Ir{sub 4}(CO){sub 12} and rhodium (Rh{sub 6}(CO){sub 116}) cluster compounds were investigated as potential new electrocatalysts for oxygen reduction reaction (ORR) in the presence and absence of methanol at different concentrations, as well as for the hydrogen oxidation reaction (HOR) with pure hydrogen and a hydrogen/carbon monoxide mixture. The materials were studied using room temperature rotating disk electrode (RDE) measurements and cyclic and linear sweep voltammetry techniques (LSV). Tafel slope and exchange current density were calculated using the LSV polarization curves. Cyclic voltamperometry results suggested that the electrocatalysts were tolerant to methanol. However, electrochemical behaviour of the materials altered in the presence of CO, and peaks corresponding to CO oxidation were observed in both cases. The rhodium carbonyl showed a higher current density for the ORR than the iridium carbonyl. The current potential curves in the presence of methanol were similar to those obtained without methanol. Results confirmed the tolerance properties of the materials to perform the ORR. Decreased current density values were observed during HOR, and were attributed to changes in the hydrogen solubility and diffusion coefficient due to the presence of CO. The Tafel slopes indicated that the mechanics of the HOR were Heyrovsky-Volmer. Results showed that the materials are capable of performing both ORR and HOR in an acid medium. It was noted that the iridium carbonyl cluster followed a 4-electron transfer mechanism towards the formation of water. It was concluded that the compounds are suitable for use as both cathodes and anodes in proton exchange membrane fuel cells (PEMFCs) and as cathodes in direct methanol fuel cells (DMFCs). 3 refs., 2 tabs., 3 figs.